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Extended Abstract
I  will  succinctly  state  the  problems  that  motivate  this  dissertation  and  outline  the  key 

findings. Though widely used in many disciplines ranging from psychometrics to economics and 

finance, there are two reasons why classical  factor analysis  cannot be correctly applied to large 

panels of data such as econometric time series or financial returns. First, for large samples such as 

the Russell 1000 it is very onerous to carry out the computation of maximum likelihood of classical 

factor  analysis  estimation.  Second,  the  assumption  of  uncorrelated  residuals  is  not  empirically 

tenable. 

Allowing correlated residuals poses several problems. In fact, consider a factor model with a 

finite number of observed variables  N and a possibly infinite number of observations εβ += fx  

where  f denotes common factors and  ε denotes  possibly correlated residuals. The fact  that  the 

residuals  are  possibly  correlated  implies  that  residuals  themselves  can  have  a  factor  structure 
ηχε += g . As a consequence, there is the need for criteria to determine factors and to separate 

common factors from residual factors. 

It proved to be very difficult to establish theoretically sound and empirically meaningful 

criteria to separate common factors from correlated residuals. The literature on factor models has 

taken a different path, proposing the paradigm of approximate factor models that are infinite in both 

the  number  N of  observed  variables  and the  number  T of  observations.  In  approximate  factor 

models,  the separation  between common factors  and residuals  is  achieved in  a natural  way by 

assuming  that  the  eigenvalues  of  the  covariance  matrix  corresponding  to  the  common  factors 

diverge while  the remaining  eigenvalues  remain bounded.  Under these assumptions,  factors  are 

unique (up to a rotation) and can be estimated with principal components. 

In  the  literature,  it  is  generally  assumed  that  large  samples  including  stock  returns  and 

macroeconomic variables can be analyzed with approximate factor models. The practice of asset 

management,  however,  has  taken  a  different  approach  in  applying  factor  models,  proposing  a 

number of factor models constructed with criteria based on identifying fundamental  parameters, 

sectors, countries, or exogenous variables. Considerable effort is currently dedicated to identifying 

proprietary  factors  that  might  differentiate  one  portofolio  or  asset  management  process  from 

another. Events following the market turmoil of the summer of 2007 heightened the attention to the 

problem of differentiating portfolios and strategies to reduce the risk of catastrophic events. (See 

Fabozzi,  Focardi,  Jonas (2008) for a recent study from the perspective of the quantitative asset 

manager.) 

The problem under discussion can be stated as follows. If the approximate factor model 

paradigm  is  generally  applicable  in  finance  and  asset  management,  then  efforts  to  identify 
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proprietary factors are futile: factor models are unique and factors can be determined with principal 

components. If, on the other hand, the approximate factor model paradigm is not always applicable, 

we  need  1)  criteria  to  determine  when  the  paradigm  of  approximate  factor  models  is  indeed 

applicable and 2) criteria to select factor models created with methods different from both factor 

analysis and principal components analysis (PCA).

The theoretical  and practical  solution I  propose in this  dissertation and that  I discuss in 

Section 4 can be summarized in the following six points:

1. The theoretical paradigm of approximate factor models cannot be applied blindly to large 

samples.  There  must  be  a  neat  and  natural  separation  between  “large”  and  “small” 

eigenvalues  of  the  covariance  matrix  of  data.  In  cases  in  which  the  eigenvalues  of  the 

covariance matrix of data decay smoothly, approximate factor models cannot be applied. 

2. Factor models must be “learnable”, that is, the number of model parameters (and thus of 

factors) cannot exceed the limits that can be learned given the size of the sample. Empirical 

samples might be too small to allow the estimation of all the true factors of the relative 

population.

3. Criteria  to  separate  “large”  and  “small”  eigenvalues  are  largely  arbitrary.  I  propose  to 

sidestep the problem by defining directly criteria that determine the ability to approximately 

identify factors and principal components.

4. When factors cannot be approximately identified with principal components, I propose to 

look at factor models as multiple communication channels and to use the channel capacity, 

that  is,  the  average  mutual  information,  as  criterion  for  selecting  among  the  different 

models.

5. As regards financial returns, I found that in large panels of returns the eigenvalues of the 

covariance matrix of returns decay smoothly and the conditions for identification of factors 

and principal components do not apply. Returns cannot be faithfully represented with unique 

approximate static factor models. 

6. I try to prove that the inability to find unique static factor models of returns might be due to 

the presence of dynamic factors in models of asset returns and, especially, of cointegration 

of price processes. I try to prove that, if returns can be represented by dynamic factor models 

or prices can be represented by cointegration-based models, the distribution of eigenvalues 

of the covariance matrix is likely to exhibit a smooth decay. In other words, dynamic effects 

of returns and mean reversion of prices are the reasons why static factor models are not 

unique and give only a partial representation of the correlation structure. 
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1. Statement of the problem and contribution of this dissertation

1.1. Practical and theoretical implications of approximate factor models of returns

Factor  models  are  fundamental  tools  in  finance at  both the theoretical  and the practical 

levels. To mention a few theoretical applications, factor models embody the capital asset pricing 

model (CAPM), the Arbitrage Pricing Theory (APT) of Ross (1976), and various fund-separation 

theorems. In the practice of asset management, factor models are used, for example, to construct 

portfolios, to assess risk exposures to “factors”, to forecast returns, and to measure the performance 

of asset managers. The term structure of interest rates can also be parsimoniously described through 

factor models. It is fair to say that factor models are important tools in asset management, especially 

equity portfolio management, where they are used to build stock ranking systems or to run (quasi) 

automated portfolios of equities.

Therefore,  understanding  whether  or not  asset  returns can be represented  through factor 

models  (either  in  a  static  or  dynamic  form),  and,  if  they can,  estimating  the model  is  of  high 

theoretical  and practical  importance.  Indeed, many efforts have been devoted to this endeavour. 

Determining the number of static and/or dynamic factors of equity returns has been the subject of 

extensive research.  While the CAPM is a one-factor static model,  the APT of Ross (1976) is a 

theory that makes use of a multifactor static model where the number of factors is left unspecified. 

Fama and French (1993) proposed what is  now a widely used fundamental  three-factor model. 

Other  fundamental  models  with multiple  factors have been proposed while  a variety of sector-

country  models  exhibit  a  number  of  factors  that  reflect  sector  and  country  segmentation. 

Commercial suppliers such as MSCI Barra offer models based on a large number of factors. Many 

of these models are often employed in a dynamic context, using lagged factors in order to allow 

returns forecasting. See Fabozzi, Focardi, and Kolm (2006) for a review of current approaches to 

factor models.

From a theoretical point of view, the state-of-the-art approach to factor models in financial 

econometrics  ─as  well  as  in  modern  macroeconomics─  is  the  approximate  factor  model  of 

Chamberlain  and  Rothshild  (1983)  and  its  recent  static  and  dynamic  extensions  by  several 

researchers (see Chapter 2 for a detailed review of the literature on factor models). I will use the 

term “approximate factor models” to indicate both the original model proposed in Chamberlain and 

Rothshild (1983) and its generalization unless the differences between the models need to be made 

explicit.  Approximate  static  factor  models  differ  from  classical  static  factor  models  in  three 

principal ways: 
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 In approximate factor models, both the number of observations and the number of 

time series tend to infinity while classical  factor models  assume a finite number  of time series 

(assets).

 In  approximate  factor  models,  both  the  model  parameters  and  the  factors  are 

uniquely  identified  (factors  only  up  to  a  rotation)  while  in  classical  factor  models,  the  model 

parameters are identifiable but factors are undetermined (in addition to rotation).

 In  approximate  factor  models,  factors  can  be  identified  (up  to  a  rotation)  with 

principal  components;  this  implies  that  factors  can  be  estimated  with  portfolios  of  returns.  In 

classical factor models, factors are not necessarily portfolios.

There are strong theoretical  reasons in favour of the adoption of the approximate factor 

model paradigm. First, because they assume uncorrelated residuals, classical factor models are too 

restrictive  for  applications  in  financial  econometrics.  However,  dropping  the  assumption  of 

uncorrelated  residuals  in  finite  models  creates  the  theoretical  problem  of  how  to  apportion 

correlations between factors and residuals. In fact, if we allow residuals to be correlated in a finite 

model,  factor  models  become  the  sum  of  two  factor  models  because  residuals  can  also  be 

represented as a factor model. In order to distinguish between common factors and the factors of 

residuals, we have to introduce special conditions and/or quantitative thresholds.

Infinite models allow one to assume correlated residuals in a natural way as common factors 

are associated with those eigenvalues of the covariance matrix which diverge when the number of 

time series tends to infinity (see Chapter 2). In financial econometrics, models that are infinite in 

both the number of time series and the number of observations are required to properly state the 

arbitrage pricing theory in a static form. In fact, the APT theorem of Ross (1976) could not have 

been established in finite markets described by static factor models. Chamberlain and Rothshild 

developed infinite  approximate  factor  models  to  prove  that  the APT theorem still  holds  in  the 

approximate factor model framework, thereby avoiding the limitations of the strict factor models 

with uncorrelated residuals as used by Ross. There are therefore strong theoretical reasons behind 

the adoption of models that are infinite in both the number of time series  N  and the number of 

observations T.

In addition, there are practical motivations in favour of approximate factor models. Classical 

factor analysis based on maximum likelihood is a complicated, numerically delicate process while 

the ability to estimate factors with principal components makes approximate factor models a more 

robust methodology. In fact, the extraction of principal components can be performed with robust 

techniques such as singular value decomposition.  Classical  factor models can be estimated with 

maximum likelihood  when the  number  of  variables  is  at  most  of  the  order  of  a  few tens.  As 
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financial  markets  are  much larger  (it  is  possible  to  build  matrices  in  the  range of hundreds  of 

observations of hundreds of stock returns), classical factor models cannot be realistically estimated. 

In  macroeconomics,  hundreds  of  variables  can  now be  observed with  the  consequent  need  for 

dimensionality  reduction.  But  again  factors  cannot  in  practice  be  estimated  with  maximum 

likelihood.

However, if approximate factor models do indeed represent returns, there are very important 

consequences for both the theory and practice of asset management. In fact, the current proliferation 

of static models would be illusory as it  would be possible to identify,  albeit  up to a rotation, a 

unique,  true factor  model.  In addition,  all  factors  could be represented as portfolios of returns, 

implying that, at least theoretically, no information outside the history of returns would be needed 

to determine factors. Hence, it is interesting at both the theoretical and practical levels to determine 

if returns can be represented with static approximate factor models.

If this conclusion is correct, the search for factors would consist in determining principal 

components of returns; equity portfolio management would become an almost exact science and 

portfolios would be constructed with well-defined optimization rules, creating highly homogeneous 

portfolios. As Fabozzi, Focardi, and Jonas (2008) discuss, the market turmoil of the summer of 

2007 raised the concern, among asset managers, that the uniformity of factors and portfolios creates 

large unforeseeable risk.

1.2.  A critical look at the assumptions needed to ensure that approximate factor models of 

returns hold

When analyzing the factor structure of returns, the following questions must be addressed:

1. Can approximate factor models represent returns?

2. Can factors be uniquely determined by principal  components  following the paradigm of 

approximate factor models?

3. Given  that  learning  theory  establishes  that  there  are  trade-offs  that  constrain  model 

complexity in function of the size of the sample, how can we ensure that the true number of 

factors is learnable?

4. If factors are not unique, what are the model selection criteria appropriate for factor models 

of returns?
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The basis for applying generalized approximate factor models is that markets are large and 

therefore asymptotic results approximate empirical results. In standard statistics, asymptotic results 

are applied to large samples because samples are considered independent samples from the same 

distribution. Under this assumption, various central limit theorems and results on the asymptotic 

distribution of estimators prove that it makes sense to consider asymptotic results. But in the case of 

generalized factor models, samples of increasing size are samples from different populations and 

finite  samples  might  have  characteristics  that  in  no way approximate  infinite  samples.  In  fact, 

approximate factor models depend critically on separating a finite number of eigenvalues that grow 

indefinitely from an infinite number of eigenvalues that remain bounded.

In many cases, the actual samples are the largest possible samples;  it  does not therefore 

make sense to speculate  on how a much larger sample would look.  For example,  how can the 

market for equity returns grow to infinity? Adding industrial sectors? Adding countries? Adding 

stocks  but  keeping  the  number  of  sectors  and  countries  fixed?  Or  adding  stocks,  sectors,  and 

countries at the same time? Clearly any assumption is arbitrary.  However, different assumptions 

would  produce  different  infinite  factor  models.  Therefore,  applying  asymptotic  results  from 

generalized approximate factor model theory implies additional assumptions and criteria on how the 

current sample might evolve to infinity.

There is another important consideration. The number of factors determined by estimation 

criteria is supposed to reveal the true number of factors of the population. In practice, we have only 

a finite sample where the ratio between the number of observations and the number of variables is 

close to 1. Learning theory tells us that model selection criteria from a sample must include a trade-

off between model complexity and in-sample performance. In fact, a fundamental tenet of modern 

learning theory in its many forms up to the Vapnik-Chervonenkis theory of statistical learning (see 

Vapnik, 1998) is that there is a trade-off between model complexity (which improves in-sample 

performance) and model generalization ability (out-of-sample performance) for each sample size.

In practice,  it  might happen that this trade-off is optimal for a number of factors that  is 

inferior  to  the true  number  of  factors  of  the population.  In  other  words,  given a  finite  sample 

extracted from a population, we might not be able to identify the population factor structure because 

the sample is insufficient to estimate a factor model with the level of complexity required by the 

true number of factors. One has therefore to assume that the population model is simple enough to 

be learnable from available empirical data.

All criteria introduced in the literature to assess if a universe of returns possesses a factor 

structure  and to  determine  the  eventual  number  of  factors  are  asymptotic  criteria.  The  criteria 

proposed thus far to determine the number of factors work only asymptotically due to the fact that 
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the eigenvalues relative to the factors grow without limit. That is, criteria pick the right number of 

factors  when both the number of asset  returns and the number of observations  tend to infinity 

essentially  because,  loosely  speaking,  the  contribution  of  non  factor  eigenvalues  goes  to  zero. 

However, the same criteria are not designed to implement a trade-off in finite samples. This holds 

true both for criteria based on information theory and for criteria based on random matrix theory 

(see Chapter 4 for a detailed discussion).

1.3. What changes if we assume that models are dynamic and not static

Thus far I have stated the problem of determining the static factor structure of returns. I will 

next discuss whether or not the adoption of a dynamic factor framework for returns will allow the 

identification  of   the  number  of  factors.  As concisely stated  in  Amengual  and Watson (2006), 

identification of static factors is obtained by fitting the covariance matrix of observed variables 

while  identification of dynamic  factors is  obtained by fitting  the spectral  density matrix  of the 

observed variables. 

The theory of dynamic factor models has many parallels  with the theory of static factor 

models. In particular,  identifying the number of common factors requires identifying a clear-cut 

criterion that separates the common factors from other factors. For dynamic factor models, one such 

criterion is given by the condition of the presence/absence of autocorrelation of residuals, while for 

static factor models the key criterion is the presence/absence of crosscorrelations of residuals. In 

fact, if we assume that residuals are not autocorrelated, as described in Peña and Box (1987), the 

autocovariance matrices at different lags exhibit the same rank, which is equal to the number of 

dynamic factors. Therefore if we assume that residuals are not autocorrelated, identification of the 

number of  dynamic factors can be achieved exactly in finite samples.  However, if  residuals  are 

allowed to be autocorrelated,  then the identification  of factors can be achieved only in  infinite 

markets (see Chapter 2 for a review of the literature). 

It might therefore seem that there is not much difference between static and factor models. 

However, there is a major difference empirically: the assumption of no autocorrelation of residuals 

of returns is more reasonable than the assumption of no correlation of residuals. Returns are cross 

autocorrelated but only weakly autocorrelated. It is therefore reasonable to assume that dynamic 

effects are due to common lagged factors.

Again,  this  finding  has  important  implications  both for  the  theory and practice  of  asset 

pricing. It suggests that discussions on the number of factors needed to describe returns must take 

into account dynamic phenomena. There are theoretical reasons that support this view. In fact, asset 
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pricing theories are dynamic theories such as the Merton intertemporal model. It is ultimately not 

surprising that returns cannot be uniquely described by a static factor model.

One  of  the  reasons  why returns  cannot  be  uniquely  decomposed  into  factors  is  due  to 

cointegration,  a fact already implied by the Merton model.  Johansen and Lando (2006) prove that 

arbitrage  restrictions  in  a  multiperiod  model  induce  cointegration.  Because  of  cointegration,  the 

covariance matrix  exhibits  a slow decay of the eigenvalues.  This brings us to the last  problem 

discussed in this Dissertation: Are prices a better choice than returns for factor models? That is, this 

Dissertation discusses whether or not dynamic factor models of prices, which imply cointegration, 

are more stable,  more identifiable,  and offer better  forecasting capability than factor models  of 

returns.

As prices are integrated processes, factor models of prices are based on different estimation 

principles than factor models of returns. To my knowledge, there is no “large model” theory of 

integrated factor models. The theory of factor models of integrated processes can be found in Stock 

and Watson (1988), Plilips and Ouliaris (1988), and Peña and Poncela (2004a,b). This theory is 

applied to models with a finite number of variables.

The determination of the number of common factors in models of integrated processes is 

indeed based on a clear-cut criterion. In fact,  the distinction between common and idiosyncratic 

factors  is  based  on  the  distinction  between  integrated  processes  and  stationary  processes.  The 

question we have to answer is: Are finite dynamic factor models of prices a better choice than finite 

dynamic factor models of returns in terms of their ability to generalize, that is, in terms of out-of-

sample performance? If factor models of prices apply, what are the consequences for factor models 

of returns?

1.4 The contributions of this Dissertation

The contributions of this Dissertation are to: 1) show that factor models of asset returns are 

not unique and do not fit the approximate factor model paradigm, 2) introduce criteria for factor 

model selection and, 3)  try to prove that if asset prices can be represented through dynamic factor 

models  with  integrated  factors,  factor  models  of  returns  cannot  be  represented  through  the 

approximate factor model paradigm.

The  discussion  is  divided  into  three  parts:  1)  the  discussion  of  static factor  models  of 

stationary processes (returns), 2) the discussion of  dynamic factor models of stationary processes 

(returns) and, 3) the discussion of dynamic factor models of integrated processes (prices). I will first 

consider static factor models of stationary processes.
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1.4.1 Static factor models of stationary processes (returns)

I first observe that if the paradigm of approximate factor models is adopted, the factors and 

the  model’s  parameters  suffer  from  an  essential  indeterminacy  insofar  as  one  needs  to  make 

assumptions as regards the way the model evolves to infinity.  In particular,  one needs to make 

assumptions  not only as  regards  the function  N=N(T)  but  also as regards the behaviour  of  the 

eigenvalues of the covariance matrix of the variables. The latter assumptions, in practice, determine 

the entire model. In particular one needs to decide the number of eigenvalues that will diverge and 

the number of eigenvalues that will remain bounded. This dichotomization cannot be performed 

from a finite sample without making specific assumptions. As observed above, asymptotic results 

relative  to  approximate  factor  models  imply  assumptions  as  to  how the  market  will  evolve  to 

infinity. These assumptions are arbitrary.

The  perspective  of  this  Dissertation  is  that  the  paradigm of  approximate  factor  models 

cannot be applied blindly without making specific assumptions on how the model will evolve to 

infinity.  Assuming  that  the  number  of  observed  time  series  goes  to  infinity  implies  specific 

assumptions on the “physical” or “economic” structure of the phenomena under study. We observed 

that an infinite market for returns implies economic assumptions on the structure of sectors and of 

countries when the number of returns increases. However, similar considerations can be made for 

macroeconomic variables. What is the meaning of an economy with an infinite number of observed 

variables? What is observed? Is it the same phenomena from slightly different points of view? Or, 

again, is it a different economy with an infinite number of different industrial sectors?

To substantiate these claims, I first show through a Monte Carlo study that in generalized 

approximate factor models such as the Bai and Ng model, the theoretical asymptotic distribution of 

factor estimators can be grossly violated if the signal-to-noise ratio is too small ─ even if the sample 

has the size of a problem typical in financial econometrics. Therefore the assumption that we can 

apply the asymptotic conclusions to the large samples of financial econometrics is not warranted.

The  economic  perspective  of  my  Dissertation  is  that  financial  markets  are  dynamic 

phenomena that can only be approximately represented by static factor models. The first step is to 

define the limits of applicability of (generalized) approximate factor models. Approximate factor 

models might not be a sound theory to apply to finite samples even if samples are large. Therefore, I 

propose to first determine if samples support the essential features of approximate factor models 

which I state as follows:

1. It must be possible to represent factors with principal components.

2. Factors must be approximately unique.

3. Factors must be learnable.
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Uniqueness of factors means that we should be able to define a “distance” between factors 

and that the distance between principal components and factors should be small. As approximate 

factor models are estimated with asymptotic principal components analysis, in order to assess the 

applicability of the approximate factor model paradigm I propose that factor analysis should start 

with  the  assessment  of  the  generalization  ability  of  PCA.  This  problem  has  been  extensively 

researched in the pattern recognition literature where PCA is widely used in tasks such as speech 

and  face  recognition.  I  propose  to  apply  the  standard  Akaike  Information  Criterion  (AIC)  or 

Schwarz’s Bayesian Information Criterion (BIC) criteria to choose the optimal number of principal 

components.  Optimality  means  the  best  compromise  between  accuracy  and  generalization 

capabilities, i.e., out-of-sample performance.

Next I determine the conditions under which the AIC and BIC choose a number of principal 

components corresponding to the minimum of the noise-to-signal ratio. Building on results from 

Schneeweiss and Mathes (1995), I show that, if the signal-to-noise ratio is particularly high for a 

given number q of principal components, the factors of any other factor model with q factors will be 

close to the principal components. I prove this result using two complementary measures of factor 

distance that are widely used in the literature. The two measures are 1) the sum of the squares of the 

canonical correlation coefficients obtained performing the canonical correlations analysis between 

factors and principal components and 2) the solution of the Procrustes problem between factors and 

principal  components.  In  this  case,  it  is  shown in  Section  4.3 that  the asymptotic  results  from 

approximate factor theory approximately hold.

Therefore, the first result is that if the signal-to-noise ratio assumes a particularly high value 

for a given number q of principal components, and if the AIC and BIC choose the same number of 

principal components, then if data can be represented by a factor model with q  factors, the factors 

and the first  q  principal components are very close. If the noise-to-signal ratio always assumes a 

high value, then different factor models are able to represent the data. The intuition of this fact is 

that for the number of principal components chosen by the AIC or the BIC, there are possibly other 

principal components that are not close to the first q principal components but that will nevertheless 

have a similar noise-to-signal ratio.

In the above situation, I propose to choose models maximizing the mutual information from 

factors  to  observed  variables.  Borrowing  concepts  from  communication  theory,  the  general 

perspective of my Dissertation is to look at  factor models as multiple  communication channels 

subject to noise, where a small  number of emitters (the factors) broadcast to a large number of 

receivers (stock returns or observed variables) subject to random disturbance. Using this analogy, 
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maximizing mutual information corresponds to maximizing the capacity of the channel (see Tulino 

and Verdù, 2004 and Silverstein and Tulino, 2006). 

In Section 4.5, I show that the covariance matrix of a large universe of returns such as the 

Russell 1000 indeed shows a smooth decay of the eigenvalues. I therefore deduce that there is no 

solid empirical basis for applying the paradigm of approximate factor models to financial returns. 

This result is justifiable on the basis of dynamic asset pricing theories which make it unlikely that 

returns exhibit a stable covariance matrix of returns.

1.4.2 Dynamic factor models of stationary processes (returns)

I  will  now  discuss  dynamic  factor  models,  which  are  widely  used  in  equity  portfolio 

management to make forecasts. The general framework is the following. Static factor models of 

stationary  processes  are  models  where  factors  and  observed  variables  are  considered 

simultaneously, while dynamic factor models also consider lagged factors. In general, each dynamic 

factor model can be cast in a static factor model form.

Given a static factor model representation, it is important to disentangle lagged factors from 

same-time  factors.  Different  procedures  have  been  proposed,  among  which  the  canonical 

correlation analysis of factors and the principal components analysis of the spectral matrix of the 

factors. Peña and Box (1987) propose a methodology for estimating the number of factors and the 

factors themselves that work in finite models (see Chapter 4 for a detailed discussion). According to 

this  methodology,  dynamic  factors  can  be  uniquely  determined  in  factor  models  even if  static 

factors cannot be uniquely determined. The identification of dynamic factors is possible if residuals 

are not serially correlated. Under this assumption, the autocovariance matrices all have the same 

rank equal to the number of factors and the same eigenvalues.

In  practice,  the  autocovariance  matrices  are  too  large  to  be  estimated  directly. 

Autocovariance matrices are subject to the same estimation problems of covariance matrices: there 

are too many parameters to be estimated. However, one is interested in estimating the rank of the 

matrices and not the entire matrix. I can summarize the conclusions of my discussion as follows.

If the sample has a structure of eigenvalues that supports identification of static factors with 

principal components, then dynamic factors can be identified and estimated with one of the current 

procedures from static principal components. However, if the sample has a structure of eigenvalues 

that  does not support  the identification of static  factors with principal  components,  then model 

estimation is more difficult.
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In  this  latter  case,  one  could  first  determine  the  number  of  dynamic  factors  using  the 

methods  in  Peña  and  Box  (1987).  Observe  that  this  methodology  determines  the  number  of 

common dynamic  factors.  However  the residuals  might  still  have a  factor structure.  The factor 

structure of the residuals might be predominant in explaining cross correlations, both in terms of the 

number of factors and the strength of correlations. In other words, a sample of time series might 

admit  a representation where there are purely static factors that  explain most  of the covariance 

between time series plus a number of dynamic factors that are responsible for both additional cross 

correlation plus autocorrelations.

In practical applications there are two different objectives: 1) to determine the exposure to 

risk factors and 2) to determine factors that might allow to forecast. Factors required for the two 

objectives are not necessarily the same. If the principal components model were applicable and 

learnable,  then  one  would  get  a  complete  picture  of  factor  exposure  and  factor  forecasting. 

However, in financial markets the principal components model cannot really be applied to returns 

without being required to estimate a number of components that are ultimately not learnable.

Let’s  revisit  criteria  for  model  selection.  I  suggested  above that  mutual  information  (or 

communications channel capacity) might be employed as a model selection criterion. If applied to 

the  static  factor  representation,  this  criterion  does  not  distinguish  between  static  and  dynamic 

factors. Current methods to estimate dynamic factors from static factors ─ for example Forni, Lippi, 

and Reichlin (2005) and Breitung and Kretschmer (2005) ─ work in the infinite model case where 

factors are unique. These criteria assume that all static factors are formed by copies of the dynamic 

factors at different lags.

However  in  finite  models  the  above  assumption  is  too  restrictive.  In  practice,  in  finite 

models where factors cannot be represented as principal components, one finds a number of factors 

that are essentially static and a number of factors that might appear at different lags. In practical 

applications in asset management, one often considers all factors at different lags. However, given 

the need of a parsimonious representation, it is important to select those factors that have maximum 

forecasting  power.  Therefore,  given  a  factor  model,  for  example  a  sector  factor  model,  this 

Dissertation contributes criteria to separate a reduced number of factors with forecasting power 

from a larger number of essentially static factors.

1.4.3 Dynamic factor models of integrated processes (prices)

I will now discuss factor models of prices. Observe that from a purely theoretical point of 

view, asset pricing models are primarily models of prices. For example,  Merton’s Intertemporal 
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Capital Asset Pricing Model (Merton, 1973) is established in terms of prices. This is reasonable in 

that prices are the long memory of returns and reflect accumulated wealth.

Assuming that prices are integrated processes, I(1), the representation of prices with factor 

models hinges on the presence of cointegration among price processes. A fundamental  result in 

Stock and Watson (1988) establishes that if there are K cointegrating relationships in N integrated 

time series, then there are exactly N-K common trends which are integrated processes. Each of the 

N time series can be represented as a linear combination of the common trends plus a stationary 

process. Common trends can be established with PCA applied to price processes. Peña and Poncela 

(2004a,b) establish a general theory of factor models where factors can be any mix of integrated and 

stationary processes. Estimation of the number of factors and of factors themselves hinges on the 

estimation of generalized autocovariances.

Observe that the theory of factor models for integrated processes is a finite model theory. 

The  distinction  between  factors  and  non  factors  is  based  on  a  clear-cut  distinction  between 

integrated  processes  and  stationary  processes.  From the  population  point  of  view,  there  is  no 

identification issue. Therefore, besides estimation problems, there is no ambiguity in deciding the 

number of factors and there is no need to consider asymptotic results with an infinite number of 

time series.

If we can represent asset prices with a factor model, then the covariance matrix of returns 

shows a slow decay of the eigenvalues. This is due to the cointegrating relationships that bind prices 

to factors.  This Dissertation seeks to demonstrate that if asset prices can be represented with a  

factor  model  with  K   integrated  factors,  then  returns  cannot  be  represented  with  principal  

components because cointegration will introduce an additional factor structure of returns that will  

result  in  a  covariance  matrix  with  a  slow  decay  of  eigenvalues.  This  is  the  major  technical  

contribution of this Dissertation. The practical implication for asset management is that any factor  

model of returns can be mapped to the long-term factor model of returns implied by the factor 

model  of  prices.  Deviations  from  this  core  model  of  returns  are  due  to  the  mean-reverting  

behaviour of prices that tend to revert to factors. This fact creates instability in return factors. 

Table 1.1 summarizes the key facts that I will attempt to prove.
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Static factor models of 
stationary processes

Dynamic factor models of 
stationary processes

Dynamic factor models of 
integrated processes

The signal-to-noise ratio is very 
high for the  same number of 
components chosen by AIC or 
BIC. PCA has good 
generalization capabilities

Approximate factor models 
apply to returns; factor models 
are similar to principal 
components

Standard methods to 
disentangle dynamic from static 
factors apply

Dynamic factor models of 
prices do not apply

Eigenvalues decay smoothly; 
the signal-to-noise ratio 
remains close to 1 

Approximate factor models do 
not apply to returns; factor 
models are not similar to 
principal components; different 
factor models coexist

Coexistence of static and 
dynamic factors

Dynamic factor models of 
prices apply

Tab 1.1 Summary of key facts of factor models.
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2.  Survey of the literature

In this section I survey the literature on the topics that I discuss in this Dissertation. I will do 

so by topics. I first survey the results from random matrix theory (RMT) that are relevant for factor 

models. RMT offers tools to discriminate, at various levels, meaningful information from random 

noise. Second, I discuss static factor models and, third, I survey estimation methods for static factor 

models including RMT and Information Theory. 

I identify three stages in the literature on static factor models. In this Dissertation I call the 

number of observations T and the number of time series N. The first stage is the definition of the 

classical, strict factor model; the second stage includes its generalization to “large T, large N” strict 

and approximate factor models in the a-temporal setting of independent samples; the third stage 

includes the study of “large T, large N” static approximate factor models. The latter are compatible 

with a time series dynamics though they do not explicitly include such dynamics. For the sake of 

clarity, the literature on dynamic factor models is surveyed as a separate topic as dynamic factor 

models were developed in parallel with static factor models. I also survey separately the literature 

on the application of Information Theory to the analysis of data sets and factor models, and the 

literature on sparse principal components analysis, a technique that constrains the number of non-

zero coefficients in principal components.

2.1 Random Matrix Theory

Random matrices are matrix-variate random variables. Random matrix theory (RMT) was 

originally developed in the 1920s in biometrics and general multivariate statistics, to respond to 

specific application needs. RMT became a key tool in quantum physics in the 1950s and is now 

applied  to  many  fields  of  science,  from  quantum  mechanics,  statistical  physics,  and  wireless 

communications to number theory and financial econometrics. RMT milestones with a bearing on 

financial econometrics can be summarized as follows.

 In the late 1920s, John Wishart  introduced the concept of a matrix-variate random 

variable and discovered the Wishart distribution as a generalization of the Chi-square distributions 

to matrix-variate random variables (see Wishart, 1928).

 In  the  1950s,  Eugene  Wigner,  co-recipient  of  the  1963  Nobel  Prize  in  Physics, 

developed the theory of square matrices with random entries, known today as Wigner matrices. 

Wigner also discovered the first asymptotic limit law for the distribution of eigenvalues and the 

spacing between eigenvalues of a random matrix. 
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 In the 1960s, V. A. Marčenko and L. A. Pastur discovered the limit distribution of 

the eigenvalues of a Wishart matrix (see Marčenko and Pastur, 1967).

 From the 1980s onward, a series of papers fully characterized the behaviour of the 

hedges of the distribution of the eigenvalues of a random matrix, both in the null hypothesis of no 

correlation and in a number of cases beyond the null. In addition, the distribution of eigenvalues of 

asymmetric matrices was determined.

I will briefly sketch RMT before surveying recent results with a bearing on factor models.1 

As  already  observed,  random matrices  are  matrix-variate  random  variables.  More  precisely,  a 

random matrix model (RMM) is a probability space  ( )FP,,Ω  where the sample space is a set of 

matrices.  Tracy  and  Widom  (2008)  survey  the  principal  classic  RMMs  and  the  distributions 

associated with them.

I will consider three types of matrices: Gaussian matrices, Wigner matrices, and Wishart 

matrices. Based on Tulino and Verdù (2004), I will describe three important distributions related to 

random matrices (if applicable): the pdf of a random matrix as a probabilistic object, i.e., the pdf 

related to the probability P of the RMM; the joint distribution of its eigenvalues; and the marginal 

distribution of the eigenvalues. The asymptotic distribution of eigenvalues ─  a central object of 

RMT ─ will be treated separately.

2.1.1.  Gaussian matrices

A  standard  real/complex  Gaussian  matrix  is  an  nm ×  matrix  H  whose  entries  are 

independent  and  identically  distributed  (i.i.d.)  normal  variables  ijh  with  the  same  variance 

m
12 =σ :  The pdf  ( )Hp  of a matrix  H  is the probability that  the matrix elements are in the 

infinitesimal  volume  ∏ ijdh .  The pdf  of  a  standard complex  Gaussian matrix  is  given by the 

following expression: ( ) ( ) ( ) ( )











−=



 −= −−

2

2
2

2
2 expexp

σ
H

πσ
σ

HH*traceπσHp Fmnmn

where 2

F
H  is the square of the Frobenius norm of the matrix H. The Frobenius norm of a 

matrix A  is defined as: ( ) ( )AA*traceA*AtraceA
F

== . Because H is a rectangular matrix, in 

1 For a full account of the theory, see Mehta (1991) and Tulino and Verdù (2004) and the survey papers by Edelman and 
Rao (2005) and Johnstone (2006).
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the  general  case  its  eigenvalues  do  not  exist.  The  exponential  of  the  trace  of  a  matrix  A  is 

sometimes called ert: ( ) ( ))exp( AtrAert = .

2.1.2.  Wigner matrices

A complex Wigner matrix  W  is a Hermitian square  nn ×  complex matrix  whose upper 

triangular elements are independent zero-mean variables with the same variance. If the variance is 

n
12 =σ , the matrix is called a standard Wigner matrix. If entries are independent and identically 

distributed  (i.i.d.),  zero-mean,  unit  variance  (standard)  normal  variables,  the  matrix  pdf  is  the 

following:

( ) ( )








−−= −

2
exp22

22
2

2 WtracenπWp
n

.

In the general case of non-Gaussian Wigner matrices, there is no closed formula for the joint 

distribution of eigenvalues. For complex Gaussian Wigner matrices, the joint distribution of the 

ordered eigenvalues nλλ >> 1  is given by the following expression:

( ) ( ) ( ) 





−∑= ∏ ∏

−

= <

−−
Λ

=

1

1

2
1 !

12,, 1
2

2
1

2
1 n

i

n

ji
jin i

ep
n

i i λλπλλ λ .

and the marginal distribution of the unordered eigenvalues is the following:
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where ( )λiH  is the ith Hermite polynomial.

2.1.3.  Wishart matrices

Given  the  nm ×  matrix  H  whose  columns  are  independent  real/complex  zero-mean 

Gaussian vectors with covariance matrix Σ , the matrix *HHA =  is called a central Wishart matrix 

( )Σ,nWm  with n degrees of freedom and covariance Σ . If the entries of H  are not zero-mean, the 

Wishart  matrix is non-central.  The pdf of a central  Wishart matrix with  n>m  has the following 

form:

( )
( )

( ) ( )
( )[ ] mn
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The joint pdf of the ordered strictly positive eigenvalues nλλ >> 1  of a Wishart matrix is 

given by the following expression:

( ) ( ) ( ) ( ) ( ) ( )nmrnmt
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The pdf of the marginal distribution of the unordered eigenvalues is the following:
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where ( )λtr
kL −  are the Laguerre polynomials. 

2.2.  Asymptotic distribution of the bulk of eigenvalues

I am interested in applying RMT for estimating a covariance matrix and for determining the 

number of factors. The basic methodologies proposed in the literature consist either in estimating 

the theoretical distribution of the eigenvalues from the empirical distribution of the eigenvalues or 

in  constructing  tests  for  specific  asymptotic  distributions  of  eigenvalues.  Hence  I  survey  the 

literature  on  the  asymptotic  distributions  of  eigenvalues.  The  RMT  distinguishes  between  the 

distribution of the  bulk of the distribution of eigenvalues and the distribution of the  edges. I will 

first discuss the bulk of the eigenvalue distribution.

Results  for  the  bulk  of  the  distribution  of  eigenvalues  can  be  summarized  as  follows. 

Anderson (1963) proved that the empirical distribution of the eigenvalues of a square NxN matrix 

tends  to  the distribution  of  the  eigenvalues  of  the true covariance  matrix  when the  number  of 

samples tends to infinity. However, if both the number of samples and the number of entries of the 

covariance matrix tend to infinity, then the empirical eigenvalues are not consistent estimators of 

the true eigenvalues. 

The first asymptotic limit law was discovered by Wigner in the 1950s. Wigner (1955, 1956, 

1958,  1959)  proved  the  famous  semicircle  law which  states  that  the  limit  distribution  of  the 

eigenvalues of a Wigner matrix assuming that 1) ∞→n  and 2) the fourth moments of the entries of 

the matrix are of order 






2

1
N

O , is the deterministic semicircle law:
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Considering a Gaussian matrix instead of a Wigner matrix. Girko (1984) proved that the 

(complex) eigenvalues have an asymptotic uniform distribution on the unit circle.  This result is 

called the Girko’s full circle law.

The semicircle and the full circle laws are related to square matrices. The next fundamental 

asymptotic result was proved in Marčenko and Pastur (1967) for rectangular matrices. I will first 

state the Marčenko and Pastur law. Consider a  NT ×  matrix  H  whose entries are i.i.d real  or 

complex zero mean variables with variance T
1  and fourth moments of order 







2
1

T
O . Marčenko 

and Pastur (1967) proved that the asymptotic distribution of the eigenvalues of the matrix H*HA =  

when γ→∞→
T
NNT ,,  has the following density:

( ) ( ) ( ) ( ) ( ) ( )
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where  ( ) ( )zz ,0max=+ .  Under  the  same  assumptions,  the  asymptotic  distribution  of  the 

eigenvalues of the matrix *HH  when γ→∞→
T
NNT ,,  has the following density:
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If 1=γ , the distribution of singular values, which are the square roots of the corresponding 

eigenvalues, is the quarter circle law: 

( )
( ) 2,0,0

,20,4 2

><=

≤≤−=

xxxq

xxxq
π

Dirac’s delta at the origin reflects the fact that a fraction N
TN −  of the eigenvalues are zero if 

1≥γ . 

Actually  Marčenko and Pastur  (1967)  proved a  more  general  result.  They were  able  to 

determine the limit eigenvalue distribution of a matrix of the form *0 HTHWA +=  where 0W  is a 

Hermitian matrix whose distribution of the empirical eigenvalues converges to a non random limit 

L and T  is a diagonal real matrix whose distribution of the empirical eigenvalues converges to a 

23



non random limit H. Call F the limit distribution of the matrix A . The Stieltjes transform ( )zS  of a 

distribution  F is  the  integral:  ( ) ( )
∫

∞+

∞− −
=

zy
ydFzSF .  Marčenko  and  Pastur  (1967)  proved  that  the 

following relationship holds:

( ) ( )








+

−= ∫
F

F yS
yydHzLzS

1
β . 

Solving  this  equation  and inverting  the  Stieltjes  transform,  one  can  determine  the  limit 

distribution F.

This result has been extended and refined in many different ways. Silverstein (1995) proved 

an extension of Marčenko-Pastur (1967) dropping the condition that the fourth moments exist and 

that  T is diagonal. Suppose the entries of the  NT ×  matrix  H are i.i.d. real or complex variables 

with zero mean, unit variance, and finite fourth moments. Let  NT  be a fixed  NN ×  Hermitian 

(unitary if real) matrix. Assume the sample vector is HTN
2
1

. This implies that NT  is the population 

covariance matrix. Consider the sample covariance matrix:  2
1

2
1

'1
NNN THHT

N
B = . Silverstein (1995) 

proved  that  if  the  distribution  of  the  eigenvalues  of  the  matrices  NT  tends  to  a  non-random 

distribution, then the empirical covariance matrices NB  also tend to a non-random distribution and 

the following equation still holds

( ) ( )








+

−= ∫
F

F yS
yydHzLzS

1
γ  .

Burda,  Gӧrlich,  A. Jarosz and Jurkiewicz (2004) proved the Marčenko-Pastur law using the 

method of the resolvent and diagrammatic techniques from quantum mechanics. Burda, Jurkiewicz, 

and Waclaw (2005) extended the Marčenko-Pastur  law to samples  that  are both correlated and 

autocorrelated. Burda, Goerlich, and Waclaw (2006)  determined explicit formulas in the case of 

Student-t distributions up to integrals. Similar results were obtained by Sengupta and Mitra (1999).

2.3.  Asymptotic distribution of the largest eigenvalues

I will now review the literature that deals with the size and asymptotic distribution of the 

largest and the smallest eigenvalues. In RMT we distinguish between the bulk of the distribution of 

the eigenvalues and the  edges, that is, the smallest and largest eigenvalues. The Marčenko-Pastur 

law has finite support and therefore the bulk of the eigenvalues remains confined in a finite segment 
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of the real line. However, the Marčenko-Pastur law is compatible with the existence of a few stray 

eigenvalues that are at the right (left) of its rightmost (leftmost) edge. Geman (1980) and Silverstein 

(1985) demonstrated that this is not the case. The largest eigenvalue 1λ  of the covariance matrix of 

of a NT ×  i.i.d matrix H when γ→∞→
T
NNT ,,  converges a.s. to the value ( ) 2

1 γ+=b  and the 

eigenvalue  ),min(, NTkk =λ  converges to the value  ( ) 2
1 γ−=a  with  01 ==+ Nk λλ  if  NT < . 

Equivalently the scaled eigenvalues  kλλ ,1  of the matrix  H*HA =  converge to the same limits: 

( ) ( )γλγλ −+ →→ −− 1,1
..

12

..
1

1

sa
k

sa
nn . 

Yin, Bai, and Krishnaiah (1988) demonstrated that a necessary and sufficient condition for 

( ) 2

..
1

1 1 γλ +→−

sa
n  to hold is the existence of finite fourth moments of the distribution of the matrix 

entries.

The  latter  result  does  not  say  anything  about  the  asymptotic  distribution  of  the  largest 

eigenvalue.  Tracy  and  Widom  (1996)  determined  the  asymptotic  distribution  of  the  largest 

eigenvalue of a Gaussian real or complex symmetric matrix. The two Tracy-Widom distributions 

are  called,  respectively,  GOEF  and  GUEF .  None  of  these  distributions  has  a  closed-formula 

expression but they are expressed as an integral of the solution of the Painlévé equations of type II. 

Forrester (1993), Johansson (2000), and Johnstone (2001) generalized the above result to 

rectangular matrices. Overall, this result can be stated as follows. Consider a  TxN matrix  H with 

i.i.d real or complex standard Gaussian entries. Consider the eigenvalues  Nlll ≥≥≥ 21  of the 

matrix H*H. Then there are centering and scaling constants nn σµ ,  such that, if ∞→nm, , then the 

distribution of the centered and rescaled largest eigenvalue 
n

nl
σ

µ−1  tends to the Widom-Tracy limit 

law of order 1 or 2, as in the Gaussian square case. 

However,  there  are  differences  regarding  the  constants  and  how  the  limits  are  taken. 

Forrester  (1993)  considered  complex  matrices  and  assumed  ∞→=− TconstNT ., . Johansson 

(2000)  considered  complex  matrices  and  assumed  ( ) ∞→≤+= NNONT ,1,1
3
1

γ
γ .   Johnstone 
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(2001) considered real matrices, assumed  ∞→≤= TNT ,1,1 γ
λ

 , and considered the following 

centring and scaling constants: 
( )
( ) 3

1

1
1

11

,1
2






 +

−
+−=

+−=

NT
NT

NT

T

T

σ

µ
.

These results have been further extended and refined in different ways. Soshnikov (2002) 

extended Johnstone (2001) to the first k eigenvalues and not only to the largest eigenvalue. Using 

slightly  different  centering  and  scaling  constants,  El  Karoui  (2003)  proved  that  the  rate  of 

convergence to the Tracy-Widom law is of the order 3
2

N . El Karoui (2006) dropped the assumption 

1≤γ  and allowed γ→T
N  where ( )∞∈ ,0γ  or 0=γ  or ∞=γ . Soshnikov (2002) proved that the 

largest  eigenvalue still  converges to a Tracy-Widom law if  the entries of the matrix  H are not 

Gaussian but have sufficiently light tails and n-p is of order 3
1−p . 

The behaviour of the largest eigenvalue changes completely if the matrix H is heavy-tailed. 

Soshnikov and Fyodorov (2005) and Soshnikov (2006) proved that the distribution of the largest 

eigenvalue exhibits a weak convergence to a Poisson process. Biroli, Bouchaud, and Potters (2005) 

showed that the largest eigenvalue of a square random matrix whose entries have distributions with 

power law tails exhibits a phase transition for the Tracy-Widom law to a Frechet distribution with 

tail index 4.2

Thus  far  I  have  discussed  the  behaviour  of  the  largest  eigenvalue(s)  under  the  null 

hypothesis of i.i.d entries of the matrix  H. In terms of factor models, this null hypothesis is very 

restrictive as it is the null of the residuals of a strict scalar factor model. I will now survey results 

for the distribution of the largest eigenvalue(s) under the assumption that the matrix H is formed by 

independent observations of correlated vectors. 

Bai and Silverstein (1998) proved that there is no eigenvalue outside of the support of the 

asymptotic  distributions  of  the  eigenvalues  of  the  matrix  H*H under  the  assumption  that 

observations are ZTH N
2
1

=  where 2
1

NT  is the square root of an Hermitian matrix whose eigenvalues 

converge to a  proper probability distribution  and  Z has i.i.d standard complex entries.  Bai and 

Silverstein (1999) proved an asymptotic exact separation theorem which states that, for any interval 

that  separates  true  eigenvalues,  there  is  a  corresponding  interval  that  separates  corresponding 

empirical eigenvalues. 

2 If the tails decay as a power law the tail index is the exponent of that power law
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Johnstone  (2001)  introduced  the  “spiked”  covariance  model  where  the  population 

covariance matrix is diagonal with N-r  eigenvalues equal to 1 while the first r largest eigenvalues 

are larger than 1: 












−

rNr

rll 1,,1,,1 . 

Recall that the eigenvalues are invariant under an orthogonal transformation and that I call il  

the i-th eigenvalue of the population covariance matrix and iλ  the i-th eigenvalue of the empirical 

covariance matrix. 

Consider a complex  TxN matrix  H. Assume that the eigenvalues of the covariance matrix 

HH
N

S *1=  are 










−

rNr

rll 1,,1,,1 . 

Péchè (2003) proved that if rilril ii >==≤ ,1,,,1,2   then:

( )[ ] ( )xFxTP GUE
NT

→
∞→

− ≤−
,

1
3
2

3
4

24λ .

Baik, Ben Arous, and Péché (2005) generalized this result and proved a phase transition law. 

In fact, they proved the following. Consider a complex TxN matrix H whose rows are independent 

samples  extracted  from a  multivariate  distribution  such  that  the  eigenvalues  of  the  covariance 

matrix HH
N

S *1=  are 
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
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Assume 1,, <→∞→ γ
T
NTN . Consider a rkk ≤≤0, . Then, if 

( )
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i

i
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−
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If  ( ) rikllkil ii ≤≤≤=+> ,,,,1,1 1γ , then

27



 

( )

( )xGx

l
ll

T
l
llP K

NT
→

∞→





















≤







−
−



















−

+−
,

2
1

2
12

1

2

1

1
11

1
1 γ

γλ  

where KF  and KG  are special functions defined in Baik, Ben Arous, and Péché (2005). As 

GUEFF =0 , I again find the particular result obtained in Péché (2003). Onatski (2007) generalized 

this result to the case of singular Wishart matrices, that is, 1≥γ .

The  limit  behaviour  of  the  largest  eigenvalues  was  generalized  in  Baik  and Silverstein 

(2006)  to  include  non-one  eigenvalues,  complex  and  real  data,  and  distribution  assumptions 

different from the Gaussian. The main result in Baik and Silverstein (2006) can be stated as follows. 

Suppose the entries of the TN ×  matrix Z are i.i.d. real or complex variables with zero mean, unit 

variance, and finite fourth moments. Let  NT  be a fixed NN ×  Hermitian (unitary if real) matrix. 

Assume the  sample  vector  is  ZTN
2
1

.  This  implies  that  NT  is  the  population  covariance  matrix. 

Consider  the  sample  covariance  matrix:  2
1

2
1

'1
NNN TZZT

N
B = .  For  some  unitary  matrix 


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
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
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
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00
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where the  s are  the sample  eigenvalues  in decreasing  order.  Suppose the eigenvalues  have the 

following structure: 

( ) 

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


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−
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N

N
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sss 1,,1,,,,,,,
1

111 αααα , 

where M is a non negative integer, rkk M =++ 1  and the jα  are fixed real numbers. 

Assume that ( ) ∞→→= T
T
NTNN ,, γ . Then the following holds:

Case 1. Suppose 10 << γ . Let 0M  be the integer such that γα +> 1j  and let 1MM −  be 

the integer such that γα −< 1j ;
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Case 2. Suppose 1>γ . Let 0M  be the integer such that γα +> 1j ;
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Case 3. Suppose 1=γ . Let 0M  be the integer such that 2>jα ;
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0),min( =NTs

2.4  Asymmetric matrices

Thus far  I  have reviewed the literature  on symmetric  covariance matrices.  As it  will  be 

reviewed in Section 2.10, there is extensive literature on the application of the results from RMT to 

the analysis of static factor models. However, when one needs to forecast prices or returns one has 

to consider auto-cross correlations, that is, correlations between return i at time t and return j at time 

t−k. The study of the asymptotic distribution of eigenvalues of asymmetric matrices allows one to 

test the null of absence of significant non-zero auto-cross correlations and to determine the number 

of factors that might be used in forecasting.

The theory of asymmetric random matrices is less developed than the theory of symmetric 

random matrices. Ginibre (1965) proposed a random matrix model, now called the GinOE, which 
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stands for Ginibre Orthogonal Ensemble. The GinOE is formed by pairs of independent matrices 

X,Y whose  entries  are  i.i.d  zero-mean  Gaussian  variables: { } { }jtit YYXX ,, , ==  

NjiTt ,,1,,,,1  == .  The  covariance  matrix  YX
T

C '1=  is  a  square  matrix  in  general  non 

symmetric.  Therefore,  the  eigenvalues  and the  eigenvectors  kkk vCv λ=  of  the  matrix  C are  in 

general complex. 

The pdf of the matrix C is given by ( ) 










−= −

2
'exp2 2

2 CCTrP
N

GinOE π . The limit distribution 

of the eigenvalues of C  when both N and T tend to infinity is an ellipse in the complex plane:
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where  sbsa −=+= 1,1  and  s  is  a  degree  of  matrix  symmetry:  1=s  symmetric,  real 

eigenvalues,   1−=s  antisymmetric,  imaginary  eigenvalues,  0=s  asymmetric,  complex 

eigenvalues.  Forrester  and  Nagao  (2007)  provide  a  full  set  of  asymptotic  statistics  for  the 

eigenvalues.

Bouchaud et al. (2005) studied a related problem. They considered a  N×T matrix  X and a 

M×T matrix  Y. Diagonalize the matrices  X  and  Y . Consider the diagonalized matrices  YX ˆ,ˆ and 

form the matrix  'ˆˆYXG = .  The  NxM matrix  G is the covariance matrix  between  X  and  Y .  The 

singular  values  of  G are  the  canonical  correlations  between  the  two  diagonalized  matrices. 

Bouchaud et al. (2005) demonstrated that the asymptotic distribution of the singular values, when 

T,N,M tend to infinity with n = N/T, m = M/T, is given by the following expression:

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )nmmnmnmn

ss
ss
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−−±−+=

−
−−

+−−++−−=

±
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22

θ

θθ
δδρ

.

2.5.  Static Factor Models

I will first fix the notation that I will use throughout the dissertation. Consider a multivariate 

time series of returns:

( ) ,T,,,N, t,,, irr itt  2121 ===
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If returns are stationary, I assume that the constant means are subtracted so that tr  is an N-

vector of possibly correlated and autocorrelated zero-mean variables. A static linear factor model of 

returns is a model of the following type:

ttt εβfr +=

where 

NQN

Q

ββ

ββ
β






1

111

=  

is the N×Q  matrix of factor loadings,  tf  is a Q-vector of factors, and tε  is a N-vector of 

residuals. The term tβf  is called the common component while the terms tε  are the idiosyncratic 

components.

The above is a static factor model; a dynamic factor model would explicitly include lagged 

factors:  tPtPtt εfβfβr ++= −0 .  Adding factors and defining  ( )Pttt ,f,fF −=  ,  a  dynamic factor 

model can always be cast in a static form. A static factor model can be compactly written in terms 

of  a  sample  of  observed  data.  Suppose  one  has  T observations  of  the  multivariate  vector 

( ) TtNiritt ,,2,1 ,,,2,1 ,  ===r .  Define  the  matrix  of  observations,  factors  and  residuals  as 

follows:
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where each row is an observation of N variables, Q factors and N residuals. I can compactly 

write the factor models as:

EFββR +=

I will first survey the static factor models defined in the literature, starting with the classical 

factor model. Classical factor models have a long history which goes back to the formalization of 

psychometric  models.  Spearman  (1904)  introduced  a  one-factor  model  of  mental  abilities, 

Thurstone  (1938,  1947)  introduced  the  first  multifactor  model,  and  Hotelling  (1933)  described 

31



principal  components  analysis.  Classical  factor  models  as  described,  for  example,  in  Anderson 

(2003), are strict factor models with a finite number of variables. In a strict factor model, residuals 

are mutually uncorrelated and uncorrelated with factors. This implies that all correlations are due to 

factors. A strict factor model is called a scalar strict factor model if all residuals have the same 

variance.

Without additional assumptions, strict factor models are not identifiable. In fact, one obtains 

observationally equivalent models if one multiplies the matrix of factors by any non singular matrix 

and the matrix  of  loadings  by its  inverse.  In  order  to  identify  a  strict  factor  model,  additional 

assumptions  are  needed.  For  example,  factors  can  be  assumed  to  be  orthogonal,  unit  variance 

variables.

The setting of classical strict static factor models is one of independent samples extracted 

from a population with a multivariate Gaussian distribution. Though a factor model might describe 

a  multivariate  time  series,  no  dynamics  is  allowed.  In  the  setting  of  strict  factor  models,  as 

observations are i.i.d. vectors, there is no dynamics even if samples are taken at different times. 

Strict factor models are “fixed N large T” models as the number of variables is kept fixed while the 

number of samples is allowed to grow. This assumption works well in the original empirical setting 

of psychometric studies where the number of individuals largely exceeds the number of variables.

The first factor model used in financial econometric was the Capital Asset Pricing Model 

(CAPM)  of  Sharpe-Lintner-Mossin.  The  CAPM  is  a  single-factor  theoretical  model  based  on 

General Equilibrium principles. The first multifactor model in financial econometrics was proposed 

by Ross (1976) in his asset pricing theory (APT). The APT model is a strict multifactor model.

Connor and Korajczyk (1986, 1988) proposed a “fixed  T large  N” model.  This model is 

suggested by empirical settings where the number of series exceeds the number of samples. They 

allow  residuals  to  be  cross-sectionally  correlated.  Connor  and  Korajczyk  (1988)  also  allow 

heteroscedasticity  in  the  time dimension.  Because  of  these  assumptions,  their  model  cannot  be 

considered a classical model of independent samples.

The extension from “fixed N, large T” to doubly infinite models was motivated by several 

considerations. First, in practice,  in macroeconomic and financial  applications, the number  N of 

empirical time series of returns is of the same order of magnitude or even exceeds the number of 

observations T. There are also theoretical considerations as the no-arbitrage arguments of Ross are 

obtained in the limit of an infinite market (i.e., when both N and T diverge). 

When both  T  and  N  are large, the asymptotic results developed in the case of fixed  N , 

∞→T  are not applicable. Therefore, it seems reasonable to develop a factor model with infinite T 

and infinite N and to determine asymptotic results when both T  and N  tend to infinity. However, it 
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was observed that, if one allows the number of stock returns to grow indefinitely, it is unlikely that 

residuals are uncorrelated if one retains only a finite (small) number of factors.

To address the problem, Chamberlain and Rothschild introduced the notion of approximate 

linear  factor  models  (Chamberlain,  1983;  Chamberlain  and Rothschild,  1983).  An approximate 

factor  model3 as  defined in  Chamberlain  and Rothshild  (1983)  allows residuals  to  be mutually 

correlated  but  requires  that  the correlations  of residuals  be only local  while  the correlations  of 

returns be global,  driven by factors.  The setting of the approximate factor model  as defined in 

Chamberlain and Rothshild is still one of independent samples extracted from a distribution, though 

the number  of  series  grows with the size of  the sample.  This  setting  does  not  allow any time 

dynamics.  Assume  that  there  are  T   i.i.d.  observations  of  a  multivariate  correlated  vector 

( ) ,T,,,N, t,,, irr itt  2121 === . It is assumed that both ∞→NT ,  but there is no time dynamics 

as observations are independent.

While  in  a  strict  factor  model  data  are  correlated  and residuals  are  uncorrelated,  in  the 

Chamberlain and Rothschild approximate factor model both data and residuals are correlated but 

not autocorrelated. However the essential feature of an approximate factor model is the requirement 

that residuals have only local correlations (and therefore no factor structure) while the data have a 

correlation structure due to common causes, i.e., common factors. 

Chamberlain and Rothschild (1983) expressed the condition of local correlations of residuals 

in the limit of an infinite market as follows. Given N return time series, the covariance matrix of an 

approximate factor model with Q factors where factors and residuals are mutually uncorrelated can 

be written as: 

NN
'
NN RββΣ +=

where all Nβ  are NxQ  matrices. Call iNλ  the i-th eigenvalue of matrix NR . The condition 

that  correlations  are  local  is  imposed by  requiring that  the sequence of covariance  matrices  of 

residuals NR  for ∞→∞→ TN  ,  has uniformly bounded eigenvalues, that is, there is a M>0 such 

that NiMiN ∀∀≤  , ,λ . As the matrix N
'
N ββ  has rank Q , N-Q  eigenvalues of the sequence NΣ  are 

uniformly bounded while Q eigenvalues are unbounded. The size of M is arbitrary.

The  condition  of  serially  independent  observations  is  too  strong  both  for  financial 

econometrics and for macroeconomics, where factor models were widely applied. The third stage in 

the study of static factor models was the definition of models able to describe time series with a 

dynamics. Stock and Watson (1998, 2002) defined an approximate static factor model of stationary 

3 The terminology “approximate factor models” and “approximate factor structure” is slightly misleading insofar as a 
linear approximate factor model should be a perfectly well-specified model. There is no approximation implied by an 
approximate factor model. 
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but possibly autocorrelated processes in the asymptotic limit of ∞→NT , . The Stock and Watson 

model  assumes  a  constant  covariance  matrix  of  factors  and  makes  assumptions  about  the 

covariances between returns. It is not necessarily a Gaussian model but conditions on the second 

and  fourth  moments  of  the  distributions  impose  constraints  as  to  the  type  of  admissible  non-

normality. In the same paper, Stock and Watson also considered the possible non stationarity of the 

factor model allowing factor loadings to be time dependent.

Bai (2003) and Bai and Ng (2002) generalized the definition of an approximate factor model 

to include the possibility of serial autocorrelations of returns and to allow for heteroscedasticity. To 

make these generalizations, Bai (2003) and Bai and Ng (2002) imposed conditions on covariances 

similar to those in Stock and Watson (1998, 2002). The assumptions in Stock and Watson (1998, 

2002), Bai (2003) and Bai and Ng (2002) still imply that the first Q eigenvalues of the covariance 

matrix of returns diverge while the remaining N-Q are uniformly bounded. If residuals are neither 

autocorrelated  nor  heteroscedastic,  these  assumptions  coincide  with  the  assumptions  made  by 

Chamberlain and Rothschild (1983).

Though the largest  Q eigenvalues are assumed to grow without bounds with N, the rate of 

growth is not fixed. Stock and Watson (2002) assumed that N − Q  eigenvalues of the sequence NΣ  

are ( )NO  while the remaining Q eigenvalues are ( )1o .

2.6.  Estimation of static factor models

A sound asymptotic estimation theory of classical static factor models is available. Anderson 

(1963) proved that, for Gaussian distributions, the empirical covariance matrix of X tends to the 

population covariance matrix. He also proved that the eigenvalues of the sample covariance matrix 

tend to the eigenvalues of the population matrix and have an asymptotic normal distribution. If one 

assumes that variables are normally distributed, factor loadings can be estimated with maximum 

likelihood estimation principles. Estimated factor loadings are normally distributed and the rate of 

convergence is the square root of T.

However,  as  proved  in  Anderson  (2003),  factors  cannot  be  estimated  with  maximum 

likelihood.  If  all  the  residuals  have  the  same  variance,  factors  can  be  estimated  with  principal 

components even if factors are not normally distributed. If residuals have different variances, in 

general principal components are not guaranteed to be consistent estimators of factors (Breitung, 

Jorg and Uta Kretschmer, 2005).

However,  when one moves  to  the  large  N,  large  T setting,  that  is,  when one considers 

asymptotic results for ∞→TN , , estimation of factors and factor loadings simplify as factors can 
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indeed be consistently estimated with principal components.  Chamberlain and Rothschild (1983) 

demonstrated that, assuming the covariance matrix is known, asymptotic principal components span 

the factor space. Their result is still a population property as Chamberlain and Rothschild did not 

consider sample variability and asymptotic consistency.

When one allows ∞→TN , , one has to consider how one takes the limits as different paths 

)(TNN = can be specified. Assuming that the number of factors is known,  Connor and Koraczik 

(1986, 1988) showed that factors can be consistently estimated with principal components when T 

is  fixed  and  ∞→N .  This  result  is  obtained  in  Connor  and  Korajczyk  (1986),  where  they 

introduced asymptotic principal components. Connor and Korajczyk (1986) showed that the limit 

for N that tends to infinity of the eigenvectors of the T ×T cross product matrix of returns span the 

factor space. Connor and Korajczyk (1988) extended the procedure to account for cross-sectional 

heteroskedasticity  and  Jones  (2001)  extended  the  procedure  to  account  for  time-series 

heteroskedasticity. 

Stock and Watson (1998) showed that, in the  ∞→TN ,  limit, factors can be consistently 

estimated with principal components. Stock and Watson (2002) subsequently extended the theory to 

allow both long time series and large cross-sectional samples as well as time-varying factor betas. 

In addition, they provided a quasi-maximum likelihood interpretation of the technique. Bai (2003) 

analyzed the large-sample distributions of the factor returns and factor beta matrix estimates in a 

generalized version of this  approach.  Bai (2003) and Bai  and Ng (2002) showed that  principal 

components  estimated  from  data  span  the  factor  space.  Bai  (2003)  and  Bai  and  Ng  (2002) 

determined  the  asymptotic  distribution  and  convergence  rates  of  estimated  factors  under  the 

assumptions that ∞→TN ,  and without any restriction as to how we take the limit.

As regards the number  of factors,  Chamberlain  and Rothschild  (1983) assumed that the 

number of factors is known. Connor and Korajczyk (1993) introduced a formal test of the number 

of  factors.  Bai  and Ng (2003) introduced three equivalent  tests  for  determining  the asymptotic 

number of factors. These tests are model selection tests based on Information Theory. Bai and Ng 

(2002) first showed that the usual Bayesian information criterion does not work if both  T and  N 

diverge and then introduced their own test which is a generalization of the Bayesian information 

criterion to include both T and N.

I will now review the application of RMT on static factor models.
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2.7.  Application of RMT to static factor models

Results from RMT have been applied to factor models to determine the number of factors, to 

understand the nature of the residuals and, in particular, to determine if residuals are correlated. The 

paper by Galluccio, Bouchaud, and Potters (1998) is the first paper where results from RMT are 

applied to a financial optimization problem. The paper by Plerou et al. (2002) is the first application 

of RMT to financial econometrics. The latter paper includes a thorough analysis of the empirical 

spectrum of eigenvalues of a large universe of returns. Plerou et al. analyzed the distribution of the 

eigenvalues of the covariance matrix of returns in two large datasets. The first dataset includes 30-

minute  returns  of  the  largest  1,000 stocks  traded  on  the  New York  Stock  Exchange  (NYSE), 

NASDAQ, and American Stock Exchange (AMEX) in the two-year period 1994-1995. The second 

dataset includes daily returns of all stocks in the CRSP files that survived in the 35-year period 

1962-1996.

 Plerou et al.  (2002) showed that the bulk of the distribution of empirical eigenvalues for 

both  datasets  is  in  good  agreement  with  the  theoretical  Marčenko-Pastur  law  for  uncorrelated 

variables. However, in both cases, large eigenvalues appear. The authors introduced a number of 

methodological  considerations.  They  first  observed  that  the  agreement  between  the  bulk  of 

empirical  and  theoretical  distributions  of  eigenvalues  is  not  sufficient  to  conclude  that  the 

eigenvalues in the bulk of the distribution correspond to zero correlation. Plerou  et al. therefore 

introduced three additional tests based on universal properties of random matrices: the distribution 

of the nearest-neighbor eigenvalue spacing, the distribution of the next-nearest-neighbor eigenvalue 

spacing, and a special statistics called “number variance” to gauge long-range correlations between 

eigenvalues. Empirical data passed the three tests. The authors also considered the composition of 

eigenvectors and measured the concentration of eigenvectors using the inverse participation ratio, 

defined  as  the  sum of  the  inverse  of  the  fourth  power  of  eigenvector  coefficients.  The  paper 

identified the first ten eigenvectors with the entire market and with specific industrial sectors.

It should be observed that Plerou et al. (2002) did not assume any factor model. Only at the 

end of the paper did they suggest common factors as a possible explanation of the empirical results. 

I will now review several papers that did assume a factor structure and that used RMT to estimate 

the number of factors and to understand the nature of factors.

Kapetanios (2004) suggested the following method for determining the number of factors 

based on RMT under the assumption that  γ→T
N . First determine an a priori parameter  d and 

compute ( ) db ++=
2

1 γ . Recall that ( ) 2
1 γ+  is the a.s. limit of the largest eigenvalue of a white 

Wishart matrix. Normalize the data so that they have unit variance and compute the eigenvalues 
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Nλλ ≥≥ 1  of the covariance matrix of normalized data. Ensure that the data support a factor 

structure, that is, that there is at least a pervasive factor, by checking that b>1λ . If this is the case, 

compute the first principal component, regress the data on the first principal component and repeat 

the procedure on residuals. If the test fails after r + 1 steps, then there are r factors. The parameter d 

is not determined formally though the author suggests to set d equal to the average eigenvalue of the 

covariance matrix of normalized data. If data are normalized,  d  = 1. In section 4 of Kapetanios 

(2004), this methodology is extended to data whose covariance matrix is non-diagonal provided that 

the average of covariances is zero.

Onatsky (2005, 2006 a,b) proposed the following family of estimators of the number of 

factors of an approximate factor model: 

( ){ }unir i ˆ1:#ˆ δλ
δ

+>≤=  

where δ  is a positive fixed real number and ( ) 121 maxmax
1ˆ ++ −+= rr wwu λλ , and ( )122 3

2
3
2

−=w  

and  ( ) 10,,minmax <<= ααα TNr .  In  other  words,  the  number  of  factors  is  the  number  of 

eigenvalues that are larger than  ( )û1 δ+ . This estimator is based on the fact - established in the 

same paper - that if the right edge of the support of the distribution of eigenvalues is û , then for any 

sequence of eigenvalues ( )Tjλ such that 
( ) 0→
T
Tj

 then ( ) uTj ˆ→λ . This property suggests that 1max +rλ  

is a consistent estimator of û ; the particular form of the estimator suggested in Onatski (2006b) is 

intended to improve small-sample performance.

Onatski  (2008) proposed a  test  of  the null  that  the  number  of factors  is  0k  against  the 

alternative hypothesis that it is larger than 0k  but less than 01 kk > . The test statistics is: 

21

1
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<< −

−

kk

kk
kkk λλ
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λλλ . 

Onatski computes the critical values of the test statistics based on the joint distribution of the 

last  k eigenvalues established in El Karoui (2006) and extended to singular Wishart matrices in 

Onatski (2007 b).

Onatski (2007) studied “weak” factors. The paper defines weak factors as factors associated 

with bounded eigenvalues. It showed that principal components are inconsistent estimators of weak 

factors and quantifies the amount of inconsistency.

Harding (2008 a) explained the “single factor bias” described in the literature. Many authors, 

in particular Brown (1989), observed that there is a bias towards identifying a single market factor, 
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while  weaker  factors  cannot  be  disentangled  from  noise.  Assuming  “weak”  factors,  Harding 

(2008a) uses results from the distribution of eigenvalues in spiked models to justify this effect.

Harding (2008b) proposed a methodology for identifying the number of factors based on the 

distribution  of  the  moments  of  the  distribution  of  eigenvalues.  He  described  an  identification 

strategy based on the fact, proved in Bai and Silverstein (2004), that the moments of the distribution 

of eigenvalues satisfy a central limit theorem.

2.8.  Dynamic Factor Models

Dynamic factor models are models that allow to specify a dynamics for factors and for the 

processes themselves. Dynamic factor models now have important applications outside the area of 

financial econometrics, for example in ecological studies (see, for example, Zuur, Tuck and Bailey, 

2003).  The  development  of  dynamic  factor  models  is  recent  in  comparison  with  static  factor 

models. While modern static multi-factor models were proposed by Thurstone and Hotelling in the 

1930s, the first dynamic factor models were proposed in econometrics only in 1977 by Geweke 

(1977) and by Sargent and Sims (1977). The subsequent development of dynamic factor models 

followed  three  lines:  1)  dynamic  factor  models  of  stationary  processes  in  the  “finite  N,  large 

(infinite) T” case, 2) dynamic factor models of stationary processes in the “large (infinite) N, large 

(infinite) T” case, and 3) dynamic factor models of integrated processes. The literature on dynamic 

factor models of integrated processes overlaps with the large literature on cointegration.

Dynamics  enter  factor  models  in three different  ways:  1) specifying  a dynamics  for the 

factors, 2) specifying a dynamics for the residuals, and 3) allowing regression on lagged factors. 

Dynamics is typically specified as an autoregressive process.

I will start to review the literature on dynamic factor models with models involving a small 

number of variables and a number of observations that tends to infinity. Dynamic models of this 

type  are  instances  of  state-space  models  (see  Lutkepohl,  1991).  Estimation  of  these  models  is 

achieved either with maximum likelihood and the Kalman filter or in the frequency domain.

Sargent and Sims (1977) and Geweke (1977) proposed a dynamic factor model of the type:

ti itit εfβr += ∑ ∞

= −0

where returns are an 1×N  vector, the iβ  are QN ×  matrices, tf  is a 1×K  vector for each t 

and  tε  is a  1×N  vector. It is assumed that  N is finite,  K<<N  and  T  tend to infinity. It is also 

assumed that factors and residuals  are uncorrelated and that residuals are mutually uncorrelated 

though possibly autocorrelated. This model is the dynamic equivalent of the strict factor model. 
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Estimation is performed with maximum likelihood in the frequency domain. The number of factors 

is determined with a likelihood ratio test.

Engle and Watson (1981), Sargent (1989), and Stock and Watson (1991) proposed similar 

models  of a small  number  of variables.  In these papers,  estimation of the model  parameters  is 

performed in the time domain with maximum likelihood and factors are recovered with the Kalman 

filter.  Quah  and  Sargent  (1993)  studied  larger  models  (N up  to  60)  using  the  Expectation 

Maximization algorithm.

Peña and Box (1987) studied the following more general model:

( ) ( )
( )
( ) q

q

p
p

tt

ttt

LΘLΘILΘ

LΦLΦILΦ
ηLΘfLΦ

εβfr

−−−=

−−−=

=
+=





1

1

where factors are stationary processes, L is the lag operator, tε  is white noise with a full covariance 

matrix but is serially uncorrelated, tη  has a full-rank covariance matrix and is serially uncorrelated 

and tε  and tη  are mutually uncorrelated at all lags. That is, the common dynamic structure comes 

only  from  the  common  factors  while  the  idiosyncratic  components  can  be  correlated  but  no 

autocorrelation is allowed.

Peña and Box (1987) proposed the following methodology for determining the number of 

factors and estimating the factors. Assume that factors are normalized through the identification 

conditions  Iβ'β = .  Consider  the  covariance  matrices  ( ) ( ) ,2,1,0, ==Γ − krrEk kttr  and 

( ) ( ) ,2,1,0, ==Γ − kffEk kttf . The following relationships hold:  

( ) ( )
( ) ( ) 1

000

≥=

=+=

β',kkβΓkΓ
,kΣβ'βΓΓ

fr

εfr

Compute the eigenvalues and eigenvectors of ( ) 1≥Γ kr . The number of factors is the common rank 

Q of the matrices  ( ) 1≥Γ kr . Use the non-zero eigenvectors of  ( ) 1≥Γ kr  to estimate the loading 

matrix β . Use the loading matrix to recover factors.

The  setting  of  dynamic  models  discussed  thus  far  is  that  of  classical  statistics:  a  fixed 

number of time series and a number of samples that tends to infinity. In a series of papers, Stock 

and Watson discuss the problem of forecasting a time series using a large number of predictors. 

This methodology is referred to as creating diffusion indexes from a large number of predictors. 
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The  motivation  for  suggesting  this  procedure  is  the  large  number  of  variables  available  to 

macroeconomists. Stock and Watson observed that the availability of large number of observed 

time series ─ in the range of hundreds of series ─ makes it impossible to use the classical Vector 

Autoregressive (VAR) models used by macroeconomists to model a carefully selected number of 

variables.  They advocated  a  different  procedure  based  on  constructing  a  number  of  “diffusion 

indexes” from a large number of observed series.

Stock and Watson (1998) introduced a static factor model with an infinite N and an infinite 

T. The authors observed that this model is compatible with a dynamic factor model with a finite 

number of lags, but not with an infinite number of lags. As discussed in Section 2.7, Stock and 

Watson (1998) demonstrated that in the limit  ∞→TN , , factors can be estimated with principal 

components. Therefore, any dynamic factor model with a finite number of lags can be put in a static 

form and estimated with principal components.

Principal components do not disentangle factors from their lagged copies. Stock and Watson 

(1998) suggested estimating the number of factors with information criteria. The model is used to 

forecast one variable that is regressed on lagged factors, hence there is no need to forecast factors. 

The paper demonstrated that “feasible forecasts”, that is, forecasts based on factors estimated with 

principal components, asymptotically coincide with the “unfeasible forecasts” performed using the 

unknown true factors.

Forni, Hallin, Lippi, and Reichlin (2000), introduced the generalized dynamic factor model, 

which is a model with ∞→TN ,  and a finite number Q  of factors but allowing an infinite number 

of lags. Factors are assumed to be orthonormal white noise and factor loadings are assumed to be 

constant  in  time.  The  idiosyncratic  components  are  possibly  correlated  and  autocorrelated  but 

uncorrelated with factors at every lag. The major difference with respect to the model described in 

Stock and Watson (1998) is  the allowance of an infinite  number  of lags and the imposition of 

constant factor loadings.

Consider the spectral density matrix of the returns and of the idiosyncratic components. Call 

dynamic eigenvalues the eigenvalues of the spectral density at each frequency. Forni, Hallin, Lippi 

and Reichlin (2000) assumed that the first Q dynamic eigenvalues diverge while the first dynamic 

eigenvalue  of  the  idiosyncratic  components  is  uniformly  bounded.  These  conditions  are  the 

dynamic  equivalent  of  the  conditions  on the  eigenvalues  of  an approximate  factor  model.  The 

authors  estimated  the  model  computing  principal  components  in  the  frequency  domain.  Forni, 

Hallin,  Lippi,  and  Reichlin  (2004)  determined  the  rates  of  convergence  in  function  of  the 

convergence path ( ) ∞→= TTNN , .
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Thus far I have discussed two major methodologies for estimating dynamic factor models: 

maximum  likelihood  in  the  classical  small  N  and  ∞→T factor  model  applied  either  in  the 

frequency domain in Geweke (1977), Sargent and Sims (1977), and Peña and Box (1987) or in the 

time domain in Engle and Watson (1981), Sargent (1989), Stock and Watson (1991) and Quah and 

Sargent (1993) and principal components in the ∞→TN ,  case applied in the time domain in Stock 

and Watson (1989) and in the frequency domain in Forni, Hallin, Lippi, and Reichlin (2000, 2004).

Doz,  Giannone,  and  Reichlin  (2006)  reconciled  these  two  approaches.  Their  paper 

demonstrated that, under the same assumptions as in Stock and Watson (2002 a,b), a dynamic factor 

model can be estimated with quasi-maximum likelihood. The basic idea in Doz, Giannone, and 

Reichlin (2006) was to estimate a dynamic factor model with maximum likelihood and the Kalman 

filter as a misspecified exact factor model and to show that the error vanishes asymptotically.

Heaton and Solo (2003 and 2006) reconciled the small  N and the large  N approaches by 

introducing the signal-to-noise ratio. The setting of the paper is the same as in Stock and Watson 

(1998), that is, forecasting a variable using a small number of diffusion indexes. They assumed a 

fixed N and determined the bounds on the forecasting error in function of the signal-to-noise ratio 

when factors are approximated with principal components.

2.9  Dynamic factor models of integrated processes

I  will  now review the literature  on dynamic  factor  models  of  integrated  processes.  The 

notion of a factor model of integrated processes is rooted in the concept of cointegration. Following 

Granger  and  Engle,  who  were  jointly  awarded  the  2003  Nobel  Memorial  Prize  in  Economic 

Sciences  for  the  discovery  of  cointegration  and  autoregressive  conditional  heteroskedasticity 

(ARCH)  behaviour,  two  or  more  integrated  time  series  are  cointegrated  if  there  is  a  linear 

combination  ∑ =

N

i iti x1
α of the series that is stationary. The linear combinations  ∑ =

N

i iti x1
α  that are 

stationary are called cointegrating relationships.

As observed in Galeano and  Peña (2000), the idea that two or more time series can be 

individually integrated but that a linear combination of the series is stationary had already been put 

forward by Box and Tiao  (1977)  in  introducing  canonical  correlation  analysis.  There  is  a  vast 

literature on cointegration and on determining the number of cointegrating relationships. The state-

of-the-art cointegration test is the Johansen test. Johansen (2000) and Hendry and Juselius (2000) 

offer a concise presentation of cointegration.4 

4 See Hendry (1995).  
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The first  link  between  cointegration  and dynamic  factor  models  appeared  in  Stock  and 

Watson (1988). This landmark paper demonstrated that if a set of N time series is cointegrated with 

K  cointegrating relationships, then there are  Q=N−K integrated common trends and the  N series 

can be described as regressions on the common trends. The common trends are obtained performing 

a generalized principal components analysis, that is, the  Q common trends are determined by the 

eigenvectors  corresponding  to  the  Q largest  eigenvalues  of  the  generalized  covariance  matrix 

( ) ( )XXXX
T

−−=Ω '1
. Escribano and Peña (1994) established that common trends are equivalent 

to  common  dynamic  factors  in  the  sense  that  the  statement  that  there  are  K   cointegrating 

relationships is equivalent to the statement that data can be represented by N-K dynamic factors.

Peña  and  Poncela  (2004a)  generalized  the  methodology  put  forward  in  Peña and  Box 

(1987). They introduced a generalized covariance matrix for integrated processes and showed that a 

procedure similar to the analysis in the frequency domain holds also for integrated processes. The 

paper proposed a test for the number of common factors based on analyzing the eigenvalues of the 

generalized covariance matrices. Factors are estimated with maximum likelihood. Peña and Poncela 

(2004b) analyzed the forecasting performance of dynamic factor models with possibly integrated 

factors.  Pesaran  and Shin  (1997)  presented  a  theory  of  autoregressive  distributed  lag (ARDL) 

models where the regressors are time series that are integrated but not cointegrated.

 

2.10. Application of RMT to dynamic factor models

The application of RMT to dynamic factor models requires the consideration of asymmetric 

matrices. The literature on this topic is much less developed that the literature on applications of 

RMT to static factor models.  Kwapie, Drożdz, Górski, and Oświęcimka (2006) apply RMT to the 

problem of understanding the auto cross correlations between the returns of stocks in the Dow Jones 

Industrial Average (DJIA) in the United States and the returns of stocks in the  Deutscher Aktien 

IndeX  30  (DAX30)  in  Germany.  The  paper  considers  returns  computed  over  very  short  time 

intervals, from 3 to 120 seconds, and considers lags between 0 to 5 minutes. The empirical finding 

is  that  all  eigenvalues  but  one  stay  confined  in  the  Ginibre  Orthogonal  Ensemble  (GinOE) 

theoretical distribution for time lags less than 5 minutes. After 5 minutes, all eigenvalues are in the 

GinOE theoretical distribution, which signals that after a 5-minute lag, the two universes, the DJIA 

and the DAX30, have no mutual influence.

Bouchaud  et  al.  (2005)  propose  a  different  analysis.  In  their  paper,  they  compute  the 

asymptotic  distribution  of  the  singular  values  of  the covariance  matrix  between two sets  of  M 
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random processes  X   and  N processes  Y  when  M, N and the number of observations  T tends to 

infinity.  In  order  to  avoid  mixing  correlations  with  cross  autocorrelations,  both  series  X,Y are 

orthogonalized and normalized before computing  the singular  values.  It  is  well  known that  the 

singular  values  measure  the strength of  correlation  of  the corresponding canonical  correlations. 

Therefore,  the  authors  essentially  find  the  asymptotic  distribution  of  the  canonical  correlation 

coefficients between uncorrelated processes. Because canonical correlation coefficients are obtained 

by optimizing two portfolios formed with the X and the Y, this methodology exhibits one Dirac’s 

delta at zero and one Dirac’s delta at one if the ratio M/T, N/T, (M+N)/T is less than one. This is 

because, in this case, a fraction of correlations can be set algebraically to 1 or to zero. Therefore to 

be viable, this method requires a large number of samples in comparison with the number of time 

series.

2.11.  Application of information theory to factor models

One could reasonably suppose that information theory would have a strong impact on the 

development of finance theory: after all, information is a compact, coherent measure on the amount 

of  uncertainty  carried  by a  probability  distribution.  However  this  is  not  the  case  and financial 

applications of information theory are still relatively rare.5 Part of the problem is due to the fact that 

the concept of information can be consistently defined only for discrete distributions. 

Given a discrete probability distribution Nipi ,,1, = , Shannon (1948a, 1948b) defined the 

amount  of  information  carried  by  the  distribution  as  ( )∑
=

=
N

i
ii ppI

1
log .  The  quantity  I can  be 

interpreted as an amount of information. It reaches a maximum at zero when one probability is 1 

and it has a minimum at 




=

N
I 1log  when all probabilities are equal. There is no lower bound to 

information, as ∞→






N
1log  when ∞→N . 

Consider  now  two  distributions,  Niqp ii ,,1,, = .  The  Kullback-Leibler  divergence  is 

defined as follows:

 ∑
=







=

N

i i

i
i q

ppI
1

log . 

5 See Dionísio, Menezes, and Mendes (2005) for a discussion on the use of entropy as a measure of uncertainty in 
finance.
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However, the extension of the quantity I to a continuous setting is not straightforward. The 

obvious extension of the definition of information to a continuous probability distribution would be 

to replace summation with integral and to define ( )dpppI ∫= log . But this is not a sound definition 

as the integral might diverge. However, the Kullback-Leibler divergence can be extended to the 

continuous case defining 

( ) ( ) ( )
( ) dx
xq
xpxpgfI ∫ 





= log, .

Otter and Jacobs (April 2006) and Otter and Jacobs (July 2006) use the Kullback-Leibler 

divergence to determine the number of factors and, more in general, to determine the amount of 

information in a set of data. The starting point of their analysis is the information contained in a 

covariance matrix,  which is proportional to the logarithm of the matrix determinant.  Hence, the 

information contained in a matrix is proportional to the sum of eigenvalues. Otter and Jacobs (April 

2006)  and Otter  and Jacobs  (July 2006)  compute  the Kullback-Leibler  divergence  between the 

distribution of eigenvalues of two matrices. Based on this basic computation, these papers derive 

criteria  for  determining  the  number  of  factors  by  computing  the  Kullback-Leibler  divergence 

between the empirical distribution of eigenvalues and a diagonal matrix.

2.12.  Sparse Principal Components Analysis 

The survey of the literature on factor models has shown the importance of PCA in factor 

analysis.  Summarizing  the  conclusions  from the  literature,  principal  components  are  consistent 

estimators  of  factors  in  scalar  strict  factor  models,  in  infinite  strict  factor  models,  in  infinite 

approximate factor models, and in finite dynamic factor models. In addition, principal components 

accurately approximate  factors  in  finite  factor  models  if  the signal-to-noise ratio  is  sufficiently 

large.

From the point of view of financial applications, principal components are portfolios formed 

with all the assets present in the market. This is an inconvenience as many if not most assets will 

only marginally contribute to principal components. The basic idea of sparse principal components  

analysis  (SPCA) is  to  constrain principal  components  so that  they are formed by only a small 

number of assets.
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However,  while PCA is easy to compute numerically,  SPCA is a difficult  combinatorial 

problem, as shown by Moghaddam, Weiss, and Avidan (2006) using results from Natarajan (1995). 

Systematic approaches to the problem of computing SPCA are based on nonconvex algorithms.6 

6 SCoTLASS by Jolliffe (2003) and SLRA by Zhang et al. (2002). Zou 2006 allows the application of the LASSO 
algorithm proposed by Tibshirani (1996). The LASSO algorithm is a penalization technique. Johnstone and Yu Lu 
(2004) proposes a simple algorithm for nonfinancial applications. D’Aspremont, Bach and El Ghaoui (2007) propose an 
efficient greedy algorithm for SPCA.
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3. Mathematical Methods

In this  chapter  I  will  review the mathematical  methods used in  Random Matrix  Theory 

(RMT) and in Dynamic Factor Analysis (DFA). I will first review the classical methods of factor 

analysis  based  on  maximum  likelihood  and  then  introduce  different  versions  of  principal 

components analysis and independent components analysis. Next I will introduce the methods used 

in RMT where new, elegant,  and simpler  methods have recently been introduced.  After briefly 

discussing  methods  used  in  cointegration  analysis,  I  will  conclude  with  a  discussion  on  the 

application of the above methods to DFA.

As discussed in the literature review in Chapter 2, there are different strains of literature and 

research in factor  analysis,  with paths from static  to dynamic factors,  from small  N to large  N 

models, and from stationary to integrated variables. In moving from small  N to large  N models, 

there is a significant theoretical simplification insofar as robust methods such as PCA and singular 

value decomposition can be used. However, this simplification comes at a price: when the number 

of time series approaches the number of observations,  estimation becomes more problematic as 

there is an explosion of the number of parameters to estimate per observation. The literature that I 

surveyed in Chapter 2 found many important asymptotic results that solve the problem of separating 

meaningful estimations from random noise, for example, identifying true factors.

However when asymptotic results are applied to finite samples,  it  is difficult  to separate 

information  from randomness  because  there  might  be  a  large  amount  of  apparent  randomness 

generated by the finite size of the sample. One of the objectives of this dissertation is to identify 

additional criteria that allow one to use asymptotic results in finite samples. To this end, I need to 

show what conditions are critical for obtaining the sample results. Hence I need to discuss the key 

methods used to obtain asymptotic results.

3.1 Classical methods of factor analysis

Classical factor analysis applies to static strict factor models under the assumption that the 

number  of variables  N (time series  of  returns)  is  fixed,  while  the number  of observations  T is 

allowed to grow to infinity. Classical factor analysis is based on maximum likelihood estimates and 

on distance minimization, that is, generalized least squares as described, for example, in Anderson 

(2003).  There  are  two  types  of  identification  issues  related  to  classical  strict  factor  models: 

identification of the model’s parameters and identification of factors. Let’s first address the question 

of the identification and the estimation of the model’s parameters.
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Consider a strict factor model:  UFΛΛR +=  where  R  and  U  are  NT ×  matrices,  Λ  is a 

QN ×  matrix of factor loadings and F  is a QT ×  matrix. Each row of the matrix R  contains an 

observation of  N returns.  We assume that the number of factors is known.  To make the model 

identifiable,  assume that  factors are  orthonormal  (i.e.,  uncorrelated with unit  variance)  and that 

factors and residuals  are mutually uncorrelated,  so that the covariance matrix of returns can be 

written as ΨΛΛ'Σ +=  where Ψ  is a diagonal matrix. The model is still not completely identified 

under these assumptions as factors can be rotated, that is, multiplied by an orthogonal matrix.

Let’s assume returns are normalized by subtracting the mean, and that returns, factors and 

residuals are normally distributed. The likelihood function can then be written as follows:

( ) 
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This function is called the concentrated likelihood because unobserved factors and residuals 

have been concentrated out and thus do not appear. The log-likelihood function is:

( ) ( )1
2
1

2
1

2
1log2loglog −Σ−Σ−−= AtraceTTNL π

where  RRA '=  is  T times  the sample  covariance matrix.  In order  to estimate  Λ,Ψ  the 

concentrated log likelihood has to be maximized with respect to  Λ,Ψ , imposing the relationship 

ΨΛΛ'Σ += . Maximization cannot be achieved explicitly as the log likelihood is a highly non-

linear function. Numerical methods are therefore called for. The Expectation-Maximization (EM) 

algorithm maximizes the log likelihood looking at factors such as missing data.

Maximum likelihood estimation allows one to estimate the model’s parameters. Anderson 

(2003) proves that maximum likelihood cannot be used to estimate factors. If  Λ,Ψ  are known, 

factors can be estimated using the equation UFΛΛR +=  as a cross sectional generalized regression. 

However, regression is not unique and different factors are compatible with the same parameters 

Λ,Ψ .

Thus far it has been assumed that the number of factors is known. In practice, however, the 

number of factors is not known  a priori, but needs to be determined. One way to determine the 

number of factors in classical  factor analysis  is to perform a likelihood ratio test  on a growing 

number of factors. If the test is passed for the first time for a number Q of factors that is reasonably 
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small, then it is assumed that data have a factor structure and that Q is the true number of factors. 

Otherwise it is possible to conclude that the data do not have a non-trivial linear factor structure.

The likelihood test  is  written  as  the  ratio  between the  unconstrained  likelihood and the 

likelihood under the assumption of Q factors:

( )
( ) T

T

Σ

Λ,Ψ

Ψ'ΛΛ

C
ΣL

ΨΛΛ'L
2
1

2
1

ˆˆˆmax
max

+
=

+

Note that the perspective of classical factor analysis is to continue adding factors until the 

model fits under the assumption of uncorrelated residuals.

Anderson (2003) proves that if the empirical covariance matrix C is a consistent estimator of 

the  true  covariance  matrix  ΨΛΛ' + ,  then  the  empirical  likelihood,  normalized  dividing  by  N, 

converges to the true limit normalized likelihood. It is also proved that, under the same hypotheses, 

the maximum likelihood estimators  Ψ,Λ ˆˆ  converge to  Λ,Ψ  and that  ( )ΛΛN −ˆ  and  ( )ΨΨN −ˆ  

have a limiting normal distribution.

The maximum likelihood method requires that the distribution function be known. Methods 

based on distance minimization do not require specific assumptions as regards the distribution. One 

method consists in minimizing the distance between the empirical covariance matrix and the matrix 

ΨΛΛ' + . This is a generalized least squares problem as observations are not independent.

3.2 Factor uniqueness

Looking at the literature, there is a proliferation of different factor models of stock returns 

determined with different techniques and including a different number of factors. While the original 

work of Ross (1976) and then of Chamberlain and Rothschild (1983) and Rothschild (1983) used 

strict  and  approximate  factor  models  in  the  sense  defined  above,  many  other  academic  works 

proposed different methodologies. To cite a few, consider the fundamental models introduced by 

Rosenberg (1974). In Rosenberg’s fundamental factor model, factor loadings are predetermined and 

factors are recovered through cross sectional regressions. Among the fundamental models, perhaps 

the best known is the Fama-French three-factor model (Fama and French, 1993).  Carhart (1997) 

and Jagadeesh  and Titman  (1993,  2001)  added a  momentum factor  to  the  Fama-French factor 

model.  A variety  of  country and industry sector  models  have  also been  proposed,  with  papers 

showing that  sector  factor  models  have outperformed country factor  models  in  recent  years.  A 

variety of commercial models are also available.
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How should we interpret this variety of linear factor models for describing returns? Are they 

all  equivalent  models,  each  model  implementing  a  different  estimation  process?  Or  are  there 

genuine  differences  among  these  models  such  that  they  are  not  equivalent?  If  returns  can  be 

described  by  a  true  approximate  linear  factor  model,  then  different  factor  models,  if  correctly 

specified, are equivalent among themselves and they are all equivalent to a PCA-based model up to 

rotations and within the fluctuations implicit in finite samples.

If, on the other hand, no true approximate linear factor model describes returns, for example 

because of non-linearities or due to dynamic effects, then linear factor models are approximations 

—not  in  the  sense  of  approximate  factor  models  but  in  the  sense  that  factor  models  are  mis-

specified— and might be genuinely different. Otherwise formulated, is there a true factor model 

that represents returns or are there many different approximate regressions of returns on different 

factors?

In classical factor models, there is a fundamental indeterminacy in factor models. Steiger 

(1979 and 1996) and Steiger and  Schonemann (1978) provide an historical account as well as a 

statement of the problem of factor indeterminacy in factor analysis. As described in these papers, 

there  have  been  periods  of  interest  and  debate  on  the  problem  of  factor  indeterminacy.  As 

mentioned  above,  factor  models  were  originally  introduced  by  Spearman  in  psychometrics. 

Spearman (1904) introduced a single factor model where the factor, called g, is identified as the 

general intelligence.  Spearman believed that all human abilities are determined primarily by the 

intelligence factor g. Attributing much importance to his discovery,  Spearman believed that the 

measurement of intelligence and human abilities opened a new era where Governments would be 

able to measure the intelligence of every child and select the optimal career path suited to each 

individual.  Factor  indeterminacy  was  a  blow to  these  claims  and  therefore  produced  a  heated 

debate. 

Essentially the problem can be stated as follows. If there are a sufficient number of factors, 

classical factor models are identifiable in the sense that the parameters of the model, ultimately the 

factor loadings and the covariance matrix of residuals, are uniquely determined. In fact, consider the 

covariance matrix decomposition: ΣBB'Ω += , where Ω  is the covariance matrix of the observed 

variables,  Σ  is  the diagonal  covariance  matrix  of  the residuals  and  B  is  the matrix  of  factor 

loadings. If there are m  observed variables and p  factors, there are ( )1
2
1 +mm  equations plus 2p  

equations due to orthonormality constraints while we have to determine km ×  factor loadings plus 

m residual variances. The model is identified if the number of conditions exceeds the number of 
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parameters.  Therefore,  if  the  model  is  identifiable,  we can determine  the  model  parameters  by 

maximum likelihood or by generalized least squares (Anderson 2003).

However,  it  is  impossible  to  write  down a  maximum likelihood  estimate  of  the  model 

parameters plus the factors because the loglikelihood does not have a maximum (Anderson 2003). 

Even if  the  B  and  Σ  are known, the factors are  not uniquely determined.  Factors are not,  in 

general, linear combinations of the observed variables, that is, in financial terms factors are not, in 

general, portfolios. Guttman (1955) demonstrated that factors can be decomposed in the sum of two 

terms: the first term is a linear combination of observed variables, the second term is not a linear 

combination of variables  and is  arbitrary.  Therefore,  there  is an essential  arbitrariness in factor 

determination.

Schönemann  [1971]  derived  a  simplified  formula  for  the  minimum  average  correlation 

between equivalent orthogonal factors: pm
pmr

+
−= . In financial applications where m  is of the order 

of hundreds and p is less than 10, the correlation between equivalent factors is very close to 1. It 

was observed that if the number of variables tends to infinity, equivalent factors become perfectly 

correlated. This is an early statement of the fact that factor models become perfectly identified in 

infinite markets.

3.3 Spectral analysis

Let’s  recall  a  few facts  related  to  the  analysis  of  time  series  in  the  frequency  domain 

following Priestly (1983) and Cox and Miller (1977). The basis for spectral analysis is the Fourier 

series and the Fourier transforms. A periodic function ( )tx  with period 2τ can be represented as a 

Fourier  series  formed  with  a  denumerably-infinite  number  of  sine  and  cosine  functions: 

( ) ∑ ∞

= 










+





+=

10 sincos
2
1

n nn tbtaatx
τ
π

τ
π

. 

This series can be inverted in the sense that the coefficients can be recovered as integrals 

through the following formulas:

( )

( )∫

∫
+

−

+

−






=






=

τ

τ

τ

τ

τ
π

τ

τ
π

τ

dtttxb

dtttxa

n

n

sin1

,cos1

. 

If the function ( )tx  is square integrable, it can be represented as a Fourier integral: 

50



( ) ( )∫
+ ∞

∞−
= ωω

π
ω dFetx ti

2
1

 

where the function ( )ωF  is called the Fourier transform of ( )tx :

( ) ( )∫
+ ∞

∞−

−= dttxeF tiω

π
ω

2
1

.

In both cases, periodic and nonperiodic, Parseval’s Theorem holds:

( ) ( )

( ) ( )∫∫

∑∫
∞+

∞−

∞+

∞−

∞

=

+ ∞

∞−

=

+===

ωω

τ

dFdttx

bacaccdttx nnn
n

n

22

22
2
1

02
1

0
1

22 ,,2

In  engineering  terms,  Parseval’s  Theorem  states  that,  if  a  signal  has  a  finite  energy 

∞<∫
+ ∞

∞−
dtx 2 , then the energy can be expressed in terms of the frequency spectrum. Therefore, a 

periodic signal or a non periodic square integrable signal can be represented either directly as a 

function  of  time  (time  domain)  or  through  its  spectral  representation  given  by  its  Fourier 

transforms. The knowledge of the spectrum allows one to completely recover the time signal and 

vice versa.

The above Fourier analysis applies to a deterministic function ( )tx . Suppose now that ( )tx  

is a univariate stationary stochastic process in continuous time ( )tx . A stochastic process is a set of 

paths. As the process is infinite and stationary, its paths are not periodic, they do not decay to zero 

when time goes to infinity, and they cannot be square integrable as functions of time. Therefore the 

paths of the series cannot be expressed either as Fourier series or as Fourier integrals. However it is 

still  possible to recover a spectral  representation of a stationary stochastic process as stochastic 

integrals. In fact, the Cramer representation of a stationary process represents a stationary process 

as a stochastic integral. Consider first continuous time processes. Given a zero-mean, (stochastically 

continuous)  stationary  process  ( ) + ∞<<− ∞ ttx , ,  then  there  is  an  orthogonal  process 

( ) + ∞<<− ∞ ωω ,Z  such that, for all t¸ the following representation holds:

( ) ( )∫
+ ∞

∞−
= ωω dZetx it

where the integral  is defined in the mean-square sense (stochastic integral).  The process 

( )ωZ  is a stochastic process with the following properties:
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( )[ ]
( )[ ] ( )

( ) ( )[ ] ( ) ( )[ ] ',',,0''cov

,

,0

*

2

ωωωωωωωω

ωωω

ωω

≠∀==

∀=

∀=

dZdZEdZdZ

dHdZE

dZE

Note  that  ( )∫
+ ∞

∞−
ωω dZeit  is  not  a  Fourier  integral  and  therefore  the  relationship 

( ) ( )∫
+ ∞

∞−
= ωω dZetx it  cannot be inverted as a Fourier  integral.  However it  can be proved that the 

following holds:

( ) ( ) ( ) tdtx
it
eeZZ

itit

∫
∞+

∞−

−−





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−=−
12

2
1

12

ωω

π
ωω

The spectral representation carries over to discrete series with only minor modifications. It 

requires changing the integration limits from + ∞∞− ,  to  ππ +− ,  and dropping the condition that 

the process be stochastically continuous, a condition which would be meaningless in the discrete 

case.  We can therefore establish that,  given a zero-mean stationary process  ( ) ,2,1,0, ±±=ttx , 

there is an orthogonal process ( )ωZ  such that, for all ,2,1,0 ±±=t t¸ the following representation 

holds in the interval ππ +− , :

( ) ( )∫
+

−
=

π

π

ω ωdZetx it

I will now consider the power of the signal and the power spectra. Given a stationary series 

(signal), its energy (i.e., the integral of its square) is infinite, but the power of the series (i.e., its 

energy divided by time) might tend to a finite limit. Suppose that the functions ( )tx  are truncated at 

S±  and define the function ( )txS  such that ( ) ( )txtxS =  for StS +≤≤−  and zero elsewhere. Call 

( )ωSF  the Fourier transform of  ( )txS . The functions  ( )
S

FS

2

2ω  are different for each path of the 

process. Let’s average and take the limit for S that tends to infinity, defining the function:

( ) ( )


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The  function  ( )ωh  is  called  the  non-normalized  power  spectral  function  of ( )tx .  The 

integral ( ) ( )∫ ∞−
=

ω
ωωω dhH  is called the integrated spectrum.

I now consider the autocovariance function of the process ( )tx  defined as: 

( ) ( ) ( )[ ]ττ −= txtxER . 

It can be demonstrated (see Priestly, 1983) that the function ( )ωh  is the Fourier transform of 

the  autocovariance  function:  ( ) ( )∫
+ ∞

∞−

−= ττ
π

ω ω τ dReh i

2
1

 and,  therefore,  ( ) ( )∫
+ ∞

∞−
= ωωτ ω τ dheR i  . 

(Note that  in this  definition I  adopt the convention of apportioning the factor  
π2
1

 only to one 

integral.) The demonstration hinges on the fact that the Fourier transform of a convolution of two 

functions is the product of the respective Fourier transforms. 

Define ( ) ( )∫
+ ∞

∞−
== ωωσ dhRx 02 . From this definition it is clear that 2

xσ  is the total power of 

the process but it is also the variance of the process. Define the normalized power spectral density 

function as the power spectral density divided by the variance of the process: 

( ) ( )
2
x

hf σ
ωω =

From these definitions, I obtain that the normalized power spectral density function is the 

Fourier transform of the autocorrelation function of the process defined as:

 ( ) ( )
2
x

R
σ

ττρ = , 

that is, I obtain that: 

( ) ( )∫
+ ∞

∞−

−= ττρ
π

ω ω τ def i

2
1

 and ( ) ( )∫
+ ∞

∞−
= ωωτρ ω τ dfe i . 

The integral ( ) ( )∫ ∞−
=

ω
ωωω dfF  is called the normalized integrated spectrum.

The integrated spectra are more general  than the spectral  density function insofar as the 

integrated spectra might exist even if the density does not. It is possible to generalize the previous 

definitions using the Stieltjes integrals and the Fourier-Stieltjes transforms:

( ) ( )∫
+ ∞

∞−
= ωτρ ω τ dFe i .
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The Wiener-Kintchine theorem states that a necessary and sufficient condition that ( )τρ  be 

the autocorrelation function of some continuous-time stationary stochastic process is that there is a 

non decreasing function ( )ωF  such that ( ) 0=∞−F  and ( ) 1=∞F  and such that:

( ) ( )∫
+ ∞

∞−
= ωτρ ω τ dFe i . 

The same property can be established in terms of ( ) ( )ωτ HR , :

( ) ( )∫
+ ∞

∞−
= ωτ ω τ dHeR i .

Note  that  the  inverse  formulas  do  not  hold  in  general  as  the  functions  h and  f do  not 

necessarily exist. However, if f, h do exist, then ( ) ( ) ωωω dhdH =  and ( ) ( ) ωωω dfdF = , the usual 

Riemann integrals can be used, and the previous invertible Fourier transforms hold.

Thus far I have outlined the spectral theory for continuous-time processes. There is a parallel 

theory for discrete-time series. Consider a stationary time series  ( ) ,2,1,0, ±±=ttx For discrete 

processes of this type, the autocovariance and autocorrelation functions are defined only for integer 

values; integration has to be replaced with summation and integrals must be taken in the interval 

[ ]ππ +− , . The latter condition is related to the Nyqist-Shannon Sampling Theorem which states that 

discrete sampling can reveal a spectrum whose size is half the sampling frequency.

For a stationary discrete-time series, the Wiener-Kintchine theorem is replaced by Wold’s 

theorem.  Wold’s  theorem  states  that  a  necessary  and  sufficient  condition  for  the  sequence 

( ) ,2,1,0, ±±=ttρ to  be  the  autocorrelation  function  of  a  discrete  stationary  process 

( ) ,2,1,0, ±±=ttx  is  that  there  is  a  non  decreasing  function  ( )ωF  such  that  ( ) 0=− πF  and 

( ) 1=+ πF  and such that:

( ) ( )∫
+

−
=

π

π

ω ωρ dFer ri . 

Assuming that the function ( )ωF  is differentiable and 
( ) ( )ω
ω

ω f
d

dF = ,  I can write:

( ) ( )∫
+

−
=

π

π

ω ωωρ dfer ri .

This relationship can be inverted in terms of a Fourier series:
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− ∞=
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r
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If the series ( ) ,2,1,0, ±±=ttx is real-valued, then ( )rρ  is an even sequence and I can write:
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+ ∞=
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Similar relationships can be established for covariances. In particular:

( ) ( )∫
+

−
=

π

π

ω ωdHerR ri

and if there is a density 
( ) ( )ω

ω
ω h

d
dH = , the previous formula becomes:

( ) ( )∫
+

−
=

π

π

ω ωω dherR ri

This expression can be inverted:
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r
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If the time series is real-valued:
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+== r
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1
cos1

2
cos

2
1 ω

ππ
σ

ω
π

ω .

I can now establish the connection between the Cramer representation and the integrated 

spectrum. In fact, it can be demonstrated that the following relationship holds:

( )[ ] ( ) πωπωω +≤≤−= ,2 dHdZE

Thus far I have discussed univariate processes. I will now discuss multivariate processes. 

Consider a complex-valued, vector-valued, jointly stationary, discrete-time series:

 ( )  ,2,1,0,',, ,,1 ±±=tXX tNt  

As the process  X is assumed to be stationary, I can assume that each  tiX ,  has zero-mean. 

The process is characterized by a covariance matrix at lag s defined as follows:

( ) ( ){ }
( ) [ ]stitjij

ji

XXEsR

NjNisRs

+=

===

,
*
,

, ,,1 ,,,1 , R

As the process is assumed to be jointly stationary, ( )sRij  depends only on s and not on t. If 

i=j,  ( )sRii  is the autocovariance function of each process  tiX , . I can therefore write the Cramer 

spectral representation of tiX ,  as a univariate process:

( )∫
+

−
=

π

π

ω ωi
it

ti dZeX ,
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where the  ( )ωidZ  are orthogonal and cross orthogonal, that is,  ( ) ( )[ ] 0'* =ωω ii dZdZE  for 

'ωω ≠  and ( ) ( )[ ] 0'* =ωω ji dZdZE  for ji ≠≠ ,'ωω . The spectral representation of the covariance 

matrix is:

( ) ( )
( ) ( ) ( )[ ]ωωω

ω
π

π

ω

*
,

,,

iiji

ji
is

ji

dZdZEdH

dHesR

=

= ∫
+

−

The matrix ( )ωijH  is called the integrated spectral matrix or spectral distribution matrix. If 

the ( )ωjiH ,  are differentiable, then 
( ) ( )ω

ω
ω

ji
ji h

d
dH

,
, =  holds. The matrix-valued function ( )ωjih ,  is 

called the spectral density matrix and the following relationship holds:

( ) ( ) ωω
π

π

ω dhesR ji
is

ji ∫
+

−
= ,,

The spectral density matrix can be inverted to yield:

( ) ( ) ω

π
ω iss

s jiji esRh ∑ + ∞=

− ∞=
= ,, 2

1
.

The above formula establishes the relationship between the autocovariance matrix function 

( )sR ji ,  of  the process  X  and the spectral  density  function.  The latter  can be thought  of  as the 

covariance function of the process Z. In summary, I can establish the correspondences between the 

representations in the time domain and those in the frequency domain as shown in Table 3.1.

Time domain Frequency domain

Deterministic functions
Fourier analysis ( )∫

+ ∞

∞−
= ωω dFex it

ti , ( ) ( ) tdtxeF it∫
+ ∞

∞−
== ωω

Stochastic processes
tiX , , zero-mean, jointly stationary ( )ωiZ , orthogonal and cross 

orthogonal

Cramer representation ( )∫
+

−
=

π

π

ω ωi
it

ti dZeX ,

( ) ( )∫
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−
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π

π

ω ωji
is

ji dHesR ,,

( ) ( )ω
ω

ω
ji

ji h
d

dH
,

, = ( ) ( ) ωω
π

π

ω dhesR ji
is

ji ∫
+

−
= ,, ( ) ( ) ω

π
ω iss

s jiji esRh ∑ + ∞=

− ∞=
= ,, 2

1

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]ωωωω

ωωω
*

,

*
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dZdZEddh

dZdZEdH

=

=

Table 3.1: Analysis of time series in the time and frequency domains.
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Cox and Miller (1977) offer some intuition on the analysis  of time series in the time or 

frequency domain. The analysis in the time domain seeks a representation of a time series in terms 

of an infinite sequence of white noise  te . In particular,  the analysis  in the time domain can be 

thought of as a regression with an infinite number of regressors. The analysis  in the frequency 

domain seeks a representation in terms of an infinite sequence of terms tiZe ω  where Z  is a random 

variable.  In  particular,  a  process  X is  represented  as  a  continuous  sum  of  terms  of  the  type 

( )ωω
i

ti dZe , that is, as a stochastic integral: ( )∫
+

−
=

π

π

ω ωi
it

ti dZeX , .

3.4 Principal components

Consider  the  same  setting  as  in  Section  3.1.  PCA solves  the  problem of  finding  linear 

combinations of the variables (returns) ,N,,irβ ti 1=  that have maximum variance and that satisfy 

the condition:  1101 −=== ,i,,j'β,β'ββ jiii  ,  that  is,  portfolios that  have maximum variance,  are 

mutually uncorrelated, and such that the vector of loadings have length 1.

Let Σ  be the covariance matrix of returns. The PCA problem can be written as follows:

[ ]
i,j'β,β'βs.t.β

'ΣΣβ'β

jiii

iii

≠==
=

01
maxarg

This problem can be solved analytically as a constrained maximization problem. It can be 

demonstrated that the  iβ  must satisfy the conditions  iii βλΣβ =  with the normalization  1=ii'ββ , 

that is, the  iβ  are the normalized eigenvectors of the covariance matrix up to a factor  1± . The 

corresponding eigenvalues  iλ  are the variances of the relative linear combinations. Collecting the 

iβ  as columns of a matrix  B,  the following relationships holds:  IBB'B'B ==  and  ΛBΣB =  or, 

equivalently, ΛB'Σ' = . The matrix Λ  is a diagonal matrix on whose diagonal the eigenvalues are 

in decreasing order. 

The linear combinations  tirβ  are called principal components:  tii rβη =  or, in matrix form 

tB'rP =  where the columns of P are the principal components. The following relationship holds: 

BPBB'rIrr ttt === . 

Multiplying  by  Λ ,  principal  components  are  normalized  to  have  unitary  variance: 

( ) ( )PΛΛBrt
2
1

2
1

1
−= ,  that  is,  variables  can  be  completely  recovered  as  linear  combinations  of 

normalized principal components. However, the interest for PCA resides not in this identity but in 
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the possibility of using only a small number of principal components Q<<N . I partition the matrix 

B and P respectively in two matrices [ ]21 BBB =   and [ ]21 PPP =  where the QN ×  matrix 1B  

contains  the  first  Q eigenvectors  and  the  ( )QNN −×  matrix  2B contains  the  remaining  N-Q 

eigenvectors  and  the  QN ×  matrix  1P  contains  the  first  Q principal  components  and  the 

( )QNN −×  matrix  2P  contains  the  remaining  N-Q principal  components.  I  then  write  the 

following  relationship:  2211 PBPBrt += .  This  relationship  can  be  rewritten  as  the  sum  of  two 

orthogonal components: wPBrt += 11 . 

Consider the diagonal matrix  1Λ  having on the main diagonal the first  Q eigenvalues in 

decreasing order. The following relationship holds:  111 ΛBΣB =  and  111 ΛΣBB = .  Multiplying the 

matrix of principal components by  2
1

1
−Λ , the first  Q principal components are normalized to have 

variance  one.  It  is  therefore  possible  to  represent  variables  in  terms  of  the  first  Q normalized 

principal components as follows: ( )( ) wPΛΛBrt += −
1111

2
1

2
1

. This relationship is formally similar to the 

relationship that defines a factor model. 

Thus  far  principal  components  have  been  defined  as  linear  combinations  of  the  data 

variables (returns) with loadings given by the eigenvectors of the data covariance matrix. Principal 

components  can  be  estimated  computing  the  eigenvectors  and  eigenvalues  of  the  empirical 

covariance matrix:  R'R
T
1

. Dividing by the respective eigenvalues,  principal components can be 

normalized to have variance one. I can now estimate principal components using singular value 

decomposition (SVD) working directly on the data matrix  R .  The SVD of  R  is the following 

decomposition:  USVR =  where  U and  V   are  the  eigenvectors  of  the  matrices  RR'  and  R'R  

respectively and S is the matrix of singular values which are the square roots of the eigenvalues of 

the covariance matrix of R . Writing SV'RU =  shows that U
T

P 1
2
1

=Λ − . 

After  the  introduction  of  PCA  by  Hoteling  (1933),  it  was  conjectured  that  principal 

components  and factors  are  essentially  the same thing.  However,  Anderson (2003) and Jolliffe 

(2002) observe that factor models and PCA are conceptually different for two main reasons. First, 

factor models assume a theoretical model for the data while principal components do not assume 

any  model.  Second,  principal  components  are  linear  combinations  of  the  data  variables  while 

factors might be non linear combinations of data. Schneeweiss and Mathes (1995) established that if 

the covariance matrix of residuals is IσΨ 2= , then estimation with maximum likelihood and with 
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principal  components  analysis  yields  the same  result.  This  is  true for  the  model  parameters  as 

factors are not uniquely determined.

3.5 Dynamic principal components

Time series can be analyzed in the time domain as well as in the frequency domain through 

their  spectral  representations.  Principal  components analysis  can be applied directly to the time 

series, as seen in section 3.3, or it can be applied to their spectral representation. In the latter case, 

principal components are called dynamic principal components (see Brillinger 1981).

Consider  a  complex-valued,  vector-valued,  zero-mean,  jointly  stationary,  discrete  time 

series:  ( )  ,2,1,0,',, ,,1 ±±=tXX tNt and consider its spectral density ( )ωjih , . The spectral density 

is a matrix-valued function of ω . ( ) ( ){ }ωω jihh ,= . For each value of ω , the spectral density matrix 

has a set of  N eigenvalues  ( ) Nii ,,1, =ωλ , and a set of  N row eigenvectors  ( ) Nipi ,,1, =ω , 

which are N×1  vectors such that: ( ) ( ) ( ) ( )ωωλωω iii php = . The ( )ωλ i  are referred to as dynamic 

eigenvalues and the ( )ωip  are called dynamic eigenvectors. 

Suppose  that  for  each  ( )ω  the  eigenvalues  are  all  distinct.  The  eigenvectors  p can  be 

expanded in Fourier series. The expansion yields:

( ) ( ) ωπ

ππ
ω ikk

k
iws

jj edsespp −+ ∞=

− ∞=

−

−∑ ∫ 



=
2
1

Consider now the filter  ( ) ( ) kk

k
iws

jj LdsespLp ∑ ∫
+ ∞=

− ∞=

−

− 



=

π

ππ2
1

 where  L is the lag operator. 

The  filter  ( )Lp j  is  square  summable.  The  scalar  process  ( ) ,2,1,0,,, ±±== tXLpDPC tjjtj is 

called the j-th dynamic principal component of the process  X. The spectral density of the process 

tjDPC ,  is  ( )ωλ i . The processes  tjDPC ,  and  tkDPC ,  are orthogonal at any lead and at any lag. 

Brillinger (1964, 1981) introduced the notion of dynamic principal components which are principal 

components in the frequency domain.

3.6 Sparse principal components

Principal components are linear combinations of the original variables. In general, principal 

components  involve  all  original  variables,  that  is,  loadings  are  all  non-zero  numbers.  In  many 

applications  this  fact  is  undesirable.  In  financial  applications,  for  example,  it  would  be  more 
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desirable if principal components reflected “sectors”; it would thereby have many zero loadings. 

SPCA  (or  S-PCA)  constrains  a  number  of  loadings  to  be  zero.  The  SPCA  problem  can  be 

formulated as follows:

[ ] ( )
1

maxarg
=

−=

ii

iiii

'βs.t.β
βρCard'ΣΣβ'β

where ( )iβCard  is the number of non-zero elements of the vector iβ . A similar formulation 

of the SPCA problem is the following:

[ ]
( ) kβ,Card'βs.t.β

'ΣΣβ'β

iii

iii

≤=
=

1
maxarg

Both  k   or  ρ  are  tuning  parameters  that  need  to  be  determined  as  a  function  of  the 

application.

While PCA involves a “simple” maximization problem, SPCA is a difficult maximization 

problem; special  algorithms are required to circumvent the problem and to find an approximate 

solution. A number of computer programs are now available to perform SPCA.

3.7 Independent Components

Suppose N separate signals  Nix ti ,,1,, =  (prices, returns) are observed, and suppose that 

the tix ,  are the weighted sum of N hidden, statistically independent, signals Nis ti ,,1,, = . Call  A 

the  matrix  of  weights  so  that  I  can  write:  titi Asx ,, = .  The  signals  tis ,  are  called  independent  

components. Independent Components Analysis (ICA) seeks to recover tis ,  from the observed tix ,  

without any a priori knowledge of the matrix A. ICA is also called Blind Signal Separation (BSS) 

as  it  seeks  to  separate  the  hidden  tis ,  “blindly”,  that  is,  without  any  other  information.  An 

illustration of ICA (or BSS) is the cocktail-party problem, which is the problem of recovering each 

individual  conversation in  a  room filled  with people,  each  with a  microphone picking up their 

conversation.

There are similarities and differences between ICA, PCA, and factor analysis. Both ICA and 

factor  analysis  assume a  statistical  model  for  the  data  while  PCA can be  applied  without  any 

statistical  assumption  on  the  data.  However  ICA  is  not,  per  se,  a  dimensionality  reduction 

technique. The distinctive characteristic of ICA is the independence of components. The level of the 
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independent components is not determined by the model: if I multiply all components by α  and the 

matrix A by 
α
1

, I obtain an observationally equivalent model.

ICA can be performed only if the independent components tis ,  are not Gaussian variables. If 

independent components tis ,  exist and are not Gaussian, ICA seeks the linear transformation of the 

observed variables that are maximally non-Gaussian. That is, given that data are represented by a 

model titi Asx ,, = , where the tis ,  are independent and not Gaussian, ICA seeks the matrix W such 

that  ii Wxs =  are  maximally  non-Gaussian.  The  key  idea  behind  ICA is  that  the  sum of  non-

Gaussian  variables  is  less  non-Gaussian  than  the  individual  variables.  For  example,  if  we  are 

standing outside of a cocktail party, though individual voices can be highly non-normal, what we 

hear is essentially white noise.

The various algorithms proposed to perform ICA differ in how the non-normality of ( )sf  is 

measured  and  estimated.  To  date,  three  approaches  have  been  proposed.  The  first  approach 

measures non-normality through a function of higher moments of ( )sf . In a normal distribution, all 

moments except the first two are zero. The presence of non zero higher moments signals a non-

Gaussian distribution.  A second approach is based on the negentropy,  defined as the difference 

between the entropy of the distribution  ( )sf  and the entropy of the normal distribution. A third 

approach is based on the Kullback-Leibler divergence between ( )sf  and a normal distribution. 

ICA is a relatively new technique; it was proposed for the first time as BSS in Herault and 

Jutten  (1986).  Though  relatively  new,  ICA has  attracted  a  significant  amount  of  research  and 

algorithms  coded in  major  languages  such as  Matlab  or  Mathematica  are  now available.  Most 

applications are in the area of communications and signal recognition. Back and Weigend (1995) 

were the first to use ICA in finance.

3.8 Random Matrix Models (RMM)

In  this  section  I  will  outline  the mathematical  concepts  behind  Random Matrix  Models 

(RMMs). A RMM is a probability space ( )FP,,Ω  where the set Ω  is formed by matrices. Random 

matrices are matrix-variate random variables whose entries are random variables and eigenvalues 

(in case of square matrices) are real/complex valued random vectors. A RMM is characterized by its 

joint  density  as  a  matrix-variate  random variable.  A  number  of  RMMs have  received  special 

attention and are relevant for this dissertation.
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The following conventions have been adopted in this field. In RMT, models relative to real-

valued matrices are denoted with  β  = 1, models relative to complex-valued matrices are denoted 

with  β = 2, and models of matrices whose entries are quaternions are denoted with β = 4. In this 

dissertation I will limit my discussion to models with β = 1,2 as quaternions have not (yet) found 

applications in financial econometrics.

The mean of a complex-valued random variable is a complex number defined as follows: 

( ) ( ) ( )yiExEiyxE +=+ .  The  variance  of  a  complex-valued  random variable  is  a  real  number 

defined  as  follows:  ( ) ( ) ( ) ( )( ) ( )( ) 22varvarvar yEyExExEyxiyx −+−=+=+ .  For  a  zero  mean 

variable ( ) ( ) ( )22var yExEiyx +=+ . A standard real-valued normal variable is normally distributed 

with mean 0 and variance 1, that is, it is distributed according to:  ( )1,0N . A standard, complex-

valued, normal variable is formed by a pair of independent normal variables distributed according 

to 






2
1,0N , so that it has mean 0 and variance 1.

Real-valued Gaussian matrices,  denoted by  ( )nmG ,1  are  mxn matrices whose entries are 

i.i.d. standard normal variables. Complex-valued Gaussian matrices, denoted by ( )nmG ,2  are mxn 

matrices whose entries are i.i.d. standard complex variables. The density of a Gaussian matrix A is 

( ) ( ) ( ) dA
A

πdAAA*traceπ Fββ mnmn













−=





 − −−

2
exp2

2
exp2

2

22 ,  where  ∑=
ji

jiF
aA

,

2
,  is  the 

Frobenius matrix norm and ∏=
i,j

ijdAdA  for ( )nmG ,1 , ∏=
i,j

ijij AdAddA ImRe  for ( )nmG ,2 . This 

expression  is  derived  as  the  product  of  the  normal  standard  distributions  of  the  entries.  A 

fundamental  property of Gaussian matrices is their invariance under orthogonal transformations. 

This invariance is a consequence of the fact that the trace, or equivalently the Frobenius norm, is 

invariant under orthogonal transformations.

For example, for 33 ×  real-valued matrices, this expression means that the probability that 

ijijijij dAAaA +<< , where { }ija  are the entries of the matrix A, is:

( ) ( ) 322131332322131211
2
32

2
21

2
31

2
23

2
12

2
13

2
33

2
22

2
112

1exp2 2
9

dAdAdAdAdAdAdAdAdAAAAAAAAAA 




 ++++++++−−π

The  Gaussian  Orthogonal  Ensemble,  written  as  (GOE,  β  =  1),  is  formed  by  square, 

symmetric  NN ×  matrices  with  independent,  zero  mean,  real-valued  Gaussian  entries.  It  is 
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assumed  that  the  off-diagonal  terms  have  variance  equal  to  1  while  the  diagonal  terms  have 

variance equal to ½. The density of the GOE model is formally the same as the ( )nmG ,1  

( ) ( ) ( ) 











−=





− −−

2
exp

2
exp

2

2
2

2 22 F
A

dAAtrace NN
σσ π σπ σ , 

but,  in  this  case  ∏∏
<

=
ji

ij
i

ii dAdAdA .  For  example,  for  33×  matrices  and  1=σ ,  this 

expression means that the probability that  ijijijij dAAaA +<< , where  { }ija  are the entries of the 

matrix A, is:

( ) ( )( ) 332322131211
2
23

2
12

2
13

2
33

2
22

2
11

3 exp dAdAdAdAdAdAAAAAAA +++++−−π . 

As the trace is invariant with respect to an orthogonal transformation, the density is invariant 

with respect to orthogonal transformations, hence the name Gaussian Orthogonal Ensemble.

The Gaussian Unitary Ensemble,  written as (GUE,  β=2) is formed by square, Hermitian 

NN ×  matrices with independent, zero-mean, complex-valued Gaussian entries. It is assumed that 

the off-diagonal terms have variance equal to 1 while the diagonal terms have variance equal to ½. 

The density of the model is

 ( ) ( ) ( ) 











−=





− −−

2
exp

2
exp

2

22
2

2 22
A

dAAtrace NN
σσ π σπ σ , 

where ∏∏
<

=
ji

ijij
i

ii AdAddAdA ImRe . 

As the trace is invariant with respect to a unitary transformation, the density is invariant with 

respect to orthogonal transformations, hence the name Gaussian Unitary Ensemble.

The Hermite  ensemble,  also called Wigner  matrices,  are square  n×n Hermitian  matrices 

with i.i.d. entries with variance 1/n off-diagonal and variance sqrt(2)/n on the diagonal.  Wigner 

matrices are not necessarily Gaussian and therefore their density depends on the distribution of their 

entries.

The Wishart Ensemble is defined as follows. Consider N real or complex random variables 

( )NXX ,,1   that follow a normal distribution with mean 0 and covariance matrix  NΣ  ( )NN Σ,0  

and with probability density function: 

( ) 




 Σ−Σ= −−

XXXf 1'
2
1exp2 2

1

π . 

63



Consider T  independent samples extracted from the distribution ( )NN Σ,0  and organized in 

a  NT ×  matrix H where each row is an observation.  Suppose that  NT > .  The  NN ×  matrix 

HHA *=  is said to have a N-variate Wishart distribution on T degrees of freedom. The Wishart 

distribution has the following density:

( ) ( ) 




 Σ−Σ= −− −−

AtraceAcAf
pnN

NW
1

2
1exp2

1
2

where Nc  is a normalizing constant: 

( ) 





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22
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N

N NTc .

The Ginebre Orthogonal Ensamble is defined as the Gaussian Orthogonal Ensemble without 

the symmetry assumption. Therefore, the Ginebre Orthogonal Ensamble, denoted as GinOE, is the 

ensemble of square NN ×  matrices with independent, zero mean, real-valued Gaussian entries. The 

density of the GinOE model is formally the same as the ( )NNG ,1  

( ) ( ) ( ) 

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

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The Ginibre Unitary Ensemble is defined as the Gaussian Unitary Ensemble without the 

Hermitian  assumption.  Therefore,  the  Ginibre  Orthogonal  Ensemble,  denoted  as  GinUE,  is  the 

ensemble  of  square  NN ×  matrices  with  independent,  zero  mean,  complex-valued  Gaussian 

entries. The density of the GinOE model is formally the same as the ( )NNG ,2  

( ) ( ) ( ) 

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3.9 Transforms

In this section I introduce the main transforms used in RMT. Transforms play a key role in 

proving many theorems on the distributions of eigenvalues, in particular the Marčenko-Pastur law. I 

will describe the Stieltjes transform, the η-transform, the R and S transforms. 
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3.9.1 The Stieltjes transform 

Consider a random variable X and its distribution XF . The Stieltjes transform is a complex-

valued function defined as follows: 

( ) ( ) CzdF
zzX

EzS XX ∈
−

=






−
= ∫

+ ∞

∞−

,11 λ
λ

where z is a complex number. Usually the Stieltjes transform is defined for values of z with 

positive imaginary part. If the distribution  XF  admits a density  Xf , then the Stieltjes transform 

becomes 

( ) ( ) Czdf
zzX

EzS XX ∈
−

=

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


−
= ∫

+ ∞

∞−
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In this form, the Stieltjes transform can be inverted and the inversion formula is: 

( )[ ]ω
πω

ixSf XX +=
+→

Im1lim
0

Assuming  XF  has compact  support,  we can expand the Stieltjes  transform in a Laurent 

series and, exchanging integration and summation, I can write:

( ) ( )∑
∞
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−=
1

1
k

k

k

X z
XE

z
zS

3.9.2 The η-transform

The  η-transform of  a  non-negative  random variable  is  a  real-valued function defined  as 

follows:

( ) ,
1

1




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


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=
X

EX γ
γη

where  γ  is  a  non negative  real  number.  There  is  a  simple  relationship  between  the  η-

transform and the Stieltjes transform:

( )
γ

λγη

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and therefore:

 ( ) ( )∑
∞

=

=
0k

kk
X XEγγη .
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3.9.3 The R and S-transforms

The R-transform plays a key role in the application of free probability concepts to RMT. 

The R-transform is defined as follows. Consider the functional inverse of the Stieltjes transform, 

that is, consider the function of complex variable ( )zS X
1−  such that ( )( )zSSz XX

1−= . The R-transform 

is defined as:

( ) ( )
z

zSzR XX
11 −−= − .

For any a>0, the following relationship holds:  ( ) ( )zaRzR XaX = . If the random variable  X 

has compact support, it is possible to represent the R-transform as a series: 

( ) ∑
∞

=

−=
1

1

k

k
kX zczR . 

The coefficients kc  are called free cumulants and can be expressed in terms of the moments 

of the variable X  as follows: 

[ ] [ ] [ ]∑ ∑
= =+

−−=
m

k mmkm
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1 1

111


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The S-transform is defined as follows:

( ) ( ),11. 1 x
x

xx XX ++−=Σ −η

3.10 Free Probability

Free Probability is a mathematical  theory originally developed by Dan-Virgil Voiculescu 

(1986, 1987) in relation to operator algebras. I will begin by putting free probability in the context 

of probability theory in general. 

Kolmogorov  (1933)  gave  a  rigorous,  abstract  mathematical  formulation  of  classical 

probability theory based on the notion of events and measures. The fundamental object in the theory 

of Kolmogorov is a triple ( )P,, ℑΩ  formed by a set of objects Ω , a sigma-algebra of events which 

are subsets of ℑ and a probability measure P. Random variables are real-valued functions defined 

on  Ω . A complex-valued random variable  Z is defined as follows:  Z=X+iY  where  X,Y are real-

valued random variables.
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Roughly  contemporaneous  with  Kolmogorov’s  giving  an  axiomatic  foundation  to 

probability  theory,  John von Neumann (1932, reprinted 1996) gave an axiomatic  foundation to 

quantum mechanics based on the theory of Hilbert spaces. The work of von Neumann made it clear 

that, due to the nature of quantum objects, quantum mechanics would require a type of probability 

theory different from the classical probability theory of Kolmogorov. This new type of probability 

theory was to be called quantum probability. Quantum probability is a non-commutative, algebraic 

theory  of  probability.  It  was  later  realized  that  it  is  possible  to  define  an  algebraic  theory  of 

probability that encompasses classical probability, quantum probability and free probability. I will 

briefly sketch the concept of algebraic probability theory.

3.10.1 Algebraic probability theory

I  first  recall  that  in  classical  probability  theory,  complex-valued  random  variables  are 

assumed to have the following properties:

1. Complex constants are random variables.

2. The sum of two random variables is a random variable.

3. The product of two random variables is a random variable.

4. Addition and multiplication of random variables are both commutative 

5. There is a notion of conjugation of random variables, satisfying (ab)* = b* a* and a** = a 

for all random variables a, b, which coincides with complex conjugation if a is a constant. If 

a = a*, the random variable a is called "real".

The above means that random variables form a complex commutative C-*-algebra. In fact, I 

recall the definition of *-algebra, in particular C-*-algebra on the field C. A C-*-algebra A over the 

field of complex numbers C is a vector space endowed with a C-bilinear operation called product or 

multiplication A → A (where the image of (x,y) is written as xy) with the following properties:

  (xy) z = x (y z) for all x, y and z in A.

 (x + y) z = x z + y z  for all x, y, z in A, 

 x (y + z) = x y + x z  for all x, y, z in A, 

 a (x y) = (a x) y = x (a y)  for all x, y in A and a in K. 

If A contains an identity element, i.e., an element 1 such that 1x = x1 = x for all x in A, then 

A is called an associative algebra with one or a unital (or unitary) associative algebra. 
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An expectation  E on an algebra  A of  random variables  is  a  normalized,  positive  linear 

functional, that is, the function E: A → C has the following properties:

 E(k) = k where k is a constant; 

 E(a* a) ≥ 0 for all random variables a; 

 E(a + b) = E(a) + E(b) for all random variables a and b; and 

 E(za) = zE(a) if z is a constant.

The above properties of random variables and expectations that hold in classical probability 

theory  become  the  basis  for  algebraic  probability  theory.  While  classical  probability  theory  is 

centered on the concept of event, the algebraic theory of probability is centered on the concept of 

random  variables  and  measures,  and  related  concepts  are  derived  through  the  theory  of 

representation. The algebraic theory of probability is formalized as follows.

An algebraic probability space is a pair ( )φ,A  where A is a C-*-algebra on the field C and φ  

are  positive,  normalized linear  functionals  called  states in quantum probability (expectations in 

classical  probability  and  traces in  free  probability).  The  functionals  φ  have  the  following 

properties:

1. ( ) 11 =φ ; 

2. ( ) Aaaa ∈∀≥ ,0*φ ; 

3. ( ) ( ) ( ) Abababa ∈∀+=+ ,,1 φφφ ;

4. ( ) ( ) CkAaakka ∈∈∀= ,,φφ . 

The distribution (in a generalized sense) of a random variable Aa ∈  is defined through the 

(infinite) set of moments: ( )k
k aφα = . Joint moments can be defined analogously:

 ( )n

n

k
n

k
kk aa 

1

1 1φα = .

If  the  algebra  A is  commutative,  then  algebraic  probability  theory  is  equivalent  to 

Kolmogorov’s classical probability theory. If the algebra A is non-commutative, then it is possible 

to specify alternative probability theories such as quantum probability.  I will now focus on free 

probability. 
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Free probability is a concept that applies within the domain of non-commutative algebraic 

probability theories. Consider a non-commutative algebraic probability space ( )φ,A  where A is a C-

*-algebra on the field C and φ  are positive, normalized linear functionals called traces. 

The  concept  of  freeness  can  be  introduced  as  follows.  Let  Aaa ∈21 ,  be  two  random 

variables.  Consider  the  sub-algebras  1A  and  2A  formed  by  the  polynomials  of  1a  and  2a  

respectively (that is, the subalgebras generated by 1,1a  and by 2a ). The random variables  1a  and 

2a   are  said  to  be  free  if  ( ) 0,,1 =mZZ φ  whenever   ( ) 0=kZφ  for  mk ,,1=  and 

( ) ( ) 2,1, =∈ kiAZ kik  and consecutive indices are distinct: ( ) ( )1+≠ kiki . 

3.10.2 Freeness

Freeness is the free probability equivalent of independence in classical probability theory. 

Observe the following property of free random variables. From the definition of freeness, if a and b 

are  free,  one  can  write:  ( )( ) 01 =− aa φφ  and  therefore  ( )( )[ ] ( )( )[ ] 011 =−− bbaa φφφφ  hence 

( ) ( ) ( )baab φφφ = . 

The concepts introduced thus far are summarized in Table 3.2.

Classical probability 
theory

Algebraic formulation 
of classical probability 
theory

Algebraic formulation of 
non-classical 
probability theory

Probability space based 
on events: ( )P,, ℑΩ

Algebraic probability 
space based on random 
variables: ( )φ,A

Algebraic probability 
space based on random 
variables: ( )φ,A

A commutative
C-*-algebra,
φ  expectation

A non-commutative 
C-*-algebra
φ  different 
interpretations, e.g., 
matrix trace

Free random variables NA NA ( )
( ) 0,,

0

1 =
⇒=

m

k

ZZ
Z
φ

φ

Independence vs 
freeness

Independence: 
( ) ( ) ( )BPAPBAP =∩

Freeness:
( ) ( ) ( )baab φφφ =

Table 3.2: Classical and Algebraic Probability Theory.
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3.10.3 Asymptotic freeness of random matrices

Thus far I have defined the algebraic probability spaces and the concept of freeness. I will 

now make the connection between these concepts and random matrices. My exposition draws on a 

number of sources including Nica and Speicher (2006) and Tulino and Verdù (2005). Recall that 

random matrix models are classical probability models, that is, an  NN × , complex, self-adjoint 

(Hermitian) random matrix is a classical probability object. Consider now an infinite sequence of 

complex-valued,  Hermitian  random  matrices  ∞→NAN , .  It  is  impossible  to  define  the  limit 

NN
A

∞→
lim  as an infinite matrix. However, it is possible to define the following quantity: 

( )[ ]k
NNk AtraceE

N
a 1lim

∞→
= . 

Consider now an abstract non-commutative algebraic probability space ( )φ,A  and consider 

the random variable Aa ∈  such that ( ) ,2,1, =∀= kaa k
kφ . It is said that the random variable a is 

the  limit  of  the sequence  NA :  NN
Aa

∞→
= lim .  Note  explicitly  that  random matrices  NA  are  non-

commutative objects because matrix product is not commutative but a random matrix model is a 

classical  probability  space.  It  is  the space of limit  random variables  that  is  a non-commutative 

algebraic probability space.

It  can  be demonstrated  that  the  moments  of  the limit  distribution  of  the  eigenvalues  of 

∞→NAN ,  are the ka . Two sequences ∞→NAN ,  and ∞→NBN ,  are said to be asymptotically 

free if the limits NN
Aa

∞→
= lim  and NN

Bb
∞→

= lim  are free. 

Asymptotically free random matrices have a number of important properties. 

 Consider two asymptotically free random matrices A and B.  The R-transform of the asymptotic 

spectrum of the sum A+B is the sum of the R-transforms of of the asymptotic spectra of A and of B: 

( ) ( ) ( )zRzRzR BABA +=+ . 

 Consider two asymptotically free random matrices A and B.  The S-transform of the asymptotic 

spectrum of the product AB is the product of the S-transforms of the asymptotic spectra of A and of 

B:  ( ) ( ) ( )zSzSzS BAAB = .
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3.11 The method of the Resolvent

I will now outline the proofs of the Marčenko-Pastur law. I will sketch a new proof proposed 

by Burda, Goerlich, Jarosz, and Jurkiewicz (2004) and subsequently extended in Burda, Jurkiewicz, 

and Waclav (2005). First I  recall  a property of the moments of the distribution of eigenvalues. 

Consider an NN ×  Hermitian random matrix A and denote { }Nk λλλ ≤≤≤≤ 1 . Consider the 

distribution of the eigenvalues of A, indicated as ESD (acronym of Empirical Spectral Distribution). 

The ESD can be written as follows: ( ) { }xNk
N

xF k
A ≤≤≠= λ,1

 where ≠  denotes the number of 

elements in the set indicated. That is, ( )xF A  represents the proportion of eigenvalues of the matrix 

A that are x≤ . The following property of the moments of ( )xF A  holds: 

( ) ( ) ( )kAk
k Atrace

N
dxxFxAm 1== ∫ .

Note also that the Stieltjes transform of the ESD of a matrix A is :

( ) ( )( )11 −−= zIAtrace
N

zS NF A

I start by proving the Marčenko-Pastur law for correlated variable and uncorrelated samples. 

Consider a statistical model with N zero-mean variables (degrees of freedom) distributed according 

to the following probability distribution:  ( )∏
=

N

i
iN dxxxp

1
1 ,, . The covariance matrix of the model 

is: 

( )∫ ∏
=

=
N

n
nNij dxxxpC

1
1 ,, . 

Assume  the  system  belongs  to  the  Gaussian  universality  class,  which  implies  that  the 

probability distribution can be approximated by a normal probability distribution: 

( ) ( )[ ] ∏∑∏
==







−=

N

i
i

ji
jiji

N
N

i
iN dxxCxCdxxxp

1,1
1 2

1expdet2,, π

Now consider  T independent observations arranged in a  TN ×  matrix  X and consider the 

empirical covariance matrix '1 XX
T

c = . Call Nnn ,,1, =Λ  the eigenvalues of the true covariance 
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matrix  matrix  C and  Nnn ,,1, =λ  the eigenvalues  of the empirical  covariance matrix  c.  It  is 

convenient to define the spectral density, that is, the density of the eigenvalues, as follows:

( ) ( )∑
=

Λ−Λ=Λ
N

n
nN 1

0
1 δρ

where  δ  is  Dirac’s  delta  function.  Note  that  in  integrating  this  density  we  obtain  the 

distribution ( )xF C  as defined above. We can compute the moments of the distribution of the true 

eigenvalues as follows:

( ) ( )∫∑ ΛΛΛ=Λ==
=

d
N

Ctrace
N

M k
N

n

k
n

k
k 0

1

11 ρ

Consider now the empirical covariance matrix and its eigenvalues and form the expectation 

of the distribution:

( ) ( ) 



 −= ∑

=

N

n
nE

N 1

1 λλδλρ

and the expectation of the moments:

( )[ ] ( )∫== λλρλ dctraceE
N

m kk
k

1 .

Let’s now introduce the following resolvents: 

( ) ( )
( ) ( )[ ]1

1

−

−

−=

−=

czIEzg

CZIZG

N

N .

Formally expanding the resolvents in powers of 
Z
1

 and 
z
1

, we see that the resolvents can be 

interpreted as the generating functions of the moments:

( ) ( )( )[ ]

( ) ( )( )[ ] ∑

∑
∞

=

∞

=

=−=

=−=

1

1

111

111

k
kk

k
kk

m
z

zzgtrace
N

zm

M
Z

ZZGtrace
N

ZM

Using planar diagrammatic techniques from quantum mechanics, Burda, Goerlich, 

Jarosz, and Jurkiewicz (2004) demonstrate  that when N,T tend to infinity with a constant ratio r if  

( )zrm
zZ

+
=

1  

then ( ) ( )zmZM = .

From this last  expression we can recover the true eigenvalue density from the empirical 

covariance matrix in the limit of infinite T,N. The eigenvalue distribution is given by the formula:
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( ) ( )++= 0Im1 iλg
π

λρ .

Burda, Jurkiewicz, and Waclav (2005) extend the above proof to the case where samples are 

not independent. Burda, Jurkiewicz, and Waclav assume that cross correlations and autocorrelations 

can be factorized as CA where C is a cross correlation matrix and A is an autocorrelation matrix. 
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4. Forecasting with factors: New results

4.1 Key findings

I  will  restate  the  problems  posed  by  the  application  of  factor  analysis  to  portfolio 

management, problems that motivated the choice of subject matter for this dissertation. Classical 

factor analysis cannot be correctly applied to large panels of data such as econometric time series or 

financial  returns  for  two  reasons.  First,  it  is  very  onerous  to  carry  the  maximum  likelihood 

estimation for large samples and second, the assumption of uncorrelated residuals is not empirically 

tenable. However, abandoning the assumption of uncorrelated residuals in finite models proved to 

be  challenging.  In  fact,  it  is  very  difficult  to  establish  theoretically  sound  and  empirically 

meaningful criteria to separate common factors from correlated residuals. 

The  literature  on  factor  models  has  taken  a  different  path,  proposing  the  paradigm  of 

approximate factor models which are infinite in both the number  N of observed variables and the 

number of observations. In approximate factor models, the separation between common factors and 

residuals  is  achieved  in  a  natural  way assuming  that  the  eigenvalues  of  the  covariance  matrix 

corresponding to the common factors diverge while the remaining eigenvalues remain bounded. 

Under these assumptions, factors are unique (up to a rotation) and can be estimated with principal 

components.

In the theoretical literature, it is generally assumed that large samples ─ including financial 

returns  and macroeconomic  variables  ─ can  be analyzed  with  approximate  factor  models.  The 

practice of asset management, however, has taken a different path, proposing a number of factor 

models constructed with criteria based on identifying fundamental parameters, sectors, countries, or 

exogenous variables.

The problem I want to discuss can be stated simply as follows: If the approximate factor 

model paradigm is applicable, then practical efforts to find unique models are futile, factor models 

are unique and factors can be determined with principal  components.  If  the approximate factor 

model paragidm is not applicable, we need 1) robust criteria to determine when the paradigm of 

approximate factor models is applicable and 2) criteria to select factor models created with methods 

different from both factor analysis and principal components analysis. 

The theoretical and practical solution I propose in this dissertation, which I will discuss in 

this section, can be summarized in the following five points: 
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1. The theoretical paradigm of approximate factor models cannot be applied blindly to large 

samples. There must be a neat separation between “large” and “small” eigenvalues of the 

covariance matrix of data.

2. Criteria to separate “large” and “small” eigenvalues are arbitrary. I propose to sidestep the 

problem by defining directly criteria that  determine the ability to approximately identify 

factors and principal components, also taking into account the ability to “learn” the model 

from the data.

3. When factors cannot be approximately identified with principal components, I propose to 

look at factor models as multiple communication channels and to use the channel capacity 

(i.e., the average mutual information) as criterion for choosing among the different models.

4. Financial  returns  cannot  be  faithfully  represented  with  unique  approximate  static  factor 

models because the eigenvalues decay smoothly.

5. I try to prove that the inability to find unique static factor models of returns might be due to 

the presence of dynamic factors and of cointegration in models of asset returns. I try to 

prove that both dynamic factor models and cointegration-based models are likely to produce 

a smooth decay of eigenvalues of the covariance matrix of static factors.

The rest of this chapter follows the above scheme. First, I discuss just what conditions are 

responsible for the fact that the approximate factor model paradigm is not applicable. Second, I 

introduce the conditions of finite samples under which factors and principal components are very 

similar; similarity of factors and principal components allows factors to be effectively estimated 

with principal components. Then I introduce criteria based on mutual information, suggesting the 

analogy  of  channel  capacity.  I  show  empirically  that  financial  returns  do  not  qualify  for 

approximate  factor  models.  As a  consequence,  factors  are  not  uniquely identified  and different 

factor  models  of  returns  offer  different  partial  explanations  of  returns.  Next,  I  discuss  the 

applicability of dynamic factor models to returns. Finally, I show that dynamic factor models of 

prices can be estimated in a natural way, I discuss model uniqueness and I show that,  if prices 

follow a dynamic factor model, then it is unlikely that factor models of returns are unique. This is 

ultimately the reason why there are different competing factor models of returns. 

4.2 Conditions for applying the paradigm of approximate factor models

In this section, I use Monte Carlo simulation to demonstrate that approximate factor models 

are  not  applicable  if  the  signal-to-noise  ratio  is  too  low.  The  existing  literature  discusses  the 
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problem of estimation of factor models in the “large T, large N” assumption, where “large” is meant 

to be synonymous with infinite. Equating “large” and “infinite” is a strategy typical of classical 

statistics,  supported by asymptotic results such as the law of large numbers or the central  limit 

theorem and the asymptotic  distribution  of estimators.  However,  the statistics  of “large” factor 

models  is  not  classical  because  the  number  of  parameters  grows  with  the  size  of  the  model. 

Therefore “large” might be very different from “infinite”.

Empirically, all samples have a maximum size. In statistical physics, the maximum size of 

samples is often a truly enormous number. Take for example the Avogadro constant, which states 

that the number of atoms in 12 grams of carbon-12 is:

 .02214179x100.000.000.000.000.000.000.000.7 

However, in financial econometrics, the maximum size of samples available today is in the 

range of thousands. In practice, the largest available universes of stock returns are of the order of 

10,000-15,000 stocks. The maximum available time depth for daily data is again in the range of 

10,000 days. 

High-frequency data might multiply the number of available data points by a factor of 100 

or more.  However,  it  is not clear if and how it  is possible to use high-frequency data to make 

forecasts  at  a  time horizon pertinent  to  asset  management.  While  using high-frequency data  to 

capture phenomena at very short time horizons might be useful for strategies based on derivative 

products,  the  transaction  costs  associated  with  exploiting  high-frequency  data  in  equity  asset 

management renders the exercise of dubious value. 

The numbers of assets in today’s markets are large but not infinite by any practical sense of 

the term. If we segment by countries and by sectors, for example using the GICS codes, we rapidly 

form hundreds of different groupings, each containing only hundreds of stocks. What meaning can 

we assign to the fact that the number of returns tend to infinity? A growing number of hypothetical 

countries? Or a growing number of hypothetical sectors? Or a growing number of stocks in each 

country/sector segment? And if we interpret factors as economic causes, do we assume that, in an 

infinite market, there are still a finite number of common causes or do we assume that the number 

of causes also grows to infinity?

Clearly  any  assumption  that  we  make  is  somewhat  arbitrary.  There  is  no  “reasonable” 

assumption as regards how a universe of stock returns might tend to infinity.  What we need are 

asymptotic results that are close to the result that we would obtain if we were able to perform true 

small-sample estimations. For these reasons, when we discuss factor models in the “large T, large 

7 Named after the Italian chemist Amedeo Avogadro, the Avogadro principle (1811) states that the number of atoms in a 
mass proportional to the atomic number of a substance is a constant.
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N” assumption, we need to ensure that a finite sample has all the essential characteristics that we 

use to obtain the asymptotic results.

4.2.1 Pitfalls in determining the number of factors

I will start by discussing criteria to determine the number of factors of static factor models. I 

will  show that  none of the criteria  proposed thus far is effective in determining the number of 

factors unless “sample qualification criteria” are added. 

In the literature, three basic solutions to the problem of determining the number of factors 

have been proposed: criteria based on information theory (Bai and Ng, 2002), criteria based on the 

rank of matrices (Peña and Box, 1987), and criteria based on random matrix theory (Kapetanios, 

2004,  Onatski,  2005  and  2006).  Criteria  based  on  information  theory  introduce  a  penalization 

function  that  increases  the  mean  square  error  in  function  of  the  number  of  parameters  to  be 

estimated  but  decreases  with  the  number  of  samples.  Criteria  based  on  the  rank  of  matrices, 

typically used in dynamic factor models, assume a finite  T or N. Criteria based on random matrix 

theory  compare  the  empirical  distribution  of  eigenvalues  with  the  asymptotic  distribution  of 

eigenvalues  of  random matrices.  I  will  start  with  a  discussion of  criteria  based on information 

theory as proposed by Bai and Ng (2002).

The Bai and Ng criteria apply to approximate factor models of the type described in Bai and 

Ng (2002, 2003). In particular,  these criteria  require that  a finite  number  of eigenvalues  of the 

empirical covariance matrix diverge while all other eigenvalues remain bounded. The Bai and Ng 

criteria based on information theory are an optimal model selection theory and are therefore based 

on some optimal trade-off. However, Bai and Ng’s criteria differ from classical model selection 

criteria such as the AIC or BIC or the Minimum Description Length principle due the asymptotic 

nature of the factor models.

I will briefly digress on model selection criteria in order to discuss the difference between 

classical model selection criteria and the Bai and Ng criteria. Model selection criteria such as AIC 

or BCI apply to models of finite complexity estimated on a variable  sample.  AIC, BIC, model 

selection criteria introduce a penalty function that grows with the number of parameters so that the 

sum of the loglikelihood minus the penalty function attains a non trivial maximum. The AIC/BIC 

model selection criteria work in similar  ways but are based on different principles.  The AIC is 

based on information theory. It adds the number of parameters to the loglikelihood so that the best 

model maximizes L(T)−k. The BIC of Schwarz is based on Bayesian criteria and uses the penalty 

function k×log(T)/2 so that the best model maximizes L(T)−k×log(T)/2.
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The Minimum Description Length (MDL) principle  of Jorma Rissanen is another model 

selection criteria based on the idea of finding the code with the shortest length to describe the data 

and the model.  The MDL principle  is grounded in the theory of the complexity of models  and 

distributions. Early formulations of the MDL principle were similar to the BIC criterion but the 

MDL principle admits (in practice) different (not always easy to implement) formulations. 

Vapnik and Chervonenkis developed a complete theory of statistical learning presented, for 

example, in Vapnik (1998). In principle the Vapnik-Chervonenkis theory of statistical learning can 

also  be  applied  to  factor  model  selection,  but  its  implementation  is  complicated  and  to  my 

knowledge it has not been used to determine the number of factors.

The  AIC  and  BIC  work  as  optimal  model  selection  criteria  in  finite  samples.  They 

implement,  or tend to implement,  the best  trade-off between model  complexity and size of the 

model.  If  only small  samples  are given,  typically  a model  simpler  than the true model  will  be 

chosen.  In  general,  the  optimal  number  of  parameters  grows  with  sample  size  and  reaches 

asymptotically  the  true  number  of  parameters.  Note,  however,  that  the  BIC  converges 

asymptotically while the AIC does not (see, for example, Gourieraux and Monfort, 1995).

However, approximate factor models as those described in Bai and Ng (2002, 2003) are 

models  that,  asymptotically,  include  an  infinite  number  of  parameters.  In  fact,  as  there  are  an 

infinite number of time series, the number of loadings is infinite. More importantly, approximate 

factor models are well defined only in the limit of an infinite market; it does not make sense to 

estimate the number of factors in a finite model. Criteria for determining the number of factors are 

inherently asymptotic criteria. Bai and Ng (2002) introduce general criteria for model selection (i.e., 

criteria for selecting the number of factors) formulated through the following theorem. 

Suppose factors are estimated with principal components. Call kV  the residuals normalized 

by 1/NT using the largest k eigenvalues. Consider now a function ( )TNkg ,,  and suppose that:

( ) ( ) ( )NTCTNkgCTNkg TNTNTNTN
,min ,,,lim ,0,,lim ,

2
,,,

=∞==
∞→∞→ . 

Form the difference (V-g). Bai and Ng (2002) demonstrate that

( )( )TNkgVk
k

,,minarg −  

converges to the true number of factors if both N  and T tend to infinity. Bai and Ng show 

that neither the BIC nor the AIC satisfy the assumption of the above theorem. They then introduce 
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three  new  criteria,  that  is,  three  explicit  expressions  for  the  function  g that  do  satisfy  the 

assumptions  of the theorem. Bai and Ng do not demonstrate  that  their  criteria  work in a finite 

sample. Actually there is no theory to support the claim that the Bai and Ng criteria work in finite 

samples.  Bai  and  Ng  show that  their  criteria  work  asymptotically  and  then  illustrate,  through 

simulation, that their criteria have good finite sample performance.

However, the Bai and Ng criteria are asymptotic criteria which might fail in finite samples. 

It is easy to construct counterexamples to make the Bai and Ng criteria fail in the sense that they 

grossly  underestimate  or  overestimate  the  number  of  factors  in  finite  samples.  For  example, 

consider an infinite  population with one single  common factor and many weak factors,  that  is, 

factors that influence only a finite number of return series. If the weak factors correspond to large 

eigenvalues, that is, if finite sets of series are strongly correlated while the common factor has only 

weak loadings, the Bai and Ng criteria will find that there are many factors in a finite sample and 

converge to only one factor with the growth of the sample.

Criteria based on estimating the rank of a matrix are typically used in estimating the number 

of factors in a dynamic factor model where all autocorrelation matrices have the same rank, which 

corresponds to the number of factors. Hence, the number of factors is determined estimating the 

rank of the autocorrelation matrices. An alternative equivalent procedure consists in estimating the 

rank  of  the  spectral  density  matrix  (Camba-Mendez  and  Kapetanios,  2004).  All  these  criteria 

assume a finite N  or a finite T. There are many criteria for estimating the rank of a matrix. 

I will now discuss criteria based on RMT. Criteria based on RMT are inherently asymptotic 

insofar as the asymptotic distribution of the eigenvalues of random matrices is compared with the 

empirical distributions of eigenvalues. The basic idea underlying the application of RMT is that the 

eigenvalues of the empirical  covariance matrix of uncorrelated data do not converge to the true 

eigenvalues, not even in the asymptotic limits. This occurs because the ratio between the number of 

observations  and  the  number  of  parameters  is  constant.  It  is  therefore  assumed  that,  given  an 

empirical  eigenvalue  distribution,  those  eigenvalues  that  are  within  the  limit  of  the  theoretical 

distribution of purely random eigenvalues do not carry information.

Observe explicitly that random matrix theory assumes a specific distribution of population 

eigenvalues. For example, the null of zero correlation assumes that all eigenvalues are equal to 1. 

The asymptotic distribution of eigenvalues has been determined only for a small number of models 

that are, in general, perturbations of the null of zero correlations. As we have seen in Chapter 3, 

more  complex  population  distributions  can  be  studied  but  results  are  difficult  to  determine 

numerically. 
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There are two problems associated with applying criteria based on random matrices. First, as 

discussed in Chapter 2, the asymptotic distribution of the eigenvalues relative to uncorrelated series 

is constrained between 

( ) 2
1 γ−=a  and ( ) 2

1 γ+=b ,

where γ=
∞→ N

T
NT ,
lim .

If we allow correlations that originate bounded eigenvalues as in the spiked model, a number 

of eigenvalues will fall  to the right of the interval (a,b) in positions whose expected values are 

described in Chapter 2. The magnitude of these “large” eigenvalues is not constrained: they can 

assume  any  value.  One  has  therefore  to  select  arbitrarily  the  threshold  that  divides  “spiked” 

residuals from common components. 

Second,  all  results  obtained  in  Chapter  2  are  asymptotic  results.  In  finite  samples, 

eigenvalues  can assume values different from the asymptotic  limits.  There is no simple way to 

evaluate  the small  sample deviations.  The result  is that  criteria  based on random matrix  theory 

depend on arbitrary decisions as regards the thresholds. 

The conclusion of the above remarks is that any factor model based on the assumption that 

both  N,T go to infinity is based on some assumption that cannot be justified within factor model 

theory itself. What are called for are criteria for model selection that are able to suggest just what 

asymptotic results can be reasonably applied to finite samples.

4.2.2 Pitfalls in estimating factors

I will now discuss the estimation of factors. In Chapter 3, I explained that in classical factor 

models the parameters of the model can be consistently estimated but that, in general, factors cannot 

be consistently estimated with maximum likelihood. Factors have to be estimated, in general, as 

cross sectional regressions. However in classical factor analysis there is a serious problem of factor 

indeterminacy; this problem was discussed in Section 3.1.1. In general, principal components are 

not consistent estimators of factors. Only in the case of scalar factor models (i.e., factor models 

where residuals are i.i.d. variables with the same variance) can factors be identified with principal 

components.

However in approximate factor models,  if  both the number of series and the number of 

observations tend to infinity, then factors can be consistently estimated with principal components 

up to a rotation. Stated differently, principal components span the factor space. Estimating factors 

with principal components is one of the key features of modern static factor theory for large models. 
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Maximum likelihood methods  are  not  applicable  when the number  of  series  is  too large while 

principal  components  can  be  determined  with  robust  techniques,  in  particular  Singular  Value 

Decomposition  (SVD).  Therefore,  the theory of  infinite  approximate  factor  models  is  welcome 

from the theoretical as well as the practical point of view.

In practice, however, the application of the theory of approximate factor models as described 

in Chamberlain and Rothshild (1983), Bai and Ng (2002, 2003), and Stock and Watson (2002 a,b) 

is very difficult.  The major difficulty lies in determining whether the approximate factor model 

paradigm applies to a finite sample and, if so, how many factors actually exist. I observed above 

that criteria to determine the number of factors are asymptotic criteria and might not work at all in 

finite samples. In short, given a finite sample, it is impossible to distinguish between eigenvalues 

that will diverge and eigenvalues that are large but will remain bounded.

In order to address this problem, Onatski (2007) and, implicitly, Harding (2008 b), proposed 

to replace “strong” factors that influence an infinite number of returns with “weak” factors that 

influence  only  a  finite  number  of  returns.  Under  this  assumption,  all  large  eigenvalues  are 

considered as factors. However, if we drop the assumption that a finite number of eigenvalues tend 

to  infinity  while  the  others  remain  bounded,  there  is  no possibility  of  consistent  estimation  of 

factors via principal components. This fact has been proved in the context of random matrix theory 

by  determining  the  asymptotic  distribution  of  eigenvalues  and  the  distribution  of  the  largest 

eigenvalues. Onatski (2007) demonstrates that weak factors, that is factors whose corresponding 

eigenvalues  stay bounded, cannot be consistently estimated with principal  components.  Harding 

(2008 a)  used results  from spiked models,  which are  equivalent  to  factor  models  with a  finite 

number of weak factors, to prove the well-known fact that factor models tend to overestimate the 

largest factor.

4.2.3 Monte Carlo simulation of approximate factor models

I first observe that in the area of financial returns, the paradigm of an infinite number of 

infinitely long return series is subject to serious limitations. One reason why this is the case is that 

financial markets are finite open systems where new return processes are generated and old return 

processes cease to exist.  If we want to include long series in our samples,  we must reduce the 

number of series because a smaller number of longer series is available. Conversely, if we want to 

increase  the  number  of  series,  then  we have  to  reduce  the  time  window.  This  fact  introduces 

significant survivorship biases and makes it difficult to support the assumption that both N,T  tend 

to infinity.
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The above is not without importance as biases can be significant. Consider, for example, the 

Russell 1000 universe. Suppose that we consider samples formed by all of the Russell 1000 stocks 

that  exist  in  200-week-long moving windows.  Our samples  will  include  only a  fraction  of  the 

constituents  of  the  Russell  1000 at  the beginning,  end,  or  any given time  in  the  time  window 

because many public firms are created or cease to exist during the window and therefore have to be 

excluded from the sample. For example, we find that in the period January 2002-November 2006, a 

200-week-long moving window includes an average of less than 800 return series. If we consider a 

500-week moving window, the average number of available series drops to less than 400. Table 4.2 

illustrates the number of return series of the Russell 1000 that can be defined for time windows of 

200 and 500 weeks respectively in the period January 2002-December 2006. Time windows are 

taken at 16-week intervals and end at the following dates.

Date 
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Year 2002 2002 2002 2002 2003 2003 2003 2004 2004 2004 2005 2005 2005 2005 2006 2006 2006
Month 01 04 08 12 03 07 11 02 06 10 01 05 09 12 04 08 11
Day 03 25 15 05 27 17 06 26 17 07 27 19 08 29 20 10 30

Table 4.1 Beginning dates of the time windows.

Evolution of the number of return series in the Russell 1000 universe in time windows of 200/500 weeks in the period: Av.
Window 
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Year 2002 2002 2002 2002 2003 2003 2003 2004 2004 2004 2005 2005 2005 2005 2006 2006 2006
Month 01 04 08 12 03 07 11 02 06 10 01 05 09 12 04 08 11
Day 03 25 15 05 27 17 06 26 17 07 27 19 08 29 20 10 30
200 w 676 673 690 694 691 741 750 753 809 799 797 859 846 833 814 860 846 732
500 w 283  300  306  313  333  341  353  383  395  406  416  462  467  473  505  518 521 367

Table 4.2 - Evolution of the number of returns series in 17 consecutive windows of length 200/500 weeks at  
a distance of 16 weeks for the period January 2002-November 2006.

In practice, we have a sample of returns of finite size. Based on this sample, we need to 

determine 1) if the paradigm of approximate factor models applies and 2) the confidence bands of 

our estimates. I will now show how the asymptotic results obtained in Bai (2003) do not always 

apply to finite samples of size comparable to that of financial markets. Bai (2003) demonstrates that 

if we estimate factors with PCA:

Q
T
'FFp

N,T
=

∞→

~
lim

where Q is invertible,  F  are the true factors, and F~  their principal components estimates. 

This means that there is a well-defined, invertible asymptotic covariance matrix between estimated 
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and true factors.  Bai (2003) also demonstrates  that  the asymptotic  distribution of the estimated 

common component is the following:

( ) ( )1,0
~

2
1 N

T
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N
V

CC d
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itit →






 +

−
.

where  itC  is the true common component,  itC~  is the estimated common component, and 

V,W are estimated by the following quantities:
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where  iΘ~  is  the  Heteroscedasticity  and  Autocorrelation  Consistent  (HAC) estimator  of 

Newey and West (1987) constructed with the series itt eF~ . See Bai (2003), who also demonstrates 

that the asymptotic distribution of the factors ( )tt KFFN −~  is normal and computes the asymptotic 

variances (Avar).

I  will  clarify  the  meaning  of  this  expression.  It  says  that  for  each  return  and for  each 

moment, the difference in the limit of infinite T,N  between the estimated and the true component is 

normally distributed with mean 0 and variance 
T

W
N
V itit + . This is an asymptotic distribution, valid 

only in the large  N,T  limit.  If one assumes that our model is close to the asymptotic limit,  it  is 

possible  to  determine  confidence  bands  for  the  common  components  using  the  asymptotic 

distribution.

The above formula can be interpreted as follows. Given a sample and given a PCA-based 

estimator of factors and factor loadings, and assuming that the sample is sufficiently large for the 

asymptotic distribution to apply, the true components will lie in a band that we can determine for 

each  confidence  interval.  For  example,  if  one  chooses  a  95%  confidence  interval,  the  true 

components will lie in the interval 
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Alternatively,  if  one knows the true factors, the same formula tells  us that the estimated 

PCA-based components will lie in the same interval. This observation cannot be applied to real 

factor models but it is useful in analyzing how well one can estimate approximate factor models 

with PCA using Monte Carlo simulations.
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4.2.4 Simulation results for confidence bands

Bai (2003) finds that the results of Monte Carlo simulation performed with one factor and 

with uncorrelated residuals  agree with the theoretical  prediction.  This  is  a simplified context.  I 

performed a more realistic test, estimating with PCA a simulated 5-factor model. The objective is to 

understand what parameters other than N,T might influence the adequacy of the asymptotic results.

Thus I conducted Monte Carlo simulations with five factors and with a number of series and 

data points very close to our empirical data based on the Russell 1000. In the Russell 1000 data sets, 

if we choose a time window of 200 weeks, our samples will include on average nearly 800 return 

series, while if we choose a time window of 500 weeks, our samples will include on average 400 

return series. I therefore performed Monte Carlo simulations in the two cases of 400 series and 500 

data points and 800 series and 200 data points.

I simulated factor models as in Bai (2003), creating random, zero-mean, unit-variance, i.i.d. 

factors  and  a  normal  random matrix  of  factor  loadings.  That  is,  I  simulated  different  models 

εFββR +=  where:

• F  are  200×5 or 500×5 matrices  that  simulate  factors formed by random numbers  after 

subtracting the column means;

• β'  are 5×800 or 5×400 matrices that respect the relative factor loadings formed by random 

numbers;

• ε  are  200×800  or  500×400  matrices  formed  by  random numbers  after  subtracting  the 

column means and multiplied by a common error variance.

I estimated factors with the first five principal components. The entire set of Monte Carlo 

simulations was repeated with errors of different size. Because in this experiment the true factors 

are known, for each series and for each moment, I created the 95% confidence intervals for each 

component and for each factor. 

I tested the adequacy of the asymptotic approximation counting the percentage of factors 

and of estimated common components that fall outside the theoretical confidence band. Given the 

large number of data points involved, this numerical simulation is highly reliable. If the distribution 

of common components and of factors follows the theoretical distribution, the percentage of points 

that exceed the 95% confidence band should be close to 0.05. If the percentage of points that exceed 

the 95% confidence band is significantly different from 0.05, we can reject the assumption that a 

model is similar to its asymptotic limit.
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Table 4.3 shows the percentage of points of factors and components that fall outside the 

theoretical band for different lengths of the estimation periods, different numbers of returns series, 

and different magnitudes of the residual terms. 

Test Res std= 0.1, 200 weeks, 800 series
Components 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Factors 0.064 0.183 0.305 0.305 0.247 0.179 0.369 0.225 0.312 0.092 0.224 0.204 0.262 0.252 0.291 0.239 0.321

Res std= 1, 200 weeks, 800 series
Components 0.044 0.043 0.038 0.043 0.040 0.050 0.043 0.046 0.044 0.044 0.046 0.044 0.046 0.042 0.042 0.047 0.045
 Factors 0.164 0.344 0.386 0.232 0.279 0.324 0.273 0.233 0.242 0.175 0.373 0.257 0.310 0.309 0.278 0.148 0.300

Res std= 5, 200 weeks, 800 series
Components 0.700 0.701 0.697 0.708 0.704 0.705 0.695 0.705 0.704 0.700 0.695 0.706 0.705 0.703 0.704 0.705 0.703

0.716 0.695 0.730 0.722 0.733 0.724 0.700 0.719 0.762 0.685 0.740 0.720 0.717 0.726 0.705 0.734
Res std= 0.1, 500 weeks, 800 series

Components 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Factors 0.050 0.084 0.056 0.025 0.024 0.038 0.036 0.100 0  0.028 0.084 0.105 0.020 0.070 0.042 0.039 0.007

Res std= 1, 500 weeks, 400 series
Components 0.044 0.044 0.044 0.048 0.046 0.045 0.044 0.045 0.045 0.043 0.045 0.043 0.043 0.045 0.045 0.043 0.051
 Factors 0.204 0.107 0.131 0.154 0.104 0.122 0.140 0.154 0.106 0.164 0.142 0.088 0.124 0.108 0.102 0.081 0.108

Res std= 5, 500 weeks, 400 series
Components 0.707 0.704 0.707 0.710 0.701 0.707 0.715 0.703 0.709 0.707 0.694 0.711 0.703 0.712 0.707 0.712 0.707
 Factors 0.703 0.692 0.696 0.706 0.705 0.705 0.704 0.684 0.697 0.715 0.694 0.695 0.712 0.701 0.716 0.704 0.710

Table 4.3 - Percentages of factors / common components that fall outside the confidence band in a simulated 
factor model with different parameters. 

As shown in the Table 4.3, given the sample size, the behaviour of the common components 

and the factors depends on the magnitude of the residual term in the simulations. Results can be 

summarized as follows. For a time window of 200 weeks and 800 series (upper half of the table):

 If the magnitude of the residuals’ variance is 0.1, an average of 0% of Components values 

and 3% of Factors values exceed the confidence band.

 If the magnitude of the residuals’ variance is 1, an average of 4% of Components values and 

30% of Factors values exceed the confidence band.

 If the magnitude of the residuals’ variance is 5, an average of 70% of Components values 

and 70% of Factors values exceed the confidence band.



 For a time window of 500 weeks and 400 series (lower half of the table):

 If the magnitude of the residuals’ variance is 0.1, an average of 0% of Components values 

and 5% of Factors values exceed the confidence band.

 If the magnitude of the residuals’ variance is 1, an average of 4% of Components values and 

15% of Factors values exceed the confidence band.

 If the magnitude of the residuals’ variance is 5, an average of 70% of Components values 

and 70% of Factors values exceed the confidence band.
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These results suggest that the assumptions of large factor models are or are not satisfied not 

only in function of the size of  T,N  but also in function of the magnitude of the residuals. In my 

Monte Carlo simulations, if  T,N are large and the residuals are also large (in a sense to be made 

precise), then the distribution of factors and components does not follow the theoretical distribution. 

Therefore we cannot confidently assume that our finite model is close to the asymptotic limits.

Let’s reconsider the assumption of approximate factor models. An approximate factor model 

requires that the covariance matrix of the noise processes have bounded eigenvalues while the first 

r eigenvalues of the covariance matrix of both factors and returns diverge with N,T. This notion can 

be defined precisely only in the limit of infinite N,T. In a finite context, it would seem reasonable to 

require that, in addition to large  N,T , we require a sudden, large change in the magnitude of the 

eigenvalues  of  the  returns  covariance  matrix  so  that  the  smallest  eigenvalue  of  the  returns 

covariance matrix are large with respect to the largest eigenvalue of the residuals covariance matrix. 

In addition, if we believe that our data have a well-defined factor structure, we expect a change in 

magnitude of the eigenvalues at a well-defined k. If we were to find more than one large change, we 

might expect a nested factor structure.

  

 

86



 

Figure 4.1. Plot of the NSR of the simulated market in function of the number of factors and for different  
values of the standard deviation of residuals. The plot is made superposing the plots of the NSR in different  
time windows. The figure on the left is relative to a 200-week time window, the figure on the right is relative  
to a 500-week time window.
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Figure 4.2. Plot of the 100 largest eigenvalues of the covariance matrix of the simulated market for different  
values of the standard deviation of residuals. The figures on the left are relative to a 200-week time window,  
the figures on the right to a 500-week time window.  The plots are made superposing the plots of the 100  
largest eigenvalues in different time windows.

4.3 When can factors be estimated with principal components?

The Monte Carlo simulations show that principal components estimated on finite samples do 

not always correctly estimate the population factor model. As described in Chapter 1, I propose to 

identify the conditions that allow factors to be estimated with principal components.

Under what conditions can factors be estimated with principal components? In order to solve 

this problem, I first need to introduce concepts of distance between factors. As observed in Chapters 

2 and 3, there is a fundamental indeterminacy in factor models given that factors can be multiplied 

by an invertible matrix and generate an observationally equivalent model. Note that this is not the 

factor  indeterminacy  discussed  in  Chapter  3:  the  latter  is  indeterminacy  between  factors  and 

residuals and does not affect factor loadings, while rotational indeterminacy affects only factors and 

their loadings. Therefore factor distance must be insensitive to factor rotation even after imposing 

the condition that factors are orthonormal variables.

Schneeweiss  and  Mathes  (1995)  define  the  closeness  of  two  random vectors  using  the 

canonical  correlation  coefficients  between  the  respective  factors.  More  precisely,  suppose  that 

21 ,ξξ  are two random  q-vectors defined on the same probability space.  Consider the canonical 

correlations ( ) qiii ,,1 ,, 21 == ξξρρ  in decreasing order.

Recall that, given two random q-vectors 21 ,ξξ , in canonical correlation analysis one looks 

for linear combinations ,q,, i,xx ii 121 =  of the vectors 21 ,ξξ  such that the variables ii x,ξξxξ' 2211  are 

maximally mutually correlated and uncorrelated for different values of i. The variables ii x,ξξxξ' 2211  

are  called  canonical  variates and  the  relative  correlation  coefficients  are  called  canonical  
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correlations. Consider now the covariance matrices  21122211 , Σ, Σ, ΣΣ  of each vector and between 

vectors 21 ,ξξ . In canonical correlation analysis, it can be demonstrated that the squares of the iρ  

are the eigenvalues of the matrix 21
1

2212
1

11  Σ Σ ΣΣ −− . 

Schneeweiss and Mathes (1995) define the closeness between two models with factors 21,ff  

not  necessarily  orthonormal  as  the sum of  the squares of  the canonical  correlation  coefficients 

between the factors:

( )21
1

2212
1

11
1

2    ΣΣΣΣ −−

=

== ∑ tracer
q

i
iρ .

The quantity r assumes values qr ≤≤0 . It attains the maximum value q iff there is a non-

singular  matrix  K  such  that:  21 Kff = .  Given  that  canonical  correlations  are  invariant  after 

orthogonal transformations, the quantity r is clearly invariant after an orthogonal transformation. If 

1f  are orthonormal  factors,  that  is,  IΣ =11 ,  and if  ( )q,λ,λdiagΛΣ 122 ==  then the measure  r 

becomes: ( )21
1

12
1

2  ΣΛΣ −

=

== ∑ tracer
q

i
iρ . If we divide each principal component by the square root 

of the corresponding eigenvalue, we obtain the normalized principal components  2
1

2
−Λf  and the 

measure  r becomes  ( ) ∑∑
==

===
q

i
i

q

i
i tracer

1

22

1

2 ηρ Σ  where  '
2112 ΣΣΣ ==  is the covariance matrix 

between  the  orthonormal  factors  and  the  normalized  principal  components  and  iη  are  its 

eigenvalues.

I define another measure of closeness between factor models using the concept of Procrustes 

analysis  (See  Gower and Dijksterhuis,  2004).  Given two  nm ×  matrices  A,B ,  Procrustes analysis 

finds an nn ×  orthogonal matrix C that minimizes the Frobenius norm of the matrix BCA − :

Procrustes problem: FC
BCA −min  subject to IC'C =

To  solve  the  Procrustes  problem,  consider  first  the  SVD  of  the  matrix  B'A : 

[ ]iσdiagSUSV',B'A ==   . It can be demonstrated (see Golub and Van Loan, 1996) that the solution 

of the Procrustes problem is the following matrix: UV'C =  and that the following holds: 
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Consider  the  same  setting  as  before  where  21,ff  are  the  factors  of  two  factor  models. 

Suppose that  21,ff  are  orthonormal  random  q-vectors  defined  on the same  probability  space.  I 

define the distance d between the two factor models as follows: 

2
21min

2
1

FC
Cff −  subject to IC'C =

From  the  above  discussion  of  Procrustes  analysis,  given  that  the  factors  21,ff  are 

orthonormal q-vectors, the distance between factors is: 

F
UV'ffd 212

1 −=  where USV'ff ' =12  

which yields:

( ) ∑∑
==

−=−=
q

i
i

q

i
i qq,ffd

11
11 ησ

where  iσ  are  the  singular  values  of  the  matrix  21 f'f ,  that  is,  the  square  roots  of  the 

eigenvalues of the covariance matrix between the factors. If there is an orthogonal matrix  C such 

that Cff 21 = , then d=0. Conversely if d=0, 021 =− UV'ff  because the Frobenius norm of a matrix 

is  zero  iff  the  matrix  is  zero.  Therefore  UV'C, Cff == 21 .  Therefore  qrd =⇔= 0 .  More  in 

general, the following relationship holds: rqd −≤

Let’s now go back to the problem of model identifiability and estimation.  In the literature, 

the  following  conditions  for  identification  and  estimation  have  been  determined.  Scalar  factor 

models (i.e., strict factor models with uniform variance of residuals) are uniquely identified and 

factors can be estimated with principal components. Finite strict factor models with heterogeneous 

variances admit identification and estimation of the model parameters but factors are subject to 

indeterminacy and can be estimated with generalized least squares (GLS) but not with principal 

components.  Infinite  factor  models  with  a  finite  number  of  common  factors  with  infinite  

eigenvalues  can  be  identified  and  factors  are  estimated  with  asymptotic  principal  components. 

Infinite factor models with a finite number of common factors with  finite eigenvalues cannot be 

identified and factors are estimated with asymptotic principal components. We can summarize the 

facts relative to factor model identification and factor estimation in the following Table 4.4
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Scalar factor model Strict factor model Approximate factor 
model

Bai and Ng factor 
model

Weak factors model

Finite N, infinite T Finite N, infinite T Infinite T, infinite N Infinite N, infinite T Infinite N, infinite T
Model identified and 
estimated with ML

Model identified and 
estimated with ML

Model identified and 
estimated with 
asymptotic PCA or as a 
limit of strict factor 
models

Model identified and 
estimated with 
asymptotic PCA

Model not identified

Factors can be 
estimated with principal 
components

Factors cannot be 
estimated with ML. 
Factors not identified 
and estimated with 
GLS or principal 
components

Factors identified with 
principal components 
or as limit of strict 
factor models

Factors identified with 
principal components

Factors estimated with 
principal components

Table 4.4 Factor model identification and estimation.

Finite models with possibly correlated and autocorrelated residuals do not fall into any of 

the categories in Table 4.4. Still these models are the most important models in practice. In the area 

of econometrics, financial returns as well as macroeconomic variables form finite models. Current 

practice is to use asymptotic results from infinite models. However, simulations in section 4.2.4 

demonstrate that asymptotic results might not be applicable to finite samples. In addition, from the 

economic point of view there is no natural way to allow the model to become infinite. Therefore it 

is  necessary to develop a theory of how finite  samples  can be represented with possibly many 

different factor models and determine criteria for choosing the best model(s).

Let’s first discuss factor models from the population point of view. Consider a finite sample 

with  T samples of an  m-vector  X. Consider a finite factor model:  EFB'X +=  with  m observed 

variables  and  p factors.  Assume that  factors are orthonormal  and that  factors and residuals  are 

mutually uncorrelated. Then, the covariance matrix Ω  of the observed variables can be written as 

ΣBB'Ω +=  where Σ  is the covariance matrix of the residuals.

If no restriction is placed on the matrices B,Σ  clearly the model is not identifiable because 

there are more parameters than conditions. For finite models, the typical restriction imposed in the 

literature  is  that  Σ  be  diagonal.  This restriction characterizes  strict  factor models.  Strict  factor 

models  are  identifiable  because  the  number  of  parameters  of  the  matrix  Σ  is  reduced  from 

( )1
2
1 +mm  to m. In the case of scalar factor model, the number declines to 1.

It is possible to construct progressive “perturbations” of the strict factor model that are still 

identifiable and that could be estimated with ML. For example,  an obvious candidate is a near-

scalar  model  where  the  residual  covariance  matrix  has  homogeneous  variances  and a  constant 
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covariance, thereby reducing the number of parameters of the residual covariance matrix to 2. The 

next step would be to accept a small number of heterogeneous variances and covariances.

This  exercise  is,  however,  practically  without  much  interest  for  three  reasons.  The  first 

reason is that restrictions on the covariance matrix of the residuals are arbitrary and any specific 

restriction is unlikely to meet the empirical test. The second reason is that the computation of ML 

estimates  of  the  parameters  would  become  rapidly  impossible  when  the  number  of  observed 

variables is in the range of hundreds, as is typical of financial econometrics and, presently, also of 

macroeconomics. The final reason is that learning theory constraints have to be taken into account. 

The objective of factor models is not to describe sample data but to generalize to out-of-sample 

data. If too many independent parameters are added, the generalization ability of the model decays 

rapidly.

Therefore,  in  this  Dissertation  I  propose to  focus  on those criteria  that  allow one to  1) 

establish that  data  can be represented by a factor  model  and 2) estimate  factors  with principal 

components  and loadings  with the  corresponding eigenvectors.  In  practice  this  is  equivalent  to 

establishing under what conditions current “large factor model theories” can be applied to finite 

samples.

Let’s first consider the distance  r proposed by Schneeweiss and Mathes (1995), which we 

can write: 
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As discussed earlier in this section. Schneeweiss and Mathes (1995) prove that the distance between 

principal components and the factors of the data set is: ( )BΣ'BΛ 1 ~~−−= traceqr . In fact:
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The trace has the property that  ( ) ( )BAtraceABtrace =  (but the trace is not commutative for 3 or 

more matrices). Therefore:
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ΛB'ΣBtraceq
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This formula represents the distance between factors and principal components in terms of 

the  loadings  of  the  principal  components  (which  are  the  first  q eigenvectors  of  the covariance 

matrix of the data), the first q eigenvalues of the covariance matrix of the data, and the covariance 

matrix of the residuals. 

Now suppose that the population can be described by a factor model with q factors. Let 2σ  

be equal to the largest eigenvalue of Σ  (the covariance matrix of residuals) and b be equal to the 

smallest of the largest eigenvalues of Ω . If the eigenvalues of the covariance matrix of the data are 

ordered in decreasing order, qb λ= . Consider now the pp ×  matrix B'B  and call its eigenvalues 

( )pdd ,,1   in  decreasing  order.  The  rank  of  the  matrix  B'B  is  q and  therefore  only  q of  its 

eigenvalues are greater than zero: 0 ,0 11 ===>≥ + pqq dddd  . On the other hand, in general 

the matrix  Σ  has full rank  p and all its eigenvalues are positive.  The following property holds 

(Golub and Van Loan, 1996, pp 396): 

pqi
qidd

i

iii

,,1 ,

,,1 ,
2

2




+=≤

=+≤≤

σλ

σλ
.

Call SNR(q) (signal-to-noise ratio) the ratio 2σ
λ q . Observe that SNR(q) is defined in terms 

of a factor model whose residuals have a covariance matrix Σ  with maximum eigenvalue 2σ . It is 

not  defined  in  terms  of  the  principal  components.  The  corresponding  ratio  for  the  principal 

components  is  2
1 σ

λ
λ

λ q

q

q ≥
+

.  This  implies  that  the  principal  components  have  the  highest 

possible SNR(q) for every q.

Suppose data  are  generated by a factor  model  with  q factors  and with a  given SNR(q). 

Building on Schneeweiss and Mathes (1995), we can make the following derivation:
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To prove the last result, let’s first introduce the notation  ( )BAB A >≥ , which means that 

the matrix B A −  is positive semidefinite (definite). A matrix A  is positive semidefinite (definite) 

if ( )00 >≥  x'Ax  for every vector x . In a positive semidefinite (definite), the largest entries are on 

the diagonal and the diagonal entries are all positive (non negative). 

We can now state that  bIΛ ≥  and  IσB'ΣB 2~~ ≤ .  The first  follows immediately from the 

properties of the eigenvalues established above. The second statement can be proved as follows. 

Consider  the  eigenvalues  iσ  of  the  matrix  Σ  and  form  the  matrix  ( )idiag σ  so  that 

( )QσQ'diagΣ i= . The following property holds because of the definition of  2σ :  ( ) Iσσdiag i
2≤ . 

Hence:  ( ) Iσσdiag i
2−  is negative semidefinite and therefore  ( )( )QIσσdiagQ' i

2−  is also negative 

semidefinite  and  therefore  ( )( ) BQIσσdiag'Q'B i
~~ 2−  is  negative  semidefinite  which  implies 

( )( ) IσBQσdiag'Q'B i
2~~ ≤ .

It has therefore been established the result that the distance from the factors of any factor 

model with SNR(q) and the first  q principal components is  
b

qrqd
2σ≤−≤ .  At first sight this 

result  might  look  counterintutive:  in  a  measure  of  the  distance  between  factors  and  principal 

components,  one  would  expect  to  find  both  ratios  
b

2σ  and  
b
k 1+λ

.  However,  consider  that  the 

formula 
b

qqr
2σ−≥  is a lower bound estimate based on the ratio between the smallest of the first 

q largest eigenvalues and the largest eigenvalue of the residuals of the factor model. The actual  r 

can be larger. For example, if the factor model is formed by normalized principal components, then 

NSR(q)=
b
k 1+λ

 but  r=q because in this case  'ΣB~ =0. Note also that if the factor model is a scalar 

factor model, we still have 
b

qqr
2σ−≥ . However, in the case of a scalar model, the estimate of r 

could  be  refined.  In  fact,  if  IσΣ 2= ,  then  ( ) ( ) ( )12121~~ −−− == ΛσtraceIΛσtraceΛB'ΣBtrace  and 

( )
b
σqΛσtracer

2
12 ≥= −
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The above analysis determines the distance between the factors of a factor model and the 

principal components of the same population. It tells us that if a factor model has a high SNR(q), 

then its factors can be approximated with principal components with a level of precision given by 

the relative r and d. Under this assumption, factors are almost uniquely determined and there is not 

much room for determining different models.

These considerations apply from the population point of view. In practice, however, we are 

given a set of empirical data X and we have to decide if and how the data can be represented with a 

factor model. From the above considerations, a sensible way to understand if the data  X admit a 

factor  model  representation  is  to analyze  the vector  1,,1,1 −=+ pk
k

k 
λ

λ
.  Suppose that  the ratio 

k

k

λ
λ 1+  is very small only for k = q. Any factor model with NSR(q) close to 

q

q

λ
λ 1+

 will have factors 

that can be well mimicked by the first  q principal components and, for any other value of  k, no 

factor model will be close to principal components.

This latter fact calls for a comment. For k = q, any factor model with NSR(q) close to 
q

q

λ
λ 1+

 

will have residuals whose magnitude is close to the magnitude of the residual principal components. 

Any such model will, from the point of view of in-sample residuals, be quite similar to principal 

components. Consider now k = q+1. Suppose the ratio 
1

2

+

+

q

q

λ
λ

 is large, say 1
1

2 ≈
+

+

q

q

λ
λ

. For any factor 

model  with  q+1 factors  
1

2
2

+

+≥
q

q

b λ
λσ

 because,  by construction,  principal  components  exhibit  the 

lowest possible NSR(q). 

Because of this fact, the factors of any model with q+1 factors can be very different from 

the first q+1 principal components even if in-sample residuals remain small. That is, for k = q  it is 

possible  to say that  models  with similar  NSR(q)  will  be very similar  and therefore  establish a 

criterion  of  near  identification  of  factors.  For  any  other  number  of  factors,  there  can  be  very 

different factor models with residuals of approximately the same magnitude. Therefore, I have thus 

far established the following: 

If a factor model with q factors exhibits a very small NSR, then the factors of that model are 

very similar to the first principal components. Similarity can be measured either by the coefficient r 

or by the Procrustes distance d. Factor models with q factors are nearly unique.
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Let’s  now  discuss  the  question  of  determining  the  number  of  factors.  As  observed, 

empirically we have a fixed number of returns time series and a possibly variable but certainly 

bounded number of samples. From the economic point of view, there is no compelling reason to 

assume that the empirical  finite sample is a finite  sample of an infinite market with an infinite 

number  of  both  returns  and  observations.  Still,  from the  economic  point  of  view,  there  is  no 

compelling reason to choose any specific path to infinity. Such assumptions are arbitrary and are 

warranted only if the sample behaves approximately like its asymptotic limit.

Empirically  one  can  only  make  an  asymptotic  assumption  plausible.  In  the  theory  of 

approximate factor models, the NSR tends to zero and asymptotically factors are unique up to a 

rotation. Therefore, we can establish the first criterion:

Criterion  1:  If  NSR(q)  is  very  small,  it  is  plausible  to  assume  that  the  sample  is  

representative of an approximate factor model. For any number of factors where NSR(q) is large  

(close to 1) the assumption that the sample is representative of an approximate factor model is not  

tenable.

Let’s now analyse how to determine the number of factors. As observed in Chapter 3, there 

are two main techniques for determining the number of factors: information criteria and random 

matrix theory.  Consider first information criteria.  The Bai and Ng (2003) criteria are inherently 

asymptotic. The authors propose criteria based on modifying the BIC and AIC to take into account 

the fact that the number of parameters grows with both T and N. Though the need to consider both 

dimensions is obvious asymptotically, in a finite sample, however, it should be sufficient to count 

the  number  of  parameters  correctly.  Given the  proliferation  of  criteria,  in  a  finite  sample  it  is 

difficult to decide whether or not the number of factors that eventually correspond to a drop in the 

NSR can also be chosen by the information-based criteria.

Let’s now discuss criteria based on random matrix theory. Let’s assume that the empirical 

distribution of eigenvalues exhibit a bulk distribution in reasonable agreement with the fundamental 

Marčenko-Pastur law plus a number of well identified isolated eigenvalues. As discussed in Chapter 

3, the behaviour of the largest eigenvalues depends on both small sample effects and the presence of 

correlations  in  residuals.  In  addition,  in  “spiked”  models,  which  represent  local  correlations, 

eigenvalues follow an asymptotic distribution. In principle, in a random matrix model, there is no 

certainty that the ordering of the largest empirical eigenvalues effectively corresponds to the largest 

true  eigenvalues.  In  addition,  deciding  the  threshold  between  “spiked”  local  correlations  and 

correlations due to common factors is arbitrary. As a result, random matrix theory is compatible 

with choosing a number of factors equal to the number q where there is a large drop in the NSR.
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Criterion 2: If NSR(q) is very small it  is plausible,  on the basis of results from random  

matrix theory, to assume that the number of factors is q. If the NSR(q) is large (close to 1) for  

every,q, then random matrix theory cannot offer any guidance.

Let’s comment. In random matrix theory we have different asymptotic models in function of 

different assumptions as regards correlations, namely, in particular the null of no correlation and 

spiked factor models. Any empirical distribution of eigenvalues is compatible with either a spiked 

model or with a null model for residuals plus diverging eigenvalues or with a spiked model for 

residuals plus diverging eigenvalues.

The choice of which asymptotic  results,  if  any,  to adopt,  can only be made considering 

additional features of the sample and choosing those features that are mostly in agreement with all 

tests. In particular, one situation that lends itself to the adoption of a model is the presence of a 

small NSR for a small number of factors. This situation is compatible with:

 Asymptotic principal components to estimate unique factors

 Random matrix theory to estimate the number of factors.

However, a sample where the empirical distribution of eigenvalues drops slowly and there is 

no truly small NSR cannot be considered a sample extracted from an approximate factor model 

population. Onatski (2007) proposes the use of spiked models when the empirical distribution of 

eigenvalues  drops slowly.  This model  makes  the assumption  of Gaussian i.i.d.  residuals  and is 

exposed to the same criticism of strict factor models. 

4.4 Factor models as noisy multiple communication channels

I introduce the notion that factor models can be viewed as noisy communication channels 

where factors are the emitters and the observed variables are the receivers. I then introduce criteria 

based on the efficiency and capacity of this idealized communication channel. The motivation for 

adopting  this  analogy  is  twofold:  1)  to  use  results  from the  vast  literature  on  communication 

channels and 2) to use basic information theory concepts in understanding and evaluating factor 

models. The fundamental idea underlying this analogy is that a “good” factor model can be likened 

to a “good” communication channel with a large capacity. In other words, in practice, finite samples 

can only approximately be represented with factor models. We need criteria to choose the optimal 

assumptions.

I propose criteria based on how efficiently information is transferred from factors to the 

observed time series. Actually the interest  in using a factor model is effectively related to how 

efficiently it transmits information from factors to returns (or to any other series). For example, an 
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asset manager is interested in a factor model of returns only if returns can be “explained” (for risk 

management)  or  “predicted”  (for  forecasting  purposes)  from  the  factors.  This  implies  that 

information from the factors must be efficiently transmitted to returns.

This view might seem in contrast with the idea that factors are “diffusion indexes”, that is, a 

summary of information dispersed in a large number of series. In fact, one of the motivations for 

using factor models is effectively dimensionality reduction. Factor models allow one to efficiently 

capture information that is dispersed in a large number of mutual relationships and that cannot be 

handled  directly.  However,  there  is  no  real  contradiction  between  the  two  points  of  view.  A 

“communication  theory”  point  of  view can  be  used  to  evaluate  factor  models  after  estimating 

factors.

4.4.1 Channel Capacity

Let’s  now  write  down  the  first  result  of  looking  at  factor  models  as  communication 

channels. In communications theory, the capacity of a noisy communication channel is defined as 

the superior of the mutual information between receiver and transmitter. It has been demonstrated 

(see Tulino and Verdù 2005) that the capacity of a multiple communication channel described by a 

linear equation of the type:

nHxy +=

where x is the K×1  input vector, n is Gaussian noise, y is the N×1 output vector and H is a 

N×K matrix of transfer coefficients is given by the following expression:

( )[ ] ( )

( )( ) ( )∫∑
∞

=
+=+=

=+==

0
1

11log1

detlog1

HH*

N

i
i dFSNRxHH*λ

N

SNRHH*I
N

Hy,xIEC

where  SNR is  the source signal-to-noise ratio.  If  we interpret  the inputs  as  factors,  the 

transfer  coefficients  as  factor  loadings  and  the  output  as  the  observed  variables,  we  have  a 

theoretical  measure  of  factor  model  efficiency.  But  the  previous  caveat  applies:  the  number  C 

represents  the  in-sample  factor  model  efficiency  obtained  through  a  process  that  implies  an 

optimization process. In the next section I will discuss how to apply this concept to determine the 

optimal factor model.
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4.4.2 Criteria for model choice

When the empirical distribution of eigenvalues drops slowly, it is reasonable to assume that 

the data cannot be described by any model that implies uniqueness of factors. In this case, we have 

to  choose  between  different  models,  none  of  which  can  be  considered  to  be  the  true  factor 

representation of data. In this situation, criteria for choosing the optimal model would be useful. 

This is a particularly pressing problem for equity portfolio managers that are trying to improve their 

factor models by adding new factors.

When  factors  cannot  be  surely  identified  with  principal  components,  they  might  be 

identified through non linear methods such as clustering. In addition, factors are not necessarily 

estimated by portfolios - a situation which opens the possibility of using factors that are exogenous, 

for example macroeconomic factors. In practice, factor models become regression models.

Model selection criteria, such as the Bai and Ng criteria, are based on a trade-off between a 

reduction  of  in-sample  residuals  and  a  penalty  for  the  number  of  parameters.  Model  selection 

criteria based on random matrix theory try to separate directly noise from information based on a 

specific  model  for  the  covariance  matrix.  However,  the  assumption  of  a  smooth  decay  of  the 

empirical distribution of the eigenvalues makes it difficult to apply these criteria.

I propose another criterion which is based on the transfer of information from factors to 

returns (observed variables). In Section 4.4.1. the capacity of a multiple linear information channel 

was defined as the mutual information input-output which has the following expression:

( )( )∑
=

+=
N

i
i HH*SNRλ

N
C

1

1log1

Let’s look at a factor model as a multiple communication channel where factors are the 

inputs, returns (observed variables) are the output, and residuals are transmission noise. I propose to 

use the channel capacity (i.e., the mutual information) as a criterion for selecting factor models. 

Recall that, in this context, the SNR is the ratio between the average “power” of the factors and the 

average “power” of the residuals:

2

2

nK

FN
SNR =

99



Mutual information as a measure of the strength of mutual dependence has been used in 

many  instances  in  biomathematics.  In  our  case,  the  matrix  H is  the  matrix  of  factor  loadings 

assuming factors are orthonormal. Therefore I introduce the third criterion:

Criterion 3: If NSR(q) is large (close to 1) for every q, then model selection criteria look at  

the  mutual  information  between  factors  and  observed  variables  given  by  the  expression: 

( )( )∑
=

+=
N

i
i HH*SNRλ

N
C

1

1log1
. This criterion chooses those models that have more weight in the  

eigenvalues of BB’.

In summary, in this section I proved that if a factor model has a small noise-to-signal ratio 

then its factors are very close to the first principal components and can be estimated with principal 

components.  Factors  are  approximately  unique  and  we  can  use  the  asymptotics  results  of 

approximate factor models. 

If, on the other hand, the noise-to-signal ratio is never small,  then factor models are not 

unique and factors are not close to principal  components.  In this case,  we can choose between 

different factor models using the criterion of maximizing the mutual information between factors 

and observed variables.

4. 5. Empirical results relative to the Russell 1000 

In this section we apply our analysis to the stocks in the Russell 1000 universe. Let's first 

compare the NSR of the Russell 1000 with that of our simulated market. Given a universe of time 

series  such as  the Russell  1000, we can estimate  the NSR for different  time windows and for 

different numbers of factors. To do so, we compute the eigenvalues of the covariance matrix of 

returns in each time window and the ratios 
+

=
k

k
k λ

λρ  for different values of k. Tables 4.5 a and b 

show the NSR of the Russell 1000 for the first k=1,…,20 principal components, using all available 

series in time windows of 200 and 500 weeks in the period  January 2002-December 2006. As 

shown in Table 4.5, time windows end at the 17 dates included in this period with a spacing of 16 

weeks. 

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Year 2002 2002 2002 2002 2003 2003 2003 2004 2004 2004 2005 2005 2005 2005 2006 2006 2006
Month 01 04 08 12 03 07 11 02 06 10 01 05 09 12 04 08 11
Day 03 25 15 05 27 17 06 26 17 07 27 19 08 29 20 10 30

Table 4.5 – The end date of the 17 time windows.
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Table 4.6a is relative to 200-week-long time windows. It is formed by 17 columns and 20 

rows of data. Each column represents the 20 NSR(k) relative to the first 20 largest eigenvalues for 

each time window. Each column is relative to a time window that ends at the date indicated in the 

top cell of the table.

Table 4.6b is relative to 500-week-long time windows. It is formed by 17 columns and 20 

rows of data. Each column represents the 20 NSR(k) relative to the first 20 largest eigenvalues for 

each time window. Each column is relative to a time window that ends at the date indicated in the 

top cell of the table. In both tables (i.e., Tables 4.6a and 4.6b) the NSR shows a smooth growth in 

each column. The NSR starts at approximately 0.2-0.3 for the first principal component and arrives 

at values close to 1 after 10 to 12 principal components.
W.N. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
NSR(1) 0.37 0.36 0.42 0.38 0.37 0.33 0.31 0.23 0.18 0.18 0.15 0.16 0.16 0.17 0.18 0.17 0.19
NSR(2) 0.48 0.45 0.41 0.40 0.39 0.37 0.38 0.63 0.56 0.59 0.75 0.90 0.94 0.90 0.80 0.65 0.66
NSR(3) 0.64 0.68 0.79 0.79 0.80 0.83 0.82 0.66 0.84 0.76 0.57 0.49 0.53 0.54 0.61 0.85 0.61
NSR(4) 0.91 0.81 0.84 0.93 0.90 0.91 0.88 0.86 0.87 0.82 0.88 0.95 0.92 0.97 0.93 0.92 0.86
NSR(5) 0.88 0.85 0.79 0.71 0.74 0.84 0.84 0.85 0.76 0.81 0.96 0.94 0.89 0.95 0.96 0.75 0.85
NSR(6) 0.87 0.91 0.93 0.91 0.88 0.84 0.85 0.86 0.92 0.98 0.91 0.83 0.91 0.85 0.88 0.90 0.97
NSR(7) 0.94 0.95 0.86 0.94 0.91 0.97 0.98 0.97 0.88 0.87 0.95 0.95 0.92 0.93 0.89 0.89 0.96
NSR(8) 0.92 0.94 0.98 0.97 0.98 0.95 0.93 0.91 0.95 0.93 0.89 0.99 0.90 0.90 0.90 0.98 0.94
NSR(9) 0.97 0.98 0.95 0.89 0.93 0.94 0.96 0.95 0.96 0.97 0.94 0.90 0.94 0.93 0.95 0.91 0.92
NSR(10) 0.93 0.93 0.95 0.98 0.98 0.93 0.96 0.97 0.94 0.99 0.98 0.94 0.94 0.97 0.91 0.98 0.99
NSR(11) 0.97 0.94 0.98 0.96 0.96 0.95 0.92 0.96 0.94 0.91 0.95 0.98 0.93 0.90 0.96 0.94 0.95
NSR(12) 0.97 0.95 0.93 0.99 0.94 0.99 0.98 0.94 0.99 0.97 0.91 0.94 0.95 0.97 0.95 0.96 0.98
NSR(13) 0.91 0.94 0.97 0.95 0.97 0.99 0.98 0.96 0.96 0.95 0.98 0.92 0.96 0.94 0.96 0.97 0.97
NSR(14) 0.98 0.96 0.95 0.93 0.93 0.95 0.92 0.92 0.94 0.99 0.96 0.95 0.97 1.00 0.96 0.94 0.99
NSR(15) 0.99 0.99 0.95 0.94 0.98 0.93 0.96 0.93 0.97 0.96 0.97 0.96 0.94 0.93 0.94 0.95 0.96
NSR(16) 0.96 0.97 0.96 0.97 0.94 0.97 0.98 0.99 0.98 0.98 0.96 0.95 0.99 0.95 0.92 0.98 0.97
NSR(17) 0.96 0.95 0.98 0.98 0.98 0.98 0.96 0.98 0.96 0.97 0.93 0.99 0.96 0.99 0.96 1.00 0.96
NSR(18) 0.97 0.98 0.98 0.99 0.99 0.96 0.97 0.94 0.96 0.93 0.98 0.97 0.94 0.91 0.98 0.99 0.96
NSR(19) 0.98 0.99 0.97 0.99 0.98 0.99 0.98 0.98 0.97 0.96 0.99 0.96 0.97 0.98 0.96 0.97 0.98
NSR(20) 0.98 0.97 0.97 0.96 0.98 0.98 0.98 0.97 0.99 0.98 0.99 1.00 0.95 0.96 0.98 0.97 0.98

a. 200-week period January 2002- November 2006.

W.N. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
NSR(1) 0.29 0.31 0.31 0.29 0.30 0.30 0.30 0.31 0.29 0.29 0.29 0.30 0.29 0.29 0.27 0.27 0.26
NSR(2) 0.52 0.45 0.44 0.43 0.41 0.40 0.40 0.36 0.37 0.38 0.38 0.37 0.39 0.41 0.50 0.51 0.53
NSR(3) 0.68 0.69 0.95 0.97 0.90 0.95 0.95 0.90 0.89 0.87 0.86 0.83 0.83 0.80 0.71 0.72 0.70
NSR(4) 0.86 0.88 0.77 0.73 0.86 0.84 0.84 0.80 0.80 0.77 0.77 0.79 0.78 0.77 0.89 0.86 0.85
NSR(5) 0.92 0.96 0.87 0.90 0.81 0.80 0.80 0.85 0.84 0.88 0.90 0.84 0.83 0.83 0.92 0.94 0.94
NSR(6) 0.95 0.97 0.96 0.96 0.95 0.92 0.93 0.92 0.92 0.92 0.91 0.98 0.95 0.93 0.76 0.72 0.72
NSR(7) 0.96 0.90 0.88 0.85 0.83 0.88 0.88 0.96 0.95 0.92 0.91 0.88 0.92 0.93 0.93 0.98 0.99
NSR(8) 0.97 0.97 0.98 0.98 0.97 0.96 0.94 0.95 0.96 0.94 0.93 0.93 0.94 0.95 0.93 0.93 0.93
NSR(9) 0.92 0.94 0.93 0.93 0.98 0.95 0.99 0.90 0.89 0.93 0.94 0.94 0.93 0.92 0.92 0.91 0.92
NSR(10) 0.96 0.97 0.97 0.97 0.91 0.94 0.90 0.99 0.99 0.98 0.98 0.98 0.97 0.93 0.98 0.98 0.97
NSR(11) 0.94 0.96 0.97 0.97 0.98 0.97 0.99 0.92 0.92 0.94 0.94 0.94 0.94 0.95 0.96 0.98 0.96
NSR(12) 0.96 0.96 0.93 0.98 0.92 0.93 0.91 0.97 0.98 0.97 0.97 0.96 0.97 0.98 0.99 0.92 0.95
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NSR(13) 0.89 0.95 0.97 0.93 0.97 0.98 0.99 0.92 0.93 0.94 0.92 0.94 0.95 0.95 0.94 0.98 0.97
NSR(14) 0.97 0.98 0.95 0.95 0.99 0.98 0.97 0.97 0.97 0.96 0.98 0.96 0.94 0.96 0.99 0.93 0.90
NSR(15) 0.98 0.96 0.96 0.99 0.94 0.95 0.96 0.95 0.92 0.96 0.95 0.97 0.98 0.97 0.90 0.96 0.97
NSR(16) 0.95 0.95 0.96 0.95 0.97 0.99 0.98 0.97 0.97 0.97 0.97 0.97 0.96 1.00 0.98 0.97 0.99
NSR(17) 0.97 0.97 0.97 0.98 0.96 0.96 0.98 0.97 1.00 0.96 0.95 0.99 0.99 0.94 0.96 0.96 0.95
NSR(18) 0.98 0.95 0.95 0.94 0.99 0.97 0.97 1.00 0.98 0.99 1.00 0.94 0.93 0.97 0.98 0.99 0.97
NSR(19) 0.95 0.97 0.99 0.98 0.96 0.96 0.95 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.97 0.98 0.99
NSR(20) 0.97 0.99 0.95 0.98 0.97 0.98 0.99 0.99 0.98 0.97 0.98 0.98 0.98 0.96 0.99 0.97 0.99

b. 500-week period January 2002- December 2006.

Table 4.6 - Noise-to-signal ratio of the Russell 1000 for two time windows.

Perhaps  a  still  more  intuitive  representation  is  given  by  Figure  4.3  which  graphically 

illustrates how the NSR changes in function of the number of factors in different time windows in 

the cases of 200- and 500-week-long time windows, and by Figure 4.4 which shows the plot of the 

magnitude of the first 100 eigenvalues for each time window in the two cases of 200- and 500-

week-long time  window. The plot  is  smooth  without  any  sudden jump and becomes  almost  a 

straight line after 10-12 principal components. In other words: The eigenvalues of the covariance 

matrix of the Russell 1000 universe for time windows of 200 and 500 weeks show a smooth pattern. 

The NSR of principal components of the same universe and in the same time windows also 

exhibit a smooth behaviour without ever reaching levels below 20%.

 

Fig  4.3.  Plot  of  the  NSR of  the  Russell  1000 in  function  of  the  number  of  factors.  The  plot  is  made  
superposing the plots of the NSR in different time windows. The figure on the left is relative to a 200-week  
time window, the figure on the right is relative to a 500-week time window.
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Figure 4.4. Plot of the 100 largest eigenvalues of the covariance matrix of the Russell 1000. The figure on 
the left is relative to a 200-week time window, the figure on the right to a 500-week time window. The plot is  
made superposing the plots of the 100 largest eigenvalues in different time windows.

I compared these empirical data with equivalent data computed on our simulated markets for time 

windows and number of returns 200/800 and 500/400, respectively. These numbers of time points 

and returns series are close to the corresponding numbers for the Russell 1000. Results are shown in 

the six panels of Table 4.7 which are constructed in a way analogous to those of Table 4.6. 

0.90 0.84 0.73 0.91 0.77 0.83 0.90 0.91 0.89 0.97 0.97 0.89 0.97 0.93 0.81 0.94 0.87
0.93 0.94 0.98 0.87 0.97 0.95 0.86 0.91 0.84 0.90 0.89 0.90 0.89 0.88 0.83 0.91 0.96
0.98 0.95 0.84 0.88 0.90 0.95 0.81 0.96 0.85 0.90 0.91 0.97 0.95 0.92 0.96 0.79 0.78
0.90 0.89 0.92 0.92 0.77 0.85 0.91 0.85 0.92 0.93 0.88 0.90 0.75 0.80 0.72 0.96 0.86
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.97 0.94 1.00 0.96 0.95 0.97 0.97 0.98 1.00 0.95 0.97 0.98 0.97 0.98 0.96 0.97 0.98
0.99 0.99 0.99 0.95 1.00 0.99 0.98 0.99 0.98 1.00 0.99 0.96 0.97 0.99 0.99 0.99 0.98
0.99 0.99 0.97 0.99 0.97 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.98 1.00 0.99 0.99 0.99
1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99
0.99 1.00 0.99 0.98 0.99 0.97 0.99 0.99 0.98 0.99 0.98 0.97 0.99 0.99 0.98 0.99 0.99
0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.97 0.99
0.98 0.98 0.99 0.98 0.99 1.00 0.99 0.98 0.99 1.00 0.99 0.99 0.99 0.97 0.99 0.99 0.99
1.00 0.97 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.97 0.98 0.99 0.99 0.99 0.98 1.00 0.98
0.99 0.99 1.00 0.99 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.99 1.00 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99
0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.97
0.98 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.98 0.99 1.00 1.00 0.99
0.98 0.99 1.00 0.98 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.99 1.00 0.99 0.99 0.99 1.00
0.99 1.00 1.00 0.99 0.99 1.00 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99
0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.97 0.99 0.99 0.97 0.99 0.99

a. Time windows 200 weeks 800 returns noise std = 0.1, NSR almost zero.

0.97 0.88 0.86 0.95 0.78 0.92 0.97 0.98 0.87 0.86 0.98 0.92 0.87 0.83 0.94 0.90 0.92
0.93 0.83 0.82 0.90 0.94 0.83 0.92 0.97 0.94 0.93 0.75 0.93 0.88 0.85 0.88 0.94 0.78
0.98 0.93 0.87 0.86 0.89 0.94 0.87 0.89 0.96 0.95 0.89 0.92 0.90 0.95 0.91 0.95 0.96
0.88 0.93 0.88 0.94 0.86 0.94 0.87 0.88 0.82 0.90 0.98 0.95 0.93 0.81 0.87 0.94 0.84
0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
0.97 0.99 0.98 0.99 0.99 0.96 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.96 0.99 0.98 0.98
0.98 0.99 0.97 1.00 0.97 0.98 0.99 0.99 0.98 0.99 0.98 0.97 0.99 0.98 0.98 0.99 0.98
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1.00 0.99 0.98 0.97 0.98 0.99 0.99 0.99 0.98 0.97 0.99 0.99 0.97 0.97 0.98 0.98 0.98
0.98 0.98 0.98 0.99 0.98 0.98 0.97 0.98 0.98 1.00 0.98 0.99 0.99 0.98 0.97 1.00 0.99
0.98 0.98 0.99 0.97 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.98 0.98 0.99 0.99 0.98 0.98
0.99 1.00 1.00 1.00 1.00 0.99 0.98 1.00 0.99 0.99 0.97 0.99 0.98 0.99 1.00 0.98 1.00
0.99 0.98 0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
1.00 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.98 0.99 1.00 0.98
0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.97 0.98 1.00 0.99 1.00 0.99
0.98 0.99 0.98 0.99 1.00 0.98 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.00
0.99 1.00 1.00 0.98 1.00 1.00 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.98
0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99
0.99 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.99
0.99 0.98 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

b. Time windows 200 weeks 800 returns noise std = 1, NSR approximately 0.01.

0.96 0.78 0.89 0.92 0.90 0.91 0.96 0.94 0.94 0.96 0.93 0.93 0.93 0.89 0.94 0.96 0.91
0.86 0.96 0.96 0.97 0.95 0.89 0.81 0.91 0.81 0.86 0.83 0.97 0.90 0.90 0.88 0.82 0.91
0.92 0.99 0.93 0.95 0.79 0.92 0.94 0.90 0.96 0.93 0.88 0.87 0.94 0.91 0.83 0.88 0.89
0.99 0.73 0.92 0.94 0.86 0.95 0.98 0.88 0.82 0.92 0.93 0.89 0.85 0.90 0.88 0.89 0.86
0.29 0.33 0.28 0.27 0.33 0.28 0.29 0.29 0.30 0.31 0.30 0.29 0.29 0.29 0.31 0.31 0.31
0.95 0.98 0.98 0.98 0.98 0.96 0.96 0.99 0.99 0.95 0.97 0.98 0.98 0.97 0.99 0.97 0.98
0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.98 0.98 1.00 0.98 0.99 0.99 0.98 0.98 0.99 0.98
0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.98 1.00 0.97 0.99 0.99 0.95 0.98 0.98 0.98 0.98
0.99 0.98 1.00 0.99 0.99 0.99 0.98 1.00 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.99
0.99 0.99 0.98 0.98 1.00 0.99 0.99 0.99 0.99 0.98 0.99 0.97 0.99 0.99 0.99 0.99 0.99
0.99 0.98 1.00 0.99 0.98 0.99 0.99 0.99 0.99 0.98 1.00 0.99 0.98 0.98 0.99 0.98 0.98
0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.98 0.99
0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.97 0.98 0.98 0.99 0.99 0.99
0.99 1.00 0.98 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99
0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.98 1.00 0.98 0.99
0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.99 0.98 1.00 1.00 1.00 0.99 0.99 0.98 1.00 1.00
0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 1.00 0.99 0.99 0.99 0.99
0.99 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.99 1.00 1.00 0.98 0.99 1.00 0.99 0.98 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99
0.99 0.98 0.98 1.00 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99

c. Time windows 200 weeks 800 returns noise std = 5, NSR approximately 0.3.

0.84 0.83 0.95 0.91 0.87 0.89 0.90 0.93 0.93 0.84 0.95 0.90 0.94 0.78 0.90 0.88 0.84
0.91 0.91 0.88 0.88 0.87 0.89 0.91 0.91 0.93 0.87 0.81 0.88 0.93 0.93 0.95 0.84 0.95
0.95 0.93 0.91 0.92 0.86 0.92 0.89 0.88 0.82 0.95 0.89 0.90 0.94 0.85 0.88 0.94 0.95
0.87 0.87 0.80 0.80 0.94 0.90 0.99 0.84 0.90 0.85 0.96 0.94 0.84 0.95 0.86 0.89 0.87
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.97 0.99 0.99 0.97 0.98 0.98 0.98 0.99 0.98 0.97 0.96 1.00 0.96 0.98 0.97 0.98 0.99
0.99 0.99 0.98 0.96 0.99 0.99 0.99 0.99 0.98 0.99 1.00 0.99 0.98 0.98 0.97 1.00 0.99
0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.97 0.97 0.97 0.99 0.98 0.99 0.98 0.98 0.98 0.97
0.98 0.98 1.00 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 1.00 0.98 0.99
1.00 0.98 0.99 0.98 0.99 0.99 0.97 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99 1.00
0.99 0.98 0.98 0.99 1.00 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.98 0.98 1.00 0.99 0.97
0.99 1.00 0.99 0.99 0.98 0.98 1.00 0.96 0.98 0.99 0.99 0.98 1.00 0.99 0.99 0.99 1.00
0.99 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.98 0.98 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.99
0.99 0.99 1.00 0.98 1.00 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99
0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
0.98 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99 0.98
0.99 0.98 0.99 1.00 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99
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0.98 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 1.00 0.98 1.00 1.00 0.99 0.99
1.00 0.98 0.98 0.97 0.98 0.98 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.99 0.99 0.99

d. Time windows 500 weeks 400 returns noise std = 0.1, NSR almost zero.

0.86 0.95 0.90 0.83 0.96 0.87 0.84 0.92 0.94 0.84 0.93 0.93 0.94 0.89 0.97 0.98 0.97
0.88 0.92 0.86 0.90 0.91 0.94 1.00 0.90 0.99 0.95 0.84 0.95 0.92 0.89 0.89 0.90 0.89
0.78 0.84 0.95 0.94 0.89 0.95 0.92 0.78 0.84 0.87 0.95 0.85 0.89 0.91 0.91 0.95 0.93
0.91 0.89 0.83 0.91 0.86 0.97 0.87 0.92 0.91 0.85 0.90 0.87 0.94 0.92 0.85 0.83 0.82
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.99 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.99 0.96 0.98 0.99 0.99 0.99
0.97 0.98 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.99 1.00 0.99 0.97 0.98 0.98 0.99
1.00 0.98 0.98 0.98 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.96 0.98
0.98 0.99 0.99 0.99 0.98 0.97 0.97 0.99 0.98 0.98 0.98 0.98 1.00 1.00 0.98 0.99 0.97
0.98 0.98 0.99 0.98 0.99 1.00 0.98 0.99 1.00 1.00 0.99 0.99 0.97 0.99 0.98 0.98 0.99
0.99 0.99 1.00 0.98 0.99 0.98 1.00 0.98 0.99 0.99 0.98 0.99 1.00 0.98 0.99 0.99 0.99
0.98 1.00 0.98 0.99 0.98 0.99 1.00 0.99 0.97 0.98 0.99 0.98 0.98 0.99 1.00 1.00 0.99
0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.00 1.00 1.00 0.98 0.99 0.98 0.99 0.99 0.99 0.99
0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
1.00 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99
0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.99 0.99 0.98 0.99
0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.99 1.00
0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.00 0.98 0.98 0.98 0.98 0.99 0.99
0.99 0.99 0.99 0.99 1.00 0.98 0.99 0.99 0.99 0.98 0.98 0.99 1.00 0.99 0.99 1.00 0.99

e. Time windows 500 weeks 400 returns noise std = 1, NSR approximately 0.01.

0.94 0.93 0.91 0.94 0.92 0.82 0.92 0.73 0.93 0.99 0.86 0.91 0.92 0.93 0.93 0.92 0.87
0.84 0.90 0.96 0.86 0.96 0.98 0.94 0.98 0.97 0.87 0.94 0.89 0.90 0.96 0.82 0.94 0.98
0.90 0.95 0.91 0.92 0.85 0.96 0.91 0.86 0.95 0.97 0.88 0.94 0.92 0.91 0.92 0.91 0.95
0.92 0.98 0.96 0.93 0.97 0.83 0.89 0.85 0.92 0.88 0.90 0.95 0.90 0.93 0.90 0.82 0.93
0.26 0.22 0.24 0.23 0.23 0.24 0.23 0.27 0.23 0.23 0.24 0.22 0.24 0.21 0.25 0.25 0.24
0.96 1.00 0.96 0.99 0.98 0.97 0.97 0.96 0.98 0.99 0.97 0.97 0.98 0.98 0.99 1.00 0.96
0.99 0.97 0.99 0.99 0.97 0.99 0.98 0.99 0.98 0.97 0.99 0.98 0.98 0.99 0.98 0.98 0.99
0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.97 0.98 0.99 0.99 1.00 0.98 0.97
0.98 0.98 0.98 0.99 0.99 0.99 0.97 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.99 1.00 0.98
1.00 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.99
0.98 0.99 0.99 0.99 0.99 0.97 0.98 0.97 0.99 0.98 1.00 1.00 0.99 0.99 0.98 0.99 0.99
0.98 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.99
0.99 0.99 0.99 0.98 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.99
0.99 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.98
1.00 0.99 0.98 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
0.98 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99
1.00 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.99
1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.99 1.00
0.99 0.99 1.00 0.99 0.99 0.98 1.00 0.99 0.98 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99
0.98 0.99 0.98 0.99 0.99 0.98 0.98 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99

f. Time windows 500 weeks 400 returns noise std = 5, NSR approximately 0.25.

Table 4.7. - Noise-to-signal ratio of a simulated market, for 200-and 500-week time windows, 800 and 400  
returns respectively, various noise standard deviations, and various NSRs.
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The behaviour of the eigenvalues and of the NSR of our simulated market is different with 

respect to that of the Russell 1000. In the simulated market, the NSR is high for all numbers of 

factors except for the case where k = 5, the true number of factors, where it drops to near 0 when 

the  standard  deviation  of  the  residual  terms  are  0.1  and  grows  to  0.25-0.3  when  the  standard 

deviation of the noise term reaches 5. In other words: The eigenvalues of the covariance matrix of 

our simulated market for time windows of 200 and 500 weeks and 800 and 400 stocks respectively 

show a sudden drop for k = 5 and lie approximately on a straight line elsewhere.

The NSR of principal components of the same universe and in the same time windows is 

close to 1 except for k = 5, where it assumes values that depend on the magnitude of the standard 

deviation of the noise term. When the standard deviation is equal to 5, the NSR is 0.2-0.3.

We can now reinterpret the simulation results of Table 4.7 in terms of the NSR. The results 

in Table 4.7 show that if we generate data with a simulated factor model that produces an NSR in 

the range of 0.3, the estimation of factors and components with PCA is subject to errors much larger 

than the errors predicted by the theory of approximate  factor  models.  The magnitude of errors 

shows that the number of data points that fall outside the 95% confidence band is more than ten 

times the number predicted by the theory.  Therefore,  if  we work with return series such as the 

Russell 1000 where the NSR assumes similar values in the range 0.2-0.3, the NSR is too large to 

allow to confidently use the conclusions of the theory of approximate factor models.

4. 6. Dynamic factor models of returns 

Thus  far  I  have  offered  reasons  to  believe  that  approximate  factor  models  cannot  be 

correctly applied to returns, that there is no reason to believe that PCA of returns reveals the true 

factors,  and  that  possibly  different  factor  models  can  explain  the  same  returns  processes.  The 

discussion focused on static factor models of returns as dynamic factor models with a finite number 

of lags can be cast in a static form. In this section we discuss specifically dynamic factor models. I 

focus the discussion on returns but the considerations I will make are valid for stationary processes 

in general.

Recall that Burda, Jurkiewicz, and Waclaw (2005) determine the distribution of eigenvalues 

when samples are correlated. Expressions are very complex and do not lend themselves easily to 

interpretations and generalizations. However, in the case of exponential  autocorrelations, Burda, 

Jurkiewicz, and Waclaw are able to find closed-form expressions. This paper essentially establishes 

that the distribution of the bulk of eigenvalues spreads out. 
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In  other  words,  given  a  sample  of  data,  if  we  compute  the  empirical  distribution  of 

eigenvalues of the covariance matrix we find that the distribution is also influenced by correlations 

between  samples,  that  is,  by  autocorrelations.  A  possible  explanation  for  the  slow  decay  of 

eigenvalues of the covariance matrix is that it is due to autocorrelations: autocorrelations blur the 

boundary between the bulk of eigenvalues and the largest eigenvalues.

Not  all  factors  that  drive  financial  returns  have  the  same  forecasting  power.  Stated 

differently, not all factors are dynamic. There are purely static factors that affect only same-time 

relationships. One of the important objectives of dynamic factor models is to separate, if possible, 

the purely dynamic from the purely static structure.

There are two forms of the theory of dynamic factor models of stationary processes. The 

first is described in  Peña and Box (1987) and is relative to dynamic factor models with a finite 

number  of  observed variables.  The  second form is  the  dynamic  version  of  approximate  factor 

models. In Chapter 2, I surveyed the literature on these processes. In dynamic factor models with 

infinite  N,T, static factors are determined with PCA and dynamic  factors are disentangled with 

different procedures which ultimately rely on separating a finite number of diverging eigenvalues 

from an infinite number of bounded eigenvalues. Dynamic factor models with infinite N,T are based 

on some generalized approximate factor model of static factors and are therefore subject to the same 

considerations  that  were  made  in  the  previous  sections.  Therefore  it  is  not  possible  that  a 

generalized dynamic factor  model  applies when no generalized static approximate factor model 

applies.

The dynamic factor model in Peña and Box (1987) does not suffer from the above problem. 

Recall that this model was described in Section 2.8. 
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where factors are stationary processes, tε  is white noise with a full covariance matrix but it 

is serially uncorrelated, tη  has a full-rank covariance matrix and it is serially uncorrelated, and tε  

and  tη  are  mutually  uncorrelated  at  all  lags.  Consider  the  covariance  matrices 

( ) ( ) ,2,1,0, ==Γ − krrEk kttr  and  ( ) ( ) ,2,1,0, ==Γ − kffEk kttf .  The  number  of  factors  is  the 

common rank Q of the matrices ( ) 1≥Γ kr . 
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The model has a significant advantage: it allows to identify dynamic factors under the mild 

assumption that residuals are not autocorrelated. This is a reasonable assumption when applied to 

returns because returns are not individually autocorrelated and it is therefore reasonable to assume 

that autocorrelation (when it occurs) is due to common factors.

The  dynamic  factor  model  in  Peña  and  Box  (1987)  is  one  way  to  assess  the  global 

autocorrelation structure of returns.  The number of factors is  equal  to the common rank of the 

autocovariance matrices.  The methodology is  therefore based on estimating  the rank of a large 

matrix. Otter and Jacobs (2006 a,b) propose a method based on information theory which ultimately 

requires to determine the rank of autocovariance matrices; the Otter-Jacobs method uses the same 

information as is used in Peña and Box  method.

Bouchaud,  Laloux,  Miceli  and  Potters  (2005)  offer  a  different  methodology  based  on 

random matrix theory applied to autocorrelation matrices. The method in Bouchaud Laloux, Miceli 

and  Potters  (2005)  determines  the  distribution  of  the  canonical  correlation  coefficients  of  the 

observed variables under the null hypothesis of zero autocorrelation. This methodology requires a 

number of observations much larger than the number of time series, otherwise the continuous part 

of the spectrum occupies the entire range of correlation. The reason is that canonical correlations 

depend  on  two  sets  of  parameters,  one  for  each  variable,  where  each  set  includes  as  many 

parameters as there are variables.

4. 7. Dynamic factor models of prices 

The theory of dynamic factor models of prices is described in Escribano and Peña (1994) 

and in  Peña and Poncela (2004 a,b). These papers builds on and generalizes Stock and Watson 

(1988). The latter paper established that if a multivariate process with  N variables integrated of 

order (1) exhibits  q cointegrating relationships, then each process can be represented as a linear 

combination of  N-q common integrated trends plus a possibly autocorrelated stationary process. 

The term trend indicates here a stochastic trend. Bossaerts (1988) observed  that common trends are 

the  most  predictable  portfolios  and  conjectured  that  common  trends  can  be  determined  with 

canonical correlation analysis.

Escribano  and  Peña  (1994)  generalize  this  idea  and  establish  the  equivalence  between 

common  trends,  common  factors  and  cointegration.  In  particular,  Escribano  and  Peña  (1994) 

establish  the  following.  First  the  paper  introduces  the  general  concept  of  factor  models  for 

integrated processes. Building on Peña and Box (1987), Escribano and Peña write a general factor 

model as follows:
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where tX  is the n-vector of observed variables, tf  is the k-vector of common factors, A is 

the nxk factor loading matrix and u,a are uncorrelated white noise with covariance matrices au ΣΣ ,  

respectively,  aΣ  diagonal. Integrated and stationary factors can coexist in this model. The number 

of factors k can be less than the number of observed variables, k<n , but it can also be equal to the 

number of observed variables k=n. In the latter case, the model is identifiable if 0=Σ u , that is, u is 

a vector of constants. The condition  k=n does not make the model trivial because integrated and 

stationary factors can coexist. 

Recall that  n integrated variables  tX  are said to be cointegrated of order 1 with rank  r if 

there are r linearly independent linear combination tX'β  which are stationary. Escribano and Peña 

(1994) established that the following three conditions are equivalent:

1. tX  are cointegrated of order 1 with rank r.

2. tX  are generated by n-r  common trends.

3. tX  have n-r common integrated factors and r common stationary factors.

If the tX  are generated by n-r  common trends, they can be written as:

tttt

ttt

v
eX

+=
+=

−

⊥

1ττ
τβ

where ⊥β  is the orthogonal complement of β , e is a stationary process and v is white noise. 

4.7.1 Empirical evidence of cointegration in equity prices

Though there are positive indications, for example Kanas and Kouretas (2005), a definitive 

empirical test as to whether equity prices exhibit cointegration and can therefore be represented as 

factor models with integrated factors is very difficult  to obtain.  The key reason is the fact  that 

markets are open systems where stocks are continuously created and destroyed. In order to perform 
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a test of the hypothesis that markets can be represented with integrated factor models, one needs to 

form a sample with long time series. As shown in Section 4.5, this condition in practice limits the 

number of time series to those that have survived in the entire period. The percentage of survivors is 

not very close to 1 if periods of the orders of five to ten years are considered. This fact makes it 

impossible to run definitive tests of the assumption of cointegration among prices. In the literature 

several tests have been proposed. The result of these tests is that there is evidence of cointegration 

among stock prices.  However,  it  is  very difficult  to establish the number of common trends or 

factors  because of  the  abovementioned phenomenon of time series  that  exist  only for  a  partial 

fraction of the time windows considered. 

Stated differently, cointegration implies mean reversion. It is reasonable to assume that in 

the long run all prices are mean reverting to just one common dynamic factor. However, to prove 

this statement empirically one would need to consider very long time series, thus exposing the test 

to severe survivorship biases. It is also reasonable to assume that,  over shorter periods of time, 

equity prices would probably exhibit multiple integrated trends. However, determining the number 

of factors active in any time window is a delicate estimation problem.

These considerations apply to every factor model. More in general, any model that requires 

long time series and that does not explicitly consider that markets are open systems is subject to the 

same problem: samples will be biased. Any test can only be partial and cannot be definitive. There 

are many ways to circumvent this problem. Perhaps the most obvious is to consider the quality of 

forecasts that can be obtained with different models. Forecasts can be made truly out-of-sample, in 

the sense that models can be estimated on moving windows and forecasts made on a small numbers 

of  periods  ahead.  One  can  compare  results  obtained,  making  forecasts  based  on  different 

procedures. This type of result is basically unbiased.

In this dissertation I do not perform a detailed comparative analysis of the performance of 

different types of factor models. However, I will now explore the following question: Suppose that 

asset  prices  are  cointegrated  and therefore  can be described  by a  factor  model  with integrated 

factors.  Suppose  that  a  factor  model  of  returns  is  estimated  on  the  same  market.  Would  price 

cointegration imply any particular bias when estimating factor models of returns?

Recall that empirical results from Section 4.5 seem to indicate that factor models of returns 

are not uniquely identifiable because the decay of the eigenvalues of the covariance matrix is too 

smooth.  My  objective  is  to  explore  whether  this  fact  could  be  partially  explained  by  the 

cointegrating relationships of prices.

110



4.7.2 Cointegration and correlation

Cointegration and correlation are related but different phenomena. They are related insofar 

as both deal with the fact that two series stay close together. In fact, if prices are cointegrated we 

can say that prices move together, while if returns are correlated returns move together. Consider 

two time series of prices tt yx , . If prices are cointegrated one can regress y over x and obtain: 

ttt xy να +=

while if returns are correlated (that is, returns are jointly stationary) one can write:

ttt xy ηβ +∆=∆

where both ν  and η  are stationary processes possibly autocorrelated. It is immediate to see 

that,  from  the  population  point  of  view,  the  correlation  coefficient  between  two  cointegrated 

processes is not constrained to assume any specific value. For example, suppose that  ttt xy ν+=  

and compute the correlation coefficient between the relative returns: 

( ) ( )[ ]
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As tν∆  is an arbitrary process, if ttx ν∆=∆  the correlation coefficient assumes the value 1, 

if ttx ν∆−=∆  the correlation coefficient assumes the value zero and if ttx ν∆−=∆ 2  the correlation 

coefficient assumes the value -1 with all possible intermediate levels. That is, two processes can be 

cointegrated  but  the  relative  returns  can  be  perfectly  correlated,  perfectly  anticorrelated, 

uncorrelated or exhibit any intermediate correlation value. 

The global framework of analysis is the following. Suppose prices are described by a factor 

model of the type:

( ) ( ) tt

ttt

aBfB
uAfX

ϑφ =
+=
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where  n-r   factors  tf  are I(1) and the  r  factors  tu  are I(0). Suppose a  factor model of  

returns is estimated on the observed variables. How many factors would be detected? 

In order to tackle this problem, let’s consider a simplified situation with only one factor, that 

is, consider a model of the type:  ttt ufX += . The correlations between returns can be written as 

follows:

[ ] ( )[ ] ( )
( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( )jtttitjtitt

jttittjtit

ufEfuEuuEfE

ufufExxE

∆∆+∆∆+∆∆+∆=

=+∆+∆=∆∆
2

Now, the number of factors in the factor model of prices is not influenced by the correlations 

and autocorrelations between the u. 

Assuming that  the  u are  all  mutually  uncorrelated  and uncorrelated  with  the  factor,  the 

population would exhibit a single large eigenvalue and therefore one factor for returns would be 

detected. However, this implies the unrealistic assumption that all returns have exactly the same 

mutual correlation. If we assume that the u can be mutually correlated and autocorrelated then the 

covariance matrix of returns is not an identity matrix. 

The distribution of eigenvalues of the covariance matrix of correlated samples of correlated 

variables was studied in Burda, Jurkiewicz, and Waclaw (2005) who found that the presence of 

autocorrelations has the effect of “spreading” the distribution of eigenvalues as if the N/T ratio were 

larger. Clearly no conclusion can be reached without knowing the distributions of eigenvalues of 

the covariance matrix of the residuals u. In the simplest case, the distribution of eigenvalues of the 

covariance matrix of the u will not add any factor and the factor analysis of returns will find one 

factor as the factor analysis of prices. However, in the most general case, the distribution of the 

residuals u will have a factor structure of its own and a factor analysis of returns will detect multiple 

factors. 

The  previous  analysis  was  conducted  in  the  case  of  one  integrated  factor.  However, 

considering multiple factors complicates the algebra but reaches the same conclusions. If there are 

multiple  integrated factors,  and if  the  u have no factor structure,  an eventual  factor analysis  of 

returns will detect only the common integrated factors. However if the residuals after the factor 

analysis of prices still have a factor structure, this factor structure will be superimposed to the factor 

structure generated by integrated factors. 

Therefore, it is possible to conclude that if one runs a factor analysis of returns, or more 

fundamentally if one computes the eigenvalues of the covariance matrix of returns, one finds a 
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number of factors that is the sum of two factor structures: one generated by cointegration with its 

common trends and one generated by the factor structure of the residuals of the common trends. 

This  analysis  might  explain  why  equity  returns  do  not  have  a  unique  factor  structure. 

Actually,  the  cointegration  relationships  add a  factor  structure  of  their  own which  results  in  a 

proliferation of factors and the consequent inability to estimate all factors given the size of available 

samples.
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5.  Summary and Future Direction of Research

This dissertation has discussed the problem of performing factor analysis of large universes 

of financial and economic variables, in particular financial returns. Presently, hundreds of financial 

and economic time series are available. These large universes cannot be correctly analyzed with 

classical factor models because maximum likelihood estimation is practically not feasible with large 

universes and because any reasonably small number of factors leaves residuals correlated.

The state-of-the-art theoretical  approach is that of generalized approximate factor models 

infinite in both the number of observations and the number of time series. Generalized approximate 

factor models offer a theoretically impeccable solution to the problem of factor models and present 

nice features such as the ability to estimate factors with principal components.

The identification of factors and principal components has been conjectured since Hotelling 

(1932) proposed principal components analysis. Approximate factor models prove that in infinite 

markets, under appropriate assumptions, principal components and factors coincide. This result is 

mathematically important and is profoundly related to results in Random Matrix Theory. However, 

approximate factor models do not solve the problem of determining factors in finite sample, albeit 

large.

This dissertation proposes a novel framework for factor analysis in finite samples. First, it 

proposes criteria to determine upfront in finite samples when factors and principal components can 

be identified. These criteria require a large Signal-to-Noise Ratio under the additional condition that 

all  factors/principal  components  are  learnable  given  the  size  of  the  sample.  Next,  when  the 

identification  of  factors  and  principal  components  is  not  feasible,  this  dissertation  proposes  to 

analyze factor models as communication channels and to choose those models that offer the best 

communication capacity between factors and observed variables.

The  dissertation  then  makes  the  claim  that,  in  practice,  financial  returns  do  not  lend 

themselves to being analyzed in terms of principal components. The dissertation suggests that this 

might  be  due  to  cointegration  effects  among  prices.  It  attempts  to  prove  that  if  prices  can  be 

analyzed  with  dynamic  factor  models,  which  implies  that  prices  are  cointegrated,  then  the 

covariance matrix of returns exhibits a slow decay of the eigenvalues, a condition that implies the 

impossibility of identifying factors and principal components of returns.

There are several areas for future research. First, the empirical analysis of cointegration of 

prices. Cointegration of prices is not a simple phenomena. In fact, if we observe prices, we see that 

there are many different time horizons of mean reversion. It is arguable that, in the long run, all 

prices  revert  to  a  single  common  factor.  Therefore,  a  first  future  direction  for  research  is  the 
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empirical analysis of factor models of prices. To my knowledge this is an area largely unexplored. 

Anecdotal  evidence  claims  that  practical  applications  such  as  pair  trading  are  based  on 

cointegration. However, extensive academic studies of price cointegration are still missing.

A second area of research is tackling models of markets as open systems. Empirical studies 

of factor models and/or cointegration are fundamentally biased in that samples are formed by time 

series that exist in the entire time window. These biases are ineliminable unless models become 

models of open systems. Perhaps it is possible to borrow ideas from the statistical mechanics of 

open  systems.  For  example,  cointegrating  prices  could  perhaps  be  considered  as  mechanical 

statistical systems formed by particles that flow in ducts with partially permeable walls.

The  key  consideration  in  applying  these  analogies  is  that  simple  models  are  needed  in 

financial econometrics: Only relatively simple models can be effectively learned given the size of 

the present financial systems, which is many orders of magnitude smaller that the size of physical 

particle systems.

In  summary,  this  dissertation  attempts  to  prove  that  dynamic  effects,  in  particular 

cointegration effects, are responsible for making factor models of returns “fuzzy” and indetermined. 

In practice, modeling cointegration is challenging. Future research should analyze the multiple time 

horizons of mean reversion, and therefore of cointegration, and ultimately propose a framework for 

analyzing markets as open systems.
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Notation

In this Dissertation I tried to maintain uniformity of notation as much as possible, given the 

large number of subjects. Follows some remarks on notation

Returns are denoted with the letter r. I denote factors of factor models with the letter f and 

the corresponding factor loadings with the Greek letter β. I denote with R the matrix that contains 

all the observations of returns, with  F the matrix with the time series of factors and with  E the 

matrix with the time series of residuals.

I tend to write general real or complex-valued matrixes with the letter  H. The adjoint of a 

complex-valued matrix H is denoted H*. If the matrix H is real-valued its transpose is denoted with 

H’. If H is real, conjugate and the transpose coincide: H*=H’. The ratio N/T  between the number of 

series and the number of observations is called the aspect ratio of a matrix and is denoted with the 

letter γ. The lag operator L shifts a process by one period: ( ) 1−= tt xxL .

Given a random variable x  a tilde denotes its estimation: x~ .
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