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We generalize the spectral sum rule preserving density matrix numerical renormalization group
(DM-NRG) method in such a way that it can make use of an arbitrary number of not necessarily
Abelian, local symmetries present in the quantum impurity system. We illustrate the benefits of
using non-Abelian symmetries by the example of calculations for the T -matrix of the two-channel
Kondo model in the presence of magnetic field, for which conventional NRG methods produce large
errors and/or take a long run-time.
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I. INTRODUCTION

Quantum impurity models play a crucial role in our un-
derstanding of strongly correlated systems: They appear
in the description of correlated mesoscopic structures,1

they show up in molecular electronics, and many of the
properties of correlated bulk systems can also be ac-
counted for using self-consistent quantum impurity mod-
els within the dynamical mean field approach.2 Despite
the lot of interest and the large amount of effort in-
vested in understanding these models, we have, unfor-
tunately, very limited tools to describe quantitatively
the general properties of a generic quantum impurity
model. For some of the quantum impurity models Bethe
Ansatz,3,4 conformal field theory,5 bosonization,6 per-
turbative calculations,7,8 or a Fermi liquid theory9 can
provide a satisfactory explanation. However, these re-
sults are usually restricted to some regions in the pa-
rameter space. Therefore, even today, the most reliable
method to obtain accurate information on a generic quan-
tum impurity model over the whole parameter space and
for any frequency is Wilson’s numerical renormalization
group method (NRG)10 originally developed for the one-
channel Kondo model (1CKM).

Apart from being extended to compute dynamical
properties,11,12,13,14 Wilson’s method has been used in
its original form for a longtime, and it is only recently
that this method has been further developed. First, Hof-
stetter realized that a density matrix NRG (DM-NRG)
procedure needs to be introduced in certain cases to avoid
spurious results.15 The method of Hofstetter, however,
applied the original truncation scheme of Wilson, and
therefore has not conserved spectral weights. A remark-
able development of the NRG scheme has been the intro-
duction of a complete basis set by Anders et al.,16 which
was used to develop the time-dependent DM-NRG al-
gorithm, and it also led to the development of spectral
sum-conserving DM-NRG algorithms.17,18 In the work of
Weichselbaum and von Delft, the spectral sum conserv-
ing method has been hybridized with a matrix product

state approach.18

Using symmetries is an important element of NRG.
For the simplest models, it is usually sufficient to use
Abelian symmetries. However, for the more interest-
ing two- and multi-channel models it is crucial to ex-
ploit symmetries, since the computational effort needed
increases rapidly with the number of electron channels,
and it is very important to keep a sufficiently large num-
ber of levels in the DM-NRG procedure to achieve good
accuracy. Despite the amazing development discussed in
the previous paragraph, a general framework in which
the advantages of non-Abelian symmetries are exploited
in conjunction with DM-NRG was still missing, apart
from the generalization of DM-NRG for the case of only
one SU(2) symmetry.19 The aim of the present paper is
to develop such a scheme and to show, how the spectral
sum-conserving DM-NRG method can be used in combi-
nation with non-Abelian symmetries. For this purpose,
we derive a very general recursion formula for the reduced
density matrix. We shall show how this formula can be
used to evaluate the spectral function of any retarded
Green’s function of the form

GR
A,B†(t) ≡ −i 〈[A(t), B(0)]ξ〉Θ(t) . (1)

Here A and B are any kind of local fermionic or bosonic
operators acting at the impurity site, and [A, B]ξ =

AB − ξBA denotes the commutator (ξ = 1) and the
anticommutator (ξ = −1) for bosonic or fermionic oper-
ators, respectively. In Eq. (1), 〈. . . 〉 denotes the average
with the equilibrium density matrix, 〈. . . 〉 = Tr {. . . ̺}.
Expressions for static quantities shall also be derived.

Due to the general recursion relation mentioned above,
we were able to perform a DM-NRG calculation indepen-
dently of the type and number of symmetries considered,
and to build a completely flexible DM-NRG code that
handles symmetries dynamically and “blindly”.21

To demonstrate the benefits of our procedure, we shall
present numerical results for the two-channel Kondo
model, which is the most basic non-Fermi liquid quan-
tum impurity model,20 and provides an excellent testing
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ground for multiple non-Abelian symmetries. Further-
more, its study is also motivated by its recent mesoscopic
realization in double-dot systems by Potok et al.

22 As we
shall see, conventional NRG techniques and DM-NRG
with Abelian symmetries give rather poor results com-
pared to a computation performed using the non-trivial
symmetry structure of the model.

The paper is organized as follows. In Section II we
present how one can exploit the internal symmetries of
the quantum impurity system in the NRG process. In
Section III the general procedure, which permits the use
of an arbitrary number of local symmetries, is extended
to the spectral sum rule preserving DM-NRG algorithm.
In Section IV we provide the general formulas for com-
puting Green’s functions in the DM-NRG framework us-
ing symmetries. In Section V we present our numer-
ical results for the local fermions and local composite
fermions spectral functions and for the on-shell T -matrix
in the two-channel Kondo model which strongly support
the use of DM-NRG (with the largest possible symmetry
of the system) as opposed to the use of NRG. In Section
VI we sum up what has been presented. In Appendix
VII we give an alternative derivation of the result that
the reduced density matrix retains its diagonal form in
the course of the reduction for the special case when the
symmetry of the system contains only SU(2) groups from
among non-Abelian groups.

II. THE ROLE OF SYMMETRIES IN THE NRG
PROCEDURE

In the present section we shall briefly discuss, how
non-Abelian symmetries appear in the NRG calculations.
However, before setting up the general formalism it is
useful to discuss the role of non-Abelian symmetries in
the specific example of the one-channel Kondo (1CK)
model and consider the general case and the general re-
cursion relations only afterwards.

A. Symmetries of the one-channel Kondo model

In the NRG procedure, Wilson used the following ap-
proximation for the 1CK Hamiltonian10

H1CK =
1

2
J

∑

σ,σ′∈{↑,↓}

~Sf †
0,σ~σσσ′f0,σ′

+

∞
∑

n=0

∑

σ∈{↑,↓}

tn
(

f †
n,σfn+1,σ + h.c.

)

. (2)

In this Hamiltonian f †
0,σ creates a conduction electron

of spin σ at the impurity site, and thus the first term

describes the interaction between the impurity spin, ~S,
and this local fermion through an exchange coupling, J .
The dynamics of this local fermion is described by a semi-
infinite chain, the Wilson chain. Electrons (fermions)

move along this semi-infinite chain with an exponentially
decreasing hopping amplitude, tn ∝ Λ−n/2, with Λ the
discretization parameter.10

The above model has an SUS(2) symmetry, corre-
sponding to spin rotations, i.e. it is invariant under uni-
tary transformations

H1CK = Us H1CK U†
s , (3)

where the unitary operator Us is generated by the total
spin operators,

Us ≡ Us(~ωs) = ei~ωs
~ST , (4)

~ST = ~S +
1

2

∞
∑

n=0

∑

σ,σ′∈{↑,↓}

f †
n,σ~σσ,σ′fn,σ′ . (5)

The Hamiltonian H1CK is also invariant under the ac-

tion of SUC(2) rotations in charge space, Uc = ei~ωc
~C ,

generated by the operators Cx = (C+ + C−)/2, Cy =
(C+ − C−)/2i and Cz with

C+ =
∞
∑

n=0

(−1)nf †
n,↑f

†
n,↓ ,

Cz =
1

2

∞
∑

n=0

∑

µ={↑,↓}

(f †
n,µfn,µ − 1) , (6)

C− =
(

C+
)†

.

Since the spin symmetry generators commute with the
charge symmetry generators, H1CK possesses a symme-
try, SUS(2) × SUC(2),23 and consequently, the eigen-
states of the Hamiltonian form degenerate multiplets,
|i, Q

i
, Qz

i
〉, that are classified by their label i, the spin

and charge quantum numbers: Q
i
≡ {Si, Ci},29 and the

z-components of the charge and spin operators, Qz

i
≡

{Sz
i , Cz

i },
In the following, we shall refer to the quantum numbers

Q as representation indices, while Qz are referred to as
labels of the internal states of a given multiplet. Note that
the representation index Q defines the dimension of the
given irreducible subspace which is dim(i) = dim(Q

i
) =

(2Si + 1)(2Ci + 1) in the example above.
Similar to irreducible subspaces of the Hilbert space,

operators can be organized into irreducible tensor opera-
tor multiplets.24 One of the simplest examples is provided
by the impurity spin, from the components of which we
can form the operator triplet as

{Am} ≡
{

− 1√
2

S+, Sz,
1√
2

S−

}

. (7)

The components of this triplet transform under spin ro-
tations as the eigenstates |m〉 of Sz within a spin S = 1
multiplet, while they are invariant under charge rota-
tions. This means that A has quantum numbers, SA = 1
and CA = 0, and the components of this operator mul-
tiplet are labeled by Sz

A = m, (m = 0,±1), while the
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internal charge label is trivially Cz
A = 0. Similar to the

eigenstates of the Hamiltonian, in our simple example
the quantum numbers of an irreducible tensor operator
B can be organized into a representation index vector,
b = (SB, CB) and its components are labeled by bz =

(Sz
B, Cz

B) taking the values Sz
B = −SB,−SB + 1, . . . , SB

and Cz
B = −CB,−CB +1, . . . , CB. A further example for

an S = 1/2 and C = 1/2 operator is formed by the four

operators {f †
0,↑, f

†
0,↓,−f0,↓, f0,↑}.

The Wigner–Eckart theorem30 then tells us that, apart from trivial group theoretical factors (Clebsches), the matrix
elements of the members of a given operator multiplet and states within two multiplets, i and j are simply related by

〈

i, Q
i
Qz

i

∣

∣

∣
Bb,b

z

∣

∣

∣
j, Q

j
Qz

j

〉

= 〈i ‖ B ‖ j〉
〈

Q
i
Qz

i

∣

∣

∣
b, bz; Q

j
Qz

j

〉

(8)

where 〈i ‖ B ‖ j〉 denotes the reduced (invariant) matrix element of B, and the generalized Clebsch–Gordan coeffi-
cients are simply defined as

〈

Q
i
Qz

i

∣

∣

∣
b, bz; Q

j
Qz

j

〉

= 〈SiS
z
i |SB, Sz

B; SjS
z
j

〉

〈CiC
z
i |CB, Cz

B ; CjC
z
j

〉

, (9)

with the usual SU(2) Clebsches24 on the right hand side. This relation is used extensively in the NRG calculations.

An important property of the unitary transformations
above is that they are local in the sense that they decom-
pose into unitary operators which commute with each
other and act independently at different sites,

U = Us × Uc , (10)

Uc =
∏

n

Uc,n , (11)

Us =
∏

n

Us,n . (12)

This decomposition property is crucial for using symme-
tries in the NRG calculations.

B. General local symmetries on the Wilson chain

Under rather general conditions, the symmetry consid-
erations above and the NRG procedure can be extended
to Hamiltonians of the form

H = H0 +

∞
∑

n=0

(τn,n+1 + Hn+1) . (13)

Here H0 contains the interaction between the impurity
and the fermionic bath (the site of the impurity is labeled
by 0), and nearest-neighbors on the Wilson chain are
coupled through the hopping terms, τn,n+1. The nth on-
site term Hn+1 describes local correlations/interactions,
and it can also account for the absence of the electron-
hole symmetry.

The usual NRG solves the model Eq. (13) by an itera-
tive diagonalization process. The iteration steps consist
of diagonalizing the set of Hamiltonians introduced re-
cursively by

H0 = H0 , (14)

Hn+1 = Hn + τn,n+1 + Hn+1 . (15)

This recursion is depicted in Fig. 1.
Let us now assume that H as well as every Hn is in-

variant under the group G, i.e.

U(g) Hn U−1(g) = Hn , n = 0, 1, 2, . . . , (16)

holds for every g ∈ G, with U(g) the appropriate unitary
operator. Furthermore, let us suppose that G and corre-
spondingly U can be decomposed into a direct product of
Γ subgroups Gγ (γ = 1, ..., Γ), each acting independently
on every lattice site,

G = G1 × G2 × · · · × GΓ , (17)

U(g) =

Γ
∏

γ=1

Uγ(gγ) =

Γ
∏

γ=1

∏

n

Uγ,n(gγ) , (18)

Note that in the considerations above the subgroups can
be also finite, and Gγ can represent a crystal field sym-
metry as well as e.g. the SU(3) group. However, some of

HN−1 HN
H2HH0

0,1τ 1,2τ N−1,Nτ

1H

2H

1

FIG. 1: Construction of the Hamiltonian on the Wilson chain
of length N . The impurity sits at the square shaped site
labeled by 0, dots represent the further sites. At the zeroth

NRG iteration H0 is identical with H0. As the nth site is
added to the chain, Hn is constructed recursively from the
hopping term (τn,n+1), from the on-site energy (Hn), and
from Hn−1.
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the considerations presented in this paper may not apply
for non-compact groups.

The above decomposition is not necessarily unique.
Nevertheless, having obtained a specific decomposition
of the symmetry, the argument of the previous subsec-
tion can be repeated with the only difference that now
Γ number of quantum numbers classify the irreducible
subspaces (multiplets) of the Hamiltonians Hn,

Q =
{

Q1, Q2, ..., QΓ
}

(19)

and states within the multiplet are then labeled by the
internal quantum numbers

Qz =
{

Q1,z, Q2,z, ..., QΓ,z
}

. (20)

Similar to the simple 1CK example, the dimension of a
subspace i depends uniquely on its quantum numbers Q

i
,

i.e. dim(i) = dim(Q
i
).

Operators can also be arranged into irreducible tensor
operators, and an irreducible tensor operator multiplet
A is correspondingly described by quantum numbers a,
while members of the multiplet are labeled by az with a
and az being Γ-component vectors. The Wigner–Eckart
theorem, Eq. (8), carries over to the general case too with
the slight modification that the Clebsch–Gordan coeffi-
cients are now defined as

〈

Q
i
Qz

i

∣

∣

∣
a az; Q

j
Qz

j

〉

≡
Γ

∏

γ=1

〈

Qγ
i Qγ,z

i

∣

∣aγ aγ,z Qγ
j ; Qγ,z

j

〉

.

C. The role of symmetries in the diagonalization
procedure

Before discussing NRG with a complete basis set,16 let
us shortly look into how symmetries are used in Wilson’s

NRG. In his original work, Wilson constructed approxi-
mate eigenstates of Hn for a chain of length n, iteratively.
However, in each iteration the dimension of the Hilbert
space increases by a factor d, with d the dimension of
the local Hilbert space at a single site of the chain with
site label n > 0. Therefore the size of the Hilbert space
increases exponentially with n, and after a few iterations
one must truncate it: Some of the states i are therefore
discarded (i ∈ D), while other states are kept (i ∈ K),
and are used to construct approximate eigenstates for
Hn+1. Symmetries are of great value in this diagonal-
ization procedure: In their presence the Hn’s are block
diagonal in the representation indices, and the eigenvalue
problem can be solved much more efficiently. For some of
the physical quantities, it is crucial to increase the num-
ber of kept states as much as possible to achieve good
numerical accuracy.

In Wilson’s original formulation of NRG, symmetries
are used in the following way: As discussed above, in
the nth iteration the eigenstates (multiplets) of Hn are
constructed from the kept multiplets labeled by u with
u ∈ K of the (n − 1)th iteration, which are approximate
low-energy eigenstates of Hn−1, and from a complete set
of local states (multiplets), labeled by µ, that live at the
nth site. In the following, we refer to these new approx-
imate eigenstates i as new states, while by analogy with
DMRG, we shall call the kept states block states or old

states.

In the presence of symmetries, each new multiplet car-
ries representation indices Q

ĩ
= {Qγ

ĩ
}, and states within

this multiplet are labeled by the internal quantum num-
bers Qz

ĩ
= {Qγ,z

ĩ
}. Similarly, local states have quantum

numbers q
µ

= {qγ
µ} and are labeled by qz

µ
= {qγ,z

µ }. To

construct the approximate eigenstates of Hn, we first use
the Clebsches to build new states from the block (old)
and local states that transform as irreducible multiplets
under the symmetry transformations, U(g),

∣

∣

∣̃
i, Q

ĩ
, Qz

ĩ

〉

n
≡

∑

Qz

u
,qz

µ

〈

q
µ
qz

µ
; Q

u
Qz

u

∣

∣

∣
Q

ĩ
Qz

ĩ

〉 ∣

∣

∣
u, Q

u
, Qz

u
; µ, q

µ
, qz

µ

〉

n−1
, (u ∈ K) (21)

These states shall be referred to as the canonical basis

from now on. In this basis Hn has a block-diagonal struc-
ture

n

〈

ĩ, Q
ĩ
, Qz

ĩ
| Hn | j̃, Q

j̃
, Qz

j̃

〉

n

=
n

〈

ĩ ‖ Hn ‖ j̃
〉

n
δQ

ĩ
,Q

j̃
δQz

ĩ
,Qz

j̃
,

and is diagonalized by a unitary transformation, O[n]

ĩ,i

∣

∣

∣
i, Q

i
, Qz

i

〉

n
=

∑

ĩ O
[n]

ĩ,i

∣

∣

∣̃
i, Q

ĩ
, Qz

ĩ

〉

n
δQ

i
,Q

ĩ
δQz

i
,Qz

ĩ
.(22)

Hn

∣

∣

∣
i, Q

i
, Qz

i

〉

n
= En

i

∣

∣

∣
i, Q

i
, Qz

i

〉

n
, (23)

with En
i the eigenenergies of Hn. Here O is a block-

diagonal matrix, and its columns in a given symmetry
sector are just the eigenvectors of the corresponding sub-
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matrix of
n
〈̃i ‖ Hn ‖ j̃〉

n
in the canonical basis. In the up-

coming iteration, some of these multiplets shall be kept,
and form the block states for (n + 1)th iteration, while
others are again discarded.

In the iteration step outlined above we need the matrix
elements

n

〈

ĩ ‖ Hn ‖ j̃
〉

n
, with Hn = Hn−1 + τn−1,n +

Hn. The matrix elements of Hn−1 are simply

n

〈

ĩ ‖ Hn−1 ‖ j̃
〉

n
= En−1

u δĩ,j̃ , (24)

where u is the state from which state ĩ has been con-
structed. Similarly, matrix elements of Hn are given by

n

〈

ĩ ‖ Hn ‖ j̃
〉

n
= εn

µ δĩ,j̃ , (25)

where εn
µ is just the expectation value of Hn with local

states within the multiplet µ. Finally, to compute the
matrix elements of the hopping τn−1,n, we use the fact
that by symmetry, τn−1,n can always be decomposed as

τn−1,n =
∑

α

h[n−1]
α

∑

cz

[

C
[n−1]
α;c,cz

(

C
[n]
α;c,cz

)†

+ H.c.

]

.

(26)

Here C
[n−1]
α;c,cz denotes some creation operator multiplet at

site n − 1 that has quantum numbers c, and h
[n−1]
α ’s are

the hopping amplitudes between sites n − 1 and n. The
index α in the equation above labels various “ hopping
operators“. To give a simple example, if we treat the
1CKM using only U(1) symmetries then one has two hop-

ping operators, α ∈ {1, 2}, corresponding to C
[n]
1 = f †

n,↑

and C
[n]
2 = f †

n,↓. However, if we use the spin SU(2) sym-

metry, then α = 1 and C
[n]
1 =

{

f †
n,↑, f

†
n,↑

}

.

For the reduced matrix elements of τn−1,n one obtains
using Eq. (21) and the decomposition, Eq. (26), the fol-
lowing formula,

n

〈

ĩ ‖ τn−1,n ‖ j̃
〉

n
=

∑

α
n−1

〈

u ‖ C [n−1]
α ‖ v

〉

n−1

〈

ν ‖ C [n]
α ‖ µ

〉∗

×

D
(

α, c, Q
ĩ
, Q

j̃
, Q

u
, Q

v
, q

µ
, q

ν

)

δQ
ĩ
,Q

j̃
δQz

ĩ
,Qz

j̃
. (27)

Here the state ĩ has been constructed from the state u of
the previous iteration and from the local state µ, while
j̃ has been constructed from v and ν. The functions

D
(

α, c, Q
ĩ
, Q

j̃
, Q

u
, Q

v
, q

µ
, q

ν

)

denote group theoretical

factors,

D
(

α, c, Q
ĩ
, Q

j̃
, Q

u
, Q

v
, q

µ
, q

ν

)

= sgn(C, µ)
∑

Cz

∑

Qz

u
, Qz

v

∑

qz
µ

, qz
ν

〈

Q
ĩ
Qz

ĩ

∣

∣

∣
q

µ
qz

µ
; Q

u
Qz

u

〉〈

Q
ĩ
Qz

ĩ

∣

∣

∣
q

ν
qz

ν
; Q

v
Qz

v

〉∗

×

〈

Q
u
Qz

u

∣

∣

∣
c cz; Q

v
Qz

v

〉 〈

q
ν
qz

ν

∣

∣

∣
c cz ; q

µ
qz

µ

〉∗

, (28)

where the sign function sgn(C, µ) = ±1 arises as one
commutes the creation operators implicitly present in the
local state µ over the operator C [n−1], and it is negative

if C
[n]
α is a fermionic operator and the local state µ is

constructed from an odd number of fermions, otherwise

it is positive. The local matrix elements, 〈µ ‖ C
[n]
α ‖ ν〉

are the same for all sites and can easily be determined,
while

n−1
〈u ‖ C [n−1] ‖ v〉

n−1
can be computed from the

previous iteration by recursion. In fact, for any operator
A, acting on sites m < n, and whose matrix elements
are known in the iteration n − 1, we have the following
recursion relation

n

〈

ĩ ‖ A ‖ j̃
〉

n
=

n−1
〈u ‖ A ‖ v〉

n−1
F

(

a, Q
ĩ
, Q

j̃
, Q

u
, Q

v
, q

µ

)

δq
µ

,q
ν

, (29)
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where the factor F
(

a, Q
ĩ
, Q

j̃
, Q

u
, Q

v
, q

µ

)

is given by the following expression

F
(

a, Q
ĩ
, Q

j̃
, Q

u
, Q

v
, q

µ

)

= sgn(A, µ)
1

dim(a)dim(j̃)

∑

Qz

j̃
,az

〈

Q
ĩ
Qz

ĩ

∣

∣

∣
a az; Q

j̃
Qz

j̃

〉∗

×

∑

Qz

u
,Qz

v

∑

qz
µ

〈

Q
ĩ
Qz

ĩ

∣

∣

∣
q

µ
qz

µ
; Q

u
Qz

u

〉 〈

Q
j̃
Qz

j̃

∣

∣

∣
q

µ
qz

µ
; Q

v
Qz

v

〉∗ 〈

Q
u

Qz

u

∣

∣

∣
a az; Q

v
Qz

v

〉

(30)

One drawback of the algorithm above is that the eigen-
states of Hn constructed this way do not form a complete
basis set on the Wilson chain of length n, since states
descendant from the discarded states of the previous it-
eration are missing. However, as it was recently shown,16

one can construct a complete basis of the Wilson chain
in a slightly different way: Let us consider a chain of
length N , and construct approximate eigenstates of Hn

that, however, live at all sites of this chain,
∣

∣

∣
i, Q

i
, Qz

i

〉

n
→

∣

∣

∣
i, Q

i
, Qz

i
; e

〉

n
. (31)

In this equation e just labels the dN−n independent ’envi-
ronment’ states living at the last N −n sites of the chain.
The internal structure of these environment states is not
important, only their degeneracy shall play some role.
The previous iterative construction carries over to these
states, too. By construction, discarded states (together
with their environment state) form a complete basis set:

1l =
N

∑

n=0

∑

i∈D

∑

e

∑

Qz

i

∣

∣

∣
i, Q

i
, Qz

i
; e

〉

n n

〈

i, Q
i
, Qz

i
; e

∣

∣

∣
, (32)

where i ∈ D refers to the fact that only discarded states

appear in the sum. In Eq. (32) all states are consid-
ered discarded in the last iteration, n = N . We remark
that, in reality, the summation in the expression above
starts only at a value n = M , where the first truncation
is carried out. Fig. 2 illustrates the structure of this com-
plete basis. In the formulation of the DM-NRG algorithm
we shall use several times the completeness relation, Eq.
(32).

III. CONSTRUCTION OF THE REDUCED
DENSITY MATRIX USING SYMMETRIES

In the DM-NRG procedure on a Wilson chain of length
N , the equilibrium density matrix is approximated by

̺ =

N
∑

n=0

̺[n] (33)

̺[n] =
∑

Qz

i
,i,e

e−βEn
i

Z
∣

∣

∣
i, Q

i
, Qz

i
; e

〉

n n

〈

e; i, Q
i
, Qz

i

∣

∣

∣
,

(34)

Kept states Discarded states

E
ne

rg
y 

L
ev

el
s

M M+1 M+2 ...

FIG. 2: (color online) A complete basis of a Wilson chain rep-
resented as the exponentially increasing number of energy lev-
els belonging to the successive iterations. Continuous/dashed
lines represent kept, low-energy/discarded, high-energy levels,
respectively. For the consecutive iteration steps the distances
between the levels illustrates how the energy resolution of
NRG gets exponentially refined.

with β = 1/kBT the Boltzmann factor and

Z =

N
∑

n=0

∑

Qz

i
,i

e−βEn
i dN−n (35)

the partition function. In Eq. (35) the factor dN−n ac-
counts for the degeneracy of the environment states in
iteration n, i.e. for the local degrees of freedom at sites
m > n. Since the eigenenergies do not depend on the in-
ternal quantum numbers, the expression for the partition
function can be simplified to

Z =

N
∑

n=0

∑

i

dim(i) e−βEn
i dN−n , (36)

dim(i) ≡
Γ

∏

γ=1

dim(Qγ
i ) , (37)

with dim(Qγ
i ) being the dimension of an irreducible sub-

space having the representation index Qγ
i .

The concept of the reduced density matrix15 arises nat-
urally as one starts to calculate Green’s functions with
NRG. More precisely, the quantity that shows up in the
calculations is the truncated reduced density matrix, de-
fined as

R[n] = Tr
{en}

{

∑

m>n

̺[m]

}

, (38)
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where one traces over environment states en at sites m >
n. This truncated reduced density matrix clearly satisfies
the recursion relations

R[N ] = ̺[N ] ,

R[n−1] =
∑

i∈D

e−βEn−1

i dN−n+1

Z
∣

∣

∣
i, Q

i
, Qz

i

〉

n n

〈

i, Q
i
, Qz

i

∣

∣

∣

+ Tr
site n

{

R[n]
}

. (39)

Note that the environment variable is missing in the first
term of the second expression since it has been traced
over. The first term accounts for the contribution of dis-
carded states, while the second term has matrix elements
between the kept states only.

To construct the matrix elements of R[n] we first show
by induction that R[n] is scalar under symmetry opera-
tions. This is clearly true for the first term in Eq. (39).
To show that the second term is also invariant, we simply
need to use the locality property of the symmetry trans-
formations, i.e. that on the first n sites U(g) ≡ L(g)V (g),
where L(g) transforms the local states on site n, while
V (g) transforms states at sites 0 ≤ m ≤ n−1, and L and
V commute with each other. Therefore, because of the
trace of operators being invariant under cyclic permuta-
tions, we have

Tr
site n

{

L V R[n] V + L+
}

= Tr
site n

{

V R[n] V +
}

= V Tr
site n

{

R[n]
}

V + = U Tr
site n

{

R[n]
}

U+ . (40)

However, since U R[n] U+ = R[n] by assumption, we im-
mediately obtain that

Tr
site n

{

R[n]
}

= U Tr
site n

{

R[n]
}

U+ , (41)

implying that

U R[n−1] U+ = R[n−1] (42)

for R[n−1], too. This equation means that R[n] is scalar

and therefore, by the Wigner–Eckart theorem we have

n

〈

i, Q
i
, Qz

i

∣

∣

∣
R[n]

∣

∣

∣
j, Q

j
, Qz

j

〉

n

=
n
〈i ‖ R[n] ‖ j〉

n
δQ

i
,Q

j
δQz

i
,Qz

j
(43)

The matrix elements of 〈i ‖ R[n] ‖ j〉 between discarded
states simply derive from the first term in Eq. (39). To

perform the trace in Eq. (39) and to construct the ex-
plicit relation between the kept matrix elements of R[n−1]

and R[n] some more work is needed. First, we rotate R[n]

to the canonical basis

n

〈

ĩ ‖ R̃[n] ‖ j̃
〉

n
= O[n]

ĩ,i n
〈i ‖ R[n] ‖ j〉

n

(

O−1
)[n]

jj̃
.(44)

Then, using the fact that Tr
site n

{

R[n]
}

is diagonal in the

symmetry quantum numbers and labels, we can trace
over the local states at site n using the recursion relation
Eq. (21) to obtain the matrix elements between the kept
states u, v ∈ K as

n−1
〈u ‖ R[n−1] ‖ v〉

n−1

=
˜∑

ĩ,j̃,q
µ

,µ

dim
(

ĩ
)

dim (u) n

〈

ĩ ‖ R̃[n] ‖ j̃
〉

n
δQ

ĩ
,Q

j̃
. (45)

Here the tilde over the sum indicates that in the sum-
mation over ĩ and j̃ only those states are considered which
have been constructed from u (̃i ⇐ u) and v (j̃ ⇐ v) in
Eq. (21), respectively. This is a very powerful expression,
which applies to essentially any type of symmetry.

IV. SPECTRAL FUNCTION COMPUTATION

The quantity that describes the linear response of
a static system to a time-dependent perturbation and
which is to be calculated in the DM-NRG framework is
the retarded Green’s function. For two irreducible tensor
operators it is defined as:

GR
Aa,az

,B†

b,bz

(t) = −i
〈[

Aa,a
z
(t), B†

b,bz
(0)

]〉

Θ (t) . (46)

By symmetry, however, this Green’s function is non-zero
only if the spectral operators A and B transform accord-
ingly to the same representation i.e.

GR
Aa,az

,B†

b,bz

(t) = GR
A,B†(t) δa,b δa

z
,b

z
, (47)

and it is independent of the value of az = bz. Note
that in this expression the representation index b and its
labels bz are the quantum numbers that characterize the
operator B and not B†.

In the reduced density matrix formalism we can gener-
alize the procedure outlined in Ref. [16] even in the pres-
ence of non-Abelian symmetries to obtain the following
form for the Laplace transform of the Green’s function
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GR
A,B†(z) =

N
∑

n=0

∑

i∈D,K

∑

(j,k)/∈(K,K)
n
〈i ‖ R[n] ‖ j〉

n

×
[

n
〈k ‖ A† ‖ j〉 ∗

n n
〈k ‖ B† ‖ i〉

n

z + 1
2 (En

i + En
j ) − En

k

dim(k)

dim(a)
− ξ n

〈j ‖ B† ‖ k〉
n n

〈i ‖ A† ‖ k〉 ∗
n

z − 1
2 (En

i + En
j ) − En

k

dim(i)

dim(a)

]

, (48)

Remarkably, this formula contains exclusively the re-
duced matrix elements and the dimensions of the various
multiplets. Here the second sum is over all the multiplets
i, j, k of the given iteration subject to the restriction that
j, k do not belong to kept states at the same time and no
summation is needed for states within the multiplets. In

Eq. (48) dim(a) =
∏Γ

γ=1 dim(aγ) is the dimension of the
operator multiplet Aa,a

z
. We note that the irreducible

matrix elements of R[n] are identical with the original
ones since R[n] is invariant under all symmetry trans-
formations, i.e. it is a rank 0 object with respect to all
symmetries. Eq. (48) explicitely shows that unless A and
B have the same quantum numbers (a=b), GR

A,B†(z) = 0.

V. NUMERICAL RESULTS

In this section we show the advantages of using DM-
NRG as opposed to NRG, and illustrate the benefits of
using non-Abelian symmetries by applying DM-NRG to
the two-channel Kondo (2CK) model. This model is ex-
citing in itself as it possesses a non-Fermi liquid type of
fixed point and it provides the simplest descriptions of
the double dot system used recently to realize the 2CK
state.22 This 2CK state is very fragile and in a magnetic
field the difference between the NRG and DM-NRG re-
sults are substantial.

In the Wilson approach, the 2CKM is described by the
following Hamiltonian,

H2CK =
1

2
~S

∑

α∈{1,2}

Jα

∑

σ,σ′∈{↑,↓}

f †
0,α,σ~σσσ′f0,α,σ′+

+

∞
∑

n=0

∑

α∈{1,2}

∑

σ∈{↑,↓}

tn
(

f †
n,α,σfn,α,σ + h.c.

)

, (49)

where we have introduced α ∈ {1, 2} for labeling the
two types of electrons. This additional channel label is
the only difference compared to the one-channel Kondo
Hamiltonian (cf. Eq. (2)).

In this model, the number of carriers is conserved in
both channels corresponding to a UC1(1)×UC2(1) sym-
metry. However, due to the presence of electron-hole
symmetry, these charge symmetries are augmented to
SU(2) symmetries, and the Hamiltonian above is also
invariant under SUS(2) × SUC1(2) × SUC2(2) transfor-
mations. On the other hand, one can solve this Hamilto-

nian using exclusively U(1) symmetries, US(1)×UC1(1)×
UC2(1). This model is thus ideal for testing our flexible
methods.

If a local magnetic field is coupled to the impurity spin
through a term gµBBSz , then from among the total spin
generators (Eq. (5)) solely Sz

T will commute with the
Hamiltonian. That is, the spin SU(2) symmetry of the
system reduces to U(1). Therefore, in a magnetic field we
can either use the symmetry US(1)×SUC1(2)×SUC2(2)
for our calculations, or restrict ourself to U(1) symme-
tries only: US(1) × UC1(2) × UC2(2).

As a test, we computed the retarded Green’s function,
GR

f
0,α,↑

,f†

0,α,↑

(ω) and the corresponding spectral function

ρf0,α,↑
(ω) both in the presence and in the absence of

magnetic field. All numerical results presented were ob-
tained at zero temperature, and the dimensionless cou-
plings were Jα = 0.2 for both channels and all runs. The
discretization parameter Λ = 2 was used in all cases,
and for each symmetry combinations we have retained a
maximum number of 1350 multiplets in each iteration.

In Fig. 3 we show data for the local fermion’s spec-
tral function in the absence of magnetic field obtained
through the NRG and the DM-NRG approaches using
the two symmetry groups mentioned above. The Kondo
scale TK in Fig. 3 is the scale at which the 2CK state
forms, and it is defined as the frequency where the T -
matrix of the 2CK model drops to half of its value as-
sumed at ω = 0 at the 2CK fixed point.25

The first important test is the fulfillment of the spec-
tral sum rules. These are always satisfied in the DM-
NRG calculations independently of the symmetry group
used, whereas the NRG data violate the sum rule to
over 15% if the number of kept multiplets is 1350 cor-
responding to ≈ 7 × 104 states. Fig. 3.(b) shows that
the expected

√
ω behavior around the 2CK fixed point

is nicely recovered by both methods, but a sufficiently
large number of multiplets must be kept in the DM-NRG
approach, meaning that in this case the larger symme-
try group must be used. Fig. 3.(c) demonstrates that,
in spite of fulfilling the spectral sum rules still the DM-
NRG data do not show the expected asymptotics for low
frequencies if the number of multiplets kept is not suf-
ficient. It is quite remarkable that only the DM-NRG
procedure using non-Abelian symmetries was able to get
close to the exact value of the spectral function at ω = 0,
ρf0,α,↑

(ω = 0) = 0.25.
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FIG. 3: (color online) Dimensionless spectral function of f0,1,↑

normalized by D, the bandwidth cut-off, as a function of
ω/TK in the absence of magnetic field obtained with DM-
NRG and with NRG using the symmetries: US(1)×SUC1(2)×
SUC2(2) and US(1) × UC1(1) × UC2(1). (a) Comparison be-
tween the spectral weights of the DM-NRG and NRG results:
DM-NRG fulfills the sum rule entirely even when the used
symmetry group and therefore the number of kept states is
largely reduced. NRG violates the sum rule to over 15% if the
number of kept states is ≈ 7 × 104 in each iteration. (b) The

same spectral functions as a function of
p

ω/TK . If a suffi-
cient number of states is kept, i.e. when using larger symme-
try groups, the expected

√
ω behavior around the 2CK fixed

point is nicely recovered. (c) The same spectral functions on
a logarithmic scale.

The presence of magnetic field generates a new scale,3

Th ≡ Ch
B2

TK
, (50)

where we have fixed the somewhat arbitrary constant
to Ch ≈ 60.26 This scale is usually referred to as the
renormalized magnetic field acting on the impurity, and
below this scale the non-Fermi liquid physics is destroyed.

In the presence of magnetic field the sum rule is vio-
lated by the NRG approach to a different extent in the
positive and negative frequency ranges, which leads to
jumps at ω = 0 in the spectral functions (see Fig. 4),
while this problem is absent in the DM-NRG approach.

Spectral functions display universal scaling in the
vicinity of Th.26 In Fig. 5 we show how the spectral func-

tions of the composite fermion operator, F †
1 ≡ f †

0,1
~S~σ

can be scaled on top of each other using the scale Th. Al-
though, this collapse can be obtained in both approaches,
there is an ≈ 20% jump at ω = 0 in the NRG results
while the DM-NRG results are continuous there. It is
possible to eliminate the jump in the NRG results by
determining the phase shifts from the energy spectrum
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f 0,
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B / T K  = 1.1 × 10−3

Spectral weights
DM-NRG: 1.00000
NRG:         .80775

(b)

FIG. 4: (color online) Dimensionless spectral function of f0,1,↑

normalized by D, the bandwidth cut-off, as a function of
ω/TK in the presence of magnetic field obtained with DM-
NRG and with NRG using the symmetries: US(1)×SUC1(2)×
SUC2(2) and US(1)×UC1(1)×UC2(1). (b) On a smaller scale
at ω = 0 we show the smoothness of the DM-NRG data using
both groups and the jump in the NRG results using the larger
group.
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FIG. 5: (color online) Dimensionless spectral function of the
↓- (a), (c) and the ↑-spin (b), (d) components of the local com-
posite fermion operator normalized by D, the bandwidth cut-
off, for sufficiently small values of B as a function of ω/Th

scaled on top of each other using NRG and DM-NRG together
with the group US(1) × SUC1(2) × SUC2(2).

with high precision, but even after these corrections, the
results continue to violate the sum rule and numerical er-
rors for low frequencies remain of the same size as before.
Moreover, the ’universal’ curve obtained by conventional
NRG is clearly incorrect and different from the DM-NRG
result. Also, if we try to compute the imaginary part of
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the on-shell T -matrix of the 2CK model where the local
composite fermion spectral functions for both ↑- and ↓-
spin components have to be summed up, we end up with
large numerical errors in the NRG results (see Fig. 6),
while DM-NRG provides satisfactory results even in this
case. It is thus clear from these examples that the DM-
NRG method together with the use of lots of symme-
tries produces much more reliable results than NRG with
non-Abelian symmetries or DM-NRG with only Abelian
symmetries, and its use is needed to do computations for
more delicate quantum impurity models.

VI. CONCLUSIONS

To summarize, in this paper, we have shown how the
recently developed spectral sum-conserving DM-NRG
methods can be used in the presence of any number and
type of non-Abelian symmetries. The most important re-
sult of this paper is a very general and simple recursion
relation for the truncated reduced density matrix, which
enables one to compute the spectral properties of any lo-
cal correlation function in the presence of non-Abelian
symmetries. The expressions derived hold for almost
any symmetry, including non-Abelian finite groups, point
groups, SU(N) groups, and, of course, Abelian groups
such as U(1) or the parity. Using these symmetries, re-
duces considerably the time needed for the computations
and enhances significantly the accuracy of the numerical
results for dynamical quantities. The general formula-
tion presented in this paper also allowed us to construct
a flexible DM-NRG code where symmetries are handled

0.6

0.8

1

Im
 {

t (
ω

)}

0
5.6 × 10

-4

1.1 × 10
-3

5.6 × 10
-3

1.1 × 10
-2

5.6 × 10
-2

10
-6

10
-3

10
0

ω / TK

0.6

0.8

1

Im
 {

t (
ω

)}

(a)  DM-NRG

(b)  NRG

B / TK

FIG. 6: (color online) Imaginary part of the on-shell T -
matrix using DM-NRG and NRG together with the group
US(1) × SUC1(2) × SUC2(2) for various magnetic field values
as a function of ω/TK .

dynamically, and which is able to learn and handle es-
sentially any type of symmetry.31

We demonstrated the advantages of the generalized
method by applying it to the two-channel Kondo model
in a magnetic field. The presence of magnetic field makes
this model very challenging from the point of view of
NRG calculations. We have carried out calculations for
the local fermion’s and for the local composite fermion’s
spectral function at zero temperature and in a finite mag-
netic field. In conventional NRG, there is always a jump
at ω → 0 between the positive and negative frequency
parts of the spectral function. In addition to being spec-
tral sum-conserving, the use of DM-NRG almost com-
pletely eliminated this jump and made it possible to com-
pute the universal cross-over curves in a magnetic field.
Moreover, the DM-NRG approach used with larger sym-
metry groups has provided substantially better results for
the spectral functions: In the limit ω → 0 we needed to
use non-Abelian symmetries in the DM-NRG approach to
recover the expected power law behavior known from con-
formal field theory. Also, the universal crossover curve
and the shape of the the peak at the renormalized mag-
netic field Th ∝ B2/TK was much better resolved by
DM-NRG than by NRG, and thus DM-NRG with non-
Abelian symmetries lead to much more reliable results for
the T -matrix (see Fig. 5) than NRG with non-Abelian or
DM-NRG with Abelian symmetries. We emphasize that,
to obtain the ω = 0 value of the spectral function cor-
rectly as well as its proper scaling behavior, we needed
to use non-Abelian symmetries.

The method presented here thus opens up the possi-
bility to carry out very accurate spectral sum-conserving
DM-NRG calculations for multichannel systems, such
as multi-dot devices, and to perform reliable DM-
NRG-DMFT calculations for multichannel lattice mod-
els. Combined with the matrix product state approach,
it might also provide a way to use methods applied in
DMRG to improve the high frequency resolution of NRG.
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and many comments. We would like to thank Frithjof
Anders, Jan von Delft and Andreas Weichselbaum for
useful discussions. This research was supported partly by
the Hungarian Research Fund (OTKA) under Grant Nos.
NF 61726 and K 68340 and by the János Bolyai Research
Fund. A.T. is grateful to the Institute of Mathematics of
the BUTE for providing access to their computer cluster,
supported by OTKA under grant No. 63066. CPM was
partially supported by the Romanian Grant No. CNCSIS
780/2007.



11

VII. PROOF OF THE DIAGONAL FORM OF
THE REDUCED DENSITY MATRIX FOR SU(2)

SYMMETRIES

In this appendix we prove, in a different way from how
it was demonstrated in the main part of the article, the
general theorem for the diagonal form of the reduced den-
sity matrix presented in Section III in the case when only
SU(2) local symmetries are involved.

The proof for the diagonal form of the reduced den-
sity matrix goes by induction for the iteration steps. At
the last iteration, by construction the reduced density
matrix R[N ] is scalar under the local symmetry group
(cf. Eq. (39)). Due to this invariance by very general
considerations R[N ] can be written as a sum over tensor
products of irreducible tensor operator components, and
is of the form

R[N ] =
∑

α

(

T [loc]
α

)†

t,tz
⊗

(

T [N−1]
α

)

t,tz
, (51)

where
(

T
[loc]
α

)

t,tz
and

(

T
[N−1]
α

)

t,tz
are irreducible tensor

operator components of the same rank t acting on the lo-
cal vector space at site N and on the rest of the Wilson
chain, respectively and α labels all possible tensor opera-
tors. This special form is a consequence of the invariance
of R[N ] under the local symmetry transformations.28

To obtain R
[N−1]
KK we have to trace over the local ba-

sis states,
{∣

∣

∣
µ, q

µ
, qz

µ

〉}

, that is we have to compute the

following matrix elements

〈u ‖ R
[N−1]
KK ‖ v〉 =

∑

α,q
µ

,µ

sgn
(

T [N−1]
α , q

µ

)

× 〈u ‖ T [N−1]
α ‖ v〉 〈µ ‖ T [loc]

α ‖ µ〉

×
〈

Q
u

Qz

u

∣

∣

∣
t tz Q

v
Qz

v

〉

×
q

µ
∑

qz
µ
=−q

µ

〈

q
µ
qz

µ

∣

∣

∣
t tz q

µ
qz

µ

〉

. (52)

In Eq. (52) we have applied the Wigner–Eckart the-
orem. The sign factor sgn(., .) depends on the number

of fermionic operators used in the construction of T
[N−1]
α

and the local states. In Eq. (52) in the last sum only the
terms with tz = 0 give non-vanishing contributions and
the sum can be reduced to

q
∑

qz=−q

〈q qz |t 0 q qz〉 = (2q + 1) δt,0 . (53)

Eq. (53) implies that the only non-vanishing contribu-
tions are those corresponding to t = tz = 0, i.e. to scalar

T
[loc]
α and T

[N−1]
α . Therefore the reduced density matrix

R[N−1] is diagonal in the representation indices. The in-
duction towards smaller iteration steps goes recursively
the same way.
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