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1 Abstract

Quantum mechanical manipulations (“quantum state engineering”) of solid-
state systems is one of the most rapidly developing areas of research. Sub-
stantial progress has been achieved with superconducting circuits based on
Josephson junctions. Solid-state building blocks of quantum computers have
the advantages that they can be switched quickly, and they can be integrated
into electronic control and measuring circuits. Strong coupling to the exter-
nal circuits and other parts of the environment brings with it the problem of
noise and, thus, decoherence. Therefore, the study of sources of decoherence
is necessary. On the other hand, the Josephson qubits have found their first
application as sensitive spectrometers of the surrounding noise.

2 Introduction

Josephson junction based systems are one of the promising candidates for
quantum state engineering with solid state systems. In recent years great
progress was achieved in this area. After initial breakthroughs of the groups
in Saclay and NEC (Tsukuba) in the late 90’s, there are now many experimen-
tal groups worldwide working in this area, many of them with considerable
previous experience in nano-electronics. By now the full scope of single-qubit
(NMR-like) control is possible. One can drive Rabi oscillations, observe Ram-
sey fringes, apply composite pulses and echo technique [1]. The goal of ‘single
shot’ measurements has almost been achieved [2, 3]. There are first reports
about 2-bit operations [4]. The decoherence times have reached microseconds,
which would allow for hundreds of gates. Finally, a setup equivalent to cavity
QED was realized in superconducting circuits [5]. We refer the reader to the
recent reviews [6, 7].

Despite the great progress decoherence remains the limiting factor in solid
state circuits. Since one wants to manipulate and measure the qubits, some



2 Alexander Shnirman, Gerd Schön, Ivar Martin, and Yuriy Makhlin

decoherence is unavoidable. There are, however, noise sources which are purely
intrinsic, i.e., they are not related to any controlling or measuring circuitry.
Eliminating those sources as much as possible is therefore of greatest im-
portance. The main intrinsic source of decoherence in most superconducting
qubits is 1/f noise of either the charge, the flux or the critical Josephson
current.

On the other hand, the full control of 1-qubit circuits opens the possibility
to use qubits as efficient noise detectors [8, 9]. The idea is to measure the
decoherence times of the qubit while changing its parameters and extract
from the data the noise in the qubit’s environment. An experiment of this
type was performed by Astafiev et al. [10]. Further information about the
noise was obtained in recent studies [11, 12]. In this paper we give a short
overview of new and improved understanding of the nature of 1/f noise.
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Fig. 1. Charge Qubit.

3 Charge qubit and charge noise

To introduce the basic concepts we consider the simplest charge qubit. The
system is shown in Fig. 1. Its Hamiltonian reads

H =
∑

n

[

Ech(n, Vg)|n〉〈n| +
EJ

2
|n〉 〈n ± 1|

]

, (1)

where the charging energy in given by

Ech(n, Vg) =
(2ne − Qg)

2

2(Cg + CJ)
, (2)

and the induced gate charge is Qg = CgVg. Near Qg = e one can consider the
two lowest energy charge states. In the spin-1/2 representation one obtains
the following Hamiltonian
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H = −1

2
∆Ech(Vg) σ̂z − 1

2
EJ σ̂x , (3)

Introducing an angle η(Vg) such that tan η = EJ/Ech(Vg) we rewrite the
Hamiltonian as

H = −1

2
∆E (cos η σ̂z + sin η σ̂x) . (4)

We now assume that the gate charge has a noisy component, i.e., Qg = CgVg+
δQ. Then the charging energy fluctuates and we obtain

H = −1

2
∆E (cos η σ̂z + sin η σ̂x) − 1

2
Xσ̂z , (5)

where X = eδQ/(Cg + CJ). In the eigenbasis of the qubit this gives

H = −1

2
∆E σ̂z − 1

2
X(cos η σ̂z − sin η σ̂x) . (6)

For sufficiently weak noise with regular spectrum SX(ω), the Bloch-
Redfield theory [13, 14] gives the dissipative rates. The relaxation (spin flip)
rate is given by

Γ1 ≡ 1

T1

=
1

2
sin2 η SX(ω = ∆E) , (7)

while the dephasing rate

Γ2 ≡ 1

T2

=
1

2
Γ1 + Γϕ , (8)

with

Γϕ =
1

2
cos2 ηSX(ω = 0) . (9)

is a combination of spin-flip effects (Γ1) and of the so called ‘pure’ dephasing,
characterized by the rate Γϕ = 1/T ∗

2 . The pure dephasing is usually associated
with the inhomogeneous level broadening in ensembles of spins, but occurs also
for a single spin due to the ‘longitudinal’ (coupling to σz) low-frequency noise.

We now consider the situation where the noise X is characterized by the
spectral density

SX(ω) =
α

|ω| (10)

in the interval of frequencies ωir < ω < ωc. In this case Eq. (9) is clearly
inapplicable. Several models of 1/f noise and pure dephasing were developed
in the literature [15, 16, 17, 18]. In all of them the T2-decay of the coherences
(i.e. of the off-diagonal elements of the density matrix) is given by decay law
e−Γ1t/2f(t). The pure decoherence described by the function f(t) depends on
the statistics of the noise. For our purposes here a very rough estimate is
enough. When deriving the Bloch-Redfield results, e.g., Eq. (9), one realizes
that S(ω = 0) should actually be understood as the noise power averaged
over the frequency band of width ∼ Γϕ around ω = 0. We, thus, obtain a time
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scale of the pure dephasing from the self-consistency condition Γϕ = SX(Γϕ).
This gives

Γϕ ≈
√

α cos η . (11)

For the cases of “strongly non-Gaussian” statistics [18], α and Γϕ should be
understood as typical rather than ensemble averaged quantities. From the
study of many examples we came to the conclusion that the relation (11) is
universal irrespective of the noise statistics as long as Γϕ > ωir.

4 Analysis of the NEC experiments

Astafiev et al. [10] measured the T1 and T ∗

2 time scales in a charge qubit. As
the energy splitting ∆E and the angle η were independently controlled, they
could extract the noise power S(ω) in the GHz range using Eq. (7). In addition
they were able to determine the strength of the 1/f noise, α, using Eq. (11).
The results suggested a connection between the strengths of the Ohmic high-
frequency noise, responsible for the relaxation of the qubit (T1-decay), and
the low-frequency 1/f noise, which dominates the dephasing (T2-decay). The
noise power spectra, extrapolated from the low- and high-frequency sides, turn
out to cross at ω of order T . Expressing the high-frequency noise at ω > T as
SX(ω) = aω, they found that the strength of the low-frequency noise scales
as α = aT 2 (see Fig. 2). The T 2 dependence of the low-frequency noise power
was observed earlier for the 1/f noise in Josephson devices [19, 20]. Further
evidence for the T 2 behavior was obtained recently [21, 22]. But the fact that
the two parts of the spectrum are characterized by the same constant a was
surprising.

S (  )
X

ω

T ω

aω
a 2T
ω

Fig. 2. Asymptotic behavior of noise at low and high frequencies.
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5 Resonances in phase qubits

Additional information was obtained from experiments with phase qubits (cur-
rent biased large area Josephson junction) by Simmonds et al. [23]. These ex-
periments revealed the presence of spurious quantum two-level systems with
strong effects on the high-frequency (∼10 GHz) qubit dynamics. In a phase
qubit one controls the energy splitting between the qubit states by changing
the bias current. It turned out that at certain values of the bias current the
system ceased to behave as a two-level system but showed rather a 4-level dy-
namics. This phenomenon can be attributed to the existence of a collection of
coherent two-level fluctuators in the oxide of the tunnel barrier. When the en-
ergy splitting of the qubit coincides with that of one of the fluctuators a pair of
states |gqubit〉 |efluctuator〉 and |equbit〉 |gfluctuator〉 are degenerate. This degener-
acy is lifted by the qubit-fluctuator interaction, which leads to a gap (avoided
crossing) in the spectroscopy of the qubit. There are at least two types of
interactions which could be responsible for lifting the degeneracy [24]. One
corresponds to a situation in which a two-level fluctuator blocks a conducting
channel in one of its states and, thus, influences the Josephson energy of the
junction [23]. The other arises due to a dipole moment of the fluctuator inter-
acting with the electric field in the junction. Recent studies [12] point towards
the second option. The most surprising was the observation that the two-level
fluctuators are more coherent than the qubit. Hence, the decoherence of the
4-level system in a resonant situation is dominated by the decoherence of the
qubit.

6 High- and low-frequency noise from coherent TLF’s

Motivated by the above mentioned experiments we have pointed out [25] that
a set of coherent two-level systems may produce both high- and low-frequency
noise with strengths that are naturally related. As a model we consider a set
of coherent two-level systems described by the Pauli matrices σp,j , where
p = x, y, z, and j labels the particular TLF. We write the Hamiltonian of
the set in the basis such that their contributions to the relevant fluctuating
quantity, e.g., the gate charge, are X ≡ ∑

j vj σz,j . Then

HTLS =
∑

j

[

−1

2
(εjσz,j + ∆jσx,j) + Hdiss,j

]

. (12)

Here, in the language of tunneling TLSs (TTLS), εj are the bias energies
and ∆j the tunnel amplitudes between two states. Each individual TLS, j,
is subject to dissipation due to its own bath with Hamiltonian Hdiss,j . We
do not specify Hdiss,j , but only assume that it produces the usual relaxation
(T1) and dephasing (T2) processes. We assume that all the TLSs are under-

damped, with Γ1,j ≡ T−1
1,j � Ej and Γ2,j ≡ T−1

2,j � Ej . Here Ej ≡
√

ε2j + ∆2
j

is the energy splitting.
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Our goal in the following is to investigate the noise properties of of the
fluctuating field X . For that reason we evaluate the (unsymmetrized) corre-
lator

CX(ω) ≡
∫

dt
{

〈X(t)X(0)〉 − 〈X〉2
}

eiωt . (13)

For independent TLSs the noise is a sum of individual contributions, CX =
∑

j v2
j Cj , where

Cj(ω) ≡
∫

dt
{

〈σz,j(t)σz,j(0)〉 − 〈σz,j〉2
}

eiωt . (14)

To obtain Cj we first transform to the eigenbasis of the TLS. This gives

HTLS =
∑

j

{

−1

2
Ejρz,j + Hdiss,j

}

, (15)

and
X =

∑

j

vj (cos θj ρz,j − sin θj ρx,j) , (16)

where tan θj ≡ ∆j/εj. Proceeding in the spirit of the Bloch-Redfield the-
ory [13, 14] we readily find

Cj(ω) ≈ cos2 θj

[

1 − 〈ρz,j〉2
] 2Γ1,j

Γ 2
1,j + ω2

+ sin2 θj

[

1 + 〈ρz,j〉
2

]

2Γ2,j

Γ 2
2,j + (ω − Ej)2

+ sin2 θj

[

1 − 〈ρz,j〉
2

]

2Γ2,j

Γ 2
2,j + (ω + Ej)2

. (17)

In thermal equilibrium we have 〈ρz,j〉 = tanh(Ej/2T ). The first term, due
to the longitudinal part of the coupling, describes random telegraph noise of
a thermally excited TLS. We have assumed Γ1,j � T , so that this term is
symmetric (classical). The second term is due to the transverse coupling and
describes absorption by the TLS, while the third term describes the transitions
of the TLS with emission. We observe that TLSs with Ej � T contribute to
CX only at the (positive) frequency ω = Ej . Indeed their contribution at ω = 0
is suppressed by the thermal factor 1 − 〈ρz,j〉2 = 1 − tanh2(Ej/2T ). Also the
negative frequency (emission) contribution at ω = −Ej is suppressed. These
high-energy TLSs remain always in their ground state. Only the TLSs with
Ej < T are thermally excited, performing real random transitions between
their two eigenstates, and contribute at ω = ±Ej and at ω = 0. Note that
the separation of the terms in Eq. (17) into low- and high-frequency noise
is meaningful only provided the typical width Γ1,j of the low-ω Lorentzians
is lower than the high frequencies of interest, which are defined, e.g., by the
qubit’s level splitting or temperature.
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For a dense distribution of the parameters ε, ∆, and v we can evaluate
the low- and high-frequency noise. For positive high frequencies, ω � T , we
obtain

CX(ω) ≈
∑

j

v2
j sin2 θj

2Γ2,j

Γ 2
2,j + (ω − Ej)2

≈ N

∫

dεd∆dv P (ε, ∆, v) v2 sin2 θ · 2πδ(ω − E) ,

(18)

where N is the number of fluctuators, P (ε, ∆, v) is the distribution function
normalized to 1, E ≡

√
ε2 + ∆2, and tan θ = ∆/ε. Without loss of generality

we take ε ≥ 0 and ∆ ≥ 0.
At negative high frequencies (ω < 0 and |ω| > T ) the correlator CX(ω)

is exponentially suppressed. On the other hand, the total weight of the low-
frequency noise (up to ω ≈ Γ1,max, where Γ1,max is the maximum relaxation
rate of the TLSs) follows from the first term of (17). (Since we have assumed
Γ1,j � Ej we can disregard the contribution of the last two terms of (17).)
Each Lorentzian contributes 1. Thus we obtain

∫

low freq.

dω

2π
CX(ω)

≈
∫

low freq.

dω

2π

∑

j

v2
j cos2 θj

[

1 − 〈ρz,j〉2
] 2Γ1,j

Γ 2
1,j + ω2

≈ N

∫

dεd∆dv P (ε, ∆, v) v2 cos2 θ
1

cosh2 E
2T

.

(19)

Equations (18) and (19) provide the general framework for further discussion.
Next we investigate possible distributions for the parameters ε, ∆, and v.

We consider a log-uniform distribution of tunnel splittings ∆, with density
P∆(∆) ∝ 1/∆ in a range [∆min, ∆max]. This distribution is well known to
provide for the 1/f behavior of the low-frequency noise [26]. It is natural for
TTLSs as ∆ is an exponential function of, e.g., the tunnel barrier height [27],
which is an almost uniformly distributed parameter. The relaxation rates are,
then, also distributed log-uniformly, PΓ1

(Γ1) ∝ 1/Γ1, and the sum of many
Lorentzians of width Γ1 centered at ω = 0 adds up to the 1/f noise.

The distribution of v is rather arbitrary. We only only assume that it is
uncorrelated with ε and ∆. Finally we have to specify the distribution of
εs. First, we assume that the temperature is lower than ∆max. For the high-
frequency part, T < ω < ∆max, we find, after taking the integral over ∆ in
Eq. (18), that

CX(ω) ∝ 1

ω

∫ ω

0

Pε(ε)dε . (20)



8 Alexander Shnirman, Gerd Schön, Ivar Martin, and Yuriy Makhlin

This is consistent with the observed Ohmic behavior CX ∝ ω only for a linear
distribution Pε(ε) ∝ ε.

Remarkably, this distribution, P (ε, ∆) ∝ ε/∆, produces at the same time
the T 2 ln(T/∆min) behavior of the low-frequency weight (19), observed in
several experiments [19, 20, 21, 22]. If the low-frequency noise has a 1/f
dependence, the two parts of the spectrum would cross around ω ∼ T [10].

In the opposite limit, T � ∆max, the high-frequency noise depends on the
detailed shape of the cutoff of P∆(∆) at ∆max. As an example, for a hard
cutoff the Ohmic spectral density implies that Pε ∝ ε3, and the low-frequency
weight scales with T 4. For a 1/f low-frequency behavior, the spectra would
cross at ω ∼ T 2/∆max � T , which is not in agreement with the result of
Ref. [10].

A remark is in order concerning the crossing at ω ≈ T discussed above.
It is not guaranteed that the spectrum has a 1/f dependence up to ω ∼ T .
Rather the high-frequency cutoff of the low-frequency 1/f noise is given by the
maximum relaxation rate of the TLSs, Γ1,max � T , as we assumed. Then the
extrapolations of the low-frequency 1/f and high-frequency Ohmic spectra
cross at this ω ∼ T .

We would like to emphasize that the relation between low- and high-
frequency noise is more general, i.e., it is not unique to an ensemble of two-
level systems. Consider an ensemble of many-level systems with levels |n〉 and
energies En such that the coupling is via an observable which has both trans-
verse and longitudinal components. By ‘transverse component’ we mean the
part constructed with operators |n〉〈m|, where n 6= m, while the ‘longitudinal
component’ is built from the projectors |n〉〈n|. If the system is under-damped,
that is, if the absorption and emission lines are well defined, the correlator of
such an observable will have Lorentzian-like contributions at ω = En −Em as
well as at ω = 0. An example is provided by an ensemble of an-harmonic oscil-
lators with X =

∑

j vjxj , where xj are the oscillator’s coordinates. Due to the
anharmonicity xj acquires a longitudinal component, in addition to the usual
transverse one. Thus a relation between the low- and high-frequency noise
would emerge naturally with details depending on the ensemble statistics.

7 Self-consistent model

In this section we consider a possibility that the Γ1 decay of each individual
TLS is caused by the other TLSs. This model explains further details of the
behavior of SX(ω). We assume that each individual fluctuator ”feels” the
same charge noise as the qubit, however reduced by a factor λ < 1 due to the
small size of the fluctuators. That is we assume that the relaxation rate of the
fluctuators is given by

Γ1,j =
λ

2
sin θ2

j SX(ω = Ej) . (21)
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Fig. 3. Noise spectrum in a selfconsistent model.

As only the fluctuators with Ej ≤ T contribute to the 1/f noise, we estimate
the maximum possible relaxation rate of the fluctuators to be Γ1,max ∼ λaT .
This leads to a crossover from 1/f to 1/f2 dependence around ω ∼ Γ1,max ∼
λaT as indicated in Fig. 3. We note that such a crossover (soft cut-off) is
compatible with the recent experimental data [11].

8 Relation to other work

It is useful to relate our phenomenological results to the recent work of Faoro
et al. [28], de Sousa et al. [29], Grishin et al. [30], and Faoro et al. [31],
where physical models of the fluctuators, coupling to and relaxing the qubit,
were considered. In Ref. [28] three models were studied: (I) a single electron
trap in tunnel contact with a metallic gate, (II) a single electron occupying a
double trap, and (III) a double trap that can absorb/emit a Cooper pair from
the qubit or a superconducting gate (‘Andreev fluctuator’). In all models a
uniform distribution of the trap energy levels was assumed. One, then, can
show that the distribution for the two-level systems corresponding to the
models II and III are linear in the energy level splitting, P (ε) ∝ ε. Since the
switching in these models is tunneling dominated, we find that P (∆) ∝ 1/∆.
Therefore, both models II and III are characterized by distribution P (ε, ∆) ∝
ε/∆, introduced above, and hence can naturally account for the experimentally
observed low- and high-frequency noises. In contrast, as shown in [29, 30],
single electron traps do not behave as coherent two-level systems. Depending
on the ratio between the hybridization with the metal and the temperature a
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single trap at the Fermi energy can either show the random telegraph noise
or, when the hybridization dominates, it makes the qubit to feel the Ohmic
particle-hole spectrum of the metal.

It was argued recently [31] that one needs an unphysically high density
of fluctuators in order to explain the experimental findings. This argument
is based on an assumption that the traps’ energies are distributed homoge-
neously over the energy band of order of the Fermi energy (of order 1 eV).
Faoro and Ioffe [31] proposed an alternative scenario where the low energy
scale needed for qubit relaxation is provided by Kondo physics.

9 Conclusions

Josephson qubits have found their first application as sensitive meters of their
environment. Measurements of qubit relaxation produced new surprising in-
formation about the properties of 1/f noise. Motivated by these experiments,
we have shown that an ensemble of coherent two-level systems with the dis-
tribution function, P (ε, ∆) ∝ ε/∆, produces Ohmic high-frequency noise and,
at the same time, 1/f low-frequency noise with strength which scales with
temperature as T 2. The two branches of the noise power spectrum cross at
ω ∼ T in accordance with the experimental observation [10].
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