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1 Introduction and summary

Suppose X1, . . . , Xn, . . . is a sequence of independent copies of a random d-dimensional column

vector X. Writing ”∼” for equality in distribution, we consider the problem of testing the

hypothesis

H0 : X − µ ∼ µ − X for some µ ∈ IRd(1.1)

of symmetry about some unknown center, against general alternatives. This problem has been

a topic of intensive research in the univariate case d = 1 (see e.g., Aki (1981), Alemayehu,

Giné, and Pena (1993), Antille, Kersting, and Zucchini (1982), Bhattacharya, Gastwirth,

and Wright (1982), Boos (1982), Csörgő and Heathcote (1982), Csörgő and Heathcote (1987),

Doksum, Fenstad, and Aaberge (1977), Hollander (1988), Koutrouvelis (1985), Koziol (1985),

and Schuster and Barker (1987)). In the multivariate case d > 1, the testing problem (1.1) is

known as testing for reflected symmetry, in order to distinguish it from the more special

problem of testing for spherical symmetry (see, e.g. Baringhaus (1991), Gupta and

Kabe (1993), Kariya and Eaton (1977), King (1980), Koltchinskii and Li (1998), Zhu,

Fang, and Zhang (1995) and Zhu, Fang, and Li (1997)).

Our approach of tackling (1.1) is similar to that of Heathcote, Rachev, and Cheng

(1995) and Neuhaus and Zhu (1998). Unlike these papers, however, we stress the hith-

erto neglected aspect of affine invariance. To put this issue into perspective, notice that

the testing problem under discussion is invariant not only with respect to translations,

but more generally with respect to transformations of the kind x 7→ Ax + b, x ∈ IRd,

where A is a nonsingular (d× d)-matrix and b ∈ IRd. Consequently, a decision in favor

or against H0 should be the same for X1, . . . , Xn and AX1 + b, . . . , AXn + b. This goal

is achieved if the test statistic Tn, say, has the property

Tn(AX1 + b, . . . , AXn + b) = Tn(X1, . . . , Xn)

for each nonsingular (d × d)-matrix A and any b ∈ IRd. To this end, define the stan-

dardized data

Yj = S−1/2
n (Xj − X̄n), j = 1, . . . , n,(1.2)

where X̄n = n−1
∑n

j=1 Xj denotes the sample mean, S
−1/2
n is the symmetric square root
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of the inverse of the sample covariance matrix

Sn =
1

n

n∑
j=1

(Xj − X̄n)(Xj − X̄n)′,

and the prime stands for transpose. We assume that Sn is nonsingular with probability

one. This condition holds, e.g., if n > d and the distribution of X puts mass zero on

each (d− 1)-dimensional hyperplane (see e.g. Eaton and Perlman (1973)).

Notice that the distribution of X is symmetric about µ if, and only if, the imaginary

part of the characteristic function (c.f.) of X − µ vanishes, i.e., if

E[sin(t′(X − µ))] = 0 for each t ∈ IRd.

This fact was the starting point of many papers on testing for symmetry (Csörgő

and Heathcote (1982), Csörgő and Heathcote (1987), Feuerverger and Mureika (1977),

Ghosh and Ruymgaart (1992), Heathcote et al. (1995), Koutrouvelis (1985), Neuhaus

and Zhu (1998)).

In the spirit of the class of BHEP tests for multivariate normality (Henze and

Wagner, 1997), our test statistic is

Tn,a =

∫

IRd

(
1√
n

n∑
j=1

sin(t′Yj)

)2

exp(−a‖t‖2) dt,(1.3)

where a is some positive constant. In view of
∫

IRd

cos(t′c) exp(−a‖t‖2) dt =
(π

a

)d/2

exp

(
−‖c‖

2

4a

)
,

the trigonometric identity sin u sin v = (cos(u− v)− cos(u + v)) /2 yields

Tn,a =
πd/2

ad/22n

n∑

j,k=1

[
exp

(
− 1

4a
‖Yj − Yk‖2

)
− exp

(
− 1

4a
‖Yj + Yk‖2

)]
,(1.4)

which shows that a computer routine implementing Tn,a is readily available. Since

‖Yj − Yk‖2 = (Xj −Xk)
′S−1

n (Xj −Xk),

‖Yj + Yk‖2 = (Xj − X̄n + Xk − X̄n)′S−1
n (Xj − X̄n + Xk − X̄n),

the statistic Tn,a is affine invariant. Moreover, not even the square root S
−1/2
n of S−1

n

is needed.
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The introduction of the parameter a in the definition of Tn,a allows for some

flexibility regarding the power of a test for symmetry that rejects H0 for large values of

Tn,a. In Section 2, it will be seen that Tn,a has an alternative representation in terms of

an L2-distance between two nonparametric kernel density estimators. Moreover, Tn,a

is related to a linear combination of two measures of multivariate skewness as a →∞.

Section 3 gives theoretical results on the limit behavior of Tn,a under H0 and under

contiguous alternatives to symmetry as n → ∞. Since the limit distribution of Tn,a

under H0 depends on the unknown underlying distribution, some extra randomization

is necessary in order to obtain an asymptotically distribution-free procedure. To this

end, a permutational limit theorem for Tn,a is given in Section 4. In Section 5, we prove

the consistency of the test against general alternatives. The paper concludes with the

results of a Monte Carlo study.

2 Discussion of the weight function exp(−a‖t‖2)

This section sheds some light on the role of the weight function exp(−‖t‖2) figuring in

(1.3). Our first result shows that Tn,a has an alternative representation in terms of an

L2-distance between two nonparametric kernel density estimators.

Proposition 2.1 Let

f̂n(x) =
1

n

n∑
j=1

1

(2πa)d/2
exp

(
−‖x− Yj‖2

2a

)
.(2.1)

Then

Tn,a =
n(2π)d

4

∫

IRd

(
f̂n(x)− f̂n(−x)

)2

dx.

Proof. Let L2(IRd) denote the Hilbert space of measurable complex-valued functions

on IRd that are square integrable with respect to Lebesgue measure. The Fourier

transform

ũ(x) =

∫

IRd

exp(ix′t)u(t) dt

of u ∈ L2(IRd) belongs to L2(IRd) and, by Plancherel’s theorem,
∫

IRd

|ũ(x)|2 dx = (2π)d

∫

IRd

|u(t)|2 dt.(2.2)
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Now, the key observation is the equation
(

1

n

n∑
j=1

sin(t′Yj)

)2

exp
(−a‖t‖2

)
=

1

4

∣∣∣∣
1

n

n∑
j=1

exp
(
it′Yj − a

2
‖t‖2

)
−

− 1

n

n∑
j=1

exp
(
−it′Yj − a

2
‖t‖2

) ∣∣∣∣
2

.

Write Pn for the empirical distribution of Y1, . . . , Yn, and let Qn be the empirical dis-

tribution of −Y1, . . . ,−Yn. The function n−1
∑n

j=1 exp (it′Yj − a‖t‖2/2) is the Fourier

transform of the convolution Pn ∗ N (0, aId), and n−1
∑n

j=1 exp (−it′Yj − a‖t‖2/2) is

the Fourier transform of the convolution Qn ∗ N (0, aId). Since Pn ∗ N (0, aId) and

Qn ∗N (0, aId) have densities f̂n(x) and f̂n(−x), respectively, the assertion follows from

(2.2).

Notice that f̂n(x) figuring in (2.1) is a nonparametric kernel density estimator with

Gaussian kernel (2π)d/2 exp(−‖t‖2/2) and bandwidth a1/2, applied to the standardized

data Y1, . . . , Yn, and that f̂n(−x) is the same density estimator, applied to the data after

reflection at the origin. Thus, the role of a is that of a smoothing parameter. However,

whereas density estimators let the bandwidth depend on the sample size, we keep a fixed

in what follows in order to achieve positive asymptotic power against alternatives that

approach the null hypothesis at the rate n−1/2 (see Section 3). A similar observation

was made in connection with the class of BHEP tests for multivariate normality (see

Henze and Wagner (1997) and Gürtler (2000)).

We close this section by revealing a peculiar connection between Tn,a and two

measures of multivariate skewness. The first measure, introduced by Mardia (1970), is

b1,d =
1

n2

n∑

j,k=1

(Y ′
j Yk)

3.

The second measure, which was proposed by Móri, Rohatgi, and Székely (1993) and

studied further by Henze (1997b), is

b̃1,d =
1

n2

n∑

j,k=1

Y ′
j Yk‖Yj‖2‖Yk‖2.

Notice that both b1,d and b̃1,d reduce to squared (Pearson) sample skewness in the

univariate case. The following result follows by straightforward algebra.
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Proposition 2.2 We have

lim
a→∞

96

nπd/2
a3+d/2 Tn,a = 2b1,d + 3b̃1,d.

Thus, for large values of ’the bandwidth’ a, Tn,a is approximately a weighted sum of

b1,d and b̃1,d. Interestingly, apart from a factor, the same weights appear in the context

of testing for multivariate normality, when forming the ’limit’ of the BHEP class of

test statistics (Henze, 1997a). For further examples of ’limit’ statistics connected with

weighted L2-type test statistics based on empirical transforms, see Baringhaus, Gürtler,

and Henze (2000).

3 Asymptotic distribution theory

We first study the limit distribution of Tn,a under H0. To this end, the distribution

of X is supposed to be symmetric about some value. In view of affine invariance, we

assume E[X] = 0 and E[XX ′] = Id, the identity matrix of order d. We make the

further assumption E‖X‖4 < ∞.

To prove the convergence in distribution of Tn,a under H0, a convenient setting

is the separable Hilbert space L2 of measurable real-valued functions on IRd that are

square integrable with respect to the measure exp(−a‖t‖2)dt. The norm in L2 will be

denoted by

‖h‖L2 =

(∫

IRd

h(t)2 exp(−a‖t‖2)dt

)1/2

.

The notation
D−→ means weak convergence of random elements of L2 and random

variables, and OP (1) stands for a sequence of random variables that is bounded in

probability. Likewise, oP (1) is a sequence of random variables that converges to 0 in

probability.

Theorem 3.1 Let E[X] = 0, E[XX ′] = Id, E‖X‖4 < ∞, and suppose the distribution

of X is symmetric, i.e. Φ(t) = E[cos(t′X)], t ∈ IRd, where Φ(·) is the characteristic

function of X. Furthermore, let

Wn(t) =
1√
n

n∑
j=1

sin(t′Yj), t ∈ IRd,
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where Y1, . . . , Yn are given in (1.2). Then there exists a centered Gaussian process W(·)
on L2 having covariance kernel

K(s, t) = E[sin(s′X) sin(t′X)]− Φ(t)E[t′X sin(s′X)](3.1)

−Φ(s)E[s′X sin(t′X)] + s′t Φ(s)Φ(t)

such that

Wn(·) D−→ W(·)(3.2)

and

Tn,a
D−→

∫

IRd

W2(t) exp(−a‖t‖2)dt.(3.3)

Proof. Since the reasoning is similar to that given in Henze and Wagner (1997), it

will only be sketched. Notice that Yj = Xj +∆j, where ∆j = (S
−1/2
n −Id)Xj−S

−1/2
n X̄n.

Define the auxiliary processes

W̃n(t) =
1√
n

n∑
j=1

(sin(t′Xj) + t′∆j cos(t′Xj)) ,

W∗
n(t) =

1√
n

n∑
j=1

(sin(t′Xj)− t′Φ(t)Xj) , t ∈ IRd.(3.4)

We will prove

‖Wn(·)− W̃n(·)‖L2 = oP (1),(3.5)

‖W̃n(·)−W∗
n(·)‖L2 = oP (1),(3.6)

and

W∗
n(·) D−→ W(·),(3.7)

whence (3.2) and (3.3) follow.

To prove (3.5), note that sin(t′Yj) = sin(t′Xj) + t′∆j cos(t′Xj) + εn,j(t), where

|εn,j(t)| ≤ ‖t‖2‖∆j‖2. Since n−1/2
∑n

j=1 ‖∆j‖2 = oP (1) (cf. p.9 of Henze and Wagner
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(1997)), we have |Wn(t) − W̃n(t)| ≤ ‖t‖2oP (1) and thus (3.5). To show (3.6), start

with

W̃n(t) − W∗
n(t) = An(t)−Bn(t) − Cn(t),(3.8)

where

An(t) = t′
√

n(S−1/2
n − Id)

1

n

n∑
j=1

Xj cos(t′Xj),

Bn(t) = t′
√

n(S−1/2
n − Id)X̄n

1

n

n∑
j=1

cos(t′Xj),

Cn(t) = t′
√

nX̄n

(
1

n

n∑

k=1

cos(t′Xk) − Φ(t)

)
.

Notice that |An(t)| ≤ OP (1)‖t‖‖n−1
∑n

j=1 Xj cos(t′Xj)‖ and thus, apart from a factor

that is bounded in probability, an upper bound for ‖An‖2
L2 is the V -statistic

Vn,1 =
1

n2

n∑

j,k=1

∫

IRd

‖t‖2X ′
jXk cos(t′Xj) cos(t′Xk) exp(−a‖t‖2)dt.

Since, by the strong law of large numbers for V -statistics, Vn,1 tends to zero almost

surely (note that E[X cos(t′X)] = 0), we have ‖An‖L2 = oP (1). Furthermore, |Bn(t)| ≤
oP (1)‖t‖ |n−1

∑n
j=1 cos(t′Xj)| and thus ‖Bn‖2

L2 ≤ oP (1)Vn,2, where

Vn,2 =
1

n2

n∑

j,k=1

∫

IRd

‖t‖2 cos(t′Xj) cos(t′Xk) exp(−a‖t‖2)dt.

Since Vn,2 →
∫

Φ(t)2‖t‖2 exp(−a‖t‖2)dt almost surely, it follows that ‖Bn‖L2 = oP (1).

Finally, |Cn(t)| ≤ OP (1) ‖t‖ |n−1
∑n

j=1 (cos(t′Xj)− Φ(t)) | and thus ‖Cn‖L2 ≤ OP (1)

Vn,3, where

Vn,3 =
1

n2

n∑

j,k=1

∫

IRd

‖t‖2 (cos(t′Xj)− Φ(t)) (cos(t′Xk)− Φ(t)) exp(−a‖t‖2)dt.

Since Vn,3 → 0 almost surely (notice that E[cos(t′X)] = Φ(t)), we have ‖Cn‖L2 = oP (1).

Using (3.8) and the triangle inequality for ‖ · ‖L2 , (3.6) follows.

By a standard central limit theorem for i.i.d. random random elements in Hilbert

spaces, W∗
n(·) converges to some centered Gaussian process on L2. Since W∗

n(·) has the
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covariance kernel given in (3.1), assertion (3.7) follows, and the proof of Theorem 3.1

is completed.

We now consider the behavior of Tn,a under contiguous alternatives to symmetry.

Theorem 3.2 Suppose Xn1, . . . , Xnn, n ≥ d + 1, is a triangular array of rowwise

independent and identically distributed random variables having Lebesgue density

fn(x) = f0(x)

(
1 +

h(x)√
n

)
, x ∈ IRd,

where f0 is a density which is symmetric around 0, i.e., we have f0(x) = f0(−x),

x ∈ IRd, and h is a bounded function such that
∫

h(x)f0(x)dx = 0. Then

Wn(·) D−→ W(·) + c(·),

where Wn(·) and the Gaussian process W(·) are defined in the statement of Theorem

3.1. The shift function c(·) is given by

c(t) =

∫

IRd

[sin(t′x)− t′Φ(t)x] h(x)f0(x)dx,

where Φ(t) =
∫
IRd cos(t′y)f0(y) dy. Moreover,

Tn,a
D−→

∫

IRd

(W(t) + c(t))2 exp(−a‖t‖2)dt.(3.9)

Proof. Mutatis mutandis, the reasoning closely follows the proof of Theorem 3.2

of Henze and Wagner (1997) and will thus not be given. Denoting by Q(n) and P (n)

the joint distribution of Xn1, . . . , Xnn under fn and under f0, respectively, the shift

function originates as the limit covariance, as n → ∞, of W∗
n(t)and log dQ(n)/dP (n),

where W∗
n is defined in (3.4).

4 A permutational limit theorem for Tn,a

Since both the finite-sample and the asymptotic null distribution of Tn,a depend on the

underlying unknown distribution of X, a test that rejects H0 for large values of Tn,a

cannot be performed without some sort of additional randomization. We propose to

use the following permutation procedure.
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Independently of the sequence X1, X2, . . ., let U1, U2, . . . be a sequence of i.i.d.

random variables such that P (Uj = 1) = P (Uj = −1) = 1/2. All random variables

are assumed to be defined on a common probability space (Ω,A, P ). For a fixed

ω ∈ Ω, the permutation procedure conditions on the realizations yj = Yj(ω) (j =

1, . . . , n) of the scaled vectors Y1, . . . , Yn, which were defined in (1.2). The basic idea is

that, under H0, Y1, . . . , Yn should have a distribution that is approximately symmetric

around 0. Consequently, the point pattern U1y1, . . . , Unyn, which arises from randomly

reflecting a point around 0 with probability 1/2 or otherwise keeping it unchanged,

independently of the other points, should also ’look symmetrically distributed’ around

0. The permutation statistic we propose is

T P
n,a =

∫

IRd

(WP
n (t)

)2
exp(−a‖t‖2)dt,(4.1)

which is based on the so-called permutation process

WP
n (t) =

1√
n

n∑
j=1

Uj

{
sin(t′yj)−

(
1

n

n∑

k=1

cos(t′yk)

)
t′yj

}
.(4.2)

At first sight, it seems strange to consider WP
n (·) and not the ’obvious’ process

VP
n (t) =

1√
n

n∑
j=1

sin(t′Ujyj) =
1√
n

n∑
j=1

Uj sin(t′yj)

and the corresponding permutation statistic
∫

IRd

(VP
n (t)

)2
exp(−a‖t‖2)dt (cf. (1.3)).

The simple reason is that, unlike WP
n (·), the almost sure (i.e., for almost all sequences

X1(ω), X2(ω), . . .) limit process of VP
n (·) under H0 has a covariance kernel that is dif-

ferent from the kernel (3.1).

We first give a representation of T P
n,a that is suitable for computational purposes.

Proposition 4.1 Let Zj = Ujyj (j = 1, . . . , n), and Z̄n = n−1
∑n

j=1 Zj. Then

T P
n,a =

πd/2

2ad/2n

n∑
i,j=1

[(
2 +

‖Z̄n‖2

2a
−

{
1 +

(Zi − Zj)Z̄
′
n

2a

}2
)

exp

(
−‖Zi − Zj‖2

4a

)

+

(‖Z̄n‖2

2a
−

{
1 +

(Zi + Zj)Z̄
′
n

2a

}2
)

exp

(
−‖Zi + Zj‖2

4a

)]
.
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Proof. Since cos(t′yk) = cos(t′Zk), we have

WP
n (t) =

1√
n

n∑
j=1

{
sin(t′Zj)−

(
1

n

n∑

k=1

cos(t′Zk)

)
t′Zj

}

and thus

T P
n,a =

1

n

n∑
i,j=1

∫

IRd

sin(t′Zi) sin(t′Zj) exp(−a‖t‖2)dt

− 2

n2

n∑

i,j,k=1

∫

IRd

sin(t′Zi) cos(t′Zk)t
′Zj exp(−a‖t‖2)dt

+
1

n3

n∑

i,j,k,l=1

∫

IRd

cos(t′Zk) cos(t′Zl)t
′Zit

′Zj exp(−a‖t‖2)dt

=
1

n

n∑
i,j=1

I1(i, j)− 2

n2

n∑

i,j,k=1

I2(i, j, k) +
1

n3

n∑

i,j,k,l=1

I3(i, j, k, l)(4.3)

(say). Use the identities sin u sin v = (cos(u− v)− cos(u + v)) /2, sin u cos v = (sin(u− v)

+ sin(u + v))) /2, cos u cos v = (cos(u− v) + cos(u + v)) /2 and the formulae

∫

IRd

cos(t′c) exp(−a‖t‖2) dt =
(π

a

)d/2

exp

(
−‖c‖

2

4a

)
,

∫

IRd

sin(t′c)t′b exp(−a‖t‖2) dt =
πd/2

2ad/2+1
c′b exp

(
−‖c‖

2

4a

)
,

∫

IRd

cos(t′c)t′bt′γ exp(−a‖t‖2) dt =
πd/2

4ad/2+2
(2ab′γ − c′b c′γ) exp

(
−‖c‖

2

4a

)

to obtain

I1(i, j) =
πd/2

2ad/2
[g1(Zi, Zj)− g2(Zi, Zj)] ,

I2(i, j, k) =
πd/2

4ad/2+1
[(Zi − Zk)

′Zj g1(Zi, Zk) + (Zi + Zk)
′Zj g2(Zi, Zk)] ,

I3(i, j, k, l) =
πd/2

8ad/2+2
[(2aZ ′

iZj − (Zk − Zl)
′Zi(Zk − Zl)

′Zj) g1(Zk, Zl)

+(2aZ ′
iZj − (Zk + Zl)

′Zi(Zk + Zl)
′Zj) g2(Zk, Zl)] ,

where g1(u, v) = exp (−‖u− v‖2/(4a)) and g2(u, v) = exp (−‖u + v‖2)/(4a)) . Plug-

ging these expressions into (4.3), the result is obtained after straightforward algebra.
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For the special case U1 = U2 = . . . = Un = 1, we have Zj = yj and Z̄n = 0. Conse-

quently, T P
n,a takes the value

πd/2

2nad/2

n∑
i,j=1

[
exp

(
−‖yi − yj‖2

4a

)
− exp

(
−‖yi + yj‖2

4a

)]
,

which is Tn,a(y1, . . . , yn) (as it should be!).

To prove the (conditional) convergence in distribution of the permutation process WP
n

to the Gaussian process W figuring in Theorem 3.1, we use the following Hilbert space

Central Limit Theorem of Kundu et al. (Kundu, Majumdar, and Mukherjee (2000),

Theorem 1.1). Therein, H denotes a real separable infinite-dimensional Hilbert space.

Lemma 4.2 Let {ek : k ≥ 0} be an orthonormal basis of H. For each n ≥ 1, let

Wn1,Wn2, . . . , Wnn be a finite sequence of independent H-valued random elements with

zero means and finite second moments, and put Wn =
∑n

j=1 Wnj. Let Cn be the co-

variance operator of Wn. Assume that the following conditions hold:

a) limn→∞〈Cnek, el〉 = akl (say) exists for all k ≥ 0 and l ≥ 0.

b) limn→∞
∑∞

k=0〈Cnek, ek〉 =
∑∞

k=0 akk < ∞.

c) limn→∞ Ln(ε, ek) = 0 for every ε > 0 and every k ≥ 0, where, for b ∈ H,

Ln(ε, b) =
∑n

j=1 E (〈Wnj, b〉2 1{|〈Wnj, b〉| > ε}).

Then Wn ⇒ N (0, C) in H, where the covariance operator C is characterized by

〈Ch, el〉 =
∑∞

j=0〈h, ej〉ajl, for every l ≥ 0.

The main result of this section is as follows.

Theorem 4.3 For almost all sample sequences X1(ω), X2(ω), . . ., we have

WP
n (·) D−→ W(·)

and

T P
n,a

D−→
∫

IRd

W2(t) exp(−a‖t‖2)dt,

as n →∞, where W is the Gaussian process figuring in the statement of Theorem 3.1.

12



Proof. Let D∗ be the set of all ω ∈ Ω for which X̄n(ω) → 0, n−1
∑n

j=1 ‖Xj(ω)‖r →
E‖X‖r for r = 1, 2, Sn(ω) → Id, and n−1/2 max1≤j≤n ‖Xj(ω)‖ → 0 as n →∞. By the

law of large numbers and Theorem 5.2 of Barndorff-Nielsen (1963), D∗ has measure

one. For s, t ∈ IRd, put

Ds =

{
ω ∈ Ω : lim

n→∞
1

n

n∑
j=1

cos(s′Xω
j ) = E[cos(s′X)]

}
,

D
(1)
t,s =

{
ω ∈ Ω : lim

n→∞
1

n

n∑
j=1

sin(s′Xω
j ) sin(t′Xω

j ) = E[sin(s′X) sin(t′X)]

}
,

D
(2)
t,s =

{
ω ∈ Ω : lim

n→∞
1

n

n∑
j=1

s′Xω
j sin(t′Xω

j ) = E[s′X sin(t′X)]

}
.

where, for short, Xω
j = Xj(ω). Furthermore, let D = D∗ ∩ {∩s∈T Ds} ∩ {∩t,s∈T (D

(1)
t,s ∩

D
(2)
t,s )}, where T is a countable dense set of IRd. Being an intersection of countably

many sets of

measure one, D has measure one as well. Then D = D∗∩{∩s∈IRd Ds}∩{∩t,s∈IRd (D
(1)
t,s∩

D
(2)
t,s )} by the Lipschitz continuity of the sine and cosine function.

In what follows, fix ω ∈ D, and put

cω
n(t) =

1

n

n∑

k=1

cos(t′Y ω
k ),

where Y ω
k = Yk(ω). By some algebra, it follows that

lim
n→∞

1

n

n∑
j=1

(
sin(t′Y ω

j )− cω
n(t)t′Y ω

j

)
= 0,

lim
n→∞

1

n

n∑
j=1

(
sin(t′Y ω

j )− cω
n(t)t′Y ω

j

) (
sin(s′Y ω

j )− cω
n(s)s′Y ω

j

)
= K(t, s).

For simplicity of notation, we will omit the superscript ω in the sequel. The proof will

be completed by verifying conditions a) - c) of Lemma 4.2 for Wn1, . . . , Wnn, where

Wnj(t) = Ujaj(t)/
√

n and aj(t) = sin(t′Yj) − cn(t)t′Yj. To this end, let Cn be the

covariance operator of Wn =
∑n

j=1 Wnj (= WP
n ), and put

Kn(s, t) = E [Wn(s)Wn(t)] =
1

n

n∑
j=1

aj(s)aj(t).

13



As complete orthonormal set {ek} in L2, one can choose products of univariate Her-

mite polynomials (see, e.g., Rayner and Best (1989), p. 100). Since, for ω ∈ D and

sufficiently large n,

|Kn(s, t)| ≤ 1 +
1

n

n∑
j=1

(|t′Yj|+ |s′Yj|+ |t′Yjs
′Yj|)

≤ 1 + (‖s‖+ ‖t‖) 1

n

n∑
j=1

‖Yj‖+ ‖t‖‖s‖1

n

n∑
j=1

‖Yj‖2

≤ 1 + (‖s‖+ ‖t‖)2E‖X‖+ ‖s‖‖t‖2E‖X‖2,

and since limn→∞ Kn(s, t) = K(s, t) for ω ∈ D, dominated convergence yields

lim
n→∞

〈Cnek, el〉 = lim
n→∞

∫ ∞

0

∫ ∞

0

Kn(s, t)ek(s)el(t)Pa(ds)Pa(dt)

=

∫ ∞

0

∫ ∞

0

K(s, t)ek(s)el(t)Pa(ds)Pa(dt)

= 〈Cek, el〉,

where Pa(dt) is shorthand for exp(−a‖t‖2)dt, and C is the covariance operator of W .

Setting akl = 〈Cek, el〉, this proves condition a) of Lemma 4.2.

To verify condition b) of Lemma 4.2, use monotone convergence, Parseval’s equal-

ity and dominated convergence to show

lim
n→∞

∞∑

k=0

〈Cnek, ek〉 = lim
n→∞

∞∑

k=0

E〈ek,Wn〉2

= lim
n→∞

E‖Wn‖2
L2

=

∫ ∞

0

lim
n→∞

Kn(t, t)Pa(dt)

=

∫ ∞

0

K(t, t)Pa(dt)

= E‖W‖2
L2

=
∞∑

k=0

akk < ∞.

To prove condition c) of Lemma 4.2, notice that

|〈Wnj, ek〉| = n−
1
2

∣∣∣∣
∫

Ujaj(t)ek(t)Pa(dt)

∣∣∣∣

≤ n−
1
2

∫
|Ujaj(t)ek(t)|Pa(dt)

14



≤ n−
1
2

(∫
|Ujaj(t)|2Pa(dt)

)1/2

‖ek‖L2

≤ n−
1
2

(∫
(2 + 2‖t‖2‖Yj‖2)Pa(dt)

)1/2

≤ n−
1
2

(
κ1 + κ2 max

1≤j≤n
‖Yj‖

)

for some positive constants κ1 and κ2. By the definition of the set D, the last expression

converges to zero, whence

E
(〈Wnj, ek〉2 1{|〈Wnj, ek〉| > ε}) = 0

for sufficiently large n, and thus limn→∞ Ln(ε, ek) = 0. By Lemma 4.2, Wn ⇒ N (0, C)

in L2. Since the above reasoning holds for every ω ∈ D, the assertion follows.

5 Consistency

In this section, we prove the consistency of a test of symmetry that rejects H0 for

large values of Tn,a against general alternatives. To this end, let X have an arbitrary

distribution satisfying E‖X‖2 < ∞. Moreover, we assume that the distribution of

X puts mass zero on each (d − 1)-dimensional hyperplane to ensure the almost sure

invertibility of the sample covariance matrix Sn if n > d. In view of affine invariance,

assume further that E[X] = 0 and E[XX ′] = Id.

Theorem 5.1 Suppose the distribution of X is not symmetric (around 0). Then

lim
n→∞

P
(
Tn,a > cP

n,a(α)
)

= 1 ,

where cP
n,a(α) denotes the (1−α)-quantile of the distribution of the permutation statistic

T P
n,a.

Proof. We first prove

lim inf
n→∞

Tn,a

n
≥

∫

IRd

(E(sin(t′X)))
2

exp(−a‖t‖2) dt(5.1)

almost surely. Since the right-hand side of (5.1) is strictly positive if the distribution

of X is not symmetric (around 0), we have lim infn→∞ Tn,a = ∞ almost surely, which
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entails consistency under such an alternative provided that the critical value, which

is computed from the distribution of the permutation statistic T P
n,a, is bounded in

probability almost surely. To prove (5.1), notice that, by (1.3) and Fatou’s lemma,

lim inf
n→∞

Tn,a

n
≥

∫

IRd

lim inf
n→∞

(
1

n

n∑
j=1

sin(t′Yj)

)2

exp(−a‖t‖2) dt

almost surely. Since, by the definition of Yj, we have

| sin(t′Yj)− sin(t′Xj)| ≤ ‖t‖ · ‖(S−1/2
n − Id)Xj − S−1/2

n X̄n‖,

use the strong law of large numbers to show limn→∞ n−1
∑n

j=1 sin(t′Yj) = E[sin(t′X)]

almost surely, whence (5.1) follows.

It remains to prove that the distribution of the permutation statistic T P
n,a is

bounded in probability almost surely as n → ∞. Of course, this implies almost sure

boundedness of the critical value cP
n,a(α), which is a quantile from that distribution.

By Markov’s inequality (notice that T P
n,a is nonnegative), it suffices to prove

lim sup
n→∞

EP [T P
n,a] < ∞(5.2)

almost surely, where EP (·) denotes expectation with respect to the binary random

variables U1, . . . , Un (cf. Section 4).

To prove (5.2), start with the representation of T P
n,a given in Proposition 4.1.Putting

Z−
j,k = exp

(
− 1

4a
‖Zj − Zk‖2

)
, Z+

j,k = exp

(
− 1

4a
‖Zj + Zk‖2

)

and Cn = πd/2/(2ad/2n), we have

EP (T P
n,a) = Cn

6∑
ν=1

Aν(n),

where

A1(n) =
n∑

j,k=1

EP [Z−
j,k − Z+

j,k],

A2(n) =
1

2a

n∑

j,k=1

EP

[‖Z̄n‖2(Z−
j,k + Z+

j,k)
]
,

A3(n) = −1

a

n∑

j,k=1

EP

[
(Zj − Zk)

′Z̄nZ−
j,k

]
,
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A4(n) = −1

a

n∑

j,k=1

EP

[
(Zj + Zk)

′Z̄nZ+
j,k

]
,

A5(n) = − 1

4a2

n∑

j,k=1

EP

[{
(Zj − Zk)

′Z̄n

}2
Z−

j,k

]
,

A6(n) = − 1

4a2

n∑

j,k=1

EP

[{
(Zj + Zk)

′Z̄n

}2
Z+

j,k

]
.

If j 6= k, then

EP [Z−
j,k − Z+

j,k] =
1

4
exp

(
− 1

4a
‖yj − yk‖2

)
+

1

4
exp

(
− 1

4a
‖yj + yk‖2

)

−
(

1

4
exp

(
− 1

4a
‖yj + yk‖2

)
+

1

4
exp

(
− 1

4a
‖yj − yk‖2

))

= 0

and thus

∣∣∣A1(n)
∣∣∣ =

∣∣∣∣∣
n∑

j=1

(
1− EP

[
exp

(
−1

a
‖Zj‖2

)]) ∣∣∣∣∣

=

∣∣∣∣∣
n∑

j=1

(
1− exp

(
−1

a
‖yj‖2

)) ∣∣∣∣∣
≤ n.

Writing tr(·) for trace, notice that

n∑
j=1

‖yj‖2 =
n∑

j=1

(xj − x̄n)′S−1
n (xj − x̄n)

=
n∑

j=1

tr
(
S−1

n (xj − x̄n)(xj − x̄n)′
)

= tr
(
S−1

n n Sn

)
= tr(nId)

= nd,

whence

EP‖Z̄n‖2 =
1

n2

n∑

j,k=1

EP

[
Z ′

jZk

]
=

1

n2

n∑

j,k=1

y′jykE [UjUk]

=
1

n2

n∑
j=1

‖yj‖2 =
d

n
.

Since 0 ≤ Z−
j,k ≤ 1 and 0 ≤ Z+

j,k ≤ 1, it follows that |A2(n)| ≤ nd/a.
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To tackle A3(n), notice that EP [(Zj − Zk)
′ZνZ

−
j,k] = 0 if ν /∈ {j, k}. We therefore

have

A3(n) = − 1

an

n∑

j,k=1

EP

[
(Zj − Zk)

′(Zj + Zk)Z
−
j,k

]

= − 1

an

n∑

j,k=1

EP

[
(‖Zj‖2 − ‖Zk‖2)Z−

j,k

]

and thus

|A3(n)| ≤ 1

an

n∑

j,k=1

EP

[‖Zj‖2 + ‖Zk‖2
]

=
1

an

n∑

j,k=1

(‖yj‖2 + ‖yk‖2
)

=
2nd

a
.

Likewise,

|A4(n)| ≤ 1

an

n∑

j,k=1

EP

[‖Zj + Zk‖2
]

≤ 2

an

n∑

j,k=1

EP

[‖Zj‖2 + ‖Zk‖2
]

=
4nd

a
.

An upper bound for |A5(n)| is

|A5(n)| ≤ 1

4a2

n∑

j,k=1

EP

[‖Zj − Zk‖2‖Z̄n‖2
]

≤ 1

2a2

n∑

j,k=1

EP

[(‖Zj‖2 + ‖Zk‖2
) ‖Z̄n‖2

]

=
1

2a2

n∑

j,k=1

(‖yj‖2 + ‖yk‖2)EP‖Z̄n‖2 =
d2n

a2
.

In the same way, |A6(n)| ≤ (d2n)/a2. Summarizing, it follows that

EP

(
T P

n,a

) ≤ πd/2

2ad/2

(
1 +

7d

a
+

2d2

a2

)
,

proving (5.2) and thus the consistency of the test for symmetry based on Tn,a against

alternatives satisfying the assumptions stated at the beginning of this section.
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6 Simulation results

To assess the actual level of the test for symmetry based on Tn,a, a simulation study

was performed for sample sizes n = 20, n = 40 and n = 60, dimensions d = 2, d = 4,

d = 6, and the following symmetric distributions:

• the d-variate Standard Normal distribution N (0, Id)

• a mixture of N (0, Id) and a d-variate normal distribution with mean zero, unit

variances and equal correlation ρ between components, with mixing probabilities

0.75 and 0.25, respectively. This distribution is denoted by NM1, for ρ = 0.25

and NM2, for ρ = 0.50.

• the multivariate uniform distribution in the hypercube [−1, 1]d, denoted by U ,

• the multivariate Student’s distribution with ν degrees of freedom, denoted by tν .

For each fixed combination of n, d and the underlying distribution as given above, the

following procedure was replicated 5 000 times:

1. generate a random sample x1, . . . , xn

2. compute the scaled residuals y1, . . . , yn as defined in (1.2)

3. generate 500 independent pseudo-random vectors (U1, . . . , Un), where U1, . . . , Un

are i.i.d. and P (U1 = 1) = P (U1 = −1) = 1/2.

4. calculate the corresponding 500 realizations T P
n,a(j), 1 ≤ j ≤ 500 (say) of the

permutation statistic T P
n,a (cf. Proposition 4.1).

5. reject H0 if Tn,a, computed on x1, . . . , xn, exceeds the empirical 95%-quantile of

T P
n,a(j), 1 ≤ j ≤ 500.

Table 1 shows the percentages of rejection of H0. Notice that the observed level

is fairly close to the nominal level 5% if d = 2 even for samples of size n = 20, but is

far below the nominal level for the case d = 6 and a = 1.0. However, our simulation

results indicate that the actual level of significance seems to approach its nominal value
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a = 1.0 a = 2.0 a = 3.0 a = 4.0
N (0, Id) n = 20 d = 2 3.9 4.2 4.4 4.3

d = 4 2.1 3.7 4.6 5.1
d = 6 0.3 1.6 3.4 4.5

n = 40 d = 2 4.5 4.9 5.2 5.2
d = 4 3.6 4.6 5.2 5.4
d = 6 1.7 3.8 4.8 5.5

n = 60 d = 2 4.6 4.8 4.8 4.9
d = 4 4.2 5.1 5.5 5.5
d = 6 2.5 4.0 4.7 5.2

NM1 n = 20 d = 2 3.7 4.0 4.1 4.2
d = 4 2.0 3.8 4.5 4.9
d = 6 0.2 1.7 3.4 4.6

n = 40 d = 2 4.7 5.0 5.2 5.1
d = 4 4.0 5.0 5.6 5.8
d = 6 1.6 3.8 4.8 5.2

n = 60 d = 2 4.5 4.7 4.9 4.9
d = 4 4.1 5.2 5.5 5.8
d = 6 2.7 4.3 4.9 5.2

NM2 n = 20 d = 2 4.0 4.4 4.6 4.5
d = 4 2.2 4.2 5.0 5.3
d = 6 0.3 2.0 3.8 5.3

n = 40 d = 2 4.8 5.2 5.5 5.4
d = 4 3.9 5.1 5.9 6.2
d = 6 1.8 4.0 5.2 5.8

n = 60 d = 2 4.5 4.9 5.3 5.5
d = 4 4.3 4.9 5.3 5.5
d = 6 2.9 4.6 5.3 5.6

U n = 20 d = 2 3.3 3.3 3.4 3.4
d = 4 1.3 2.1 2.6 2.7
d = 6 0.1 0.9 1.8 2.4

n = 40 d = 2 4.0 3.9 3.9 3.8
d = 4 3.0 3.8 4.1 4.2
d = 6 0.8 2.1 2.6 3.1

n = 60 d = 2 4.6 4.8 4.7 4.6
d = 4 3.4 4.4 4.6 4.6
d = 6 1.5 2.7 3.1 3.3

t18 n = 20 d = 2 4.6 5.3 5.3 5.5
d = 4 2.9 5.2 6.3 6.9
d = 6 0.5 2.8 5.3 6.9

n = 40 d = 2 5.6 6.1 6.2 6.2
d = 4 4.5 5.9 6.5 6.9
d = 6 2.5 4.7 5.8 6.7

n = 60 d = 2 4.6 5.0 5.1 5.3
d = 4 4.6 5.6 6.2 6.6
d = 6 3.4 5.3 6.4 6.7

Table 1: Estimated level for the permutation test (nominal level: 5%)
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5% with increasing sample size, particularly for a > 1.

To assess the power of the test based on Tn,a, we simulated data from the following

alternative distributions:

• A multivariate distribution with iid centered χ2
1 marginals, denoted by χ2

1,

• a convolution of the distributions N (0, Id) and χ2
1, denoted by N + χ2

1,

• a multivariate lognormal distribution, as described in Johnson, Balakrishnan,

and Kotz (2000), page 27, denoted by LN . The simulated case corresponds

to vectors with uncorrelated components each following (conditionally on the

remaining components) a univariate lognormal distribution.

• a multivariate Gamma distribution, as described in Johnson et al. (2000), chap-

ter 48, Sec. 3.1, denoted by Γ(α). The simulated cases correspond to vectors

with ’practically’ uncorrelated components each following a univariate gamma

distribution with shape parameter α.

Tables 2-3 show the percentages of rejection of H0, rounded to the nearest integer. An

asterisk denotes power 100%.

Notice that power increases with the sample size. Moreover, the test becomes

progressively more powerful as we depart from ’nearly’ symmetric distributions (for

example, the Γ(10)) and approach alternative distributions which are more skewed (for

example, the Γ(1)). Hence, based on level and power results, we may suggest that a test

corresponding to a larger value of a (perhaps a = 3 or 4) would be both powerful and

accurate in estimating the nominal level, although we do not claim that this statement

would be necessarily true under different sampling situations.

As additional alternative distributions, we considered non-symmetric bivariate

normal mixtures. Let N (µ, ρ) denote a bivariate normal distribution with mean (µ, µ),

unit variances, and correlation ρ. We used the following mixtures:

• NM3 : 0.5N (0, 0) + 0.5N (1, 0.5)

• NM4 : 0.5N (0, 0) + 0.5N (1, 0.9)
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a = 1.0 a = 2.0 a = 3.0 a = 4.0
χ2

1 n = 20 d = 2 95 96 96 96
d = 4 94 97 98 98
d = 6 76 92 96 97

n = 40 d = 2 ∗ ∗ ∗ ∗
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

n = 60 d = 2 ∗ ∗ ∗ ∗
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

N+χ2
1 n = 20 d = 2 25 29 31 32

d = 4 18 28 33 35
d = 6 5 17 25 31

n = 40 d = 2 55 59 60 61
d = 4 57 66 69 71
d = 6 47 63 69 71

n = 60 d = 2 78 81 82 83
d = 4 85 89 90 91
d = 6 82 89 91 92

LN n = 20 d = 2 90 92 93 94
d = 4 89 94 96 97
d = 6 68 89 94 96

n = 40 d = 2 ∗ ∗ ∗ ∗
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

n = 60 d = 2 ∗ ∗ ∗ ∗
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

Table 2: Estimated power for the permutation test

• NM5 : 0.5N (0,−0.5) + 0.5N (1, 0.5)

• NM6 : 0.5N (0,−0.5) + 0.5N (1, 0.9)

• NM7 : 0.5N (0,−0.9) + 0.5N (1, 0.5)

• NM8 : 0.5N (0,−0.9) + 0.5N (1, 0.9)

Notice that the generalizations of the above covariance matrices with negative

correlation ρ to higher dimensions are not positive definite. Hence, this part of the

simulation is restricted to dimension 2. Tables 4 shows the percentages of rejection of

H0. In general, power seems to increase with increasing differences of correlations. In

contrast to Tables 2-3, however, power does not always increase with increasing value
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a = 1.0 a = 2.0 a = 3.0 a = 4.0
Γ(1) n = 20 d = 2 76 79 79 80

d = 4 68 79 83 84
d = 6 34 64 74 79

n = 40 d = 2 99 ∗ ∗ ∗
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

n = 60 d = 2 99 ∗ ∗ ∗
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

Γ(2) n = 20 d = 2 46 49 50 49
d = 4 34 45 50 52
d = 6 9 30 40 46

n = 40 d = 2 90 91 92 92
d = 4 93 95 96 96
d = 6 86 93 95 95

n = 60 d = 2 99 99 99 99
d = 4 ∗ ∗ ∗ ∗
d = 6 ∗ ∗ ∗ ∗

Γ(3) n = 20 d = 2 33 35 35 35
d = 4 21 30 34 37
d = 6 4 17 25 30

n = 40 d = 2 76 78 78 78
d = 4 77 82 84 85
d = 6 64 78 82 84

n = 60 d = 2 94 95 96 96
d = 4 96 98 98 98
d = 6 95 98 98 98

Γ(5) n = 20 d = 2 19 21 22 22
d = 4 11 18 21 22
d = 6 1 9 15 18

n = 40 d = 2 51 54 55 55
d = 4 47 55 58 59
d = 6 33 50 55 57

n = 60 d = 2 76 79 80 80
d = 4 79 84 85 86
d = 6 71 82 84 85

Γ(10) n = 20 d = 2 12 12 12 12
d = 4 5 9 11 12
d = 6 1 5 8 10

n = 40 d = 2 26 29 29 29
d = 4 22 28 30 31
d = 6 13 23 27 29

n = 60 d = 2 43 47 48 48
d = 4 43 49 52 53
d = 6 32 45 49 51

Table 3: Estimated power for the permutation test
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a = 1.0 a = 2.0 a = 3.0 a = 4.0 a = 10.0

NM3 n = 20 4.5 5.2 5.5 4.9 4.7

n = 40 5.9 6.1 6.9 7.0 6.4

n = 80 7.5 8.7 7.6 8.6 9.4

NM4 n = 20 8.2 10.3 11.5 11.4 11.6

n = 40 12.0 13.6 15.0 14.8 15.4

n = 80 21.3 22.0 22.7 21.4 23.4

NM5 n = 20 8.1 8.0 9.0 8.2 7.9

n = 40 16.3 17.3 16.3 15.7 16.3

n = 80 36.4 34.1 33.6 33.8 32.0

NM6 n = 20 13.4 16.5 16.7 17.0 17.5

n = 40 22.7 24.5 25.5 25.6 27.7

n = 80 47.4 44.9 45.0 44.9 43.6

NM7 n = 20 26.0 26.6 27.1 27.7 25.8

n = 40 58.9 55.8 56.8 55.6 53.2

n = 80 93.3 89.4 87.8 86.0 82.4

NM8 n = 20 28.7 32.3 33.7 34.7 34.1

n = 40 55.6 55.7 55.4 54.4 53.4

n = 80 89.3 84.7 79.8 78.3 75.0

Table 4: Estimated power for the permutation test, normal mixtures, d = 2

of the parameter a. Again, a = 3 or a = 4 seems to be a good choice, but more work

regarding the choice of a ’good’ value of a is needed.
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