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Zusammenfassung

Einleitung

Auf dem Gebiet der Teilchenphysik wurden in den vergangenen Jahrzehnten große
Anstrengungen unternommen, die Struktur der Materie und deren Naturgesetze zu
erforschen. Für ein besseres Verständnis dieser Gesetze sind zunehmend größere ex-
perimentelle Apparate notwendig, da eine ausreichend hohe Energiedichte erzeugt
werden muss. So haben heutige Teilchenbeschleuniger, die Strukturen kleiner als den
milliardsten Teil eines Atomkernes auflösen können, mehrere Kilometer Umfang. Die
Aufgabe der Teilchenphysik besteht nun hauptsächlich darin, mit Hilfe von Appa-
raten wie den Teilchenbeschleunigern theoretische Vorhersagen experimentell zu be-
stätigen, die Zahlenwerte der freien Parameter dieser Theorien zu bestimmen und
Hinweise auf neue Physik jenseits der etablierten Theorien zu finden.

Standardmodell der Teilchenphysik

Das Standardmodell der Teilchenphysik beschreibt die Elementarteilchen, aus de-
nen die uns vertraute Materie zusammengesetzt ist. Darüberhinaus beinhaltet es
drei fundamentale Wechselwirkungen, die unter diesen Teilchen wirken, wobei die
Gravitation als vierte Wechselwirkung in der Allgemeinen Relativitätstheorie be-
schrieben wird und nicht Teil des Standardmodells ist.

Die elementaren Teilchen sind innerhalb des Standardmodells in Fermionen und
Bosonen unterteilt, deren Eigenschaften durch Quantenzahlen festgelegt werden.
Beispiele solcher Quantenzahlen sind die elektrische Ladung oder der Spin. Die Fer-
mionen besitzen einen halbzahligen Spin, die Bosonen einen ganzzahligen Spin.

Insgesamt gibt es zwölf elementare Fermionen. Sie sind unterteilt in Quarks und
Leptonen und werden typischerweise in drei Familien gruppiert:

Familie 1. 2. 3.
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Die Teilchen der ersten Familie besitzen die geringsten Massen. Gemäß den Ener-
gieerhaltungssätzen zerfallen Teilchen stets in leichtere, sofern der Zerfall keine an-
deren Erhaltungssätze verletzt. Demzufolge besteht die gewöhnliche Materie, der wir
im Alltag begegnen, ausschließlich aus Teilchen der ersten Familie.

Die drei fundamentalen Wechselwirkungen unter den Teilchen heißen elektroma-
gnetische, schwache und starke Wechselwirkung und werden innerhalb des Standard-
modells über den Austausch verschiedener Bosonen erklärt, wobei jeder Wechselwir-
kung ihre charakteristischen Bosonen zugeordnet werden.

Das Boson der elektromagnetischen Wechselwirkung ist das masselose Photon.
Durch die fehlende Masse ist die Reichweite dieser Wechselwirkung unbegrenzt.

Die schwache Wechselwirkung beruht auf den geladenen W±-Bosonen und dem
ungeladenen Z0-Boson. Aufgrund der schwachen Wechselwirkung sind Übergänge
innerhalb und zwischen den einzelnen Teilchenfamilien möglich.

Die Bosonen der starken Wechselwirkung sind die acht Gluonen, die gebunde-
ne Zustände zwischen den Quarks hervorbringen. Bei diesen wird unterschieden
zwischen Mesonen, die aus einem Quark-Antiquark-Paar bestehen und Baryonen,
die aus drei Quarks bestehen. Da sich Gluonen wechselseitig beeinflussen, können
Quarks nicht voneinander getrennt werden beziehungsweise können keine ungebun-
denen Quarks erzeugt werden. Die hierfür benötigte Energie nimmt mit dem Ab-
stand zu, daher ist es energetisch günstiger, ab einer potentiellen Energie von zwei
Quarkmassen ein neues Quark-Antiquark-Paar zu erzeugen.

Beim Erforschen der starken Wechselwirkung ist die Nichtexistenz von freien
Quarks ein Nachteil, weshalb hier in Analogie zum Wasserstoffatom die Mesonen
untersucht werden, die aus einem schweren und einem leichten Quark bestehen. Für
das Verstehen der starken Wechselwirkung spielen diese Mesonen eine ähnlich wich-
tige Rolle wie das Wasserstoffatom bei der elektromagnetischen Wechselwirkung.
Das schwere Quark übernimmt dabei also die Rolle des Protons, das leichte Quark
die des Elektrons.

Analog zur Entstehung der Hyperfeinstruktur aufgrund der Spin-Bahn-Kopplung
des Elektrons mit dem Proton ergibt die Spin-Bahn-Kopplung des leichten und des
schweren Quarks eine Massenaufspaltung der orbital angeregten Zustände der Me-
sonen.

In der vorliegenden Arbeit werden B∗∗- und B∗∗s -Mesonen in Zerfällen nach B∗∗ →
B(∗)+π− und nach B∗∗s → B

(∗)
s π+π− untersucht. Diese Mesonen bestehen jeweils

aus einem schweren b-Quark und einem leichten u-Quark beziehungsweise s-Quark.
Aufgrund des Bahndrehimpulses von L = 1 ergeben sich durch die oben erwähnte
Spin-Bahn-Kopplung vier angeregte Zustände: B∗(s)0, B∗(s)1, B(s)1 und B∗(s)2. Diese
vier Zustände werden unter dem Namen B∗∗(s) zusammengefasst.



5

Abbildung 0.1: Skizze der Beschleuniger des Tevatrons.

Experimenteller Aufbau

Die Daten, die in der vorliegenden Arbeit verwendet werden, wurden mit Hilfe des
am Tevatron stehenden CDF-II-Detektors aufgezeichnet. Das Tevatron ist ein Teil-
chenbeschleuniger des Fermi National Accelerator Laboratory, kurz Fermilab, 50
Kilometer westlich von Chicago, Illinois (USA). In ihm werden Protonen und Anti-
protonen gegenläufig beschleunigt und an zwei Punkten zur Kollision gebracht. An
diesen beiden Wechselwirkungspunkten stehen die Experimente CDF und DØ.

Das Tevatron hat eine Schwerpunktenergie von 1, 96 TeV/c2 und um die Protonen
und Antiprotonen auf die dafür nötige Energie zu beschleunigen, durchlaufen sie eine
Kaskade von Vorbeschleunigern, deren Funktionsschema in Abbildung 0.1 zu sehen
ist.

Die Protonen werden aus gasförmigem Wasserstoff gewonnen und mit Hilfe der
Vorbeschleuniger auf ihre Endgeschwindigkeit gebracht. Ein Teil wird dazu direkt
ins Tevatron eingeleitet, die anderen werden zum Erzeugen der Antiprotonen ver-
wendet. Hierfür wird der Protonenstrahl auf einen Nickelblock geschossen. Die dabei
erzeugten Antiprotonen werden gesammelt und ebenfalls in das Tevatron eingeleitet.

Abbildung 0.2 zeigt den CDF-II-Detektor. Dieser ist ein typischer Vielzweckde-
tektor der Teilchenphysik. Er hat eine zylindersymmetrische Geometrie und ist spie-
gelsymmetrisch bezüglich des Wechselwirkungspunktes. Der Detektor setzt sich aus
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Abbildung 0.2: Skizze des CDF-II-Detektors.

Komponenten zur Spurrekonstruktion und Teilchenidentifikation, sowie Kalorime-
tern und Myonenkammern zusammen. Die Spurdetektoren sind von einer supralei-
tenden Spule umgeben, die ein Magnetfeld von 1, 4 T parallel zum Strahlrohr erzeugt.
Dadurch werden die Spuren der geladenen Teilchen gekrümmt, womit deren Impuls
bestimmt werden kann.

Aufgrund der hohen Kollisionrate der Protonen und Antiprotonen ist es nicht
möglich, alle detektierten Ereignisse aufzuzeichnen. Darüberhinaus sind nur weni-
ge dieser Ereignisse überhaupt von physikalischem Interesse. Deswegen verfügt der
CDF-II-Detektor über ein komplexes System von Filtern, welches die Vorselektion
interessanter Ereignisse nahezu instantan bewerkstelligt.

Die Datensätze, die im Rahmen dieser Arbeit verwendet werden, basieren voll-
ständig auf der Selektion des Two-Track-Triggers und des Di-Muon-Triggers. Jener
identifiziert Ereignisse, deren Spuren einen großen Stoßparameter haben, was auf
einen großen Abstand zwischen Erzeugungs- und Zerfallsort hindeutet, wie es für
B-Mesonen der Fall ist. Der Di-Muon-Trigger selektiert Ereignisse, die mindestens
zwei Myonen erhalten, welche einem J/ψ-Zerfall zugeordnet werden können.

Neuronale Netze

In der Regel besteht der weitaus größte Anteil der Ereignisse in den aufgezeichneten
Rohdaten aus Untergrundereignissen, die von den Signalereignissen getrennt werden
müssen. Zur Klassifizierung der Ereignisse werden innerhalb dieser Arbeit neurona-
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Abbildung 0.3: Topologie eines dreilagigen, vorwärtsgekoppelten neuronalen Netzes.
Die Stärke der Verbindunslinien zwischen den Neuronen ist proportional zu deren
Signifikanz für das Netzwerk.

le Netze eingesetzt. Diese besitzen gegenüber rein schnittbasierten Analysen den
Vorteil, dass sie Korrelationen zwischen den verwendeten Variablen berücksichtigen,
indem sie die Informationen aller Selektionsgrößen auf eine einzige Ausgangsvariable
abbilden. Für die endgültige Selektion wird ein Schnitt auf diese eine Ausgangsva-
riable angewendet.

In dieser Arbeit werden ausschließlich neuronale Netze aus dem NeuroBayes-Pa-
ket verwendet, das an der Universität Karlsruhe entwickelt wurde. Es handelt sich
hierbei um ein dreilagiges, vorwärtsgekoppeltes Netzwerk, das über einen zusätzli-
chen Algorithmus verfügt, der die Daten in einem Arbeitsschritt vor dem eigentlichen
neuronalen Netz aufbereitet und die Signalsignifikanz entscheidend verbessert.

Neuronale Netze bestehen im Allgemeinen aus Neuronen, die hier in drei Schichten
angeordnet sind. Abbildung 0.3 zeigt exemplarisch die Topologie eines solchen Net-
zes. In der Eingabeschicht wird jeder verwendeten Variablen ein Neuron zugeordnet,
das wiederum mit den Neuronen der mittleren Schicht verbunden ist. Die Ausga-
beschicht besteht aus lediglich einem Neuron, das für eine binäre Klassifizierung
ausreichend ist. Bei einem vorwärtsgekoppelten neuronalen Netz sind die Neuronen
einer Schicht ausschließlich mit den Neuronen der nachfolgenden Schicht verbunden.

Bevor ein neuronales Netz zur Trennung von Signal- und Untergrundereignissen
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eingesetzt werden kann, muss es anhand von Musterdaten, die sowohl signalartige
als auch untergrundartige Ereignisse enthalten, trainiert werden. Hierbei werden si-
mulierte Ereignisse als Signalmuster verwendet. Da bisherige Modelle die komplexen
Zusammenhänge des Untergrundes, wie er an Teilchenbeschleunigern auftritt, nicht
mit der benötigten Genauigkeit beschreiben können, werden als Muster für Unter-
grundereignisse reale Daten aus einem Massenbereich genommen, in dem keine oder
äußerst wenige Signalereignisse zu erwarten sind.

Rekonstruktion und Selektion der Signalereignisse

In dieser Arbeit werden B∗∗- und B∗∗s -Mesonen in den Zerfällen B∗∗ → B(∗)+π− und

B∗∗s → B
(∗)
s π+π− untersucht, die unter Verwendung verschiedener Zerfallskanäle

der B+- und Bs-Mesonen rekonstruiert werden. Für die Rekonstruktion der B∗∗-
Mesonen werden folgende Zerfällskanäle verwendet:

B∗∗ → B(∗)+π− B+ → J/ψK+ J/ψ → µ+µ−

B+ → D̄0π+ D̄0 → K+π−

B+ → D̄0 3π± D̄0 → K+π−

Für die Rekonstruktion der B∗∗s -Mesonen sind es folgende Zerfällskanäle:

B∗∗s → B
(∗)
s π+π− Bs → D−s π

+ D−s → K̄∗K−

D−s → φπ−

D−s → 3π±

Bs → D−s 3π± D−s → K̄∗K−

D−s → φπ−

D−s → 3π±

Sowohl die B∗- als auch die B∗s -Mesonen gehen unter Aussendung eines Photons in
den Grundzustand B∗(s) → B(s)γ über, wobei das dabei erzeugte Photon mit dem
CDF-II-Detektor nicht direkt nachweisbar ist, was zu einer Verschiebung der B∗(s)-
Massen führt.

Die Rekonstruktion der Mesonen beginnt am Ende der jeweiligen Zerfallskette bei
den stabilen Teilchen. In diesem Zusammenhang bedeutet stabil, dass diese Teilchen
eine ausreichend lange Lebensdauer besitzen, um den Detektor vollständig passieren
zu können. Ausgehend von diesen Teilchen werden zunächst die D-Mesonen bezie-
hungsweise die J/ψ-Mesonen rekonstruiert, indem die Viererimpulse der Zerfalls-
produkte addiert werden. Anschließend werden diesen Kandidaten weitere Spuren
durch Addition der Viererimpulse hinzugefügt, um so die B-Mesonen und schließlich
die B∗∗(s)-Mesonen zu rekonstruieren.

Die Selektion der Signalkandidaten wird in zwei Schritten durchgeführt. Im ersten
werden neuronale Netze zur Selektion der B+- und Bs-Kandidaten eingesetzt. Diese
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Netze werden mit Hilfe von simulierten Signal- und realen Untergrundereignissen,
die dem oberen Massenseitenband entnommen sind, trainiert. Als Eingabevariablen
werden Größen verwendet, die für die Zerfallstopologie charakteristisch sind. Da-
zu gehören zum einen kinematische Variablen wie Zerfallslänge, Zerfallswinkel und
Stoßparameter und zum anderen Güteparameter, die Aussagen über die Qualität
der gefundenen Spuren und deren Konsistenz machen. Im darauffolgenden zweiten
Schritt werden neuronale Netze zur Selektion der B∗∗- und B∗∗s -Kandidaten trainiert.
Die Klassifizierungsinformation der neuronalen Netze zur Selektion der B-Mesonen
ist dabei eine zusätzliche Eingangsvariable zu den oben bereits erwähnten zerfalls-
typischen Größen.

Zur endgültigen Selektion der Signalkandidaten wird ein Schnitt auf die Aus-
gangsgröße des zweiten Netzes gemacht. Dieser Schnitt wird so gewählt, dass er die
Signalsignifikanz maximiert, die sich aus der Zahl der Signal- und Untergrundereig-
nisse innerhalb des Signalbereiches berechnen lässt.

Bestimmung der B∗∗-Eigenschaften

Zur Messung der Masse der schmalen Zustände des B∗∗-Mesons wird der Verlauf der
Q-Werteverteilung parametrisiert. Der Q-Wert stellt die Massendifferenz zwischen
dem Meson und dessen Zerfallsprodukten dar: Q = m(B∗∗) − m(B+) − mπ. Die
Likelihood-Funktion zur Beschreibung der Q-Verteilung beinhaltet hierbei jeweils
Komponenten zur Modellierung des Signal- und des Untergrundanteils. Die Signal-
funktion umfasst die drei Zerfälle B∗2 → Bπ, B∗2 → B∗π und B1 → B∗π. Die Funk-
tion jedes einzelnen Signals setzt sich aus der Faltung einer Breit-Wigner-Funktion
mit dem Modell der Detektorauflösung zusammen. Die Parametrisierung der Unter-
grundverteilung berücksichtigt zwei verschiedene Untergrundursachen. Zum einen
umfasst der Untergrund B∗∗s -Mesonen aus dem ähnlichen Zerfall B∗∗s → B+K−, bei
denen zur Rekonstruktion aufgrund mangelnder Eindeutigkeit die Masse des Pions
statt der des Kaons verwendet wurde. Zum anderen besteht der Untergrund aus
vermeintlichen Signalereignissen, die aufgrund der Vielzahl an verwendeten Spuren
und deren zahlreichen Kombinationsmöglichkeiten innerhalb des Rekonstruktions-
prozesses entstehen.

Durch die Minimierung der Likelihood-Funktion mit Hilfe der Maximum-Likeli-
hood-Methode werden deren Parameter bestimmt. Abbildung 0.4 zeigt das Ergebnis
dieser Minimierung, bei dem ein deutliches Signal zu erkennen ist. Aus dieser Mini-
mierung ergeben sich die Q-Werte für die schmalen Zustände der B∗∗-Mesonen und
die Breite des B∗2 . Über die Weltmittelwerte [2] für die Massen des B+ und des ge-
ladenen Pions werden die absoluten Massen der schmalen Zustände berechnet. Die
Unsicherheiten der Weltmittelwerte gehen dabei quadratisch in den systematischen
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Abbildung 0.4: Parametrisierung der B∗∗ Q-Verteilung. Die Daten beinhalten den

Zerfall B∗∗ → B(∗)+π− mit den Zerfallskanälen B+ → J/ψK+, B+ → D̄0π+ und
B+ → D̄0 3π±.

Fehler ein. Die gemessenen Signalparameter sind:

m(B∗2) = 5740.2+1.7
−1.8 (stat) +0.9

−0.8 (syst) MeV/c2,

m(B1) = 5725.3+1.6
−2.2 (stat) +1.4

−1.5 (syst) MeV/c2,

Γ(B∗2) = 22.7+3.8
−3.2 (stat) +3.2

−10.2 (syst) MeV/c2.

Bestimmung der B∗∗s -Eigenschaften

Zur Bestimmung des Verzweigungsverhältnisses der schmalen Zustände der B∗∗s -
Mesonen wird im Rahmen dieser Arbeit die Maximum-Likelihood-Methode verwen-
det. Die Likelihood-Funktion zur Beschreibung der Q-Verteilung der B∗∗s -Mesonen
enthält jeweils eine Komponente für den Signal- und den Untergrundanteil. Das Si-
gnal wird mit Hilfe einer Gaußverteilung parametrisiert, deren Breite auf den Wert
der Detektorauflösung festgesetzt wird. Da der Untergrund hauptsächlich kombina-
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Abbildung 0.5: Parametrisierung der Q-Verteilung des Bs1-Zustandes in Zerfällen
nach B∗∗s → Bsπ

+π−.

torischen Ursprungs ist, wird dieser mittels einer Exponentialverteilung beschrieben,
die mit einem linearen Term multipliziert wird, um zu gewährleisten, dass der Un-
tergrundanteil im Ursprung verschwindet.

Zur Bestimmung der Signalparameter wird die Likelihood-Funktion mit Hilfe der
Maximum-Likelihood-Methode minimiert. Für die beiden schmalen Zustände Bs1

und B∗s2 werden getrennte Minimierungen durchgeführt deren Massen aufgrund ei-
ner früheren CDF-Messung bekannt sind [1]. Bei der Durchführung der Minimierung
werden die Mittelwerte der Gaußverteilungen auf diese Werte festgesetzt. Die Ab-
bildungen 0.5 und 0.6 zeigen die Minimierungen der beiden Parametrisierungen. Da
für keinen der schmalen Zustände ein signifikantes Signal zu beobachten ist, wird
ein Limit auf das Verzweigungsverhältnis dieser beiden Zustände berechnet.

Die Berechnung des Limits beruht auf dem Bayesschen Ansatz unter Annahme
einer gleichförmig verteilten A-Priori-Wahrscheinlichkeit. Da die Produktionsraten
zur Erzeugung der B∗∗s -Mesonen innerhalb des CDF-Experiments nicht bekannt sind,
wird das Limit relativ bezüglich des bereits beobachteten Zerfalls B∗∗s → B+K− ge-
messen. Das obere Limit ist durch das Verzweigungsverhältnis bestimmt, für welches



12

0 0.05 0.1 0.15 0.2 0.25

2
E

n
tr

ie
s

 p
e

r 
5

 M
e

V
/c

0

2

4

6

8

10

12

-1
L=2.8fb

Data

Signal

Background

π π* s B→* 
s2

Fit B

 

 

 

 

π π* s B→* s2B

]2Q [GeV/c

0 0.05 0.1 0.15 0.2 0.25

d
a

ta

(d
a

ta
 -

 f
it

)

-2

-1

0

1

Abbildung 0.6: Parametrisierung der Q-Verteilung des B∗s2-Zustandes in Zerfällen
nach B∗∗s → Bs ∗ π+π−.

das Integral der A-Posteriori-Wahrscheinlichkeit den Wert 0.95 annimmt. Für einen
Vertrauensbereich von 95% werden für die oberen Grenzen folgende Werte gemessen:

BR(Bs1 → Bsππ)

BR(Bs1 → Bsππ) + BR(Bs1 → BK)
< 0.54,

BR(B∗s2 → Bsππ)

BR(B∗s2 → Bsππ) + BR(B∗s2 → BK)
< 0.53.

Die hohen Werte dieser Limits sind dadurch bedingt, dass verschiedene Annah-
men, die innerhalb der Minimierungsfunktion getroffen werden, bereits mit großen
Unsicherheiten behaftet sind. Dazu zählen zum Beispiel die Verzweigungsverhältnis-
se der Bs-Zerfälle sowie die Anzahl der Signalereignisse des Referenzkanals B∗∗s →
B+K−, die jeweils relative Unsicherheiten im Bereich von 30 bis 40 Prozent haben.
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Resümee

In der vorliegenden Arbeit wurden B∗∗- und B∗∗s -Mesonen in den Zerfällen B∗∗ →
B(∗)+π− und B∗∗s → B

(∗)
s π+π− untersucht. Hierbei wurden verschiedene Zerfalls-

kanäle der B+- und Bs-Mesonen berücksichtigt, um die B∗∗- und B∗∗s -Mesonen zu
rekonstruieren.

Die Methode zur Selektion der Signalereignisse wurde mit Hilfe von neuronalen
Netzen optimiert. Diese besitzen gegenüber rein schnittbasierten Selektionen den
Vorteil, dass sie Korrelationen unter den verwendeten Variablen berücksichtigen,
und somit zu einem verbesserten Verhältnis von Signal zu Untergrund führen.

Durch die Maximum-Likelihood-Methode wurden die Massen der schmalen Zu-
stände des B∗∗-Mesons sowie die Breite des B∗2-Zustandes gemessen. Es handelt
sich dabei um die bisher präziseste Messung der B1- und B∗2-Massen und die ers-
te Messung der B∗2-Breite. Die Genauigkeit der gemessenen Werte ist durch den
statistischen Fehler begrenzt.

Für die schmalen Zustände des B∗∗s -Mesons wurde kein signifikantes Signal beob-
achtet. Aus diesem Grund wurde gemäß dem Bayesschen Ansatz ein oberes Limit
auf die Verzweigungsverhältnisse der schmalen Bs1- und B∗s2-Zustände berechnet.

Die Analysen der B∗∗- und B∗∗s -Mesonen leisten einen weiteren Beitrag zum bes-
seren Verständnis des Standardmodells. Die erneute Durchführung der beiden Mes-
sungen mit größeren Datensätzen wird zur weiteren Reduzierung des statistischen
Fehlers führen und könnte die Beobachtung eines Signals im Zerfall B∗∗s → B

(∗)
s π+π−

möglich machen. Mit einer ausreichend verbesserten Auflösung des Experiments wä-
re es außerdem möglich, die Signale der drei B∗∗-Zerfälle B1 → B∗π, B∗2 → B∗π und
B∗2 → Bπ zu unterscheiden.

In dieser Arbeit wurden die schmalen Zustände der B∗∗- und B∗∗s -Mesonen unter-
sucht. Darüberhinaus ist es für ein vollständiges Verständnis der orbital angeregten
B- und Bs-Mesonen unerlässlich, die breiten Zustände ebenfalls zu untersuchen, die
jedoch mit den gängigen Analysestrategien äußerst schwer vom kombinatorischen
Untergrund zu unterscheiden sind.
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1 Introduction

Over the past decades, physicists put much effort into getting a deeper knowledge
about the structure of matter and the forces forming it. On the way of getting a bet-
ter understanding of nature it is necessary to build up larger instruments operating
at high energy densities to dig deeper into the substructure of matter. Today, the
particle accelerators used to resolve structures smaller than a billionth of a nucleus
have circumferences of several kilometres.

The elementary particles forming the matter surrounding us are explained by
the standard model of particle physics. The standard model also describes the
fundamental interactions amongst these particles, except for gravity which is treated
by general relativity. According to the current state of knowledge there are three
families of elementary particles grouped into quarks and leptons. On the basis of
the strong interaction compound particles are composed of quarks being classified
into baryons and mesons.

The standard model is a powerful theory being capable of predicting many pa-
rameters and properties. However, the standard model has several intrinsic free
parameters whose values cannot be derived theoretically. It is the aim of particle
physics to confirm the standard model predictions, to determine the free parameters
experimentally and to find evidence for new physics beyond the standard model.

Quantum chromodynamics is the theory describing the above mentioned strong
interaction. Quarks occur only in bound states and cannot be observed as un-
bound free particles according to quantum chromodynamics. This phenomenon is
a major drawback in studying quantum chromodynamics. Thus, a good way of
doing research in the field of quantum chromodynamics is studying mesons con-
sisting of heavy and light quarks in analogy to the hydrogen atom in quantum
electrodynamics. Indeed, heavy-light quark mesons play a similarly important role
in understanding quantum chromodynamics as the hydrogen atom did for quantum
electrodynamics. In this analogy, the heavy quark takes the role of the nucleus and
the light quark plays the part of the electron.

In quantum electrodynamics the hyperfine splitting among members of the same
multiplets arises from the spin-orbit coupling of the nucleus and the electron. In
a similar way mass splitting emerges among orbitally excited heavy-light mesons
based on spin-orbit coupling.

The analysis presented in this thesis performs a search for B∗∗ and B∗∗s mesons
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in decays of B∗∗ → B(∗)+π− and B∗∗s → B
(∗)
s π+π−, respectively. B∗∗ and B∗∗s are

orbitally excited (L = 1) mesons consisting of a heavy b quark and light u or s
quark. In doing so, three exclusive decay modes of the B+ meson are used as well
as six exclusive decay modes of the Bs. Exclusive refers the fact that all decay
particles within a distinct decay channel are fully reconstructed. The decay width
of the excited states depends on the transition mechanism. Consequently, the two
hyperfine multiplets have either broad or narrow decay width. The narrow B∗∗s states
have been already seen in decays of B∗∗s → B+K− [1]. But if the broad states of the

B∗∗s mesons are below the threshold for decays into BK the decay B∗∗s → B
(∗)
s π+π−

is a good possibility of observing them.
The data used in this thesis was collected with the CDF II detector at the Tevatron

starting in February 2002. The data samples correspond to an integrated luminosity
of 1.7 fb−1 and 2.8 fb−1 for the B∗∗ and B∗∗s sample, respectively. The Tevatron is
a proton antiproton collider located at the Fermi National Accelerator Laboratory
which is situated near to the west of Chicago, Illinois. It runs at a center of mass
energy of 1.96 TeV and is currently the world’s largest operating particle accelerator.
The particles collide at two interaction points where the CDF II and DØ experiments
are located.

The selection of the signal candidates is based on neural networks. Neural net-
works have the advantage of taking into account correlations among the input vari-
ables in contrast to a purely cut based selection. The selection is optimised to
maximise the signal significance being generally defined as a function of the number
of signal and background events.

From the unbinned maximum likelihood fit to the Q value distribution the masses
of the narrow B∗∗ states are determined as well as the width of the B∗2 . The Q value
is the mass difference between a particle and its decay particles. For decays of
B∗∗s → B

(∗)
s π+π− no significant signal is observed. Therefore, a Bayesian limit is set

on the branching fractions of the narrow B∗∗s states.



2 Theoretical Overview

2.1 The Standard Model

The standard model is the comprehensive underlying theory of particle physics.
From today’s point of view, it is the most thoroughly tested theory in physics so far
but despite its great success it is not capable of answering all the open questions in
the field of particle physics.

The standard model classifies the elementary particles into fermions and bosons.
The interactions among them are based on three fundamental forces, the electro-
magnetic, strong and weak force. Gravitation, the fourth known force in nature is
not incorporated in the standard model and is treated by general relativity. The
properties of the elementary particles are described by quantum numbers. The elec-
tromagnetic charge or the spin of a particle are examples of such quantum numbers.
Each of the particles in the standard model has an associated antiparticle whose
quantum numbers are derived by applying the charge conjugation transformation
meaning that all charge-like quantum numbers have opposite signs.

Fermions are half-integer spin particles comprising quarks and leptons. The twelve
fundamental types of fermions are typically grouped into three families:

Family 1. 2. 3.

Quarks

(
u
d

) (
c
s

) (
t
b

)

Leptons

(
e
νe

) (
µ
νµ

) (
τ
ντ

)
The laws of nature postulate particles decaying into lighter particles unless the

decay is forbidden by conservation laws otherwise. Therefore, the ordinary matter
we meet in everyday life is formed by particles of the first family only as they have
the smallest masses. Particles of higher families are produced solely in high-energy
interactions as it is the case at the Tevatron collider, for instance. Moreover, the six
quarks occur only in bound states of the strong force and not as free particles except
for the t quark which is not long-lived enough to form bound states. These bound
states are called hadrons and they consist of either three quarks, called baryons, or
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Category Name Symbol Charge [e] Mass [MeV/c2]

Quark up quark u + 2
3 1.5 to 3.3

down quark d − 1
3 3.5 to 6.0

charm quark c + 2
3 (1.27+0.07

−0.11) · 103

strange quark s − 1
3 104+26

−34

top quark t + 2
3 (171.2± 2.1) · 103

bottom quark b − 1
3 4.20+0.17

−0.07 · 103

Lepton electron e −1 0.51
electron neutrino νe 0 ≤ 2 · 10−6

muon µ −1 105.66
muon neutrino νµ 0 ≤ 0.19
tau lepton τ −1 1776.84± 0.17
tau neutrino ντ 0 ≤ 18.2

Table 2.1: Overview of the elementary fermions of the standard model with their
electric charges and masses [2].

Interaction Name Symbol Charge [e] Mass [GeV/c2]

Electromagnetic Photon γ 0 0
Weak W boson W± ±1 80.398± 0.025
Weak Z boson Z0 0 91.1876± 0.0021
Strong Gluon g 0 0

Table 2.2: The elementary gauge bosons of the standard model with their electric
charges and masses [2].

of quark-antiquark combinations, called mesons. Table 2.1 gives a summary of the
elementary fermions.

The interactions between the particles in the standard model occur by the ex-
change of bosons [3]. Bosons are particles with integer spin and each of the fun-
damental forces has its distinct bosons which are listed in table 2.2. Besides that,
each force has an associated charge and only particles carrying the specific charge
interact with that force. Mathematically, the particles of the standard model are
described by quantum field theories and the interactions among them are described
by gauge theories.

The theory describing the electromagnetic force is quantum electrodynamics (QED).
Its gauge boson is the massless and chargeless photon. The nonexistent mass of the
photon causes the electromagnetic force to be of infinite range. All elementary
fermions except of the neutrinos carry electromagnetic charge, as well as the W±

bosons.
The strong force is described by quantum chromodynamics (QCD) having eight

different exchange bosons. These so-called gluons are massless particles differing only
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Figure 2.1: Autograph of the Cabibbo-Kobayashi-Maskawa matrix written by
Makoto Kobayashi [5].

in the colour quantum number. Colour is the term for the charge of the strong force
having the possible values red, green and blue. Quarks are the only fermions having
colour charge. The fact that gluons carry colour charge themselves yields a potential
of QCD being very different from that of QED resulting in a short range force. The
strong force forms bound states among the quarks and is therefore the interaction in
question for the orbitally excited B mesons studied in this analysis. For this reason,
quantum chromodynamics will be discussed more in detail in section 2.2.1.

The weak interaction is very different to the electromagnetic and strong force,
particularly at low energies. Firstly, it cannot form any bound states and secondly,
it is the only force being able to change the flavour, that is, the quark type by the
charged current interaction of the W± boson. Hence, no transition would be possible
between the three different fermion families without the weak interaction. The third
boson of the weak force is the neutral Z0 boson. In terms of the weak interaction
the eigenstates of the quarks differ from the mass eigenstates which are those in the
QED and QCD Lagrangian function. The transformation between these different
states is described by the Cabibbo-Kobayashi-Maskawa matrix (CKM matrix) [4, 6]
seen in figure 2.1. The entries in the CKM matrix are complex numbers constrained
by the unitarity of the matrix and by convention to actually four free parameters
commonly interpreted as three angles and one complex phase. The determination
of these parameters is a major field of research in particle physics at present. All
fermions including the neutrinos interact weakly.

Despite the fact that the electromagnetic and the weak force seem to be of a
very different nature especially at low energies, at high energies they can be unified
on the basis of the formalism of the electroweak theory, developed by Glashow,
Salam and Weinberg [7, 8, 9]. Thereby, the W± bosons form a triplet of the newly
introduced weak isospin together with the newly introduced W 0. The Z0 and the
photon are linear combinations of the W 0 and an additional new singlet, the B0. The
splitting up of the electroweak force into the weak and electromagnetic force below
the unification energy is explained by a postulated symmetry breaking mechanism.
The Higgs mechanism is the most popular explanation within this context yielding
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the last so far unobserved elementary particle of the standard model, the Higgs
boson [10, 11]. Finding the Higgs particle is another major field of research of
particle physics where great efforts are made.

According to the current understanding of the standard model, it might also be
possible to merge all three forces into one single theory at very high energies of
about 1016 GeV [3]. At such high energies transitions between quarks and leptons
are possible. This approach of unification is called the grand unification theory
(GUT).

2.2 Bound Quark States

In the standard model of elementary particle physics, bound states among the six
different quark types, so-called hadrons, are possible. These states are formed on
the basis of the strong interaction described by the formalism of quantum chromo-
dynamics. Among these hadrons, two different types of quark combinations have
been observed, so far: mesons and baryons.

Mesons are hadrons consisting of a quark and an antiquark. Hence, the total
spin S of the meson can either be S = 0 or S = 1. Let L be the orbital angular
momentum between quarks, the total angular momentum J of the meson is

J = L⊕ S (2.1)

whereas the parity P and the charge conjugation C of a meson consisting of quarks
of the same flavour are defined as

P = (−1)L+1 and C = (−1)J . (2.2)

Hadrons comprising three quarks are called baryons. In contrast to the mesons,
the parity of the baryons is defined as

P = (−1)L (2.3)

due to the convention of the proton parity to be +1.

The orbitally excited mesons being studied in this analysis are mesons consist-
ing of a light and a heavy quark having an angular momentum of L = 1. The
quantum numbers of their excited states can be derived in the limit of quantum
chromodynamics where the mass of the heavy quark is considered being infinite.
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2.2.1 Quantum Chromodynamics

Quantum chromodynamics is the gauge field theory describing the strong interaction
in the standard model of elementary particles. The associated charge of the strong
force is called colour.

The colour charge was introduced in consequence of the observation of the ∆++

baryon, a light quarks baryon having spin J = 3/2. Fermions are subject to the
Pauli exclusion principle claiming that fermions cannot be in the same quantum
state at the same time and position. The ∆++ baryon consists of three u quarks
having the same spin orientation. Since it has no angular momentum and positive
parity its wave function would be totally symmetric. Hence, it violates the Pauli
exclusion principle unless an additional quantum number is attached to the quarks.
This quantum number is the colour charge.

The colour charge takes either the values red, green or blue whereas colour-
anticolour combinations and combinations of all three colours result in a colourless
state. Since only colour singlet states have been observed in nature so far, mesons
are supposed to be linear combinations of colour-anticolour states and baryons are
linear combinations of quarks having all three possible colours.

Quantum chromodynamics was developed in the style of quantum electrodynam-
ics describing the force between colour-charged particles based on the exchange of
massless spin-1 gauge bosons, the gluons. The nine different colour-anticolour com-
binations of the gluons yield a colour octet and a colour singlet. However, since
the colour singlet is totally symmetric it cannot interact with other colour-charged
states. Hence, the colour singlet has no physical meaning and reduces the number
of gluons to eight.

In quantum field theory, the strength of an interaction between particles is gov-
erned by a coupling constant. After careful consideration, it turns out that this
coupling constant depends on the scale being typical for the interaction process, Q2.
In most cases, this is the momentum transfer squared. In quantum chromodynam-
ics, the coupling constant has a strong dependence on Q2 due to the self-carrying of
colour by the gluons. At first order perturbation theory, the Q2 dependence of the
coupling constant αs has the form

αs
(
Q2
)

=
4π(

11− 2
3
nF
)

ln
(
Q2/Λ2

QCD

) (2.4)

where nF is the number of quark flavours to be considered in the interaction process,
that is, quarks having masses smaller than Q. The parameter ΛQCD is the fundamen-
tal parameter of quantum chromodynamics, usually referred to as the asymptotic
scale parameter. It is the only free parameter in quantum chromodynamics and has
to be determined in experiments.
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According to the de Broglie relation between wave length λ and momentum ~p

λ =
h

|~p|
=

h√
Q2

(2.5)

the momentum transfer Q2 dependence can be interpreted in terms of a distance
dependence. Deduced from equation (2.4), the coupling of the strong interaction
vanishes for short distances and high momenta, respectively:

Q2 →∞ ⇒ αs → 0. (2.6)

In this limit, known as the asymptotic freedom, the quarks are quasi-free since they
are bound rather weakly due to the colour-shielding of the gluons.

On the other side, at large distances and lower momenta, the coupling of the
strong force increases dramatically towards infinity:

Q2 → 0 ⇒ αs →∞. (2.7)

In this so-called confinement region, increasing energy is required to separate quarks
out from bound states. If the potential energy exceeds twice a quark mass, the total
energy is minimised by producing a quark-antiquark pair instead. This process is
called fragmentation and explains why no free quarks have been observed.

Symmetries in Quantum Chromodynamics

Perturbative predictions in quantum chromodynamics are only possible for small
coupling constants αs � 1 being true for small distances where Q2 � Λ2

QCD. In the
non-perturbative region there are only a few cases where predictions can be made
mainly on the basis of symmetries arising from quantum chromodynamics [12].

• Isospin symmetry

Historically, isospin symmetry was the first symmetry of QCD discovered. The
isospin is a quantum number describing states composed of u and d quarks
whereas the u and the d quark themselves form an isospin doublet. Accord-
ingly, the proton and the neutron represent an isospin doublet as well. Thereby
they can be interpreted as two different representations of the nucleon.

Isospin symmetry is not an exact symmetry, though. The approximation arises
from the fact that the mass difference (md−mu) between the d and the u quark
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mass is small against ΛQCD. Examples for isospin multiplets are:

(
p
n

)
and

π+

π0

π−

 .

• Chiral symmetry

Chirality is a rather abstract concept of quantum theory. For massless par-
ticles it is identical to the helicity being the projection of the spin onto the
direction of the momentum. Chiral symmetry emerges because the u and d
quark masses are small compared to ΛQCD. Despite the fact that chiral sym-
metry is spontaneously broken, predictions in terms of the chiral perturbative
theory are possible.

• Heavy quark symmetry

If the mass of a quark gets sufficiently large, that is mQ � ΛQCD, the heavy
quark is not affected by the light quarks it is bound to. From this symmetry
an effective theory of quantum chromodynamics can be derived, referred to as
Heavy Quark Effective Theory.

2.3 Excited B Mesons

The Heavy Quark Effective Theory (HQET) is a limit of quantum chromodynamics
based on the heavy quark symmetry. In this limit, predictions of mesons consisting
of pairs of heavy and light quarks Qq̄ are simplified, provided that the heavy quark
mass is large compared to the asymptotic scale parameter: mQ � ΛQCD. In this case,
the momentum exchange among the heavy and light quark is noticeably smaller than
the heavy quark mass. Hence, the recoil is negligible and in the limit of mQ → ∞
the heavy quark can be treated as a static source of an electromagnetic and a colour
field. In this limit, the interactions of the light quark are independent of the heavy
quark. The spectrum of the meson is therefore determined by the excitations of
the light quark only and would be perfectly degenerate for infinitely heavy quark
masses.

In reality the heavy quark mass is finite and the Heavy Quark Effective Theory
provides a formalism for corrections in powers of ΛQCD/mQ. These corrections yield
a spectrum of the meson similar to the spectrum of the hydrogen atom. Indeed, the
heavy-light quark mesons play a similar role in quantum chromodynamics as the
hydrogen atom in quantum electrodynamics. In analogy, the mass splitting of the
excited states is called hyperfine structure. It is proportional to the heavy quark
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chromomagnetic moment µQ:

µQ =
g

2mQ

. (2.8)

The mesons studied in this thesis are the orbitally excited states of the B and
Bs mesons containing a heavy b̄ antiquark and a light d or s quark, respectively.
The charge conjugated mesons B̄ (d̄b) and B̄s (s̄b) are always included within this
analysis unless explicitly stated otherwise. The quantum numbers of the excited
states are now derived with respect to the B and Bs mesons as follows. Thereby,
the nomenclature of B(s) refers to both mesons at the same time.

In the ground state, with orbital angular momentum L = 0, the total angular
momentum jq of the light quark is jq = 1/2. Thus, the total angular momentum of
the meson can either be J = 0 or J = 1. The JP = 0− state is a pseudoscalar meson,
called B(s), and the JP = 1− state is a vector meson, referred to as B∗(s). The decay
of the B∗(s) is purely electromagnetic by photon emission because the marginal mass
difference between the B∗(s) and the B(s) is insufficient to produce even the lightest
hadrons:

B∗(s) → B(s) γ. (2.9)

For the lowest possible orbital angular momentum L = 1, the spin sq of the light
quark couples with the orbital angular momentum:

jq = |L± sq| . (2.10)

Here, jq is the total angular momentum of the light quark taking the values of either
jq = 1/2 or jq = 3/2. Since the mass of the heavy quark is much larger than the light
quark mass the quantum numbers are independent of the heavy quark. Therefore,
jq is a good quantum number and it couples with the spin sQ of the heavy quark to
the total angular momentum

J = |jq ± sQ| (2.11)

forming two isodoublets in terms of jq being altogether four excited states with
J = 0, 1, 1 and J = 2. The states in the first doublet are called B∗(s)0 and B∗(s)1
and the states in the second doublet are called B(s)1 and B∗(s)2. Together, these
four states are collectively referred to as B∗∗(s) mesons and they are summarised in
table 2.3.

Actually, the naming convention in particle physics stated in the “Review of Par-
ticle Physics” [2] does not use a star for J = 1 states. Instead, the convention reads
to write the mass of the state in parentheses to the symbol. Since merely the masses
of the B∗∗(s) states with jq = 3/2 are known the stars will still be used throughout
this thesis to avoid ambiguities among the J = 1 states.

In general, the B∗∗ mesons decay into B or B∗ mesons by emitting a pion. In the
following sections the B and B∗ mesons are referred to as B(∗). However, the decay
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State jq JP Transition Shape Decay mode

B∗0
1
2 0+ S-wave broad Bπ

B∗1
1
2 1+ S-wave broad B∗π

B1
3
2 1+ D-wave narrow B∗π

B∗2
3
2 2+ D-wave narrow Bπ, B∗π

Table 2.3: Summary of the four orbitally excited B∗∗ states and their properties.
The nomenclature of the different states is purely historical and does not follow a
consistent scheme.

B1 → Bπ is forbidden by angular momentum and parity conservation. The same
is true for the corresponding decays of the B∗∗s mesons into B

(∗)
s π due to isospin

conservation. Therefore, the B∗∗s mesons decay into BK. Furthermore, the excited
B∗∗ and B∗∗s states can also decay by emitting two pions. Here, both the decays
B∗∗ → Bππ and B∗∗s → Bsππ are possible.

Figure 2.2 shows the schematic term diagram of the B∗∗ transitions via pion
emission. For mesons of the isodoublets having jq = 3/2 only D-wave transitions
are allowed. Consequently, they are expected to have a very narrow decay width
compared to the typical strong decay width. In contrast, the isodoublets with jq =
1/2 are supposed to have a rather broad decay width of about 100 MeV/c2 [13] due
to the allowed S-wave transition. Therefore, these broads states are very difficult to
distinguish from the combinatorial background in experimental particle detectors.

2.4 Theoretical Predictions and Experimental Results

Predictions concerning the mass and width of the excited B∗∗ and B∗∗s mesons are
possible in terms of the Heavy Quark Effective Theory. Table 2.4 summarises some
mass predictions on the basis of Heavy Quark Effective Theory applying differ-
ent models to describe the motion of the light quark. These models include next
to leading order heavy quark expansions [14], non-relativistic models for the light
quark [15, 16, 17], fully relativistic treatment of the light quark [18, 20], and a vari-
ant of the MIT bag model [19]. In this context, two of the theoretical calculations
of the masses also predict the width of some excited states, as listed in table 2.5.

Very recently, predictions about the decay width of the B∗∗s states in decays of
B∗∗s → Bsππ have been published taking into account the latest results from CDF [1]
and DØ [33]. As seen in table 2.6, partial decay widths in the range of a few keV/c2

are predicted.
In recent years, a lot of effort was put into finding evidence for orbitally excited

states in the D, Ds, B and Bs sector. Concerning excited B mesons, first evidence
has been seen at LEP [22, 23, 24, 28]. However, due to statistical limitation the
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Figure 2.2: Term diagram of the B∗∗ mesons. The diagram for B∗∗s mesons looks in
principle the same except that B∗∗s mesons decay into B mesons by emitting a kaon.
The decays where two pions are emitted are omitted for clarity.

Theory m(B∗0) m(B∗1) m(B1) m(B∗2) Year

Ref. [14] – – 5.780 5.794 1995
Ref. [15, 16] 5.650 5.650 5.759 5.771 1993, 1994

Ref. [17] 5.870 5.875 5.700 5.715 1998
Ref. [18] 5.738 5.757 5.757 5.733 1999
Ref. [19] 5.592 5.671 5.623 5.637 1999
Ref. [20] 5.92 5.649 5.720 5.737 2007

Table 2.4: Mass predictions for the four B∗∗ states with different models used for
describing the motion of the light quark. The values are given in GeV/c2.

Γ(B∗0) Γ(B∗1) Γ(B1) Γ(B∗2)

Ref. [14] – – – 16± 6
Ref. [19] 141 139 20 29

Table 2.5: Predictions of the widths of the B∗∗ states. The values are given
in MeV/c2.
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Decay mode Γπ+π− [keV] Γπ0π0 [keV]

Bs1 → Bsππ 2.5–6.1 1.4–3.4
Bs1 → B∗sππ 0.9–2.2 0.5–1.3
B∗s2 → B∗sππ 18.8–46 10.8–26.6

Table 2.6: Predictions of the partial decay widths of the B∗∗s states [21].

narrow B∗∗ states could not be separated from each other. Afterwards, narrow states
were measured by the DELPHI Collaboration [29, 30, 31] and the DØ experiment [25,
26]. Moreover, CDF also measured this states previously in 374 pb−1 of data [27].

In the Bs sector however, far less observations have been made. Historically, the
OPAL Collaboration [28] has first seen one excited state of the Bs which was later
confirmed by the DELPHI Collaboration [29, 30, 31] and recently also observed by
DØ [32]. By then, merely one single Bs state was observed. But in the meantime,
in 2006, the CDF Collaboration could measure the Bs1 and B∗s2 states separately as
two single peaks in decays of B∗∗s → B+K− [1].





3 Experimental Setup

The Tevatron is a proton antiproton accelerator at the Fermi National Accelerator
Laboratory (Fermilab) located about 70 km west of Chicago in Batavia, Illinois
(USA). It accelerates protons and antiprotons in order to produce collisions at two
interaction points, where the experiments CDF and DØ are located, respectively.
The Tevatron has a radius of 1 km and reaches a center of mass energy of 1.96 TeV
and it is the world’s largest collider currently in operation before it will be superseded
by the Large Hadron Collider at the Cern.

The Tevatron started operation in 1985, but after eleven years of operation the
accelerator and the experiments were upgraded in 1996. During this first period, also
referred to as Run I, data has been taken with a final dataset having an integrated
luminosity of 90 pb−1. A major achievement of Run I was the discovery of the top
quark.

After five years of upgrading the accelerator and the experiments, the Tevatron
restarted operation in 2001 with Run II [35]. Figure 3.1 shows the integrated lumi-
nosity delivered and recorded within this period until 2009.

3.1 Accelerator Complex

Figure 3.2 shows a sketch of the accelerator complex at the Fermilab used for ac-
celerating protons and antiprotons [34]. Beginning from the Cockcroft-Walton ac-
celerator the protons pass a chain of several successive accelerators before they are
injected into the Tevatron, the main accelerator, where they are accelerated together
with the antiprotons to the final energy of 980 GeV before they are collided. The
antiproton production is done at an intermediate step of the proton acceleration.

3.1.1 Proton Source

Negatively charged hydrogen ions are accelerated in the Cockcroft-Walton accel-
erator to 750 keV using high voltage fields. Afterwards they are passed to the
Linac [36, 37], a 150 m long linear accelerator where the ions are accelerated
to 400 MeV by radio frequency resonators. After the Linac the ions enter the
Booster [38], the first synchrotron in the accelerator chain. Upon entrance they pass
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Figure 3.1: The integrated luminosity delivered by the Tevatron (black) and recorded
by the CDF II detector (purple).

Figure 3.2: The accelerator chain at Fermilab.
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through a carbon foil where their electrons are stripped off. The remaining protons
are accelerated further to 8 GeV using radio frequency cavities.

The last preaccelerator the protons pass is the Main Injector [44] having several
operation modes. It can either accelerate the protons to 120 GeV for the antiproton
production, the so-called stacking, or it can accelerate the protons to 150 GeV for
injection into the Tevatron. The 120 GeV protons are also used for fixed target
experiments located at the Fermilab.

3.1.2 Antiproton Source

The antiproton production is the limiting factor for the Tevatron performance since
it takes up to 20 hours to produce one stack of antiprotons. For the antiproton
production the proton beam coming from the Main Injector is guided onto a nickel
target. Striking the target produces all kinds of secondary particles including an-
tiprotons with an efficiency of approximately 20 · 10−6. The antiprotons with the
energy of 8 GeV/c2 which are separated from the other secondary particles by pulsed
magnets and focused by a lithium lens are gathered and sent to the Debuncher.

The Debuncher, which has a mean radius of 90 m, is the first synchrotron within
the antiproton production chain. It rotates and cools the antiproton bunches stochas-
tically before they enter the second synchrotron, the Accumulator having a mean
radius of 75 m. The Accumulator uses stochastic cooling [39, 40] to reduce the wide
spread in kinematic energy. At this stage, the antiprotons are still at an energy of
8 GeV. In the Recycler [43], which is in the same tunnel as the Main Injector, the
antiprotons are cooled further using stochastic and electron cooling [41, 42]. The
Recycler is also the place where the antiprotons are stored.

3.1.3 Tevatron

The Tevatron, a synchrotron with 6 km circumference, represents the last stage in the
accelerator chain. It is the world’s first synchrotron using superconducting magnets
which are essential for beam optics at such high energies. The superconducting
coils are made of a niobium-titanium alloy and they are kept at a temperature of
approximately 4 K. The Tevatron accelerates the protons and antiprotons up from
150 GeV to 980 GeV in a few seconds corresponding to a final center of mass energy
of 1.96 TeV when the particles collide.

The beam is split into three trains of twelve bunches with a bunch revolution time
of 21 µs. The empty space between trains, the abort gap, corresponds to a time of
2.6 µs. This time is used for ramping up the kicker magnets to dump the beam safely
into graphite blocks. Since the particles diffuse out of the bunches it is important to
keep the abort gap clean. Therefore a low energetic electron beam is directed into
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the gap which excites the particles between the bunches to high amplitudes until
they get lost and thus keeping the gaps clean.

The period between beam initialisation and beam abort is called store. When a
new store starts, the preaccelerated protons and antiprotons are injected during a
period, called shot setup, into the Tevatron. The store duration averages several
hours. For the proton injection seven bunches of protons from the Booster are
transfered to the Main Injector and accelerated to 150 GeV before they are merged
to two bunches and shot into the Tevatron. This procedure is repeated 36 times
to have 36 proton bunches in the Tevatron. Thereafter four bunches of antiprotons
are transferred from the Recycler to the Main Injector where they are accelerated
to 150 GeV before they are shot into the Tevatron. This procedure is repeated
nine times. The bunches collide at two intersection points where the CDF and DØ
experiments are located, respectively.

To prevent the detectors from being damaged, stable beam conditions are required.
Thus, the beam has to be fine tuned before data can be taken implying focusing
the beam to a smaller transverse size (low beta squeeze) for gaining luminosity and
removing the beam halo by ramping stainless steel collimators close to the beam
(scraping).

3.1.4 Luminosity

The instantaneous luminosity L is a measure for the performance of an accelerator.
It can be written as

L = n · f · NpNp̄

4π σx σy
(3.1)

where n is the number of bunches, f is the revolution frequency, Np(p̄) is the number
of protons (antiprotons) per bunch and σx,y is the average transverse width of the
bunches. The luminosity is measured in units of cm−2s−1. Since particles get lost
due to collisions, the luminosity decreases over the time and has its maximum at the
beginning of a store. The integrated luminosity over time yields an estimate of the
amount of collected data. For a given cross section the number of produced events
N can be calculated using

N = σ

∫
L dt. (3.2)

The CDF experiment, described in section 3.2, determines the instantaneous lu-
minosity with the aid of Cherenkov luminosity counters (CLC) [45] located around
the beam pipe in the forward and backward region. They cover a a polar angle
range from 2.8◦ to 1.0◦. The counters measure the number of inelastic pp̄ collisions
per bunch crossing by the amount of detected Cherenkov light caused by primary
particles in the gas-filled Cherenkov detectors.
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Figure 3.3: The CDF II detector.

3.2 Collider Detector at Fermilab

The CDF II detector [46] is a multipurpose collider detector with cylindrical and
forward-backward symmetry as seen in figure 3.3. It consists of a tracking system, a
time-of-flight subdetector, calorimeters and muon chambers. The tracking system is
located in a superconducting solenoid generating a magnetic field of 1.4 T, oriented
parallel to the beam pipe. Figure 3.4 shows an elevation view of the detector.

The origin of the coordinate system of the detector is the nominal particle inter-
action point. The positive direction of the z axis is defined by the direction of the
proton beam pointing from the west to the east. In the Cartesian representation
of the coordinates the x axis is in the horizontal plane pointing outwards from the
center of the collider and the y axis is perpendicular to the horizontal plane pointing
upwards. Most often coordinates are used which are defined in the following way:

• r coordinate
Distance to the center of the beam pipe.

• φ coordinate
The azimuthal angle is measured perpendicular to the horizontal plane.

• θ coordinate
The polar angle is measured from the positive z direction.
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Figure 3.4: Elevation view of the CDF II detector.

Within this context the pseudorapidity η is often mentioned being derived from
the polar angle θ as

η = − ln

(
tan

θ

2

)
. (3.3)

The pseudorapidity is very handy since the difference in η of two particles having
negligible masses is independent from any Lorentz boosts along the beam pipe.

3.2.1 Tracking System

The tracking system consists of two subdetectors for detecting charged particles and
measuring their momenta and displacements with respect to the primary vertex.
The innermost part of the tracking system is the silicon detector with its subsys-
tems Silicon Vertex Detector (SVXII), Intermediate Silicon Layer (ISL) and Layer00
(L00). The outer part is the Central Outer Tracker (COT) surrounded by a super-
conducting solenoid. Figure 3.5(a) shows a sketch of the tracking system.

Figure 3.5(b) shows an endview of the silicon detector which covers a radial range
from 1.6 cm to 28 cm with an acceptance of |η| < 2. The subcomponents are:

• Layer00 (L00)
Layer00 [47] was added during the upgrade for Run II. It is made of radiation
hard silicon microstrips mounted directly onto the beam pipe consisting of two
overlapping layers at a radial position of 1.35 cm and 1.62 cm, respectively.
The microstrips deliver information about track hits in the r-φ plane.
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Figure 3.5: CDF II tracking system.

• Silicon Vertex Detector (SVXII)
The SVXII [48] comprises five layers of double-sided microstrips at a radial
range from 2.1 cm up to 17.3 cm. The microstrips on one side are in z direction
whereas the microstrips of the other side are either perpendicular for layer 0, 1
and 3 or with a small stereo angle of 1.28◦ for layer 2 and 4 in order to provide
a measurement of the z coordinate.

• Intermediate Silicon Layer (ISL)
The ISL [49] consists of three layers. The central layer is at the radial po-
sition of 22 cm with an acceptance of |η| < 1 and the two layers in the for-
ward/backward region of the detector are at a radial position of 20 cm and
28 cm, respectively, with an acceptance of 1 < |η| < 2. The ISL is made of
double-sided microstrips, which are parallel to the z axis on one side and with
a small stereo angle on the other side. The ISL is designed for linking tracks
from the silicon detector with a good spatial resolution to track hits found in
the COT having a worse spatial resolution.

The silicon detector provides a very precise measurement of the track’s impact
parameter and the φ coordinate yielding an accurate 3-dimensional track recon-
struction with a high spatial resolution.

The Central Outer Tracker (COT) [50] is a cylindrical open-cell drift chamber
outside the silicon detector covering a radial range from 33 cm to 143 cm. It is
filled with an Argon-Ethane-CF4 gas mixture and it has 96 wire layers grouped into
eight superlayers. Four superlayers, the axial superlayers, have wires in z direction
whereas the other four superlayers, the stereo superlayers, have wires tilted by two
degrees with respect to the z direction. The outermost superlayer has an acceptance
of |η| < 1. Particles going through the drift chamber ionise the gas mixture and the
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voltage bias applied to the wires causes the electrons to drift to the sense wires where
they induce an electric signal. For geometrical reasons the track density in the COT
is smaller than in the silicon detector. Since the COT can have a maximum of 96
hits per track it yields a high precision measurement of the transverse momentum
in the r-φ plane.

3.2.2 Time of Flight Detector

The time of flight detector [51] is cylindrical around the COT but still within the
superconducting solenoid. It comprises 216 scintillators and photomultipliers for
measuring the particle’s time of flight between the interaction point and the time
of flight detector. In conjunction with the momentum measurement from the COT
the particle mass can be determined by

m =
p

c

√
(ct)2

L2
− 1 (3.4)

where L is the path length and t is the time difference between the production time
and the arrival time at the detector. Since the resolution of the time of flight detector
is in the order of magnitude of picoseconds the separation power between pions and
kaons based on their masses is about two standard deviations for momenta below
1.6 GeV/c.

3.2.3 Particle Identification

In order to obtain a clean signal sample, it is conducive being able to separate the
long-lived particles, namely protons, kaons, pions, muons, electrons which are long-
lived enough to pass through the whole detector. The time of flight measurement
provides already a good particle identification but only for low momenta. Thus,
the particle identification is improved by taking into account the particle’s specific
energy loss in the COT.

Charged particles passing the COT ionise the gas mixture in the drift chamber.
The pulse width ∆t on the readout chips is logarithmically proportional to the charge
deposit Q and therefore proportional to the energy loss dE/dx:

∆t ∼ logQ ∼ dE

dx
. (3.5)

Figure 3.6 shows the separation power for different particle combinations using the
time of flight measurement for kaon/pion, proton/kaon and proton/pion separation
and the separation power of the COT dE/dx measurement.



3.2. Collider Detector at Fermilab 47

0

100

200

300

400

500

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Momentum (GeV/c)

T
im

e
 D

if
fe

re
n

c
e

 (
p

s
)

K/π
p/πp/K

K/π dE/dx
separation

0

1

2

3

4

5
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 S

e
p

a
ra

tio
n

 p
o

w
e

r (
σ

)

Figure 3.6: Time of flight difference between different particle species (solid line)
and the separation power for K/π using COT dE/dx (dashed line) [53].
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3.2.4 Calorimeters

The five calorimeters [52] of the CDF II detector are outside the superconduct-
ing solenoid. The central and end-plug calorimeters are electromagnetic [54] and
hadronic calorimeters, whereas the end-wall calorimeter is a hadronic calorimeter
only [55]. Altogether they have an acceptance of |η| < 3.6 and measure the energy
of high energetic electrons, photons and hadronic jets. Since they are optimised
especially for high energy physics the calorimeters are not important in context of
this analysis. A detailed description is given in the references.

3.2.5 Muon System

The outmost part of the CDF II detector is the muon system [56, 57]. Since elec-
trons, photons and hadrons are usually absorbed in the calorimeters the muon sys-
tem provides a very good muon identification. The muon system consists of four
subdetectors including drift chambers, scintillators and steel absorber. The Central
Muon Detector (CMU) covers the central part having a range of |η| < 0.6. The
Central Muon Upgrade (CMP) has the same coverage as the CMU for the purpose
of reducing the misidentification rate of muons in the CMU. The Central Muon Ex-
tension (CMX) enlarges the coverage of the muon system to |η| < 1.0. The different
parts of the Intermediate Muon System (IMU) which are mounted on both ends of
the CDF II detector extends once more the muon coverage to |η| < 1.5.

3.2.6 Trigger System

The Tevatron runs with a collision rate of 2.5 MHz. That is, every 0.4 µs data of
approximately 250 kB accumulates yielding a total data rate of 625 GB/s assuming
an interaction at every collision. It is neither efficient nor possible to store such an
amount of data considering that most of the collected events are background events
anyway. Hence, the CDF II detector has a sophisticated trigger system to make a
decision almost in real time whether an event is worth to be recorded or can be left
out [58].

The trigger system comprises a three level system making successive decisions
and thereby reducing the data rate from 2.5 MHz to about 100 Hz. Accepted events
are finally stored on tape and ready to be prepared by the various reconstruction
algorithms for the different analyses. In order to be fast enough reducing the data
rate down to 50 kHz and 300 Hz, respectively, the Level 1 trigger is entirely hardware
implemented and Level 2 [59] is a hardware-software implementation. In contrast,
Level 3 trigger is a pure software implementation running on a Linux PC farm.
Figure 3.7 shows a sketch of the data flow in the CDF II trigger system.
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Level 1 trigger (L1)

Data in the detector is digitised and read out after every bunch crossing. While the
Level 1 trigger decision takes place the data is stored in the L1 pipelines for further
read out and use for Level 2 trigger. The Level 1 trigger is a synchronous trigger
meaning its decisions are in time with the bunch crossing rate. For this analysis the
trigger decision is mainly based on the eXtremely Fast Tracker (XFT) [60] recon-
structing the transverse momentum pt and the azimuthal angle φ of tracks in the
COT. In addition, Level 1 uses also information from the muon chambers and the
calorimeter towers to find muons, electrons and photons.

Level 2 trigger (L2)

If an event is accepted by the Level 1 trigger, it is passed to Level 2 where it is
again evaluated by taking into account more information about the event provided
by different detector components. Since a Level 2 decision takes slightly more time,
Level 2 works asynchronously and its buffer can therefore hold up to four events.
The Level 2 trigger divides into a two stage pipeline, where the first stage consists of
dedicated hardware and the second stage comprises programmable processors. The
core functionality for B-physics of L2 comes from the connection with the Silicon
Vertex Tracker (SVT) [61]. The SVT searches for coincidences between tracks from
the XFT and hits in the silicon vertex detector by comparing data using a set
of precalculated patterns. Linking information from different detector components
together improves the spatial resolution and thereby the precision of L2. If an event
is accepted, it is passed on to Level 3.

Level 3 trigger (L3)

In order to confirm the L1 and L2 decision, Level 3 trigger runs similar algorithms as
in the offline reconstruction but with different parameters. Thus, it has an improved
resolution of the transverse momentum pt, the impact parameter d0 and other track
parameters compared to L1 and L2. If an event is finally accepted by Level 3, it is
stored on disks as an intermediate step before it is written to tape ready for the full
offline reconstruction.

Two Track Trigger

The data of all decay channels investigated in this analysis having no J/ψ as an
intermediate state was collected by the Two Track Trigger which is based on the L1
and L2 track processors with a requirement for a minimal transverse momentum pt.
The requirements are:
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• Level 1
At least two XFT oppositely charged tracks having a transverse momentum of
pt > 2 GeV/c each and the angle between the two tracks has to be ∆φ(1,2) <
135◦.

• Level 2
At least two SVT tracks matching the XFT tracks (χ2

SV T < 25) having pt >
2 GeV/c each with the impact parameter 120 µm < |d0| < 1 mm and the
decay length Lxy > 200 µm.

• Level 3
The SVT tracks have to match COT tracks, and cuts on 2◦ < ∆φ(1,2) < 90◦,
80 µm < |d0| < 1 mm and Lxy > 200 µm are applied.

Besides these requirements additional trigger subpaths ask for further criteria:

• L2 B LOWPT
At least two SVT tracks having p

(1)
t + p

(2)
t > 4.0 GeV/c.

• L2 B CHARM
At least two oppositely charged SVT tracks having p

(1)
t + p

(2)
t > 5.5 GeV/c.

• L2 B HIGHPT
At least two oppositely charged SVT tracks having p

(1)
t + p

(2)
t > 6.5 GeV/c.

Di-Muon Trigger

The data of the decay B+ → J/ψK+ used in this analysis is collected with the
di-muon trigger. As the name already indicates the di-muon trigger looks for pairs
of muons coming from a J/ψ. At Level 1 the trigger asks for tracks in the XFT
having a transverse momentum and a φ coordinate which match hits in the muon
system. For Level 2 energy clusters in the calorimeters above a certain threshold
are required. Finally, at Level 3, the mass of the J/ψ candidates has to be nearby
the world average value.





4 Statistical Methods

4.1 Parameter Estimation

Taking data in high energy physics is comparable of measuring repeatedly the out-
come of an experiment. Ideally measurements are repeatable but in nature repeated
measurements do not yield exactly the same values. Depending on the measurement
this can be understood as a result of thermal fluctuations, quantum effects and the
finite resolution of the experiment, respectively, inducing a randomly distributed
difference between the measured values and the truth.

Hence, the necessity is obvious of having an appropriate method for determining
parameters and their uncertainties in the context of a given hypothesis. The different
methods of parameter estimation are characterised by a set of criteria [62]. In the

following ~̂a is the set of estimated parameters and ~a0 refers the truth. The criteria
are:

• Consistency
In the limit of infinite statistics ~̂a converges to the truth: limn→∞ ~̂a = ~a0.

• No bias
The expectation value of ~̂a is the truth: E[~̂a] = ~a0.

• Efficiency
The variance of ~̂a is as small as possible.

• Robustness
The method is robust against defective data or insufficient hypotheses.

A well-established method for estimating parameters is the maximum likelihood
method [62, 2]. Since it is widely used in this analysis for determining parameters,
it will be described in the next sections.

4.1.1 The Maximum Likelihood Method

Let ~x1, ~x2, . . ., ~xn be a set of n independent measurements of the variable ~x whose
multi-dimensional probability density function f(~x|~a) is known except for the param-
eters ~a. Assuming the measurements being statistically independent the likelihood
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function L can be written as:

L(~a) = f(~x1|~a) · f(~x2|~a) · . . . · f(~xn|~a) =
n∏
i=1

f(~xi|~a). (4.1)

The likelihood function is a joint probability density function for the data but not a
probability density function for the parameters. It can be interpreted as a probability
to get the measured data for a given set of parameters. Hence, the best estimators
~̂a for the parameters ~a are those maximising the likelihood function. During the
maximising procedure it is required that the likelihood function is normalised for
any parameters ~a at any iteration step to find the maximum:∫

f(~x|~a) d~x = 1 for all ~a. (4.2)

To avoid numerical instabilities and since most of the statistic packages are opti-
mised for minimising, the negative logarithm of the likelihood function is commonly
used, known as the negative log likelihood L:

L(~a) = − lnL(~a) = −
n∑
i=1

ln f(~xi|~a). (4.3)

In general, the maximum likelihood method is consistent. In the limit of infinite
statistics it is also unbiased and efficient. Drawbacks are the high computing power
consumption and the assumed knowledge of the probability density function

In the asymptotic limit n→∞ the likelihood approaches Gaussian and the nega-
tive log likelihood function approaches parabolic shape. It can be expanded around
its minimum ~̂a where the first derivation vanishes (∂L

∂~a
= 0):

L(~a) = L(~̂a) +
1

2

∑
i,j

∂2L
∂ai ∂aj

(ai − âi)(aj − âj) + . . . (4.4)

= L(~̂a) +
1

2

∑
i,j

Gij(ai − âi)(aj − âj) + . . . (4.5)

where ~a = (a1, a2, . . .) and G is the inverse of the covariance matrix V−1 being
identical to the Hessian matrix H in the asymptotic case. In the non-asymptotic
case the Hessian matrix H is a good approximation for V−1.

Having only one parameter a the expanded likelihood function has the form

L(a) = L(â) +
1

2

∂2L
∂a2

(a− â)2 + . . . (4.6)
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and hence

L(a) ∼= const · exp

(
−1

2

∂2L
∂a2

(a− â)2

)
= const · exp

(
−(a− â)2

2σ

)
(4.7)

yielding in comparison with the Gaussian distribution for the asymptotic limit

σ(â) =

(
∂2L
∂a2

∣∣∣∣
â

)− 1
2

. (4.8)

Due to the parabolic shape of the log likelihood function its second derivation is
constant and the value of L around the minimum at a = â± r · σ is

L(â± r · σ) = L(â) +
1

2
r2 (4.9)

where r is the number of standard deviations. Equation (4.9) can be used to calculate
the standard deviation of â which is simply the position where L is 1

2
above the

minimum. This is also true if the negative log likelihood function is not of parabolic
shape and the errors are asymmetric thereby. For probability density functions with
more than one parameter the standard deviation and the possibly asymmetric errors
are defined in a similar way

Lmin(âi + σR) = L(~̂a) +
1

2
, (4.10)

Lmin(âi − σL) = L(~̂a) +
1

2
(4.11)

where Lmin(ai) is the minimum of L for all other parameters aj except for i = j.

4.1.2 The Maximum Likelihood Method for Binned Data

Mostly, measured data is represented in a histogram especially when the number of
measurements n is large. The x axis of the histogram is divided into N bins con-
taining nj events in bin j. The number of bin entries follows a Poisson distribution
with the expectation value µj

P (nj|µj) =
µ
nj
j e
−µj

nj!
(4.12)
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where the expectation value µj can be obtained by multiplying the integrated prob-
ability density function in every bin with the number n of events in the sample

µj(a) = n

∫
j

f(x|a) dx ≈ n · f(xc|a) ·∆x (4.13)

where xc is the x value of the bin mean and ∆x is the bin width. Hence, the negative
log likelihood functions reads

L(a) = −
J∑
j=1

ln

(
µ
nj
j e
−µj

nj!

)
= −

J∑
j=1

lnnjµj +
J∑
j=1

µj +
J∑
j=1

ln(nj!). (4.14)

Since the last term of the negative log likelihood function is constant and therefore
does not affect the minimisation, it can be omitted.

For a large number of expected events µ is much larger than 1 and the Poisson
distribution can be approximated by Gaussian distribution with variance σ2

j = µj

P (nj|µ) =
1√

2πσj
e
−

(nj−µj)
2

2σ2
j (4.15)

yielding a negative log likelihood function of

L(a) = −
J∑
j=1

ln

(
1√

2πσj
e
−

(nj−µj)
2

2σ2
j

)
=

1

2

J∑
j=1

(nj − µj)2

µj
+ const. (4.16)

On the basis of a Gaussian distribution 2L(a) follows a χ2 distribution with k
degrees of freedom determined by the number of bins N and the number of free
parameters Na in the likelihood function: k = N − Na. The ratio χ2/k is a figure
of merit for the fit performance and should be approximately 1 if the probability
density function f(x|a) describes the data well.

4.1.3 The Extended Maximum Likelihood Method

The use of the maximum likelihood method is the determination of parameters based
on a normalised probability density function. But sometimes the average number
of events is also a parameter which is to be determined. Instead of the normalised
probability density function f(x|~a) a different function g(x|~a) = N · f(x|~a) is used
whose integral is equal to the number of events∫

g(x|~a) dx = N. (4.17)
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The extended negative log likelihood function is now defined as

L(~a) = −
n∑
i=1

ln (g(xi|~a)) +

∫
g(x|~a) dx (4.18)

which can be deduced by multiplying the likelihood function L(~a) with the Poisson

probability P = Nn·e−N
n!

yielding the negative log likelihood function

L(~a) = −
n∑
i=1

ln (f(xi|~a))− n lnN +N + lnn!. (4.19)

Evidently, this formula is the same as equation (4.18) except for the last term
which is constant and can therefore be left out since it does not affect the minimi-
sation procedure.

4.2 Artificial Neural Networks

Classifying data into signal and background samples plays a decisive role in high
energy physics. The classification is commonly done by applying cuts on different
discriminating variables. However, cutting on a set of variables does not take into
account any correlations among those variables and the result is optimal for well-
separable problems only. In contrast, mapping the set of discriminating variables
to one single variable is a far more efficient approach. The classification is thereby
done by cutting on this single variable only. Artificial neural networks fulfill the
requirements for such a map function

f : Rn neural network−−−−−−−−→ R. (4.20)

Neural networks are the basis for the selection algorithms used for classifying into
signal and background in this analysis.

4.2.1 NeuroBayes

All neural networks used in the analysis are based on the NeuroBayes package [63]
originally developed by Michael Feindt at the University of Karlsruhe and now main-
tained by Phi-T Physics Information Technologies GmbH [64]. NeuroBayes com-
prises a three layer feed forward neural network with a sophisticated preprocessing
performed before the data is put into the network.



58 Chapter 4. Statistical Methods

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

input layer hidden layer

1

output layer

Figure 4.1: Example of the topology of a three layer feed forward neural network.
The intensity of the connecting lines between nodes reflects their importance for the
neural network.

4.2.2 Topology

An artificial neural network consists of nodes grouped in multiple layers. Each node
has several inputs and exactly one output. The nodes are linked together among
each other following a certain pattern depending on the network topology. A three
layer feed forward network is one possible network topology and forms the basis for
the neural networks used in this analysis. It comprises three layers of nodes: the
input layer, the intermediate layer and the output layer. The information flow of
a feed forward network strictly goes from the inputs to the output. That is, the
outputs of the nodes in one layer are exclusively connected to the inputs of the
nodes in the subsequent layer. Nodes in a layer are neither connected among each
other nor are their outputs connected to nodes in the preceding layers. Figure 4.1
shows an example of the topology of a three layer feed forward neural network.

Each input variable of the neural network corresponds to one node in the input
layer. The number of nodes in the intermediate layer is arbitrary to some extent,
but too many nodes favour the neural network to memorise and too few nodes
do not provide enough degrees of freedom being sufficient for the neural network to
learn enough. For binary decisions like separating events into signal and background
samples the output layer requires only one node.
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Figure 4.2: The sigmoid function, described by equation (4.22), plotted for different
parameters c.

The underlying idea is the same for all nodes. The information xi given on the n
inputs of a node are weighted by the weight wi, added up, and the sum is put into
an activation function S which fires the node output y

y = S

(
n∑
i

(wi xi − µ)

)
(4.21)

where µ is a bias threshold of the node which shifts the weighted sum to the most
sensitive part of the activation function.

The activation function can be interpreted as a threshold for the node’s input. A
commonly used activation function is the sigmoid function

S(t) =
2

1 + e−c·t
− 1 (4.22)

which is plotted in figure 4.2. It maps the interval (−∞,+∞) to (−1,+1). The
sigmoid function is very sensitive for small values around zero but goes rather quick
to saturation for large absolute values.

4.2.3 Training

A neural network needs to be trained before it can be applied to real data samples.
For the training two classes of event samples are required from which the neural
network can learn. One sample comprises pure signal events whereas the other
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sample comprises background events. During the training the weights of the nodes
are adjusted iteratively until the neural network output matches the classification
of the training samples. At the beginning of the training the weights of the neural
network are randomly Gaussian distributed around zero with width one.

The training progress is evaluated by a cost function measuring the discrepancy
between the neural network output and the target, that is, the classification of the
training samples. NeuroBayes uses usually the entropy as the cost function

E(~w) =
N∑
j

ln

(
1

2
(1 + Aj(~w) sj + ε)

)
(4.23)

where N is the number of events in the training sample, Aj the output of node
j depending on the weights ~w, sj indicates whether the event is signal (sj = 1) or
background (sj = −1) and ε is a regularisation constant. Although the regularisation
constant vanishes after a few training iterations it is implemented to avoid numerical
problems at the beginning of the training.

The cost function is a multi dimensional function in the parameter space of the
weights. During the training the cost function in NeuroBayes is minimised with
the aid of gradient descent where the change of the weights ∆wj is proportional to
the gradient of the cost function and the step width ηj:

∆wj = −ηj
∂E(~w)

∂wj
(4.24)

where the step width is adjusted by estimating the diagonal elements of the Hessian
matrix of the cost function.

If the entropy is used as cost function and the neural network is well trained, the
neural network output can be directly interpreted as signal probability [63].

4.2.4 Preprocessing and Pruning

To simplify the search for a minimum during the training, NeuroBayes preprocesses
the input data before it is fed into the neural network, referred to as the global
preprocessing. The input distributions are flattened, scaled down to the interval
[−1,+1], and transformed to a Gaussian distribution with mean zero and width
one to be out of saturation of the sigmoid function. Furthermore, the variables are
decorrelated by transforming the covariance matrix to unit matrix so that the input
variables are independent in first order. The transformation of the covariance matrix
is performed by the Jacobi method [62].

Besides the global preprocessing the input variables can also be preprocessed in-
dividually. In doing so the distributions of the input variables are often replaced by
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spline fits suppressing statistical fluctuations. Sometimes it is also helpful to split
discrete distributions into classes or to apply a delta function to variables which are
not filled for all events.

The preprocessing algorithms of NeuroBayes also calculate the significance of
each input variable. The calculation is performed iteratively by removing one vari-
able at a time from the set of n input variables and calculating the loss of total
correlation to the target. Finally, the variable with the smallest loss is taken out
and the procedure is repeated for the new set of (n − 1) input variables. Thus,
after n iterations the significances of all input variables are determined and it is now
possible to remove insignificant inputs in order to only keep the most significant
variables in the neural network.

4.2.5 Regularisation

Regularisation of the neural network is done in favour of optimising the neural
network training and avoiding overtraining. It reduces the number of free parameters
by removing insignificant connections among the nodes bringing an improved signal
to noise ratio in the data sample after the classification.

Another way of enhancing the training is to add an additional term to the cost
function E, known as weight decay

E → Ẽ = E +
τ

2

∑
i

w2
i . (4.25)

The new cost function Ẽ yields a neural network with smaller weights since the
weights would decay exponentially in a training without any input data. The weight
decay method suppresses oscillations around minima and reduces dependencies on
random fluctuations. Consequently, the neural network is more robust.

4.2.6 Bayes Theorem

NeuroBayes interprets the network output by the Bayes theorem considering con-
ditional probabilities

P (H |D ) =
P (D |H ) · P (H)

P (D)
(4.26)

where D refers to data described by a hypothesis H. The Bayes theorem yields the
a posteriori probability P (H |D ) for the hypothesis modelling the data correctly.
P (H) is the data independent a priori probability of the hypothesis H and P (D) is
the probability to measure the data D. P (D |H ) is the likelihood to measure the
data D assuming the theory H.
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The output of NeuroBayes can be directly interpreted as a posteriori probability
provided that the signal to background ratio is the same in the training sample and
in the classification sample. However, if the ratio is different the neural network
output can be transformed into the signal probability assuming that the ratio in the
classification sample is known.

4.2.7 Training Result

The separation power of a neural network can be measured by two quantities, the
purity and the efficiency.

• Purity P

P =
NS (nout > ncut)

NS (nout > ncut) +NB (nout > ncut)
(4.27)

• Efficiency ε

ε =
NS (nout > ncut)

NS

(4.28)

Here, ncut is an selected cut on the network output nout and NS is the total number
of signal events. NS (nout > ncut) are the remaining signal events after the cut on the
network output is applied. The nomenclature for the background events NB is
analogous.

The purity states the signal to noise ratio of the selected events considered being
signal events and the efficiency is the ratio of selected signal events to the total
number of signal events. The aim is therefore to increase both purity and efficiency.



5 Candidate Selection

5.1 Candidate Reconstruction

In this thesis, a search is performed for B∗∗ and B∗∗s mesons in decays of B∗∗ →
B(∗)+π− and B∗∗s → B

(∗)
s π+π−, respectively. The charge conjugated decays are

implicitly included. To reconstruct the B∗∗ candidates, three independent decay
channels of the B+ meson are used:

B∗∗ → B(∗)+π− B+ → J/ψK+ J/ψ → µ+µ−

B+ → D̄0π+ D̄0 → K+π−

B+ → D̄0 3π± D̄0 → K+π−

The B∗∗s candidates are reconstructed using six different decay channels of the Bs

meson. These decay modes are:

B∗∗s → B
(∗)
s π+π− Bs → D−s π

+ D−s → K̄∗K−

D−s → φπ−

D−s → 3π±

Bs → D−s 3π± D−s → K̄∗K−

D−s → φπ−

D−s → 3π±

The B∗ and B∗s mesons decay into Bγ and Bsγ, respectively. Since the photon
cannot be detected by the CDF II detector the reconstructed masses of the B∗ and
B∗s mesons are shifted downwards by the photon energy.

The candidate selection is based on a chain of neural networks. The first neural
network in this chain selects either the B+ or Bs candidate, respectively. The second
neural network selects subsequently the B∗∗ or B∗∗s candidate. Before the neural
networks can be applied, they have to be trained on a training sample containing
signal and background. Here, Monte Carlo samples are used as signal pattern and
data events are taken as background pattern.

Regarding the reconstruction and selection of the B+ and Bs mesons, code from
previous analyses being conceptually the same is reused here. This applies to the
selection code for the B+ meson in decays of B+ → J/ψK+ and B+ → D̄0π+ which
was developed in the analysis of B∗∗s mesons in decays of B∗∗s → B+K− [1]. It
also applies to the selection code for the six Bs decays modes being implemented
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Dataset Trigger Integrated luminosity [fb−1]

Di-muon Two track Per dataset Sum

0d xpmmgd h77jf0 0.6 0.6
0h xpmmgh h77jg0 0.5 1.0
0i (until Feb. 2006) xpmmhi h77jm0
0i (after Feb. 2006) xpmmhi xbhdii 0.7 1.7

Table 5.1: Summary of the BStntuples datasets used for the B∗∗ data samples.

in context of the Bs mixing analysis [65, 66, 67]. However, the development of the
code for reconstructing and selecting the B∗∗ and B∗∗s candidates is part of this
thesis as well as the reconstruction and selection code on the B+ meson level for
B+ → D̄0 3π± with D̄0 → K+π−. The reconstruction code used in this thesis is
based on the official CDF software version 6.1.4.

5.1.1 B∗∗ Data Samples

The data samples for the B∗∗ analysis are collected by the di-muon trigger and the
two track trigger. To have small and handy data files for the analysis, flat ntuples
are skimmed from the officially provided BStntuples. These BStntuples are centrally
produced and are suited for many different analyses. Thus, they contain much more
information than needed here yielding a nonpractically large file size.

The analysis uses data being collected between February 2002 and November 2006
corresponding to an integrated luminosity of 1.7 fb−1. The data samples contain only
runs selected by the good run list for B-physics. The good run list is provided by
the DQM group [68] and comprises the run numbers of approved runs. Table 5.1
summarises the used dataset for the B∗∗ data samples.

5.1.2 B∗∗ Monte Carlo Samples

There are two sets of Monte Carlo samples used in the B∗∗ analysis. The first one
models decays of B+ → D̄0 3π± with D̄0 → K+π− and the second set comprises
decays of B∗∗ → B(∗)+π− with B+ → J/ψK+, B+ → D̄0π+ and B+ → D̄0 3π±.
The samples are signal-only Monte Carlo samples, that is they only model signal
events without underlaying events and do not contain background events.

The Monte Carlo sample for the decay B+ → D̄0 3π± was generated with the
BGenerator event generator [70]. It was produced by the Bs mixing group in
context of the Bs oscillation analysis. The sample is available in form of BStntuples
from which flat ntuples were skimmed for this analysis using the same skimming
code as for the data samples.
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The B∗∗ Monte Carlo samples were exclusively generated for this analysis on the
basis of the BGenerator event generator. A custom module was attached to the
generator in order to have the B∗∗ mass flatly distributed over the mass range being
searched by this analysis. The decays of the generated particles were calculated
using the EvtGen [71] package followed by a full detector and trigger simulation.
Afterwards, the events were reconstructed by applying the standard reconstruction
software including the BottomMods [69] package with the same settings as used
for data reconstruction. The B∗∗ Monte Carlo samples contain decays into B+π−

as well as into B∗+π−. The complete decay tables of the samples are given in the
appendix C.

Monte Carlo Event Reweighting

The Monte Carlo samples for the different decay modes of the B∗∗ mesons are
generated having a flat mass distribution. To avoid biasing the neural network during
training the Monte Carlo events are reweighted to the same Q value distribution as
in data. A distinct weight wi is applied to each Monte Carlo event i having the
Q value Qi. The weights are calculated as

wi(Qi) =
fdata(Qi)

fMC(Qi)
(5.1)

where fdata(Q) and fMC(Q) are fourth order polynomial functions describing the
Q value distribution in data and in the Monte Carlo sample, respectively.

For the Monte Carlo sample an additional fourth order polynomial function is
added below 45 MeV/c2 to describe the bump in the Q value distribution. This
bump arises from the fact that above 45 MeV/c2 half of the events decay into B∗+π−

which are shifted by m(B∗)−m(B) = 45 MeV/c2 due to the unreconstructed photon
from the decay B∗ → Bγ. Below 45 MeV/c2 all events decay into B+π− and stay
around the generated mass.

The function parameters for fdata and fMC are determined by fits to the correspond-
ing Q value distributions shown in figures 5.1 and 5.2. For each decay channel, a dif-
ferent set of parameters is obtained and used to calculate the weights for the events.
Figure 5.3 displays the distribution of the weights for the decay B∗∗ → B(∗)+π− with
B+ → J/ψK+. The weights for the other decays B+ → D̄0π+ and B+ → D̄0 3π±

look very similar.

5.1.3 B∗∗s Data Samples

The data samples used in the B∗∗s analysis are collected by the two track trigger.
From the two track trigger data, custom made BStntuples were created applying a
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Figure 5.1: Fit to the Q value of the B∗∗ → B(∗)+π− Monte Carlo sample with
B+ → J/ψK+ after having applied the preselection.
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Figure 5.3: Distribution of the Monte Carlo weights for the B∗∗ → B(∗)+π− sample
with B+ → J/ψK+.

full vertex fit to the Bsππ combinations. The BStntuples were skimmed afterwards
to obtain small and handy flat ntuples for the analysis. The data samples use as
much data as available at the time they were created, that is the amount of data
collected between February 2002 and February 2008. Only runs selected by the good
run list for B-physics are put into the samples. Table 5.2 gives an overview of the
used datasets corresponding to a total integrated luminosity of 2.8 fb−1.

Dataset Integrated luminosity [fb−1]

Per dataset Sum

0d 0.3 0.3
0h 0.4 0.7
0i 0.6 1.3
0j 1.0 2.3
0k 0.5 2.8

Table 5.2: Summary of the datasets used for the B∗∗s data samples. The integrated
luminosity takes into account the good run list for B-physics.
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5.1.4 B∗∗s Monte Carlo Samples

The B∗∗s Monte Carlo samples are generated exclusively for this analysis on the basis
of the BGenerator event generator. The simulation was done in a similar way
as for the B∗∗ Monte Carlo samples. That is, a custom module was attached to
the generator in order to have the B∗∗s mass distributed flatly. The decays of the
generated particles were computed using the EvtGen package followed by a full
detector and trigger simulation. Afterwards, the events are reconstructed with the
same reconstruction software as used for the data reconstruction. The Monte Carlo
samples contain decays into Bsπ

+π− as well as into B∗sπ
+π−. The complete decay

tables are given in the appendix C.

Monte Carlo Event Reweighting

The low statistics of the data samples in each B∗∗s decay mode makes it impossible
to train independent neural networks for selecting the B∗∗s candidates in each decay
channel as it is described in section 5.2. Therefore, both the data samples and the
Monte Carlo samples are combined in each case and one single neural network is
trained to select the B∗∗s . In order to avoid biasing the neural network training
the Monte Carlo events are reweighted taking into account two physical conditions.
Firstly, the Monte Carlo events are reweighted to the same Q value distribution as
in data. Secondly, the mixture of decay channels is required in the combined Monte
Carlo sample to corresponds to the mixture in data. Hence, the individual weight
wi being applied to each Monte Carlo event i having the Q value Qi is

wi(Qi) =
fdata(Qi)

fMC(Qi)
· BRPDG

BRMC

. (5.2)

Here, fdata(Q) and fMC(Q) are functions describing the Q value distributions in data
and in Monte Carlo, respectively. Their ratio corrects for the Q value distributions.
These functions are fourth order polynomials whose parameters are obtained from
different fits to the Q value in data and in the Monte Carlo samples as seen in
figures 5.4 and 5.5.

For the Monte Carlo sample an additional fourth order polynomial function is
used below 60 MeV/c2 to describe the bump in the Q value distribution. Similar to
the B∗∗ Monte Carlo sample, half of the events generated above 47 MeV/c2 decay
into B∗sππ which are shifted by m(B∗s )−m(Bs) = 47 MeV/c2 due to the undetected
photon from the decay B∗s → Bsγ. The events below 47 MeV/c2 decay only into
Bsππ and stay around the generated mass.

For each decay channel a distinct set of parameters is used. The second fraction in
equation (5.2) corrects for the right channel mixture. Thereby, BRPDG is the world
average branching ratio [2] of the Bs decay in question and BRMC is the corresponding
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Figure 5.4: Fit to the Q value of the B∗∗s → B
(∗)
s π+π− Monte Carlo sample with

Bs → D−s π
+, D−s → φπ− after having applied the preselection.

branching ratio implemented in the decay tables being used to generate the Monte
Carlo sample. Figure 5.6 displays the distribution of the Monte Carlo weights.

5.1.5 Candidate Reconstruction

The data samples used in this thesis are based on custom made and official BStntu-
ples containing the B∗∗ and B∗∗s decays in question. Both types of BStntuples are
conceptually the same and therefore the reconstruction of the different B∗∗ and B∗∗s
mesons is done in a similar way. The nomenclature of B(s) in this section here refers
to the B+ and Bs mesons at the same time. The same is true for B∗∗(s).

The reconstruction process starts with the reconstruction of stable particles by
fitting tracks and applying mass hypotheses to these tracks. The stable particles
are combined to form higher level objects like D and B mesons. By adding further
tracks to them the B∗∗(s) mesons are reconstructed finally. Since the reconstruction
is conceptually the same for each decay mode it will be explained for the decay
B∗∗ → B(∗)+π− with B+ → J/ψK+ as an example.

Two muons having opposite charge signs are combined in a vertex fit to form the
J/ψ. In the fit the world average values is used for the muon mass. The so-formed
J/ψ is then combined with a further track assumed to be a kaon yielding the B+

candidate.

In order to reconstruct the B∗∗(s) candidates, tracks applying the pion mass hy-
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including all six decay modes. The steps arise from the correction factors for the
right Bs decay channel mixture.
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pothesis are combined with B(s) candidates. The invariant mass of the so-formed
B∗∗(s) meson is calculated by the four-momenta of the B(s) candidate and the pion
track(s).

To keep the background level as low as possible on this stage, a full vertex fit
to the so far formed combinations is highly preferable. A vertex fit is a kinematic
fit with appropriate topology constraints. However, a full vertex fit is a very time
consuming step of the reconstruction procedure. Therefore, it is not applied to the
B∗∗ data samples having the advantage of a simplified data handling which allows
adding new data rather quickly.

Among the decay modes of the B∗∗s → B
(∗)
s π+π− there are final states possible

with up to eight pions. Hence, a higher combinatorial background level is expected
here. For this reason, a vertex fit is performed on the Bsπ

+π− combinations to
reduce the background level. Of course, the computing time of data reconstruction
increases and adding new data will take more time.

Minimal Pion Momentum

The two pions from the decay B∗∗s → B
(∗)
s π+π− are expect to have low momenta.

This is due to the low Q value of the B∗∗s meson. Generator level Monte Carlo
samples were used for estimating the expected pion momentum distribution. The
samples were produced based on the EvtGen package [71] assuming the different
masses 5.8, 5.84, 5.88 and 5.9 GeV/c2 for the B∗∗s . For each sample 100000 events
were generated. Figure 5.7 shows the minimal pion momentum distributions of these
samples for the pions from the decay B∗∗s → B

(∗)
s π+π−.

For CDF analyses an established quality cut is usually put on the transverse pion
momenta at 400 MeV/c. Below this value the background level rises drastically and
moreover the Monte Carlo samples used for modelling the signal are no more reliable.
Consequently the cut at 400 MeV/c is also applied to the B∗∗s data samples although
the transverse pion momentum distribution is mainly located below 400 MeV/c.

5.2 Outline of the Candidate Selection

The candidate selection of the B∗∗ and B∗∗s mesons in decays of B∗∗ → B(∗)+π−

and B∗∗s → B
(∗)
s π+π−, respectively, is based on a chain of neural networks organised

in two steps. At the first step, for each B+ and Bs decay mode a distinct neural
network is applied to select the B+ and Bs signal candidates. At the second step,
neural networks are trained to select the B∗∗ and B∗∗s candidates. For the B∗∗

selection, three independent neural networks are used, one single network for each
decay channel. Due to the insufficient low statistics in the B∗∗s data samples as listed
in table 5.3 it is not possible to have one single neural network for each B∗∗s decay
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mode. For the neural network training, however, a rather large number of events is
necessary to properly adapt the weights of all nodes in the neural network. For this
reason, one single neural network is trained acting on the combined data sample of
all six decay modes.

On the level of the B+ and Bs meson selection, there is no optimised cut applied
on the output of the corresponding neural network, except for a soft precut in order
to remove a large amount of background events. The outputs of the B+ and Bs

neural networks are rather used as inputs to the corresponding neural network for

B∗∗s → B
(∗)
s π+π− Decay Monte Carlo Data

Bs → D−s π
+ D−s → K̄∗K− 1395 2624

D−s → φπ− 26201 783
D−s → 3π± 23024 1777

Bs → D−s 3π± D−s → K̄∗K− 7857 6736
D−s → φπ− 16926 3208
D−s → 3π± 15484 9410

Sum 90887 24538

Table 5.3: Number of Monte Carlo and data events of the B∗∗s samples after having
applied the preselection.
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selecting the B∗∗ and B∗∗s candidates, respectively. Thus, the B∗∗ and B∗∗s neural
networks act on events preselected by the B+ and Bs neural networks. Consequently,
the second B∗∗ and B∗∗s neural networks are the main selection tools and the final
candidate selection is done by cutting on the output of these neural networks.

All neural networks used in this analysis are taken from the NeuroBayes pack-
age [63, 64]. The networks are trained on Monte Carlo events as signal pattern
and real data events as background pattern. For simulating background events,
the full quark production and hadronisation process has to be modelled. However,
the details of these processes are not understood with sufficient precision. So far,
background models are therefore not capable of describing the background satisfac-
torily enough. A better way of getting background events is achieved by taking data
events from the mass sidebands. This course of action saves computing time and
yields samples containing all sorts of background events at the same time.

At each stage of the selection procedure, a soft preselection is done before the
corresponding neural network is applied. These high signal efficiency requirements
reduce the background level by removing a large part of background events but only
a marginal fraction of signal events.

In order to evaluate the performance of the neural networks, so-called quality
plots are produced during the network training. The distribution of the signal and
background as a function of the neural network output demonstrates the selection
power of the neural network. The purity of the neural network is also shown for
each training which should be a linear function of the network output. Both are
characteristics of well-trained neural networks. These plots together with detailed
information about the different neural networks developed in the context of this
thesis are presented in the following sections.

For each neural network the correlation matrix is also presented showing that
there are correlations between the input variables. These correlations emphasise the
fact that an improved signal and background separation can be expected by taking
into account correlations among the input variables in the selection procedure which
holds by using neural networks. The variables shown in the correlation matrix have
the same order as they are put into the neural network but with a different index
number. The index i of each column or row in the correlation matrix corresponds
to the variable (i− 1) in the variable list. Index 1 in the matrix denotes the target
variable.

The list of input variables given for each neural network also contains the signifi-
cance of every input variable for the neural network. Based on this significance the
rank of the variables is also listed. The symbols for the variables and the naming
scheme of the particles are defined in appendix A.
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Variable Unit Preselection requirement

Lxy/σLxy (B+) > 7.5
|d0(B+)| [cm] > 0.0075
`xy/σ`xy

(D0) > −4
pt(D0) [GeV/c] > 1.5∣∣d0(D0)

∣∣ [cm] > 0.002
pt(KD0) [MeV/c] > 400
— Correct charge combination of the πD0 and KD0

Table 5.4: Preselection requirements for B+ → D̄0 3π±.

5.3 B∗∗ Candidate Selection

5.3.1 Selection of the B+ with B+ → D̄0 3π±

The selection of the B+ using B+ → D̄0 3π± starts by applying soft preselection
requirements to the data samples which are listed in table 5.4.

For the training of the neural network Monte Carlo events are used as signal
pattern and data from the upper B+ mass sideband in the range from 5.325 GeV/c2

to 5.395 GeV/c2 is used as background pattern. More satisfying would be to use data
from both the lower and upper sideband as background pattern, but since the lower
sideband also contains partially reconstructed B+ mesons, only the upper sideband
can be considered containing rather pure background events. The neural network
inputs are given in table 5.5.

The quality plots obtained from the neural network training demonstrate the
training success. Figure 5.8 shows the distributions of the signal and background
events and the purity of the neural network is shown in figure 5.9. The correlation
matrix of the input variables is plotted in figure 5.10.

The invariant mass distribution of the B+ candidates selected by requiring the
neural network output larger than 0.9 is shown in figure 5.11.

5.3.2 Selection of the B∗∗ → B(∗)+π−

For the selection of the B∗∗ candidates three different neural networks are used for
the B+ decays B+ → J/ψK+, B+ → D̄0π+ and B+ → D̄0 3π±. The preselection
requirements applied before the neural network training are listed in table 5.6.

For the neural network training Monte Carlo samples are used as signal pattern
and data events taken from the Q value range from 0 to 1.0 GeV/c2 are used as back-
ground pattern. After having applied the preselection requirements the data sample
is still dominated by background as seen in figures 5.12, 5.13 and 5.14. Therefore,
the full Q value range can be well used as background pattern for the neural network
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Index Significance Rank Variable

1 33 7 |d0(B+)|
2 136.5 2 P (B+)
3 2.1 29 Lxy/σLxy

(B+)
4 15.1 17 pt(D0)
5 5.5 27

∣∣d0(D0)
∣∣

6 8.8 25 P (D0)
7 18.5 12 Lxy/σLxy (D0)
8 27.9 9 `xy/σ`xy

(D0)
9 28.4 8 pt(π

(1)
B+)

10 8 26 pt(π
(2)
B+)

11 15.9 15 pt(π
(3)
B+)

12 43.1 6 dlts0 /σd0(π(1)
B+)

13 77.3 3 dlts0 /σd0(π(2)
B+)

14 53.2 4 dlts0 /σd0(π(3)
B+)

15 19.6 13 θ∗(π(1)
B+)

16 19.3 14 θ∗(π(2)
B+)

17 13.6 18 θ∗(π(3)
B+)

18 8.8 23 θhel(πD0)
19 9.3 24 pt(KD0 ;<)
20 9.3 22 pt(KD0 ;>)
21 50 5 LK(KD0 ; TOF)
22 21.8 11 LK(KD0 ; TOF)
23 4 28 m

(
π

(1)
B+ , π

(2)
B+

)
24 23.6 10 mmin

(
π

(1,2)
B+ , π

(3)
B+

)
25 15.5 16 mmax

(
π

(1,2)
B+ , π

(3)
B+

)
26 10.1 20 minB+ (|d0|)
27 11.3 19 maxB+ (|d0|)
28 9.8 21 θa1

29 232.3 1 mπ+π+π−

Table 5.5: List of input variables of the neural network for B+ → D̄0 3π±.
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ground (black) events for the decay B+ → D̄0 3π± using the training sample.
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Figure 5.10: The correlation matrix of the input variables of the neural network for
the decay B+ → D̄0 3π±.
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Figure 5.11: The invariant mass distribution of the B+ in decays of B+ → D̄0 3π±

selected by the best cut on the neural network output of 0.9.
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Variable Unit Preselection requirement

B+ → J/ψK+ B+ → D̄0π+ B+ → D̄0 3π±

nNN(B+) > 0.5 > −0.5 > −0.5
m(B+) [GeV/c2] 5.24− 5.31 5.24− 5.31 5.24− 5.35
|d0(B+)| [cm] — < 0.07 < 0.01
Lxy/σLxy (B+) — > 8 > 7∣∣d0(D0)

∣∣ [cm] — < 0.1 < 0.2
`xy/σ`xy (D0) — > −4 > 4
pt(πB∗∗) [GeV/c] > 0.4 — —
dlts0 /σd0(πB+) — > −5 –
Q [GeV/c2] — 0− 1.0 0− 1.0
— Correct charge combination

Table 5.6: Preselection requirements for B∗∗ → B(∗)+π− in the different B+ decay
channels.
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Figure 5.12: The Q value distribution from the B∗∗ data sample with B+ → J/ψK+

being used for the neural network training as background pattern.
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Figure 5.13: The Q value distribution from the B∗∗ data sample with B+ → D̄0π+

being used for the neural network training as background pattern.
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Figure 5.14: The Q value distribution from the B∗∗ data sample with B+ → D̄0 3π±

being used for the neural network training as background pattern.
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Index Significance Rank Used Variable

1 34.6 9 3 |d0(B+)|
2 40.3 7 3 P (B+)
3 14.9 14 3 Lxy/σLxy

(B+)
4 21.3 11 3 |d0(J/ψ)|
5 11.3 15 3 d0/σd0(J/ψ)
6 6.6 18 3 `xy/σ`xy

(J/ψ)
7 36.7 8 3 pt(K+)
8 87.1 5 3 |m(B+)−mPDG|
9 17.1 12 3 pt(B∗∗)
10 34.2 10 3 θ∗(πB∗∗)
11 7.4 17 3 θ∗(B+)
12 459.4 1 3 nNN(B+)
13 290.8 2 3 pt(πB∗∗)
14 185.9 3 3 d0/σd0(πB∗∗)
15 63.5 6 3 |d0(πB∗∗)|
16 3.8 19 3 η(B∗∗)
17 8.5 16 3 ∆R(B∗∗, πB∗∗)
18 16.1 13 3 Lπ(πB∗∗ ; TOF)
19 123.6 4 3 Lπ(πB∗∗ ; TOF)

Table 5.7: List of input variables of the neural network for B∗∗ → B(∗)+π− with
B+ → J/ψK+.

training. The Monte Carlo events are reweighted to the same Q value distribution
as in data in order to avoid biasing the training as described in section 5.1.2.

Tables 5.7, 5.8 and 5.9 list the input variables of the different neural networks.
Variables which have a significance less than 3σ are automatically removed by the
preprocessing algorithms of NeuroBayes and are not used in the neural network.

The quality plots produced during the trainings indicate the success of the network
trainings. Figures 5.15, 5.16 and 5.17 show the signal and background distributions
and figures 5.18, 5.19 and 5.20 display the purity as a function of the neural network
output. In figures 5.21, 5.22 and 5.23 the correlation matrices are plotted.

5.3.3 Cut Optimisation

The selection of the B∗∗ candidates is done by applying cuts on two quantities: The
output of the neural network trained for the specific decay channel and the number
of candidates per event.

In order to make a decision about the best cut on the network output the signal
significance SNN has to be considered being a function of the cut on the network
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Figure 5.15: The distribution of the neural network output for signal (red) and

background (black) events for the decay B∗∗ → B(∗)+π− with B+ → J/ψK+ using
the training sample.
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Figure 5.16: The distribution of the neural network output for signal (red) and

background (black) events for the decay B∗∗ → B(∗)+π− with B+ → D̄0π+ using
the training sample.
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Figure 5.17: The distribution of the neural network output for signal (red) and

background (black) events for the decay B∗∗ → B(∗)+π− with B+ → D̄0 3π± using
the training sample.
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Figure 5.18: The purity as a function of the neural network output for the decay

B∗∗ → B(∗)+π− with B+ → J/ψK+ using the training sample.
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Figure 5.19: The purity as a function of the neural network output for the decay

B∗∗ → B(∗)+π− with B+ → D̄0π+ using the training sample.
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Figure 5.20: The purity as a function of the neural network output for the decay

B∗∗ → B(∗)+π− with B+ → D̄0 3π± using the training sample.
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Figure 5.21: Correlation matrix of the neural network for B∗∗ → B(∗)+π− with
B+ → J/ψK+.
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Figure 5.22: Correlation matrix of the neural network for B∗∗ → B(∗)+π− with
B+ → D̄0π+.
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Index Significance Rank Used Variable

1 9.7 18 3 |d0(B+)|
2 12.5 17 3 P (B+)
3 46.7 5 3 Lxy/σLxy

(B+)
4 16.4 13 3

∣∣d0(D0)
∣∣

5 7.5 20 3 P (D0)
6 31.7 10 3 Lxy/σLxy

(D0)
7 5.5 21 3 `xy/σ`xy

(D0)
8 40.4 9 3 pt(πB+)
9 20.3 4 3 dlts0 /σd0(πB+)
10 8.2 19 3 θ∗(πB+)
11 0.4 24 — θhel(πD0)
12 1.6 23 — pt(KD0 ;<)
13 3.8 22 3 pt(KD0 ;>)
14 23.2 11 3 |m(B+)−mPDG|
15 12.9 16 3 pt(B∗∗)
16 46.6 6 3 ∆R(B+, πB∗∗)
17 11.1 15 3 θ∗(πB∗∗)
18 88.1 3 3 nNN(B+)
19 182 2 3 pt(πB∗∗)
20 41.4 8 3 |d0(πB∗∗)|
21 315.4 1 3 d0/σd0(πB∗∗)
22 21 12 3 η(B∗∗)
23 12.1 14 3 Lπ(πB∗∗ ; TOF)
24 47.1 7 3 Lπ(πB∗∗ ; TOF)

Table 5.8: List of input variables of the neural network for B∗∗ → B(∗)+π− with
B+ → D̄0π+.

output:

SNN =
N (cand)

MC (nout > ncut)√
N (cand)

data (nout > ncut)
. (5.3)

Here, N (cand)
MC is the number of candidates in the Monte Carlo sample at a given cut

ncut on the network output nout. Analogically, N (cand)

data is the number of candidates se-
lected in the data sample with the same cut on the network output. The best cut on
the network output maximises the significance. The number of Monte Carlo events
is regarded to be proportional to the number of signal events in data whereas the
number of data events is the sum of background and signal events in data indepen-
dently of the actual ratio. Since the neural networks for selecting the B∗∗ candidates
in different decay channels are independent, the optimisation of the selection cut is
also performed independently for each decay mode. In order to calculate the signif-
icance, Monte Carlo and data events are counted in a Q value window where the
signals are expected. Therefore, a Q value range from 0.2 GeV/c2 to 0.4 GeV/c2 is
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Index Significance Rank Used Variable

1 3.9 23 3 |d0(B+)|
2 5.6 19 3 P (B+)
3 6.9 15 3 Lxy/σLxy

(B+)
4 9 14 3

∣∣d0(D0)
∣∣

5 0.3 30 — P (D0)
6 15.5 9 3 Lxy/σLxy (D0)
7 5 20 3 `xy/σ`xy (D0)
8 2.1 28 — pt(π

(1)
B+)

9 3.3 25 3 dlts0 /σd0(π(1)
B+)

10 10.7 11 3 θ∗(π(1)
B+)

11 2.9 26 — pt(π
(2)
B+)

12 4.4 21 3 dlts0 /σd0(π(2)
B+)

13 7.3 13 3 θ∗(π(2)
B+)

14 0.7 29 — pt(π
(3)
B+)

15 8.2 16 3 dlts0 /σd0(π(3)
B+)

16 5.8 18 3 θ∗(π(3)
B+)

17 12.7 10 3 θhel(πD0)
18 4.3 22 3 pt(KD0 ;<)
19 6.4 17 3 pt(KD0 ;>)
20 92.5 3 3 |m(B+)−mPDG|
21 1.9 27 — pt(B∗∗)
22 27.1 7 3 ∆R(B+, πB∗∗)
23 9.3 12 3 θ∗(πB∗∗)
24 184.6 2 3 nNN(B+)
25 88 4 3 pt(πB∗∗)
26 311.1 1 3 |d0(πB∗∗)|
27 32.5 6 3 d0/σd0(πB∗∗)
28 21.3 8 3 η(B∗∗)
29 3.3 24 3 Lπ(πB∗∗ ; TOF)
30 37.2 5 3 Lπ(πB∗∗ ; TOF)

Table 5.9: List of input variables of the neural network for B∗∗ → B(∗)+π− with
B+ → D̄0 3π±.
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Figure 5.23: Correlation matrix of the neural network for B∗∗ → B(∗)+π− with
B+ → D̄0 3π±.

chosen for all three decay channels. Within this window, the Monte Carlo and data
events are counted at different cuts on the output of the neural network.

Figures 5.24, 5.25 and 5.26 show the significance for each decay channel as a
function of the cut on the network output. Based on these the best cuts were
determined to be 0.5 for the decay B∗∗ → B(∗)+π− with B+ → J/ψK+, 0.7 for
B∗∗ → B(∗)+π− with B+ → D̄0π+ and 0.75 for B∗∗ → B(∗)+π− with B+ → D̄0 3π±.

For measuring the masses of the B∗∗ states a fit on the combined data of all three
decay channels is performed. Therefore, a cut optimisation is required maximising
the overall significance. This significance is a function of all three neural network
outputs. Thus, the cut on the neural network outputs are optimised simultaneously
when the overall significance is maximised being defined by

SNN =

∑
i

(
wi ·N (cand)

MC,i (nout,i > ncut,i)
)√∑

iN
(cand)

data,i (nout,i > ncut,i)
. (5.4)

Here, N (cand)

MC,i and N (cand)

data have the same meaning as in equation (5.3). The parameter
i runs over all three decay modes. To take into account the ratio of generated Monte
Carlo events among the different decay channels the number of Monte Carlo events
is weighted by the factor wi. This weight is the ratio of the number of Monte Carlo
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Figure 5.24: The significance over the cut on the network output for the decay

B∗∗ → B(∗)+π− with B+ → J/ψK+. The red line denotes where the selection cut
is put.
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Figure 5.25: The significance over the cut on the network output for the decay

B∗∗ → B(∗)+π− with B+ → D̄0π+. The red line denotes where the selection cut is
put.
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Figure 5.26: The significance over the cut on the network output for the decay

B∗∗ → B(∗)+π− with B+ → D̄0 3π±. The red line denotes where the selection cut is
put.

events and signal events at the network cut nout > 0 in each decay channel. For
the significance calculation, Monte Carlo and data events are counted in a Q value
window from 0.2 GeV/c2 to 0.4 GeV/c2. In order to calculate the significance a
three-dimensional scan in steps of 0.05 on the three different neural network outputs
is done.

Figure 5.27 shows the combined significance with different cuts on one neural
network output while the cuts on the other two network outputs are kept at their
best values. The best selection cuts are determined to be 0.85 for the decay B∗∗ →
B(∗)+π− with B+ → J/ψK+, 0.7 for B∗∗ → B(∗)+π− with B+ → D̄0π+ and 0.75 for
B∗∗ → B(∗)+π− with B+ → D̄0 3π±.

For the final selection, a cut is also applied on the number of candidates per
event. As there can be at most two B∗∗ candidates per event it is more likely to find
a real B∗∗ meson in events having a low number of candidates per event. Since the
number of candidates is not modelled in the Monte Carlo samples, the selection cut
on this quantity is applied after the significance optimisation. For this reason, there
is no way to optimise this cut to its best value. Instead of that, the cut is put at
a rather arbitrary but unbiased value since it was done a priori without looking at
the obtained signals. For the B∗∗ selection, the number of candidates per event has
to be less than 6. Figure 5.28 displays the Q value distribution for all three decay
channels after applying the final selection cuts obtained from the overall significance
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Figure 5.27: The combined significance with different cuts larger than zero on one
network output while the cuts on the other network outputs are kept at their best
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Figure 5.28: The Q value distribution of the B∗∗ candidates of the decay B∗∗ →
B(∗)+π− with B+ → J/ψK+, B+ → D̄0π+ and B+ → D̄0 3π±. The distributions
are obtained after applying the final selection cuts.

optimisation. It shows two clean signal peaks for the B1 and B∗2 states.

5.3.4 Selection Stability

In order to check the stability of the B∗∗ candidate selection, a set of tests is done
verifying that the signal is not an artefact of the specific selection. The plots pro-
duced by these checks can be found in figures 5.29, 5.30 and 5.31 for the three
different decay channels. As reference, the Q value distribution of the final selection
is plotted in figure 5.28.

For the first check, the Q value distributions of the three decay channels are
plotted with different cuts on the neural network output which is shown in the top
row of each figure. The used network cuts are ±0.1 around the cut being applied
for the final candidate selection. The requirement on the number of candidates per
event remains unchanged and is less than 6.
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Furthermore, the Q value distributions are plotted with different cuts on the
number of candidates per event as seen in the middle row of the figures. The chosen
cuts on this quantity are ±1 around the cut which is applied in the final candidate
selection. The cut on the network output remains at the best value used in the final
selection.

For the last crosscheck, the Q value distributions are plotted with different bin-
nings of 5 MeV/c2 and 15 MeV/c2 to ensure that the seen peaks are no artefacts of
the binning. These plots are shown on the bottom row. In these binning-checks the
cut on the neural network output and the number of candidates per event in every
decay channel is the same as for the final selection.

To sum up, the Q value distribution of the B∗∗ signal candidates is indeed stable
regarding different cuts on the network output, the number of candidates per event
and different binnings. All plots show clean signal peaks which can be interpreted
as the two narrow states of the B∗∗.

5.3.5 Wrong Sign Candidates

Another cross check can be done by looking at the Q value distributions of the wrong
sign candidates. Wrong sign candidates are B∗∗ candidates which are combinations
of B+π+ instead of B+π−. Consequently, these B∗∗ mesons have a total electric
charge being not equal zero. There is no signal expected in data samples containing
only wrong sign candidates.

Figures 5.32, 5.33 and 5.34 show the Q value distribution of the wrong sign can-
didates with different cuts on the network output. In these plots the cut on the
number of right sign candidates per event is kept at the same value as for the final
signal selection. That is, the number of right sign candidates has to be less than 6.

In addition a different selection of wrong sign candidates is done to be closer to
the logic of the final signal selection of right sign candidates. Thereby, the number
of wrong sign candidates per event has to be less than 6 instead of the number of
right sign candidates per event. The resulting Q value distributions can be seen in
figures 5.35, 5.36 and 5.37.

In summary, none of the distributions showing the wrong sign candidates gives
evidence for a fake signal which would be a sign for a biased neural network training
and consequently a biased signal selection.
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Figure 5.29: The Q value distribution of the B∗∗ candidates in the decay B∗∗ →
B(∗)+π− with B+ → J/ψK+ selected by cuts being slightly different from the final
selection cuts and with different binnings.
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Figure 5.30: The Q value distribution of the B∗∗ candidates in the decay B∗∗ →
B(∗)+π− with B+ → D̄0π+ selected by cuts being slightly different from the final
selection cuts and with different binnings.
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Figure 5.31: The Q value distribution of the B∗∗ candidates in the decay B∗∗ →
B(∗)+π− with B+ → D̄0 3π± selected by cuts being slightly different from the final
selection cuts and with different binnings.
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Figure 5.32: The Q value distribution of the wrong sign B∗∗ candidates of the decay
B∗∗ → B+π+ with B+ → J/ψK+ selected by different cuts on the network output.
The selections also require the number of right sign candidates to be less than 6.

Variable Unit Preselection requirement

nNN(Bs) > 0
|d0(Bs)| [cm] > 0.008
Lxy/σLxy (Bs) > 4
m(Bs) [GeV/c2] 5.2− 5.5
Lxy/σLxy

(Ds) > 2
Q [GeV/c] < 0.25
— Each π from the B∗∗s must have hits in the silicon detectors

Table 5.10: Preselection requirements for B∗∗s → B
(∗)
s π+π−.
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Figure 5.33: The Q value distribution of the wrong sign B∗∗ candidates of the decay
B∗∗ → B+π+ with B+ → D̄0π+ selected by different cuts on the network output.
The selections also require the number of right sign candidates to be less than 6.
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Figure 5.34: The Q value distribution of the wrong sign B∗∗ candidates of the decay
B∗∗ → B+π+ with B+ → D̄0 3π± selected by different cuts on the network output.
The selections also require the number of right sign candidates to be less than 6.
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Figure 5.35: The Q value distribution of the wrong sign B∗∗ candidates of the decay
B∗∗ → B+π+ with B+ → J/ψK+ selected by different cuts on the network output.
The selections also require the number of wrong sign candidates to be less than 6.
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Figure 5.36: The Q value distribution of the wrong sign B∗∗ candidates of the decay
B∗∗ → B+π+ with B+ → D̄0π+ selected by different cuts on the network output.
The selections also require the number of wrong sign candidates to be less than 6.
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Figure 5.37: The Q value distribution of the wrong sign B∗∗ candidates of the decay
B∗∗ → B+π+ with B+ → D̄0 3π± selected by different cuts on the network output.
The selections also require the number of wrong sign candidates to be less than 6.
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Figure 5.38: The Q value distribution of the combined B∗∗s data sample including
all six Bs decay channels. This distribution is used for the neural network training
as background pattern.

5.4 B∗∗s Candidate Selection

5.4.1 Selection of the B∗∗s → B
(∗)
s π+π−

The selection of the B∗∗s candidates is done in a very similar way to the B∗∗ selection.
The main difference is that for the B∗∗s selection only one single neural network is
used for all six Bs decay channels. This is because of the low statistics in every
decay mode which does not allow to train a neural network for each decay channel
separately. The B∗∗s selection starts by applying soft preselection requirements which
remove a large number of background events but only a marginal part of the signal
events. These requirements are listed in table 5.10.

For the neural network training Monte Carlo events are used as signal pattern
and data in the Q value range from 0 to 0.25 GeV/c2 is used as background pat-
tern. Despite having applied the preselection requirements, the data sample is still
dominated by background events as figure 5.38 shows. Therefore, the data sample
can be well used for the neural network training as background pattern.

To avoid biasing the neural network training the Monte Carlo events are reweighted
to the same Q value distribution as in data. Furthermore, the Monte Carlo events
are reweighted in order to correct for the mixture of the different Bs decay channels
in the combined Monte Carlo sample. The details of the Monte Carlo reweight-
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Index Significance Rank Used Variable

1 4.1 20 3 |d0(B∗∗s )|
2 3.5 22 3 χ2

rφ(B∗∗s )
3 12.1 10 3 Lxy/σLxy (B∗∗s )
4 10 13 3 Lxy(Bs)
5 3.5 12 3 Lxy/σLxy

(Bs)
6 146.9 1 3 m(Bs)
7 15.1 9 3 pt(Ds)
8 2.9 26 — η(Ds)
9 2.5 24 — χ2

rφ(Ds)
10 2.9 25 — P (Ds)
11 4.4 19 3 Lxy(Ds)
12 5.1 16 3 |d0(Ds)|
13 18.6 8 3 Lxy/σLxy

(Ds)
14 3.8 18 3 `xy(Ds)
15 9.9 11 3 θ∗(Ds)
16 2.4 28 — dlts0 /σd0(πBs)
17 1.9 29 — |d0(πBs)|
18 1.5 31 —

∣∣∣d0(π(1)
Bs

)
∣∣∣

19 1.8 30 —
∣∣∣d0(π(2)

Bs
)
∣∣∣

20 2.3 27 —
∣∣∣d0(π(3)

Bs
)
∣∣∣

21 5.7 15 3 minB∗∗s
(pt)

22 3.2 23 3 maxB∗∗s
(pt)

23 4.8 17 3 minB∗∗s
(|d0|)

24 37.3 4 3 maxB∗∗s
(|d0|)

25 25.3 7 3 nDcy

26 24.9 6 3 nNN(Bs → D−s π
+, D−s → K̄∗K−)

27 4 21 3 nNN(Bs → D−s π
+, D−s → φπ−)

28 9.6 14 3 nNN(Bs → D−s π
+, D−s → 3π±)

29 44.9 3 3 nNN(Bs → D−s 3π±, D−s → K̄∗K−)
30 26.5 5 3 nNN(Bs → D−s 3π±, D−s → φπ−)
31 40.5 2 3 nNN(Bs → D−s 3π±, D−s → 3π±)
32 0.6 32 — Q

Table 5.11: List of input variables of the neural network for B∗∗s → B
(∗)
s π+π−.
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Figure 5.39: The distribution of the neural network output for signal (red) and

background (black) events for the decay B∗∗s → B
(∗)
s π+π− using the training sample.

ing are described in section 5.1.4. The inputs of the neural network are listed in
table 5.11.

The preprocessing algorithms of NeuroBayes keep only the most significant vari-
ables. If the significance of a variable is below 3σ the variable is pruned and not used
in the neural network. The Q value is put into the network as a crosscheck to ensure
the correctness of the Monte Carlo reweighting. Since the neural network cannot
learn anything from the Q value distribution it is pruned which is an indication of
a successful Monte Carlo reweighting.

The quality plots obtained by the neural network training can be evaluated in
order to prove the success of the training. Figure 5.39 shows the separation power
of the neural network for signal and background. In figure 5.40 the purity of the
neural network is plotted as a function of the network output. Figure 5.41 presents
the correlation matrix of the input variables.

5.4.2 Cut Optimisation

The final selection of the B∗∗s is done by cutting on the output of the neural network
trained to select the B∗∗s candidates. The best cut on the neural network output is
supposed to maximise the significance. The significance SNN for the B∗∗s selection is
of the form

SNN =
N (cand)

MC (nout > ncut)

1.5 +
√
N (cand)

data (nout > ncut)
(5.5)
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Figure 5.40: The purity as a function of the neural network output for the decay

B∗∗s → B
(∗)
s π+π− using the training sample.
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Figure 5.42: The number of signal events
in the B∗∗s sample over the cut on the
network output. The red line denotes
where the selection cut is put.
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Figure 5.43: The number of data events
in the B∗∗s sample over the cut on the
network output. The red line denotes
where the selection cut is put.

where N (cand)
MC is the number of Monte Carlo events selected at a given cut ncut on the

neural network output nout and N (cand)

data is the number of data events at the same cut
on the neural network output. The number of Monte Carlo events is regarded to be
proportional to the number of signal events and the number of data events is the
sum of background events and signal events independently of the actual ratio. Since
merely a low signal is expected, a constant summand is added to the denominator.
This summand of 1.5 arises from the fact that the formula is optimised towards a
3σ observation [73]. For a search optimisation the significance formula written in
equation (5.3) would tend to cut on the neural network output as hard as possible
without really maximising the significance. Therefore, the significance definition has
to be adapted when searching for new phenomena.

In order to calculate the significance, Monte Carlo and data events are counted
at a given cut on the network output in a Q value range where the signal peaks
are expected. The search window in Q was therefore chosen from 0.134 GeV/c2 to
0.2 GeV/c2. For increasingly harder cuts on the network output, the number of data
events decreases faster than the number of signal events, as shown in figures 5.42
and 5.43. Figures 5.44 and 5.45 show the significance over the cut on the network
output. Based on these plots the selection cut on the neural network output is
determined to be 0.95. The Q value distribution of the B∗∗s candidates selected by
this cut is given in figure 5.46. Since no signal peak is visible a Bayesian limit is set
on the branching ratios of the narrow B∗∗s states.

In contrast to the selection of the B∗∗ candidates there is no cut applied on
the number of candidates per event for the B∗∗s selection. Setting a limit on the
branching ratios requires the knowledge of the signal efficiency. But since the number
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Figure 5.44: The significance SNN of the decay B∗∗s → B
(∗)
s π+π− over the cut on the

neural network output . The red line denotes where the selection cut is put.
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s π+π− over the cut on the neural network output for cuts larger than 0.8. The
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108 Chapter 5. Candidate Selection

]2Q [GeV/c

0 0.05 0.1 0.15 0.2 0.25

2
C

a
n

d
id

a
te

s
 p

e
r 

5
 M

e
V

/c

0

2

4

6

8

10

12

-1
L=2.8fb

Figure 5.46: The Q value distribution of the B∗∗s candidates selected by the final
selection cut on the output of the neural network of 0.95. The expected Q values
for the Bs1 is 184 MeV/c2 and 150 MeV/c2 for the B∗s2.

of candidates cannot be modelled by the Monte Carlo samples it is not possible to
determine the efficiency of the cut on the number of candidates.



6 B∗∗ Fit Description

6.1 Q Value Resolution of the B∗∗ Signal

An unbinned maximum likelihood fit is performed to measure the properties of the
narrow B∗∗ states. The signal peaks in the likelihood function are described by
non-relativistic Breit-Wigner distributions convoluted with the detector resolution
model. The Q value resolution of the signal is determined using the same Monte
Carlo samples as the ones used for the neural network training. Since the Monte
Carlo samples are generated with a flat mass distribution the Q dependence of the
resolution can also be studied.

To study the signal resolution the residual Q value is plotted for different ranges
of the Q value. The residual Q value is the difference between the generated and
reconstructed Q value. The residual distribution is fitted with a double Gaussian
for each B∗∗ → Bπ and B∗∗ → B∗π decay. The double Gaussian has the form

G (Q) =
N · f1√

2πσ1

e
− (Q−Q0)2

2σ2
1 +

N · (1− f1)√
2πσ2

e
− (Q−Q0)2

2σ2
2 (6.1)

where Q0 is the mean of the peak and σ1, σ2 are the width of the two Gaussians.
The factor f1 is the fraction of the Gaussian with width σ1. For a better behaviour
of the fit the fraction is fixed to f1 = 0.2 as it describes the data well. In figure 6.1
an example of one of these fits is shown.

Figures 6.2 and 6.3 show the Q value resolution as a function of the measured
Q value. Since the Q value resolution among the decay modes is consistent, the
B∗∗ data samples can be put together for the final maximum likelihood fit. To
determine the Q value resolution of the combined data, the Monte Carlo samples
are merged and fitted again. The resolution as a function of the measured Q value
of the combined sample can be seen in figure 6.4. To extract the Q value resolution
at distinct Q values the Q dependence is parametrised with a linear function of the
form

σ (Q) = a+ b ·Q. (6.2)

The parametrisation is done in the range from Q = 125 MeV/c2 to 675 MeV/c2 and
the obtained parameters are listed in table 6.1.

In a preliminary fit to the Q value distribution of the B∗∗ states the resolution
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Figure 6.1: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗ → B(∗)+π− with B+ → J/ψK+. Having two peaks arises from the fact that the
photon from the decay B∗ → Bγ is not detected by the CDF II detector.

]
2

Measured Q [GeV/C
0 0.2 0.4 0.6 0.8 1

]
2

W
id

th
 [

G
e
V

/c

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

+
 Kψ J/→ + B

+π D → 
+

 B

+π 3D → + B

]
2

Measured Q [GeV/C
0 0.2 0.4 0.6 0.8 1

]
2

W
id

th
 [

G
e
V

/c

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

+
 Kψ J/→ + B

+π D → 
+

 B

+π 3D → + B

Figure 6.2: Q value resolution of the B∗∗ → Bπ decays as a function of the measured
Q value. The resolution is estimated using Monte Carlo samples and is parametrised
by a double Gaussian. The width of the narrow Gaussian is shown on the left and
the width of the broad one is shown on the right.
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Figure 6.4: Q value resolution of B∗∗ → Bπ (left) and B∗∗ → B∗π (right) decays
as a function of the measured Q value. The plots show the combination of all three
B+ decay modes.

σ1 σ2

Decay a [10−5 GeV/c2] b [10−5] a [10−5 GeV/c2] b [10−5]

B∗∗ → Bπ 61± 3 375± 8 164± 2 784± 5
B∗∗ → B∗π 73± 4 555± 11 172± 2 974± 6

Table 6.1: Parametrisation of the Q value resolution for the B∗∗ signal as a function
of the measured Q value.
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Decay Expected Q [MeV/c2] σ1 [MeV/c2] σ2 [MeV/c2]

B1 → B∗π 263 2.18 4.27
B∗2 → B∗π 275 2.26 4.40
B∗2 → Bπ 321 1.82 4.16

Table 6.2: Q value resolution of the B∗∗ states used in the final B∗∗ fit. The expected
Q values are determined by a preliminary fit to the Q value.

at the Q values where the signals are expected is put into the fit. From this fit the
exact signal positions are obtained and the appropriate signal resolutions can be
determined for the usage in the final fit, which are summarised in table 6.2.

6.2 Likelihood Function

In order to measure the masses of the narrow B∗∗ states an unbinned maximum
likelihood fit to the Q value is performed. However, the implementation of the fit
was developed in cooperation with a research group of the CDF collaboration and
is not part of this thesis [75]. For completeness the important parts of the fit are
described here nonetheless.

The likelihood function of the fit comprises different components to describe the
Q value distribution of the combined B∗∗ data sample. The different components
are:

• Three signal peaks

Each of the three signal peaks B∗2 → Bπ, B∗2 → B∗π and B1 → B∗π is
described by two Voigtians because of the detector resolution being modelled
by a double Gaussian, as shown in section 6.1. The Voigtian function is a
Breit-Wigner distribution convoluted with a Gaussian distribution. According
to the mass and width predictions the peaks B∗2 → B∗π and B1 → B∗π are
expected to overlap. In the fit, the width of the B∗2 → Bπ peak is floating
whereas the signal width of B∗2 → B∗π is fixed to the width of the B∗2 → Bπ
peak. According to the prediction [14], the width of the B1 is related to the
B∗2 width:

Γ (B1)

Γ (B∗2)
= 0.9. (6.3)

This ratio is added to the fit with a Gaussian constraint assuming an uncer-
tainty of 20% since there is no theoretical uncertainty quoted on this fraction.

The positions of the B∗2 → B∗π and B∗2 → Bπ signal peaks are constraint to
each other by the energy of the missing photon, E(γ) = 45.78±0.35 MeV/c2 [2],
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from the decay B∗ → Bγ. The uncertainty of the photon energy is put into
the fit with a Gaussian constraint. The normalisation of the peak B∗2 → B∗π
is kept relative to the B∗2 → Bπ peak and determined by reference [74]:

BR (B∗2 → Bπ)

BR (B∗2 → B∗π)
= 1.1± 0.3. (6.4)

Again, the parameter is constricted with a Gaussian constraint.

• B∗∗s reflections

The background contribution caused by B∗∗s reflections is treated separately
in the fit function. B∗∗s reflections are misreconstructed B∗∗s mesons of the
decay B∗∗s → B+K− where the kaon is mistakenly assigned the pion mass.
The shape of the reflections is derived from Monte Carlo samples simulating
the decays Bs1 → B∗K and B∗s2 → BK. The shape of the B∗∗s reflections is
fixed in the final fit. The masses of the Bs1 and B∗s2 states are taken from the
B∗∗s → B+K− analysis [1]. The B∗∗s Monte Carlo samples are selected by the
B∗∗ neural network implemented in the context of this thesis. The shape of
the Bs1 is modelled by a single Gaussian function and the shape of the B∗s2 by
a Crystall Ball function. The yield of the expected B∗∗s reflections is estimated
from Monte Carlo samples and free within a Gaussian constraint.

• Hadronisation and combinatorial background

Further background components are taken into account in the likelihood func-
tion in addition to the B∗∗s reflections. This type of background is modelled
by a function of the form

f(Q) =

(
Q

Qmax

)α
· e−

α
γ (( Q

Qmax
)
γ
−1). (6.5)

Here, Qmax is the value of Q for which f(Q) has its maximum of f(Qmax) = 1
for any α and γ. The parameters α and γ control the shape of the background
from 0 to Qmax and above Qmax, respectively.

6.3 Separate Fits to B∗∗ Decay Modes

Before the final fit to the combined data sample is performed, each of the three
B∗∗ data samples is fitted separately. In doing so, the signal consistency among the
decay modes is checked. The signal significance of these data samples was optimised
separately, as described in section 5.3.3. The individual fits to the different data
samples use a simplified background shape where the background being caused by
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Parameter B+ → J/ψK+ B+ → D̄0π+ B+ → D̄0 3π±

Q(B∗2) [MeV/c2] 321± 3 320± 3 324± 3
m(B∗2)−m(B1) [MeV/c2] 13± 4 14± 3 17± 3
Γ(B∗2) [MeV/c2] 35± 9 20± 6 21± 6
Number of B1 → B∗π events 260± 102 208± 57 145± 49
Number of B∗2 → Bπ events 454± 78 127± 31 112± 24

Table 6.3: Signal parameters of the separate B∗∗ fits to the three different decay
modes.

B∗∗s reflections is neglected since these fits are intended to yield merely a rough
estimation of the signal Q values. The fit results are given in figure 6.5. These
fits were done at a stage of the analysis where a data sample of merely 1.3 fb−1

was available for the B+ → D̄0π+ and B+ → D̄0 3π± decay channels. Table 6.3
summarises the signal parameters obtained from the fits.

The positions of the signal peaks are consistent for the different decay modes. The
B∗2 is located around 322 MeV/c2 in the Q value and the mass difference between
B1 and B∗2 is about 15 MeV/c2. There is a discrepancy of the intrinsic width of the
B∗2 which is still within the statistic uncertainty, though.
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Figure 6.5: Results of the separate B∗∗ fits to the three different decay modes. These
fits are a cross-check to see if the signals are consistent in all three decay channels.





7 B∗∗s Fit Description

7.1 Reconstruction Efficiencies

Due to the lack of a significant signal in the B∗∗s data samples a Bayesian limit is
set for the branching ratios of the narrow Bs1 and B∗s2 states. The branching ratios
are measured with respect to a reference decay since the absolute production rates
of the B∗∗s mesons are unknown. At CDF, the Bs1 and B∗s2 states have already been
measured in decays of B∗∗s → B+K− with B+ → D̄0π+ and B+ → J/ψK+ [1]. Since
the data of the B+ → J/ψK+ decay was collected using a different trigger than for

the B∗∗s → B
(∗)
s π+π− data samples the decay B∗∗s → B+K− with B+ → D̄0π+ was

chosen as reference decay for measuring the branching ratios of the Bs1 and B∗s2
states in decays to B∗∗s → B

(∗)
s π+π−. The Bayesian limit is calculated assuming a

flat prior for the branching ratio.

7.1.1 Signal Efficiency

The signal efficiency is determined by studying the Monte Carlo samples that were
used in the training of the neural network for selecting the B∗∗s candidates. The
efficiency ε is defined as the ratio of reconstructed (N (reconstructed)

MC ) and generated
(N (generated)

MC ) Monte Carlo events:

ε =
N (reconstructed)

MC

N (generated)
MC

. (7.1)

The number of reconstructed Monte Carlo events is counted after applying the
same selection procedure as for the data samples taking into account the proper
branching ratios from the Monte Carlo generation. Table 7.1 shows the signal effi-
ciencies of the different Bs decay channels. The signal efficiencies of the reference
decay B∗∗s → B+K− are determined in the same way as for the B∗∗s → B

(∗)
s π+π−

decays. Table 7.2 lists the efficiencies of the reference channel.

7.1.2 Efficiency Uncertainty

For the decay B∗∗s → B+K− the efficiency uncertainty is estimated by studying the
ratio of Monte Carlo to signal events in data at different selection cuts around the
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B∗∗s Decay Q [MeV/c2] Selected Efficiency [10−05]

Bs1 Bs → D−s π
+ D−s → K̄∗K− 176 . . . 192 52± 7.21 1.28± 0.178

D−s → φπ− 49± 7 1.21± 0.173
D−s → 3π± 299± 17.3 7.38± 0.427

Bs → D−s 3π± D−s → K̄∗K− 176 . . . 192 351± 18.7 8.26± 0.441
D−s → φπ− 635± 25.2 14.9± 0.593
D−s → 3π± 605± 24.6 14.2± 0.579

B∗s2 Bs → D−s π
+ D−s → K̄∗K− 138 . . . 162 60± 7.75 0.988± 0.128

D−s → φπ− 61± 7.81 1± 0.129
D−s → 3π± 372± 19.3 6.12± 0.318

Bs → D−s 3π± D−s → K̄∗K− 138 . . . 162 517± 22.7 8.11± 0.357
D−s → φπ− 912± 30.2 14.3± 0.474
D−s → 3π± 916± 30.3 14.4± 0.475

Table 7.1: Signal efficiencies of the Bs1 and B∗s2 in decays of B∗∗s → B
(∗)
s π+π−

estimated from the Monte Carlo samples.

B+ → D̄0π+

Bs1 B∗s2

D̄0 → K+π− 1.4329 · 10−03 8.8928 · 10−04

Table 7.2: Signal efficiencies of the Bs1 and B∗s2 in decays of B∗∗s → B+K− estimated
from the Monte Carlo samples.

original selection cut used in the B∗∗s → B+K− analysis [1]. The ratio of Monte
Carlo to data events is:

NMC (nout > ncut)

Ndata (nout > ncut)
. (7.2)

For the selection of these events different cuts ncut on the output nout of the same
neural network being used in the B∗∗s → B+K− analysis are applied. Additionally,
the numbers of signal events obtained from the data sample are sideband subtracted.
To study the efficiency for the Bs1 and B∗s2 separately, the events are selected in the
corresponding Q value ranges having different sideband regions.

Figures 7.1 and 7.2 show the ratio as a function of the cut on the output of the
neural network. The major part of the values are within a band of 10% uncertainty
of the average value. Therefore, an uncertainty of 10% is assumed for the efficiency
of the Bs1 and B∗s2 in decays to B∗∗s → B+K−.

For lack of any clean signal in the B∗∗s → B
(∗)
s π+π− data sample the efficiency

uncertainty of the Bs1 and B∗s2 cannot be directly studied in this decay. Assuming
the efficiency uncertainty being dominated by the efficiency uncertainty of the slow



7.1. Reconstruction Efficiencies 119

Cut on network output

0 0.1 0.2 0.3 0.4 0.5

d
a

ta
/N

M
C

N

0

10

20

30

40

50

-1
L=1fb

)
2

 (Q=11 MeV/cs1B

data
/NMCN

Mean

 10% uncertainty±

Figure 7.1: Ratio of the number of Monte Carlo to data events for the Bs1 of the
decay B∗∗s → B+K− for different cuts on the output of the neural network.
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Figure 7.2: Ratio of the number of Monte Carlo to data events for the B∗s2 of the
decay B∗∗s → B+K− for different cuts on the output of the neural network.
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Figure 7.3: Ratio of the number of Monte Carlo to data events as a function of the
minimal pion transverse momentum which is the minimum of the two transverse
momenta of the pions coming from the decay ψ (2S) → J/ψππ. The distributions
are normalised.

pions, the efficiency uncertainty can be estimated by studying an equivalent decay
having similar final states and a similar decay topology. For this reason, the reference
decay ψ (2S)→ J/ψππ was chosen whose data samples and selection procedure are
taken from the X(3872) analysis [78].

To study the efficiency uncertainty of the ψ (2S) → J/ψππ sample the ratio of
Monte Carlo and data events as a function of the minimal pion momentum is plot-
ted. The minimal pion momentum is the minimal transverse momentum of the
pions coming from the decay ψ (2S) → J/ψππ. The distributions of the trans-
verse momentum are obtained by applying the selection procedure being used in the
X(3872) analysis and an additional sideband subtraction applied to the data sam-
ple. Figure 7.3 shows the momentum dependence of this ratio. Most of the values
are within an uncertainty of 10%. Therefore, the signal efficiency uncertainty of the
decay B∗∗s → B

(∗)
s π+π− is estimated to be equally 10%.
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7.2 Q Value Resolution of the B∗∗s Signal

The Q value resolution is put into the fit as the width of the signal peaks. For
estimating the Q value resolution the Monte Carlo sample used in the neural network
training is studied. In order to estimate the resolution, events from the Monte Carlo
sample are selected by applying the same selection algorithm as for the data samples,
described in section 5.4. The difference between the measured and generated Q value
of the selected events is plotted in histograms with 4 MeV/c2 bin width. Each of
the peaks of either the decay B∗∗s → Bsπ

+π− and B∗∗s → B∗sπ
+π− is fitted using a

double Gaussian function of the form

G (Q) =
N1√
2πσ1

e
− (Q−Q0)2

2σ1 +
N2√
2πσ2

e
− (Q−Q0)2

2σ2 . (7.3)

Here, Q0 is the common mean of the two Gaussian functions having the widths σ1

and σ2, respectively. N1 and N2 are the number of events of each single Gaussian
component. For a better monotonous behaviour as a function of the measured
Q value the ratio of the widths and numbers of events in each double Gaussian are
fixed to have the following values:

N2 = 0.33 ·N1, (7.4)

σ2 = 2.63 · σ1. (7.5)

The arbitrary factors of 0.33 and 2.63 are chosen since they describe the residual
Q value distribution very well. In the appendix B these fits to the Monte Carlo
residuals are shown.

Figures 7.4 and 7.5 show the Q value resolution for the different B∗∗s decay chan-
nels. The Q value resolution at the Q values where the Bs1 and B∗s2 signals are
expected is shown in figures 7.6 and 7.7. Based on these measurements the widths
of the signal peaks in the unbinned likelihood fit are set to the average values of the
Q value resolutions:

σQ(Bs1) = 7.46 MeV/c2, (7.6)

σQ(B∗s2) = 7.14 MeV/c2. (7.7)

7.3 Likelihood Function

In order to measure the branching ratio of the Bs1 and B∗s2 in decays of B∗∗s →
B

(∗)
s π+π− an extended unbinned likelihood fit to the Q value distribution of the

data sample is performed. The used fitter is built using the Minuit [76] minimiser
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provided by the Root [77] package. The likelihood expression L of the fit function
consists of a Gaussian signal component and an exponential background component:

L =
∏
i

[
2 · BR

3
2

(1− BR)
· B̃R ·N ′B∗∗s · fsig (Qi) +Nbkg · fbkg (Qi)

]
. (7.8)

Here, the index i runs over all events in the data sample. The components of the
likelihood functions in detail are:

• Branching ratio BR

BR is the branching ratio of the B∗∗s states and the factor

2 · BR
3
2

(1− BR)
(7.9)

is the relative branching ratio of the studiedB∗∗s decay. Based on the parameter
BR a Bayesian limit is set on the branching ratio for the Bs1 and B∗s2 in decays

of B∗∗s → B
(∗)
s π+π−. The parameter BR is defined in the following way:

BR =
3
2

BR (B∗∗s → Bsπ
+π−)

3
2

BR (B∗∗s → Bsπ+π−) + 2 BR (B∗∗s → B+K−)
. (7.10)

Assuming that B∗∗s → Bsππ and B∗∗s → BK are the only decay modes of
the B∗∗s mesons this parameter is the absolute branching ratio for the decay

B∗∗s → B
(∗)
s π+π−. The advantage of its definition is the restriction to the

interval [0, 1] avoiding divergences in the Bayesian limit calculation assuming
a flat prior. The factors 3

2
and 2 take into account the different ratios of

decay probabilities into charged and uncharged particles considering the proper
isospin selection rules:

BR (B∗∗s → Bsπ
+π−)

BR (B∗∗s → Bsπ+π−) + BR (B∗∗s → Bsπ0π0)
=

2

3
, (7.11)

BR (B∗∗s → B+K−)

BR (B∗∗s → B+K−) + BR (B∗∗s → B0K0)
=

1

2
. (7.12)

• Branching ratio B̃R

B̃R is the relative branching ratio of the Bs subdecays with respect to the
reference decay taking into account the different efficiencies ε of the Bs and B
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decay modes. It is defined by

B̃R =

∑
i εiBRi

ε (B → Dπ) · BR (B → Dπ)
(7.13)

where i runs over the six different Bs subdecays whose branching ratios are
denoted by the parameter BRi. Section 7.1 describes how the signal efficiencies
of the subdecays are determined. For the branching ratios BRi the world
average values [2] are taken. The parameter B̃R is free in the fit within a
Gaussian constraint.

• Signal events N ′B∗∗s
Parameter N ′B∗∗s denotes the number of B∗∗s signal candidates in the reference
decay B∗∗s → B+K−. Section 7.5 describes how this number is obtained. This
parameter is constricted with a Gaussian constraint in the fit.

• Background events Nbkg

Number of background events in the B∗∗s → B
(∗)
s π+π− data sample.

• Signal probability density function fsig

The signal contribution of the likelihood expression is composed of a nor-
malised Gaussian function

fsig (Q) = G (Q;µQ, σQ) (7.14)

having mean µQ and width σQ. In the fit procedure the mean and width of
the signal component are kept fixed. For the signal width the mass resolution
described in section 7.2 is taken since the intrinsic width of the narrow B∗∗s
states is negligible compared to the detector resolution [21]. The position of
the signal peaks is determined by the known masses of the Bs1 and B∗s2 states
measured in the B∗∗s → B+K− analysis [1]. Therefore, the Bs1 → Bsπ

+π−

signal mean is set to 184 MeV/c2 and to 150 MeV/c2 for the B∗s2 → B∗sπ
+π−

signal when fitting the Bsπ
+π− samples. The B∗s2 signal is shifted downwards

by the energy of the undetected photon from the B∗s decay.

• Background probability density function fbkg

Since the background is mainly combinatorial background and should be zero
at Q = 0 due to physical reasons it is modelled by a linear term times an
exponential function

fbkg (Q) =
Q · exp (α ·Q)∫ Qmax

Qmin
Q′ · exp (α ·Q′) dQ′

. (7.15)
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Here, α is the only free parameter intended to describe the background distri-
bution. The background function is normalised within the fitting range from
Qmin = 0 to Qmax = 0.25 GeV/c2.

In the fit the negative log likelihood function L being defined as

L = −2 · lnL

+ 2 · 2 · BR
3
2

(1− BR)
· B̃R ·N ′B∗∗s + 2 ·Nbkg

+

(
B̃R− µfBR

σfBR

)2

+

(
N ′B∗∗s − µN ′B∗∗s

σN ′
B∗∗s

)2
(7.16)

is minimised. Here, the second line in equation (7.16) implies the extended part of
the likelihood fit providing proper uncertainties. As above mentioned, the mean and
width of the signal peak are kept fixed during the fit. The mean values of the signal
peaks are taken from the CDF observation of orbitally excited B∗∗s mesons in decays
of B∗∗s → B+K− [1] whereas the widths of the signal peaks are set to the Q value
resolution, described in section 7.2. The number of signal candidates of the reference
decay and the branching ratio B̃R are floating in the fit but confined by Gaussian
constraints implemented in the third line of equation (7.16). The number of signal
candidates in the reference decay is again taken from reference [1] and quoted for
completeness in table 7.3. Due to the Gaussian constraints the likelihood value of
the fit gets increasingly worse as it moves the floating parameters far away from the
values put initially into the fit to which they are constrained

7.4 Bayesian Limit

The Bayesian limit on the branching ratio of the narrow B∗∗s states is calculated
according to the formalism described in section 32.3.1 of the “Review of Particle
Physics” [2]. In order to set the limit a fit to the data sample is performed as
described in section 7.3 which is referred to as the free fit. In addition to the free
fit a set of consecutive fits is done where the parameter BR for the total branching
ratio is fixed to values in the interval [0, 1). Each fit returns a negative log likelihood
value L as defined in equation (7.16) which is transformed back into the likelihood
value ∆L as

∆L = exp

(
−L+ L0

2

)
. (7.17)

Here, L0 is the negative log likelihood value of the free fit. L0 is constant for the
complete set of consecutive fits having a fixed value for the branching ratio. Thus,
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it scales ∆L by a constant factor which has no effects on the result but avoids
numerical problems with extreme values of ∆L.

The Bayesian posterior probability density function is calculated from the likeli-
hood value as defined by

p (~a| ~x) =
∆L (~x|~a) π (~a)∫

∆L (~x|~a′) π (~a′) d~a′
(7.18)

where π (~a) is the prior probability density function which is assumed being flat:

π (~a) = 1 for all ~a. (7.19)

The denominator in equation (7.18) is merely intended to normalise the posterior
probability density function. In the single parameter case a credibility interval can
be determined containing a given fraction (1− β) of the probability:

1− β =

∫ aup

alo

p (a| ~x) da. (7.20)

For the upper limit aup on the branching ratios of the narrow B∗∗s states the single
parameter a is the total branching ratio a = BR and alo = 0.

7.5 Candidates in the Reference Channel

The number of the signal events in the reference channel B∗∗s → B+K− is taken
from the B∗∗s → B+K− analysis [1]. In this analysis a data sample of 1 fb−1 is
used. Therefore, the measured event numbers and uncertainties are extrapolated in
a way that they correspond to a data sample having 2.8 fb−1 as it is the case for the
B∗∗s → B

(∗)
s π+π− data sample.

Assuming that the number of B∗∗s mesons scales with the number of Bs mesons,
the number of events given in the reference channel are multiplied by the ratio
of Bs candidates in the full Bsπ

+π− data sample of 2.8 fb−1 and below 1 fb−1 in
the same data sample. The number of Bs mesons in the Bsπ

+π− data sample is
obtained from fits to the invariant mass of the Bs. The events used in the fit sample
are selected by the same selection cuts as developed in context of the Bs mixing
analysis [65, 66, 67]. In figure 7.8 the fits to the B∗∗s subsample are shown. The
signal is fitted with a Gaussian function and the background shape is modelled by
a linear function. Table 7.3 gives the numbers of measured and extrapolated signal
events in the reference channel.

Despite having almost three times the integrated luminosity the number of signal
events are merely doubled. This is due to the fact that the CDF II experiment scales
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Figure 7.8: Fit to the invariant mass distribution of the Bs in different B∗∗s data

subsamples. The number of Bs candidates below and above 1.0 fb−1 are used to
extrapolate the number of signal events in the reference channel.
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B∗∗s → B+K− measured in 1 fb−1 extrapolated to 2.8 fb−1

Bs1 20.66± 7.12 39.09± 13.47
B∗s2 55.74± 19.2 105.46± 36.33

Table 7.3: Number of signal events in the reference channel B∗∗s → B+K− with

B+ → D̄0π+, selected in 1 fb−1 of data and extrapolated to 2.8 fb−1. The measured
numbers are taken from the B∗∗s → B+K− analysis [1].

down the triggers used for B-physics at high luminosities which happend for the last
periods of data taking.



8 Results

In this chapter, the results of the unbinned maximum likelihood fits to the B∗∗ and
B∗∗s data samples are presented. The fits are described in detail in chapter 6 and in
chapter 7, respectively.

8.1 B∗∗ Results

The masses of the narrow B∗∗ states are determined by a likelihood fit to the Q value
of the combined B∗∗ data sample. In the same time, the width of the B∗2 state is also
measured. The presentation of the results of the B∗∗ analysis starts with describing
the study of systematic uncertainties. Afterwards, the final results of the fit are
presented.

8.1.1 Systematic Uncertainties

There are several sources of systematic uncertainties on the mass and width mea-
surement. Their impact on the fit parameters is summarised in table 8.1. The
different sources of uncertainties are:

• Mass scale

Mass scale uncertainties arise from the calibration of the momentum scale. To
determine the mass scale uncertainty the ψ (2S) is reconstructed in decays of
ψ (2S)→ J/ψπ+π− having a similar Q value as the B∗∗ decay. The difference
between the measured ψ (2S) mass and the world average value [2] is taken as
mass scale uncertainty for the B∗∗ measurement.

• Signal efficiency

To determine the uncertainty due to the mass dependent signal efficiency
Monte Carlo samples are generated. Each of these samples is fitted using
the default fit model. The mass difference between generated and measured
mass is plotted and fitted with a single Gaussian. The systematic uncertainty
is determined by the mean of the difference distribution.
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Source Q(B∗2) Γ(B∗2) m(B∗2)−m(B1) Q(B1)

Mass scale +0.20 – +0.003 +0.20
−0.20 – −0.003 −0.20

Signal efficiency +0 +0.40 +0 +0.40
−0.03 −0 −0.30 −0

Fit model +0.35 +2.09 +0.65 +0.74
−0.29 −1.45 −0.94 −0.98

Fit bias and signal model +0 +0.44 +0 +0.07
−0.28 −0 −0.21 −0.21

Background model +0.24 +0 +0.16 +0
−0 −1.63 −0 −0.09

Detector resolution +0.001 +0 +0 +0.005
−0.001 −0.40 −0.003 −0

Broad B∗∗ states +0.65 +2.27 +0.89 +0.96
−0.51 −9.92 −0.95 −0.92

Total +0.81 +3.14 +1.11 +1.29
−0.68 −10.16 −1.39 −1.38

Table 8.1: Summary of the systematic uncertainties on the B∗∗ signal parameters
given in MeV/c2.

• Gaussian constraints

Assumptions are included in the fit as Gaussian constraints. Thus, the system-
atic uncertainties are already enclosed in the statistical error obtained from
the fit. To separate the statistical and systematic error, different fits are made
to the data. Fits having floating Gaussian constraints give the total error in
the form:

σtotal =
√
σ2

sys + σ2
stat. (8.1)

Fits having fixed Gaussian constraints yield merely the statistical error. The
systematic error can be determined on the basis of these two types of fits:

σsys =
√
σ2

total − σ2
stat. (8.2)

• Fit bias and signal model

The signal is modelled by a Breit-Wigner function convoluted with the detector
resolution. To check the systematic uncertainties due to the signal model a set
of Monte Carlo samples is generated according to a modified signal function.
Here, the Breit-Wigner function used for the generation is multiplied by a
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phase space factor before convoluting. The Monte Carlo samples are fitted with
the default Breit-Wigner function and the difference between the generated
and measured masses is plotted. The means of these differences are taken as
systematic uncertainties.

• Background model

To study the systematic impact of the background model Monte Carlo sam-
ples are generated having an alternate background shape. This alternate back-
ground contains an additional part of a polynomial times an exponential func-
tion. Two types of fits are performed on these samples: The default fit having
the default background component and the alternate fit having the alternate
background shape. The systematic uncertainty is derived from the means of
the differences between the default and the alternate fit.

• Detector resolution

The mass resolution model enters the final fit as described in section 6.1. To
estimate the systematic uncertainty Monte Carlo samples are generated with
a Gaussian detector resolution whose width is increased by 20%. The samples
are fitted and the difference in the Monte Carlo samples is plotted. Fits to the
difference show that the shift is small compared to the uncertainty of the shift.
Therefore, the uncertainty of the shift is taken as systematic uncertainty for
the detector resolution.

• Broad B∗∗ states

Theoretical predictions about the position and width of the broad B∗∗ states
vary highly. To study the systematic impact caused by the broad states,
the data sample is refitted using two additional Breit-Wigner functions for
modelling the broad states. Different locations and widths are put into the
Breit-Wigner functions of the broad states. From the fit to the data sample,
two quantities are derived, called high value and low value. The high value is
the central value of a parameter plus the positive uncertainty σ+ calculated
by

σ+ =
√
σ2

(broad states,+) − σ2
(baseline,+) (8.3)

where σ(broad states/baseline,+) is the positive uncertainty of either the fit taking
into account the broad states or the baseline fit. This formula is used to avoid
double-counting the statistical errors. The low value is defined in a similar way
using the negative uncertainty instead. The positive systematic uncertainty is
given by the difference between the parameter value from the baseline fit and
high value from the fit with broad states included. The negative systematic
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Figure 8.1: Result of the B∗∗ fit combining all three decay modes B∗∗ → B(∗)+π−

with B+ → J/ψK+, B+ → D̄0π+ and B+ → D̄0 3π±.

uncertainty is derived analogously. For the finally quoted systematics the
maximum of any tested combinations of the broads states is taken.

8.1.2 Fit Results for B∗∗

Figure 8.1 shows the fit to the combined B∗∗ data sample which comprises the decays
B∗∗ → B(∗)+π− with B+ → J/ψK+, B+ → D̄0π+ and B+ → D̄0 3π±. Table 8.2
summarises the parameter values obtained from the fit.

From the fit the following signal parameters are obtained:

Q(B∗2) = 321.5+1.7
−1.8 (stat) +0.9

−0.7 (syst) MeV/c2, (8.4)

m(B∗2)−m(B1) = 14.9+2.2
−2.5 (stat) +1.2

−1.4 (syst) MeV/c2, (8.5)

Γ(B∗2) = 22.7+3.8
−3.2 (stat) +3.2

−10.2 (syst) MeV/c2. (8.6)
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Parameter Value Parabolic Error MINOS Errors

Q(B∗2) [MeV/c2] 321.5 1.7 (+1.7,−1.8)
Γ(B∗2) [MeV/c2] 22.7 3.8 (+4.3,−3.5)
m(B∗2)−m(B1) [MeV/c2] 14.9 2.4 (+2.3,−2.7)
B1 → B∗π events 503 105 (+114,−99)
B∗2 → Bπ events 385 53 (+55,−51)

Frac. of B∗2 events 0.91 0.20 (+0.20,−0.21)
E(γ) [MeV/c2] 45.78 0.35 (+0.35,−0.35)
Γ(B1)/Γ(B∗2) 0.95 0.17 (+0.17,−0.16)
Bs1 events 22 12 (+12,−12)
B∗s2 events 74 31 (+31,−30)

Bkg α 0.72 0.05 (+0.05,−0.05)
Bkg γ 2.21 0.24 (+0.24,−0.23)
Bkg Qmax [MeV/c2] 335 9 (+9,−8)
Bkg events 10276 279 (+289,−267)
Extra Bkg events 2344 243 (+226,−261)

Table 8.2: Summary of the fit parameter values from the fit to the combined B∗∗ data
sample. The first five parameters are related to the signal and the next five param-
eters are Gaussian constraints. The last five parameters are used in the background
parametrisation.

The absolute mass of the B∗2 can then be derived by adding the world average
value [2] of the B+ and the charged pion masses to the Q value of the B∗2 . The
uncertainty of the B+ and the charged pion mass are added in quadrature to the
systematic uncertainty. The mass of the B1 is obtained by subtracting the mass
difference m(B∗2)−m(B1) from the Q value of the B∗2 before adding the B+ and the
charged pion mass. The uncertainties on the world average values are again added
to the systematic uncertainty. The absolute masses are calculated to be

m(B∗2) = 5740.2+1.7
−1.8 (stat) +0.9

−0.8 (syst) MeV/c2, (8.7)

m(B1) = 5725.3+1.6
−2.2 (stat) +1.4

−1.5 (syst) MeV/c2. (8.8)

Since the B∗∗ production is not measured here, only the statistical uncertainties
are given on the number of measured events with number of signal events to be:

N(B∗2 → B+π−) = 385+48
−45 (stat), (8.9)

N(B∗2 → B∗+π−) = 351+48
−45 (stat), (8.10)

N(B1 → B∗+π−) = 503+75
−68 (stat). (8.11)

Although not measured in this analysis, the ratio of the widths Γ(B1)
Γ(B∗2 )

is consistent
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Parameter Value Error

BR −1.791 4.639
B̃R 0.183 0.0546 constrained
N ′B∗∗s

39.09 13.5 constrained
µQ 0.184 fixed

[
GeV/c2

]
σQ 0.00746 fixed

[
GeV/c2

]
Nbkg 152.1 13.55
α 4.235 1.496

Table 8.3: Values of the fit parameters from the free fit for the Bs1.

Parameter Value Error

BR 0.155 0.1074
B̃R 0.282 0.0848 constrained
N ′B∗∗s

105.5 36.49 constrained
µQ 0.15 fixed

[
GeV/c2

]
σQ 0.00714 fixed

[
GeV/c2

]
Nbkg 138.7 12.47
α 4.724 1.617

Table 8.4: Values of the fit parameters from the free fit for the B∗s2.

with theoretical predictions of 0.9±0.2 [14] as is the fraction of the branching ratios
BR(B∗2→Bπ)

BR(B∗2→B∗π)
with 1.1± 0.3 [79]. The measured signal parameters themselves are also

consistent with theoretical predictions [18, 20].

In summary, this is the most precise mass measurement of the narrow B∗∗ states
and the first width measurement of the B∗2 . However, the mass measurement is still
limited by statistics so further improvements from the CDF experiment are possible.

8.2 B∗∗s Results

In this section, the results of the unbinned maximum likelihood fit to the Q value of
the B∗∗s data sample are given. The results are obtained by applying the fit function
described in chapter 7 to the data samples selected as shown in chapter 5.

Tables 8.3 and 8.4 give the values of the parameters determined by the free fit,
where only the mean and width of the signal peaks are fixed. The corresponding
plots in figures 8.2 and 8.3 do not show evidence for a significant signal in the B∗∗s
data sample. Therefore, a Bayesian limit is set on the branching ratios of the Bs1 and
B∗s2 states. The Bayesian limit is calculated assuming a flat prior for the branching
ratio.
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Figure 8.2: Result of the free fit for the Bs1 in decays of Bs1 → Bsπ
+π−.

To see whether there are any other minima of the fit function, the negative log
likelihood function is scanned for all floating parameters. After the free fit has
converged, all fit parameters of the likelihood function are fixed except for one. The
likelihood function is plotted as a function of this unfixed parameter. Figures 8.4
through 8.13 show the projection of the likelihood function for all parameters being
floating in the free fit. The plots confirm that the fit converges well.

In order to set an upper limit on the branching ratios for either the Bs1 and B∗s2
states the Bayesian approach is used assuming a flat prior for the branching ratio.
The is consecutively refitted with different fixed values for the branching ratio BR.
From these fits the fit posterior probability density as a function of the branching
ratio BR is obtained and shown in figures 8.14 and 8.15.

The integrated posterior probability density function yields a direct value for the
upper limit of the branching ratio for the Bs1 and B∗s2. The integral of the posterior
probability density as a function of the branching ratio is plotted in figures 8.16 and
8.17. For the Bs1 the upper limit is determined to be for a 95% credibility level 0.54
and for B∗s2 it is 0.53.

The rather loose limit on the branching ratios of the Bs1 and B∗s2 states can be
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Figure 8.3: Result of the free fit for the B∗s2 in decays of B∗s2 → B∗sπ
+π−.
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Figure 8.7: Negative log likelihood scan

for the parameter B̃R in the free fit for
the B∗s2.
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Figure 8.10: Negative log likelihood scan
for the parameter N ′B∗∗s in the free fit for
the Bs1.
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Figure 8.11: Negative log likelihood scan
for the parameter N ′B∗∗s in the free fit for
the B∗s2.
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Figure 8.17: The integrated posterior
probability density function of the B∗s2
as a function of the branching ratio BR.

Quantity Relative uncertainty Affected parameter Reference

BR(Bs → Dsπ) 28% B̃R [2]
BR(Bs → Ds3π) 39% B̃R [2]
N(B∗∗s → B+K−) 31% N ′B∗∗s

[1]

Table 8.5: Quantities entering the fit function having large uncertainties. It is also
listed which fit function parameters they affect and the source from where the values
are obtained.

understood with regard to the assumptions put into the fit. The rather high un-
certainties included in the fit as Gaussian constraints prevent the limit of being
more stringent. Especially the uncertainties of the branching ratios of the Bs sub-
decays and the uncertainty of the number of candidates in the reference channel are
quite large. Table 8.5 gives an overview about the quantities having the highest
uncertainties which enter the fit.



9 Conclusion and Outlook

It was the aim of the analyses presented in this thesis to search for B∗∗ and B∗∗s
mesons. Mesons consisting of a heavy and a light quark play a similar role for
studying quantum chromodynamics as the hydrogen atom did for understanding
quantum electrodynamics. Thereby, the heavy quark plays the role of the nucleus
and the light quark takes the part of the electron. According to this analogy, a
hyperfine mass splitting of the excited states emerges due to the spin-orbit coupling
of the heavy and the light quark.

In this analysis, heavy-light mesons in decays of B∗∗ → B(∗)+π− and B∗∗s →
B

(∗)
s π+π− were studied. To reconstruct the signal candidates three exclusive decay

modes of the B+ and six decay modes of the Bs were used. The data samples
were collected with the CDF II detector located at the Fermi National Accelerator
Laboratory in the vicinity of Chicago. The used data corresponds to an integrated
luminosity of 1.7 fb−1 for the B∗∗ sample and 2.8 fb−1 for the B∗∗s sample.

The selection of the candidates is based on artificial neural networks. The networks
were trained on simulated events for modelling the signal and real data events as
background. In contrast to purely cut based selections, neural networks have the
advantage of taking into account correlations among the input variables yielding a
better signal to noise ratio. The selection was optimised to maximise the signal
significance being generally defined as a function of the number of signal and of
background events.

In the decays of B∗∗ → B(∗)+π− clean signals were seen which are interpreted
as the two narrow B∗∗ states. From the unbinned maximum likelihood fit to the
Q value distribution the masses of the B1 and B∗2 are determined to be

m(B∗2) = 5740.2+1.7
−1.8 (stat) +0.9

−0.8 (syst) MeV/c2,

m(B1) = 5725.3+1.6
−2.2 (stat) +1.4

−1.5 (syst) MeV/c2.

The width of the B∗2 was measured to be

Γ(B∗2) = 22.7+3.8
−3.2 (stat) +3.2

−10.2 (syst) MeV/c2.

This is the most precise mass measurement up to date for the narrow B∗∗ states
and the first measurement of the B∗2 width. However, the mass measurement is
still limited by the statistical uncertainty so further improvements from the CDF
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experiment are possible.
In the decays of B∗∗s → B

(∗)
s π+π− no significant signal was observed. Therefore,

a Bayesian limit was set on the branching ratio of the narrow B∗∗s states. Since the
B∗∗s production rates are not known the branching ratio was measured relative to the
reference decay B∗∗s → B+K−. The limit was derived by integrating the posterior
probability density function of the unbinned maximum likelihood fit to the Q value
distribution. The limits at a credibility level of 95% are determined to be

BR(Bs1 → Bsππ)

BR(Bs1 → Bsππ) + BR(Bs1 → BK)
< 0.54,

BR(B∗s2 → Bsππ)

BR(B∗s2 → B∗sππ) + BR(B∗s2 → BK)
< 0.53.

The limit is relatively weak as several assumptions being put into the fit to the B∗∗s
data samples have quite large uncertainties.

In summary, the analyses of the B∗∗ and B∗∗s mesons have yielded a new piece of
puzzle to the understanding of quantum chromodynamics. Adding more data to the
samples in future will decrease the statistical uncertainties. The appearance of a B∗∗s
signal in decays of B∗∗s → B

(∗)
s π+π− is still possible. With a sufficiently improved

resolution of the experiment it would be also possible to distinguish the three B∗∗

signal peaks of the decays B1 → B∗π, B∗2 → B∗π and B∗2 → Bπ.
In this analysis a search for the narrow B∗∗ and B∗∗s states was performed. In order

to complete the picture about orbitally excited B and Bs mesons, observations about
the broad states are essential. Those states are of course hard to distinguish from
the combinatorial background even with the aid of the currently available selection
methods.
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A Definitions

A.1 Particles

The symbols used for particles in chapter 5 are usually unambiguous within a single
decay channel. If not, the symbol of the parent particle is put to the variable as an
index. For instance, the πB∗∗ is the pion from the decay B∗∗ → B(∗)+π−.

Additionally, the three pions from the decays B+ → D̄0 3π± and Bs → D−s 3π±

have superscript numbers, for example π
(1)

B+ , π
(2)

B+ and π
(3)

B+ . These pions are sorted
in a way that pion (1) and (2) have the same charge whereas the charge of pion (3)
is different. Moreover, pion (1) has a higher transverse momentum than pion (2).

A.2 Variables

For the following definitions of the variable names used in chapter 5, the placeholders
α, β and γ are used for aribtrary particles.

pt(α) The transverse momentum of the particle α.

maxB∗∗s (pt) The maximum of the transverse momenta of the pions from the
decay B∗∗s → Bsπ

+π−.

minB∗∗s (pt) The minimum of the transverse momenta of the pions from the
decay B∗∗s → Bsπ

+π−.

pt(α;<) The transverse momentum of the α in the case it is smaller than
2.0 GeV/c.

pt(α;>) The transverse momentum of the α in the case it is higher than
2.0 GeV/c.

|d0(α)| The absolute value of the impact parameter of the α.

d0/σd0(α) The significance of the impact parameter of the α.

dlts0 /σd0(α) The lifetime signed impact parameter of the α.
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maxB∗∗s (|d0|) The maximum of the absolute values of the impact parameters
of the pions from the decay B∗∗s → Bsπ

+π−.

minB∗∗s (|d0|) The minimum of the absolute values of the impact parameters
of the pions from the decay B∗∗s → Bsπ

+π−.

maxB+ (|d0|) The maximum of the absolute values of the impact parameters
of the pions from the decay B+ → D̄0 3π±.

minB+ (|d0|) The minimum of the absolute values of the impact parameters
of the pions from the decay B+ → D̄0 3π±.

Lxy(α) The transverse decay length of the α with respect to the primary
vertex. The transverse decay length is the projection of the decay
length to the x-y plane which is perpendicular to the beam axis.

Lxy/σLxy(α) The significance of the transverse decay length of the α with
respect to the primary vertex.

`xy(α) The transverse decay length of the α with respect to the decay
vertex of the parent particle.

`xy/σ`xy(α) The significance of the transverse decay length of the α with
respect to the decay vertex of the parent particle.

η(α) The pseudorapidity of the α.

∆R(α, β) ∆R(α, β) =
√

(∆η)2 + (∆ϕ)2, where η is the pseudorapidity and

ϕ the azimuthal angle.

θ∗(α) The cosine of the angle between the momentum of the α in rest
frame of the the parent particle and the parent particle’s mo-
mentum in the laboratory frame.

θhel(α) The cosine of the helicity angle of the α which is defined as the
angle between the α momentum in the rest frame of the particle
and the momentum of the grandparent particle.

θa1 The angle between the momentum of the a1 and the normal
vector of the plane spanned by the momenta of the two pions
from the decay B+ → D̄0 3π± having the same charge.

P (α) The fit probability of the α kinematic fit with appropriate topol-
ogy constraints.
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χ2
rφ(α) The χ2 of the two-dimensional vertex fit of the α.

m(α) The invariant mass of the α.

|m(α)−mPDG| The absolute value of the difference between the mass of the α
and the world average value.

m
(
π

(1)

B+ , π
(2)

B+

)
The invariant mass of the two pions from the decay B+ →
D̄0 3π± having the same charge.

mmin

(
π

(1,2)

B+ , π
(3)

B+

)
The invariant mass of the combination of two pions having dif-

ferent charges from the decay B+ → D̄0 3π± yielding the smaller
invariant mass

mmax

(
π

(1,2)

B+ , π
(3)

B+

)
The invariant mass of the combination of two pions having dif-

ferent charges from the decay B+ → D̄0 3π± yielding the higher
invariant mass

mπ+π+π− The invariant mass of the three pions from the decay B+ →
D̄0 3π± divided by the difference between the masses of the B+

and the D.

Q The Q value. For B∗∗ decays it is defined as Q = m(B∗∗) −
m(B+)−m(π) and for B∗∗s decays it is Q = m(B∗∗s )−m(Bs)−
2m(π).

Lπ(α; TOF) The PID likelihood ratio of the particle α under pion hypothesis
in the case there is time of flight information. The PID is defined
as

PID =
PdE/dx(hi) · PTOF (hi)∑

j 6=i fj · PdE/dx(hj) · PTOF (hj)
(A.1)

where hi is a given particle hypothesis, in the pion case i =
π. PdE/dx and PTOF are the probabilities from the energy loss
measurement in the COT and the time of flight measurement,
respectively. The factor fj is 0.7 for pions, 0.2 for kaons and 0.1
for protons. The denominator sums over the remaining particle
species.

Lπ(α; TOF) The PID likelihood ratio of the particle α under pion hypothesis
in the case there is no time of flight information.

LK(α; TOF) The PID likelihood ratio of the particle α under kaon hypothesis
in the case there is time of flight information.
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LK(α; TOF) The PID likelihood ratio of the particle α under kaon hypothesis
in the case there is no time of flight information.

nNN(α) The output of the neural network used to select the α.

nNN(α→ β, β → γ) The output of the neural network used to select the α in the
decay of α→ β with β → γ.

nDcy The ordinal number of the Bs decay channel. Possible values
are:

Value Decay channel

1 Bs → D−s π
+ D−s → K̄∗K−

2 D−s → φπ−

3 D−s → 3π±

4 Bs → D−s 3π± D−s → K̄∗K−

5 D−s → φπ−

6 D−s → 3π±



B Monte Carlo Residuals

The residual Q value distribution is used to determine the Q value resolution of the
B∗∗s signal, as described in section 7.2. Figures B.1 through B.6 show the residuals

of the B∗∗s → B
(∗)
s π+π− Monte Carlo samples.
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Figure B.1: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗s → B
(∗)
s π+π− with Bs → D−s π

+, D−s → K̄∗K− for different Q value ranges.
Having two peaks arises from the fact that the photon from the decay B∗s → Bsγ is
not detected by the CDF II detector.
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Figure B.2: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗s → B
(∗)
s π+π− with Bs → D−s π

+, D−s → φπ− for different Q value ranges.
Having two peaks arises from the fact that the photon from the decay B∗s → Bsγ is
not detected by the CDF II detector.
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Figure B.3: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗s → B
(∗)
s π+π− with Bs → D−s π

+, D−s → 3π± for different Q value ranges.
Having two peaks arises from the fact that the photon from the decay B∗s → Bsγ is
not detected by the CDF II detector.
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Figure B.4: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗s → B
(∗)
s π+π− with Bs → D−s 3π±, D−s → K̄∗K− for different Q value ranges.

Having two peaks arises from the fact that the photon from the decay B∗s → Bsγ is
not detected by the CDF II detector.
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Figure B.5: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗s → B
(∗)
s π+π− with Bs → D−s 3π±, D−s → φπ− for different Q value ranges.

Having two peaks arises from the fact that the photon from the decay B∗s → Bsγ is
not detected by the CDF II detector.
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Figure B.6: Residual Q value distribution in the Monte Carlo sample of the decay

B∗∗s → B
(∗)
s π+π− with Bs → D−s 3π±, D−s → 3π± for different Q value ranges.

Having two peaks arises from the fact that the photon from the decay B∗s → Bsγ is
not detected by the CDF II detector.





C Monte Carlo Decay Tables

C.1 Table for B∗∗ Decays with B+ → J/ψK+

Al ia s myB+ B+
Al ia s myB− B−
Al ia s myB∗+ B∗+
Al ia s myB∗− B∗−
Al ia s myJ/ p s i J/ p s i

Decay B 2∗0
. 2 myB+ pi− PHSP;
. 2 myB∗+ pi− PHSP;
Enddecay

Decay ant i−B 2∗0
. 2 myB− pi+ PHSP;
. 2 myB∗− pi+ PHSP;
Enddecay
#
Decay myB∗+
. 2 myB+ gamma PHSP;
Enddecay
#
Decay myB∗−
. 2 myB− gamma PHSP;
Enddecay
#
#
Decay myB+
.11 myJ/ p s i K+ SVS ;
Enddecay
#
Decay myB−
. 11 myJ/ p s i K− SVS ;
Enddecay
#
Decay myJ/ p s i
. 11 mu+ mu− PHOTOS VLL;
Enddecay
#
End

C.2 Table for B∗∗ Decays with B+ → D̄0 (3)π±

Al ia s myB+ B+
Al ia s myB− B−
Al ia s myB∗+ B∗+
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Al ia s myB∗− B∗−

Decay B 2∗0
. 2 myB∗+ pi− PHSP;
. 2 myB+ pi− PHSP;
Enddecay
#
Decay ant i−B 2∗0
. 2 myB∗− pi+ PHSP;
. 2 myB− pi+ PHSP;
Enddecay
#
#
Decay myB∗+
. 2 myB+ gamma PHSP;
Enddecay
#
Decay myB∗−
. 2 myB− gamma PHSP;
Enddecay
#
#
Decay myB+
0.0100 ant i−D0 pi+ PHSP;
0 .0090 a 1+ anti−D0 SVS ;
0 .0005 ant i−D0 rho0 p i+ PHSP;
0 .0005 ant i−D0 pi− pi+ pi+ PHSP;
Enddecay
#
Decay myB−
0 .0100 D0 pi− PHSP;
0 .0090 a 1− D0 SVS ;
0 .0005 D0 rho0 pi− PHSP;
0 .0005 D0 pi+ pi− pi− PHSP;
Enddecay
#
#
Decay D0
0.0383 K− pi+ PHSP;
Enddecay
#
Decay ant i−D0
0.0383 K+ pi− PHSP;
Enddecay
#
Decay a 1+
0.4910 rho0 p i+ VVS PWAVE 0.9091 0 .0 0 .0 0 .0 −0.0909
0 . 0 ;
Enddecay
#
Decay a 1−
0 .4910 rho0 pi− VVS PWAVE 0.9091 0 .0 0 .0 0 .0 −0.0909
0 . 0 ;
Enddecay
#
Decay rho0
1 .000 p i+ pi− VSS ;
Enddecay
#
End
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C.3 Table for B∗∗s Decays with Bs → D−s π
+

Decay B s2 ∗0
. 2 B s∗0 p i+ pi− PHSP;
. 2 B s0 p i+ pi− PHSP;
Enddecay
#
Decay ant i−B s2 ∗0
. 2 ant i−B s∗0 pi− pi+ PHSP;
. 2 ant i−B s0 pi− pi+ PHSP;
Enddecay
#
#
Decay B s∗0
. 2 B s0 gamma PHSP;
Enddecay
#
Decay ant i−B s∗0
. 2 ant i−B s0 gamma PHSP;
Enddecay
#
#
Decay B s0
0.0100 D s− pi+ PHSP;
0 .0005 J/ p s i phi PHSP;
Enddecay
#
Decay ant i−B s0
0.0100 D s+ pi− PHSP;
0 .0005 J/ p s i phi PHSP;
Enddecay
#
Decay D s+
0.0247 phi p i+ SVS ;
0 .0247 ant i−K∗0 K+ SVS ;
0 .0004 rho0 p i+ SVS ;
0 .0180 f 0 p i+ PHSP;
0 .0023 f 2 p i+ PHSP;
0 .0040 p i+ pi− pi+ PHSP;
Enddecay
#
Decay D s−
0 .0247 phi pi− SVS ;
0 .0247 K∗0 K− SVS ;
0 .0004 rho0 pi− SVS ;
0 .0180 f 0 pi− PHSP;
0 .0023 f 2 pi− PHSP;
0 .0040 pi− pi− pi+ PHSP;
Enddecay
#
Decay f 0
0 .5200 p i+ pi− PHSP;
Enddecay
#
Decay f 2
0 .5650 p i+ pi− TSS ;
Enddecay
#
Decay phi
0 .4910 K+ K− VSS ;
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Enddecay
#
Decay a 1+
0 .6 rho0 p i+ VVS PWAVE 1.0 0 .0 0 .0 0 .0 −0.1 0 . 0 ;
Enddecay
#
Decay a 1−
0 .6 rho0 pi− VVS PWAVE 1.0 0 .0 0 .0 0 .0 −0.1 0 . 0 ;
Enddecay
#
Decay rho0
1 .000 p i+ pi− VSS ;
Enddecay
#
Decay K∗0
0 .6657 K+ pi− VSS ;
Enddecay
#
Decay ant i−K∗0
0 .6657 K− pi+ VSS ;
Enddecay
#
Decay J/ p s i
1 mu+ mu− PHSP;
Enddecay
#
Decay phi
1 K+ K− PHSP;
Enddecay
#
#
End

C.4 Table for B∗∗s Decays with Bs → D−s 3π±

Decay B s2 ∗0
. 2 B s∗0 p i+ pi− PHSP;
. 2 B s0 p i+ pi− PHSP;
Enddecay
#
Decay ant i−B s2 ∗0
. 2 ant i−B s∗0 pi− pi+ PHSP;
. 2 ant i−B s0 pi− pi+ PHSP;
Enddecay
#
#
Decay B s∗0
. 2 B s0 gamma PHSP;
Enddecay
#
Decay ant i−B s∗0
. 2 ant i−B s0 gamma PHSP;
Enddecay
#
#
Decay B s0
0.0090 a 1+ D s− SVS ;
0 .0005 D s− rho0 p i+ PHSP;
0 .0005 D s− pi− pi+ pi+ PHSP;
Enddecay
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#
Decay ant i−B s0
0.0090 a 1− D s+ SVS ;
0 .0005 D s+ rho0 pi− PHSP;
0 .0005 D s+ pi+ pi− pi− PHSP;
Enddecay
#
Decay D s+
0.0247 phi p i+ SVS ;
0 .0247 ant i−K∗0 K+ SVS ;
0 .0004 rho0 p i+ SVS ;
0 .0180 f 0 p i+ PHSP;
0 .0023 f 2 p i+ PHSP;
0 .0040 p i+ pi− pi+ PHSP;
Enddecay
#
Decay D s−
0 .0247 phi pi− SVS ;
0 .0247 K∗0 K− SVS ;
0 .0004 rho0 pi− SVS ;
0 .0180 f 0 pi− PHSP;
0 .0023 f 2 pi− PHSP;
0 .0040 pi− pi− pi+ PHSP;
Enddecay
#
Decay f 0
0 .5200 p i+ pi− PHSP;
Enddecay
#
Decay f 2
0 .5650 p i+ pi− TSS ;
Enddecay
#
Decay phi
0 .4910 K+ K− VSS ;
Enddecay
#
Decay a 1+
0 .6 rho0 p i+ VVS PWAVE 1.0 0 .0 0 .0 0 .0 −0.1 0 . 0 ;
Enddecay
#
Decay a 1−
0 .6 rho0 pi− VVS PWAVE 1.0 0 .0 0 .0 0 .0 −0.1 0 . 0 ;
Enddecay
#
#
Decay rho0
1 .000 p i+ pi− VSS ;
Enddecay
#
Decay K∗0
0 .6657 K+ pi− VSS ;
Enddecay
#
Decay ant i−K∗0
0 .6657 K− pi+ VSS ;
Enddecay
#
End
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Zunächst danke ich Herrn Professor Michael Feindt, als Doktorand in seiner For-
schungsgruppe arbeiten zu dürfen, wodurch diese Arbeit überhaupt möglich wurde.
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Ermöglicht wurde die Dissertation durch ein Stipendium des Graduiertenkollegs
Hochenergiephysik und Teilchenphysik der Deutschen Forschungsgemeinschaft. An
dieser Stelle danke ich Michaela Gerstner, Isabelle Junge, Bärbel Bräunling und
Waltraud Weißmann für den stetigen Kampf gegen die Bürokratie.
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