arXiv:0803.0774v2 [cond-mat.mes-hall] 18 Apr 2008

Tunable Aharonov-Anandan Phasein Transport Through M esoscopic Hole Rings

M. Pletyukhov'? and U. Zilické-3

nstitut fir Theoretische Festkorperphysik and DFG @erfbr Functional
Nanostructures, Universitat Karlsruhe, D-76128 Karleey Germany
2Institut filr Theoretische Physik A, RWTH Aachen, D-520&86h&n, Germaifiy
3Institute of Fundamental Sciences and MacDiarmid Inggifar Advanced Materials and Nanotechnology,
Massey University, Private Bag 11 222, Palmerston Northy Mealanf
(Dated: April 18, 2008)

We present a theoretical study of spin-3/2 hole transpooutih mesoscopic rings, based on the spherical
Luttinger model. The quasi-one-dimensional ring is crédatea symmetric two-dimensional quantum well by
a singular-oscillator potential for the radial in-planeomtinate. The quantum-interference contribution to the
two-terminal ring conductance exhibits an energy-dependdéaronov-Anandan phase, even though Rashba
and Dresselhaus spin splittings are absent. Instead, eomdint-induced heavy-hole—light-hole mixing is found
to be the origin of this phase, which has ramifications for nedg-transport measurements in gated hole rings.

PACS numbers: 73.21.-b, 73.23.Ad, 85.35.Ds, 03.65.Vf

Introduction.Geometric quantum phases continue to be theial's constituent elementd. The same is true for conduction-
subject of great interest because they rather elegantf-elu band states in HgCdTe quantum wells because of a band in-
date quite complex fundamental microscopic propeftiese  version. Here we provide a careful study of the complexities
well-known Aharonov-Bohrand Aharonov-Cash&effects  arising from the spin-3/2 character of charge carriers oexdfi
are pertinent examples, as is the Berry phasmjuired by a in a mesoscopic ring. We identify a nontrivial part of the
guantum system during adiabatic cyclical variation of an ex Aharonov-Anandan (AA) phase that enters the interference
ternal parameter. The more general concept of the Aharonowontribution to the two-terminal ring conductance. Thergge
Anandan phagearising in the cyclical evolution of a quantum dependence of this geometric phase will result in a contisuo
state was later shown to subsume the above-mentioned threhift of magneto-conductance (Aharonov-Bohm) oscilladio
phenomena as special cases. Recent progress in our undas-a function of carrier density in the ring, e.g., when a gate
standing of geometric phases has been spurred by numerousitage is applied. We trace the origin of the anomalous AA
experimental and theoretical studfes. phase to a confinement-induced coupling between heavy-hole

Modern nanofabrication techniques have made it possibléHH) and light-hole (LH) staté$ that is ever-present and un-
to study quantum interference, and thus geometric quantumelated to (Rashba or Dresselhaus) spin splitting due togst
phases, in mesoscopic electronic devita@se first theoreti-  tural or bulk) inversion asymmet/. Our analysis provides
cal suggestiorfsand experimental realizatichsf electronic  a framework for interpreting numerical resésnd comple-
quantum interference devices were Aharonov-Bohm interferments previous analytical calculatiddsvhere HH-LH mix-
ometers. Subsequent theoretical studies predicted ahéctr ing was neglected.
signatures of Berry phasésand the Aharonov-Casher ef- Below we describe our theoretical model for hole rings.
fecti112:13|nspired by possible applications in the burgeoningReaders not interested in mathematical details could skip t
field of spintronicst* recent experimental efforts have beenthe end of this part where results for the lowest ring sub-
devoted to observing tunable spin-related geometric ghiase bands are presented. We then analyse the emerging energy-
semiconductor rings subject to strong spin-orbit couply  dependent AA phase and, in our concluding discussion, ad-
In several of these experimedfscharge carriers moving dress implications for experiments.
through the ring structure are characterized by an intinsi Theoretical model for a mesoscopic hole ringe use the
(spin) angular momentum equal to 3/2. This is due to the_uttinger mode®® in spherical approximatiéh to describe
fact that states in the uppermost valence band of typicalsemelectronic states in the upper-most bulk valence band. In
conductors originate from p-like atomic orbitals of the exat atomic units wheré& = m = 1, it reads

(b o)+ i} ) @

mo denotes the vacuum electron mags= (3vs + 272)/5 in terms of Luttinger paramete#8 k andJ are vector oper-
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ators of kinetic linear and spin-3/2 angular momentum, re-and simply replace operatd%§ andk. by their respective ex-
spectively, and we used the abbreviatidns = (1;171;y), pectation values? /d?> and0.2? Using polar coordinates for
e = ky +iky,, andJ. = (J, +iJ,)/v2. The symbol in-plane motion, we obtaifZ> = Hsp, + H@P), where
{A, B} stands for the anticommutat¢AB + BA)/2. In-

troducing a quantum-well confinement in the growth di- o= (|2 5 (1)2 (2a)
rection, two-dimensional (2D) subbands are formed. Here we o=\ Ty d

will focus on the situation where only the lowest 2D quantum-

well bound state matters. To be specific, we assume a synarises from the quantised motion indirection, and the in-
metric hard-wall confinement with 2D quantum-well width  plane motion of holes is governed by the part

~ ~ 2 ~ 2
2
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L, = —i0, is the in-plane orbital angular momentum, and finement will serve as our energy unit. We also introduce
Ly = e*. The Hamiltonian[[Zb) commutes with/, =  the parametef = s/ that measures the strength of spin-

L.+ J.; hence its eigenstates can be labelled by thoggof ~ Orbit coupling in the valence band, the length scale =
To enable further analytic progress, we eliminategaepen-  V/ v/717/ (mow) associated with the ring confinemeny; =
dence in off-diagonal matrix elements by the transfornmatio (R//,,)*> andA; = (2d/[r¢.])* representing ring radius and
H = eil=¥ H e~ Due to space limitations, the straight- quantum-well width in units of the effective ring width, and

forwardly obtained expression for the transformed Hamilto the operator§’ = 1 + 7 [J2 — (5/4)| andp = r/(£, /%)

nian is omitted here. , , , , _that quantify a HH-LH splitting. With these conventionsgth
The quasi-onedimensional in-plane ring confinement isqgmiltonian of a mesoscopic hole ring B = (H@ +
modeled by the singular-oscillator poterfal V.)/Eo = How + Hg, Where s
w? R2\?
14 = - 3 A 5
wr) = (T r ) ’ ®) Hoqu=1-27 [Jj - Z] (4a)

which was employed before to study mesoscoplec-
tron rings2* In the following, the energy scald, = arises from the HH-LH splitting in the quantum-well bound
72y1h? /(2mod?) associated with the 2D quantum-well con- state, and the in-plane motion is governed by

Equation[[4b) suggests the wave-functirsatz Lﬁf’) (z) is an associated Laguerre polynomialf,,gfm =

) 1/2
{21“(71 +1)/T(n+ o) + 1)} with T'(z) denoting the Eu-
ler Gamma functiong; = r/ (¢.[1 +2(|j| — 1)7]'/*), and

(r) aff) = \/A(m — )2+ 2%/(1+2(]j] — 1)7). m is the eigen-
(r) value of M, andn the oscillator-level indexAnsatz({5) diag-
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with the four spinor amplitudes given by

j\/r(ﬂ)n AN L(o‘(j))( 2)

D o ey g2

Lve( -7t - e
(5b)

Uil (r) =



3

onalises the first term of the Hamiltonidn{4b), diagonal and off-diagonal matrix elements in the,,, repre-
sentation, i.e., it couples states with differentWe omit the
\/f (m _j )2 12— lengthy analytical expressi_ons for associated matrix _ehim _
O 1 Pl # R R It turns out that HH-LH mixing between states having their
g’ = Adf Rt 2 + 2 ‘ guantum numben differ by 0, 1, and 2 are most relevant. In

the following, we focus on the lowest oscillator level £ 0)
(6) and include only its intra-level HH-LH mixing. Neglecting
However, the second term off,y in Eq. [4B) is off- the subtle difference betyve@g andp; 2, setting both equal
diagonal in spin-3/2 space, coupling HH and LH amplitudesto /¢,,, and replacing:}y’ = Ay yields the corresponding
within subspaces spanned Wy eigenstates with eigenvalues matrix elemer®®
{£3/2,F1/2}, respectively. In addition, this term has both

(#),, = - {ﬁ [1 _m= = 2)m = S 42 (m = J. +2)(m—J.) +2

+J2 |1—
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Diagonalising the Hamiltoniaf g + Hyy + (Hr(g”)oo yields  states can be written as a superpositiof), = 3. €% yso-

the lowest hole-ring subband dispersions. The result imsho Each spinor amplitude of a ring eigenstate with quantum num-

in Fig.[d for a set of realistic parameters. For comparisonberss, o acquires a phase during propagation around a half-

we also plot dispersions obtained when HH-htikingis ne-  ring arm that is determined by its associated eigenvalulesof t

glected but HH-LHsplitting taken into account, i.e., when operatoror (M, — J.). The resulting state ap = 7 will

only Hyy + Hy is considered. belouty, = >, £ Yoo exp{oin(mey — 35)}. Assuming
Two-terminal transport and AA phasét fixed energyE  another lead being attachedat= 7, we find the transmission

between the HH-like and LH-like subband bottoms shown inprobabilities from incoming-lead channelto outgoing-lead

Fig.[, four propagating channels exist, having differem a channely. Including the effect of a finite magnetic flux

gular momentan,,. Heres = +, — labels the two disper- threading the area bounded by the ring, it reads

sion curves £ = + corresponding to the subspace spanned

by J.-projection eigenstates with eigenvalyes3 /2, +1/2}, . Dk o(n) oim (Mg 42— 38

respectively), and = +, — distinguishes (;{Jpoéite pr(/)p};alga- = Z §§¢,> §§U) € ( TR )

tion directions. The condition for finding these angular mo- 59

menta isE,(m.) = E. We now consider the following In Eq. (8), ms, = —m_s_, are the angular-momentum

scenario, illustrated in Figl 2. A lead attachedsat= 0is  eigenvalues found fop = 0. The linear two-terminal ring

assumed to inject holes in a set of orthogonal initial state$gonductance is given by = #zh > T

|v). Here the ket refers to a normalised spin-3/2 spinor with- |nspection of Eq.[{8) reveals the well-known signatures of
out any dependence on spatial coordindfdRing eigenstates the Aharonov-Bohm effectarising from the interference of
taken aty = 0 and with spatial profile neglected are given counter-propagating modes with conserved quantum number
by Xso = (a0.m..:b0,m.qs C0.m.a s do,m., ), @nd the injected -5 phase differencé ) of associated quantum amplitudes
will be accumulated during propagation between= 0 and

7 that is essentially an Aharonov-Anandan pRafse holes

2

(8)

3.0
25 confined in the ring. The latter can be written as the sum of
T a magnetic-flux-dependent part (the Aharonov-Bélpmase
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FIG. 2: (Color online) Two-terminal transport. Holes in gedang
FIG. 1: Lowest hole-ring subbands (solid curves) arisimfithe  states|v) are injected via a lead attached@t= 0. Eigenmodes
in-plane ring-potential bound-state level with= 0, calculated for ~ with angular momentau provide propagation channels in the ring.
¥ = 0.37, A\q = 0.5, andAr = 10. The dashed curves are obtained Upon reaching the point = =, interference and coupling into out-
when HH-LH splittingis included but HH-LHmixingis neglected. going scattering statég) occurs.
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FIG. 3: Solid curve: Anomalous componebg of the AA phase ap-
pearing in the two-terminal hole-ring transmission. Patars used
in the calculation are the same as in Elg 1. Dashed curve:e€orr
sponding result obtained when HH-LH mixing is neglected.

2w/ po) and a remaindetbg) that depends on the quantum
numbers distinguishing dispersion branches:

o) — 2 L 1ol (9a)
b0
L) = 7 (may +ma_ — 3s) (9b)
_ i ) _ _a) —
The symmetrym,, = —m_, _, implies®;’ = —¢5 7’ =

4

ds. We plotdg for a realistic set of parameters in Hig. 3.
Conclusions and discussioWe investigated spin-3/2 hole
states confined in a quasi-one-dimensional ring. A number
of controlled approximations were employed that can be sys-
tematically improved upon. We find a previously neglected

energy-dependent contributicb to the AA phase that re-
sults from HH-LH mixing and may be related to anoma-
lous spin precessiéh of spin-3/2 particles. It is likely that
this phase is the origin of numerically observed magneto-
oscillations of the conductance polarization in multiptyne
nected hole nanostructut@shat persist even in the presence
of relatively strong disorder. In a magneto-conductance ex
periment, the valuebg(Er) of AA phase for states at the
Fermi energy would be observed as a shift in the Aharonov-
Bohm oscillations. This mimicks behaviour expeééed in
systems with a finite zero-field (Rashba or Dresselhaus) spin
splitting, which was used to interpret experimental détale
show that, in general, both HH-LH mixing and spin-splitting
effects need to be considered. In addition, the couplingef t
ring to external leads needs to be well-understood, bet¢hase
character of injected hole states will depend sensitivelthe
lead confinement.
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