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We present a cluster-based density-functional approach to model charge transport through molec-
ular and atomic contacts. The electronic structure of the contacts is determined in the framework
of density functional theory, and the parameters needed to describe transport are extracted from
finite clusters. A similar procedure, restricted to nearest-neighbor interactions in the electrodes, has
been presented by Damle et al. [Chem. Phys. 281, 171 (2002)]. Here, we show how to systemati-
cally improve the description of the electrodes by extracting bulk parameters from sufficiently large
metal clusters. In this way we avoid problems arising from the use of nonorthogonal basis functions.
For demonstration we apply our method to electron transport through Au contacts with various
atomic-chain configurations and to a single-atom contact of Al.

PACS numbers: 73.63.Rt, 73.23.Ad, 73.40.-c, 85.65.+h

I. INTRODUCTION

Advances in the experimental techniques for manipulating and contacting atomic-sized objects have turned the
vision of molecular-scale electronic circuits into a realistic goal.1,2,3,4,5 This has intensified the interdisciplinary efforts
to study charge transport in nanostructures. Ideally, the circuits would be constructed in a bottom-up approach
with functional units and all the wiring on the molecular scale. To approach the goal, present-day experiments in
the area of molecular electronics concentrate on measuring the current-voltage response of single molecules in contact
to metallic electrodes. In these studies, also purely metallic atomic contacts and wires serve as important reference
systems.6

In order to support the experiments and to stimulate further technological advance, theoretical modeling of atomic-
scale charge transport is needed. Here one faces the challenge to describe infinitely extended, low-symmetry quantum
systems that may, in addition, be far from equilibrium and involve strong electronic correlations. While a complete
theoretical understanding is still lacking, sophisticated ab-initio methods have been developed for approximate but
parameter-free numerical simulations. In order to study the prototypical metal-molecule-metal systems or metallic
atomic contacts, many groups use density functional theory (DFT) combined with nonequilibrium Green’s function
(NEGF) techniques.7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 Some shortcomings related to the use of DFT in this context
have been pointed out, and solutions are being sought.23,24,25,26 On the other hand, from a practical point of view
DFT presently appears to be one of the most useful ab-initio electronic structure methods, since studies of quantum
transport require dealing with a large number of atoms. Furthermore the metal-molecule-metal contacts are hybrid
systems, where the central regions frequently behave rather insulator-like, while the electrodes are metallic. For more
complete discussions we refer to Refs. 27,28,29.

The DFT approaches can mainly be divided into two types. In the first one, atomic-sized contacts are modelled by
periodically repeated supercells, and computer codes developed for solid-state calculations are employed.7,15,22 The
use of periodic boundary conditions facilitates the electrode description. However, the conductance is determined for
an array of parallel junctions and may be affected by artifical interactions between them. The second type is based on
finite clusters and originates more from the chemistry community.8,9,14,16,21 It has the advantage that genuinely single-
atom or single-molecule contacts are described, and it makes possible investigations of molecules of large transverse
extent. The drawback is typically the description of the electrode, since it is difficult to treat bulk properties based on
finite clusters. Furthermore the coupling between the device region and the electrode can be complicated by finite-size
and surface mismatch effects.

http://arXiv.org/abs/0806.4173v1
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To arrive at an ab-initio DFT description it is necessary to treat the whole system consistently by using the same
basis set and exchange-correlation functional everywhere. The problem of the cluster-based approaches regarding the
electrodes is apparent, for example, from the work of Refs. 8,9,21, where the authors resort to a separate tight-binding
parameterization obtained from the literature.30 Damle et al. proposed to resolve this issue by extracting electrode
parameters from finite clusters computed within DFT.16,31 However, their treatment of the electrodes should be seen
as a first approximation, since only couplings between nearest neighbor atoms were considered. Furthermore, they
finally use energy-independent self-energies, which is well-justified only for electrode materials with a constant density
of states (DOS) near the Fermi energy.

In this work we present a cluster-based DFT approach for the atomistic description of quantum transport. We
follow the ideas of Ref. 31, but place special emphasis on the treatment of the electrodes. In particular, we show
that extracting electrode parameters from small metal clusters can lead to an unphysical behavior of the overlap
of the nonorthogonal basis functions in k-space. The description of the electrodes can be improved systematically
by employing metal clusters of increasing size. Our implemenation is based on the quantum-chemistry package
TURBOMOLE, which allows us to treat clusters of several hundred atoms. In this way we obtain an ab-initio

formulation of quantum transport in atomic-sized contacts, where the whole system is treated on an equal footing. It
has the advantage that we can employ high-quality quantum-chemical Gaussian basis sets, which are well-tested for
isolated systems.

The theoretical framework of our approach is presented in Sec. II. Several technical details, related to the use of
nonorthogonal basis functions and the electrode treatment can be found in Apps. A and B. To demonstrate the power
of our methods we study in Sec. III the transport properties of atomic contacts of Au and Al. The choice of these
materials is motivated by the fact that Au exhibits a rather energy-independent DOS near the Fermi energy, while
Al does not. Furthermore, for these systems we can compare our results to the literature. We find good agreement,
and demonstrate the robustness of our results. Further applications have been presented in Refs. 32,33,34,35,36. We
summarize our results in Sec. IV.

II. THEORETICAL APPROACH

A. Electronic structure

Our ab-initio calculations are based on the implementation of DFT in TURBOMOLE 5.9.37 By ab-initio we mean
that the simulations require no system-specific parameters. Self-consistent DFT calculations of large systems are
generally very time-consuming. TURBOMOLE, however, is specialized in handling such systems, and offers several
possibilities to reduce the computational effort. Thus, one can exploit point group symmetries, including non-Abelian
ones. In this way, the calculations speed up by a factor given by the order of the point group. Further options are
the “resolution of the identity in J” (RI-J)38,39 and the “multipole-accelerated resolution of the identity J” (MARI-
J),40 which are both implemented in the ridft module of TURBOMOLE. The approximations help to reduce the
effort to compute the Coulomb integrals J , which are particularly expensive to evaluate. With the help of the RI-J
approximation, known also under the name “density fitting”, the four-center-two-electron integrals can be expressed
as three-center-two-electron ones.41 Calculations are faster by a factor of 10-100 as compared to standard DFT,
but equally accurate. The MARI-J technique concerns the Coulomb interactions between distant atoms. They are
divided into a near-field and a far-field part, where the near field is treated with RI-J and the far field by a multipole
approximation. Compared to RI-J , it can accelerate the calculations by another factor of 2-7.40 DFT requires the
choice of an exchange-correlation functional.42 We select the generalized-gradient functional BP86,43,44 which is known
to yield good results for large metal clusters.45,46,47,48 To express the orbital wave functions, Gaussian basis sets of
split-valence-plus-polarization (SVP) quality are used,38,39,49 which are the TURBOMOLE standard. Within the
closed-shell formalism of DFT, total energies of all our clusters are converged to a precision better than 10−6 a.u. In
order to obtain ground-state structures, the total energy needs to be minimized with respect to the nuclear coordinates.
We perform such geometry optimizations or “relaxations” until the maximum norm of the Cartesian gradient has
fallen below 10−4 a.u.

B. Transport formalism

We compute transport properties of atomic-sized contacts using the Landauer-Büttiker theory and Green’s functions
expressed in a local, nonorthogonal basis.50,51 The local atomic basis allows us to partition the basis states |i, α〉 into
left (L), central (C), and right (R) ones, according to a division of the contact geometry. In the basis states, α refers to
the type of orbital at the position of atom i. For reasons of brevity we will frequently suppress the orbital index. The
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Hamiltonian (or Kohn-Sham) matrix Hiα,jβ = 〈i, α|H |j, β〉, and analogously the overlap matrix Siα,jβ = 〈i, α |j, β〉,
can thus be written in block form,

H =





HLL HLC 0
HCL HCC HCR

0 HRC HRR



 . (1)

Both S and H are real-valued and are hence symmetric. In addition, we assume the C region to be large enough to
have SLR = HLR = 0. Within the Landauer-Büttiker theory,52 the linear conductance can be expressed as

G =
2e2

h

∫

dE

[

− ∂

∂E
f(E, T )

]

τ(E), (2)

where f(E, T ) = {exp [(E − µ) / (kBT )] + 1}−1
is the Fermi function, and the chemical potential µ is approximately

equal to the Fermi energy EF , µ ≈ EF . Using the standard NEGF technique, the transmission function is given by

τ(E) = Tr [ΓL(E)Gr
CC(E)ΓR(E)Ga

CC(E)] = Tr
[

t†(E)t(E)
]

(3)

with the transmission matrix

t(E) =
√

ΓR(E)Ga
CC(E)

√

ΓL(E). (4)

Here we define the Green’s functions

Gr
CC(E) = [ESCC −HCC − Σr

L(E) − Σr
R(E)]

−1
(5)

and Ga
CC = [Gr

CC ]
†
, the self-energies

Σr
X(E) = (HCX − ESCX) gr

XX(E) (HXC − ESXC) , (6)

and the scattering-rate matrices

ΓX(E) = −2Im [Σr
X(E)] , (7)

where gr
XX is the electrode Green’s function for lead X = L,R. At low temperatures, the expression for the conduc-

tance simplifies to

G =
2e2

h
τ(EF ) = G0

∑

n

τn(EF ), (8)

with G0 = 2e2/h the quantum of conductance and τn the eigenvalues of t†t. The latter are the transmission proba-
bilities of the transmission channels n.85 Also other observables, such as the thermopower or the photoconductance,
can be studied based on the knowledge of τ(E).32,33,53,54

Information on the energetics of a system may help to identify conduction mechanisms. Such information can be
extracted from the spectral density55

ρ(E) =
i

2π
[Gr(E) −Ga(E)] = − 1

π
Im [Gr(E)] . (9)

Using this, we define the local density of states (LDOS) at atom i and its decomposition into orbitals α via

LDOSi(E) =
∑

α

LDOSiα(E) (10)

LDOSiα(E) =
(

S
1/2
CC̺CC(E)S

1/2
CC

)

iα,iα
(11)

In App. A we discuss the approximations involved in this definition. There we also consider further the issues related
to the use of nonorthogonal basis sets to evaluate the single-particle Green’s functions and the electric current.
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Figure 1: Quantum transport scheme. The conduction properties of an atomic-sized contact (a) shall be studied. For this
purpose it is divided into a C region and two semi-infinite L and R electrodes. Using a similar division as for the contact,
information on the electronic structure of the C region (SCC , HCC) as well as the CL and CR couplings (SCL, HCL and SCR,
HCR) is extracted from the ECC (b). In order to obtain the self-energies Σr

L and Σr
R (a), the remaining task is to determine

the electrode surface Green’s functions gr
LL and gr

RR. This procedure is described further below in the text.

C. Implementation of the transport method

1. Central system

In order to determine the transmission function τ(E) we need a practical scheme to obtain the necessary information
on the electronic structure. In Fig. 1 we present our procedure. The goal is to describe the whole atomic-sized contact
[Fig. 1(a)] consistently, by treating the L, C, andR regions with the same basis set and exchange-correlation functional.
We obtain the parameters SCC and HCC as well as the couplings to the electrodes SCX and HCX with X = L,R from
the extended central system (ECC) [Fig. 1(b)], in which we include large parts of the tips of the metallic electrodes.
The division of the ECC into the L, C, and R regions is performed so that the C region is identical to that in Fig. 1(a).
The atoms in the L and R parts of the ECC [blue-shaded regions in Fig. 1(a)] correspond to that part of the electrodes
that is assumed to couple to C. The partitioning or division of the ECC is commonly made somewhere in the middle
of the metal tips, and we will also refer to it as ”cut”. The electrodes [L and R regions in Fig. 1(a)] are modeled as
surfaces of semi-infinite crystals, described by the surface Green’s functions gr

XX . They are constructed from bulk
parameters, extracted from large metal clusters. Further below we discuss in detail, how this is accomplished.

In our approach, we assume the metal tips included in the ECC to be large enough to satisfy basically two criteria.
First, all the charge transfer between the L and R electrodes and the C part of the contact should be accounted for.
This ensures the proper alignment of the electronic levels in C with EF . Second, most of the metal tips, especially
the L and R parts of the ECC, should resemble bulk as closely as possible. In this way, we can evaluate the surface
Green’s functions by using bulk parameters of an infinitely extended crystal. Owing to surface effects caused by the
finite size of the ECC, this can be satisfied only approximately. The mismatch between the parameters in the L and
R regions of the contact and the ECC will thus lead to spurious scattering at the LC and CR interfaces. In principle
this resistance can be eliminated systematically by including more atoms in the metal tips of the ECC. On the other
hand, if the resistance in the C region is much larger than the spurious LC and CR interface resistances, they will
have little influence on the results.

2. Electrodes

We extract bulk parameters describing perfect crystals from large metal clusters. The complete procedure, which
aims at determining the surface Green’s functions gr

XX with X = L,R is summarized in Fig. 2. In this work we study
exclusively electrode materials with an fcc structure, of which Au and Al are examples.

In a first step [Fig. 2(a)] we construct spherical metal clusters, henceforth called “spheres”. They are made up of

atoms at positions { ~Rj |~Rj =
∑3

n=1 jn~an ∧ |~Rj | ≤ Rsphere} with the standard fcc primitive lattice vectors ~an and the
sphere radius Rsphere. Here, we will use the vector of integer indices j = (j1, j2, j3) to characterize the atomic position
~Rj . We do not relax the spheres, but set the lattice constant a0 to its experimental literature value.56 Increasing the
radius Rsphere should make the electronic structure in the center resemble that of a crystal. From the clusters we
extract the overlap and Hamiltonian between the central atom at position 0 and the neighboring ones at position j

(including j = 0). This yields the matrix elements Ssphere
jα,0β and Hsphere

jα,0β , where α and β stand for the basis functions

of the atoms at j and 0. For reasons of brevity, we will often suppress the orbital indices. Ssphere
j0 and Hsphere

j0 are
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Figure 2: In order to obtain the electrode Green’s functions gr
XX for lead X = L, R, we determine bulk parameters from large

metal clusters. In a first step (a) we extract overlap and hopping elements, Ssphere
j0 , Hsphere

j0 , from the cluster’s central atom to
all its neighbors. They are (b) symmetrized by imposing the space-group of the electrode lattice. After (c) a rotation to adapt
them to the orientation of the respective electrode, (d) gr

XX is constructed with the help of a decimation procedure.

then matrices with appropriate dimensions.

The bulk parameters Sj0, Hj0 need to satisfy the symmetries of the fcc space-group [Fig. 2(b)]. While Ssphere
j0

depends only on the relative position of atoms, surface effects due to the finite size of the fcc clusters lead to deviations

from the translational symmetry for Hsphere
j0 . A rotation may still be necessary to arrive at parameters S

(X)
j0 , H

(X)
j0 ,

which are adapted to the orientation of the electrode X = L,R [Fig. 2(c)]. Details on the symmetrization procedure

and the transformation of crystal parameters under rotations are presented in App. B. The parameters S
(X)
j0 , H

(X)
j0

are finally employed to construct the semi-infinite crystals and to obtain the surface Green’s function gr
XX [Fig. 2(d)].

Due to the finite range of the couplings SCX , HCX , we need to determine gr
XX for the first few surface layers only

[blue-shaded regions in Fig. 1(a)]. We compute these with the help of the decimation technique of Ref. 57, which we
have generalized to deal with the nonorthogonal basis sets.58 The parameters Sj0, Hj0 can be computed once for a
given metal and can then be used in transport calculations with electrodes of various spatial orientations.

For Au (a0 = 4.08 Å) we have analyzed spheres ranging between 13 and 429 atoms, while for Al (a0 = 4.05 Å)
they vary between 13 and 555 atoms. Since we want to describe bulk, the parameters extracted from the largest
clusters will obviously provide the best description. There is, however, an additional criterion, which necessitates the
use of large metal clusters for a reliable description of the electrodes. As discussed in App. B 1, it is based on the
positive-semidefiniteness of the bulk overlap matrix. We find a strong violation of this criterion, if the extraction of
parameters is performed such that only the couplings of the cental atom to its nearest neighbors are considered. As a
further demonstration of the quality of our description, we show in App. B2 the convergence of the DOS with respect
to Rsphere.

For the transport calculations we need a value for the Fermi energy. The biggest Au and Al spheres computed,
Au429 and Al555, respectively, are very metallic. They exhibit differences between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of less than 0.06 eV. Therefore we set EF

midway between these energies. In this way we obtain EF = −5.0 eV for Au and EF = −4.3 eV for Al. The values
will be used in all the results below. Notice that the negative values of EF agree well with experimental work functions
of 5.31 to 5.47 eV for Au and 4.06 to 4.26 eV for Al.59

III. METALLIC ATOMIC CONTACTS

In this chapter we explore the conduction properties of metallic atomic contacts of Au and Al. These systems,
in particular atomic-sized Au contacts, have been studied in detail both experimentally and theoretically, and can
therefore be used to test our method. We start by discussing the transport properties of the Au contacts, consisting
of a four-atom chain, a three-atom chain, and a two-atom chain or “dimer”. Since Al does not form such chains, we
consider only a single-atom contact. For all systems we analyze the transmission, its channel decomposition, and,
in order to obtain knowledge about the conduction mechanism, the LDOS for atoms in the narrowest part of the
contact. Moreover, we demonstrate the robustness of our transmission curves with respect to different partitionings
of the large ECCs.

A. Gold contacts

Let us first discuss the electronic structure of Au, where we display the DOS in Fig. 3. The Fermi energy at
EF = −5.0 eV is located in a fairly structureless, flat region somewhat above the d band. Based on the electronic
configuration [Xe].4f14.5d10.6s1 of the atom, one might have expected a strong contribution only from the s orbitals
at EF . But, as is visible from Fig. 3(b), s, p, and d states all yield comparable contributions.86 This signifies that
valence orbitals hybridize strongly in the metal.
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Figure 3: DOS for Au. (a) DOS resolved into s, p, and d contributions and (b) DOS resolved into all individual orbital
components. The dashed vertical line indicates EF = −5.0 eV.

When an atomic contact of Au is in a dimer or atomic chain configuration, a conductance of around 1G0 is expected
from experimental measurements60,61,62,63,64 as well as from theoretical studies.7,65,66,67,68 The analysis shows that
this value of the conductance is due to a single, almost fully transparent transmission channel. It arises dominantly
from the s orbitals of the noble metal Au, since the electronic structure in the narrowest part of the contact resembles
more the electronic configuration of the atom.64,65

1. Determination of contact geometries

Despite the consensus that the conductance of atomic chains of Au is around 1G0, the precise atomic positions
play an important role.68,69 Therefore it is necessary to construct reference geometries that have been studied with
a well-established transport method. We choose to compare to results obtained with TRANSIESTA.7 The ECCs
investigated are shown in Fig. 4. The four-atom Au chain with electrodes oriented in the [100] direction, called
Au100c4, corresponds to a contact geometry examined in Ref. 70 [see Fig. 1(b) therein]. The three-atom Au chain,
Au111c3, is similar to a configuration in Fig. 9(d) of Ref. 7. In addition, we study a Au dimer contact, Au111c2, where
a two-atom chain is forming the narrowest part. In contrast to Au100c4, for the latter two contacts the electrodes are
along the [111] direction.

Let us briefly explain, how we determine these geometries (Fig. 4). For Au100c4 we construct two ideal, atomically
sharp Au [100] pyramids, with two atoms in between. The pyramids end with the layer consisting of 25 atoms. The
distance between the layers containing four atoms is set to 12.68 Å [Fig. 4(a)], as in Ref. 70. Next we relax the four
chain atoms without imposing symmetries, keeping all other atoms fixed. After geometry optimization, we find that

Figure 4: ECCs for Au. (a) Au100c4 is a four-atom Au chain, (b) Au111c3 is a three-atom Au chain, and (c) Au111c2 is a
two-atom Au chain or dimer contact. For (a) electrodes are oriented in the [100] direction, while for (b) and (c) this is the [111]
direction. The main crystallographic direction is assumed to be parallel to the z axis. Indicated are also the most important
bond distances together with information on the construction of the ECCs.
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Figure 5: Au100c4. (a) ECC with two different partitionings into L, C, and R regions, cuts 1 and 2, and (b) the transmission
as a function of the energy for these cuts. For cut 2 (c) transmission resolved into its transmission channels and (d) LDOS of
the chain atom indicated in (a).

the configuration agrees well with symmetryD4h. We add two more Au layers with 16 and 9 atoms on each side, where
the ECC now consists of 162 atoms, and perform a final DFT calculation, exploiting the symmetry D4h. As compared
to Ref. 70, all bond distances indicated in Fig. 4(a) agree to within 0.01 Å, except for the distance between the central
chain atoms, where our distance is shorter by 0.07 Å. For Au111c3 we proceed similarly to Au100c4 [Fig. 4(b)]. We
start with two perfect Au [111] pyramids, set the distance between the Au layers with 3 atoms to 9.91 Å,7 and cut
the pyramid off at the layers containing 10 atoms. Then we add one atom in the middle, relax the three chain atoms,
add two layers on each side with 12 and 6 atoms, and perform a calculation in symmetry D3d. Au111c3 consists of 77
atoms in total. Our bond distances agree with those in Fig. 9(d) of Ref. 7 to within 0.02 Å. For Au111c2 we include
also the first Au layer in the geometry optimization process. The distance between the fixed layers with 6 atoms is
12.12 Å. Otherwise the steps are the same as for Au111c3. The ECC is computed in symmetry D3d and consists of 76
atoms. In the parts excluded from the geometry optimization, atoms are all positioned on the bulk fcc lattice, where
we set the lattice constant to the experimental value of 4.08 Å, which corresponds to a nearest-neighbor distance of
2.88 Å. In each ECC the main crystallographic direction is aligned with the z axis, which is the transport direction.

2. Four-atom gold chain

Let us now study the conduction properties for the contact Au100c4 [Fig. 5(a)]. There are different possibilities to
partition the ECC into the L, C, and R regions. The cuts should be done so that L and R are unconnected (SLR = 0
and HLR = 0, see Sec. II B). Hence the C region must be long enough. In order to describe well the coupling to the
electrode surface (Fig. 1), it is furthermore necessary to have sufficiently many layers in the L and R regions. We
observe that at least two layers are needed to obtain reasonable transmission curves. For the two different cuts of
Fig. 5(a) τ(E) is plotted in Fig. 5(b). In both cases it is found to be almost identical, indicating a sufficient robustness
of our method. The transmissions at the Fermi energy are τ(EF ) = 0.93 and 0.98 for cuts 1 and 2, respectively. These
values correspond well to the result τ(EF ) = 0.99 of Ref. 70.

For cut 2 it is visible in Fig. 5(c) that the transmission at EF is dominated by a single channel, in good agreement
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Figure 6: Au111c3. (a) ECC with two different partitionings into L, C, and R regions, cuts 1 and 2, and (b) the transmission
as a function of the energy for these cuts. For cut 1 (c) transmission resolved into its transmission channels and (d) LDOS of
the central chain atom indicated in the ECC.

with experimental observations64 and previous theoretical studies.7,66 In general, the electronic structure at the
narrowest part should have the most decisive influence on the conductance of an atomic contact. Therefore we plot in
Fig. 5(d) the LDOS of the atom indicated by the arrow in Fig. 5(a), resolved in its individual orbital contributions.
Compared to the bulk DOS of Fig. 3, it is dominated by s at EF , where the contributions of all other orbitals than
s and pz are suppressed. These two orbitals will form the almost fully transparent transmission channel, which is
radially symmetric with respect to the z axis.

3. Three-atom gold chain

Exactly the same analysis will now be carried out for the contact Au111c3. In Fig. 6 the geometry of the ECC, the
transmission for different partitionings, the transmission channels, and the LDOS of the central chain atom are shown.
As for Au100c4, we observe that the different cuts yield very similar transmission curves [Fig. 6(b)]. Furthermore
all the basic features in τ(E) are the same as in the TRANSIESTA calculation [see Fig. 11(d) of Ref. 7]. Above the
d band, which exhibits a very narrow and high final peak, there is a dip in τ(E) in both cases. The transmission
recovers, however, and a flat region with a value of around one is visible. At the Fermi energy cuts 1 and 2 yield
τ(EF ) = 0.96 and 0.99, respectively. This is in reasonable agreement with τ(EF ) = 0.94 in Ref. 7, considering the
differences in the electrode geometry, basis set, and exchange-correlation functional. We observe from Fig. 6(c) for
cut 1 that the transmission at EF is dominated by a single transmission channel, and the LDOS indicates a dominant
contribution of s orbitals [Fig. 6(d)]. In addition, the peak structures in τ(E) for the d states correspond well to peaks
in the LDOS. This observation can also be made in Figs. 5(c) and 5(d) for Au100c4.
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Figure 7: Au111c2. (a) ECC, and for the cut and atom indicated (b) the transmission resolved into its transmission channels
and (c) the LDOS with its individual orbital contributions, respectively.

4. Two-atom gold chain

The transmission and LDOS resolved into transmission channels and orbital components, respectively, are shown
in Fig. 7 for the dimer contact Au111c2. As for Au100c4 and Au111c3 we observe a single dominant channel at EF ,
and τ(EF ) = 0.96. The finding of such a dominant channel for chains of two or more atoms is in good agreement with
our analysis of less symmetric contacts, which were based on a combination of a tight-binding model and classical
molecular dynamics simulations.68 However, that τ(E) increases partly even above one in the vicinity of EF , signals
that the influence of other channels is increased as compared to Au100c4 and Au111c3. Indeed, the LDOS of the atom
in the narrowest part of the constriction [Figs. 7(a) and 7(c)] shows in particular increased px and py contributions.
Also, the d states exhibit a less pronounced peak structure than was visible in Figs. 5(d) and 6(d). This is due to the
higher coordination number of the atom and the enhanced coupling to the electrodes.

B. Aluminum contacts

As is visible from the bulk DOS in Fig. 8, the electronic structure of Al differs substantially from that for Au. While
the latter is a noble metal with an s valence, the Al atom has the electronic configuration [Ne].3s2.3p1 with an open
p shell, and the metal is hence considered sp-valent. The strong contribution of s and p states is also observed in the
DOS, where d states play only a minor role. As compared to Au, the DOS exhibits a noticeable energy dependence
around EF .

For Al we study an ideal fcc [111] pyramid, consisting of 251 atoms [Fig. 9(a)], henceforth referred to as Al111c1.
Ideal means that the atoms are positioned on an fcc lattice with the experimental lattice constant a0 = 4.05 Å. We
have already reported results for Al dimer contacts in Ref. 34.
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Figure 8: DOS for Al. (a) DOS resolved into s, p, and d contributions and (b) DOS resolved into all individual orbital
components. The dashed vertical line indicates EF = −4.3 eV.
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Figure 9: Al111c1. (a) ECC with three different partitionings into L, C, and R regions, cuts 1, 2, and 3, and (b) the transmission
as a function of the energy for these cuts. For cut 2 (c) the transmission resolved into its transmission channels and (d) the
LDOS of the central atom, indicated by the arrow in (a). The nearest-neighbor distance shown in the ECC is identical for all
atoms.

1. Aluminum single-atom contact

In Fig. 9 the transmission is displayed for three different partitionings of the ECC Al111c1. Also shown are the
transmission channels and the LDOS of the atom in the narrowest part of the contact for a selected cut. For energies
below −6 eV, there are practically no differences visible between the curves for the three different partitionings.
Nevertheless, some deviations arise at EF , and we obtain τ(EF ) = 2.36 (cut 1), 1.88 (cut 2), and 2.23 (cut 3). Similar
to Au, we attribute these 20% relative variations to spurious scattering at the LC and CR interfaces. Our values
for τ(EF ) of around two agrees nicely with those reported for single-atom contacts in Ref. 12. Compared to Au, the
transmission-channel structure has changed in an obvious way. There are three channels at EF , which is in line with
experimental observations of Refs. 64,71. Due to the D3d symmetry of the ECC, transmission-channel degeneracies
arise, where in particular τ2 = τ3. As is visible from the LDOS, these additional channel contributions mainly stem
from the px and py orbitals, while s and pz are forming the nondegenerate τ1.

64,65,72

IV. CONCLUSIONS

We have developed a cluster-based method to study the charge transport properties of molecular and atomic
contacts. We treat the electronic structure at the level of DFT, and describe transport in terms of the Landauer
formalism expressed with standard Green’s function techniques. Special emphasis is placed on the modeling of the
electrodes and the construction of the associated bulk parameters from spherical metal clusters. We showed that
these clusters need to be sufficiently large to produce reliable bulk parameters, where a criterion for the extent of
the spherical clusters is set by the overlap of the nonorthogonal basis functions. In our studies we crucially rely on
the accurate and efficient quantum-chemical treatment of systems consisting of several hundred atoms, made possible
by use of the quantum chemistry package TURBOMOLE. Compared to supercell approached, our method has the
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advantage that we genuinely describe single-atom or single-molecule contacts.
As an application of our method we analyzed Au and Al atomic contacts. Studying a four-, a three-, and a two-

atom chain with varied electrode lattice orientations for Au, we found a conductance close to 1G0, carried by a single
transmission channel. Next we investigated an ideal Al single-atom contact, and found three transmission channels
to contribute significantly to the conductance of around 2G0. These results are in good agreement with previous
experimental and theoretical investigations. Both for Au and Al we demonstrated the robustness of our transmission
curves with respect to partitionings of the contact systems. The results illustrate the applicability of our method to
various electrode materials.

Beside the metallic atomic contacts examined here, the presented method has been applied in the field of
molecular electronics. Studies include the dc conduction properties of dithiolated-oligophenylene and diamino-
alkane junctions32,33,35,36 as well as oxygen adsorbates in Al contacts.34 In addition, the thermopower32 and
photoconductance33 of molecular junctions has been investigated in this way. Our studies demonstrate the value
of parameter-free modeling for understanding transport at the molecular and atomic scale.
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Appendix A: NONORTHOGONAL BASIS SETS

For practical reasons one often employs nonorthogonal basis sets in quantum-chemical calculations, consisting
for example of a finite set of Gaussian functions. The electronic structure is described in the spirit of the linear
combination of atomic orbitals (LCAO),41,73,74 and this is also how TURBOMOLE is implemented. While it is in
principle always possible to transform to an orthogonal basis, it may be more convenient to work directly with the
nonorthogonal states.

A concise mathematical description using nonorthogonal basis states can be formulated in terms of tensors. The
formalism is presented in a fairly general form in Ref. 75, where also the modifications of second quantization are
addressed. Below we discuss some of the subtleties related to the use of nonorthogonal basis functions that are
important for our method.58 Since the basis functions are real-valued in our case, the full complexity of the tensor
formalism is not needed.76,77 Furthermore we use a simplified notation, where all tensor indices appear as subscripts
of matrices.

1. Current formula for nonorthogonal, local basis sets

The most important quantity for transport calculations is the electric current. In the NEGF formalism, its deter-
mination requires a separation of the contact into subsystems similar to Fig. 1(a).52,78,79 However, due to the overlap
of the basis functions in a nonorthogonal basis, the charges of the subsystems are not well defined. Different ways of
determining them exist, e.g. the Mulliken or Löwdin population analysis.73 Despite these additional complications,
the Landauer formula [Eq. (2)] can be derived in a similar fashion as for an orthogonal basis. Recent discussions of
the derivation can be found in Refs. 51,80.

2. Single-particle Green’s functions

Consider the single-particle Hamiltonian H describing the entire system. The retarded Green’s operator is defined

as Gr(E) = [(E + i0+)1−H ]
−1

. Now consider the local, nonorthogonal basis |i〉 with the (covariant) matrix elements
of the overlap Sij = 〈i |j〉 and the HamiltonianHij = 〈i|H |j〉.76,77 Compared to Sec. II B the index i, used throughout
this appendix, is a collective index, denoting both the position at which the basis state is centered and its type. The
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components of the retarded Green’s function, defined by Gr =
∑

i,j |i〉Gr
ij〈j|,87 satisfy the equation50

∑

k

[(

E + i0+
)

Sjk −Hjk

]

Gr
kl(E) = δjl. (A1)

The Green’s function Gr
CC is defined as Gr

ij restricted to the central region C. It can be calculated according
to Eq. (5). Due to the nonorthogonal basis, the perturbation that couples C to the lead X = L,R and enters the
self-energy [Eq. (6)], is given by HCX − ESCX and thus includes also an overlap contribution. It is interesting to
observe that as E → ∞ the self-energies and the Green’s function behave as

Σr
X(E) E → ∞−−−−−→ ESCX (SXX)

−1
SXC (A2)

GCC E → ∞−−−−−→ E−1
(

S−1
)

CC
(A3)

with

(

S−1
)

CC
=



SCC +
∑

X=L,R

SCX (SXX)
−1
SXC





−1

. (A4)

Thus also the inverse overlap matrix of C is “renormalized” due to the coupling to the leads.

3. Local density of states

Using a set of orthonormal energy eigenstates |µ〉 that satisfy H |µ〉 = εµ |µ〉, we obtain the decomposition ρµν(E) =
〈µ|ρ(E)|ν〉 =

∑

µ δ(E − εµ)δµν of the spectral density defined by Eq. (9). Clearly ρµν(E) fulfills the normalization

∫ ∞

−∞

dEρµν(E) = δµν . (A5)

If, instead, we consider the components defined by ρij(E) = −Im
[

Gr
ij(E)

]

/π, where Gr
ij(E) is given by Eq. (A1), we

find
∫ ∞

−∞

dEρij(E) =
(

S−1
)

ij
. (A6)

The normalization of Eq. (A5) can be recovered by performing a Löwdin orthogonalization of the basis

∫ ∞

−∞

dE(S1/2)ikρkl(E)(S1/2)lj = δij (A7)

Let us analyze the LDOS of the central region ρCC(E) = −Im [Gr
CC(E)] /π, which is ρij(E) restricted to C.

Analogously to Eq. (A7), we have defined the LDOS at atom i and its decomposition into orbitals α in Eqs. (10)
and (11). Since ρCC(E) is a positive-semidefinite matrix, it is easy to show that LDOSiα(E) is positive for all
E. However, the normalization

∫ ∞

−∞ dELDOSiα(E) = 1 is only approximately fulfilled. This could be corrected

by multiplying in Eq. (11) with
(

S−1
)−1/2

CC
[Eq. (A4)] instead of S

1/2
CC . But since the self-energy contributions

∑

X=L,R SCX (SXX)
−1
SXC constitute only a surface correction, their neglect may be justified for atoms in the

middle of C.

Appendix B: DESCRIPTION OF ELECTRODES

1. Size requirement for the cluster construction

How large do the spherical metal clusters, involved in the construction in Fig. 2, need to be for a convergence of
the bulk parameters? Since the matrix elements of the Hamiltonian and the overlap decay similarly with increasing
interatomic distance, we can concentrate on the overlap. For it a rather well-defined criterion can be found: The
clusters should so large that the extracted bulk overlap matrix is positive-semidefinite.
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Figure 10: s-orbital-chain model. (a) The overlap Sjs,0s of an atom with its neighbors at positions Rj,x = j1a0 with j1 =
0,±1, . . .. (b) Overlap Sss(kx) after a discrete Fourier transformation. In both cases the solid line is for a large and the dashed
line for a small cluster.

We define states
∣

∣

∣

~k, α
〉

=
∑

j e
i~k·~Rj |j, α〉 in k-space. Since Siα,jβ = 〈i, α |j, β〉 is a positive-semidefinite matrix,73

the same is true for the overlap in k-space

Sαβ(~k,~k′) =
〈

~k, α
∣

∣

∣

~k′, β
〉

=
∑

l,m

e−i~k·~RlSlα,mβe
i~k·~Rm (B1)

= Nδ~k,~k′
Sαβ(~k),

where we used that Slα,mβ = S(l−m)α,0β . In the expression, N is the number of atoms in the crystal and

Sαβ(~k) =
∑

j

e−i~k·~RjSjα,0β . (B2)

In order to study the positive-semidefiniteness of Sαβ(~k,~k′) it is hence sufficient to investigate the behavior of

Sαβ(~k). To do so for a complex quantum-chemistry basis set, we define the positive-definiteness measure

ξ(Rsphere) = min
~k

(S(~k)). (B3)

In this expression S(~k) is the smallest eigenvalue of the matrix Sαβ(~k), where Sαβ(~k) is constructed from the crystal

parameters extracted from a cluster with radius Rsphere [Sαβ(~k) =
∑

~Rj ;| ~Rj |≤Rsphere e
−i~k·~RjSjα,0β ]. In the discrete

Fourier transformations we assume periodic boundary conditions with a finite periodicity length along the standard
primitive lattice vectors.56,58 Rsphere must be chosen large enough for ξ to be positive or, if ξ remains negative, it
must at least be sufficiently small in absolute value.

Let us first illustrate the behavior of ξ at the example of an s-orbital model. Gaussian s functions are described by

φs(~r) =

(

2α

π

)3/4

e−α|~r|2 (B4)

with an exponent α, characterizing the radial decay. Hence, the overlap between two atoms

Sjs,0s =

∫

d3rφs(~r − ~Rj)φs(~r) = e−αR2

j /2 (B5)

decays with their distance Rj = |~Rj | like a Gaussian function. We consider an infinitely extended chain with atoms

at equally spaced positions along the x-axis (~Rj = j1a0~ex). The overlap from a selected atom to its neighbors drops
off exponentially as shown in Fig. 10(a). The Fourier transformation will again result in a Gaussian with purely
positive values Sss(kx) [Fig. 10(b)]. If, however, overlap matrix elements are taken into account only up to a certain

maximum value |~Rj | ≤ Rsphere, as in a finite cluster, a rough sin(kx)/kx-behavior results, where Sss(kx) becomes
negative at certain k-values. Upon an increase of Rsphere, Sss(kx) will evolve into a Gaussian function and ξ will thus
approach zero from below. The negative tails of Sss(kx) are unphysical, and our observation implies that the clusters
used to extract bulk parameters (Fig. 2) need to be of a sufficiently large radius Rsphere, in order to obtain a reliable
description of a crystal. Obviously, the magnitude of Rsphere depends on the basis set chosen.
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Figure 11: The positive-definiteness measure ξ for Au and Al as a function of Rsphere. Beside the SVP basis set, the behavior

of ξ is also shown for LANL2DZ, used in Refs. 16,31. S(~k) [Eq. (B2)] is evaluated at 323 k-points. The radius Rsphere has been
scaled with the respective lattice constants (a0 = 4.08 Å for Au and a0 = 4.05 Å for Al).

In Fig. 11 we plot the behavior of ξ as a function of Rsphere for Au and Al. Beside the results for the SVP basis
set, we display ξ for Au also for the basis set LANL2DZ, used in Refs. 16,31. It is visible that ξ is positive for a single
atom (Rsphere = 0), but negative for small spheres. With increasing Rsphere, ξ approaches 0 from below similar to the
s-orbital model. We find that the elimination of diffuse functions reduces the radius Rsphere for ξ to become positive
or negligibly small. For practical reasons it may happen that Rsphere cannot be chosen large enough to fulfill the

positive-semidefiniteness criterion ξ ≥ 0. In such a case negative eigenvalues of Sαβ(~k) can lead to negative eigenvalues
of the scattering-rate matrices ΓX [Eq. (7)], since ρXX = −Im [gr

XX ] /π may no longer be positive-semidefinite (see
also the discussion in Sec. A 3).

2. Bulk densities of states

The DOS can be used as another measure for the convergence to a solid-state description. With a k-space Hamil-

tonian in an orthogonal basis set Horth(~k), it is given as

DOS(E) =
∑

α

DOSα(E) = − 1

π
Trα

[

Im
[

Gorth,r
0α,0α (E)

]]

, (B6)

where α runs over all basis functions on a bulk atom and Gorth,r
00 (E) =

∫

BZ d
3kGorth,r(~k,E)/VBZ with Gorth,r(~k,E) =

[

E1−Horth(~k)
]−1

and with the volume VBZ of the first Brillouin zone BZ. The orthogonal Hamiltonian can be

obtained in several ways. Two possible choices are (i) to Fourier transform Sj0 and Hj0 and perform a Löwdin

orthogonalization in k-space Horth(~k) = S−1/2(~k)H(~k)S−1/2(~k) or (ii) to construct Horth
j0 , which involves the Löwdin

transformation Hsphere,orth =
(

S−1/2
)sphere

Hsphere
(

S−1/2
)sphere

in real space, extraction of Hsphere,orth
j0 and the

imposing of the fcc space group, and to carry out the Fourier transformation only thereafter. For parameters extracted
from large enough clusters we observe the equivalence of the DOS construction with respect to the two different

orthogonal Hamiltonians Horth(~k). If ξ remains (slightly) negative due to a too small Rsphere, then the construction
of the DOS from Horth

j0 [procedure (ii)] is of a higher quality than that resulting from the Löwdin orthogonalization
in k-space [procedure (i)].

In Fig. 12 we show the DOS as constructed via procedure (ii) with parameters extracted from different Au and Al
spheres with 141 to 555 atoms. We observe that the DOS seems well converged with respect to Rsphere both for Au
and Al for the largest spherical clusters Au429 and Al555.

3. Transformation of electrode parameters under rotations

We assume that two coordinate systems are connected by the rotation ̺, where ~r′ = ̺~r. The transformation
properties of the electrode parameters

Yjα,0β = 〈j, α|Y |0, β〉 =

∫

d3rφα(~r − ~Rj)Y (~r)φβ(~r)
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Figure 12: DOS of Au and Al constructed from parameters extracted from fcc spheres with atom numbers between 141 and
555. The vertical dashed line indicates the Fermi energy EF .

with Y = S,H are determined by those of the basis functions 〈~r | j, α〉 = φα(~r − ~Rj).
88 The Gaussian basis functions

used by TURBOMOLE are characterized by the angular momentum l and the multiplicity ν = 1, . . . , 2l + 1, and α
is a collective index for both. The rotated basis functions of angular momentum l can be expressed as81

[ψ′]
l
ν (~r) = ψl

ν(̺−1~r) =
2l+1
∑

µ=1

ψl
µ(~r)Dl

µν(̺)

with the representation Dl
µν(̺) of the rotation ̺. Using Y ′(~r) = Y (̺−1~r), it can be shown that the electrode

parameters of the two coordinate systems are related by

Y~Rjα,~0β =
∑

µ,ν

[

DT (̺)
]

αµ
Y ′

̺~Rjµ,~0ν
D(̺)νβ , (B7)

where D(̺) is the representation of ̺ in the employed basis set. By knowledge of the Dl
µν(̺), D(̺) can be constructed

by the process of the addition of representations.81 If there are nl basis functions of angular momentum l in the basis
set describing Yjα,0β , we have

D(̺) = ⊕lnlD
l(̺), (B8)

where ⊕ denotes a direct sum.
Let us now give the explicit formulas for the Dl(̺). In this work only s, p, and d basis functions are used, and

hence we restrict ourselves to l = 0, 1, and 2. Since s functions just depend on the radius, ψ0(~r) = ψ0(r), we have

D0(̺) = 1. (B9)

For l = 1 there are three p functions, p1 = px = f1(r)x, p2 = py = f1(r)y, and p3 = pz = f1(r)z, with a certain radial

dependence f1(r).
74 Exploiting ̺−1 = ̺T , we obtain p′i =

∑3
j=1 pj̺ji. Thus the 3 × 3 representation of the rotation

̺ for the p functions is

D1(̺) = ̺ =





̺xx ̺xy ̺xz

̺yx ̺yy ̺yz

̺zx ̺zy ̺zz



 . (B10)

For l = 2 there are five d functions, where d1 = d3z2−r2 = f2(r)
(

3z2 − r2
)

/
(

2
√

3
)

, d2 = dxz = f2(r)xz, d3 =

dyz = f2(r)yz, d4 = dxy = f2(r)xy, and d5 = dx2−y2 = f2(r)
(

x2 − y2
)

/2 with some radial dependence f2(r). The

transformed d functions are given as d′i =
∑3

j=1 dj

[

D2 (̺)
]

ji
with the 5 × 5 representation

D2(̺) =

0

B

B

B

B

@

`

3̺2
zz − 1

´

/2
√

3̺zx̺zz

√
3̺zy̺zz

√
3̺zx̺zy

√
3

`

̺2
zx − ̺2

zy

´

/2√
3̺xz̺zz ̺xx̺zz + ̺zx̺xz ̺xy̺zz + ̺xz̺zy ̺xx̺zy + ̺xy̺zx ̺xx̺zx − ̺xy̺zy√
3̺yz̺zz ̺yx̺zz + ̺zx̺yz ̺yy̺zz + ̺yz̺zy ̺yx̺zy + ̺yy̺zx ̺yx̺zx − ̺yy̺zy√
3̺xz̺yz ̺xx̺yz + ̺yx̺xz ̺xy̺yz + ̺yy̺xz ̺xx̺yy + ̺xy̺yx ̺xx̺yx − ̺xy̺yy√

3
`

̺2
xz − ̺2

yz

´

/2 ̺xx̺xz − ̺yx̺yz ̺xy̺xz − ̺yy̺yz ̺xx̺xy − ̺yx̺yy

`

̺2
xx + ̺2

yy − ̺2
xy − ̺2

yx

´

/2

1

C

C

C

C

A

. (B11)
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Y = S, H .

4. Imposing the fcc space-group

In this section we consider how to impose the fcc space-group on the parameters Hsphere
jα,0β , extracted from the finite

spherical fcc clusters [Fig. 2]. Assuming basis functions to be real-valued, the matrix elements of a translationally
invariant Hamiltonian Htrans are symmetric and obey the relations

Htrans
iα,jβ = Htrans

(i−j)α,0β = Htrans
0α,−(i−j)β = Htrans

−(i−j)β,0α. (B12)

Owing to surface effects, the translational symmetry is not fulfilled by the parametersHsphere
jα,0β , as illustrated in Fig. 13.

Hence, although the deviations decrease with growing radius of the spheres, the translational symmetry needs to be
enforced in order to describe a crystal. To avoid numerical errors, we impose at the same time the point-group
symmetry Oh although that symmetry is already present due to the shape of our clusters. Concerning the notation,
we will call the parameters conforming to the Oh point-group, the translational symmetry, and the fcc space-group

HOh

jα,0β , Htrans
jα,0β , and Hjα,0β = Hfcc

jα,0β , respectively. We do not need to consider the overlap, since it depends only on
the relative position of two atoms.
Oh point-group symmetry With Eq. (B7) a Hamiltonian HOh

jα,0β conforming to the point-group symmetry can be

constructed by averaging, for a given element of HOh

jα,0β , over all Hsphere
jα,0β related to it by symmetry

HOh

~Rjα,~0β
=

1

NOh

∑

̺∈Oh

∑

µ,ν

[

DT (̺)
]

α,µ
Hsphere

̺ ~Rjµ,~0ν
D(̺)νβ . (B13)

Here, ̺ runs over all NOh
= 48 symmetry elements of the point group Oh.81,82

Translational symmetry Using Eq. (B12), the translational symmetry can be imposed by setting

Htrans
jα,0β =

1

2

(

Hsphere
jα,0β +Hsphere

−jβ,0α

)

. (B14)

Fcc space-group The combined action of the Oh point-group and the translational symmetry leads to the fcc space-

group symmetry. With Eqs. (B13) and (B14) we obtain the fcc space-group symmetric parameters Hjα,0β = Hfcc
jα,0β

according to the prescription

Hfcc
~Rjα,~0β

=
1

2NOh

∑

̺∈Oh

∑

µ,ν

{

[

DT (̺)
]

αµ
Hsphere

̺ ~Rjµ,~0ν
D (̺)νβ +

[

DT (̺)
]

βµ
Hsphere

−̺ ~Rjµ,~0ν
D (̺)να

}

. (B15)
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66 J. L. Mozos, P. Ordejón, M. Brandbyge, J. Taylor, and K. Stokbro, Nanotechnology 13, 346 (2002).
67 Y. J. Lee, M. Brandbyge, M. J. Puska, J. Taylor, K. Stokbro, and R. M. Nieminen, Phys. Rev. B 69, 125409 (2004).
68 M. Dreher, F. Pauly, J. Heurich, J. C. Cuevas, E. Scheer, and P. Nielaba, Phys. Rev. B 72, 075435 (2005).
69 A. I. Yanson, G. Rubio-Bolinger, H. E. van den Brom, N. Agräıt, and J. M. van Ruitenbeek, Nature 395, 783 (1998).
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