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Chapter 1

Introduction

The aim of particle physics is the discovery of the laws that govern the interactions of the
fundamental particles. We also want to understand the structure of these interactions at the
highest energies, which allows us to get a picture of what happened at the very early stages
of the evolution of our universe.
Our present knowledge is contained in the Standard Model of particle physics. It is an
extremely successful quantum field theory based on the gauge group SU(3) × SU(2) × U(1),
describing the strong and electroweak interactions of all particles observed so far.
Despite of the tremendous success of the Standard Model, there are some intriguing open
questions, which are left unanswered. Among those are the following:

• What is the mechanism of electroweak symmetry breaking?

• What additional sources of CP violation can explain the observed matter-antimatter
asymmetry of the universe?

• What is the reason for the quantisation of the electric charge?

• How can we include the observed non-zero masses of neutrinos in the theory?

• How can we unify gravity as a quantum theory with the Standard Model gauge forces?

It is the common belief that the Standard Model is merely an effective theory, arising as
some low energy limit of a more complete theory, which is able to answer at least part of the
questions above. This opens a plethora of possibilities for model building, and we clearly need
a guideline of which of these models may be correct. It is well possible that the experiments
at the Large Hadron Collider (LHC) at CERN will discover new particles in the near future,
which would give us the most direct access to the structure of the new interactions. A second
possibility is to set stringent bounds on the new interactions by precision measurements of
judiciously chosen observables, or conversely, to look for deviations from Standard Model
predictions in the experimental data. This is the main goal of the flavour physics programme.
Flavour physics is concerned with the investigation of particle interactions, in which the
flavour quantum number of the participating particles is changed. An example with particu-
larly rich phenomenological consequences is the decay of B-flavoured mesons.
The interest in these processes derives from the fact that only the weak interaction mediates
such flavour changing transitions, and in addition it is the only known interaction that breaks
the parity (P ), charge (C) and combined charge-parity (CP ) symmetries. The origin of CP
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violation in the Standard Model lies solely in Yukawa-type interactions of the quark fields
with the complex Higgs field. They are described by the Cabbibo-Kobayashi-Maskawa (CKM)
matrix, which is parameterised by three angles and one complex phase. CP violation in the
Standard Model is then only an effect of this complex phase [1].
In order to find deviations from Standard Model predictions, it is most promising to study
processes which are suppressed in the Standard Model, such that effects of new physics can
lead to sizeable contributions. In this thesis we will focus on two prime candidates of this
type: CP violation in the neutral Kaon system, and the rare decay K+ → π+νν̄.

CP Violation in the Neutral Kaon System

Over the past fifty years, Kaon physics has contributed a lot to the understanding of particle
interactions and the development of the Standard Model. Here we only want to mention the
introduction of the concept of strangeness in 1953 by Gell-Mann [2], the discovery of parity
violation as the solution to the “θ - τ -puzzle” by Lee and Yang in 1956 [3], and the postulation
of the charm quark in order to explain the small branching ratio of the decay KL → µ+µ−

by Glashow, Iliopoulos and Maiani in 1970 [4]. KL is the longer-lived mass eigenstate of the
neutral Kaon system.
CP violation was also discovered in Kaon decays by Christenson, Cronin, Fitch and Turlay
in 1964, who observed the decay of a KL into two pions [5]. This decay is forbidden in the
case of exact CP symmetry, where the KL is a CP eigenstate. CP symmetry is violated
by a small admixture of a KS component, an effect called “CP violation in mixing” and
parameterised by the real part of the parameter ǫK . Direct CP violation has been observed
in the same decay mode [6]. It is traditionally described in terms of the parameter ǫ′, whereas
the interference induced CP violation results in a non-zero imaginary part of ǫK .
The parameter ǫK is measured with high accuracy: The value quoted by the Particle Data
Group is ǫK = (2.229 ± 0.012) × 10−3 × ei(43.5±0.7)◦ [7]. Whereas about a decade ago the
numerical value of ǫK was used as an input to determine the Standard Model parameters,
today the objective is a different one: The three angles and the phase of the CKM matrix
have been determined with high precision by various measurements of observables related to
B-meson decays, and we can now use ǫK to test the consistency of these values with the results
obtained in the Kaon sector. For this reason ǫK is one of the most important ingredients of the
global fit of the unitarity triangle, which summarises the results of the various measurements.
It is therefore of vital importance to have a precise Standard Model prediction for its value.
The improvement of this prediction constitutes one of the main parts of this thesis.
The transition matrix element describing the mixing of the two flavour eigenstates |K0〉 and
|K̄0〉, with strangeness S = +1 and S = −1, respectively, receives both short and long distance
QCD corrections. The former can be calculated systematically in perturbation theory, while
for the latter non-perturbative methods, such as lattice QCD, have to be used.
We describe the mixing in the Standard Model by an effective Hamiltonian of the form

H|∆S|=2
eff =

G2
F

4π2
M2
W

[
λ2
cη1S

(
m2
c

M2
W

)
+ λ2

tη2S

(
m2
t

M2
W

)
+ 2λcλtη3S

(
m2
c

M2
W

,
m2
t

M2
W

)]

× b(µ)Q̃S2 + h.c. . (1.1)

Here GF is the Fermi constant, λi = VidV
∗
is comprises the CKM matrix elements, and Q̃S2

is a local four-quark operator which induces the |∆S| = 2 transition. The short distance
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contributions are contained in the coefficient in square brackets. The Inami-Lim functions
S(x) and S(x, y) [8] describe the leading-order (LO) Standard Model contribution. The
coefficients η1, η2, and η3 contain the perturbative QCD corrections.

The matrix elements of the operator QS2 between external Kaon states constitute genuine
long-distance effects that can be calculated by means of lattice QCD. The error of the pre-
diction of the matrix elements has been reduced considerably in the recent past; the latest
publication [9] quotes an error of only 4%. This development is a strong motivation to re-
consider the perturbative QCD corrections, which are now dominating the theoretical error
of the prediction.

The parameter η2, comprising the top quark induced corrections, has been calculated at
the next-to-leading order (NLO) in QCD already in 1990 by Buras, Jamin, and Weisz [10],
leaving a remaining theoretical scale uncertainty of the order of one percent, which is clearly
satisfactory. However, the corrections induced by the charm quark, η1, and the mixed charm
and top quark contribution, η3, are harder to calculate and, due to the charm quark being
present at rather low energies, plagued by larger theoretical uncertainties.

A first step beyond the LO calculations [11–15] has been performed by Herrlich and Nierste,
who calculated the NLO QCD corrections to η1 [16] and η3 [17], resulting in a remaining
theoretical scale uncertainty of 18% and 8%, respectively.

In light of the improvements on the long distance corrections mentioned above, these scale
uncertainties should clearly be reduced. In this work we perform a major step towards this
goal by calculating the next-to-next-to-leading order (NNLO) anomalous dimensions and
performing the corresponding matching calculation for the charm-top contribution η3.

The Rare Decay K+
→ π+νν̄

The second main subject of this thesis is the rare decay K+ → π+νν̄. It is induced by
flavour-changing neutral currents (FCNC), which are forbidden at tree level in the Standard
Model, and is dominated by short distance physics because of the quadratic GIM suppression
of non-perturbative effects. The decay is induced by the effective Hamiltonian

Heff =
4GF√

2

α

2π sin2 θW

∑

l=e,µ,τ

[
λcX

l

(
m2
c

M2
W

)
+ λtXt

(
m2
t

M2
W

)]
Q̃ν , (1.2)

where α is the electromagnetic coupling and θW the weak mixing angle. Q̃ν is to an excel-
lent approximation the only operator contributing to the decay. The function Xt(m

2
t /M

2
W )

describes the top-quark contribution to the effective Hamiltonian. It is known up to NLO in
QCD [8,18–20], yielding a remaining scale uncertainty of ±1%. The leading term in the large
top quark mass expansion of the electroweak two-loop corrections is also known and typically
amounts to a per mil correction for the branching ratio, while the uncertainty related to
unknown sub-leading electroweak contributions is conservatively estimated to be ±2% [21].
The function X l(m2

c/M
2
W ) parameterises the charm-quark contribution. The large scale un-

certainty of the LO analysis [12] of ±26% was reduced by a NLO [19, 22] and a subsequent
NNLO QCD calculation [23–25] to ±2.5%, which leaves the QCD corrections in a satisfactory
state.

Our contribution is the calculation of the LO and NLO logarithmic QED corrections as well
as the electroweak matching corrections to the charm-quark contribution [26]. Only by the
inclusion of the electroweak corrections it is possible to fix the renormalisation scheme of
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the electroweak input parameters. The resulting increase of the charm-quark contribution of
about 2% is of the same order of magnitude as the remaining scale uncertainty after inclusion
of the NNLO QCD corrections, whereas now the scheme dependence related to the electroweak
input parameters is completely negligible.
The hadronic matrix element of the low-energy effective Hamiltonian have been extracted with
high accuracy from the full set of data on the well-measured Kℓ3 decays by the use of isospin
symmetry, including isospin breaking and long-distance QED radiative corrections [27–29]. In
addition there are more theoretical uncertainties related to contributions of dimension-eight
operators at the charm quark scale [30,31] and to higher order electroweak corrections to the
matrix elements [28]. They amount to an error of approximately 3% on the branching ratio.
The role of theoretical and experimental accuracy for the decay K+ → π+νν̄ is somewhat
reversed with respect to the situation for ǫK . The branching ratio is theoretically known
with exceptional precision; the two decay modes K+ → π+νν̄ and KL → π0νν̄ are the
only observables in the Kaon system with hadronic uncertainties below 5%. The theoretical
error is now mainly of parametrical origin and will be further reduced in the future by better
measurements of the input parameters. On the other hand, although seven events of the decay
mode K+ → π+νν̄ have been observed [32], we will have to wait for the results of experiments
like NA62 at CERN, which aims at measuring the branching ratio with an accuracy of 10%,
in order to exploit the potential of this decay in the search for new physics.

Outline of this Thesis

This thesis is organised as follows. In Chapter 2 we give an introduction to the field theo-
retical concepts underlying our work. We start with a short introduction into quantum field
theories and the Standard Model, with an emphasis on the renormalisation of QED and QCD.
Afterwards we introduce effective theories and the weak effective Hamiltonian, and discuss
the renormalisation and the renormalisation group running of the Wilson coefficients in detail.
We also discuss the scheme dependence of the anomalous dimensions and Wilson coefficients.
In Chapter 3 we consider more practical questions of our calculation, like the extraction of
ultraviolet (UV) divergences and the calculation of the appearing integrals. In addition we
provide a fairly general formula which relates the anomalous dimensions and Wilson coeffi-
cients in different renormalisation schemes; to this end we generalise results already present
in the literature. The next two chapters are devoted to phenomenological applications: In
Chapter 4 we perform a full renormalisation group analysis of the charm-top contribution
η3 to the parameter ǫK , extending the known NLO QCD results to the NNLO level, and
calculate the full two-loop QED and electroweak corrections to the branching ratio for the
decay K+ → π+νν̄ in Chapter 5. We summarise our results in Chapter 6.



Part I

Foundations





Chapter 2

Standard Model and Weak Effective
Hamiltonian

We describe the physics of elementary particles by a quantum field theory. The reason is
that any relativistic quantum theory will look at sufficiently low energy like a quantum field
theory [33].
After introducing the Standard Model of particle physics in Section 2.1, we describe how
to calculate S-matrix elements in perturbation theory in Section 2.2, where we also give
an introduction to the general ideas of renormalisation. In Section 2.3 the formalism of the
Weak Effective Hamiltonian is introduced, which allows the treatment of external mesons and
provides a convenient method for the summation of large logarithms. The renormalisation of
the appearing Wilson coefficients is treated in Section 2.4. We describe renormalisation group
improved perturbation theory in Section 2.5 and the matching procedure in Section 2.6. In
Section 2.7 we comment on the role of unphysical operators in our calculation. Finally, in
Section 2.8 we derive general transformation properties of various quantities under a change
of the renormalisation scheme.

2.1 Quantum Field Theory and the Standard Model

In this section we collect some basic facts about quantum field theories and the Standard
Model. More details can be found for instance in [33,34].
Any relativistic quantum field theory describing the interaction of elementary particles can be
defined by a Lagrangian density which is composed of field operators in an Lorentz invariant
way. In the case of a set of scalar fields it is given by

L = L[φ(x), ∂µφ(x)] . (2.1)

A solution to the theory is specified by describing the space of states and the way the operators
act on this space. It can be reconstructed from the time-ordered Green’s functions

GN (x1, . . . , xN ) = 〈0|Tφ(x1) · · · φ(xN )|0〉 , (2.2)

which can be represented by a path integral

GN (x1, . . . , xN ) = N−1

∫
[dφ]eiS[φ]φ(x1) · · · φ(xN ) , (2.3)
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where N is a normalisation factor,

N =

∫
[dφ]eiS[φ] , (2.4)

and the action S is given by

S[φ] =

∫
d4 xL[φ(x), ∂µφ(x)] . (2.5)

The Standard Model is based on the concept of a quantum gauge field theory, which means
that the action S is invariant under space-time dependent transformations of the fields ac-
cording to some representation of the gauge symmetry group G. The need for local invariance
arises when we want to include massless spin-one particles into a Lorentz-invariant theory.
We will now discuss the important case of G = SU(N), which is the group of the special
unitary N × N matrices. The fermion fields ψ are assumed to transform according to the
fundamental representation,

ψi(x) → ψ′
i(x) = Uij(x)ψj(x), SU(N) ∋ U(x) = e−iT

aθa(x) , (2.6)

where θa(x) is a real parameter which may depend on space-time, and the T a are the gener-
ators of the group SU(N). They fulfill the following commutation relations:

[
T a, T b

]
= ifabcT c , (2.7)

where the structure constants fabc define the Lie algebra of SU(N). Here and in the following,
we imply a summation over repeated indices. The Lagrangian will then be invariant if ordinary
derivatives are replaced by covariant derivatives

/Dij = /∂δij − igT aij /G
a
. (2.8)

Here the fields Ga describing the vector bosons associated with the interaction enter the game.
The interaction with a fermion field of mass m is given by

Lf = ψ̄i(i /Dij −mδij)ψj . (2.9)

The dynamics of the gauge fields is induced by

Lg = −1

4
GaµνG

aµν (2.10)

with the field strength tensor

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gfabcGbµG

c
ν . (2.11)

Quantisation

A powerful tool to solve a quantum field theory is the path integral. If the theory is gauge
invariant, the integration involves field configurations which are related by the gauge trans-
formation and yield the same action. The gauge variant propagator vanishes, which makes it
impossible to formulate perturbation theory.
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As shown by Faddeev and Popov [35], the problem can be solved by expressing the path
integral as an integral over all fields satisfying some gauge condition times an integral over all
gauge transformations. For a gauge-invariant Green’s function, this yields an overall factor,
which is cancelled by the corresponding factor in the normalisation, so the integral over the
gauge transformations can be omitted. However, the gauge-variant Green’s functions no
longer vanish.

We impose a gauge condition of the general form F a[G,x] = fa(x) and write a Green’s
function of any product of fields X as

〈0|TX|0〉 = N
∫

[dG][dψ̄][dψ]X exp(iSinv)∆[G]
∏

x,a

δ(F a(x) − fa(x)) . (2.12)

Here Sinv is the gauge invariant action and ∆[G] is the Jacobian that arises in transforming
the integration variables to the set of fields satisfying the gauge condition and integrating
over the gauge transformations. The normalisation factor is given by

N−1 =

∫
[dG][dψ̄][dψ] exp(iSinv)∆[G]

∏

x,a

δ(F a(x) − fa(x)) . (2.13)

The Jacobian ∆[G] is a determinant and hence can be written as an integral:

∆[G] =

∫
[dca][dc̄a] exp(iLgc) . (2.14)

Here we have introduced the anticommuting scalar ghost fields. For the choice F a[G,x] =
∂µGaµ(x), which we will use in the following, the gauge compensating Lagrangian is given by

Lgc = ∂µη̄a(∂µη
a + gfabcηbGcµ) , (2.15)

up to a total derivative.

A gauge invariant integral of the form (2.12) depends on the specific form of the gauge fixing
functional only through an irrelevant overall factor. It turns out to be convenient to average
over the functions fa with a Gaussian weight factor exp[−i

∫
d4x(fa)2/(2ξ)]. The total action

is then given by

S =

∫
d4 x(Linv + Lgf + Lgc) , (2.16)

where Linv and Lgc have been defined above and Lgf is given by

Lgf = −
(∂µGaµ(x))

2

2ξ
. (2.17)

Physical results are independent of the gauge parameter ξ.

The Standard Model

The Standard Model of particle physics describes the strong interaction as based on the gauge
group SU(3). This means that quarks (the strongly interacting fundamental matter particles)
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are described by a Lagrangian of the form
∑Lf + Lg, where the sum is over quark flavours,

and the fields ψ and G correspond to the different quark flavours and the gluons, respectively.

The electroweak sector is based on the gauge group SU(2)L × U(1)Y . It exhibits a chiral
structure, because the right- and left-handed fermion fields transform differently under the
gauge group. In addition, the physical particle spectrum is not invariant under the full
symmetry group, which is said to be spontaneously broken to the electromagnetic U(1)em via
the Higgs mechanism. Thereby theW and Z gauge bosons acquire a mass, whereas the photon
remains massless. In the Standard Model, spontaneous symmetry breaking is achieved by
introducing an additional complex scalar field with an appropriately chosen potential energy
term.

The mass terms for the fermions are generated by a Yukawa interaction between the fermion
fields and the Higgs field, which acquires a non-vanishing vacuum expectation value. After
diagonalising the mass terms, the interaction between the charged weak vector bosons W±

and the quark fields is given by

Lwc = − g2√
2
Jµcc(x)W

+
µ (x) + h.c. (2.18)

in terms of the charged current

Jµcc(x) = ūL,i(x)γ
µVijdL,j(x) . (2.19)

The unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V induces family-changing tran-
sitions via the coupling to the W bosons. It contains four physical parameters (i.e. they
cannot be removed by a redefinition of the quark fields, if the up- and down-type quarks have
different masses): Namely, three angles and one complex phase, the latter being the only
source of CP violation in the Standard Model1.

There are no flavour changing neutral currents (FCNC) in the Standard Model at tree level,
and the unitarity of the CKM matrix implies the suppression of such processes induced by
quantum effects; this is called the GIM mechanism.

2.2 Perturbation Theory and Renormalisation

In particle physics, we are interested in scattering processes, which are described by the
S-matrix, given in terms of transition amplitudes of asymptotic in and out states,

Sβα = 〈β, out|α, in〉 =: 〈β, in|S|α, in〉 . (2.20)

The S-matrix can be related to the Green’s functions of the theory via the reduction formula
of Lehmann, Symanzik and Zimmermann [38]:

〈p1, . . . , pn, out|pn+1, . . . , pn+l, in〉 =

lim
p21→m2

1

. . . lim
p2

n+l
→m2

n+l

ẑ
n+l
2

G̃n+l(−p1, . . . ,−pn, pn+1, . . . , pn+l, )∏n+l
i=1 G̃2(−pi, pi)

, (2.21)

1Apart from the CP violating θ term in QCD, which is, however, at most of the order O(10−9) [36,37].
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where

G̃N (p1, . . . , pN ) =

∫
d4x1 . . . d

4xN exp[i(p1x1 + · · · + pNxN )]GN (x1, . . . , xN ) (2.22)

is the Fourier transform of the N -point Green’s function and iẑ is the residue of G̃2(−p, p).
In an interacting theory, the Green’s functions cannot be evaluated analytically in a closed
form. One way to derive an approximate result is the use of perturbation theory. To this end
we expand the kernel in equation (2.3) into a perturbation series in the coupling constants:

eiS[φ] = eiSfree[φ]
∑

n

in

n!

(∫
d4 xLint[φ(x), ∂µφ(x)]

)n
, (2.23)

where Lint is the interaction part of the Lagrangian, the free part being contained in eiSfree .

Renormalisation

The individual terms in the perturbation series involve integrals over four-momenta and are
generally divergent. By the process of renormalisation it is nevertheless possible to obtain
physically meaningful results.

The first step is to regularise the divergent integrals. We will exclusively use dimensional
regularisation, which involves integration over an arbitrary (in fact, infinite) number of space-
time dimensions d = 4 − 2ǫ. After renormalisation the physical limit d→ 4 will be taken.

The renormalisation is performed by recursively subtracting all subdivergences of a Feyn-
man diagram corresponding to one-particle irreducible (1PI) subdiagrams by suitably chosen
counterterms. An explicit solution to this recursive method is given by Zimmermann’s forest
formula [39].

A key observation is that for a class of theories, which are termed renormalisable (by power
counting), the subtraction terms can be absorbed into a redefinition of the parameters of the
theory. This ensures the predictive power of the theory, as soon as these parameters have
been determined by experiment. The Standard Model belongs to this class of theories.

Here, we will also be concerned with effective theories, which are not renormalisable in this
strict sense. This means that new counterterms are generated in each order in perturbation
theory. However, at each order in perturbation theory, only a finite number of new terms
appear, which can be fixed by matching the effective theory to the Standard Model, thus
preserving the predictive power of the theory.

For illustration, we will now describe the renormalisation of the QCD×QED Lagrangian,
which constitutes an important part of the renormalisation program in the effective theory
considered below. For the renormalisation of the electroweak sector, which is needed for
computing the initial conditions of the Wilson coefficients, we refer the reader to [40].

The unrenormalised Lagrangian density for a coloured fermion with mass m and electromag-
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netic charge Qf reads:

L0,QCD×QED = ψ0i(i/∂ −m0)ψ0i + g0ψ0iT
a
ij /G

a
0ψ0j + e0ψ0iQf /A0ψ0i

− 1

4
(∂µG

a
0ν − ∂νG

a
0µ)(∂

µGaν0 − ∂νGaµ0 ) − 1

2ξg0

(
∂µG

aµ
0

)2

− 1

4
(∂µA0ν − ∂νA0µ)(∂

µAν0 − ∂νAµ0 ) − 1

2ξa0

(
∂µA

µ
0

)2

− g0
2
fabc(∂µG

a
0ν − ∂νG

a
0µ)G

bµ
0 G

cν
0 − g2

0

4
fabef cde(Ga0µG

b
0ν)G

cµ
0 G

dν
0

+ ηa0∂µ∂
µηa0 + g0f

abc(∂µη
a
0)η

b
0G

c
0µ. (2.24)

Now we introduce renormalised fields and parameters:

Ga0µ = Z
1/2
G Gaµ, ηa0 = Z1/2

η ηa, ψ0 = Z
1/2
ψ ψ ,

g0 = Zggµ
ǫ, m0 = Zmm, ξg0 = Zξgξg ,

Aa0µ = Z
1/2
A Gaµ, e0 = Zeeµ

ǫ, ξa0 = Zξaξa . (2.25)

Because in dimensional regularisation the Lagrangian is defined in d dimensions, the coupling
constants aquire a mass dimension. This dependence on an arbitrary mass scale can be
factored out in order to keep the coupling constants dimensionless. In this way the scale µ
enters the equations above.
We can now express the bare Lagrangian as a sum of the renormalised Lagrangian and a
counterterm Lagrangian, L0 = L + Lct, where L has the same form as L0, but is expressed
in terms of renormalised parameters and fields, and the counterterm Lagrangian is given by

Lct = (Zψ − 1)ψii/∂ψi − (ZψZm − 1)ψimψi

+ (ZgZ
1/2
G Zψ − 1)gψiT

a
ij /G

a
ψj + (ZeZ

1/2
A Zψ − 1)eψi /Aψj

− 1

4
(ZG − 1)(∂µG

a
ν − ∂νG

a
µ)(∂

µGaν − ∂νGaµ) − (ZG − 1)
1

2ξg

(
∂µG

aµ
)2

− 1

4
(ZA − 1)(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ) − (ZA − 1)
1

2ξa

(
∂µA

µ
)2

− (ZgZ
3/2
G − 1)

g

2
fabc(∂µG

a
ν − ∂νG

a
µ)G

bµGcν

− (Z2
gZ

2
G − 1)

g2

4
fabef cde(GaµG

b
ν)G

cµGdν

+ (Zη − 1)ηa∂µ∂
µηa + (ZgZ

1/2
G Zη − 1)gfabc(∂µη

a)ηbGcµ . (2.26)

We now expand the renormalisation constants Z in the strong and electromagnetic coupling
constants:

Z = 1 +
( e

4π

)2
Z(e) +

( e

4π

)2 ( g

4π

)2
Z(es) +

∞∑

k=1

( g
4π

)2k
Z(k) , (2.27)
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where we dropped higher powers of the electromagnetic coupling constant. It is possible to
make the dependence of the renormalisation constants on ǫ explicit in the following way:

Z(k) =
∑

l≤k

(
1

ǫ

)l
Z(k,l) , Z(e) =

∑

l≤1

(
1

ǫ

)l
Z(e,l) , Z(es) =

∑

l≤2

(
1

ǫ

)l
Z(es,l) . (2.28)

The pole parts of the Z factors must be chosen such that all divergences are cancelled. The
remaining, non-pole parts can be chosen arbitrarily. In the minimal subtraction (MS) scheme
these constant parts are set to zero, so that only the pole parts are subtracted. The modified
minimal subtraction (MS) scheme [41] is obtained from the MS scheme by redefining the
parameter µ:

µ→ µ

(
eγE

4π

) 1
2

, (2.29)

where γE is Euler’s constant. We will use this scheme exclusively in the following. The
explicit forms of the renormalisation constants can be found in the literature [40,42].

Renormalisation Group

The renormalisation process involves a considerable amount of arbitrariness, because the
renormalisation constants have to be chosen such that they cancel all divergences, but a finite
subtraction is still possible. The choice of the finite subtractions is called a renormalisation
scheme. It is important to note that results for physical observables do not depend on the
renormalisation scheme, as the changes in the subtraction presription can be absorbed into a
redefinition of the renormalised parameters. This invariance of the theory under a change of
the renormalisation presription is described by the renormalisation group equations (RGE).
Using the fact that the unrenormalised coupling constants are independent of the parameter
µ, we derive from Eq. (2.27) the following differential equations for the coupling constants:

µ
dg

dµ
= β(g(µ), e(µ), ǫ) , (2.30)

µ
de

dµ
= βe(g(µ), e(µ), ǫ) , (2.31)

where the β functions are given by

β(g(µ), e(µ), ǫ) = −ǫg + β(g(µ), e(µ)) = −ǫg − g
µ

Zg

dZg
dµ

, (2.32)

βe(g(µ), e(µ), ǫ) = −ǫe+ βe(g(µ), e(µ)) = −ǫe− e
µ

Ze

dZe
dµ

. (2.33)

In a mass independent renormalisation scheme such as the MS scheme the only mass depen-
dence of the renormalisation constants arises through the coupling constants. This observation
leads to the following explicit form of the β functions in terms of the Z factors:

β(g, e) = −β0
g3

(4π)2
− β1

g5

(4π)4
− β2

g7

(4π)6
− βse

g3e2

(4π)4
+ . . . (2.34)

= 2Z(1,1)
g

g3

(4π)2
+ 4Z(2,1)

g

g5

(4π)4
+ 6Z(3,1)

g

g7

(4π)6
+ 2Z(es,1)

g

g3e2

(4π)4
+ . . . . (2.35)
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Explicit values for the coefficients are given in Appendix B. Similar equations can be found
for the other parameters of the theory such as the quark masses.

2.3 Weak Effective Hamiltonian

In this thesis we will be calculating decay rates and transition matrix elements involving
K-mesons. The former are characterised by widely separate energy scales, which are in our
case the electroweak scale of the order O(MW ), the intermediate scale of the charm quark
appearing in the LO Standard Model loop diagrams, of the order O(mc), and the scale ΛQCD

of the order of the binding energy of the involved mesons.

These scale differences induce large logarithms in the perturbation series, making a fixed
order calculation unreliable. Moreover, the strong coupling constant is scale-dependent, and
at an energy of the order of ΛQCD, QCD becomes non-perturbative and an altogether different
method of calculation has to be used.

The framework of effective field theory introduces a natural way to separate the different
energy scales and allows for a convenient method to sum large logarithms to all orders in
perturbation theory.

The basic idea of the effective field theory approach is contained in the decoupling theorem by
Appelquist and Carrazone [43]. They consider Green’s functions in a renormalisable theory
in which some fields have much higher masses than other fields. The theorem then states
that the Green’s functions at momenta much lower than the heavy masses can be calculated
in a theory with all heavy degrees of freedom removed, corrections being suppressed by a
power of the momentum divided by a heavy mass. Provided that the low energy theory is
still renormalisable, the only effect of the heavy fields is that they may change the values of
the couplings in the low energy theory.

In the case of the weak interactions, removing the heavy gauge bosons leads to non-renor-
malisable four-fermion interactions. In fact, it is the non-decoupling property of the weak
interactions which allows us to observe phenomena of high energy scales in decays of low
mass particles like the Kaon. However, the arising divergences are still polynomial in the
momenta and thus can be removed by local counterterms. Because of the smallness of the
weak interactions, we need to consider contributions only of second order in the effective
interactions, and in consequence only a finite number of counterterms is needed.

Strictly speaking, the Appelquist-Carrazone theorem is only valid in a physical renormalisa-
tion scheme like the momentum space subtraction scheme. In mass-independent renormali-
sation schemes like the MS scheme, the decoupling has to be put in by hand. This is where
the machinery of effective field theory comes into play [44, 45]: For each domain of validity,
as defined by the different scales in the problem, we construct an effective theory containing
operators that consist out of the fields in the effective theory and induce the interactions.
They are multiplied by effective coupling constants, the so-called Wilson coefficients, which
are chosen in such a way that the amplitudes in the theory just above the scale where we
remove a heavy particle, and in the theory just below this scale are the same (up to powers of
a momentum divided by a heavy mass). This is done by a matching calculation, which will
be explained in Section 2.6.

In the following we list all the operators needed as building blocks for the weak effective
Hamiltonian describing the |∆S| = 1 and |∆S| = 2 flavour-changing processes relevant for
our work. It is obtained by integrating out all heavy particle fields with masses greater than
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the electroweak scale characterised by MW . We write it formally as

Heff = CiZijQj +
(
C̃iZ̃ik + CiCjẐij,k

)
Q̃k . (2.36)

Here the Qi denote dimension-six four-fermion operators, inducing |∆S| = 1 transitions,
Ci are the corresponding Wilson coefficients, and Zij are the operator renormalisation con-
stants, to be discussed in Section 2.4. The corresponding quantities for |∆S| = 2 transitions,
induced by dimension-eight operators, are denoted by a tilde. Finally, the renormalisation
constants Ẑij,k arise from the fact that the matrix elements of a double insertion of renor-
malised dimension-six operators need not be finite, and lead to a mixing of dimension-six into
dimension-eight operators.
The operators which we need for our work can be divided into three classes: Physical oper-
ators, gauge-invariant operators that vanish by the QCD equations of motion (EOM), and
evanescent operators, that vanish algebraically in four space-time dimensions. In the follow-
ing, we introduce all the contributing operators in turn.
We start with the dimension-six operators, which we choose such that problems arising from
the γ5 matrix appearing in closed fermion loops in the framework of dimensional regularisation
do not occur [46]. There are two current-current operators, which we choose as

Qqq
′

1 = (sLγµT
aqL) ⊗ (q′Lγ

µT adL) ,

Qqq
′

2 = (sLγµqL) ⊗ (q′Lγ
µdL) ,

(2.37)

where qL = 1
2(1− γ5)q is the left-handed chiral quark field, and q and q′ are either u or c. We

will later also need these operators in a certain linear combination, which can be written as

Qqq
′

± =
1

2

(
(sαLγµq

α
L) ⊗ (q

′β
L γ

µdβL) ± (sαLγµq
β
L) ⊗ (q

′β
L γ

µdαL)
)

=
1

2

(
1 ± 1

Nc

)
Qqq

′

2 ±Qqq′1 , (2.38)

where α and β are colour indices, and Nc is the number of colours. The advantage here is
that the anomalous dimensions in the subspace of current-current operators are diagonal in
this basis (see also Appendix C).
The QCD penguin operators are defined as

Q3 = (sLγµdL) ⊗
∑

q
(qγµq) ,

Q4 = (sLγµT
adL) ⊗

∑
q
(qγµT aq) ,

Q5 = (sLγµ1µ2µ3dL) ⊗
∑

q
(qγµ1µ2µ3q) ,

Q6 = (sLγµ1µ2µ3T
adL) ⊗

∑
q
(qγµ1µ2µ3T aq) ,

(2.39)

where the sum extends over the light quark fields, and we have introduced the abbreviation
γµ1µ2µ3 = γµ1γµ2γµ3 , etc. The semi-leptonic dimension-six operators relevant for the decay
K+ → π+νν̄ are given by

Q3q =
∑

ℓ=e,µ,τ

(s̄LγµqL) ⊗ (ν̄ℓLγ
µℓL) ,

Q4q =
∑

ℓ=e,µ,τ

(q̄LγµdL) ⊗ (ℓ̄Lγ
µνℓL) ,

(2.40)
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Figure 2.1: Sample three-loop diagrams with 1PI subdivergences that have to be subtracted by inser-
tions of the EOM-vanishing operator. The corresponding 1PI one- and two-loop insertions of Qeom

are also shown.

inducing the quark-lepton-neutrino interactions, and the operators

QA =
∑

q

∑

ℓ=e,µ,τ

(−I3
q )(q̄γ5γµq) ⊗ (ν̄ℓLγ

µνℓL) ,

QV =
∑

q

∑

ℓ=e,µ,τ

(I3
q − 2Qq sin2 θW )(q̄γµq) ⊗ (ν̄ℓLγ

µνℓL) ,
(2.41)

describing the quark-neutrino interactions.

In order to subtract the divergences of all possible 1PI subdiagrams of the relevant Green’s
functions we need the following gauge-invariant EOM-vanishing operator

Qeom =
1

g
s̄Lγ

µT adLD
νGaµν +Q4 , (2.42)

where Dµ denotes the covariant derivative, acting on the gluon field. Sample diagrams are
shown in Figure 2.1.

The dimension-eight operators inducing the effective interactions below the charm quark scale
can be chosen as

Q̃7 =
m2
c

g2µ2ǫ
(s̄αLγµd

α
L) ⊗ (s̄βLγ

µdβL) , (2.43)

for the |∆S = 2| transition, where α and β again denote colour indices, and

Q̃ν =
m2
c

g2µ2ǫ

∑

ℓ=e,µ,τ

(s̄LγµdL) ⊗ (ν̄ℓLγ
µνℓL) , (2.44)

describing the s → dνν̄ transition. Note that we define the dimension-eight operators with
two inverse powers of the strong coupling constant for reasons that will become clear in
Section 2.4.

Evanescent Operators

The use of dimensional regularisation in a theory involving fermions implies that also the
Dirac algebra is infinite-dimensional. In order to remove all divergences of Green’s functions
calculated in d dimensions, we also have to introduce a set of operators that vanish alge-
braically in four dimensions. These are called evanescent operators. At the one-loop level we
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need

E
qq′(1)
1 = (sLγµ1µ2µ3T

aqL) ⊗ (q′Lγ
µ1µ2µ3T adL) − 16Qqq

′

1 ,

E
qq′(1)
2 = (sLγµ1µ2µ3qL) ⊗ (q′Lγ

µ1µ2µ3dL) − 16Qqq
′

2 ,

E
(1)
3 = (sLγµ1µ2µ3µ4µ5dL) ⊗

∑
q
(qγµ1µ2µ3µ4µ5q) + 64Q3 − 20Q5 ,

E
(1)
4 = (sLγµ1µ2µ3µ4µ5T

adL) ⊗
∑

q
(qγµ1µ2µ3µ4µ5T aq) + 64Q4 − 20Q6 ,

(2.45)

for the four-quark operators, defined as in [46]. We define the evanescent operators needed
for the renormalisation of the semileptonic operators as in [25]:

E
(1)
3q =

∑

ℓ=e,µ,τ

(s̄Lγµ1µ2µ3qL)(ν̄ℓLγ
µ1µ2µ3ℓL) − (16 − 4ǫ)Q3q ,

E
(1)
4q =

∑

ℓ=e,µ,τ

(q̄Lγµ1µ2µ3dL)(ℓ̄Lγ
µ1µ2µ3νℓL) − (16 − 4ǫ)Q4q .

(2.46)

At the two-loop level, the following four operators appear [46]:

E
qq′(2)
1 = (sLγµ1µ2µ3µ4µ5T

aqL) ⊗ (q′Lγ
µ1µ2µ3µ4µ5T adL) − 256Qqq

′

1 − 20E
qq′(1)
1 ,

E
qq′(2)
2 = (sLγµ1µ2µ3µ4µ5qL) ⊗ (q′Lγ

µ1µ2µ3µ4µ5dL) − 256Qqq
′

2 − 20E
qq′(1)
2 ,

E
(2)
3 = (sLγµ1µ2µ3µ4µ5µ6µ7dL) ⊗

∑
q
(qγµ1µ2µ3µ4µ5µ6µ7q) + 1280Q3 − 336Q5 ,

E
(2)
4 = (sLγµ1µ2µ3µ4µ5µ6µ7T

adL) ⊗
∑

q
(qγµ1µ2µ3µ4µ5µ6µ7T aq) + 1280Q4 − 336Q6 .

(2.47)

In the calculation of the mixing of dimension-six into dimension-eight operators, in addition to
the Dirac structure (s̄αLγµd

α
L)⊗(s̄βLγ

µdβL) we will encounter the structure (s̄αLγµd
β
L)⊗(s̄βLγ

µdαL).
It is related to the former structure by a Fierz transformation in four space-time dimensions.
The difference of these structures is therefore evanescent, and we introduce another evanescent
operator of the following form:

ẼF =
m2
c

g2µ2ǫ
(s̄αLγµd

β
L) ⊗ (s̄βLγ

µdαL) − Q̃7 , (2.48)

given simply by the difference of the two Dirac structures. We choose the remaining evanescent
dimension-eight operators to be

E(1)
ν =

m2
c

g2µ2ǫ

∑

ℓ=e,µ,τ

(s̄Lγµ1µ2µ3dL) ⊗ (ν̄ℓLγ
µ1µ2µ3νℓL) − (16 − 4ǫ)Qν ,

E(2)
ν =

m2
c

g2µ2ǫ

∑

ℓ=e,µ,τ

(s̄Lγµ1µ2µ3µ4µ5dL) ⊗ (ν̄ℓLγ
µ1µ2µ3µ4µ5νℓL) − 256Qν ,

(2.49)

in analogy to the choice in [25], and

Ẽ
(1)
7 =

m2
c

g2µ2ǫ
(s̄αLγµ1µ2µ3d

α
L) ⊗ (s̄βLγ

µ1µ2µ3dβL) − 16Q̃7 ,

Ẽ
(1)
8 =

m2
c

g2µ2ǫ
(s̄αLγµ1µ2µ3d

β
L) ⊗ (s̄βLγ

µ1µ2µ3dαL) − 16(Q̃7 + ẼF ) ,

(2.50)
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Ẽ
(2)
7 =

m2
c

g2µ2ǫ
(s̄αLγµ1µ2µ3µ4µ5d

α
L) ⊗ (s̄βLγ

µ1µ2µ3µ4µ5dβL) − 256Q̃7 ,

Ẽ
(2)
8 =

m2
c

g2µ2ǫ
(s̄αLγµ1µ2µ3µ4µ5d

β
L) ⊗ (s̄βLγ

µ1µ2µ3µ4µ5dαL) − 256(Q̃7 + ẼF ) ,

(2.51)

Ẽ
(3)
7 =

m2
c

g2µ2ǫ
(s̄αLγµ1µ2µ3µ4µ5µ6µ7d

α
L) ⊗ (s̄βLγ

µ1µ2µ3µ4µ5µ6µ7dβL) − 4096Q̃7 ,

Ẽ
(3)
8 =

m2
c

g2µ2ǫ
(s̄αLγµ1µ2µ3µ4µ5µ6µ7d

β
L) ⊗ (s̄βLγ

µ1µ2µ3µ4µ5µ6µ7dαL) − 4096(Q̃7 + ẼF ) .

(2.52)

2.4 Renormalisation of the Wilson Coefficients

In an effective theory we need extra renormalisation constants, in addition to the QED×QCD
counterterms, in order to render all Green’s functions finite. In this section we will show explic-
itly how these can be extracted from operator matrix elements order by order in perturbation
theory.

We write the Lagrangian up to the second order in GF formally as

L = LQED×QCD + Ldim.6 + Ldim.8

= LQED×QCD + CiZijQj + (CkCk′Ẑkk′,l + C̃kZ̃kl)Q̃l , (2.53)

where the notation is the same as in Equation (2.36). Here the renormalisation factors Zij ,
Z̃ij , and Ẑij,k of the Wilson coefficients are chosen in such a way that any renormalised
effective amplitude, of the form

Aeff = Ci(µ)Zij〈ZQj〉R + (CkCk′Ẑkk′,l + C̃kZ̃kl)〈ZQ̃l〉R , (2.54)

is finite. Here angle-brackets denote matrix elements between initial and final states i and f ,
respectively, i.e. 〈Qj〉 = 〈f |Qj|i〉. Z denotes the wave function renormalisation of the fields
in the operator, so that 〈ZQi〉R are the renormalised matrix elements of the bare operator
Qbare
i , where masses and gauge couplings are renormalised in the usual way.

As usual, we write the expansion in the coupling constants in the form

Z =
∞∑

k=0

(αs
4π

)k
Z(k) +

α

4π
Z(e) +

ααs
16π2

Z(es) . (2.55)

We can also make the ǫ-dependence explicit by expanding the coefficients in analogy to Equa-
tion (2.28).

According to the rules of the MS scheme, the Zij are given by the pure pole part, unless the
index i corresponds to an evanescent operator, while the index j does not. In this case a finite
subtraction is performed; this will be explained in Section 2.7. An analoguous prescription is
applied to Z̃ij and Ẑij,k.

By convention, we define the dimension-eight operators Q̃ with an explicit factor of m2 and
two inverse powers of g, i.e. Q̃ = m2/(g2µ2ǫ) · Q̃′. In this way, Ẑ = O(g2) and there is no
mixing at leading order. The explicit factor of µ arises from the definition of the renormalised
coupling constant in Equation (2.25).
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By calculating matrix elements of the effective operators with suitably chosen external quark
and gluon states, the renormalisation constants can be determined order by order in per-
turbation theory from the requirement that the amplitude (2.54) be finite. Expanding the
matrix elements and the renormalisation factors in the coupling constants, we find for the
case of a single insertion of a dimension-six operator:

Z
(1)
ij 〈Qj〉(0)R = −〈ZQi〉(1)R ,

Z
(2)
ij 〈Qj〉(0)R = −〈ZQi〉(2)R − Z

(1)
ij 〈ZQj〉(1)R ,

Z
(3)
ij 〈Qj〉(0)R = −〈ZQi〉(3)R − Z

(2)
ij 〈ZQj〉(1)R − Z

(1)
ij 〈ZQj〉(2)R ,

Z
(e)
ij 〈Qj〉(0)R = −〈ZQi〉(e)R ,

Z
(es)
ij 〈Qj〉(0)R = −〈ZQi〉(es)R − Z

(e)
ij 〈ZQj〉(1)R − Z

(1)
ij 〈ZQj〉(e)R . (2.56)

We can express these equations in terms of the bare quantities by writing 〈ZQi〉R = Zi〈Qi〉B
(no sum over i). In this way we find

Z
(1)
ij 〈Qj〉(0)B = −〈Qi〉(1)B − Z

(1)
i 〈Qi〉(0)B ,

Z
(2)
ij 〈Qj〉(0)B = −〈Qi〉(2)B − Z

(1)
i 〈Qi〉(1)B − Z

(1)
ij 〈Qj〉(1)B

− Z
(2)
i 〈Qi〉(0)B − Z

(1)
ij Z

(1)
j 〈Qj〉(0)B ,

Z
(e)
ij 〈Qj〉(0)B = −〈Qi〉(e)B − Z

(e)
i 〈Qi〉(0)B ,

Z
(es)
ij 〈Qj〉(0)B = −〈Qi〉(es)B − Z

(e)
i 〈Qi〉(1)B − Z

(1)
i 〈Qi〉(e)B − Z

(es)
i 〈Qi〉(0)B

− Z
(e)
ij Z

(1)
j 〈Qj〉(0)B − Z

(e)
ij 〈Qj〉(1)B

− Z
(1)
ij Z

(e)
j 〈Qj〉(0)B − Z

(1)
ij 〈Qj〉(e)B . (2.57)

An implication of renormalisability is the locality of the counterterms. In a mass independent
renormalisation scheme this means that the Z factors depend on µ only through the coupling
constants. This observation can be used as a check on the renormalisation of two- and
three-loop matrix elements in the following way: In Equations (2.56) and (2.57) we have
contributions from different two- and three-loop diagrams, as well as from one- and two-loop
counterterm diagrams. If we denote the 1/ǫl-pole part of the sum of all n-loop contributions
by M (n,l), we find the following pole structure:

Z
(k)
ij 〈Qj〉(0)B =

k∑

n=0

k∑

l=1

(
µ2ǫ
)n 1

ǫl
M (n,l) . (2.58)

The µ-independence of Z then leads to the following conditions on the various contributions,
providing a powerful check of our calculation:

3M (3,2) + 2M (2,2) +M (1,2) = 0 ,

3M (3,3) + 2M (2,3) +M (1,3) = 0 ,

9M (3,3) + 4M (2,3) +M (1,3) = 0 . (2.59)
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Clearly, the renormalisation factors Z̃ related to the mixing of dimension-eight into dimension-
eight operators can be obtained in exactly the same way. The renormalisation constants Ẑij,k,
describing the mixing of dimension-six into dimension-eight operators, can be determined in
an completely analoguous way by computing suitably chosen matrix elements of insertions
of two local dimension-six operators. As above, we find after an expansion in the coupling
constants:

Ẑ
(1)
kk′,l〈Q̃l〉

(0)
R = −〈ZQkZQk′〉(1)R ,

Ẑ
(2)
kk′,l〈Q̃l〉

(0)
R = −〈ZQkZQk′〉(2)R − Z

(1)
km〈ZQmZQk′〉

(1)
R

− Z
(1)
k′n〈ZQkZQn〉

(1)
R − Ẑ

(1)
kk′,l′〈ZQ̃l′〉

(1)
R ,

Ẑ
(3)
kk′,l〈Q̃l〉

(0)
R = −〈ZQkZQk′〉(3)R − Z

(2)
km〈ZQmZQk′〉

(1)
R

− Z
(1)
km〈ZQmZQk′〉

(2)
R − Z

(2)
k′n〈ZQkZQn〉

(1)
R

− Z
(1)
k′n〈ZQkZQn〉

(2)
R − Z

(1)
kmZ

(1)
k′n〈ZQmZQn〉

(1)
R

− Ẑ
(2)
kk′,l′〈ZQ̃l′〉

(1)
R − Ẑ

(1)
kk′,l′〈ZQ̃l′〉

(2)
R ,

Ẑ
(es)
kk′,l〈Q̃l〉

(0)
R = −〈ZQkZQk′〉(es)R − Z

(e)
km〈ZQmZQk′〉

(1)
R

− Z
(e)
k′n〈ZQkZQn〉

(1)
R − Ẑ

(1)
kk′,l′〈ZQ̃l′〉

(e)
R . (2.60)

Again we express these equations in terms of bare matrix elements, and find

Ẑ
(1)
kk′,l〈Q̃l〉

(0)
B = −〈QkQk′〉(1)B ,

Ẑ
(2)
kk′,l〈Q̃l〉

(0)
B = −〈QkQk′〉(2)B − Z

(1)
k 〈QkQk′〉(1)B − Z

(1)
k′ 〈QkQk′〉

(1)
B

− Z
(1)
kn 〈QnQk′〉

(1)
B − Z

(1)
k′n〈QkQn〉

(1)
B

− Ẑ
(1)
kk′,l′Z

(1)
l′ 〈Q̃l′〉(0)B − Ẑ

(1)
kk′,l′〈Q̃l′〉

(1)
B ,

Ẑ
(3)
kk′,l〈Q̃l〉

(0)
B = −〈QkQk′〉(3)B − Z

(1)
k 〈QkQk′〉(2)B − Z

(1)
k′ 〈QkQk′〉

(2)
B

− Z
(2)
k 〈QkQk′〉(1)B − Z

(2)
k′ 〈QkQk′〉

(1)
B

− Z
(1)
kn 〈QnQk′〉

(2)
B − Z

(1)
k′n〈QkQn〉

(2)
B

− Z
(1)
kn Z

(1)
n 〈QnQk′〉(1)B − Z

(1)
k′nZ

(1)
n 〈QkQn〉(1)B − Z

(1)
kmZ

(1)
k′n〈QmQn〉

(1)
B

− Z
(1)
kn Z

(1)
k′ 〈QnQk′〉

(1)
B − Z

(1)
k′nZ

(1)
k 〈QkQn〉(1)B − Z

(1)
k Z

(1)
k′ 〈QkQk′〉

(1)
B

− Z
(2)
kn 〈QnQk′〉

(1)
B − Z

(2)
k′n〈QkQn〉

(1)
B

− Ẑ
(2)
kk′,l′Z

(1)
l′ 〈Q̃l′〉(0)B − Ẑ

(2)
kk′,l′〈Q̃l′〉

(1)
B

− Ẑ
(1)
kk′,l′Z

(2)
l′ 〈Q̃l′〉(0)B − Ẑ

(1)
kk′,l′Z

(1)
l′ 〈Q̃l′〉(1)B − Ẑ

(1)
kk′,l′〈Q̃l′〉

(2)
B ,
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Ẑ
(es)
kk′,l〈Q̃l〉

(0)
B = −〈QkQk′〉(es)B − Z

(e)
k 〈QkQk′〉(1)B − Z

(e)
k′ 〈QkQk′〉

(1)
B

− Z
(e)
kn 〈QnQk′〉

(1)
B − Z

(e)
k′n〈QkQn〉

(1)
B

− Ẑ
(1)
kk′,l′Z

(e)
l′ 〈Q̃l′〉(0)B − Ẑ

(1)
kk′,l′〈Q̃l′〉

(e)
B . (2.61)

Also in this case, we can use the µ-independence of the renormalisation constants as a check
on our calculation, exactly as above.

2.5 Renormalisation Group Equations

In this section we will derive the renormalisation group equations for the Wilson coefficients
and provide an explicit perturbative solution up to NNLO. The renormalisation group equa-
tions provide a method of consistently summing certain powers of large logarithms, which
appear in the calculation of weak decay amplitudes, to all orders in the strong coupling con-
stant. We start with the equation for the Wilson coefficients of the dimension-six operators,
and then proceed to the case of the Wilson coefficients of the dimension-eight operators, where
we also have to take into account the effects of the mixing of dimension-six into dimension-
eight operators.

Single Operator Insertion

The renormalisation-scale independence of the bare Wilson coefficients C0 = C(µ)Z(µ) leads
to the following renormalisation group equations:

µ
d

dµ
C(µ) = γTC(µ) . (2.62)

Here the Wilson coefficients C can be thought of as a column vector, and we have defined the
anomalous dimensions of the Wilson coefficients as

γ = Zµ
d

dµ
Z−1 . (2.63)

In a mass independent renormalisation scheme like the MS scheme the only dependence of
Z on µ arises through the coupling constants. We can therefore rewrite the derivatives with
respect to µ in terms of the β functions:

γ = Zβ(g, e, ǫ)
d

dg
Z−1 + Zβe(g, e, ǫ)

d

de
Z−1 . (2.64)

In the remaining part of this work, we will always neglect the running of the QED coupling
constant α, and consequently set the ǫ-independent part of βe in Equation (2.31) to zero.
This is a very good approximation in the range 1GeV ≤ µ ≤MW .

We get an explicit expression for the anomalous dimensions order by order in perturbation
theory by expanding γ in the coupling constants,

γ =

∞∑

k=1

(αs
4π

)k
γ(k−1) +

α

4π
γ(e) +

ααs
16π2

γ(es) . (2.65)
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The coefficients can then be extracted by inserting the expansions of the Z factors and the β
functions into the right side of Eq. (2.64). In this way we find up to terms of order ǫ:

γ(0) = 2Z(1,1) , (2.66)

γ(1) = 4Z(2,1) − 2Z(1,0)Z(1,1) − 2Z(1,1)Z(1,0) + 2β0Z
(1,0) , (2.67)

γ(2) = 6Z(3,1) − 4Z(2,1)Z(1,0) − 2Z(1,1)Z(2,0) − 4Z(2,0)Z(1,1)

− 2Z(1,0)Z(2,1) + 2Z(1,1)Z(1,0)Z(1,0) + 2Z(1,0)Z(1,1)Z(1,0)

+ 2Z(1,0)Z(1,0)Z(1,1) + 2β1Z
(1,0) + 4β0Z

(2,0) − 2β0Z
(1,0)Z(1,0) , (2.68)

γ(e) = 2Z(e,1) , (2.69)

γ(es) = 4Z(es,1) − 2Z(e,0)Z(1,1) − 2Z(e,1)Z(1,0) − 2Z(1,0)Z(e,1) − 2Z(1,1)Z(e,0) . (2.70)

The finiteness of Eq. (2.63) requires that the pole parts in this equation cancel. This is
equivalent to the conditions

Z(2,2) =
1

2
Z(1,1)Z(1,1) − 1

2
β0Z

(1,1) , (2.71)

Z(3,3) =
1

6
Z(1,1)Z(1,1)Z(1,1) − 1

2
β0Z

(1,1)Z(1,1) +
1

3
β2

0Z
(1,1) , (2.72)

Z(3,2) =
2

3
Z(2,1)Z(1,1) +

1

3
Z(1,1)Z(1,2) − 1

3
Z(1,1)Z(1,0)Z(1,1) (2.73)

− 1

6
Z(1,0)Z(1,1)Z(1,1) − 1

3
β1Z

(1,1) − 2

3
β0Z

(2,1) +
1

6
β0Z

(1,0)Z(1,1) , (2.74)

Z(es,2) =
1

2
Z(e,1)Z(1,1) +

1

2
Z(1,1)Z(e,1) , (2.75)

which provide an useful check of the renormalisation constants.
We can now find the running Wilson coefficients as solutions of the renormalisation group
Equations (2.62). We write them in the form

C(µ) = U(µ, µ0, α)C(µ0) , (2.76)

where we have introduced the evolution matrix

U(µ, µ0, α) = Tg exp




g(µ)∫

g(µ0)

dg′
γT (g′, α)

β(g′)


 , (2.77)

describing the evolution of the Wilson coefficients from the high scale µ0 to the low scale µ.
Here Tg denotes ordering in the coupling constant g, such that g increases from right to left.
Again, (2.77) can be evaluated perturbatively by an expansion in the coupling constants. We
define the expansion coefficients of the evolution matrix as

U(µ, µ0, α) = U (0)(µ, µ0) +
αs(µ)

4π
U (1)(µ, µ0) +

(
αs(µ, µ0)

4π

)2

U (2)(µ, µ0)

+
α

αs(µ)
U (0)
e (µ, µ0) +

α

4π
U (1)
e (µ, µ0) , (2.78)
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and expand the Wilson coefficients

C(µ) = C(0)(µ) +
αs(µ)

4π
C(1)(µ) +

(
αs(µ)

4π

)2

C(2)(µ) +
α

αs(µ)
C(0)
e (µ) +

α

4π
C(1)
e (µ) (2.79)

in the usual way. The leading order evolution matrix will sum terms proportional to (αs log)n,
where log = log µ/µ0, to all orders in the strong coupling constant. Accordingly, the next-
to-leading order and next-to-next-to-leading order evolution matrix sums terms proportional
to αs(αs log)n and α2

s(αs log)n, respectively. This is called the leading-logarithmic (LL), next-
to-leading-logarithmic (NLL) and next-to-next-to-leading-logarithmic (NNLL) approximation.
On the other hand, the leading and next-to-leading QED contributions to U sum all terms
of the form (α log)(αs log)n ≃ α/αs(αs log)n and α(αs log)n (LL and NLL in QED). This
pattern explains the inverse coupling constant factors in the expressions above. We will see
how this works in practice in Chapters 4 and 5.
Using Equation (2.76) we can now easily find the individual contributions to the Wilson
coefficients

C(0)(µ) = U (0)(µ, µ0)C
(0)(µ0) , (2.80)

C(1)(µ) = ηU (0)(µ, µ0)C
(1)(µ0) + U (1)(µ, µ0)C

(0)(µ0) , (2.81)

C(2)(µ) = η2U (0)(µ, µ0)C
(2)(µ0) + ηU (1)(µ, µ0)C

(1)(µ0) + U (2)(µ, µ0)C
(0)(µ0) , (2.82)

C(0)
e (µ) = U (0)

e (µ, µ0)C
(0)(µ0), (2.83)

C(1)
e (µ) = ηU (0)

e (µ, µ0)C
(1)(µ0) + U (0)(µ, µ0)C

(1)
e (µ0) + U (1)

e (µ, µ0)C
(0)(µ0) , (2.84)

where we have introduced the ratio η = αs(µ0)/αs(µ).
Now it only remains to find an explicit perturbative expression for the evolution matrix. We
start with the case of pure QCD and switch off QED by setting α = 0 for the moment. We
will consider QED effects afterwards. Let us first decompose the evolution matrix U(µ, µ0) ≡
U(µ, µ0, 0) as follows,

U(µ, µ0) = K(µ)U (0)(µ, µ0)K
−1(µ0) , (2.85)

where K(µ) is given as an expansion in αs by

K(µ) = 1 +
αs(µ)

4π
J (1) +

(
αs(µ)

4π

)2

J (2) . (2.86)

In Equation (2.85) we have introduced the leading order evolution matrix

U (0)(µ, µ0) = V diag(ηai)V −1 . (2.87)

The matrix V and the so-called magic numbers ai are obtained by diagonalising the leading
order anomalous dimension matrix γ(0)T , in the following way:

(
V −1γ(0)TV

)
ij

= 2β0aiδij . (2.88)

As a next step, we define the matrices S and G as follows:

S(i) = V −1J (i)V ; G(i) = V −1γ(i)TV . (2.89)
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Here the matrix kernels S are given by

S
(1)
ij =

β1

β0
aiδij −

G
(1)
ij

2β0(1 + ai − aj)
, (2.90)

S
(2)
ij =

β2

2β0
aiδij +

∑

k

1 + ai − ak
2 + ai − aj

(
S

(1)
ik S

(1)
kj − β1

β0

)
−

G
(2)
ij

2β0(2 + ai − aj)
. (2.91)

The derivation of these expressions is standard and can be found for instance in [47–50]. The
evolution matrix up to the NNLO in QCD can now be computed solely in terms of the QCD
β function and the anomalous dimensions of the Wilson coefficients.

In order to include QED effects, we could proceed exactly as above. Let us nevertheless
follow the approach proposed in [50], for the following reason: It turns out that the expressions
analoguous to Equations (2.90) and (2.91) contain certain combinations of the magic numbers
ai and aj that will lead to singularities in these expressions. Although these singularities
are spurious and will cancel in the final expression for the evolution matrix, the alternative
approach is more suitable for numerical calculations. Let us therefore decompose the evolution
matrix, now with non-vanishing α, as follows:

U(µ, µ0, α) = U(µ, µ0) +
α

4π
R(µ, µ0) . (2.92)

Next we separate the α-dependent part of the anomalous dimension matrix and write

γ(αs, α) = γs(αs) +
α

4π
Γ(αs) , (2.93)

where γs(αs) = γ(αs, α = 0) is the pure QCD part of the anomalous dimension matrix (2.65),
and Γ(αs) is given by

Γ(αs) = γ(e) +
αs
4π
γ(es) . (2.94)

By inserting (2.94) into (2.77) and keeping only the term proportional to α, we find the
α-dependent part of the evolution matrix

R(µ, µ0) =

g(µ)∫

g(µ0)

dg′
U(µ, µ′)ΓT (g′)U(µ′, µ0)

β(g′)
. (2.95)

This expression can now again be expanded in αs. To leading-log approximation we find

R(0)(µ, µ0) = −2π

β0
V K(0)(µ, µ0)V

−1 , (2.96)

where we have introduced

(
K(0)(µ, µ0)

)

ij
= Ge,ij

αs(µ)∫

αs(µ0)

dα′
s

(
α′
s

αs(µ)

)ai 1

α′
s
2

(
αs(µ0)

α′
s

)aj

, (2.97)
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and V and the magic numbers ai have already been defined in Equation (2.88). Ge is given,
in analogy to (2.89), by

Ge = V −1γTe V . (2.98)

The expression (2.97) can now easily be integrated. It yields

(
K(0)(µ, µ0)

)
ij

=
Ge,ij

ai − aj − 1

[(
αs(µ0)

αs(µ)

)aj 1

αs(µ)
−
(
αs(µ0)

αs(µ)

)ai 1

αs(µ0)

]
, (2.99)

for the case ai 6= aj + 1, and

(
K(0)(µ, µ0)

)
ij

= Ge,ij
1

αs(µ)

(
αs(µ0)

αs(µ)

)aj

log
αs(µ)

αs(µ0)
, (2.100)

otherwise. The advantage of this form is that it manifestly contains no spurious singularities.
The procedure can be extended to the NLL level. To this end we keep the αs-dependent part
in (2.95) and define

R(µ, µ0) = −2π

β0
V K(µ, µ0)V

−1 = R(0)(µ, µ0) +R(1)(µ, µ0) . (2.101)

Here we write

K(µ, µ0) = K(0)(µ, µ0) +
1

4π

3∑

i=1

K
(1)
i (µ, µ0) , (2.102)

the matrices K
(1)
i parameterising the αs effects. In addition we define

Γ(1) = γT (es) − β1

β0
γT (e) , (2.103)

as well as

M (1) = V −1
(
Γ(1) +

[
γT (e), J

])
V . (2.104)

Then, an elementary integration yields the following explicit terms for the K
(1)
i :

(
K

(1)
1 (µ, µ0)

)
ij

=





M
(1)
ij

ai−aj

[(
αs(µ0)
αs(µ)

)aj −
(
αs(µ0)
αs(µ)

)ai
]

, for i 6= j ,

M
(1)
ii

(
αs(µ0)
αs(µ)

)ai

log αs(µ)
αs(µ0) , for i = j ,

(2.105)

K
(1)
2 (µ, µ0) = −αs(µ0)K

(0)(µ, µ0)S
(1) , (2.106)

K
(1)
3 (µ, µ0) = αs(µ)S(1)K(0)(µ, µ0) . (2.107)

They can again be expressed solely in terms of the β function and the anomalous dimensions
of the Wilson coefficients, now including also QED corrections.
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In summary, we find the following explicit perturbative coefficients of the evolution matrix:

U (1)(µ, µ0) = J (1)U (0)(µ, µ0) − ηU (0)(µ, µ0)J
(1) , (2.108)

U (2)(µ, µ0) = J (2)U (0)(µ, µ0) − ηJ (1)U (0)(µ, µ0)J
(1)

− η2U (0)(µ, µ0)
(
J (2) − (J (1))2

)
, (2.109)

U (0)
e (µ, µ0) =

αs(µ)

4π
R(0)(µ, µ0) , (2.110)

U (1)
e (µ, µ0) = R(1)(µ, µ0) . (2.111)

Double Operator Insertion

Let us now discuss the Wilson coefficients of the dimension-eight operators. Again from the
µ-independence of the bare Wilson coefficients, we derive the following renormalisation group
equation:

µ
d

dµ
C̃l(µ) = C̃l′(µ)γ̃l′l + Ck(µ)Cn(µ)γ̂kn,l . (2.112)

Here, in addition to the anomalous dimension matrix γ̃, which describes the mixing among
dimension-eight operators and can be treated by the methods of the last section, the anoma-
lous dimension tensor γkn,l of the double insertion comes into play [51]:

γ̂kn,l = −(γkk′δnn′ + γnn′δkk′)Ẑk′n′,l′Z̃
−1
l′l −

(
µ
d

dµ
Ẑkn,l′

)
Z̃−1
l′l . (2.113)

It is related to the mixing of dimension-six into dimension-eight operators under renormali-
sation. As before, we can find a perturbative expansion in terms of the β functions and the
renormalisation constants. We write the anomalous dimension tensor in the form

γ̂kn,l =
∞∑

k=1

(αs
4π

)k
γ̂

(k−1)
kn,l +

α

4π
γ̂

(e)
kn,l +

ααs
16π2

γ̂
(es)
kn,l , (2.114)

and insert the previously found expansions of the Z factors and the β functions into the right
side of Eq. (2.113). In this way we find

γ̂
(0)
kn,l = 2Ẑ

(1,1)
kn,l , (2.115)

γ̂
(1)
kn,l = 4Ẑ

(2,1)
kn,l + 2β0Ẑ

(1,0)
kn,l − 2Ẑ

(1,0)
kn,l′ Z̃

(1,1)
l′l − 2Ẑ

(1,1)
kn,l′ Z̃

(1,0)
l′l

− 2
{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(1,1)
k′n′,l − 2

{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,0)
k′n′,l , (2.116)
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γ̂
(2)
kn,l = 6Ẑ

(3,1)
kn,l + 4β0Ẑ

(2,0)
kn,l + 2β1Ẑ

(1,0)
kn,l − 2β0Ẑ

(1,0)
kn,l′ Z̃

(1,0)
l′l

+ 2Ẑ
(1,0)
kn,l′ Z̃

(1,0)
l′l′′ Z̃

(1,1)
l′′l + 2Ẑ

(1,0)
kn,l′ Z̃

(1,1)
l′l′′ Z̃

(1,0)
l′′l + 2Ẑ

(1,1)
kn,l′ Z̃

(1,0)
l′l′′ Z̃

(1,0)
l′′l

− 2Ẑ
(1,0)
kn,l′ Z̃

(2,1)
l′l − 2Ẑ

(1,1)
kn,l′ Z̃

(2,0)
l′l − 4Ẑ

(2,0)
kn,l′ Z̃

(1,1)
l′l − 4Ẑ

(2,1)
kn,l′ Z̃

(1,0)
l′l

+ 2
{
Z

(1,0)
kk′′ Z

(1,0)
k′′k′ δnn′ + δkk′Z

(1,0)
nn′′ Z

(1,0)
n′′n′

}
Ẑ

(1,1)
k′n′,l

+ 2
{
Z

(1,0)
kk′′ Z

(1,1)
k′′k′ δnn′ + δkk′Z

(1,0)
nn′′ Z

(1,1)
n′′n′

}
Ẑ

(1,0)
k′n′,l

+ 2
{
Z

(1,1)
kk′′ Z

(1,0)
k′′k′ δnn′ + δkk′Z

(1,1)
nn′′ Z

(1,0)
n′′n′

}
Ẑ

(1,0)
k′n′,l

+ 2
{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(1,0)
k′n′,l′Z̃

(1,1)
l′l + 2

{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(1,1)
k′n′,l′Z̃

(1,0)
l′l

+ 2
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,0)
k′n′,l′Z̃

(1,0)
l′l − 2β0

{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(1,0)
k′n′,l

− 2
{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(2,1)
k′n′,l − 2

{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(2,0)
k′n′,l

− 4
{
Z

(2,0)
kk′ δnn′ + δkk′Z

(2,0)
nn′

}
Ẑ

(1,1)
k′n′,l − 4

{
Z

(2,1)
kk′ δnn′ + δkk′Z

(2,1)
nn′

}
Ẑ

(1,0)
k′n′,l , (2.117)

γ̂
(e)
kn,l = 0 , (2.118)

γ̂
(es)
kn,l = 4Ẑ

(es,1)
kn,l − 2Ẑ

(1,0)
kn,l′ Z̃

(e,1)
l′l − 2Ẑ

(1,1)
kn,l′ Z̃

(e,0)
l′l

− 2
{
Z

(e,0)
kk′ δnn′ + δkk′Z

(e,0)
nn′

}
Ẑ

(1,1)
k′n′,l − 2

{
Z

(e,1)
kk′ δnn′ + δkk′Z

(e,1)
nn′

}
Ẑ

(1,0)
k′n′,l . (2.119)

Again, the finiteness of Equation (2.113) requires the cancellation of the pole parts and so
implies the following relations between the various renormalisation constants, which can be
used as a non-trivial check of the calculation2:

2Ẑ
(2,2)
kn,l =

{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,1)
k′n′,l + Ẑ

(1,1)
kn,l′ Z̃

(1,1)
l′l − β0Ẑ

(1,1)
kn,l , (2.120)

3Ẑ
(3,3)
kn,l = −2β0Ẑ

(2,2)
kn,l + 2Ẑ

(2,2)
kn,l′ Z̃

(1,1)
l′l + Ẑ

(1,1)
kn,l′ Z̃

(2,2)
l′l

+ β0Ẑ
(1,1)
kn,l′ Z̃

(1,1)
l′l − Ẑ

(1,1)
kn,l′ Z̃

(1,1)
l′l′′ Z̃

(1,1)
l′′l

−
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,1)
k′n′,l′Z̃

(1,1)
l′l

+
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(2,2)
k′n′,l , (2.121)

2Note that there may occur additional contributions from the renormalisation of the mass and coupling
constant factors in front of the dimension-eight operators.
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3Ẑ
(3,2)
kn,l = −2β0Ẑ

(2,1)
kn,l − β1Ẑ

(1,1)
kn,l + β0Ẑ

(1,1)
kn,l′ Z̃

(1,0)
l′l + β0Ẑ

(1,0)
kn,l′ Z̃

(1,1)
l′l

− Ẑ
(1,0)
kn,l′ Z̃

(1,1)
l′l′′ Z̃

(1,1)
l′′l − Ẑ

(1,1)
kn,l′ Z̃

(1,0)
l′l′′ Z̃

(1,1)
l′′l − Ẑ

(1,1)
kn,l′ Z̃

(1,1)
l′l′′ Z̃

(1,0)
l′′l

+ Ẑ
(1,0)
kn,l′ Z̃

(2,2)
l′l + Ẑ

(1,1)
kn,l′ Z̃

(2,1)
l′l + 2Ẑ

(2,1)
kn,l′ Z̃

(1,1)
l′l + 2Ẑ

(2,2)
kn,l′ Z̃

(1,0)
l′l

−
{
Z

(1,0)
kk′′ Z

(1,1)
k′′k′ δnn′ + δkk′Z

(1,0)
nn′′ Z

(1,1)
n′′n′

}
Ẑ

(1,1)
k′n′,l

−
{
Z

(1,1)
kk′′ Z

(1,0)
k′′k′ δnn′ + δkk′Z

(1,1)
nn′′ Z

(1,0)
n′′n′

}
Ẑ

(1,1)
k′n′,l

−
{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(1,1)
k′n′,l′Z̃

(1,1)
l′l

−
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,0)
k′n′,l′Z̃

(1,1)
l′l

−
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,1)
k′n′,l′Z̃

(1,0)
l′l

+ β0

{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(1,1)
k′n′,l +

{
Z

(1,0)
kk′ δnn′ + δkk′Z

(1,0)
nn′

}
Ẑ

(2,2)
k′n′,l

+
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(2,1)
k′n′,l + 2

{
Z

(2,1)
kk′ δnn′ + δkk′Z

(2,1)
nn′

}
Ẑ

(1,1)
k′n′,l , (2.122)

2Ẑ
(es,2)
kn,l =

{
Z

(e,1)
kk′ δnn′ + δkk′Z

(e,1)
nn′

}
Ẑ

(1,1)
k′n′,l + Ẑ

(1,1)
kn,l′ Z̃

(e,1)
l′l . (2.123)

The general solution of the Equations (2.112) can be found by the method of separation of
variables and reads [51]

C̃n(µ) = Ũnn′(µ, µ0)C̃n′(µ0)

+

µ∫

µ0

dµ′′Ull′(µ
′′, µ0)Cl′(µ0)Ukk′(µ

′′, µ0)Ck′(µ0)γlk,m(µ′′)Ũmn(µ, µ
′′) , (2.124)

where the evolution matrices are defined as in Equation (2.77). We need not pursue the
task of expressing (2.124) in terms of anomalous dimensions as an expansion in the coupling
constants, because it turns out that in the cases of interest to us, the form of the renormali-
sation group equations (2.112) can be reduced to the form (2.62) for single insertions by an
appropriate choice of the operator basis. We will see this in detail in Chapters 4 and 5.

2.6 The Matching Procedure

In the preceeding section we have shown how to compute the anomalous dimensions, which are
the basic ingredients of the renormalisation group equations for the Wilson coefficients. With
these differential equations, it is possible to sum large logarithms to all orders in perturbation
theory.

In this section we describe how we can determine the initial conditions for the Wilson coef-
ficients by a so-called matching calculation. Using the renormalisation group equations, we
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are then able to find an expression for the Wilson coefficients at an arbitrary renormalisation
scale µ.
We can find the initial conditions for the Wilson coefficients in the effective theory by equating
the amputated, connected, one light-particle irreducible Green’s functions in the full and the
effective theory at the scale µ0 where some particle is removed from the theory, for instance
a quark of mass M . We then demand that both sides of the equation agree, up to terms
suppressed by a power of the heavy mass M . This is called the matching condition.
Because the effective theory is obtained from the full theory by modifying the high energy
behaviour only, the low energy behaviour is the same in the two theories and drops out in
the matching condition. This has the important consequence that the matching calculation
is automatically infrared finite.
Let us start with the case of single operator insertions. We write the result for the amplitude
in the full theory as an expansion in the coupling constants in the following way:

Afull =

(
A(0) +

αs(µ0)

4π
A(1) +

(
αs(µ0)

4π

)2

A(2) +
α

4π
A(e) +

ααs(µ0)

16π2
A(es)

)
〈Q〉(0) .

(2.125)

In this equation, the coefficients A(i) can be thought of as row vectors and the tree level
matrix element 〈Q〉(0) as a column vector. Note that here and the remaining equations in this
section, everything is expressed in terms of the bare quantities, meaning that counterterms
are included implicitly. We can similarly expand the corresponding amplitude in the effective
theory and express it likewise through the tree-level matrix elements:

Aeff = C(µ0)

(
1 +

αs(µ0)

4π
r(1) +

(
αs(µ0)

4π

)2

r(2) +
α

4π
r(e) +

ααs(µ0)

16π2
r(es)

)
〈Q〉(0) .

(2.126)

Here the Wilson coefficient C is represented by a row vector, and the coefficients r(i) as
matrices encoding the higher order corrections. As a subtle point, note that also the coupling
constants receive non-trivial matching corrections when we pass a flavour threshold.
The matching condition Afull = Aeff now allows us to extract the initial conditions for the
Wilson coefficients in the effective theory order by order [52]:

C(µ0) = A(0) +
αs(µ0)

4π

(
A(1) −A(0)r(1)

)
+

α

4π

(
A(e) −A(0)r(e)

)

+

(
αs(µ0)

4π

)2 (
A(2) −A(1)r(1) −A(0)

[
r(2) − r(1)r(1)

])

+
ααs(µ0)

16π2

(
A(es) −A(e)r(1) −A(0)

[
r(es) − r(1)r(e) − r(e)r(1)

])
. (2.127)

We proceed in a completely analogous way in the case of double operator insertions.
Let us write the expansion of the amplitude in the full theory as above,

Afull =

(
A(0) +

αs(µ0)

4π
A(1) +

(
αs(µ0)

4π

)2

A(2) +
α

4π
A(e) +

ααs(µ0)

16π2
A(es)

)
〈Q̃〉(0) ,

(2.128)
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where we denote the dimension-eight operator by a tilde, as before. On the effective side, we
now have to consider matrix elements of both single and double operator insertions:

Aeff = Ck(µ0)Ck′(µ0)

(
d
(1)
kk′,l +

αs(µ0)

4π
d
(2)
kk′,l +

(
αs(µ0)

4π

)2

d
(3)
kk′,l +

α

4π
d
(e)
kk′,l

+ C̃l′(µ0)

(
δl′l +

αs(µ0)

4π
s
(1)
l′l +

(
αs(µ0)

4π

)2

s
(2)
l′l +

α

4π
s
(e)
l′l +

ααs(µ0)

16π2
s
(es)
l′l

)
〈Q̃l〉(0) .

(2.129)

In this equation, the coefficients dkk′,l encode the matrix elements of the double insertions of
the dimension-six operators, whereas the sll′ encode the matrix elements of the dimension-
eight operators Q̃l, which are defined here without the factor 1/g2. It is instead moved into
the Wilson coefficient C̃l, which has the expansion

C̃l =
4π

αs(µ0)
C̃

(0)
l + C̃

(1)
l +

αs(µ0)

4π
C̃

(2)
l +

4πα

α2
s(µ0)

C̃
(e)
l +

α

αs(µ0)
C̃

(es)
l . (2.130)

The individual contributions are then extracted from the matching condition Afull = Aeff as
above.

2.7 The Role of Unphysical Operators

We have seen in the last section how to compute the initial conditions for the Wilson coeffi-
cients by a matching calculation. The renormalisation in the effective theory involves physical
as well as evanescent operators; therefore the question arises whether the amplitude in the
effective theory depends on the Wilson coefficients of the evanescent operators.

The answer to this question is as follows: The Wilson coefficients of evanescent operators in-
deed receive non-vanishing initial conditions. Furthermore, the matrix elements of evanescent
operators generally have non-vanishing projections on physical matrix elements. Therefore the
authors of [34,53] have proposed to renormalise the evanescent operators by a finite amount
in order to cancel exactly this component. This is natural, since these terms arise exclusively
from poles in the integrals, multiplying ǫ-dependent terms stemming from the Dirac algebra.
The proposed renormalisation is therefore in accordance with the MS prescription.

The effect is that the Wilson coefficients of the evanescent operators multiply matrix elements
that vanish in four dimension and hence do not affect the physical amplitude.

Yet for the contributions of evanescent operators to vanish at all scales, we must ensure that
the evanescent operators do not mix into the physical operators via renormalisation [54]. This
is equivalent to the requirement that in the anomalous dimension matrix

γ =

(
γQQ γQE
γEQ γEE

)
, (2.131)

where Q corresponds to physical and E to evanescent operators, the submatrix γEQ vanishes,
leading to an upper block-diagonal form of γ. This is indeed the case if we perform the
finite renormalisation mentioned above, irrespective of the exact definition of the evanescent
operators. An analoguous result holds for the case of double insertions of operators. The
proof has been given in [51,54] and will not be repeated here.
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Let us finally discuss two other classes of unphysical operators, which are present in the
effective theory: Operators vanishing by the equation of motion, and BRST-exact operators.
The role of these operators has been examined in detail in [55–61], and we summarise the
arguments in the remaining part of this section.
We start with those operators vanishing by the equations of motion. For instance, consider
the operator Qeom introduced in Equation (2.42), which vanishes after applying the equation
of motion for the gluon field. In principle, also terms stemming from the gauge-compensating
and gauge-fixing parts Lgc and Lgf contribute to this operator, but they can be shown to
appear only in a combination which is the BRST [62] variation of some other operator and
thus correspond to a BRST-exact operator. Furthermore, on-shell Green’s functions of a
single insertion of an EOM-vanishing or BRST-exact operator vanish, such that they do not
contribute to the matching and play no role in the determination of the Wilson coefficient of
the physical operators.
Again, this property is maintained by the renormalisation group evolution, because BRST-
exact operators mix only among themselves and into EOM-vanishing operators, while the
latter mix only among themselves. This in turn leads to the following block-triangular form
of the anomalous dimension matrix:

γ =



γPP γPB γPE

0 γBB γBE
0 0 γPE


 , (2.132)

where now P corresponds to physical and evanescent, B to BRST-exact, and E to EOM-
vanishing operators.
The situation is changed if we consider double insertions of operators, because now the EOM-
vanishing operators lead to non-trivial contact terms, thus yielding a non-vanishing contribu-
tion to the Green’s function. The same is true for BRST-exact operators which may involve
EOM-vanishing operators as counterterms. However, as explained in [55], these extra terms
are local and proportional to dimension-eight operators, which we include in our calculation
anyway.
In short, the discussion above amounts to the fact that we can safely neglect EOM-vanishing
and BRST-exact operators in our analysis.
As a last comment, however, we remark that our treatment of infrared (IR) divergences in
extracting the UV poles requires the use of EOM-vanishing operators in intermediate steps
of the calculation; we will discuss this in more detail in Section 3.1.

2.8 Renormalisation Scheme Dependence

It is important to examine the dependence of the Wilson coefficients and anomalous di-
mensions on the renormalisation scheme: We have to ensure that theoretical predictions of
physical observables do not depend on the choice of a renormalisation scheme.
A dependence on the renormalisation scheme arises beyond the leading order in perturbation
theory, because the renormalisation of all parameters, operators, and fields is fixed only to
the extent that all UV divergences be removed. This requirement does not determine the
finite parts of the counterterms, and many choices are possible.
For instance, the choice of a basis of local operators, describing the interactions in the effective
theory, is not unique. As we will see in Section 3.4, different choices of the operator basis are
related by a change of the renormalisation scheme.
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In order to ensure that physical observables and the related decay amplitudes are independent
of this choice, it is sufficient to examine the scheme independence of the effective Hamiltonian;
any dependence on the chosen scheme has to cancel between the different contributions. This
scheme independence has been shown previously [23, 51, 53, 54] and the proofs will not be
repeated here. However, although physical observables are scheme independent, quantities
like the Wilson coefficients and anomalous dimensions are not, and it is useful to have explicit
transformation formulas at hand: In this way we can compare parts of our results with the
literature, where a different operator basis has been used. Also it turns out that, whereas
the calculation of the operator matrix elements is most easily performed in the basis chosen
by us, the solution of the renormalisation group equations is simplified by transforming to a
different basis.

In the remaining part of this section, we derive the transformation properties of the anomalous
dimensions for an arbitrary change of the renormalisation scheme. This generalises the results
already obtained in the literature.

Suppose we perform the following change of scheme for the Wilson coefficients

Ci → C ′
i = Cjρ

−1
ji , (2.133)

C̃k → C̃ ′
k = C̃j ρ̃

−1
jk − ClCmρ̂lm,k . (2.134)

As usual, we have denoted Wilson coefficients belonging to dimension-eight operators with a
tilde and those belonging to dimension-six operators without superscript. Furthermore, we
introduced the parameters ρ, ρ̃ and ρ̂, which parameterise the finite transformations:

ρij = δij −
αs
4π
ρ
(1)
ij −

(αs
4π

)2 (
ρ
(2)
ij − ρ

(1)
ik ρ

(1)
kj

)
+ O(α3

s) , (2.135)

ρ̃ij = δij −
αs
4π
ρ̃
(1)
ij −

(αs
4π

)2 (
ρ̃
(2)
ij − ρ̃

(1)
ik ρ̃

(1)
kj

)
+ O(α3

s) , (2.136)

ρ̂lm,k =
αs
4π
ρ̂
(1)
lm,k +

(αs
4π

)2
ρ̂
(2)
lm,k + O(α3

s) . (2.137)

Then, in order for the effective Hamiltonian of the form

Heff = CiZijQj +
(
C̃iZ̃ik + CiCjẐij,k

)
Q̃k (2.138)

to stay invariant, the renormalisation constants must transform as

Zij → Z ′
ij = ρikZkj , (2.139)

Z̃ij → Z̃ ′
ij = ρ̃ikZ̃kj , (2.140)

Ẑij,k → Ẑ ′
ij,k = ρilρjmẐlm,k + ρilρjmρ̂lm,pρ̃pqZ̃qk . (2.141)

The transformation of the anomalous dimensions can now be obtained by inserting the trans-
formed renormalisation constants into the defining equations for the anomalous dimension
matrix (2.63) and the anomalous dimension tensor (2.113), respectively. In this way we get
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the well-known results for the case of single insertions [23,47,63]:

γ′(0) = γ(0) , (2.142)

γ′(1) = γ(1) − [ρ(1), γ(0)] − 2β0ρ
(1) , (2.143)

γ′(2) = γ(2) − [ρ(2), γ(0)] − [ρ(1), γ(1)] + ρ(1)[ρ(1), γ(0)]

− 4β0ρ
(2) − 2β1ρ

(1) + 2β0ρ
(1)ρ(1) . (2.144)

The general transformation law for the anomalous dimension tensor for double insertion has
never been given explicitly before and reads3:

γ̂
′(0)
ij,k = γ

(0)
ij,k , (2.145)

γ̂
′(1)
ij,k = γ

(1)
ij,k + ρ̂

(1)
ij,lγ̃

(0)
lk + 2ρ̂

(1)
ij,kβ0 + γ̂

(0)
ij,lρ̃

(1)
lk

−
{
γ

(0)
il δjm + δilγ

(0)
jm

}
ρ̂
(1)
lm,k −

{
ρ
(1)
il δjm + δilρ

(1)
jm

}
γ̂

(0)
lm,k , (2.146)

γ̂
′(2)
ij,k = γ

(2)
ij,k + ρ̂

(2)
ij,lγ̃

(0)
lk + 4ρ̂

(2)
ij,kβ0 + ρ̂

(1)
ij,lγ̃

(1)
lk + 2ρ̂

(1)
ij,kβ1 + ρ̂

(1)
ij,lγ̃

(0)
lm ρ̃

(1)
mk − ρ̂

(1)
ij,lρ̃

(1)
lm γ̃

(0)
mk

+ γ̂
(1)
ij,lρ̃

(1)
lk + γ̂

(0)
ij,lρ̃

(2)
lk + ρ

(1)
il γ

(0)
jmρ̂

(1)
lm,l + γ

(0)
il ρ

(1)
jmρ̂

(1)
lm,l + ρ

(1)
il ρ

(1)
jmγ̂

(0)
lm,l

−
{
ρ
(2)
il δjm + δilρ

(2)
jm

}
γ̂

(0)
lm,k −

{
ρ
(1)
il δjm + δilρ

(1)
jm

}
γ̂

(1)
lm,k

−
{
ρ
(1)
il δjm + δilρ

(1)
jm

}
γ̂

(0)
lm,nρ̃

(1)
nk −

{
ρ
(1)
il δjm + δilρ

(1)
jm

}
ρ̂
(1)
lm,nγ̃

(0)
nk

− 2
{
ρ
(1)
il δjm + δilρ

(1)
jm

}
ρ̂
(1)
lm,kβ0 −

{
ρ
(1)
ii′ ρ

(1)
i′l δjm + δilρ

(1)
jj′ρ

(1)
j′m

}
γ̂

(0)
lm,k

−
{
ρ
(1)
ii′ γ

(0)
i′l δjm + δilρ

(1)
jj′γ

(0)
j′m

}
ρ̂
(1)
lm,k −

{
γ

(1)
il δjm + δilγ

(1)
jm

}
ρ̂
(1)
lm,k

−
{
γ

(0)
il δjm + δilγ

(0)
jm

}
ρ̂
(2)
lm,k . (2.147)

3Note that also here additional finite contributions arise if we include the factor of m2
c/g2 the definition of

the dimension-eight operators.
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Chapter 3

Method of Calculation

After having set up the theoretical framework in the last chapter, we now proceed to more
practical questions concerning the calculation of the anomalous dimensions. In Section 3.1 we
describe how we extract the UV divergent parts of one-particle irreducible Feynman diagrams.
In Section 3.2 we shortly describe the evaluation of the integrals and in particular the reduction
of tensor to scalar integrals. In Section 3.3 we collect the formulas for the physical parts of
the anomalous dimension tensor, and Section 3.4 is devoted to the effects of a change of the
operator basis.

3.1 Infrared Rearrangement

As we have seen in the previous chapter, in the framework of dimensional regularisation
and the MS scheme the anomalous dimensions are simply related to the renormalisation
constants of various operator insertions. One of the main difficulties in the determination of
the renormalisation constants is the separation of IR and UV divergences. In our calculation
we follow the approach suggested by Chetyrkin, Misiak and Münz [64].
We start with the following exact decomposition of a scalar propagator for a particle of
(possibly vanishing) mass m

1

(p + q)2 −m2
=

1

p2 −M2
+
m2 − q2 − 2pq −M2

p2 −M2

1

(p+ q)2 −m2
, (3.1)

where p is a linear combination of integration momenta and q is a linear combination of
external momenta. The mass parameter M regularises the IR divergences.
The decomposition is chosen in such a way that the first term on the right side of Eq. (3.1)
depends only on the artificial mass M and the integration momenta, whereas the contribution
of the second term to the UV degree of divergence is reduced. Moreover, because the last
factor of the second term has the same form as the original propagator, the procedure can be
applied recursively.
Because the dimensionality of the relevant operators in our effective theory is bounded from
above, after a certain number of replacements, substituting any of the propagators by the
last term in Eq. (3.1) would render a considered diagram finite. We may then drop this last
term.
Because the decomposition (3.1) is exact, the final result for the UV divergent part of the
considered diagram is actually independent of M . UV divergent terms stemming from expres-
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sions with a M2 in a propagator numerator are exactly cancelled by contributions originating
from integrals with no M2 in the numerator. This observation leads to a further simplification
of the procedure [64]: The UV divergent part of integrals with a M2 in the numerator are
local after the subtraction of all subdivergences. Thus, instead of calculating them, we can
just replace them by local counterterms proportional to M2. The final result will be the same
as if the full propagators had been used.

Because the dimension of the counterterms proportional to M2 must be at least two units less
than the maximal dimension of the operators in the considered effective Hamiltonian, only
the following, gauge-variant counterterms contribute in our case:

M2GaµG
aµ and

M2

g
s̄L /GdL . (3.2)

As a side effect of the described procedure, we have to consider contributions of non-physical
operators, such as the EOM-vanishing operator (2.42), in intermediate steps of the calculation.
Whereas non-physical operators are generally needed in order to subtract divergences of 1PI
subdiagrams, the projections of their matrix elements on the physical operators vanish1.
However, the procedure above gives the correct overall UV divergence only after subtraction
of all subdivergences. The subtraction of subdivergences is performed, in the spirit of the
forest formula, by the inclusion of counterterm diagrams. The subdivergences of a diagram
as well as the corresponding (sub)divergences of the counterterm diagrams depend on the
finite parts of certain lower loop diagrams, which are not necessarily correct on account of
the method described above, and the matrix elements of EOM-vanishing operators have to be
retained in intermediate steps. However, these incorrect contributions exactly cancel in their
sum, if the calculation is performed in precisely the same way, yielding the correct overall
divergences.

We remark that also the finite renormalisation constants needed for the renormalisation of
evanescent operators are given correctly by our method, because they derive only from explic-
itly ǫ-dependent terms stemming from the Dirac algebra that multiply UV divergent pieces
of the integrals.

3.2 Calculation of the Integrals

The very large number (O(10 000)) of Feynman diagrams appearing in our calculation re-
quires an automated setup of computer algebra for their evaluation. We use qgraf [65] for
generating the diagrams; the evaluation of the integrals is performed using the program pack-
ages MATAD/q2e/exp [66, 67], where MATAD is written in FORM [68] and based on the
Integration-By-Parts algorithm [69, 70]. In addition, we have written our own FORM rou-
tine in order to evaluate two-loop diagrams with an arbitrary number of (possibly vanishing)
masses, using the algorithm described in [71].

All calculations have been checked using an completely independent setup, based on Feynarts
[72] and Mathematica.

1Note that there is an important qualification in the case of double insertions, as discussed in Section 2.7.
We will come back to this issue in Chapter 4.
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n1 n12 n2

Figure 3.1: Graphical representation of the integral T 22
n1n2n12

.

Tensor Decomposition

Here we describe a method [64] to reduce tensor integrals to scalar ones which can be computed
using the programs mentioned above. A general euclidean tensor vacuum integral up to three
loops with one common mass M can be written as

T a1...al
n1...nln11...n1l...nl−1,l

= M−l d−
P

ai+2
P

niπ−l d/2
∫ ∏

i d
dpi piµi,1 · · · piµi,ai∏

i(p
2
i +M2)ni

∏
i<j [(pi − pj)2 +M2]nij

(3.3)

and is proportional to a linear combination of products of metric tensors.
An example is

T 22
n1n2n12

= F1gµ1,1µ1,2gµ2,1µ2,2 + F2(gµ1,1µ2,1gµ1,2µ2,2 + gµ1,1µ2,2gµ1,2µ2,1) , (3.4)

where only two coefficient functions appear because of an obvious symmetry.
In general, these coefficient functions can be determined by contracting the tensor integral
(3.3) with all products of metric tensors. In the example above, we find the following two
equations

d2F1 + 2dF2 = X1 ,

dF1 + d(d+ 1)F2 = X2 , (3.5)

where

X1 = m−2 d−4+2
P

niπ−d
∫

ddp ddk p2 k2

(p2 +m2)n1(k2 +m2)n2 [(p− k)2 +m2]n3
,

X2 = m−2 d−4+2
P

niπ−d
∫

ddp ddk (p · k)2
(p2 +m2)n1(k2 +m2)n2 [(p− k)2 +m2]n3

, (3.6)

and we can solve for F1 and F2 by a matrix inversion:

(
F1

F2

)
=

(
d2 2d
d d(d+ 1)

)−1(
X1

X2

)
. (3.7)

This method easily generalises to the case of more metric tensors, where the matrix is most
easily inverted by substituting d = 4 − 2ǫ and expanding up to an appropriate power in ǫ.
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Figure 3.2: Sample one-, two-, and three-loop diagrams contributing to the anomalous dimensions
relevant for η3.

3.3 The Anomalous Dimensions

In this section we collect the formulas for the physical parts of the anomalous dimensions
in terms of the renormalisation constants, as derived in Section 2.5. The renormalisation
constants are determined by calculating various one-, two-, and three-loop insertions of the
dimension-six operators (see Figure 3.2 and the diagrams in Chapter 5). We have verified
that all renormalisation constants are local. As an additional check of our results, we have
performed all calculations in a generalised Rξ gauge and verified that the anomalous dimen-
sions are independent of the gauge parameters ξg and ξa, introduced in Equation (2.24). We
have also checked explicitly that the mixing of evanescent into physical operators vanishes up
to NLO.

The non-vanishing contributions to the physical part of the anomalous dimension tensor are
given by

γ̂
(0)
kn,l = 2Ẑ

(1,1)
kn,l , (3.8)

γ̂
(1)
kn,l = 4Ẑ

(2,1)
kn,l − 2Ẑ

(1,1)
kn,l′ Z̃

(1,0)
l′l − 2

{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(1,0)
k′n′,l , (3.9)

γ̂
(2)
kn,l = 6Ẑ

(3,1)
kn,l − 4Ẑ

(2,1)
kn,l′ Z̃

(1,0)
l′l − 2Ẑ

(1,1)
kn,l′ Z̃

(2,0)
l′l

− 2
{
Z

(1,1)
kk′ δnn′ + δkk′Z

(1,1)
nn′

}
Ẑ

(2,0)
k′n′,l − 4

{
Z

(2,1)
kk′ δnn′ + δkk′Z

(2,1)
nn′

}
Ẑ

(1,0)
k′n′,l , (3.10)

γ
(es)
kn,l = 4Ẑ

(es,1)
kn,l − 2Ẑ

(1,1)
kn,l′ Z̃

(e,0)
l′l − 2

{
Z

(e,1)
kk′ δnn′ + δkk′Z

(e,1)
nn′

}
Ẑ

(1,0)
k′n′,l , (3.11)

where the indices k, n and l correspond to physical operators.

3.4 Change of the Operator Basis

In this section we will examine how the Wilson coefficients and the anomalous dimensions
transform under a change of the operator basis. This is important for two reasons: In order to
find a compact form for the renormalisation group equations for double operator insertions,
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it turns out to be useful to transform to a diagonal operator basis in the subspace of current-
current operators. Moreover, we have to transform our results in order to compare them with
results that are available in the literature and have been calculated using a different operator
basis.
In d = 4 dimensions, a change of n dimension-six operatorsQ andm dimension-eight operators
Q̃ is simply given by a linear transformation

Qi → Q′
i = RijQj , Q̃i → Q̃′

i = R̃ijQ̃j , (3.12)

described by matrices R ∈ GL(n), R̃ ∈ GL(m). Under this transformation the renormalisation
constants transform according to

Z ′
ij = RikZklR

−1
lj , Z̃ ′

ij = R̃ikZ̃klR̃
−1
lj , Ẑ ′

kn,l = Rkk′Rnn′Ẑk′n′,l′R̃
−1
l′l . (3.13)

In general, the situation is more complicated because of the presence of evanescent operators
which receive a finite renormalisation, as explained in Section 2.7. Now, in addition to the
transformation (3.12) which only mixes the physical operators among themselves, more trans-
formations are possible, which mix physical and evanescent operators. The transformation
law of the renormalisation constants is still given by the formula (3.13). But this rule may
now lead to additional finite contributions to the renormalisation constants for the physical
operators. In order to restore the standard MS definition of the renormalisation constants,
which is crucial for our treatment of the renormalisation group, we have to subtract these
extra contributions by a finite renormalisation.
We can write a general transformation among all dimension-six operators as

(
Q′

E′

)
=

(
R 0
0 M

)(
1 0

ǫU + ǫ2V 1

)(
1 W
0 1

)(
Q
E

)
, (3.14)

where the matrices R and M parameterise a linear transformation among the physical and
evanescent operators, respectively, W parameterises the addition of multiples of evanescent
operators to the physical operators, and U and V parameterise the addition of multiples of
ǫ and ǫ2 times physical operators to the evanescent operators. We apply a transformation of
the same form to the dimension-eight operators, where we denote the corresponding matrices
by a tilde, as usual.
The finite renormalisation constants can now be determined by observing that an effective
amplitude of the form CiZij〈Qj〉+(C̃lZ̃lk +CiCjẐij,k)〈Q̃k〉 must be invariant under the basis
transformation and be renormalised according to the MS prescription.
Let us start with the anomalous dimension matrices for the mixing of dimension-six into
dimension-six operators. The finite renormalisation induced by the change (3.14) is given
by [23,25]

Z
′(1,0)
QQ = R

[
WZ

(1,0)
EQ −

(
Z

(1,1)
QE +WZ

(1,1)
EE − 1

2
γ(0)W

)
U

]
R−1 ,

Z
′(2,0)
QQ = −R

(
Z

(2,1)
QE U + Z

(2,2)
QE V − 1

2
Z

(1,1)
QE V γ(0)

)
R−1 , (3.15)

where

Z
(2,2)
QE =

1

2

(
Z

(1,1)
QE Z

(1,1)
EE +

1

2
γ(0)Z

(1,1)
QE − β0Z

(1,1)
QE

)
. (3.16)
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We have set W to zero in the second line of Equation (3.15) as these terms are not needed in
the following.

We find the transformation law for the anomalous dimension matrices in a straightforward
manner using Equations (2.142) to (2.144):

γ
′(0) = Rγ(0)R−1 ,

γ
′(1) = Rγ(1)R−1 −

[
Z

′(1,0)
QQ , γ

′(0)
]
− 2β0Z

′(1,0)
QQ ,

γ
′(2) = Rγ(2)R−1 −

[
Z

′(2,0)
QQ , γ

′(0)
]
−
[
Z

′(1,0)
QQ , γ

′(1)
]

+
[
Z

′(1,0)
QQ , γ

′(0)
]
Z

′(1,0)
QQ

− 4β0Z
′(2,0)
QQ − 2β1Z

′(1,0)
QQ + 2β0

(
Z

′(1,0)
QQ

)2
. (3.17)

The Wilson coefficients change according to

C ′(µ) =

[
1 +

αs(µ)

4π
Z

′(1,0)
QQ +

(
αs(µ)

4π

)2

Z
′(2,0)
QQ

]T
(R−1

)T
C(µ) . (3.18)

The explicit forms of the finite renormalisation constants as well as of the matrices R, U , V ,
M and Z for the transformation to the diagonal basis are collected in Appendix C.

Now we consider the mixing of dimension-six into dimension-eight operators. Clearly, the
transformation law of the anomalous dimension matrix describing the mixing among the
dimension-eight operators themselves is given by a formula completely analoguous to (3.17).
The transformation of the anomalous dimension tensor, describing the mixing of dimension-
six into dimension-eight operators, and of the dimension-eight Wilson coefficients is slightly
more complicated. It can, however, be derived by the same method as above.

In addition to the finite renormalisation constants (3.15), we now get extra finite contributions
to Ẑ. Again, we setW to zero in the two-loop contribution, as it is not needed for our purposes,
and find

Ẑ ′
(1,0)
ij,k = RimRjn

(
Ẑ

(1,1)
mn,lW̃ll′Ũl′p − Ẑ

(1,1)
mn,l Ũlp +WmlẐ

(1,0)
ln,p +WnlẐ

(1,0)
ml,p

−WilẐ
(1,1)
ln,mŨmp −WnlẐ

(1,1)
il,m Ũmp

)
R̃−1
pk , (3.19)

Ẑ ′
(2,0)

ij,k = RimRjn

(
− Ẑ

(2,1)
mn,lŨlp − Ẑ

(2,2)
mn,l Ṽlp − Ẑ

(1,1)
mn,l Ṽll′Z̃

(1,1)
l′p

− Z
(1,1)
ml Vll′Ẑ

(1,1)
l′n,p − Z

(1,1)
nl Vll′Ẑ

(1,1)
ml′,p

)
R̃−1
pk . (3.20)

Here the indices i, j, and k correspond to physical operators only. These expressions have
never been given explicitly in the literature before.

The anomalous dimension tensor then transforms according to

γ
′(0)
ij,k = RimRjnγ

(0)
mn,lR̃

−1
lk , (3.21)
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γ
′(1)
ij,k = RimRjnγ

(1)
mn,lR̃

−1
lk + Ẑ ′

(1,0)

ij,l γ̃
′(0)
lk + 2Ẑ ′

(1,0)

ij,k β0 + γ̂′
(0)

ij,lZ̃
′(1,0)
lk

−
{
γ′

(0)
il δjm + δilγ

′(0)
jm

}
Ẑ ′

(1,0)
lm,k −

{
Z ′(1,0)
il δjm + δilZ

′(1,0)
jm

}
γ̂′

(0)
lm,k , (3.22)

γ
′(2)
ij,k = RimRjnγ

(2)
mn,lR̃

−1
lk + Ẑ ′

(2,0)
ij,l γ̃

′(0)
lk + 4Ẑ ′

(2,0)
ij,k β0 + Ẑ ′

(1,0)
ij,l γ̃

′(1)
lk + 2Ẑ ′

(1,0)
ij,k β1

+ Ẑ ′
(1,0)

ij,l γ̃
′(0)
lm Z̃

′(1,0)
mk − Ẑ ′

(1,0)

ij,l Z̃
′(1,0)
lm γ̃′

(0)
mk + γ̂′

(1)

ij,lZ̃
′(1,0)
lk + γ̂′

(0)

ij,lZ̃
′(2,0)
lk

+ Z ′(1,0)
il γ′

(0)
jmẐ

′
(1,0)
lm,l + γ′

(0)
il Z

′(1,0)
jm Ẑ ′

(1,0)
lm,l + Z ′(1,0)

il Z ′(1,0)
jm γ̂′

(0)
lm,l

−
{
Z ′(2,0)
il δjm + δilZ

′(2,0)
jm

}
γ̂′

(0)

lm,k −
{
Z ′(1,0)
il δjm + δilZ

′(1,0)
jm

}
γ̂′

(1)

lm,k

−
{
Z ′(1,0)
il δjm + δilZ

′(1,0)
jm

}
γ̂′

(0)
lm,nZ̃

′(1,0)
nk −

{
Z ′(1,0)
il δjm + δilZ

′(1,0)
jm

}
Ẑ ′

(1,0)
lm,nγ̃

′(0)
nk

− 2
{
Z ′(1,0)
il δjm + δilZ

′(1,0)
jm

}
Ẑ ′

(1,0)

lm,kβ0 −
{
Z ′(1,0)
ii′ Z ′(1,0)

i′l δjm + δilZ
′(1,0)
jj′ Z ′(1,0)

j′m

}
γ̂′

(0)

lm,k

−
{
Z ′(1,0)
ii′ γ′

(0)
i′l δjm + δilZ

′(1,0)
jj′ γ′

(0)
j′m

}
Ẑ ′

(1,0)
lm,k −

{
γ′

(1)
il δjm + δilγ

′(1)
jm

}
Ẑ ′

(1,0)
lm,k

−
{
γ′

(0)
il δjm + δilγ

′(0)
jm

}
Ẑ ′

(2,0)

lm,k , (3.23)

as can be derived easily from Equations (2.145) to (2.147). A special case of these formulas
has been derived in Reference [51] up to NLO; the remaining results are new. Using the
definition (2.134), we see that the dimension-eight Wilson coefficients transform as

C̃ ′
k(µ) = C̃i(µ)R̃−1

ij

[
δjk +

αs(µ)

4π
Z̃

′(1,0)
jk +

(
αs(µ)

4π

)2

Z̃
′(2,0)
jk

]

−Ci(µ)R−1
imCj(µ)R−1

jn

[
αs(µ)

4π
Ẑ

′(1,0)
mn,k +

(
αs(µ)

4π

)2

Ẑ
′(2,0)
mn,k

]
. (3.24)
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Part II

Applications





Chapter 4

NNLO QCD Corrections to the
Parameter ǫK

We will now apply the formalism developed in the preceeding chapters to the calculation of
precision observables in Kaon physics. In this chapter we calculate the NNLO QCD correc-
tions to the charm-top contribution to the parameter ǫK .

In Section 4.1 we give a short overview of the formalism of meson mixing and CP violation
in the neutral Kaon system and introduce the relevant effective Hamiltonian. We continue
with an overview of the NNLO calculation in Section 4.2 and proceed to the calculation of
the charm-top contribution η3 in Section 4.3. The renormalisation group evolution below the
charm quark scale is described in Section 4.4.

In this and the following chapter operators are expressed in terms of bare quark fields, for

instance dL = Z
1/2
ψ d ren

L , so that no wave function renormalisation constants appear explicitly.

4.1 Effective Hamiltonian for Neutral Kaon Mixing

The time-dependent mixing of the two weak interaction eigenstates |K0〉 and |K̄0〉 of the
neutral K meson is described in the Wigner-Weisskopf [73] approximation by

i
d

dt

(
|K0(t)〉
|K̄0(t)〉

)
=

(
M − i

Γ

2

)(
|K0(t)〉
|K̄0(t)〉

)
, (4.1)

where the effective Hamiltonian H = M − iΓ/2 has been split into the Hermitian 2× 2 mass
matrix M and decay matrix Γ.

The weak interaction eigenstates do not coincide with the mass eigenstates, which can be
found by diagonalising M − iΓ/2. We write them as

|KS〉 = p|K0〉 + q|K̄0〉 , |KL〉 = p|K0〉 − q|K̄0〉 , (4.2)

the subscripts S and L referring to the short and long lifetimes of the two eigenstates, re-
spectively. Here p and q are two complex coefficients which fulfill the relation |p|2 + |q|2 = 1.
K0− K̄0 mixing corresponds to the off-diagonal element M12 of the mass matrix M , given by

2mKM
∗
12 = 〈K̄0|H|∆S|=2

eff |K0〉 , (4.3)
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Figure 4.1: Leading order Standard Model contribution to K–K̄ mixing. The electroweak would-be
Goldstone bosons have to be taken into account, too.

mK being the average mass of the neutral K mesons. The effective Hamiltonian valid at
energy scales below the charm threshold µc = O(mc) is given by

H|∆S|=2
eff =

G2
F

4π2
M2
W

[
λ2
cη1S(xc) + λ2

t η2S(xt) + 2λcλtη3S(xc, xt)
]
b(µ)Q̃S2 + h.c. . (4.4)

Here

Q̃S2 = (sLγµdL) ⊗ (sLγ
µdL) (4.5)

is the only contributing dimension-eight operator at this scale, GF is the Fermi constant and
MW the W -boson mass. The coefficient functions in square brackets are scale independent
apart from the the common factor b(µ). Its µ-dependence has to cancel against the corre-
sponding scale dependence of the hadronic matrix element of Q̃S2, which is parameterised by
the so-called bag parameter BK(µ):

〈K0|Q̃S2|K̄0〉 =
2

3
f2
Km

2
K

B̂K
b(µ)

, (4.6)

where fK the Kaon decay constant, and we have introduced the scale invariant combination
B̂K = b(µ)BK(µ).
The leading order contribution to the |∆S| = 2 transition in the Standard Model is shown in
Figure 4.1. The different quark contributions are proportional to different products of CKM
factors λi = V ∗

isVid, where the index i runs over the up-type quarks i = u, c, t. The unitarity
of the CKM matrix allows us to eliminate the factor λu = −λc − λt, such that the connected
and truncated Green’s functions in the Standard Model can be divided into

G̃ = λ2
cG̃

c + λ2
t G̃

t + 2λcλtG̃
ct , (4.7)

where the tilde denotes Fourier transformation. If we expand the Green’s functions in αs as

G̃j = G̃j(0) +
αs
4π
G̃j(1) + O(α2

s) , (4.8)

the leading order Standard Model contribution is given by

iG̃ct =
G2
F

4π2
M2
WS(xc, xt)〈Q̃S2〉(0) , (4.9)

iG̃j =
G2
F

4π2
M2
WS(xj)〈Q̃S2〉(0) , j = c, t , (4.10)
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in terms of the Inami-Lim [8] functions

S(xj , xk) = S̃(xj, xk) − S̃(xj , 0) − S̃(xk, 0) + S̃(0, 0) , (4.11)

S(xj) = S(xj, xj) . (4.12)

Here the results of the box diagrams S̃(xj, xk) with internal quarks j and k are given by

S(xc) = xc + O(x2
c) , (4.13)

S(xt) =
4xt − 11x2

t + x3
t

4(1 − xt)2
− 3x3

t log xt
2(1 − xt)3

, (4.14)

S(xc, xt) = −xc log xc + xcF (xt) + O(x2
c log xc) , (4.15)

where we have defined the mass ratio xi ≡ m2
i /M

2
W and the up-quark mass has been set to

zero. The function F is defined as

F (xt) =
x2
t − 8xt + 4

4(1 − xt)2
log xt −

3xt
4(1 − xt)

. (4.16)

In Equations (4.13) to (4.15) we have kept only terms linear in the small ratio xc, but all
orders in xt.
The parameters η1, η2, and η3 contain the higher order corrections to the leading order Inami-
Lim functions. We will have a closer look at the three individual terms in the following.
However, it is helpful to get a clear picture of the structure of the effective Hamiltonian (4.4)
first. Let us therefore recall the two main reasons for the effective field theory approach.
First, an amplitude with external quark states makes not much sense from a physical point of
view. We rather would like to evaluate matrix elements, between external hadron states, of
an effective Hamiltonian defined at an energy scale below the charm quark threshold, which
contains all effects of the physics at high energy scales.
Second, this effective Hamiltonian, when calculated to some higher order in the coupling
constant αs in fixed-order perturbation theory, contains products of the coupling constant and
large logarithms of the form αs(µc) log(µ2

c/µ
2
W ) = O(1), which invalidate the use of fixed-order

perturbation theory. Therefore we use renormalisation-group improved perturbation theory,
which sums these logarithms to all orders by means of the renormalisation group equations.
It is useful to think of renormalisation-group improved perturbation theory as a reordering
of the perturbation series, such that we consider terms of the form (αs log)n, n ∈ N, as
belonging to the same order in the expansion. In this framework, the sum of these terms
over all n is called the LL approximation (see also Section 2.5). Correspondingly the sum
of all terms proportional to αs(αs log)n and α2

s(αs log)n constitute the NLL and the NNLL
approximation, respectively. If there appears a logarithm already at the leading order O(α0

s)
in fixed-order perturbation theory, the leading-log approximation corresponds to a sum of
terms proportional to (αs log)n log ≃ (αs log)n/αs, and so on. With this understanding we
will now examine the effective Hamiltonian (4.4).
Let us start with the LO charm-top contribution S(xc, xt). It contains a logarithm of the
form log(m2

c/M
2
W ), which we rewrite as

log
m2
c

M2
W

= log
µ2
c

M2
W

− log
µ2
c

m2
c

. (4.17)
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We identify the term proportional to the large logarithm log(µ2
c/M

2
W ) as the first term in the

LL approximation, where these contributions are summed to all orders in αs. By contrast,
the term containing the small logarithm log(µ2

c/m
2
c) and the non-logarithmic part already

belong to the NLL approximation. Similarly, including NLO αs corrections to S(xc, xt) will
produce terms proportional to αs log2(µ2

c/M
2
W ), belonging to LL, αs log(µ2

c/M
2
W ), belonging

to the NLL, and αs log0(µ2
c/M

2
W ), belonging to the NNLL approximation. We see that the

LO Inami-Lim function actually contains LL and NLL contributions. We also see already
here that for the NNLL analysis we have to perform only a two-loop matching calculation.
The situation is different for the top contribution. Here only heavy particles contribute to
the LO Standard Model amplitude, and correspondingly no large logarithms appear in the
Inami-Lim function S(xt). Nevertheless, when we compute the NLO αs corrections, terms
proportional to αs log(µ2

c/M
2
W ) will emerge, and these together with the leading order constant

terms will be summed by the renormalisation group in a LL analysis, whereas at the NLL
level we also sum the constant αs terms.
Let us finally examine the pure charm-quark contribution. Because of the presence of the
charm quark, we would naively expect a large logarithm log xc in S(xc), as in the case of the
mixed charm-top contribution. The absence of this term is caused by the GIM mechanism.
Accordingly, the structure of this term is similar to S(xt). In particular, a NNLL analysis
requires a three-loop matching calculation.

4.2 Outline of the NNLL Analysis

The calculation consists of three main steps. First we have to construct an effective theory
by integrating out the heavy particles at the electroweak scale. We match the Standard
Model Green’s functions to those in the effective theory, thus obtaining the initial condition
for the Wilson coefficients in the effective theory. In a second step, these Wilson coefficients
are evolved down to the charm-quark scale using the renormalisation group equations. In
the third and last step, we match the four-flavour theory onto an effective theory where also
the charm quark has been removed as a dynamical degree of freedom. Now only the single
operator (4.5) contributes, and we then perform the renormalisation group running down to
the scales where the hadronic matrix elements are computed.
In the remaining part of this section we specify the effective theories which we need in our
analysis by displaying the corresponding effective Lagrangians explicitly.
We obtain the effective Lagrangian valid between the electroweak and the bottom-quark
scale by removing the top quark and the W boson as dynamical degrees of freedom from the
Standard Model Lagrangian. It reads in terms of the renormalised Wilson coefficients

L|∆S|=2
eff = −4GF√

2

6∑

i=1

Ci




2∑

j=1

Zij
∑

k,l=u,c

V ∗
ksVldQ

kl
j − λt

6∑

j=3

ZijQj




− G2
F

4π2
λ2
t C̃

t
S2Z̃S2Q̃S2 − 8G2

Fλcλt

[
2∑

k=1

6∑

l=1

CkClẐkl,7 + C̃7Z̃77

]
Q̃7 . (4.18)

Here the first line represents the |∆S| = 1 part of the effective Lagrangian, whereas the
second line contains the |∆S| = 2 contributions. The first term in the second line is related
to a single insertion of Q̃S2, induced by the top quark contribution to the SM amplitude.
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The remaining terms arise from the mixing of insertions of two |∆S| = 1 operators into the
operator Q̃7. There is no λ2

c contribution to the Wilson coefficient of a |∆S| = 2 operator
because of the GIM mechanism.
We will also need the Green’s functions in this effective theory to the second order in GF .
They are given by

〈
T exp

[
i

∫
ddxL|∆S|=2

eff (x)

]〉 ∣∣∣∣∣
|∆S|=2

= −i
〈
Hc +Ht +Hct

〉
+ O(G3

F ) , (4.19)

where

Hc(x) = λ2
c2G

2
F

2∑

i,i′,j,j′=1

CiCj Zii′Zjj′O′
i′j′(x)︸ ︷︷ ︸

=:Oij(x)

, (4.20)

Ht(x) = λ2
t

G2
F

4π2
C̃tS2Z̃S2Q̃S2(x) , (4.21)

Hct(x) = λcλt8G
2
F

×
[

2∑

i=1

6∑

j=1

CiCj

(
2∑

i′=1

6∑

j′=1

Zii′Zjj′R′
i′j′(x) + Ẑij,7Q̃7(x)

)

︸ ︷︷ ︸
=:Rij(x)

+C̃7Z̃77Q̃7(x)

]
. (4.22)

Here we have defined the following structures involving two |∆S| = 1 operators,

O′
ij(x) =

−i
2

∫
ddyT

[
Qcci (x)Qccj (y) −Qcui (x)Qucj (y) −Quci (x)Qcuj (y) +Quui (x)Quuj (y)

]
,

(4.23)

R′
ij(x) =





−i
2

∫
ddyT

[
2Quui (x)Quuj (y) −Quci (x)Qcuj (y) −Qcui (x)Qucj (y)

]
, j = 1, 2 ,

−i
2

∫
ddyT

[(
Quui −Qcci

)
(x)Qj(y) +Qj(x)

(
Quui −Qcci

)
(y)
]
, j = 3 . . . 6 ,

(4.24)

where the special form of the linear combinations is an implication of the GIM mechanism,
which we already have put in explicitly. Note that for the sake of readability we have not
displayed terms proportional to unphysical operators in Equations (4.18) and (4.20) to (4.24),
which are needed for the renormalisation as discussed in Chapter 2.
The effective theory valid between the bottom- and the charm-quark scale looks exactly the
same. The only difference is induced by the presence of penguin operators, which explicitly
depend on all light quark fields.
Below the charm-quark scale, the charm quark is removed as a dynamical degree of freedom.
As a consequence, the |∆S| = 1 operators can now be dropped from the effective Lagrangian,
because the matrix elements of double insertions of these operators are at most proportional
to m2

s, and we have already neglected such contributions by setting the external momenta to
zero. The effective Lagrangian is thus given by

L|∆S|=2
eff = −G2

F

4π2

[
λ2
cC̃

c
S2(µ) + λ2

t C̃
t
S2(µ) + λcλtC̃

ct
S2(µ)

]
Z̃S2Q̃S2 (4.25)
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and now only contains the |∆S| = 2 operator Q̃S2.

We now have all the tools at hand which are needed for a NNLL analysis, and we proceed to
the calculation of η3 in the next section.

4.3 Calculation of η3

In this section we give the details of the calculation of η3 in the NNLL approximation. We start
with the determination of the initial conditions for the Wilson coefficients at the electroweak
scale. Afterwards we use the renormalisation group equations to evolve them down to the
charm-quark scale. Finally we determine the charm-top contribution to the Wilson coefficient
of the operator Q̃S2 by a matching calculation at the charm-quark scale.

It has been observed in the NLO calculation that the contribution of the penguin operators
to η3 is small, typically of the order of one percent [17]. We expect the same effect at the
NNLO level and we will therefore neglect the penguin contributions to the NNLO corrections
(but we will keep them in the NLO part). To be specific, we set the parts of the NNLO
anomalous dimensions related to the mixing of penguin operators among themselves and into
the dimension-eight operators to zero, and similarly, we drop the corresponding terms of the
initial conditions.

For the same reason, we can neglect the contribution of the operator Qeom, which receives the
same initial conditions as Q4. The mixing of this operator into Q̃7 vanishes up to NLO. It
is also not needed for the NNLO matching, because it multiplies a vanishing renormalisation
factor. Therefore no additional contributions related to keeping Qeom in the operator basis
arise.

4.3.1 Initial Conditions at the Electroweak Scale

The initial conditions for the Wilson coefficients of the dimension-six operators are available
in the literature. In our basis, where we can use a naive anticommuting γ5, the results up to
second order in αs for C1 and C2 and to first order in αs for C3, . . . , C6 read [46,74]:

C1(µ) = (15 + 6LW )
αs(µ)

4π
+

(
αs(µ)

4π

)2(7987

72
+

17

3
π2 − T̃0(xt) +

475

6
LW + 17L2

W

)
,

C2(µ) = 1 +

(
αs(µ)

4π

)2(127

18
+

4

3
π2 +

46

3
LW + 4L2

W

)
,

C3(µ) = 0 , C4(µ) =
αs(µ)

4π

(
Ẽ0(xt) +

2

3
LW

)
, C5(µ) = 0 , C6(µ) = 0 ,

(4.26)

where xt = m2
t/M

2
W , and we have introduced the abbreviation LW = log(µ2/M2

W ), which we

will also use in the remaining part of this chapter. The one-loop Inami-Lim function Ẽ0(xt)
is [8]

Ẽ0(xt) =
8 − 42xt + 35x2

t − 7x3
t

12(xt − 1)3
− 4 − 16xt + 9x2

t

6(xt − 1)4
lnxt , (4.27)
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while the one-loop function T̃0(xt) is given by [74]

T̃0(xt) =
112

9
+ 32xt +

(
20

3
+ 16xt

)
lnxt

− (8 + 16xt)
√

4xt − 1 Cl2

(
2 arcsin

(
1

2
√
xt

))
,

(4.28)

with Cl2(x) = Im[Li2(e
ix)] and Li2(x) = −

∫ x
0 dt ln(1 − t)/t.

We will also need the initial conditions for the Wilson coefficients C± corresponding to the
operators defined in Equation (2.38). They can be obtained from Equation (4.26) by the basis
transformation described in Appendix C and read:

C
(0)
± (µ) = 1 , C

(1)
± (µ) = ±1

2

(
1 ∓ 1

3

)
(11 + 6LW ) ,

C
(2)
± (µ) = − 1

3600
(135677 ∓ 124095) +

1

18
(7 ± 51) π2 ∓ 1

2

(
1 ∓ 1

3

)
T (xt)

− 5

36
(11 ∓ 249)LW +

1

6
(7 ± 51)L2

W .

(4.29)

In addition we need the initial conditions for the Wilson coefficients of the evanescent dimension-
six operators to order αs. The only contributing, non-zero coefficient is

C
E

(1)
1

(µ) =
αs(µ)

4π

(
3

2
+ log

µ2

M2
W

)
+ O(α2

s) . (4.30)

With these ingredients, we can now calculate the initial conditions for the Wilson coefficients
of the dimension-eight operators. To this end we have to match the Green’s functions in the
Standard Model and the effective five-flavour theory. The matching condition can be derived
from (4.7) and (4.22), which yields

2iG̃ct =
1

λcλt

〈
Hct

〉
= 8G2

F

(∑

i,j

CiCj〈Rij〉 + C̃7Z̃77〈Q̃7〉
)
. (4.31)

In order to determine the initial conditions, we have to compute the finite parts of Feynman
diagrams of the type shown in Figures 4.1 and 4.2. To this end, we perform a Taylor expan-
sion in the charm-quark mass of all propagators corresponding to a charm-quark field. The
constant terms cancel because of the GIM mechanism, whereas the terms proportional to
m2
c give the leading non-vanishing contribution we are interested in. This procedure leads to

massless vacuum integrals on the right side of the equation, such that only terms proportional
to tree-level matrix elements remain. Some of these terms multiply divergent renormalisation
constants and correspond to infrared divergences in the effective theory. They exactly cancel
the corresponding infrared divergent terms on the left side of the equation, leaving us with a
finite result. Note that in this way also the initial conditions of evanescent operators enter the
matching conditions. On the other hand, the initial condition for C4 is actually not needed,
because it multiplies a vanishing renormalisation constant.
Expanding the dimension-eight Wilson coefficient as

C̃7(µ) =
4π

αs(µ)
C̃

(0)
7 (µ) + C̃

(1)
7 (µ) +

αs(µ)

4π
C̃

(2)
7 (µ) , (4.32)
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Figure 4.2: Sample two-loop Feynman diagrams contributing to the matching at the electroweak scale.

we get the following results:

C̃
(0)
7 (µ) = 0 , C̃

(1)
7 (µ) = F (xt) +

3

2
− LW ,

C̃
(0)

Ẽ
(1)
7

(µ) = 0 , C̃
(1)

Ẽ
(1)
7

(µ) =
3 − 5xt

8(1 − xt)
− log xt

4(xt − 1)2
+

1

4
LW ,

(4.33)

C̃
(2)
7 (µ) = −7LW +

(
−47x2

t + 31xt − 56

6(xt − 1)2
+

(
5x3

t − 21x2
t + 60xt − 20

)
log xt

2(xt − 1)3

)
LW

−
(
−12x5

t + 34x4
t + 9x3

t + 33x2
t + 116xt − 36

)
log2 xt

12(xt − 1)3

+
2π2

(
6x4

t + x3
t − 65x2

t − 8
)

36x2
t

+
−3
(
24x4

t + 11x3
t + 168x2

t + 21xt − 32
)

36(xt − 1)2xt

+
12
(
6x6

t − 11x5
t − 8x4

t − 29x3
t + 23x2

t − 16xt + 8
)
Li2(1 − xt)

36(xt − 1)2x2
t

+

(
−12x5

t + 27x4
t + 23x3

t + 150x2
t − 108xt + 16

)
log xt

6(xt − 1)3xt

(4.34)

The first line in Equation (4.33) agrees with the results obtained already by Herrlich and
Nierste in [17] after the corresponding change of scheme. The remaining results are new.

4.3.2 Structure of the Renormalisation Group Equations

Having determined the initial conditions for the Wilson coefficients, the next step consists
of the renormalisation group evolution to lower scales. The renormalisation group equations
relevant for the Wilson coefficient C̃7 are given in their general form in Equation (2.112):

µ
d

dµ
C̃7(µ) = C̃7(µ)γ̃77 +

2∑

k=1

6∑

n=1

Ck(µ)Cn(µ)γ̂kn,7 , (4.35)

with the anomalous dimension tensor given by Equation (2.113), corresponding to the defi-
nition (4.22). Writing

γ̂T7 =

(
γ̂11,7 γ̂12,7 γ̂13,7 γ̂14,7 γ̂15,7 γ̂16,7

γ̂21,7 γ̂22,7 γ̂23,7 γ̂24,7 γ̂25,7 γ̂26,7

)
, (4.36)
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we find explicitly

γ̂
T (0)
7 =

(
−11

9 −2
3 0 0 −64 8

3

−2
3 −2 0 0 −48 −16

)
, (4.37)

γ̂
T (1)
7 =

(
−1234

27
197
9 −44

3 −125
9

2024
3 −532

9

197
9 −118

3 −56 −182
3 −160 416

3

)
, (4.38)

γ̂
T (2)
7 =

(
−7350917

5832 + 10001
243 Nf + 748

27 ζ3 −375335
1944 + 1082

81 Nf + 442
9 ζ3 ∗ ∗ ∗ ∗

−375335
1944 + 1082

81 Nf + 442
9 ζ3 −332533

324 + 542
27 Nf + 1072

3 ζ3 ∗ ∗ ∗ ∗

)
. (4.39)

The LO and NLO result agrees with the literature [17] after the corresponding change of the
operator basis, described in Section 3.4. As discussed at the beginning of Section 4.3, we
have not calculated the entries corresponding to the penguin operators at NNLO. We marked
them with a star and set them to zero in the following.

We will now adapt the Equations (4.35) to the special case under consideration, as described
in [17], and thereby achieve a considerable simplification.

The first step consists of changing the basis (Q1, Q2) of the subspace of current-current op-
erators, as given in Equation (2.37) to the basis (Q+, Q−), given in Equation (2.38). This
basis is chosen such that the corresponding anomalous dimension matrix is diagonal. Now,
beyond the leading order, the anomalous dimensions depend on the choice of the evanescent
operators. A judicious choice of the evanescent operators ensures the diagonal form of the
anomalous dimension up to the NNLO; it has been given explicitly in [25]. We have collected
the definition of the evanescent operators as well as the explicit formulas needed to transform
the anomalous dimensions to the new basis in Appendix C.
Equation (4.35) then splits into two independent equations

µ
d

dµ
C̃±

7 (µ) = C̃±
7 (µ)γ̃77 +

6∑

k=1

C±(µ)Ck(µ)γ̂±k,7 , (4.40)

if we accordingly decompose the Wilson coefficient

C̃7(µ) = C̃+
7 (µ) + C̃−

7 (µ) , (4.41)

where this decomposition is completely arbitrary and preserved by the renormalisation group
evolution. For instance, we may choose C̃+

7 (µ) = C̃7(µ) and C̃−
7 (µ) = 0.

As the second step, we observe that these two equations, together with the renormalisation
group equations for the operators Q1, . . . , Q6, are equivalent to the following system of eight
equations [17]

µ
d

dµ
D = γTD , (4.42)

where the anomalous dimension matrix and the Wilson coefficients are now given by

γT =



γTQ 0 0

γ̃T+,7 γ̃77 − γ+ 0

γ̃T−,7 0 γ̃77 − γ−


 , D(µ) =




C(µ)

C̃+
7 (µ)/C+(µ)

C̃−
7 (µ)/C−(µ)


 . (4.43)
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Figure 4.3: Feynman diagrams relevant for the threshold corrections at the bottom quark scale. The
one-loop diagram of Q1 and Q2 is the same in both theories, whereas at the two-loop level they receive
non-trivial corrections from virtual bottom quarks. The same applies to insertions the operator Q̃7.

The advantage of this expression is that is has the form of a renormalisation group equation
for a single operator insertion, and the explicit solution constructed in Section 2.5 can be
used.
The anomalous dimension matrix γQ of the operators Q1, . . . , Q6 and the anomalous dimen-
sions of the operators Q+ and Q− can be found in Appendix B. The anomalous dimension
for the double insertion of either Q+ or Q− and one of the operators Q1, . . . , Q6 is denoted as

γ̃T±,7 = (γ̃±1,7, γ̃±2,7, γ̃±3,7, γ̃±4,7, γ̃±5,7, γ̃±6,7) , (4.44)

and we find

γ̃
T (0)
+,7 =

(
−5

3
,−2, 0, 0,−96,−8

)
, γ̃

T (0)
−,7 = (1, 0, 0, 0, 48,−8) , (4.45)

γ̃
T (1)
+,7 =

(
−37,−9,−52,−163

3
, 248,

92

3

)
,

γ̃
T (1)
−,7 =

(
54,−33,−4,−19

3
,−664,

356

3

)
,

(4.46)

γ̃
T (1)
+,7 =

(
−71410531

48600
+

2141

54
Nf +

544

9
ζ3,−

10461817

16200
+

484

27
Nf +

862

3
ζ3, 0, 0, 0, 0

)
,

γ̃
T (1)
−,7 =

(
8545111

6075
− 4595

162
Nf −

34

3
ζ3,−

1140557

3240
− 284

81
Nf + 70 ζ3, 0, 0, 0, 0

)
,

(4.47)

at LO, NLO, and NNLO, respectively. These expressions can be obtained from Equa-
tions (4.37) to (4.39) by the basis transformation described in Section 3.4.

4.3.3 Threshold Corrections at the Bottom-Quark Scale

When we pass the bottom-quark threshold, we must perform a proper matching between the
effective theories with five and four flavours. In contrast to the NLO calculation, where only
the penguin operators were affected, at the NNLO level also the matching of the current-
current and the dimension-eight operators is non-trivial. The source of such contributions are
virtual bottom quarks in two-loop matrix elements of the form shown in Figure 4.3.
The threshold correction is computed as usual by matching the Green’s functions in the two
theories at the scale µb = O(mb), where mb is the bottom-quark mass.
Let us write the equality of the corresponding amplitudes at the matching scale µf in a general
form as

Cf−1(µf )〈Qf−1〉(µf ) = Cf (µf )〈Qf 〉(µf ) , (4.48)
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the variables with subscripts f and f −1 belonging to the f - and f −1-flavour theory. At the
bottom-quark scale, we have f = 5. We parameterise the matrix elements of the operators
in the following way as an expansion in the coupling constant defined in the corresponding
f -flavour theory:

〈Qf 〉(µf ) = 〈Qf 〉(0)

1 +

α
(f)
s (µf )

4π
r
(1)
f (µf ) +

(
α

(f)
s (µf )

4π

)2

r
(2)
f (µf )


 . (4.49)

An additional subtlety arises here, because the strong coupling constant also gets a non-
trivial matching correction at a flavour threshold. Up to the NLO approximation we have the
relation [75–77]

α(f−1)
s (µf ) = α(f)

s (µf )

(
1 − α

(f)
s (µf )

4π

2

3
log

µ2
f

m2
f

)
, (4.50)

which we use to express all quantities in terms of the coupling constant α
(f−1)
s (µf ), which is

appropriate for the renormalisation group running in the effective theory with f − 1 flavours.
Here mf = mf (mf ) is the MS mass of the quark which is integrated out.

We now introduce the discontinuities

δC(k)(µf ) = C
(k)
f (µf ) − C

(k)
f−1(µf ) , δr(k)(µf ) = r

(k)
f (µf ) − r

(k)
f−1(µf ) , (4.51)

of the Wilson coefficients and the matrix elements, respectively, and find for the solution of
Equation (4.48):

δC(0)(µf ) = 0 , δC(1)(µf ) = −C(0)
f (µf )δr

(1)(µf ) ,

δC(2)(µf ) = −C(1)
f (µf )

(
δr(1)(µf ) +

2

3
log

µ2
f

m2
f

)

− C
(0)
f (µf )

(
δr(2)(µf ) − δr(1)(µf )r

(1)
f−1(µf ) +

2

3
log

µ2
f

m2
f

r
(1)
f (µf )

)
.

(4.52)

At NLO, only the matrix elements of the penguin operators get non-vanishing contributions.
They can be obtained from

δr
(1)
Q (µb) =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −2
3 log

µ2
b

m2
b

0 0

0 0 0 0 0 0

0 0 0 4 − 20
3 log

µ2
b

m2
b

0 0




, (4.53)

where δrQ denotes the difference of the matrix elements in the subspace of dimension-six
operators. At NNLO, we neglect the contributions of the penguin operators, but now the
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current-current as well as the dimension-eight operators receive non-vanishing corrections.
We find

δC̃
(2)
7 (µb) = −2

3
log2

(
µ2
b

m2
b

)
− 32

9
log

(
µ2
b

m2
b

)
− 2ζ2

3
+

1

54
. (4.54)

The matching corrections for C± can be extracted from [25]:

δC
(2)
± (µb) = −

(
2

3
log

µ2
b

m2
b

C
(1)
± (µb)∓

(
1 ∓ 1

3

)(
59

36
+

1

3
log

µ2
b

m2
b

+ log2 µ
2
b

m2
b

)
C

(0)
± (µb)

)
. (4.55)

4.3.4 Matching at the Charm-Quark Scale

At the scale µc = O(mc) the charm quark is removed from the theory as a dynamical degree of
freedom, and the effective Lagrangian is now given by Equation (4.25). Equating the Green’s
functions in both theories at the charm-quark scale leads to the matching condition

∑

i=+,−

6∑

j=1

Ci(µc)Cj(µc)〈Rij〉(µc)+C̃7(µc)Z̃77〈Q̃7〉(µc) =
1

32π2
C̃ctS2(µc)Z̃S2〈Q̃S2〉(µc) , (4.56)

which we use to determine the Wilson coefficient C̃ctS2(µ). To proceed, we parameterise the
matrix elements in the following way:

〈Q̃7〉 = r7〈Q̃7〉(0) , 〈Q̃S2〉 = rS2〈Q̃S2〉(0) , and 〈Rij〉(µc) =
m2
c(µc)

32π2
rij,S2〈Q̃S2〉(0) . (4.57)

If we take into account the explicit factor of m2
c/g

2
s in the definition of Q̃7 and expand the

Wilson coefficient C̃ctS2 as

C̃ctS2(µ) =
4π

αs(µ)
C̃
ct(0)
S2 (µ) + C̃

ct(1)
S2 (µ) +

αs(µ)

4π
C̃
ct(2)
S2 (µ) , (4.58)

we find the following contributions to the matching:

C̃
ct(0)
S2 (µc) = 2m2

c(µc)C̃
(0)
7 (µc) , (4.59)

C̃
ct(1)
S2 (µc) = 2m2

c(µc)
[
C̃

(0)
7 (µc)(r

(1)
7 − r

(1)
S2 ) + C̃

(1)
7 (µc)

]

+m2
c(µc)C

(0)
i (µc)C

(0)
j (µc)r

(0)
ij,S2 , (4.60)

C̃
ct(2)
S2 (µc) = 2m2

c(µc)

[
C̃

(0)
7 (µc)(r

(2)
7 − r

(2)
S2 − (r

(1)
7 − r

(1)
S2 )r

(1)
S2 )

+ C̃
(1)
7 (µc)(r

(1)
7 − r

(1)
S2 ) + C̃

(2)
7 (µc)

]
+m2

c(µc)

[
C

(0)
i (µc)C

(0)
j (µc)

(r
(1)
ij,S2 − r

(0)
ij,S2r

(1)
S2 ) + C

(0)
i (µc)C

(1)
j (µc)r

(0)
ij,S2 + C

(1)
i (µc)C

(0)
j (µc)r

(0)
ij,S2

]
,

(4.61)
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In order to evaluate these equations, we have to compute the finite parts of one- and two-loop
Feynman diagrams of the type shown in Figure 3.2. In this way we find for rij,S2 at LO:

r
(0),T
ij,S2 (µc) =


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. (4.62)

This result agrees with the one obtained in [17] after the appropriate change of scheme. A
NLO matching calculation yields

r
(1),T
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(4.63)

In these results, the index i corresponds to the operators Q1 and Q2, and we still have to
perform the transformation to the diagonal basis. We find

r
(0),T
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at LO, and
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at NLO. This result completes the matching onto the three-flavour theory. Now only a single
operator contributes, and the renormalisation group evolution below the charm quark scale
is the same for the top, the charm, and the charm-top contribution.

4.4 RGE below the Charm Threshold

The effective Hamiltonian valid below the charm-quark threshold contains only the single
operator Q̃S2. The renormalisation group evolution is therefore the same for the three Wilson
coefficients C̃jS2, where j = c, t, ct, and described by the evolution matrix corresponding to
the anomalous dimension of Q̃S2:

C̃jS2(µ) = U(µ, µc)C̃
j
S2(µc) . (4.66)

By comparing (4.4) and (4.25), we see that we can express the coefficients η1, η2, η3 as

η1 =
1

m2
c (µc)

C̃
(c)
S2 (µc) [αs (µc)]

a
[3]
+ K−1

+ (µc) , (4.67a)

η2 =
1

M2
WS (xt (µc))

C̃
(t)
S2 (µc) [αs (µc)]

a
[3]
+ K−1

+ (µc) , (4.67b)

η3 =
1

2M2
WS (xc (µc) , xt (µtW ))

C̃
(ct)
S2 (µc) [αs (µc)]

a
[3]
+ K−1

+ (µc) . (4.67c)

The µ-dependence present in (4.67) is absorbed into b (µ), which equals

b (µ) = [αs (µ)]−a
[3]
+ K+(µ) , (4.68)

where

K+(µ) =

(
1 + J

(1)[3]
+

αs (µ)

4π
+ J

(2)[3]
+

(
αs (µ)

4π

)2
)
, (4.69)

and the exponent a+ is defined in Equation (2.88).



Chapter 5

Electroweak Corrections to
K+

→ π+νν̄

5.1 Introduction

The rare decay K+ → π+νν̄ is both theoretically very clean and highly sensitive to short-
distance physics and thus plays an outstanding role among flavour-changing neutral current
processes both in the Standard Model and its extensions [78–80]. Together with the process
KL → π0νν̄ it provides a critical test for the CKM mechanism of CP violation, while it probes
operators generated by new physics at energy scales of several TeV [81].
In the Standard Model the decay K+ → π+νν̄ proceeds through Z-penguin and electroweak
box diagrams of O(G2

F ) (see Figure 5.1) which exhibit a power-like GIM mechanism. This
implies that non-perturbative effects are severely suppressed and, related to this, that the
low-energy effective Hamiltonian [19,22]

Heff =
4GF√

2

α

2π sin2 θW

∑

l=e,µ,τ

(
λcX

l(xc) + λtX(xt)
)

(s̄LγµdL)(ν̄lLγ
µνlL) (5.1)

involves to an excellent approximation only a single effective operator. Here GF is the Fermi
constant, α the electromagnetic coupling and θW the weak mixing angle. The sum is over all
lepton flavours, λi = V ∗

isVid comprises the CKM factors and fL represents left-handed fermion
fields.
The function X(xt), where xt = m2

t (µt)/M
2
W and m2

t (µt) is the top quark MS mass, describes
the matching contributions of internal top quarks to the operator in Equation (5.1), where the
matching is carried out at the scale µt = O(mt). Sample diagrams are shown in Figure 5.1.
The energy scales involved are of the order of the electroweak scale or higher, while both
the QCD and QED anomalous dimensions of the corresponding operator vanish. Hence
X(xt) can be calculated within fixed-order perturbation theory. The relevant Z-penguin and
electroweak box diagrams are known through NLO in QCD [8,18–20]. The inclusion of these
O(αs) corrections allowed to reduce the ±6% uncertainty related to the top quark matching
scale µt = O(mt) present in the leading order (LO) formula down to ±1%. The leading
term in the large top quark mass expansion of the electroweak two-loop corrections typically
amounts to a per mil correction for the branching ratio if the MS definition of α and sin2 θW
is used, while the uncertainty related to unknown sub-leading electroweak contributions is
conservatively estimated to be ±2% [21].
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Figure 5.1: Examples of leading-order diagrams contributing to the decayK+ → π+νν̄ in the Standard
Model.

The function X l(xc), relevant only for K+ → π+νν̄, depends on the charm quark MS mass
through the parameter xc, conventionally defined as

xc =
m2
c(µc)

M2
W

. (5.2)

As now both high-energy and low-energy scales, namely µW = O(MW ) and µc = O(mc) are
involved, a complete renormalisation group analysis of Xℓ(xc) is required. In this manner,
large logarithms ln(µ2

c/µ
2
W ) are summed to all orders in αs. At LO such an analysis has

been performed in [12]. The large scale uncertainty due to µc of ±26% in this result was
reduced by a NLO [19,22] and a subsequent NNLO calculation [23–25] to ±2.5%. While the
QCD part of the calculation has reached a high level of sophistication no QED or electroweak
corrections have been included so far. We close this gap by calculating the LO and NLO
logarithmic QED corrections as well as fixing the scheme of the input parameters in sin2 θW
and α by an electroweak matching calculation. The latter point can be exemplified by noting
that the charm quark contribution is mediated by a double insertion of two dimension-six
operators. This results in a contribution of O(G2

F ) – the second power of GF resides in xc
– plus electroweak corrections. Yet the leading result of Equation (5.1) can only approxi-
mate the electroweak corrections for a specific choice of the renormalisation scheme for the
prefactor of the charm quark contribution, expressed as α/ sin2 θW . While it is expected
that using MS parameters renormalised at the electroweak scale would approximate the elec-
troweak corrections best [82] only an explicit calculation can provide a definite result. In this
work we normalise all dimension-six operators to GF . Thus, we replace the parameter xc in
Equation (5.2) with the unfamiliar definition

xc =
√

2
sin2 θW
πα

GFm
2
c(µc) , (5.3)

which only at tree level equals the familiar ratio m2
c(µc)/M

2
W .

The hadronic matrix element of the low-energy effective Hamiltonian can be extracted from
the well-measured Kl3 decays, including isospin breaking and long-distance QED radiative
corrections [27–29]. After summation over the three neutrino flavours the resulting branching
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ratio for K+ → π+νν̄ can be written as1 [19,22,31]

B
(
K+ → π+νν̄(γ)

)

= κ+(1 + ∆EM)

[(
Imλt
λ5

X(xt)

)2

+

(
Reλc
λ

(Pc(X) + δPc,u) +
Reλt
λ5

X(xt)

)2
]
. (5.4)

The parameter

Pc(X) =
1

λ4

(
2

3
Xe(xc) +

1

3
Xτ (xc)

)
(5.5)

describes the short-distance contribution of the charm quark, where λ = |Vus|. The charm
quark contribution of dimension-eight operators at the charm quark scale µc [30] combined
with long distance contributions were calculated in Reference [31] to be

δPc,u = 0.04 ± 0.02 . (5.6)

The quoted error on this value can in principle be reduced with the help of lattice QCD [83].

The remaining long distance corrections are factored out into the following two parameters:
κ+ contains higher-order electroweak corrections to the low energy matrix elements, and
∆EM denotes long distance QED corrections. A detailed analysis of these contributions to
NLO and partially NNLO in chiral perturbation theory has been performed by Mescia and
Smith in [28], who found the numerical values κ+ = (0.5173 ± 0.0025) × 10−10(λ/0.225)8 and
∆EM = −0.3%.

5.2 Electroweak Corrections in the Charm Sector

The charm quark contribution involves several different scales and the corresponding large
logarithms have to be summed using renormalisation group improved perturbation theory.
Keeping terms to O(αs) and O(α/αs) the expansion of the parameter Pc(X) reads

Pc(X) =
4π

αs(µc)
P (0)
c (X)+P (1)

c (X)+
αs(µc)

4π
P (2)
c (X)+

4πα

α2
s(µc)

P (e)
c (X)+

α

αs(µc)
P (es)
c (X). (5.7)

The LO term P
(0)
c (X), the NLO term P

(1)
c (X), and the NNLO term P

(2)
c (X) have been

calculated in [12], in [19, 22], and in [25] respectively. The main goal of the this paper is to

present the electroweak corrections P
(e)
c (X) and P

(es)
c (X).

The calculation is performed in two steps. First, at the scale µW = O(MW ) the Standard
Model is matched to an effective theory where the top quark, the W boson, and the Z boson
are integrated out, but the charm quark is still a dynamical degree of freedom. Second, at
the scale µc = O(mc) the charm quark is integrated out and the effective Hamiltonian in
Equation (5.1) is obtained.

1We have omitted a term which arises from the implicit sum over lepton flavours in Pc because it amounts
to only 0.2% of the branching fraction.
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Figure 5.2: Leading-order diagrams for the mixing of various dimension-six operators into Q̃ν (see text
for details).

After integrating out the particles at the electroweak scale the effective Hamiltonian contain-
ing the dimension-six operators takes the following form:

Hdim.6
eff =

4GF√
2

(
CW (µ)

∑

q=u,c

(VqsQ3q + V ⋆
qdQ4q)

+λc
∑

j=±

Cj(µ)(Qcj −Quj ) +
1

2
CA(µ)QA +

1

2
CV (µ)QV

)
.

(5.8)

Here we kept only operators relevant for the decay K+ → π+νν̄. They can be found in
Equations (2.38), (2.40) and (2.41). The evanescent operators are not displayed explicitly in
Equation (5.8), but clearly have to be included in the sum. They are given in Equations (2.46)
and (2.49).

These operators mix via double insertions into the operator given in Equation (5.1). Tra-
ditionally one distinguishes the box contribution which comprises double insertions of the
semileptonic operators Q3q and Q4q (see Figure 5.2, left side) and the penguin contribution
which comprises double insertions of the current-current-type operators Q± and the opera-
tors QA and QV (Figure 5.2, right side). The relevant dimension-eight part of the effective
Hamiltonian can then be written as

Hcharm
eff =

(
2G2

FλcC
B
ν (µ) +G2

FλcC
P
ν (µ)

)
Q̃ν , (5.9)

where the operator Q̃ν is defined in Equation (2.44), while CBν and CPν denote the box and
penguin contribution, respectively.
The renormalisation group analysis proceeds in several steps. The initial conditions for the
renormalisation group equations, which govern the running of the Wilson coefficients, are cal-
culated in Sec. 5.2.1. The anomalous dimensions are computed in Sec. 5.2.2. After integrating
out the bottom and the charm quark, the theory is matched onto the low energy effective
Hamiltonian of Equation (5.1). The relevant results are collected in Sec. 5.2.3. In Sec. 5.2.4
the pieces are put together to give the final result for Pc(X).

We have computed all Feynman diagrams in this chapter using self-written FORM [68] routines
and independently using Mathematica. All the QCD corrections relevant to a NNLO analysis
of Pc(X) are given in [25] and references therein.

5.2.1 Initial Conditions

The Wilson coefficients are found by matching the one light-particle irreducible Green’s func-
tions in the full and the effective theory at the electroweak scale µ2

W ∼ M2
W . We use the
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Figure 5.3: Feynman diagrams contributing to the NLO matching for CA.

MS scheme for both theories and remark that a finite field redefinition for the light particles
ensures the correct normalisation of the kinetic term in the effective theory. In the box sector
only CW and in the penguin sector only C± and CA/V receive electroweak corrections at the
order considered here (see Figure 5.3). We expand the Wilson coefficients in powers of the
coupling constants

C(µ) = C(0)(µ) +
αs(µ)

4π
C(1)(µ) +

α

αs
C(e)(µ) +

α

4π
C(es)(µ) (5.10)

and use a similar expansion for any quantity in the following, unless explicitly stated otherwise.

We normalise the Wilson coefficients CW , C±, and CA/V to the muon decay constant GF [84].
In this way most of the radiative corrections cancel, including all terms dependent on mt and
MH in the case of CW and C±. All our matching calculations have been performed in the
generalised Rξ gauge for the photon field and in the case of CA also for the W and Z fields
as a check of our results.

At the one-loop level a neutrino-photon Green’s function is generated which contributes to
CV via the equations of motion. Yet QV does not mix into Qν and the Wilson coefficient CV
is not needed.

For the relevant electroweak corrections we find

C
(0)
± (µW ) = 1 , C

(e)
± (µW ) = 0 , C

(es)
± (µW ) = −22

9
− 4

3
ln
µ2
W

M2
Z

, (5.11)

in agreement with Reference [85,86],

C
(0)
W (µW ) = 1 , C

(e)
W (µW ) = 0 , C

(es)
W (µW ) = −11

3
− 2 ln

µ2
W

M2
Z

, (5.12)

and

C
(0)
A (µW ) = 1 , C

(e)
A (µW ) = 0 ,

C
(es)
A (µW ) =

3m2
t

4s2wM
2
W

+
11s2w − 6

4s2wc
2
w

− 3

4

M2
W − c2wM

2
H

(M2
H −M2

W )s4w
ln
M2
W

M2
Z

+
3M4

H

4(M2
H −M2

W )(M2
W − c2wM

2
H)

ln
M2
H

M2
Z

.

(5.13)
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Figure 5.4: Sample two-loop diagrams contributing to the self mixing of Q3c. Wavy lines denote
photons, curly lines denote gluons.
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Figure 5.5: Sample diagrams for the NLO mixing of Q3q and Q4q into Q̃ν .

5.2.2 Anomalous Dimensions and RGE

The mixing of dimension-six into dimension-eight operators through double insertions leads
in general to inhomogeneous renormalisation group equations [51]. In the box sector they are
given by

µ
d

dµ
CBν (µ) = γνC

B
ν (µ) + 4γBν CW (µ)CW (µ) , (5.14)

µ
d

dµ
CW (µ) = γWCW (µ) , (5.15)

where γW is the anomalous dimension of Q3q, γν encodes the running of Q̃ν , which stems
solely from the running mass and coupling constant which in our definition multiply the Q̃ν
operator, and γBν is the anomalous dimension tensor of the mixing of the operators Q3q and
Q4q into Q̃ν .
γν is given in terms of the QCD β-function and the anomalous dimension of the charm quark
mass by

γ(k)
ν = 2(γ(k)

m − βk). (5.16)

The explicit values are given in Appendix B.
The remaining anomalous dimensions can be calculated from the pole parts of one- and two-
loop diagrams, some of which are shown in Figs. 5.4 and 5.5, using the methods described in
Chapter 2. We find the following values:

γB(0)
ν = −8 , γB(e)

ν = 0 , γB(es)
ν = −316

9
, (5.17)

γ
(0)
W = 0 , γ

(e)
W = −4 , γ

(es)
W = 4 . (5.18)

γ
B(0)
ν is known for a long time (see [22] and references therein), and γ

(e)
W and γ

(es)
W have already

been calculated in [84].
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Figure 5.6: Sample diagrams for the NLO mixing of QA and Q± into Q̃ν .

In order to solve the renormalisation group equations we perform a trick similar to the one
used in Chapter 4, so that we can use the renormalisation group equations for single insertions
also in our case. To this end, we rewrite Equation (5.15) as

µ
d

dµ
C2
W (µ) = 2γTWC

2
W (µ). (5.19)

Then we can combine both equations (5.14) and (5.15) into a linear equation

µ
d

dµ
CB(µ) = γTBCB(µ), (5.20)

where

CB(µ) =

(
4C2

W (µ)
CBν (µ)

)
and γTB =

(
2γW 0
γBν γν

)
. (5.21)

The renormalisation group equations for the penguin sector are given by

µ
d

dµ
CPν (µ) = γνC

P
ν (µ) + 4

∑

i=±

γPi,νCi(µ)CA(µ), (5.22)

µ
d

dµ
C±(µ) = γT±C±(µ). (5.23)

The anomalous dimension tensor γP±,ν governs the mixing of the double insertion of Q± and

QA into Q̃ν (see Figure 5.6), while γ± describes the self-mixing of Q± and was computed
in [87]. The anomalous dimensions read:

γ
P (0)
±,ν = 2(1 ± 3), γ

P (e)
±,ν = 0, γ

P (es)
±,ν =

52

3
(1 ± 3). (5.24)

We have defined the matrix γP± as

γ
P (k)
±,ν = −1

2
γ
A(k)
±,ν −

(
1

2
− 4

3
sin2 θW

)
γ
V (k)
±,ν , (5.25)

with the superscripts A and V denoting the contributions stemming from double insertion
of (Qq±, Q

q
A) and (Qq±, Q

q
V ), respectively. The LO result agrees with [22, 25]. The other

contributions are new.
The anomalous dimension of QA vanishes and the renormalisation group equations in the
penguin sector is the linear equation

µ
d

dµ
CP (µ) = γTPCP (µ), (5.26)
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where

CP (µ) =




4C+(µ)CA
4C−(µ)CA
CPν (µ)


 , γTP =


 γT±

γP+,ν
γP−,ν

0 0 γν


 . (5.27)

The renormalisation group equations for single insertions can be solved explicitly using the
method described in Chapter 2.

5.2.3 Below µc

At µc, i.e. the scale of the charm quark mass, the charm quark is integrated out and removed
as a degree of freedom. All necessary matrix elements are given in [22, 25] – no new contri-
butions arise to the orders considered here. There are some new terms stemming from the
expansion of mc(µc) about mc(mc) in these expressions, though, and we collect these results
for convenience.
The matching in the box sector leads to the following matrix elements:

rB(1)
τ (µc) = 5 +

4xτ
1 − xτ

lnxτ + 4 ln
µ2
c

m2
c

, (5.28)

where xτ = m2
τ/m

2
c and mc = mc(µc). Neglecting the lepton masses for the electron and

muon, the above formula yields

rB(1)
e,µ (µc) = 5 + 4 ln

µ2
c

m2
c

. (5.29)

We have defined the matrix elements for lepton flavour l by

〈QBl (µc)〉 =
αs(µc)

4π
r
B(1)
l (µc)〈Q̃ν〉(0), (5.30)

where 〈QBl (µc)〉 denotes the double insertion of the operators in the box sector. In the penguin
sector we find

r
P (1)
± (µc) = (1 ± 3)

(
1 − ln

µ2
c

m2
c

)
, (5.31)

where

〈QP±(µc)〉 =
αs(µc)

4π
r
P (1)
± (µc)〈Q̃ν〉(0), (5.32)

and 〈QP±(µc)〉 denotes the double insertion of the operators in the penguin sector.

5.2.4 Final Analytic Expression for Pc(X)

Now all that remains to do is to combine all relevant terms and compute the box and penguin
contributions to the function X l(xc) defined in Equation (5.1). Here we closely follow [25].
Let us start with the box contribution. We expand the result as

C lB(µc) = κc
xc(mc)

16

(
4π

αs(µc)
C
l(0)
B (µc) +

4πα

αs(µc)2
C
l(e)
B (µc) +

α

αs(µc)
C
l(es)
B (µc)

)
(5.33)
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and express the running charm quark mass mc(µc) in terms of initial condition mc(mc),

xc(µc) = κc

(
1 +

αs(µc)

4π
ξ(1)c +

α

αs(µc)
ξ(e)c +

α

4π
ξ(es)c

)
xc(mc), (5.34)

where we defined κc = η
(γ

(0)
m /β0)

c and ηc = αs(µc)/αs(mc), with the individual contributions

ξ(1)c =

(
γ

(1)
m

β0
− γ

(0)
m β1

β2
0

)
(1 − η−1

c ) , ξ(e)c =
γ

(e)
m

β0
(ηc − 1) ,

ξ(es)c =

(
γ

(es)
m

β0
− βesγ

(0)
m

β2
0

− β1γ
(e)
m

β2
0

)
ln ηc +

γ
(e)
m

β0

(
γ

(0)
m β1

β2
0

− γ
(1)
m

β0

)
(1 − η−1

c )(1 − ηc).

(5.35)

We find the following expansion coefficients for C lB :

C
l(0)
B (µc) = CB(0)

ν (µc),

C
l(e)
B (µc) = CB(e)

ν (µc) +CB(0)
ν (µc)ξ

(e)
c + 4C

(0)
W (µc)

2ρ
B(e)
l (µc),

C
l(es)
B (µc) = CB(es)

ν (µc) + CB(e)
ν (µc)ξ

(1)
c +CB(1)

ν (µc)ξ
(e)
c + CB(0)

ν (µc)ξ
(es)
c

+ 4C
(0)
W (µc)

2ρ
B(es)
l (µc) + 4C

(0)
W (µc)

2ρ
B(e)
l (µc)ξ

(1)
c

+ 8C
(0)
W (µc)C

(e)
W (µc)ρ

B(1)
l (µc) + 4C

(0)
W (µc)

2ρ
B(1)
l (µc)ξ

(e)
c . (5.36)

We obtain the parameters ρBl by inserting the expansion of mc(µc) into the expressions for
rBl (see Sec. 5.2.3):

ρB(1)
τ = rB(1)

τ (mc) +
4

xτ − κc

(
κc lnκc −

xτ (1 − κc)

1 − xτ
lnxτ

)
,

ρB(e)
τ = 0 , ρB(es)

τ = −
4κcξ

(e)
c

[
κc − xτ

(
1 − ln xτ

κc

)]

(κc − xτ )2
.

(5.37)

The corresponding expressions for the electron and the muon, where we can neglect the
masses, are given by

ρB(1)
e,µ = rB(1)

e,µ (mc) − 4 ln κc , ρB(e)
e,µ = 0 , ρB(es)

e,µ = −4ξ(e)c . (5.38)

The penguin contribution to the function X l(xc) can be obtained in the same way. Expanding
the Wilson coefficients CP (µc) as

CP (µc) = κc
xc(mc)

32

(
4π

αs(µc)
C

(0)
P (µc) +

4πα

αs(µc)2
C

(e)
P (µc) +

α

αs(µc)
C

(es)
P (µc)

)
, (5.39)
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MW (80.403 ± 0.029) GeV [88] αs(MZ) 0.1176 ± 0.0020 [88]

MZ (91.1876 ± 0.0021) GeV [88] α(MZ) 1/127.9 [88]

Mt (172.6 ± 1.4) GeV [89] sin2 θMS
W 0.23122 ± 0.00015 [88]

mb(mb) (4.164 ± 0.025) GeV [90] GF 1.166 37 × 10−5GeV−2 [88]

mc(mc) (1.286 ± 0.013) GeV [90] λ 0.2255 ± 0.0007 [91]

MH (155 ± 40) GeV – |Vcb| (4.15 ± 0.09) × 10−2 [92]

mτ (1776.99+0.29
−0.26) MeV [88] ρ̄ 0.141+0.029

−0.017 [92]

η̄ 0.343 ± 0.016 [92]

Table 5.1: Input parameters used in our numerical analysis.

we find the following contributions:

C
(0)
P (µc) = CP (0)

ν (µc),

C
(e)
P (µc) = CP (e)

ν (µc) + CP (0)
ν (µc)ξ

(e)
c + 4C

(0)
A (µc)

∑

i=±

C
(0)
i (µc)ρ

P (e)
i (µc),

C
(es)
P (µc) = CP (es)

ν (µc) + CP (e)
ν (µc)ξ

(1)
c + CP (1)

ν (µc)ξ
(e)
c + CP (0)

ν (µc)ξ
(es)
c

+ 4
∑

i=±

(
ρ
P (es)
i (µc) + ρ

P (e)
i (µc)ξ

(1)
c + ρ

P (1)
i (µc)ξ

(e)
c

)
C

(0)
i (µc)C

(0)
A (µc)

+ 4
∑

i=±

ρ
P (1)
i (µc)

(
C

(e)
i (µc)C

(0)
A (µc) + C

(0)
i (µc)C

(e)
A (µc)

)

+ 4
∑

i=±

ρ
P (e)
i (µc)C

(1)
i (µc)C

(0)
A (µc). (5.40)

Again we obtain the parameters ρPi by inserting the expansion of mc(µc) into the expressions
for rPi :

ρ
P (1)
± = r

P (1)
± (mc) + (1 ± 3) ln κc, ρ

P (e)
± = 0, ρ

P (es)
± = (1 ± 3)ξ(e)c . (5.41)

The final result for X l is then

X l(xc) = CP (µc) + C lB(µc). (5.42)

The corresponding expressions for CP (µc) and C lB(µc) can be found in Equations (5.33)
and (5.39), respectively. Equation (5.5) then yields the contribution to the branching fraction.

5.3 Final Results and Numerical Discussion

Having all necessary ingredients at hand we will discuss the numerical implications of our
results, where we use the input parameters given in Table 5.1. Our numerical procedure
follows closely the one of Reference [25]. In particular we use the numerical solution of the
renormalisation group equations of the program RunDec [93] to compute αs(µc) from αs(MZ)
and neglect all terms proportional to βes. We have checked numerically that this is indeed
justified.
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µc [GeV]

P
c

32.752.52.2521.751.51.251
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Figure 5.7: Pc(X) as a function of µc at NNLO QCD (dashed dotted line), including LO QED (dotted
line), and NLO electroweak corrections (solid line). The dashed line shows Pc(X) at NNLO QCD
where the definition xc = m2

c/M
2
W is used.

The dependence of Pc(X) on the parameter µc can be seen in Figure 5.7. We use central
values for all relevant input parameters of Table 5.1 and fix µb = 5GeV and µW = 80GeV.
The dashed line shows Pc(X) as a function of µc including the NNLO QCD corrections, as
computed in [25] where the parameter xc equals m2

c/M
2
W . The dashed-dotted line shows the

same quantity, but using our improved definition of xc, see Equation (5.3). We observe that
this line is shifted by about 0.5% compared to Pc(X) using the conventional definition of xc.
The dotted and the solid lines show the results including LO QED and the NLO electroweak
corrections, respectively. We see that including the full electroweak corrections, Pc(X) is
increased by another 1.5% as compared to the pure NNLO QCD result with the improved
definition of xc. Also the cancellation of the scheme dependence between the LO QED and
the NLO electroweak contribution is clearly visible.
The explicit analytic expression for Pc(X) including the complete NNLO corrections is so
complicated and long that we derive an approximate formula. Setting λ = 0.2255 and
mt(mt) = 163.0GeV we derive an approximate formula for Pc(X) that summarises the dom-
inant parametric and theoretical uncertainties due to mc(mc), αs(MZ), µc, µW , and µb. It
reads

Pc(X) = 0.38049

(
mc(mc)

1.30GeV

)0.5081 (αs(MZ)

0.1176

)1.0192

1 +

∑

i,j

κijL
i
mc
Ljαs




± 0.008707

(
mc(mc)

1.30GeV

)0.5276(αs(MZ)

0.1176

)1.8970

1 +

∑

i,j

ǫijL
i
mc
Ljαs


 ,

(5.43)

where

Lmc = ln

(
mc(mc)

1.30GeV

)
, Lαs = ln

(
αs(MZ)

0.1176

)
, (5.44)
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κ10 = 1.6624 κ01 = −2.3537 κ11 = −1.5862 κ20 = 1.5036 κ02 = −4.3477

ǫ10 = −0.3537 ǫ01 = 0.6003 ǫ11 = −4.7652 ǫ20 = 1.0253 ǫ02 = 0.8866

Table 5.2: The coefficients κij and ǫij arising in the approximate formula for Pc(X).

and the sum includes the expansion coefficients κij and ǫij given in Table 5.2. The above for-
mula approximates the central value of the full NNLO QCD result plus electroweak corrections
with an accuracy of ±0.05% in the ranges 1.15 GeV ≤ mc(mc) ≤ 1.45 GeV, 0.114 ≤ αs(MZ) ≤
0.122, while the scale uncertainty for varying 1.0 GeV ≤ µc ≤ 3.0 GeV, 40 GeV ≤ µW ≤
160 GeV, and 2.5 GeV ≤ µb ≤ 10.0 GeV is correct up to ±2.3% in Equation (5.43). The un-
certainties due to mt(mt), and the different methods of computing αs(µc) from αs(MZ), which
are not quantified above, are all below ±0.2%. For λ = 0.2255 we find Pc(X) = 0.372±0.015,
where 42% of the error are related to the remaining theoretical uncertainty and 58% to the
uncertainties in mc and αs. In the future one could utilise the correlation of mc and αs in
Reference [90] to further reduce the parametric uncertainty.
Finally we provide an updated number for the branching ratio:

B
(
K+ → π+νν̄(γ)

)
= (8.51+0.57

−0.62 ± 0.20 ± 0.36) × 10−11. (5.45)

The first error stems from the uncertainties in the CKM parameters. The second error is
related to the uncertainties in mc, mt, and αs, where all three quantities contribute in equal
shares. The dependence on MH is completely negligible (below one per mil). The last error
quantifies the remaining theoretical uncertainty. Here the main contributions stem from the
uncertainty in δPc,u and Xt, where we used an error of 2%. In detail, the contributions to
the theory error are (κ+

ν : 6%, Xt : 38%, Pc : 17%, δPc,u : 39%), respectively. All errors have
been added in quadrature.



Chapter 6

Conclusions

Kaon decays play an important role in flavour physics. The parameter ǫK , describing indirect
CP violation in the decay KL → ππ, is one of the main ingredients of the global fit of the
unitarity triangle, and the only one related to the Kaon sector. The rare decay K+ → π+νν̄,
together with its CP -violating counterpart KL → π0νν̄, offers one of the cleanest windows
to new physics.

Here, in contrast to other interesting observables in flavour physics, hadronic uncertainties
are well under control. In case of the rare decays, the hadronic matrix elements can be
extracted with very high precision from the set of Kℓ3 decays [28], whereas in case of ǫK
the determination of the matrix elements using lattice QCD is improving rapidly [9]. This
situation motivates the extension of the existing perturbative calculations.

In this thesis we have calculated higher order corrections to the parameter ǫK and the branch-
ing ratio for K+ → π+νν̄.

In Chapter 4 we have computed all ingredients necessary for an analysis of the mixed charm-
top contribution η3 to ǫK in renormalisation-group improved perturbation theory at the
NNLO level. In particular, we have calculated the three-loop anomalous dimension ten-
sor describing the mixing of the relevant dimension-six operators into the operator Q̃S2. We
have determined the initial condition of the corresponding Wilson coefficient by a matching
calculation at the electroweak scale and computed the renormalisation group evolution down
to the charm-quark scale, taking into account the corrections at the bottom-quark threshold.
Finally, we have performed a matching calculation onto the effective three-flavour theory,
where the charm quark is integrated out.

Our results are in complete agreement with the previously unconfirmed NLO results in the lit-
erature [17] and hence constitute the first check by an independent calculation. Furthermore,
we have extended the calculation to the NNLO for the first time.

As a check of our results, we have explicitly verified the locality of the UV divergences, the
gauge-parameter independence of the anomalous dimensions and the Wilson coefficients, and
the vanishing of the mixing of evanescent into physical operators.

In Chapter 5 we have calculated the O(α) and O(ααs) anomalous dimensions and the elec-
troweak matching corrections of the charm quark contribution relevant for the rare decay
K+ → π+νν̄. The parametric dependence of the relevant parameter Pc(X) and its theoreti-
cal uncertainty is summarised in an approximate but very accurate formula.

Pc(X) is increased by up to 2% as compared to the previously known results [25]. This change
is of the same order of magnitude as the remaining scale uncertainties after the NNLO QCD
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calculation. Together with the recently achieved very precise determination of the hadronic
matrix elements and further improvements on the long-distance contribution of the charm
quark [83], the theoretical prediction of the branching ratio B(K+ → π+νν̄) will reach an
exceptional degree of precision, with the uncertainties mainly due to the CKM parameters.
The latter errors will be reduced in the coming years by the B-physics experiments.
Until now seven events of the decay K+ → π+νν̄ have been observed [32]. A precise measure-
ment of the branching ratio at future experiments will provide a unique test of the flavour
sector of the SM and its extensions.
In the future we will pursue two main projects related to the work described above. On the one
hand, we will finalise the NNLO matching calculation for the pure charm-quark contribution
η1 to ǫK [94]. This is the last piece needed for a complete NNLL analysis of η1 and, together
with the NNLL analysis of η3, will significantly reduce the remaining scale uncertainty, which
is presently dominating the error of the theoretical prediction. On the other hand, we will
compute the full two-loop electroweak matching corrections for the top-quark contribution to
K+ → π+νν̄ [95], which is also of great relevance for the decay KL → π0νν̄. This calculation
will further reduce the theoretical uncertainties of the Standard Model prediction of the
branching ratio, leaving these two decay modes among the cleanest observables in flavour
physics.
To summarise, the results obtained in this thesis represent a major step towards a highly
improved theoretical prediction of two very important precision observables in Kaon physics,
namely, ǫK and the branching ratio of the decay mode K+ → π+νν̄. Both these observables
play an outstanding role in our quest for the fundamental laws of nature.



Appendix A

Renormalisation Constants for
Double Insertions

In this chapter we give the explicit values of all Z factors needed for the renormalisation of the
mixing of two dimension-six operators into the dimension-eight operators. We display only
the 1/ǫ-pole part; the higher pole parts can be obtained using Equations (2.71) and (2.120)
to (2.123). Entries which are not needed for our calculation are indicated by a star. In order
to get more compact expressions, we set Nc = 3 and Nf = 5. In the matrices related to double

insertions, the component (ẐQ̃)ij denotes an insertion of the two dimension-six operators Qi
and Qj, given in the basis

(Q1, . . . , Q15) = (Q1, . . . , Q6, E
(1)
1 , . . . , E

(1)
4 , E

(2)
1 , . . . , E

(2)
4 , Qeom) , (A.1)

mixing into the dimension-eight operator Q̃. We have set to zero all contributions which are
not proportional to λcλt as they do not contribute to η3.

The 1/ǫ-pole part of the mixing of the Q1,...,6 into Q̃7 and ẼF is given by

Ẑ
(1,1)

Q̃7
=




−11
18 −1

3 0 0 −16 2
3

−1
3 −1 0 0 −12 −4

0 0 0 0 0 0

0 0 0 0 0 0

−16 −12 0 0 0 0
2
3 −4 0 0 0 0




, Ẑ
(1,1)

ẼF
=




− 7
12 −1

2 0 0 0 1

−1
2 0 0 0 0 −6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 −6 0 0 0 0




. (A.2)
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All other pole parts vanish. The remaining Z factors are given by

Ẑ
(1,1)

Ẽ
(1)
7

=




1
144 − 1

24 0 0 − 8
3 − 1

18 − 1
4

3
2 320 20

3 − 11
9

22
3 6720 140 0

− 1
24

1
4 0 0 −2 1

3
3
2 −9 240 −40 22

3 −44 5040 −840 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 8
3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
18

1
3 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
4

3
2 0 0 0 0 16

9 − 32
3 −10240 − 640

3 ∗ ∗ ∗ ∗ 0
3
2 −9 0 0 0 0 − 32

3 64 −7680 1280 ∗ ∗ ∗ ∗ 0

320 240 0 0 0 0 −10240 −7680 0 0 ∗ ∗ 0 0 0
20
3 −40 0 0 0 0 − 640

3 1280 0 0 ∗ ∗ 0 0 0

− 11
9

22
3 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

22
3 −44 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

6720 5040 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

140 −840 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




,

(A.3)

Ẑ
(1,1)

Ẽ
(1)
8

=




7
48

1
8 0 0 0 1

6 − 21
4 − 9

2 0 −20 − 77
3 −22 0 −420 0

1
8 0 0 0 0 −1 − 9

2 0 0 120 −22 0 0 2520 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
6 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

− 21
4 − 9

2 0 0 0 0 112
3 32 0 640 ∗ ∗ ∗ ∗ 0

− 9
2 0 0 0 0 0 32 0 0 −3840 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

−20 120 0 0 0 0 640 −3840 0 0 ∗ ∗ 0 0 0

− 77
3 −22 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

−22 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

−420 2520 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




,

(A.4)
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Ẑ
(1,1)

Ẽ
(2)
7

=




0 0 0 0 0 0 1
144 − 1

24 −16 − 1
3 − 1

18
1
3 336 7 0

0 0 0 0 0 0 − 1
24

1
4 −12 2 1

3 −2 252 −42 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

144 − 1
24 0 0 0 0 − 5

36
5
6 512 32

3 ∗ ∗ ∗ ∗ 0

− 1
24

1
4 0 0 0 0 5

6 −5 384 −64 ∗ ∗ ∗ ∗ 0

−16 −12 0 0 0 0 512 384 0 0 ∗ ∗ 0 0 0

− 1
3 2 0 0 0 0 32

3 −64 0 0 ∗ ∗ 0 0 0

− 1
18

1
3 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

1
3 −2 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

336 252 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

7 −42 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A.5)

Ẑ
(1,1)

Ẽ
(2)
8

=




0 0 0 0 0 0 7
48

1
8 0 1 − 7

6 −1 0 −21 0

0 0 0 0 0 0 1
8 0 0 −6 −1 0 0 126 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7
48

1
8 0 0 0 0 − 35

12 − 5
2 0 −32 ∗ ∗ ∗ ∗ 0

1
8 0 0 0 0 0 − 5

2 0 0 192 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

1 −6 0 0 0 0 −32 192 0 0 ∗ ∗ 0 0 0

− 7
6 −1 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

−1 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

−21 126 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A.6)
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Ẑ
(1,1)

Ẽ
(3)
7

=




0 0 0 0 0 0 0 0 0 0 1
144 − 1

24 −40 − 5
6 0

0 0 0 0 0 0 0 0 0 0 − 1
24

1
4 −30 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
144 − 1

24 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 − 1
24

1
4 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0
1

144 − 1
24 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

− 1
24

1
4 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

−40 −30 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 5
6 5 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A.7)

Ẑ
(1,1)

Ẽ
(3)
8

=




0 0 0 0 0 0 0 0 0 0 7
48

1
8 0 5

2 0

0 0 0 0 0 0 0 0 0 0 1
8 0 0 −15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 7
48

1
8 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 1
8 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0
7
48

1
8 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

1
8 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
5
2 −15 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (A.8)



8
1

The finite renormalisation of the evanescent operators is given by

Ẑ
(1,0)

Q̃7
=




0 0 0 0 0 0 44
3 8 −2560 320

3 880 480 −197120 24640
3 0

0 0 0 0 0 0 8 24 −1920 −640 480 1440 −147840 −49280 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 320 240 0 0 5376 4032 0 0 0

0 0 0 0 0 0 − 40
3 80 0 0 −224 1344 0 0 0

44
3 8 0 0 320 − 40

3
1936

3 352 92160 −3840 ∗ ∗ ∗ ∗ 0

8 24 0 0 240 80 352 1056 69120 23040 ∗ ∗ ∗ ∗ 0

−2560 −1920 0 0 0 0 92160 69120 0 0 ∗ ∗ 0 0 0
320
3 −640 0 0 0 0 −3840 23040 0 0 ∗ ∗ 0 0 0

880 480 0 0 5376 −224 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

480 1440 0 0 4032 1344 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

−197120 −147840 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
24640

3 −49280 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




. (A.9)
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The two-loop contributions read

Ẑ
(2,1)

Q̃7
=




− 85
108

743
36 − 11

6 − 125
72 295 − 1543

6
3874

9
2236

3
276640

3 − 121880
9 ∗ ∗ ∗ ∗ 0

743
36 − 47

6 −7 − 91
12 −132 −374 2164

3 112 63040 − 113360
3 ∗ ∗ ∗ ∗ 0

− 11
6 −7 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 125
72 − 91

12 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

295 −132 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 1543
6 −374 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

3874
9

2164
3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2236
3 112 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

276640
3 63040 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 121880
9 − 113360

3 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




,

(A.10)

Ẑ
(2,1)

ẼF

=




505
72

371
24 − 11

4
35
48

105
2

141
4 535 598 −10160 6140 ∗ ∗ ∗ ∗ 0

371
24

93
4 − 21

2 − 35
8 −558 −189 562 780 −42720 −28200 ∗ ∗ ∗ ∗ 0

− 11
4 − 21

2 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
35
48 − 35

8 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
105
2 −558 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

141
4 −189 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

535 562 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
598 780 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−10160 −42720 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

6140 −28200 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




,

(A.11)
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Ẑ
(2,0)

Q̃7
=




0 0 0 0 0 0 35863
81

7762
27

174752
3

41168
3 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 8086
27 − 188

9 92576 28304 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
35863

81
8086
27 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

7762
27 − 188

9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
174752

3 92576 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
41168

3 28304 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (A.12)

Ẑ
(2,1)

Ẽ
(1)
7

=




− 1063
1728

397
288

13
72 − 89

864
1511
36 − 22237

432
1915
216

1093
72

62387
9 − 75391

108 ∗ ∗ ∗ ∗ 0
397
288 − 217

48
5
12 − 55

144
469
6 − 2585

72
517
72 − 661

12
13862

3
1519
18 ∗ ∗ ∗ ∗ 0

13
72

5
12 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 89
864 − 55

144 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
1511
36

469
6 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 22237
432 − 2585

72 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
1915
216

517
72 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1093
72 − 661

12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
62387

9
13862

3 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 75391
108

1519
18 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




,

(A.13)
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Ẑ
(2,1)

Ẽ
(1)
8

=




199
64

379
96 − 13

24
25
288 − 383

12
1277
144 − 1559

72 − 1117
24 − 6067

3
2375

4 ∗ ∗ ∗ ∗ 0
379
96

97
16 − 5

4 − 25
48 − 229

2 − 1079
24 − 541

24 − 3
4 −2662 − 7605

2 ∗ ∗ ∗ ∗ 0

− 13
24 − 5

4 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
25
288 − 25

48 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 383
12 − 229

2 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
1277
144 − 1079

24 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 1559
72 − 541

24 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
− 1117

24 − 3
4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 6067
3 −2662 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

2375
4 − 7605

2 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




,

(A.14)

Ẑ
(2,1)

Ẽ
(2)
7

=




− 1
6912 − 11

288 0 0 − 17
36

1031
864 − 1907

1728
269
288

9277
36 − 58487

432 ∗ ∗ ∗ ∗ 0

− 11
288

1
24 0 0 − 11

12
121
144

341
288 − 161

48
2531

6 − 7645
72 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 17
36 − 11

12 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
1031
864

121
144 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 1907
1728

341
288 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

269
288 − 161

48 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
9277
36

2531
6 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 58487
432 − 7645

72 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




,

(A.15)
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Ẑ
(2,1)

Ẽ
(2)
8

=




− 5
768 − 5

96 0 0 17
12 − 55

288
2443
576

571
96 − 239

4
3095
144 ∗ ∗ ∗ ∗ 0

− 5
96 − 1

8 0 0 11
4

55
48

499
96

105
16 − 579

2 − 1619
24 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
17
12

11
4 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 55
288

55
48 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

2443
576

499
96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

571
96

105
16 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 239
4 − 579

2 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
3095
144 − 1619

24 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




, (A.16)

Ẑ
(2,1)

Ẽ
(3)
7

=




0 0 0 0 0 0 − 1
6912 − 11

288 − 101
72

3703
864 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 − 11
288

1
24 − 43

12
473
144 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 1
6912 − 11

288 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
− 11

288
1
24 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 101
72 − 43

12 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0
3703
864

473
144 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




, (A.17)
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Ẑ
(2,1)

Ẽ
(3)
8

=




0 0 0 0 0 0 − 5
768 − 5

96
101
24 − 215

288 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 − 5
96 − 1

8
43
4

215
48 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 5
768 − 5

96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
− 5

96 − 1
8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

101
24

43
4 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

− 215
288

215
48 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

∗ ∗ 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0




. (A.18)

Of the three-loop insertions, we computed only the part related to an insertion of an operator
belonging to the current-current subspace:

Ẑ
(3,1)

Q̃7
=




7000225
34992 + 374

81 ζ3
2248069
11664 + 221

27 ζ3

2248069
11664 + 221

27 ζ3 −388957
1944 + 536

9 ζ3


 . (A.19)

We have also calculated the self mixing of the dimension-eight operators, in the basis given

by
(
Q̃7, ẼF , Ẽ

(1)
7 , Ẽ

(1)
8 , Ẽ

(2)
7 , Ẽ

(2)
8

)
:

Z̃(1,1) =




2 3 −1
6

1
2 0 0

0 −4 5
12

1
12 0 0

0 0 13
3 −13 −1

6
1
2

0 0 −5 −59
3

1
4

7
12

0 0 1568
3 −288 −67

3 3

0 0 96 −1888
3 −9 41

3




, Z̃(1,0) =




0 0 0 0 0 0

2 0 0 0 0 0

−48 0 0 0 0 0

48 0 0 0 0 0

−3840 0 0 0 0 0

3840 0 0 0 0 0




;

(A.20)

Z̃(2,1) =




457
36

349
24

223
216

389
72 − 77

1152 − 35
384

−53
3

46
9 −137

108
275
108 − 43

1152
73

1152

1000 748 15097
216 −5425

72
29
108

277
36

152 1092 −8333
72 −10571

216
157
72

1471
216

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




, (A.21)
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Z̃(2,0) =




0 0 0 0 0 0
197
18 0 0 0 0 0

−752
3 0 0 0 0 0

824
3 0 0 0 0 0

∗ 0 0 0 0 0

∗ 0 0 0 0 0




. (A.22)

The 1/ǫ-pole of the mixing of Q̃7 into Q̃7 reads [96]

Z̃
(3,1)

Q̃7Q̃7
=

8725

36
− 1408

9
ζ3 . (A.23)

Finally, we provide the mixing of the relevant dimension-six operators into Q̃ν to order
O(ααs). Again, only the 1/ǫ-pole part is needed for computing the anomalous dimensions:

Ẑ
(es,1)

Q3qQ4q,Q̃ν
= −52

9
, Ẑ

(es,1)

Q±QA,Q̃ν
=

13

3
(1 ± 3) . (A.24)

The Z factors needed for the renormalisation of the dimension-six operators can be found in
the literature [23].
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Appendix B

Anomalous Dimensions

In this appendix we collect various quantities needed for the renormalisation group analysis.
We start with the explicit expressions for the QCD β function and the anomalous dimension
of the up-type quark mass [97–100]:

β0 = 11 − 2

3
f , β1 = 102 − 38

3
f , β2 =

2857

2
− 5033

18
f +

325

54
f2 ,

βe = 0 , βes = −8

9

(
fu +

fd
4

)
,

(B.1)

where fu and fd denote the number of up- and down-type quark flavours, and f = fu + fd,
and

γ(0)
m = 8 , γ(1)

m =
404

3
− 40

9
f , γ(2)

m = 2498 −
(

4432

27
+

320

3
ζ3

)
f − 280

81
f2 ,

γ(e)
m =

8

3
, γ(es)

m =
32

9
.

(B.2)

We continue with the explicit expressions for the anomalous dimensions describing the mixing
of the dimension-six operators in the basis (Q1, . . . , Q6) for the physical operators and the
definition of evanescent operators given by (2.45) and (2.47) [23,46,63,101]. It is given in the
LO approximation by

γ
(0)
Q =




−4 8
3 0 −2

9 0 0

12 0 0 4
3 0 0

0 0 0 −52
3 0 2

0 0 −49
9 −160

9 + 4
3Nf

4
9

5
6

0 0 0 −256
3 0 20

0 0 −256
9 −544

9 + 40
3 Nf

40
9 −2

3




. (B.3)
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The NLO expression reads

γ
(1)
Q =




− 145
3

+ 16
9
Nf −26+ 40

27
Nf − 1412

243
− 1369

243
134
243

− 35
162

−45+ 20
3
Nf − 28

3
− 416

81
1280
81

56
81

35
27

0 0 − 4468
81

− 29129
81

− 52
9
Nf

400
81

3493
108

− 2
9
Nf

0 0 − 13678
243

+ 368
81
Nf − 79409

243
+ 1334

81
Nf

509
486

− 8
81
Nf

13499
648

− 5
27
Nf

0 0 − 244480
81

− 160
9
Nf − 29648

81
− 2200

9
Nf

23116
81

+ 16
9
Nf

3886
27

+ 148
9
Nf

0 0 77600
243

− 1264
81

Nf − 28808
243

+ 164
81
Nf − 20324

243
+ 400

81
Nf − 21211

162
+ 622

27
Nf




,

(B.4)

and at the NNLO we have

γ
(2)
Q =




− 1927
2

+ 257
9
Nf+ 40

9
N2

f
+(224+ 160

3
Nf)ζ3 475

9
+ 362

27
Nf−

40
27
N2

f
−( 896

3
+ 320

9
Nf)ζ3

307
2

+ 361
3
Nf−

20
3
N2

f
−(1344+160Nf )ζ3 1298

3
− 76

3
Nf−224ζ3

0 0

0 0

0 0

0 0

269107
13122

− 2288
729

Nf−
1360
81

ζ3 − 2425817
13122

+ 30815
4374

Nf−
776
81
ζ3

69797
2187

+ 904
243

Nf + 2720
27

ζ3
1457549

8748
− 22067

729
Nf−

2768
27

ζ3

− 4203068
2187

+ 14012
243

Nf−
608
27
ζ3 − 18422762

2187
+ 888605

2916
Nf + 272

27
N2

f
+( 39824

27
+160Nf)ζ3

− 5875184
6561

+ 217892
2187

Nf+ 472
81
N2

f
+( 27520

81
+ 1360

9
Nf)ζ3 − 70274587

13122
+ 8860733

17496
Nf−

4010
729

N2
f
+( 16592

81
+ 2512

27
Nf)ζ3

− 194951552
2187

+ 358672
81

Nf−
2144
81

N2
f
+ 87040

27
ζ3 − 130500332

2187
− 2949616

729
Nf + 3088

27
N2

f
+( 238016

27
+640Nf)ζ3

162733912
6561

− 2535466
2187

Nf + 17920
243

N2
f
+( 174208

81
+ 12160

9
Nf)ζ3 13286236

6561
− 1826023

4374
Nf−

159548
729

N2
f
−( 24832

81
+ 9440

27
Nf)ζ3

− 343783
52488

+ 392
729

Nf + 124
81
ζ3 − 37573

69984
+ 35

972
Nf + 100

27
ζ3

− 37889
8748

− 28
243

Nf−
248
27
ζ3

366919
11664

− 35
162

Nf−
110
9
ζ3

674281
4374

− 1352
243

Nf−
496
27
ζ3

9284531
11664

− 2798
81

Nf−
26
27
N2

f
−( 1921

9
+20Nf)ζ3

2951809
52488

− 31175
8748

Nf−
52
81
N2

f
−( 3154

81
+ 136

9
Nf)ζ3 3227801

8748
− 105293

11664
Nf−

65
54
N2

f
+( 200

27
− 220

9
Nf)ζ3

14732222
2187

− 27428
81

Nf + 272
81
N2

f
− 13984

27
ζ3

16521659
2916

+ 8081
54

Nf−
316
27
N2

f
−( 22420

9
+200Nf)ζ3

− 22191107
13122

+ 395783
4374

Nf−
1720
243

N2
f
−( 33832

81
+ 1360

9
Nf)ζ3 − 32043361

8748
+ 3353393

5832
Nf−

533
81
N2

f
+( 9248

27
− 1120

9
Nf)ζ3




.

(B.5)

We also need the anomalous dimensions for the subspace of the current-current operators
Q1 and Q2 in the diagonal basis. They have been given explicitly in [25] for the choice of
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evanescent operators as in appendix C and read:

γ
(0)
± = ±6

(
1 ∓ 1

3

)
,

γ
(1)
± =

(
−21

2
± 2

3
Nf

)(
1 ∓ 1

3

)
,

γ
(2)
± =

1

300
(349049 ± 201485) − 1

1350
(115577 ∓ 9795)Nf

∓ 130

27

(
1 ∓ 1

3

)
N2
f ∓

(
672 + 80

(
1 ∓ 1

3

)
Nf

)
ζ3 .

(B.6)

In addition we need the anomalous dimensions of the operator Q̃S2, which are given for our
choice of evanescent operators by

γ
(0)
77 = 4 ,

γ
(1)
77 =

20

9
Nf −

109

3
,

γ
(2)
77 =

2879

6
+

43

9
Nf −

20

9
N2
f −

(
160

3
Nf + 672

)
ζ3 .

(B.7)
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Appendix C

Change of the Operator Basis

In this appendix we describe the change of the operator basis. We are concerned with two
cases: The transformation to the “traditional” operator basis in order to compare our results
with the literature, and the transformation of the subspace of current-current operators to
the diagonal basis. In the first case we only need the NLO transformation formula, whereas
in the second case a NNLO transformation is necessary.

C.1 Transformation to the Traditional Operator Basis

The calculation of the NLO QCD corrections to η3 in [17] has been performed in a different
basis for the physical operators than the one chosen by us. It is given by

Q′qq
′

1 = (s̄αLγµq
α
L) ⊗ (q̄′

β
Lγ

µdβL) ,

Q′qq
′

2 = (s̄αLγµq
β
L) ⊗ (q̄′

β
Lγ

µdαL) ,

Q′
3 = (s̄αLγµd

α
L) ⊗

∑
q
(q̄′

β
Lγ

µqβL) ,

Q′
4 = (s̄αLγµd

β
L) ⊗

∑
q
(q̄′

β
Lγ

µqαL) ,

Q′
5 = (s̄αLγµd

α
L) ⊗

∑
q
(q̄′

β
Rγ

µqβR) ,

Q′
6 = (s̄αLγµd

β
L) ⊗

∑
q
(q̄′

β
Rγ

µqαR) . (C.1)

Note that we have expressed the operators in terms of left- and right-handed fermion fields, in
contrast to the definition used in [17]. The evanescent operators chosen in [17] are equivalent
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to the following set of operators:

E′qq
′(1)

1 = (s̄αLγµ1µ2µ3q
α
L) ⊗ (q̄′

β
Lγ

µ1µ2µ3dβL) − (16 − 4ǫ)Q′qq
′

1 ,

E′qq
′(1)

2 = (s̄αLγµ1µ2µ3q
β
L) ⊗ (q̄′

β
Lγ

µ1µ2µ3dαL) − (16 − 4ǫ)Q′qq
′

2 ,

E′(1)
3 = (s̄αLγµ1µ2µ3d

α
L) ⊗

∑
q
(q̄′

β
Lγ

µ1µ2µ3qβL) − (16 − 4ǫ)Q′
3 ,

E′(1)
4 = (s̄αLγµ1µ2µ3d

β
L) ⊗

∑
q
(q̄′

β
Lγ

µ1µ2µ3qαL) − (16 − 4ǫ)Q′
4 ,

E′(1)
5 = (s̄αLγµ1µ2µ3d

α
L) ⊗

∑
q
(q̄′

β
Rγ

µ1µ2µ3qβR) − (4 + 4ǫ)Q′
5 ,

E′(1)
6 = (s̄αLγµ1µ2µ3d

β
L) ⊗

∑
q
(q̄′

β
Rγ

µ1µ2µ3qαR) − (4 + 4ǫ)Q′
6 . (C.2)

It turns out that in order to transform from our operator basis to the traditional one the
following four evanescent operators must be introduced at the one-loop level in addition to
the evanescent operators given in Equation (2.45) (see Reference [23]):

E
(1)
5 = (sLγµdL) ⊗

∑
q
(qγµγ5q) −

5

3
Q3 +

1

6
Q5 ,

E
(1)
6 = (sLγµT

adL) ⊗
∑

q
(qγµγ5T

aq) − 5

3
Q4 +

1

6
Q6 ,

E
(1)
7 = (sLγµ1µ2µ3dL) ⊗

∑
q
(qγµ1µ2µ3γ5q) −

32

3
Q3 +

5

3
Q5 ,

E
(1)
8 = (sLγµ1µ2µ3T

adL) ⊗
∑

q
(qγµ1µ2µ3γ5T

aq) − 32

3
Q4 +

5

3
Q6 , (C.3)

The transformation matrices R, M , W , and U representing the basis transformation according
to Equation (3.14), as well as the finite renormalisation induced by this transformation, can
be found in [23]. The parts of the transformation matrices relevant to us are given by

R =




2 1
3 0 0 0 0

0 1 0 0 0 0

0 0 −1
3 0 1

12 0

0 0 −1
9 −2

3
1
36

1
6

0 0 4
3 0 − 1

12 0

0 0 4
9

8
3 − 1

36 −1
6




, M =




2 1
3 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 8 0 −1
2 0

0 0 0 0 8
3 16 −1

6 −1

0 0 0 0 −2 0 1
2 0

0 0 0 0 −2
3 −4 1

6 1




, (C.4)

W =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −6 0 0 0

0 0 0 0 0 −6 0 0




, U =




4 0 0 0 0 0

0 4 0 0 0 0

0 0 −112 0 16 0

0 0 0 −112 0 16

0 0 −10
9 0 1

9 0

0 0 0 −10
9 0 1

9

0 0 −136
9 0 10

9 0

0 0 0 −136
9 0 10

9




, (C.5)
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whereas the matrix V vanishes. They correspond to the bases

Q′ = (Q′
1, . . . , Q

′
6) , E′ =

(
E′(1)

1 , . . . , E′(1)
6

)
, (C.6)

and

Q = (Q1, . . . , Q6) , E =
(
E

(1)
1 , . . . , E

(1)
8

)
(C.7)

in the notation of (3.14). The one-loop contribution to the finite renormalisation in the
dimension-six sector is given by

Z ′(1,0)
QQ =




−7
3 −1 0 0 0 0

−2 2
3 0 0 0 0

0 0 178
27 −34

9 −164
27

20
9

0 0 1 − Nf

9
Nf

3 − 25
3 −Nf

9 − 2
Nf

3 + 6

0 0 −160
27

16
9

146
27 −2

9

0 0
Nf

9 − 2 6 − Nf

3
Nf

9 + 3 −Nf

3 − 11
3




. (C.8)

The finite renormalisation relevant for the mixing of dimension-six into dimension-eight op-
erators has never been calculated before. We find, in the notation of (4.24):

Ẑ ′
(1,0)

QQ,Q̃7
=




0 0

0 0

−24 −8

−8 −8

24 8

8 8




. (C.9)

C.2 Transformation to the Diagonal Operator Basis

Here we describe the change from our operator basis in the current-current subspace to the so-
called diagonal basis, as defined in equation (2.38). The following definition of the evanescent
operators ensures a diagonal anomalous dimension matrix through NNLO [25]:

Eqq
′

1 = (s̄Lγµ1µ2µ3T
aqL)(q̄′Lγ

µ1µ2µ3T adL) −
(
16 − 4ǫ− 4ǫ2

)
Qqq

′

1 ,

Eqq
′

2 = (s̄Lγµ1µ2µ3qL)(q̄′Lγ
µ1µ2µ3dL) −

(
16 − 4ǫ− 4ǫ2

)
Qqq

′

2 ,

Eqq
′

3 = (s̄Lγµ1µ2µ3µ4µ5T
aqL)(q̄′Lγ

µ1µ2µ3µ4µ5T adL) −
(

256 − 224ǫ− 5712

25
ǫ2
)
Qqq

′

1 ,

Eqq
′

4 = (s̄Lγµ1µ2µ3µ4µ5qL)(q̄′Lγ
µ1µ2µ3µ4µ5dL) −

(
256 − 224ǫ − 10032

25
ǫ2
)
Qqq

′

2 .

(C.10)
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The transformation matrices R, M , U , and V in the notation of (3.14) are now given by [25]1

R =

(
1 2

3

−1 1
3

)
, M =




1 0 0 0

0 1 0 0

20 0 1 0

0 20 0 1



, U =




4 0

0 4

144 0

0 144



, V =




4 0

0 4
3712
25 0

0 8032
25



,

(C.11)

and the matrixW vanishes. These matrices correspond to the following bases of operators (the
roles of the primed and unprimed set of operators is reversed with respect to Reference [25]):

Q′ = (Q+, Q−) , E′ =
(
Eqq

′

1 , Eqq
′

2 , Eqq
′

3 , Eqq
′

4

)
, (C.12)

and

Q = (Q1, Q2) , E =
(
E

(1)
1 , E

(1)
2 , E

(2)
1 , E

(2)
2

)
. (C.13)

The finite renormalisation constants for the dimension-six sector can be extracted from [25]
and read up to the NNLO:

Z ′(1,0)
QQ =

(
−7

3 2

1 2
3

)
, Z ′(2,0)

QQ =

(
−23833

900 − 35Nf

54
27
2 +

5Nf

9
11
4 +

5Nf

18 −11609
450 +

5Nf

27

)
. (C.14)

Again, additional contributions to the mixing of dimension-six into dimension-eight operators
arise. In the case at hand, the finite renormalisation needed for the transformation at NLO
level vanishes. For the NNLO contribution we find:

Ẑ ′
(2,0)

QQ,Q̃7
=




53
18 −1

2
7
3 −1

0 0

0 0

160 −32
4
3 −20

3




. (C.15)

1Note that there are some typos in Ref. [25].
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