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1 Introduction and summary

Suppose X1,...,X,,...is asequence of independent copies of a random d-dimensional column
vector X. Writing ”~” for equality in distribution, we consider the problem of testing the

hypothesis
(1.1) Ho:X — p ~ p — X for some pue RY

of symmetry about some unknown center, against general alternatives. This problem has been
a topic of intensive research in the univariate case d = 1 (see e.g., Aki (1981), Alemayehu,
Giné, and Pena (1993), Antille, Kersting, and Zucchini (1982), Bhattacharya, Gastwirth,
and Wright (1982), Boos (1982), Csérgé and Heathcote (1982), Csérgé and Heathcote (1987),
Doksum, Fenstad, and Aaberge (1977), Hollander (1988), Koutrouvelis (1985), Koziol (1985),
and Schuster and Barker (1987)). In the multivariate case d > 1, the testing problem (1.1) is
known as testing for reflected symmetry, in order to distinguish it from the more special
problem of testing for spherical symmetry (see, e.g. Baringhaus (1991), Gupta and
Kabe (1993), Kariya and Eaton (1977), King (1980), Koltchinskii and Li (1998), Zhu,
Fang, and Zhang (1995) and Zhu, Fang, and Li (1997)).

Our approach of tackling (1.1) is similar to that of Heathcote, Rachev, and Cheng
(1995) and Neuhaus and Zhu (1998). Unlike these papers, however, we stress the hith-
erto neglected aspect of affine invariance. To put this issue into perspective, notice that
the testing problem under discussion is invariant not only with respect to translations,
but more generally with respect to transformations of the kind z — Az + b, z € R,
where A is a nonsingular (d x d)-matrix and b € R?. Consequently, a decision in favor
or against Hy should be the same for X;,..., X,, and AX;+0,...,AX, +b. This goal
is achieved if the test statistic T},, say, has the property

T(AX:+0b,...,AX, +b) = To(X1,...,X,)

for each nonsingular (d x d)-matrix A and any b € R?. To this end, define the stan-
dardized data

(1.2) v, = S;VA(X;-X,), j=1,...,n,

where X,, = n~! Z?Zl X denotes the sample mean, S, 2 s the symmetric square root



of the inverse of the sample covariance matrix
1 .
Su = — (X - X)) (X, - X)),
j=1

and the prime stands for transpose. We assume that .5,, is nonsingular with probability
one. This condition holds, e.g., if n > d and the distribution of X puts mass zero on
cach (d — 1)-dimensional hyperplane (see e.g. Eaton and Perlman (1973)).

Notice that the distribution of X is symmetric about p if, and only if, the imaginary

part of the characteristic function (c.f.) of X — p vanishes, i.e., if
E[sin(t'(X —p))] = 0 foreach te R%

This fact was the starting point of many papers on testing for symmetry (Csorgé
and Heathcote (1982), Csorgé and Heathcote (1987), Feuerverger and Mureika (1977),
Ghosh and Ruymgaart (1992), Heathcote et al. (1995), Koutrouvelis (1985), Neuhaus
and Zhu (1998)).

In the spirit of the class of BHEP tests for multivariate normality (Henze and

Wagner, 1997), our test statistic is

(1.3) T, = /Rd (%Zsin(t’}/})) exp(—aHtHQ) dt,

where a is some positive constant. In view of

/2 2
[ eostterespali®y ar = (Z) " exp (<151,

the trigonometric identity sinusinv = (cos(u —v) — cos(u + v)) /2 yields
T2 & 1 ) 1 )
) T = o S oxp (=501 = Yl?) —exp (— v+ ¥R

which shows that a computer routine implementing 7;, , is readily available. Since
1Y = Vill? = (X; = Xi)'S,H(X; — Xi),
1Y + Vil|? = (X; — X, + X3 — X)) S (X, — X + X — Xo),

the statistic 7}, , is affine invariant. Moreover, not even the square root Sy, 2 of Sl

is needed.



The introduction of the parameter a in the definition of 7),, allows for some
flexibility regarding the power of a test for symmetry that rejects Hy for large values of
T,.q- In Section 2, it will be seen that T,, , has an alternative representation in terms of
an L?-distance between two nonparametric kernel density estimators. Moreover, T}, ,
is related to a linear combination of two measures of multivariate skewness as a — oco.
Section 3 gives theoretical results on the limit behavior of T}, , under H, and under
contiguous alternatives to symmetry as n — o0o. Since the limit distribution of 7, ,
under Hy depends on the unknown underlying distribution, some extra randomization
is necessary in order to obtain an asymptotically distribution-free procedure. To this
end, a permutational limit theorem for 7;, , is given in Section 4. In Section 5, we prove
the consistency of the test against general alternatives. The paper concludes with the

results of a Monte Carlo study.

2 Discussion of the weight function exp(—al|t||?)

This section sheds some light on the role of the weight function exp(—||¢||?) figuring in
(1.3). Our first result shows that T, , has an alternative representation in terms of an

L?-distance between two nonparametric kernel density estimators.

Proposition 2.1 Let

n

(21)  fulw) = %ZW b (_W)

]:
Then

Ta = " [ ()= fu=0)

PrOOF. Let L?(IR%) denote the Hilbert space of measurable complex-valued functions
on IR? that are square integrable with respect to Lebesgue measure. The Fourier

transform
a(x) = / exp(ix't)u(t) dt
Rd
of u € L?*(IR%) belongs to L?(IR%) and, by Plancherel’s theorem,

(2.2) /Rd\a(a;)ﬁdm _ (zw)d/Rd u(t)]2 dt.
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Now, the key observation is the equation

(£S5 anew) o (- -

j=1

n

S|

exp (it'Y; = S111*) -

o |

J

2
exp (—it'y; = 5 1tI1)

M:l
A

1
n <

j_
Write P,, for the empirical distribution of Y7,...,Y,, and let Q,, be the empirical dis-
tribution of —V1,..., =Y,. The function n~' 377 exp (it'Y; — al|t[|*/2) is the Fourier
transform of the convolution P, * N'(0,aly), and n=' 37", exp (—it'Y; — al|t|*/2) is
the Fourier transform of the convolution Q,, * N(0,aly). Since P, * N(0,al;) and

Q, *N(0, al,) have densities f,(x) and f,(—z), respectively, the assertion follows from

(2.2). m

Notice that f,(z) figuring in (2.1) is a nonparametric kernel density estimator with
Gaussian kernel (27)%2 exp(—||t||?/2) and bandwidth a'/2, applied to the standardized
data Yi,...,Y,, and that fn(—x) is the same density estimator, applied to the data after
reflection at the origin. Thus, the role of a is that of a smoothing parameter. However,
whereas density estimators let the bandwidth depend on the sample size, we keep a fixed
in what follows in order to achieve positive asymptotic power against alternatives that
approach the null hypothesis at the rate n='/2 (see Section 3). A similar observation
was made in connection with the class of BHEP tests for multivariate normality (see
Henze and Wagner (1997) and Giirtler (2000)).

We close this section by revealing a peculiar connection between 7),, and two

measures of multivariate skewness. The first measure, introduced by Mardia (1970), is

n

> 7Y’

J,k=1

1
bia = -

The second measure, which was proposed by Méri, Rohatgi, and Székely (1993) and
studied further by Henze (1997b), is

1
n?

R ANARAR

jk=1

bra =

Notice that both b; 4 and Bl,d reduce to squared (Pearson) sample skewness in the

univariate case. The following result follows by straightforward algebra.
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Proposition 2.2 We have

lim % @t T = 24 + 3bia
Thus, for large values of 'the bandwidth’ a, T}, , is approximately a weighted sum of
by 4 and l~71,d. Interestingly, apart from a factor, the same weights appear in the context
of testing for multivariate normality, when forming the ’limit’ of the BHEP class of
test statistics (Henze, 1997a). For further examples of ’limit’ statistics connected with

weighted L2-type test statistics based on empirical transforms, see Baringhaus, Giirtler,

and Henze (2000).

3 Asymptotic distribution theory

We first study the limit distribution of 7;,, under H,. To this end, the distribution
of X is supposed to be symmetric about some value. In view of affine invariance, we
assume E[X] = 0 and F[XX'] = I, the identity matrix of order d. We make the
further assumption E||X||* < oo.

To prove the convergence in distribution of 7}, , under Hj, a convenient setting
is the separable Hilbert space £2 of measurable real-valued functions on IR? that are
square integrable with respect to the measure exp(—a||t||?)dt. The norm in £* will be

denoted by
1/2
lbller = ([ biePexpl-aliPlar)

The notation — means weak convergence of random elements of £2 and random
variables, and Op(1) stands for a sequence of random variables that is bounded in
probability. Likewise, op(1) is a sequence of random variables that converges to 0 in

probability.

Theorem 3.1 Let E[X]| =0, E[XX'] = I, E|| X||* < oo, and suppose the distribution
of X is symmetric, i.e. ®(t) = Elcos(t'X)],t € R?, where ®(-) is the characteristic

function of X. Furthermore, let

1 n
Wh(t) = ﬁZsin(t’Y}), t € R,
j=1
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where Y1, ..., Y, are given in (1.2). Then there exists a centered Gaussian process W(+)

on L% having covariance kernel

(3.1) K(s,t) = E[sin(sX)sin(t'X)] — ®(t)E[t'X sin(s'X)]
—D(s)E[' X sin(t' X)] + s't P(s)D(t)

such that
(32) Wa() = W()

and

(33) To. 2 /R W (1) exp(—allt)t.

PROOF. Since the reasoning is similar to that given in Henze and Wagner (1997), it
will only be sketched. Notice that Y; = X, +A;, where A; = (S{l/Q—Id)Xj 52X,

Define the auxiliary processes

Wi(t) = % Z (sin(t'X;) + t'Aj cos(t' X)),

1 n
j=1
We will prove

(3.5)  Wal) = Wa()llez = op(1),

(3.6)  [IWu() =Wi()llez = op(1),
and
(37) Wi() = W(),

whence (3.2) and (3.3) follow.
To prove (3.5), note that sin(t'Y;) = sin(t'X;) + t'Aj cos(t'X;) + €,,(t), where
len, (8)] < [IEIPIA NP Since n='/2 377 [|A]|* = 0p(1) (cf. p.9 of Henze and Wagner



(1997)), we have [W,(t) — W,(t)| < |[[t|[Pop(1) and thus (3.5). To show (3.6), start
with

(3.8)  W,(t) — Wit) = An(t) — Ba(t) — C,(2),
where

1 n
— -1/2 - ) Iy
An(t) t'/n(S, 1) - jgl X cos(t'X;),
I
_ -1/2 - Iy
B,(t) = t'v/n(S, )X, - ]Ezl cos(t' X;),

Co(t) = t'v/nX, (%zn:cos(t'Xk) — @(t)).

k=1

Notice that [A,(t)] < Op(1)||t[[[[n~" 327, X cos(t'X;)|| and thus, apart from a factor
that is bounded in probability, an upper bound for ||A,||%. is the V-statistic

1 n
Vor = — Z/Rd 4] X Xy cos(t' X;) cos(t' X) exp(—allt||*)dt.

k=1
Since, by the strong law of large numbers for V-statistics, V,,; tends to zero almost
surely (note that E[X cos(t'X)] = 0), we have || A, ||z2 = op(1). Furthermore, |B,(t)| <
op(D[It]l [n=' 3775, cos(t' X;)| and thus || B,[|Z. < op(1)Vy2, where

1 n
Voo = 3 [ cost X, cost X sl -l
k=17 R

Since V2 — [ ©(t)?||t||* exp(—al|t||*)dt almost surely, it follows that || B, | z2 = op(1).
Finally, |C,,(t)| < Op(1) [[t] [n~! 327_ (cos(t'X;) — @(t)) | and thus [|Cy|[z2 < Op(1)

Vi3, where
1 & )
Vos = e Z /d [£]]? (cos(¥' X;) — ®(t)) (cos(¥' Xi) — ®(t)) exp(—al|t]|*)dt.
j k=171

Since V,, 3 — 0 almost surely (notice that Efcos(t' X )] = ®(t)), we have ||C,]|| .2 = op(1).
Using (3.8) and the triangle inequality for || - || z2, (3.6) follows.
By a standard central limit theorem for i.i.d. random random elements in Hilbert

spaces, Wi (+) converges to some centered Gaussian process on £2. Since W}(-) has the
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covariance kernel given in (3.1), assertion (3.7) follows, and the proof of Theorem 3.1

is completed.

We now consider the behavior of T}, , under contiguous alternatives to symmetry.

Theorem 3.2 Suppose X,1,...,Xpn, n > d+ 1, is a triangular array of rowwise

independent and identically distributed random variables having Lebesque density

fulz) = folx) <1 + kjg) , reRY

where fo is a density which is symmetric around 0, i.e., we have fo(z) = fo(—2),

z € R, and h is a bounded function such that [ h(z)fy(x)dz = 0. Then
Walt) == W) +c()

where Wy, (+) and the Gaussian process W(-) are defined in the statement of Theorem

3.1. The shift function c(-) is given by
c(t) = / [sin(t'z) — ¢'®(t)x] h(x) fo(x)dz,
Rd

where ®(t) = [Lacos(t'y) foy) dy. Moreover,

(39) Tua == [ (W(t) +c(t)’ exp(—allt])dt.

Rd
PROOF. Mutatis mutandis, the reasoning closely follows the proof of Theorem 3.2
of Henze and Wagner (1997) and will thus not be given. Denoting by Q™ and P
the joint distribution of X,,,...,X,, under f, and under fy, respectively, the shift
function originates as the limit covariance, as n — oo, of W*(t)and log dQ™ /dP™,

where W is defined in (3.4). W

4 A permutational limit theorem for T, ,

Since both the finite-sample and the asymptotic null distribution of 7, , depend on the
underlying unknown distribution of X, a test that rejects H, for large values of T}, ,
cannot be performed without some sort of additional randomization. We propose to

use the following permutation procedure.



Independently of the sequence Xi, Xso,..., let Uy, Us,... be a sequence of i.i.d.
random variables such that P(U; = 1) = P(U; = —1) = 1/2. All random variables
are assumed to be defined on a common probability space (2,4, P). For a fixed
w € Q, the permutation procedure conditions on the realizations y; = Yj(w) (j =
1,...,n) of the scaled vectors Y1, ..., Y,, which were defined in (1.2). The basic idea is
that, under Hy, Y7, ..., Y, should have a distribution that is approximately symmetric
around 0. Consequently, the point pattern Uyyy, ..., U,y,, which arises from randomly
reflecting a point around 0 with probability 1/2 or otherwise keeping it unchanged,
independently of the other points, should also 'look symmetrically distributed’ around

0. The permutation statistic we propose is
@y 1ho = [ W) exp(-altli
Rd
which is based on the so-called permutation process

<M>Mw:%2w&ww—62mw®w}

k=1

At first sight, it seems strange to consider WX () and not the ’obvious’ process
VP = % z": sin(t'Ujy;) = % z”: U; sin(t'y;)
j=1 j=1

and the corresponding permutation statistic [ (Vf(t))2 exp(—al|t|[*)dt (cf. (1.3)).
The simple reason is that, unlike WX (.), the almost sure (i.e., for almost all sequences
X1 (w), Xa(w), .. .) limit process of V() under Hy has a covariance kernel that is dif-
ferent from the kernel (3.1).

We first give a representation of Tf , that is suitable for computational purposes.

Proposition 4.1 Let Z; =Uyy; (j=1,...,n), and Z, =n~" Z?Zl Z;. Then

™

. 1202 (Zi — 2;)Z,\? 12 = Z;|*
P _ nll” i~ %j)%n _ N4 — 4
Tna = 2a/2n 21 {(2 N 2a {1 - 2a } ) exp< 4a )

INES
1Z0]? { (Z+%W}2 1Zi + Z;]I*
Henll  Jq 4 2T 25)%n A AL N
+( 2a * 2a P 4a
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PROOF. Since cos(t'yy) = cos(t'Zy), we have

WP() = % Zl {sin(t’Zj) - (% ;cos(t’Zk)> tfzj}

and thus

1 n
TP = = in(t'Z;) sin(t' Z; —allt||?)dt
L= [ sin(tZysint Z;) expl—al)

3,j=1

2 n
- > / sin(t'Z;) cos(t' Zu)t' Z; exp(—al|t||?)dt
R

i,5,k=1
1 n
+= ) / cos(t' Zy) cos(t' Z)t' Zit' Z; exp(—al|t||?)dt
ijki=1 7/ R?
I, . 2 o 1 « o
(43> - Ezjl(zvj)_ﬁ Z IQ(Zujak)_FE Z I3<Z7j)k7l)
i,j=1 i,k=1 1,7,k 0=1

(say). Use the identities sin usinv = (cos(u — v) — cos(u + v)) /2, sinwu cosv = (sin(u — v)

+sin(u +v))) /2, cosucosv = (cos(u — v) 4 cos(u + v)) /2 and the formulae

/ _ 2 _ (T d/2 _||C||2
/Rdcos(tc)exp( allt||?) dt = <a> exp( )

sin(e)tbexp(—alll?) dt = o dpexp -1

cos(t'c)t'bt'y exp(—al|t||?) dt = L/Z(Qab/ — bd) ex _||C||2
» 7 exp s (206 Y)exp (= -

to obtain
/2
L(i,j) = 2qi2 [91(Zi, Z;) = 92(Zi, Z;)]
/2
L. g k) = g (Zi = 20 Z59U(Zi 23) + (Zi + Z4) Z; 92(Zi, Zi)]
/2
I3(i,j, k1) = Rqd/2i2 (202, Z; — (Zx — Z0)' Zi(Zk — Z1)' Z;) 91 (Zk, Z1)

+(2aZ.Z; — (Z + 2))' Zi(Zy, + Z))' Z;) 92(Zi, Z)]

where g1(u,v) = exp (—[lu —v|[*/(4a)) and ga(u,v) = exp (—[u+v|?)/(4a)). Plug-
ging these expressions into (4.3), the result is obtained after straightforward algebra.
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For the special case Uy = Uy = ... = U, = 1, we have Z; = y; and 7., = 0. Conse-
quently, .7, takes the value

< lyi — ;1 lys + y;l°
2nad/? Z [exp <_ 4a ) - P (_ 4a )} ’

ij=1
which is T}, (1, - - ., Yn) (as it should be!).

To prove the (conditional) convergence in distribution of the permutation process W
to the Gaussian process W figuring in Theorem 3.1, we use the following Hilbert space
Central Limit Theorem of Kundu et al. (Kundu, Majumdar, and Mukherjee (2000),

Theorem 1.1). Therein, H denotes a real separable infinite-dimensional Hilbert space.

Lemma 4.2 Let {e, : k > 0} be an orthonormal basis of H. For each n > 1, let
Wity Waa, ..., Wy be a finite sequence of independent H-valued random elements with
zero means and finite second moments, and put W, = Z?:l Whyi. Let C,, be the co-

variance operator of W,,. Assume that the following conditions hold:
a) lim, .o (Cpre, e)) = ag (say) exists for all k >0 and 1 > 0.
b) llmnﬂoo Zzo:()<cnek7 €k> = ZZO:O A < 00.

c) lim, o Ly, (g,e;) = 0 for every e > 0 and every k > 0, where, for b € H,
Lu(e,b) = 3271 B ((Wy, 0)* 1{|(Way, b)| > €}).

Then W, = N (0,C) in H, where the covariance operator C is characterized by
(Chyer) = Y 72 o(h, ej)ag, for every 1 > 0.

The main result of this section is as follows.

Theorem 4.3 For almost all sample sequences X (w), Xo(w), ..., we have
W) = W()
and
1, [ W exp(-ale])at,
R

as n — 0o, where W is the Gaussian process figuring in the statement of Theorem 3.1.

12



PROOF. Let D* be the set of all w € Q for which X,,(w) — 0, n~? Y X @) —
E| X" for r = 1,2, S, (w) — I, and n~?max;<j<, || X;(w)|| — 0 as n — oco. By the
law of large numbers and Theorem 5.2 of Barndorff-Nielsen (1963), D* has measure
one. For s,t € R?, put

1 n
D, = {w €Q: lim - ZCOS(S'X;”) = E[cos(s’X)]} :

Jj=1

n—oo 1,
Jj=1

1 n
D,E}S) = {w €Q: lim — Zsin(s'X;") sin(t'X7’) = Elsin(s'X) Sin(t'X)]} :

DE?S) — {w €N: 711520 % Zn: s’ X7 sin(t' X)) = E[s'X sin(t'X)]} .
j=1
where, for short, X¢ = X;(w). Furthermore, let D = D* N {Nser Dy} N {N¢ser (Dt(’ls) N
D,g?s))}, where T is a countable dense set of IR?. Being an intersection of countably
many sets of
measure one, D has measure one as well. Then D = D*N{N cga Ds}{N; ;e (Dt(}s)ﬂ
DEQS))} by the Lipschitz continuity of the sine and cosine function.

In what follows, fix w € D, and put
1 n
(t) = =3 cos(t'Vi),
n
k=1

where Y = Y (w). By some algebra, it follows that

n

7}1—{20 % Z (sin(t'Y}") — co(t)t'Y) = 0,

J=1

: 1 - 3 w w w : w w w
nh—{goﬁ Z (sin(t'Y) — 2 ()'Y) (sin(s'Y)) — ¢ (s)s'Y) = K(t,s).
j=1
For simplicity of notation, we will omit the superscript w in the sequel. The proof will
be completed by verifying conditions a) - ¢) of Lemma 4.2 for W, ..., W,,, where
Wo;(t) = Uja;(t)//n and a;(t) = sin(t'Y;) — ¢, (t)t'Y;. To this end, let C, be the
covariance operator of W,, = > 7" W,,; (= WP and put

Kalsst) = EIVA)Wal0] = 3 as(s)as(t).

13



As complete orthonormal set {e;} in Ly, one can choose products of univariate Her-
mite polynomials (see, e.g., Rayner and Best (1989), p. 100). Since, for w € D and

sufficiently large n,

1 n
[Kals )] < 1+~ (Y| + I8V + [1Y;8'Y5))
j=1

< T+ (sl + [1£lh—~ Z||Y||+||t|||! |I—Z||Y|I2

< 1+(lls H+HtH)2EHXH+H HHtH2EHX|!2,

and since lim,, ., K, (s,t) = K(s,t) for w € D, dominated convergence yields
lim (Cex,e) — lim / / Ko(s, t)e(s)en(t) P (ds) P (dt)
= / / K(s,t)ex(s)e(t)P,(ds)P,(dt)
= C’ek, 6[

where P,(dt) is shorthand for exp(—al|t||?)dt, and C is the covariance operator of W.
Setting ay; = (Cey, €;), this proves condition a) of Lemma 4.2.
To verify condition b) of Lemma 4.2, use monotone convergence, Parseval’s equal-

ity and dominated convergence to show
(e} (e e}
. o . 2
fim, 3 (Cuewen) = Jim D Blew, W
k=0 k=0
— lim BW, %
n—oo

_ /OO lim K, (t, ¢) P,(dt)

= / K(t,t)P,(dt)
= E|W|z

-

[(Whaj,ex)l = n72

IN
l\.’)\»—‘
=
Q
b
('b
=
:
!
/\
U
=

14



<t/ |Ujaj<t>|2Pa<dt>)l/2 el
< o (fes 2|rtn2|mu2>Pa<dt>)l/2

< ni (m + ke max ||Yj||>
Sjsn

for some positive constants k; and k9. By the definition of the set D, the last expression

converges to zero, whence
E ((Wajer)® H{[(Wej,ex)| > e}) = 0

for sufficiently large n, and thus lim, .., L,(¢, ;) = 0. By Lemma 4.2, W,, = N (0, C)

in £2. Since the above reasoning holds for every w € D, the assertion follows. W

5 Consistency

In this section, we prove the consistency of a test of symmetry that rejects Hy for
large values of T, , against general alternatives. To this end, let X have an arbitrary
distribution satisfying E||X||? < oo. Moreover, we assume that the distribution of
X puts mass zero on each (d — 1)-dimensional hyperplane to ensure the almost sure
invertibility of the sample covariance matrix S,, if n > d. In view of affine invariance,

assume further that F[X]| =0 and E[XX'] = I,.

Theorem 5.1 Suppose the distribution of X is not symmetric (around 0). Then

lim P (Tho > cho(a)) = 1,

n—oo
where ¢}, (o) denotes the (1—a)-quantile of the distribution of the permutation statistic
P
n,a’

ProoF. We first prove

(5.1) liminf "¢ > /R (E(sin(t X)))? exp(—allt|?) dt

n—00 n -

almost surely. Since the right-hand side of (5.1) is strictly positive if the distribution

of X is not symmetric (around 0), we have liminf, .., 7}, , = oo almost surely, which
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entails consistency under such an alternative provided that the critical value, which
is computed from the distribution of the permutation statistic 777 , is bounded in

n,a’

probability almost surely. To prove (5.1), notice that, by (1.3) and Fatou’s lemma,

2
Ty R
lir{riiogf T > /Rd hgglf (E;sm(t')/})> exp(—al|t]|?) dt
almost surely. Since, by the definition of Y}, we have
[Sin(eY;) — sin( ;)| < e+ (8,2 = L)X, — ;2K .

use the strong law of large numbers to show lim,, .o n™' Y77 sin(t'Y;) = Efsin(t'X)]
almost surely, whence (5.1) follows.
It remains to prove that the distribution of the permutation statistic TTI: . I8

bounded in probability almost surely as n — oco. Of course, this implies almost sure

P

boundedness of the critical value ¢, ,

(o), which is a quantile from that distribution.

By Markov’s inequality (notice that Tf, , s nonnegative), it suffices to prove
(5.2) limsup Ep[T},] < oo
almost surely, where Ep(-) denotes expectation with respect to the binary random
variables Uy, ..., U, (cf. Section 4).
To prove (5.2), start with the representation of 7| ,f ., given in Proposition 4.1.Putting

_ 1 1
Zi=ow(~31% - 20F) . Zh=ew (412 + 4l?)

and C,, = 7%2/(2a%?n), we have

Ep(Tr,) = Cu)_ Al(n),

v=1
where
Al(n) == EP[Z;k Xk]7
Gk=1
1 — ~ -
Ag(n) = % Ep [HZnHQ(Zj,k—}_Z;,—k)}’
Gk=1
1 — -
As(n) = = D e (2= 20 2]
Gk=1
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Ay(n) = —= Z Ep [(Z; + Z) 2023,
gk=1
IR 2,
Asn) = =2 > e [({(Zi— 20 %) 25,
g.k=1
I & 5
As(n) = —75 > Ep [{(Zj + 24) Z,) ij}
k=1
If 5 # k, then
1 1 1 1
- +1 = . 2 - . 2
EplZ;, = Zj}] = Jep (—@Hyj yil ) + 4exp( L RS )

. : ly; +yill* ) + 1 : | [&
1 &P~ Y5+ U g P Wi = Yk

=0
and thus
(Alm)‘ - 21(1—513 {exp(—%“ZjW)})‘
. é(l—exp (—éuyjuz))‘
< n.

Writing ¢r(-) for trace, notice that
Solyil? = D> (= 2)'S, (w5 — Tn)
j=1

- Ztr (S M (@ — Zn)(xj — Z0)') = tr (S, nSy) = tr(nly)
j=1
= nd,

whence

_ 1 « 1 «
EpllZal® = — Y Ee|Z2] = — D yuE [U;U

=1 =1
1 & d
= EZ ”%’”2 I
=1
Since 0 < Z;; < 1 and 0 < ijk < 1, it follows that |As(n)| < nd/a.
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To tackle A3(n), notice that Ep[(Z; — Zx)'Z,Z; | = 0 if v ¢ {j,k}. We therefore

have
1 « _
Ag(n) = _%ZEP [(ZJ_Z]C)/(Z‘]—’_Z]C)ZJ’]{;]
jk=1
1 — _
9 (R ARV
k=1
and thus
1 n
[As(n)] < — > Ep [IIZ;|1* + || Z]?]
an
k=1
1 = 9 o 2nd
= Z (lysll* =+ llywll?) = 0
7,k=1
Likewise,
1 n
[Aa(n)| < %ZEP [1Z; + Zi|1?]
jk=1
2 — 4nd
< = Ep 1Z:*+ |1 Z:2] = —.
S 2 B lIAE 1A = 2

An upper bound for |As(n)]| is

1 — _
sl < 5 D e (17— ZillP1 Zul°]

7,k=1
& _
< 55 0 Be (1217 + 1200) 12l
7,k=1
L5 = d’n
= 53 2 Ul + gl Epl Zall* = —-.
7,k=1

In the same way, |Ag(n)| < (d*n)/a®. Summarizing, it follows that

d/2 7d  2d?
Ep(TF,) < T (1+—+—2),
’ a a

— 2ad/2

proving (5.2) and thus the consistency of the test for symmetry based on 7, , against

alternatives satisfying the assumptions stated at the beginning of this section. H
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6

Simulation results

To assess the actual level of the test for symmetry based on 7, ,, a simulation study

was performed for sample sizes n = 20, n = 40 and n = 60, dimensions d = 2, d = 4,

d = 6, and the following symmetric distributions:

e the d-variate Standard Normal distribution N (0, I,)

e a mixture of N(0,1;) and a d-variate normal distribution with mean zero, unit

variances and equal correlation p between components, with mixing probabilities
0.75 and 0.25, respectively. This distribution is denoted by N M, for p = 0.25
and N M., for p = 0.50.

e the multivariate uniform distribution in the hypercube [—1,1]¢, denoted by U,

e the multivariate Student’s distribution with v degrees of freedom, denoted by t,.

For each fixed combination of n, d and the underlying distribution as given above, the

following procedure was replicated 5 000 times:

1.

generate a random sample xq,...,x,

. compute the scaled residuals y1, ..., y, as defined in (1.2)

. generate 500 independent pseudo-random vectors (Uy, ..., U,), where Uy, ..., U,

are i.i.d. and P(U; =1) = P(U; = —1) =1/2.

. calculate the corresponding 500 realizations T, (j), 1 < j < 500 (say) of the

permutation statistic T}, (cf. Proposition 4.1).

. reject Hy if T, ,, computed on z1, ..., z,, exceeds the empirical 95%-quantile of

TP (5), 1 < j < 500.

Table 1 shows the percentages of rejection of Hy. Notice that the observed level

is fairly close to the nominal level 5% if d = 2 even for samples of size n = 20, but is

far below the nominal level for the case d = 6 and a = 1.0. However, our simulation

results indicate that the actual level of significance seems to approach its nominal value
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a=10 a=20 a=30 a=4.0
N(O,1;) n=20 d=2 3.9 4.2 4.4 4.3
d=14 2.1 3.7 4.6 5.1
d=26 0.3 1.6 3.4 4.5
n=40 d=2 4.5 4.9 5.2 5.2
d=14 3.6 4.6 5.2 5.4
d=26 1.7 3.8 4.8 5.5
n=60 d=2 4.6 4.8 4.8 4.9
d=14 4.2 5.1 5.5 5.5
d=26 2.5 4.0 4.7 5.2
NM;, n=20 d=2 3.7 4.0 4.1 4.2
d=14 2.0 3.8 4.5 4.9
d=206 0.2 1.7 3.4 4.6
n=40 d=2 4.7 5.0 5.2 5.1
d=14 4.0 5.0 5.6 5.8
d=26 1.6 3.8 4.8 5.2
n=60 d=2 4.5 4.7 4.9 4.9
d=14 4.1 5.2 5.5 5.8
d=206 2.7 4.3 4.9 5.2
NMy n=20 d=2 4.0 4.4 4.6 4.5
d=14 2.2 4.2 5.0 5.3
d=26 0.3 2.0 3.8 5.3
n=40 d=2 4.8 5.2 5.5 5.4
d=14 3.9 5.1 5.9 6.2
d=26 1.8 4.0 5.2 5.8
n=60 d=2 4.5 4.9 5.3 5.5
d=14 4.3 4.9 5.3 5.5
d=206 2.9 4.6 5.3 5.6
Uu n=20 d=2 3.3 3.3 3.4 3.4
d=14 1.3 2.1 2.6 2.7
d=26 0.1 0.9 1.8 2.4
n=40 d=2 4.0 3.9 3.9 3.8
d=14 3.0 3.8 4.1 4.2
d=26 0.8 2.1 2.6 3.1
n=60 d=2 4.6 4.8 4.7 4.6
d=14 3.4 4.4 4.6 4.6
d=26 1.5 2.7 3.1 3.3
t1g n=20 d=2 4.6 5.3 5.3 5.5
d=14 2.9 5.2 6.3 6.9
d=26 0.5 2.8 5.3 6.9
n=40 d=2 5.6 6.1 6.2 6.2
d=14 4.5 5.9 6.5 6.9
d=206 2.5 4.7 5.8 6.7
n=60 d=2 4.6 5.0 5.1 5.3
d=14 4.6 5.6 6.2 6.6
d=26 3.4 5.3 6.4 6.7

Table 1: Estimated level for the permutation test (nominal level:

20

5%)



5% with increasing sample size, particularly for a > 1.

To assess the power of the test based on T, ,, we simulated data from the following

alternative distributions:
e A multivariate distribution with iid centered x? marginals, denoted by x?3,
e a convolution of the distributions N'(0, I;) and x?, denoted by N + x?,

e a multivariate lognormal distribution, as described in Johnson, Balakrishnan,
and Kotz (2000), page 27, denoted by LN. The simulated case corresponds
to vectors with uncorrelated components each following (conditionally on the

remaining components) a univariate lognormal distribution.

e a multivariate Gamma distribution, as described in Johnson et al. (2000), chap-
ter 48, Sec. 3.1, denoted by I'(«r). The simulated cases correspond to vectors
with ’practically’ uncorrelated components each following a univariate gamma

distribution with shape parameter a.

Tables 2-3 show the percentages of rejection of Hy, rounded to the nearest integer. An
asterisk denotes power 100%.

Notice that power increases with the sample size. Moreover, the test becomes
progressively more powerful as we depart from ’'nearly’ symmetric distributions (for
example, the I'(10)) and approach alternative distributions which are more skewed (for
example, the I'(1)). Hence, based on level and power results, we may suggest that a test
corresponding to a larger value of a (perhaps a = 3 or 4) would be both powerful and
accurate in estimating the nominal level, although we do not claim that this statement
would be necessarily true under different sampling situations.

As additional alternative distributions, we considered non-symmetric bivariate
normal mixtures. Let A(u, p) denote a bivariate normal distribution with mean (g, p),

unit variances, and correlation p. We used the following mixtures:
e NMj3:0.5N(0,0)+ 0.5N(1,0.5)
e NM,:0.5N(0,0)+ 0.5N(1,0.9)
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a=10 a=20 a=30 a=4.0

X3 n=20 d=2 95 96 96 96
d=4 94 97 98 98

d=26 76 92 96 97

n=40 d=2 * * * *
d=4 * * * *

d=206 * * * *

n=60 d=2 * * * *
d=14 * * * *

d=26 * * * %

N+x? n=20 d=2| 25 29 31 32
d=14 18 28 33 35

d=26 5 17 25 31

n=40 d=2 55 59 60 61
d=14 57 66 69 71

d=26 47 63 69 71

n=60 d=2 78 81 82 83
d=14 85 89 90 91

d=26 82 89 91 92

LN n=20 d=2 90 92 93 94
d=14 89 94 96 97

d=26 68 89 94 96

n=40 d=2 * * * *
d=14 * * * *

d=206 * * * *

n=60 d=2 * * * *
d=14 * * * *

d=26 * * * %

Table 2: Estimated power for the permutation test

o NM; : 0.5N(0,—0.5) + 0.5N(1,0.5)
o N'Mq : 0.5N(0,—0.5) + 0.5N(1,0.9)
o N M:: 05N (0,—0.9) +0.5N(1,0.5)

o N'Msg:0.5N(0,—0.9) + 0.5 N (1,0.9)

Notice that the generalizations of the above covariance matrices with negative
correlation p to higher dimensions are not positive definite. Hence, this part of the
simulation is restricted to dimension 2. Tables 4 shows the percentages of rejection of
Hy. In general, power seems to increase with increasing differences of correlations. In

contrast to Tables 2-3, however, power does not always increase with increasing value
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a=10 a=20 a=30 a=4.0

') n=20 d=2 76 79 79 80
d=14 68 79 83 84

d=06 34 64 74 79

n=40 d=2 99 * * *

d=4 * * * *

d=20 * * * *

n=60 d=2 99 * * *

d=4 * * * *

d=206 * * * *

I'2) n=20 d=2 46 49 50 49
d=4 34 45 50 52

d=206 9 30 40 46

n=40 d=2 90 91 92 92

d=4 93 95 96 96

d=26 86 93 95 95

n=60 d=2 99 99 99 99

d=14 * * * *

d=206 * * * *

'G) n=20 d=2 33 35 35 35
d=4 21 30 34 37

d=206 4 17 25 30

n=40 d=2 76 78 78 78

d=14 77 82 84 85

d=206 64 78 82 84

n=60 d=2 94 95 96 96

d=4 96 98 98 98

d=26 95 98 98 98

') n=20 d=2 19 21 22 22
d=4 11 18 21 22

d=20 1 9 15 18

n=40 d=2 51 54 55 55

d=4 47 55 58 59

d==6 33 50 55 57

n=60 d=2 76 79 80 80

d=4 79 84 85 86

d=20 71 82 84 85

['(10) n=20 d=2 12 12 12 12
d=4 5 9 11 12

d=206 1 5 8 10

n=40 d=2 26 29 29 29

d=14 22 28 30 31

d=206 13 23 27 29

n=60 d=2 43 47 48 48

d=4 43 49 52 53

d=26 32 45 49 51

Table 3: Estimated power for the permutation test
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a=10 a=20 a=30 a=40 a=10.0

NM; n=20| 45 5.2 5.5 4.9 4.7
n=40| 5.9 6.1 6.9 7.0 6.4
n=280| 7.5 8.7 7.6 8.6 9.4

NMy n=20 8.2 10.3 11.5 11.4 11.6
n=40| 120 13.6 15.0 14.8 15.4
n=280| 213 22.0 22.7 214 234
NM;s n=20 8.1 8.0 9.0 8.2 7.9
n=40| 16.3 17.3 16.3 15.7 16.3
n=2380| 364 34.1 33.6 33.8 32.0
NMg n=20| 134 16.5 16.7 17.0 17.5
n=40| 227 24.5 25.5 25.6 27.7
n=2380| 474 44.9 45.0 44.9 43.6
NM; n=20| 26.0 26.6 27.1 27.7 25.8
n=40| 589 55.8 26.8 95.6 93.2
n=23801| 93.3 89.4 87.8 86.0 82.4
NMg n=20| 287 32.3 33.7 34.7 34.1
n=401| 55.6 55.7 55.4 04.4 53.4
n=2380| &89.3 84.7 79.8 78.3 75.0

Table 4: Estimated power for the permutation test, normal mixtures, d = 2

of the parameter a. Again, a = 3 or a = 4 seems to be a good choice, but more work

regarding the choice of a 'good’ value of a is needed.
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