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We develop a detailed microscopic theory describing dc Josephson effect and Andreev bound
states in superconducting junctions with a half-metal. In such systems the supercurrent is caused by
triplet pairing states emerging due to spin-flip scattering at the interfaces between superconducting
electrodes and the half-metal. For sufficiently clean metals we provide a detailed non-perturbative
description of the Josephson current at arbitrary transmissions and spin-flip scattering parameters
for both interfaces. Our analysis demonstrates that the behavior of both the Josephson current and
Andreev bound states crucially depends on the strength of spin-flip scattering showing a rich variety
of features which can be tested in future experiments.

I. INTRODUCTION

Recent experiments1 strongly indicate the possibility
to realize non-vanishing supercurrent across sufficiently
thick half-metal (H) layers embedded in-between two s-
wave BCS superconductors (S). This physical situation
appears rather non-trivial. Indeed, in conventional SNS
junctions (N stands for spin-isotropic normal metal) the
supercurrent is carried by (spin-singlet) Cooper pairs
penetrating into the N-metal layer from both supercon-
ductors due to the proximity effect. However, half-metals
are fully spin polarized materials acting as insulators for
electrons with one of the two spin directions. Hence,
penetration of spin-singlet electron pairs into half met-
als should be prohibited and no supercurrent would be
possible.

Recently it was realized2 that this situation changes
qualitatively if one allows for spin-flip scattering at HS
interfaces. Such scattering enables conversion of spin-
singlet pairing in S-electrodes into spin-triplet pairing in
a half-metal. In this way superconducting correlations
can survive even in a half-metal ferromagnet, thus ”un-
blocking” the supercurrent across SHS junctions. Sub-
sequent numerical and analytical studies3,4,5 confirmed
this physical picture also extending it to structures with
disorder. In particular, it was argued5 that depending
on the degree of disorder in the H-metal the origin of
triplet pairing there can change from the p-wave type
to the odd-frequency one6. It was also realized that the
presence of triplet pairing in strong ferromagnets and in
half-metals can cause the so-called π-junction behavior
of the system7.

Despite all these important developments the issue is
yet far from settled. The goal of this paper is to work out
a complete theory of dc Josephson effect in clean SHS het-
erostructures at arbitrary transmissions of HS interfaces.
Electron scattering at these interfaces will be described
by the most general scattering matrices which fully ac-
count for spin-flip processes. Depending on the system

parameters we will find a rich variety of the results both
for the temperature dependence of the supercurrent and
for the current-phase relation in SHS junctions demon-
strating crucial importance of spin-flip scattering at HS
interfaces. In addition we will also address Andreev level
quantization and show that this phenomenon in SHS
junctions acquires qualitatively new features which are
not present in conventional SNS structures.

The structure of the paper is as follows. In Sec. II we
will employ the quasiclassical formalism which enables us
to exactly evaluate the Josephson current in SHS struc-
tures with many conducting channels at any transmis-
sions of SH interfaces. In Sec. III we will develop a
more general approach which also accounts for resonant
effects and allows to include structures with few conduct-
ing channels into consideration. Within this approach we
will describe both the Josephson current and Andreev
levels in SHS junctions and establish the correspondence
to the results derived in Sec. II. In Sec. IV we will briefly
summarize our main observations.

II. QUASICLASSICAL ANALYSIS

In this section we will consider a general model of a
clean SNS junction with spin-active interfaces. We will
then specify the scattering matrices of NS interfaces in a
way appropriate to describe SHS heterostructures. Here
we will treat the systems with many conducting chan-
nels. For this reason it will be sufficient to employ the
quasiclassical formalism of energy-integrated Matsubara
Green functions8,9.

http://arXiv.org/abs/0711.4955v2
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FIG. 1: SNS junction and Riccati amplitudes in the clean limit. The functions γi, Γi γ̃i Γ̃i are Riccati amplitudes at the
corresponding NS interface. γ± and γ̃± are Riccati amplitudes in the middle of the normal metal layer. Quasiparticle momentum
directions are indicated by arrows.

A. Riccati parameterization

In the ballistic limit the Eilenberger equations take the
form

[

iωnτ̂3 − ∆̂(r), ĝ(pF , ωn, r)
]

+ ivF∇ĝ(pF , ωn, r) = 0,

(1)

where [â, b̂] = âb̂ − b̂â, ωn = πT (2n + 1) is Matsubara
frequency, pF = mvF is the electron Fermi momentum
vector and τ̂3 is the Pauli matrix in Nambu space. The
function ĝ also obeys the normalization condition ĝ2 = 1.
Green function ĝ and ∆̂ are 4×4 matrices in Nambu and
spin spaces. In Nambu space they can be parameterized
as

ĝ =

(

g f

f̃ g̃

)

, ∆̂ =

(

0 ∆iσ2

∆∗iσ2 0

)

, (2)

where g, f , f̃ , g̃ are 2×2 matrices in the spin space, ∆ is
the BCS order parameter and σi are Pauli matrices. For
simplicity we will only consider the case of spin-singlet
isotropic pairing in superconducting electrodes. As usu-
ally, the superconducting order parameter in the normal
layer is set to be equal to zero.

The equilibrium current density is defined by the stan-
dard relation

j(r) = eN0πT
∑

ωn>0

Im 〈vF Sp[τ̂3ĝ(pF , ωn, r)]〉 , (3)

whereN0 = mpF /2π
2 is the density of states at the Fermi

level and angular brackets 〈...〉 denote averaging over the
Fermi momentum.

The above matrix Green functions can be conveniently
parameterized10 by the two Riccati amplitudes γ and γ̃:

ĝ =

(

(1 − γγ̃)−1(1 + γγ̃) 2(1 − γγ̃)−1γ
−2(1 − γ̃γ)−1γ̃ −(1 − γ̃γ)−1(1 + γ̃γ)

)

. (4)

With the aid of the above parameterization one can iden-
tically transform the quasiclassical equations (1) into

the following set of decoupled equations for Riccati
amplitudes10

ivF∇γ + 2iωγ = γ∆∗iσ2γ − ∆iσ2, (5)

ivF∇γ̃ − 2iωγ̃ = γ̃∆iσ2γ̃ − ∆∗iσ2. (6)

Solving Eqs. (5) and (6) inside the normal metal we
obtain following relations between Riccati amplitudes

γ+ = Γ1′ exp(−ωnd/|vFx|) = γ2′ exp(ωnd/|vFx|), (7)

γ− = γ1′ exp(ωnd/|vFx|) = Γ2′ exp(−ωnd/|vFx|), (8)

γ̃+ = γ̃1′ exp(ωnd/|vFx|) = Γ̃2′ exp(−ωnd/|vFx|), (9)

γ̃− = Γ̃1′ exp(−ωnd/|vFx|) = γ̃2′ exp(ωnd/|vFx|), (10)

where γi′ , Γi′ , γ̃i′ , Γ̃i′ are Riccati amplitudes at the corre-
sponding interface and γ± and γ̃± are Riccati amplitudes
in the middle of the normal metal slab (see Fig. 1 for de-
tails), d is a distance between two NS interfaces.

Deep inside the superconducting electrodes we apply
the following asymptotic conditions

γ1 = −σ2a(ω)e−iχ/2, γ̃1 = σ2a(ω)eiχ/2, (11)

γ2 = −σ2a(ω)eiχ/2, γ̃2 = σ2a(ω)e−iχ/2, (12)

where a(ω) = (
√

ω2 + |∆|2 − ω)/|∆| and χ is the su-
perconducting phase difference across the junction. Here
and below we assume that the order parameter is spa-
tially uniform inside superconducting electrodes. This
choice can always be parametrically justified by assum-
ing the proper junction geometry and/or interface trans-
mission values. For simplicity we also assume that the
absolute values of the superconducting order parameter
are identical in both S-electrodes. Generalization of our
approach to the case of anisotropic pairing and asymmet-
ric electrodes with |∆1| 6= |∆2| is straightforward.

B. Boundary conditions at metallic interfaces

The above quasiclassical equations should be supple-
mented by appropriate boundary conditions at the inter-
faces. In the case of specularly reflecting spin-degenerate
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interfaces these conditions were derived by Zaitsev11 and
later generalized to spin-active interfaces in Ref. 12.

Similarly to Ref. 13 it will be convenient for us to use
the boundary conditions formulated directly in terms of
Riccati amplitudes. Let us consider the first NS interface
and explicitly specify the relations between Riccati am-
plitudes for incoming and outgoing electron trajectories,
see Fig. 1. For instance, the boundary conditions for Γ1,
can be written in the form14,15

Γ1 = r1lγ1S
+
11 + t1lγ1′S+

11′ , (13)

Γ̃1 = S+
11γ̃1r̃1r + S+

1′1γ̃1′ t̃1r. (14)

Here we defined the transmission (t) and reflection (r)
amplitudes as:

r1l = [β−1
1′1S

+
11 − β−1

1′1′S
+
11′ ]

−1β−1
1′1, (15)

r̃1r = β−1
11′ [S

+
11β

−1
11′ − S+

1′1β
−1
1′1′ ]

−1, (16)

t1l = −[β−1
1′1S

+
11 − β−1

1′1′S
+
11′ ]

−1β−1
1′1′ , (17)

t̃1r = −β−1
1′1′ [S

+
11β

−1
11′ − S+

1′1β
−1
1′1′ ]

−1, (18)

where

βij = S+
ij − γjS

+
ij γ̃i. (19)

Matrices Sij and Sij are building blocks of the full elec-

tron and hole interface S-matrices12

S =

(

S11 S11′

S1′1 S1′1′

)

, S =

(

S11 S11′

S1′1 S1′1′

)

(20)

Boundary conditions for Γ1′ , Γ̃1′ can be obtained from
the above equations simply by replacing 1 ↔ 1′. Bound-
ary conditions describing electron scattering at the sec-
ond interface are formulated analogously.

Combining the above relations between Riccati ampli-
tudes we obtain matrix quadratic equations for the ma-
trices η± = −iγ±σ2 and η̃± = iσ2γ̃±

η+

{

c2a1 exp(−ωnd/|vFx|)+a2b1 exp(ωnd/|vFx|)
}

η+−

− η+

{

c2c1 exp(−2ωnd/|vFx|) + a2d1

}

+

+
{

d2a1 + b2b1 exp(2ωnd/|vFx|)
}

η+−

−
{

d2c1 exp(−ωnd/|vFx|)+b2d1 exp(ωnd/|vFx|)
}

= 0,

(21)

η̃+

{

d2c1 exp(−ωnd/|vFx|)+ b2d1 exp(ωnd/|vFx|)
}

η̃+−

− η̃+

{

d2a1 + b2b1 exp(2ωnd/|vFx|)
}

+

+
{

c2c1 exp(−2ωnd/|vFx|) + a2d1

}

η̃+−

−
{

c2a1 exp(−ωnd/|vFx|)+a2b1 exp(ωnd/|vFx|)
}

= 0,

(22)

where we introduced the following 2 × 2 matrices

a1 =
[

iσ2S
+
11′ γ̃1β

−1
11 S

+
1′1

]

, (23)

b1 =
[

S+
1′1′ − S+

11′β
−1
11 S

+
1′1

]

, (24)

c1 =
[

σ2(S
+
1′1′ + S+

11′ γ̃1β
−1
11 γ1S

+
1′1)σ2

]

, (25)

d1 =
[

S+
11′β

−1
11 γ1S

+
1′1iσ2

]

, (26)

a2 =
[

iσ2S
+
22′ γ̃2β

−1
22 S

+
2′2

]

, (27)

b2 =
[

S+
2′2′ − S+

22′β
−1
22 S

+
2′2

]

, (28)

c2 =
[

σ2(S
+
2′2′ + S+

22′ γ̃2β
−1
22 γ2S

+
2′2)σ2

]

, (29)

d2 =
[

S+
22′β

−1
22 γ2S

+
2′2iσ2

]

. (30)

Matrix equations for the η− and η̃− can be obtained
from Eqs. (21) and (22) by substituting η+ → η−, η̃+ →
η̃− and interchanging of indices 1 ↔ 2.

For arbitrary interface S-matrices the matrix equations
(21) and (22) can be reduced to scalar quartic equations
with very cumbersome general solutions. These solu-
tions, however, become simpler for some particular in-
terface models. Here we will stick to the case of SHS
junctions in which we should specify the scattering S-
matrix for the interface between spin-isotropic normal
metal (or superconductor) and fully spin polarized ferro-
magnet. We will demonstrate that in this case Eqs. (21)
and (22) can be solved in a transparent and compact way.

C. Scattering matrices

Let specify the scattering S-matrices for both SH in-
terfaces. For simplicity we will assume that these matri-
ces depend only on the incidence angle but not on the
azimuthal one. Then the following relation between elec-
tron and hole S-matrices holds: S = ST . For a half-
metal slab between two superconducting electrodes the
corresponding interface scattering matrices contain 3× 3
nontrivial sub-matrices, i.e.

S =







· · · · · · · · · 0
· · · · · · · · · 0
· · · · · · · · · 0
0 0 0 1






. (31)

It is straightforward to demonstrate that the Joseph-
son current is invariant under the following transforma-
tion of the S-matrices:

S1 →
(

U1 0
0 V

)

S1

(

U+
1 0
0 V +

)

, (32)

S1 →
(

U∗
1 0
0 V ∗

)

S1

(

UT
1 0
0 V T

)

, (33)

S2 →
(

U2 0
0 V

)

S2

(

U+
2 0
0 V +

)

, (34)

S2 →
(

U∗
2 0
0 V ∗

)

S2

(

UT
2 0
0 V T

)

, (35)
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where U1, U2, V ∈ SU(2). With the aid of the above
transformation we can always reduce the S-matrices to
the following form

S =









αeiζ cos ν βeiζ αe−2iζ sin ν 0
−β∗eiζ cos ν α∗eiζ −β∗e−2iζ sin ν 0
−eiζ sin ν 0 e−2iζ cos ν 0

0 0 0 1









, (36)

where |α|2 + |β|2 = 1 and ν, ζ are real. We also note
that in general the first and the second interfaces are
characterized by two different sets of parameters α, β,
ν and ζ, i.e. these interfaces are described by different
scattering matrices.

Here and below the parameter sin2 ν defines an effec-
tive interface transmission. The normal state differential
conductance (dI/dV ) for the metallic interface described
by the S-matrix (36) is proportional to sin2 ν

GNN =
Ae2
2π

∫

|p‖|<pF

d2p‖

(2π)2
sin2 ν =

e2

2π

∑

k

sin2 ν (37)

where the index k labels conducting channels of our junc-
tion. The limit ν = 0 corresponds to completely impen-
etrable interfaces. The parameter β is responsible for
spin-flip scattering of electrons at the interface.

Finally, we point out that by virtue of Eqs. (32)-(35)
the scattering matrix employed in the analysis of Ref. 4
can be reduced to our expression (36) provided we iden-
tify

cos ν = 1 −
t2↑↑ + t2↓↑

2W
, sin ν =

√

t2↑↑ + t2↓↑

W
, (38)

α = −
t2↑↑

t2↑↑ + t2↓↑
eiθ/2 −

t2↓↑
t2↓↑ + t2↓↑

e−iθ/2, (39)

β = 2i
t↑↑t↓↑
t2↑↑ + t2↓↑

sin(θ/2)e−i(θ↑↑+θ↓↑), ζ = 0, (40)

where we use the notations from Ref. 4.

D. Josephson current

Now we are ready to evaluate the Josephson current.
In SNS systems with interface S-matrices of the form
(36) the matrices ai, bi, ci, di, η±, η̃± have the following
structure

ai =

(

0 0
ai 0

)

, bi =

(

bi 0
0 1

)

, ci =

(

1 0
0 ci

)

, (41)

di =

(

0 di

0 0

)

, η± =

(

0 η±
0 0

)

, η̃± =

(

0 0
η̃± 0

)

. (42)

Since all the matrices ai, bi, ci, di, η±, η̃± have only one
nontrivial matrix element it suffices to denote this ele-
ment by the same symbol as the corresponding matrix
itself. Then from Eqs. (21), (22) we derive a simple
quadratic equations for the scalar variables η± and η̃±.
Resolving this equation and making use of the Riccati
parameterization described in Sec. II A and II B we con-
struct the Green-Eilenberger function for our junction.
Substituting this function into Eq. (3) we arrive at the
following general result for the Josephson current

I(χ) = −4eAT
∑

ωn>0

∫

|p‖|<pF

d2p‖
(2π)2

a2(1 − a2)2D12 sin χ̃

Q(ωn)

(43)
where D12 = |β1||β2| sin2 ν1 sin2 ν2, A is the junction
cross section,

Q(ω) =

{[

2a2(1 − a2)2|β1||β2| sin2 ν1 sin2 ν2 cos χ̃−

−
(

(1 − a2)(1 − a2 cos2 ν1) + a2 |α̃1|2
) (

(1 − a2)(1 − a2 cos2 ν2) + a2 |α̃2|2
)

exp(2ωnd/|vFx|)−

−
(

(1 − a2)(−a2 + cos2 ν1) + a2 |α̃1|2
) (

(1 − a2)(−a2 + cos2 ν2) + a2 |α̃2|2
)

exp(−2ωnd/|vFx|)
]2

−

− 4
∣

∣(1 − a2)2 cos ν1 + a2α̃2
1

∣

∣

2 ∣

∣(1 − a2)2 cos ν2 + a2α̃2
2

∣

∣

2

}1/2

, (44)

and

χ̃ = χ+3ζ2 +argβ2 − 3ζ1 − argβ1, α̃i = αi +α∗
i cos νi.

(45)

We observe that the Josephson current is proportional to
the parameter D12 which contains effective transmissions
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of both interfaces sin2 ν1 sin2 ν2 and the two spin-flip fac-
tors |β1| and |β2|. The scattering matrix parameters ζ1,
arg β1, ζ2, and arg β2 enter into our result only in com-
bination with the phase difference χ (45).

Let us briefly analyze the above general expression for
the Josephson current. At small transmissions ν1, ν2 ≪ 1
and for sufficiently long junctions d ≫ ξ0(ν

2
1 + ν2

2 )
Eq. (43) reduces to

I(χ) = −eAT
2

∑

ωn>0

∫

|p‖|<pF

d2p‖

(2π)2
∆2ω2

n|β1||β2|ν2
1ν

2
2 sin χ̃

[ω2
n + ∆2(Reα1)2][ω2

n + ∆2(Reα2)2]

1

sinh(2ωnd/|vFx|)
, (46)

which matches with the analogous result derived in Ref. 4
provided we set Reα1,2 = 1. For vF /d ≪ T ≪ ∆ the
integral in Eq. (43) is dominated by the contribution
of momenta values sufficiently close to p‖ = 0 and the
dependence for the Josephson current on the junction
thickness d acquires the standard exponential form

I = −4eAvF p
2
FT

2

π∆2d
exp(−2πTd/vF )

D12 sin χ̃

|α̃1|2 |α̃2|2

∣

∣

∣

∣

∣

p‖=0

.

(47)
At lower temperatures T ≪ vF /d ≪ ∆ Eq. (43) yields
the power-law dependence on d:

I = −7ζ(3)eA
4πd3∆2

∫

|p‖|<pF

d2p‖

(2π)2
|vFx|3D12 sin χ̃

|α̃1|2 |α̃2|2
, (48)

i.e. I ∝ 1/d3 at T → 0. In the limit of the small trans-
parencies ν1,2 ≪ 1 or spin-flip factors |β1|, |β2| ≪ 1 the
term in Q(ω) proportional to cos χ̃ is irrelevant, and the
current-phase relation becomes purely sinusoidal

I(χ) = −Ic sin(χ− χ0), (49)

where the phase shift χ0 depends on the scattering ma-
trix parameters (45) and, hence, in general can take any
value. Provided these values change randomly for differ-
ent conducting channels the net Josephson current across
the system can be significantly reduced. For symmetric
interfaces the phase shift χ0 is identically zero and the
π-junction behavior is realized.

Note that the expression (46) formally diverges in the
limit of small d illustrating insufficiency of the perturba-
tive (in the transmission) approach for the case of suf-
ficiently short SHS junctions. This divergence is, how-
ever, regularized within the non-perturbative approach
adopted here. From Eqs. (43), (44) we observe that for
very short junctions d ≪ ξ0(ν

2
1 + ν2

2 ) (and for Reα1 =
Reα2) the Josephson current scales with the tunnel in-
terface transmissions as

I ∝ ν2
1ν

2
2

ν2
1 + ν2

2

. (50)

Obviously this dependence cannot be derived within a
simple perturbative approach in ν1,2.

FIG. 2: Phase dependence of the Josephson current at low
temperatures and different spin-flip factors β. For simplicity
we consider the case of identical interfaces and assume that
scattering parameters ν, β, α, ζ are momentum independent.
Parameter α is chosen to be real. The phase coherence length
ξ0 is defined as ξ0 = vF /(2πTc).

A detailed analysis of analytical expressions for the
current in the limit of high interface transmissions will be
postponed to the next section. Here we only present Figs.
2 and 3 illustrating some key features of our general re-
sults (43)-(45). The current-phase relation for sufficiently
thick SHS junction is depicted in Fig. 2 at T = 0.01Tc

for the case of highly transmitting identical interfaces.
We observe that within the interval of Josephson phases
χ ranging from zero to π the current is always negative.
Strong deviations from the sinusoidal current-phase rela-
tion emerge only provided the spin-flip parameter |β| is
very close to unity which corresponds to (almost) com-
plete spin-flip scattering at both interfaces. Temperature
dependence of the critical Josephson current is shown in
Fig. 3 for different values of the spin-flip parameter |β|.
Similarly to Refs. 2,4 in a wide parameter range we find
non-monotonous dependence of the critical current on T
with a maximum typically below 0.2Tc. We also observe
that this feature disappears as the spin-flip factor |β| ap-
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FIG. 3: Critical Josephson current Ic as a function of tem-
perature for different spin-flip factors β. The inset shows the
current-phase relation for β1 = β2 = 0.99 and at temperatures
T/Tc=0.01 (solid line), 0.1 (dashed line), 0.2 (dotted line).
For simplicity we consider the case of identical interfaces and
assume that scattering parameters ν, β, α, ζ are momentum
independent. Parameter α is chosen to be real.

proaches unity, i.e. monotonous increase of Ic with de-
creasing temperature is expected in the limit of complete
spin-flip scattering at the HS interfaces.

III. GOING BEYOND QUASICLASSICS

The quasiclassical approach used so far provides an ex-
act solution for the problem in the limit of large number
of conducting channels in our structure. In this case the
quantum mechanical phases, relevant, e.g., for resonance
effects, average out16. Such averaging is justified in a
number of important physical situations, for instance,
provided surface roughness of metallic interfaces exceeds
the Fermi wavelength. On the other hand, the many
channel limit is not the only one of physical relevance
for the systems in question. Modern experimental tech-
niques enable one to study the Josephson current through
objects with few conducting channels with controllable
change of the scattering phase17. This renders a motiva-
tion for calculating the Josephson current through such
objects. In such cases the above quasiclassical formalism
is in general insufficient, and more accurate treatment
becomes necessary16. In addition, correct description of
Andreev states in SHS junctions also requires going be-
yond the quasiclassical approach employed in Sec. II.

A. General formalism

Below we will make use of the more general micro-
scopic formalism based of the Gorkov equations. Let us
introduce the matrix Matsubara Green functions18

Gll′(x1, x2, τ1 − τ2) = −
〈

Tτψl(x1, τ1)ψl′(x2, τ2)
〉

, (51)

where the indices are numbered as

ψ1 = ψ↑, ψ2 = ψ↓, ψ3 = ψ↑, ψ4 = ψ↓. (52)

As before, assuming singlet pairing in superconducting
electrodes, one can write down the standard Gorkov
equations

(

iωn −
[

ǫ̌(x1) + ∆̌(x1)
])

Ǧ(x1, x2, ωn) = δ(x1 − x2),
(53)

where we performed the Fourier transformation with re-
spect to τ1 − τ2 introducing the Matsubara frequencies
ωn. The matrix operators ǫ̌, ∆̌ have the structure

ǫ̌ =







ǫ 0 0 0
0 ǫ 0 0
0 0 −ǫ 0
0 0 0 −ǫ






, ∆̌ =







0 0 0 ∆
0 0 −∆ 0
0 −∆∗ 0 0

∆∗ 0 0 0






,

(54)
where

ǫ(x1) = − 1

2m
∇2

x1
− p2

Fx

2m
+ V (x1). (55)

Here pFx(vFx) is the x-component of the Fermi mo-
mentum (velocity) for a transmission channel and V (x)
stands for the potential energy.

Inside the half-metal it is necessary to account for
triplet pairing which amounts to solving the two equa-
tions

(iωn − ǫ(x1))G11(x1, x2, ωn) = δ(x1 − x2), (56)

(iωn + ǫ(x1))G31(x1, x2, ωn) = 0. (57)

The current flowing through the half-metal layer is given
by the expression

I =
ie

2m
T

∑

ωn,k

(∇x2
−∇x1

)x2→x1
G11(x1, x2, ωn). (58)

Here and below an additional sum over the channel index
k implies summation over all conducting channels of the
junction. In the many channel limit this summation can
be reduced to the integral over the momentum

∑

k

→ A
∫

|p‖|<pF

d2p‖

(2π)2
, (59)

which we already encountered in Sec. II.
In what follows we will make use of the standard ap-

proximation

∇2
x[f(x)e±ipF xx] =

[

−p2
Fxf(x) ± 2ipFx∂xf(x)

]

e±ipF xx,
(60)
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which is justified for any function f(x) that varies
smoothly on atomic distances. We further exactly fol-
low the derivation16. Let us fix the argument of the
Green functions x2 inside the half-metal layer and an-
alyze their dependence on x1. For instance, we observe
that the solution of Eq. (53) decaying deep inside the
left superconductor has the form

(

G11

G41

)

=

(

1
−ieiχ/2a

)

e−ipF xx1eκ(x1+(d/2))y1(x2)+

+

(

1
ieiχ/2a−1

)

eipF xx1eκ(x1+(d/2))y9(x2). (61)

Here y1(x2), y9(x2) are arbitrary functions, a is defined

below Eq. (12) and κ =
√

ω2
n + |∆|2/vFx. The spa-

tial decay of the functions (G21, G31) is described analo-
gously.

A particular solution of Eq. (56) in the half-metal at
ωn > 0 reads

G11 = − i

vFx
exp

[(

ipFx − ωn

vFx

)

|x1 − x2|
]

, (62)

G31 = 0. (63)

Further calculation amounts to writing down the general
solution in the half-metal layer and to matching it with
the decaying solution in the superconducting reservoirs.
This matching is made with the help of the scattering
matrices, that relate outgoing and incoming waves. It is
necessary to use two triads: The first one is composed
of the functions G11, G21 in the superconductor and the
function G11 in the half-metal while the second one com-
prises the functions G31, G41 of the superconductor and
the function G31 of the half-metal. The second triad ac-
counts for the hole-like excitations, hence it should be
described by the transposed scattering matrix.

By matching these two triads at the left and the right
interfaces we arrive at twelve linear equations for the vari-
ables y1, . . . y12





y1
y2
qy3



 = Ŝ1





y9
y10

z1 + q−1y6



 , (64)





y4
y5
qy6



 = Ŝ2





y11
y12

z2 + q−1y3



 , (65)





ieiχ/2ay2
−ieiχ/2ay1
q−1y7



 = ŜT
1





−ieiχ/2a−1y10
ieiχ/2a−1y9

qy8



 , (66)





ie−iχ/2ay5
−ie−iχ/2ay4

q−1y8



 = ŜT
2





−ie−iχ/2a−1y12
ie−iχ/2a−1y11

qy7



 . (67)

Here we keep ωn > 0, denote q = exp (ωnd/2vFx) and

define the scattering matrices Ŝ1,2 as non-trivial 3 × 3
sub-matrices in Eq. (31).

The solution of Eqs. (64)-(67) takes the form

y3 = U1z1 + U2z2, y6 = V1z1 + V2z2. (68)

Then the contribution to the Josephson current defined
by the Green functions with positive Matsubara frequen-
cies reads

I+ = ieT
∑

ωn>0,k

q−1 (V1 − U2) . (69)

The contribution to the current from negative Matsubara
frequencies I− is determined analogously. It is straight-
forward to observe that the total Josephson current ac-
quires the form

I = I+ + I− = 2Re I+, (70)

i.e. it will be sufficient for our purposes to evaluate only
the term I+.

The matrices S1,2 relate the amplitudes of incoming
and outgoing waves exp(±ipFxx). So if the scattering
interface is shifted from x = 0 to x = x1,2 these matrices
are transformed as

Ŝ1,x=x1
= Λ̂1Ŝ1,x=0Λ̂1, (71)

Λ̂1 =





eipF xx1 0 0
0 eipF xx1 0
0 0 e−ipF xx1



 (72)

and

Ŝ2,x=x2
= Λ̂2Ŝ2,x=0Λ̂2, (73)

Λ̂2 =





e−ipF xx2 0 0
0 e−ipF xx2 0
0 0 eipF xx2



 . (74)

B. Supercurrent

Combining the solution of Eqs. (64)-(67) with Eqs.
(68)-(69) we find
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I+ = ieT
∑

ωn>0,k

e−iχ
(

A(Ŝ2,a2)A∗(Ŝ2,a−2)−B(Ŝ2,a2)B(Ŝ2,a−2)

Φ(Ŝ2,a2)Φ(Ŝ2,a−2)

)

− eiχ
(

A(Ŝ1,a2)A∗(Ŝ1,a−2)−B(Ŝ1,a2)B(Ŝ1,a−2)

Φ(Ŝ1,a2)Φ(Ŝ1,a−2)

)

e−iχ
(

A(Ŝ2,a2)A∗(Ŝ2,a−2)−B(Ŝ2,a2)B(Ŝ2,a−2)

Φ(Ŝ2,a2)Φ(Ŝ2,a−2)

)

+ eiχ
(

A(Ŝ1,a2)A∗(Ŝ1,a−2)−B(Ŝ1,a2)B(Ŝ1,a−2)

Φ(Ŝ1,a2)Φ(Ŝ1,a−2)

)

+ Π
(75)

where

Π =
q4B(Ŝ1, a

2)B(Ŝ2, a
2) −A(Ŝ1, a

2)A(Ŝ2, a
2)

a2Φ(Ŝ1, a2)Φ(Ŝ2, a2)
+
a2

[

q−4B(Ŝ1, a
−2)B(Ŝ2, a

−2) −A∗(Ŝ1, a
−2)A∗(Ŝ2, a

−2)
]

Φ(Ŝ1, a−2)Φ(Ŝ2, a−2)
(76)

and

A(Ŝ, a2) = −s33+
a2 [s31(s13s

∗
22 − s23s

∗
21) + s32(s23s

∗
11 − s13s

∗
12)

+s33(|s12|2 + |s21|2 − s11s
∗
22 − s22s

∗
11)

]

+

a4 [s∗12s
∗
21 − s∗11s

∗
22] [s31(s23s12 − s13s22)+

s32(s13s21 − s23s11) + s33(s11s22 − s12s21)] , (77)

B(Ŝ, a2) = 1+

a2
(

s11s
∗
22 + s22s

∗
11 − |s12|2 − |s21|2

)

+ a4 (s12s21 − s11s22) (s∗12s
∗
21 − s∗11s

∗
22) , (78)

Φ(Ŝ, a2) = s∗13s32 − s∗23s31+

a2 [s31s
∗
13(s22s

∗
21 − s12s

∗
22) + s32s

∗
23(s21s

∗
11 − s11s

∗
12)

+s31s
∗
23(|s12|2 − s22s

∗
11) + s32s

∗
13(s11s

∗
22 − |s21|2)

]

.

(79)

Making use of the parameterization (36) of the scattering
matrices we eventually arrive at the general expression
for the Josephson current

I = −8eT

∆2

∑

ωn>0,k

ω2
n sin χ̃

W − (4ω2
n cos χ̃/∆2)

, (80)

where

W =
1

2D12

{

q4
[

(a−1 − a)(a−1 − a cos2 ν1) + |α̃1|2
]

×

×
[

(a−1 − a)(a−1 − a cos2 ν2) + |α̃2|2
]

+

q−4
[

(a−1 − a)(a−1 cos2 ν1 − a) + |α̃1|2
]

×
×

[

(a−1 − a)(a−1 cos2 ν2 − a) + |α̃2|2
]

−
eiϕ

(

(a−1 − a)2 cos ν1 + α̃2
1

) (

(a−1 − a)2 cos ν2 + α̃2
2

)

−
e−iϕ

(

(a−1 − a)2 cos ν1 + α̃∗2
1

) (

(a−1 − a)2 cos ν2 + α̃∗2
2

)}

.

(81)

Here ϕ = −2ζ1−2ζ2 +2pFxd is the quantum mechanical
phase corresponding to electron making a cycle between
the two interfaces. As we already discussed, in the many
channel limit it is appropriate to average the result (80),
(81) over quickly oscillating phase ϕ. This averaging is
accomplished with the aid of the relationship

2π
∫

0

1

A+Beiϕ + Ce−iϕ

dϕ

2π
=

1√
A2 − 4BC

. (82)

It is satisfactory to observe that after such averaging in
Eqs. (80), (81) the general expression for the Josephson
current exactly coincides with Eqs. (43)-(45) derived in
Sec. II within our quasiclassical analysis.

C. Weak tunneling limit

Let us first analyze the above general results in the
limit of low interface transmissions ν1, ν2 ≪ 1. In this
case Eq. (81) reduces to

W =
1

D12∆4

{

16

(

cosh
2ωnd

vFx
− cosϕ

)

×

×
(

ω2
n + ∆2(Reα1)

2
) (

ω2
n + ∆2(Reα2)

2
)

+

2ω2
n

[

ν4
1

(

ω2
n + ∆2(Reα2)

2
)

+ ν4
2

(

ω2
n + ∆2(Reα1)

2
)

+2ν2
1ν

2
2(ω2

n + ∆2)
]

+ 2ν4
1∆2(Imα1)

2
(

ω2
n + ∆2(Reα2)

2
)

+ 2ν4
2∆2(Imα2)

2
(

ω2
n + ∆2(Reα1)

2
)

+ 4ν2
1ν

2
2∆4 Imα1 Reα1 Imα2 Reα2

− 8∆2ω2
n

(

Imα1 Reα1ν
2
1 + Imα2 Reα2ν

2
2

)

sinϕ

}

.

(83)

The resulting expression for the current for long d≫ ξ0
junctions is given by
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I = −eT
2

∑

ωn>0,k

∆2ω2
nD12 sin χ̃

[ω2
n + ∆2(Reα1)2][ω2

n + ∆2(Reα2)2]
(

cosh 2ωnd
vF x

− cosϕk

) . (84)

FIG. 4: The function F (ϕ) defined in Eq. (86).

Here and below we explicitly indicate the dependence of
the scattering phase ϕk on the channel number k. At
T = 0 we obtain

I = − 7ζ(3)e

4π∆2d3

∑

k

v3
FxD12 sin χ̃

|α̃1|2|α̃2|2
F (ϕk). (85)

Comparing this exact result with its quasiclassical ana-
logue (48) we observe that in Eq. (85) the contributions
of different channels are weighted by the function F (ϕk)
which reads (see also Fig. 4)

F (ϕ) =
2ϕ

21ζ(3) sinϕ
(π − |ϕ|)(2π − |ϕ|), (86)

where −π ≤ ϕ ≤ π. The average of this function over
this phase interval equals to unity. This relatively weak
modulation of the Josephson current in our case is in
a drastic contrast with the pronounced resonant behav-
ior of the zero-temperature current in conventional SNS
junctions, see, e.g., Ref. 16. This difference is formally
due to the presence of ω2

n in the expression for the Joseph-
son current (80).

Note that although in the limit d ≫ ξ0 resonant
effects remain insignificant they gain importance for
shorter junctions d <∼ ξ0 which will be considered be-
low. As before, we stick to the case of weakly trans-
mitting boundaries (small ν, β) assuming for simplicity
Reα1 = Reα2 = 1. In the many-channel limit we have
for ξ0(ν

2
1 + ν2

2) ≪ d <∼ ξ0

I =
e∆

32π2Td
Imψ′

(

1 + i(∆/πT )

2

)

×

×
∑

k

ν2
1ν

2
2 |β1||β2|vFx sin χ̃. (87)

Here ψ′(z) = d2 ln Γ(z)/dz2 is the polygamma-function.
In the limit T ≪ ∆ Eq. (87) yields

I = − e

16πd

∑

k

ν2
1ν

2
2 |β1||β2|vFx sin χ̃. (88)

We observe that at T → 0 the Josephson current grows
with decreasing d as I ∝ 1/d. This dependence persists
down to d ∼ ξ0(ν

2
1 +ν2

2 ). At even smaller d≪ ξ0(ν
2
1 +ν2

2 )
we obtain

I = −eT∆2
∑

ωn>0,k

ωnν
2
1ν

2
2 |β1||β2| sin χ̃

(ω2
n + ∆2)3/2(ν2

1 + ν2
2)
, (89)

which yields at T ≪ ∆

I = −e∆
2π

∑

k

ν2
1ν

2
2 |β1||β2| sin χ̃
ν2
1 + ν2

2

. (90)

The above results correspond to effective averaging
of the ϕ-dependent Josephson current. Let us now see
how these results get modified if the resonance condition
cosϕ = 1 holds for some of the conducting channels. In
this case we have

I = − e

32d2∆

sinh ∆
T − ∆

T

1 + cosh ∆
T

∑

k

′
ν2
1ν

2
2 |β1||β2|v2

Fx sin χ̃,

(91)
for d≫ ξ0(ν

2
1 + ν2

2 ) and

I = −e∆tanh
∆

2T

∑

k

′ ν2
1ν

2
2 |β1||β2| sin χ̃
(ν2

1 + ν2
2)2

. (92)

in the limit d≪ ξ0(ν
2
1 + ν2

2). Here the sum
∑′

k runs over
the resonant channels only.

The resonant currents (91) and (92) turn out to be
much larger than the corresponding phase-averaged con-
tributions (87), (89). Correspondingly, the resonances
are quite narrow: δϕ ∼ d/ξ0 and δϕ ∼ ν2

1 + ν2
2 for

longer and shorter junctions. The off-resonant currents
are smaller in the measure of d2/ξ20 and (ν2

1 + ν2
2 )2 re-

spectively.

D. High transmission limit

For completeness let us analyze the case of fully trans-
mitting interfaces, i.e. sin2 ν1 = sin2 ν2 = 1. For short
d≪ ξ0 junction the Josephson current is defined by Eq.



10

(80) with

W =
2

|β1||β2|

(

|α1|2|α2|2 sin2 ϕ

2
+ 4

ω4
n

∆4

+
(

2 + |α1|2 + |α2|2
) ω2

n

∆2

)

(93)

Here the initial phase ϕ is shifted by 2 argα1 + 2 argα2.
In particular, at low temperatures T ≪ ∆ and for small
β1,2 we have

I = −e∆
4

∑

k

|β1||β2| sin χ̃
√

1 +
∣

∣sin ϕk

2

∣

∣

. (94)

In the opposite long junction limit d≫ ξ0 and at T ≪
∆ the Josephson current is again given by Eq. (80) where
one should substitute

W =
1

|β1||β2|

[(

cosh
2ωnd

vFx
− cosϕ

)

|α1|2|α2|2

+
2ω2

n

∆2
(2 + |α2

1| + |α2|2) cosh
2ωnd

vFx

+2
ωn

∆
sinh

2ωnd

vFx
(|α1|2 + |α2|2)

]

(95)

For |α1,2| ∼ 1 we again recover Eq.(85), in which we
should replace α̃1,2 by α1,2.

Of a special interest is the case of identical interfaces
with |β1,2| = 1 which corresponds to equal probabilities
for spin-up and spin-down electrons to penetrate into the
half-metal. In this case Eqs.(93), (95) yield

I = −e∆
2

N sgnχ cos
χ

2
(96)

for d≪ ξ0 and

I =
e

2πd
(χ− π sgnχ)

∑

k

vFx (97)

for d ≫ ξ0. Here the Josephson phase difference is re-
stricted within the interval −π ≤ χ ≤ π and the total
number of conducting channels in our SHS junction is
denoted by N . One easily recognizes that Eqs. (96) and
(97) are nothing but the π-shifted Kulik-Omelyanchuk19

and Ishii-Kulik20 current-phase relations respectively for
short and long SNS junctions. It is also interesting to ob-
serve that for N = 2 (i.e. in the single channel limit with
two spin directions) Eq. (97) coincides with the result for
the Josephson current in long SNS junctions embedded in
a superconducting ring with odd number of electrons21.
It also follows from Eq. (95) that the current-phase rela-
tion (97) for long junctions d≫ ξ0 sets in only in the nar-
row parameter region |α1|2|α2|2 <∼ ξ20/d

2. Correspond-
ingly, the dependence of the Josephson current on the
H-layer thickness changes from I ∝ 1/d3 to I ∝ 1/d.

E. Andreev states

The expressions for the Green functions and for the
Josephson current derived above enable us to obtain the
spectrum of subgap Andreev bound states inside the half-
metal. Substituting ωn → −iE we easily find the poles of
the Green function which provide the required spectrum.
For junctions d≫ ξ0 with low transparency (small β, ν)
it is governed by the equation

cos

(

2Ed

vFx

)

− cosϕ+
E2D12 cos χ̃

4∆2(Reα1)2(Reα2)2
= 0. (98)

Here we assume that E ≪ ∆ and Reα1 ∼ Reα2 ∼ 1.
Though the third term in this equation is much smaller
than the other two, it is important since it determines the
dependence of the spectrum on the Josephson phase χ.
Note that the above equation remains valid for all values
of ϕ except for an immediate vicinity of the resonance
cosϕ = 1 where the full expression for W has to be taken
into account. In the latter limit the result becomes rather
cumbersome and is omitted here.

It is instructive to compare the above expression with
that for Andreev bound states in conventional SNS-
junctions in the limit of low transmissions D1,2 of NS
interfaces, see, e.g., Ref. 16. For long SNS junctions
d≫ ξ0 we have

cos

(

2Ed

vFx

)

− cosϕ+
D1D2

4
cosχ = 0. (99)

As before, the parameter ϕ is defined as ϕ = ϕ0 +2pFxd.
In the limit D1,2 = 0 this equation describes particle-
and hole-like excitations inside the normal layer with im-
penetrable boundaries. At small but non-zero D1,2 these
states get modified due to the superconducting proximity
effect. We observe that in the presence of triplet pairing
states inside our SHS junction Eq. (98) has essentially
the same structure as Eq. (99) describing singlet pair-
ing states except for an additional small factor E2/∆2

entering the χ-dependent term in the triplet case.
In the opposite limit of short junctions d ≪ ξ0 the

spectrum of Andreev levels can be found analogously.
For SHS junctions we obtain

(1 − cosϕ)

(

(Reα1)
2 − E2

∆2

) (

(Reα2)
2 − E2

∆2

)

+

+
E2

4∆2
D12 cos χ̃ = 0. (100)

In the case Reα1,2 ≈ 1 this result describes excitations
that are slightly below the gap.

For comparison we also recall the well known expres-
sion which defines the spectrum of Andreev levels for
short (d≪ ξ0) conventional SNS junctions:

cosϕ

(

E2

∆2
− 1

)(

1 − (D1 +D2)
2

8

)

+

+ 1 − E2

∆2
− D1D2

4
(1 − cosχ) = 0. (101)
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FIG. 5: The higher and lower Andreev levels in short SHS
junctions with highly transparent interfaces for |β1| = |β2| =
0.8

Similarly to Eq. (100), this equation describes the states
with energies slightly below the gap. We would also like
to point out that Andreev states in SNS junctions are
doubly degenerate. This degeneracy is in general lifted
in the case of triplet pairing states in SHS junctions, see
also22.

Turning to the limit of highly transparent interfaces,
in the limit of long (d≫ ξ0) SHS junctions for |α1,2| ∼ 1
we again arrive at Eq.(98) where one should only replace
(Reα1,2)

2 by |α1,2|2/4. In the opposite short junction
limit d ≪ ξ0 we obtain the following equation, which
is valid for arbitrary relationship between parameters α
and β

4
E4

∆4
−

(

2 − 2|β1||β2| cos χ̃+ |α1|2 + |α2|2
) E2

∆2
+

+ |α1|2|α2|2 sin2 ϕ

2
= 0. (102)

For positive energies 0 ≤ E ≤ ∆ it has two solutions
which are depicted in Figs. 5 and 6 for the case of fully
transparent SH interfaces sin2 ν1,2 = 1.

We observe that for |β1,2| ≈ 1 (see Fig. 5) the position
of Andreev levels significantly depends on the Josephson
phase χ̃ whereas the ϕ-dependence remains not very pro-
nounced. In the limit |β1,2| = 1 the energy of the lower
Andreev level reduces to zero, while the energy for the
upper one is determined by a simple formula

E = ∆| sin(χ̃/2)|. (103)

Note that this dependence is just the π-shifted one
as compared to the well known dependence E =
∆| cos(χ/2)| for the doubly degenerate Andreev level in
short SNS junctions.

In the limit of small spin-flip factors |β1,2| the behavior
of Andreev levels changes considerably, as illustrated in
Fig. 6. In this case the dependence of the level positions
on the Josephson phase χ̃ is much weaker, whereas their
ϕ-dependence becomes more significant.

FIG. 6: The same as in Fig. 5 for |β1| = |β2| = 0.2

FIG. 7: The structure of Andreev bound states in short SHS
junctions with highly transparent interfaces for |β1| = |β2| =
0.8 (upper figure) and |β1| = |β2| = 0.2 (lower figure) at
ϕ = 2.5

Clearly, Andreev levels with negative energies −∆ ≤
E ≤ 0 are fully symmetric with respect to the Fermi level
and, hence, show exactly the same features, as illustrated
by Fig. 7. We again observe that the χ̃-dependence of all
four Andreev states is rather pronounced for large values
of the spin-flip parameter |β| and it almost disappears
for small values of |β|.

IV. SUMMARY

In this paper we have developed a detailed microscopic
theory describing dc Josephson effect and Andreev bound
states in superconducting junctions with a half metal.
The possibility to pass supercurrent through such SHS
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junctions is provided by spin-flip scattering at both SH
interfaces. As a result, superconducting correlations pen-
etrate into the half-metal in the form of triplet pairing
states which can carry non-vanishing supercurrent across
the system. Our general results for the Josephson cur-
rent, Eqs. (43) and (80), provide a detailed description
of the effect for sufficiently clean metals and at arbitrary
transmissions sin2 ν1,2 of both interfaces as well as at ar-
bitrary values of the spin-flip parameters β1,2. In the
tunneling limit our results reduce to those of Ref. 4 de-
rived perturbatively in the interface transmissions. Our
approach allows to go beyond the perturbation theory in
ν1,2 and to fully account for all orders in interface trans-
missions. This non-perturbative analysis is unavoidable
not only at high transmissions but also in the tunnel-
ing limit in the case of sufficiently short junctions in
order to eliminate an intrinsic divergence of perturba-
tive results at small d. At T = 0 the Josephson cur-
rent depends on the H-layer thickness as I ∝ 1/d3 for
d≫ ξ0. This dependence then crosses over to I ∝ 1/d for
ξ0(ν

2
1 +ν2

2) ≪ d≪ ξ0 (see Eq. (87)). Finally, the current
becomes d-independent at d≪ ξ0(ν

2
1 + ν2

2) (see Eq.(89)).
This saturation of the d-dependence of the Josephson cur-
rent is accompanied by the change of its scaling with ν
from I ∝ ν4 to I ∝ ν2. For short junctions d ≪ ξ0
with few conducting channels resonant effects play an
important role causing substantial enhancement of the
Josephson current, see Eqs.(91) and (92).

Our analysis demonstrates that the behavior of both
the Josephson current and Andreev bound states in SHS
structures crucially depends on the spin-flip parameters
β1,2. Similarly to Refs. 2,4 we observe that for incom-
plete spin-flip scattering the temperature dependence of

the critical Josephson current is non-monotonous with a
maximum at non-zero T , see Fig. 3. However, this fea-
ture disappears completely for β1,2 → 1 and the Joseph-
son current monotonously increases with decreasing T
in this limit. Another striking feature of our results is
that SHS junctions are characterized by the the sinu-
soidal current-phase relation at any temperature and in-
terface transmissions provided the spin-flip parameters
β1,2 are not very close to unity. Substantial deviations of
the current-phase relation occur only provided (i) inter-
face transmissions remain high, (ii) temperature remains
low and (iii) the spin-flip parameters β1,2 are very close
to one, see Fig. 2.

It also follows from our analysis that for symmetric
SHS junctions (meaning that electron scattering at both
interfaces is described by identical S-matrices) the π-
junction state is usually realized. However, in a general
case the Josephson current in SHS junctions does not nec-
essarily show the π-junction behavior, the current-phase
relation is characterized by an arbitrary phase shift, see
Eq. (45). It is also interesting to observe that in the
case of fully transmitting interfaces, at T = 0 and for
|β1,2| = 1 our results reduce to very simple dependencies,
Eqs. (96) and (97), which are essentially the π-shifted
Kulik-Omelyanchuk19 and Ishii-Kulik20 current-phase re-
lations respectively for short and long SNS junctions.

We believe that our predictions can help to identify
triplet pairing current states in future experiments with
SHS structures.
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