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Abstract: Existing delay times in kinematic optical measuring systems will lead to deviations 
in spatiotemporal positioning. A time-referenced 4D test- and calibration system, existing by 
a rotating arm, will be used to the determination of the delay times. The modeling for the 
determination of the delay times is based on quaternion-algebra. The fundamental idea of 
modeling is equivalent to the fact that every test item's measurand, which is measured at a 
particular time, can be assigned to an explicit spatiotemporal known position. In this respect 
some results of lasertracker delay time determinations will be shown. 

1. Introduction 
Kinematic optical measuring systems such as lasertracker, robotic-tacheometer or iGPS are 
designed for space-time position determination of moving object points. These kind of 
measuring systems are multi-sensor systems and for a spatiotemporal positioning all involved 
sensors have to be synchronized. In fact there is a difference between the measured 
spatiotemporal position and the theoretical position. This difference is caused by the existence 
of delay times. In order to determine these delay times a time-referenced 4D test and 
calibration system was developed. The nominal trajectory is represented by a rotating arm and 
together with the time referencing every position is known in space and time. The modeling 
for the determination of the delay times is based on quaternion-Algebra.  

2. 4D Test and Calibration System 

2.1. Technical Realization 
The time-referenced 4D test and calibration system consists of a tiltable rotating arm with an 
arm length of 2 m. At the end of the arm a prism or sensor can be fixed and a balance weight 
on the opposite end. A rotary direct drive with an integrated rotary encoder is used as prime 
mover of the rotating arm. The encoder has a resolution of 0.36" and the grating disk has a 
reference point, the so-called homepoint, for a defined orientation. After a calibration of the 
direct drive a measurement uncertainty for any angular position of Uk=2 = ± 4.2" is achieved 
[5]. The direct drive can produce velocities up to 10 m/s. However, up to now only 6 m/s at 
the arm's end has been used in default of a measuring system, which can follow objects 
moving with this high velocity. 

The length of the rotating arm restricts the angular range of polar measurement systems. To 
enlarge the horizontal angle, a larger rotation has to be simulated for the measurement system. 



  
 
 
 
This can be achieved by mounting the measurement system on a second rotary direct drive. In 
this way the measuring system performs the same rotation as the direct drive (c.f. Fig. 3, 4). 
This second direct drive is mounted on a very stable and heavy tripod. More details can be 
found in [3]. 

The main item of the test and calibration system are the direct drives and the control system 
with the real-time multi-axis servo motion controller PMAC (Programmable Multi-Axes 
Controller), which is used for the position and velocity control of the direct drives. The 
position-capture function latches the current encoder position at the time of an external event 
into a special register. The actual latching is executed in hardware, without the need for 
software intervention. This means that the only delays in a position capture are the hardware 
gate delays (less than 100 ns) thereby providing a very accurate capture function [3], [4]. 

2.2. Delay Time 
In context with kinematic measurement systems the terms dead time and latency were often 
used. However, there are different definitions for theses terms. For this reason and in 
combination with the time-referenced test and calibration system these terms are not 
applicable and the term delay time will be used instead. The delay time is defined as a time 
difference between a reference point and the execution time for every measurement value of a 
measurement system. The measurement value can be an angle or a distance for example. A 
clearly defined reference point is the time of the measurement request, because this is the time 
at which a complete measurement is expected. For every measurement request the reference 
time will be delivered by the control system. A certain time later an angle or distance will be 
measured and the delay time is now defined in relation to the measurement request [2]. In this 
way all delay times of a measurement system can be defined. 

2.3. Time Referencing 
The meaning of time referencing is, that specific procedures have to be assigned to a given 
time scale. For time referencing only real-time systems can be used. A system is said to be 
real-time, if the total correctness of the result of a real-time data processing depends not only 
upon its logical correctness, but also upon time in which it is performed [11]. A real-time 
system also has to guarantee a temporal deterministical behavior [10]. 

The time referencing is ensured with two different procedures. The first method of 
communication between the calibration system and a test item – measurement system – is an 
external trigger signal which is realized with a function generator using the rising edge of a 
rectangular signal as trigger. Fig. 1 shows a TTL (transistor-transistor-logic) circuit for a 
rising edge with a steepness of 1 µs. Within the high level both, the measurement system (t1) 
and calibration system (t2), detect the trigger, but not at the same time. A time lag Δt within 
the referencing arise from the gate delay of both systems and can be calculated by the 
difference (1) of the trigger point, which are shifted by the gate delay 

34 ttt −=Δ  (1) 

The gate delay of a measurement system is rarely known. The gate delay of the calibration 
system is less than 100 ns [2]. The reference point for the delay time determination is the 
trigger point detected by the calibration system. 

The other method of communication is a serial interface. The communication is made up of 
request and reply in terms of the data item. The trailing edge of the start bit of the data item 



  
 
 
 
will be captured and at the same time a trigger signal must be send to PMAC. To realize this 
in real-time a FPGA-modul (Field Programmable Gate Array) with a resolution of 25 ns is 
used. Fig. 2 shows the time referencing for an assumed data transfer rate of 19200 baud. The 
period between two trailing edges constitutes 103 µs, so that the trailing edge of the start bit 
must be captured within this period. The same procedure can be done with the reply of the test 
item. In this way for every start bit of the request and reply a spatiotemporal position is 
known. The reference point for the delay time determination is the start bit of the request 
under considering of the known length of the data item [2]. 
 
 
 
 
 
 
 
 

 

 

Figure 1: Time referencing with external       Figure 2: Time referencing with serial interface 
trigger 

3. Modeling 
The test and calibration system can assign an exactly defined rotation angle in respect of the 
so-called homepoint and the associated time for the spatiotemporal position of a prism or 
sensor on the rotating arm. The aim of modeling is now the determination of the delay time 
for every measurand of a test item. Kinematic measurements are characterized by non- 
repeatable measurements and therefore the kinematic model must bear as unique unknown the 
delay time of the measurand. If the measurand itself is expressed as a function of the delay 
time, then the solution can be find e.g. by the Newton Iteration. To reach this aim the 
modeling is developed on quaternion-based rotations. The advantage of using quaternions is 
the efficient concatenation of multiple rotations and that only one rotation axis with one 
rotation angle will be used in the trigonometric form. 

For all developed models a co-ordinate transformation must be executed to combine the co-
ordinate system of the rotating arm with the co-ordinate system of the test item. This 
transformation will be calculated using quaternions also. The algorithm based on [7] and is 
also described in [3].  

3.1. Quaternion-Algebra 

The theory of quaternions is given, for example, in [8] and therefore this subsection is only a 
short review about some of the basics. 

A quaternion may be regarded as 4-tupel of real numbers, that is, as an element of ℜ4. A 
quaternion is defined as the sum 

zyx kqjqiqqqq +++=+= 00 q  . (2) 

  



  
 
 
 
In this sum q0 is called the scalar part and q the vector part of the quaternion. The scalars q0, 
qx, qy and qz are called the components of the quaternion. Quaternions have there own algebra 
and the non-commutative multiplication of two quaternions p and q are given in (3). 

qppqqp ×+++⋅−= 0000 qpqppq          (3) 

For a rotation in ℜ3 the quaternion has to be a unit quaternion. The triple product (4) of the 
quaternion q, the complex conjugate quaternion q* and the pure quaternion p (p = (0,p), p ∈ 
ℜ3) delivers as result a pure quaternion w  

∗= qpqw .                                   (4) 

(4) can be summarized in the matrix Q (6) – with the quaternion terms of q – and the 
multiplication with vector p ∈ ℜ3 results directly the vector w ∈ ℜ3. 

pw Q=                                     (5) 
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For any unit quaternion (2) the components can be expressed by 
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with θ as rotation angle and u as unit vector in the direction of q. The triple product (4) may 
be interpreted geometrically as a rotation of the vector p by an angle θ, around q as the 
rotation axis, to the new position of the vector w. 

3.2. Modeling for Polar Measuring Systems 
If the test item is a polar measurement system, the resulting trajectory can consist of one 
rotation by the rotating arm, or of two rotations (additional rotation of the second direct drive 
under the test item). The development of both models starts in the rotating arm system with 
the starting point – the homepoint – pD,1=(r,0,0)T , with r as known radius of the rotating arm 
(Fig 3). The x-axis and y-axis of the rotating arm system always lie in the rotating arm plane 
and the z-axis is taken to be planar to this plane.  

3.2.1.  Polar modeling with one rotation 

In this model the test item follows only the rotating arm (Fig. 3). The rotation axis for the first 
quaternion q1 (8) is equivalent to the z-axis of the rotating arm system. In this case q1 is 
already a unit quaternion. The rotation angle will be replaced by the relation of angular 
velocity ωD and time t. Due to the control system the angular velocity is known for every arm 
position and t can be used as the unknown delay time or it is the time for a known position. 
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For a new position pD,2 in relation to the homepoint the triple product (4) will be used and 
with (8) and pD,1 as a pure quaternion, the result of (9) is also a pure quaternion 



  
 
 
 

∗= 11,12, qpqp DD   .  (9) 

In this way all positions on the rotating arm can be defined. 

The next step is the transformation from the rotating arm system to the test item system. With 
the co-ordinate transformation, described in [7] or [3], the quaternions qR and ptr are 
determined for the rotation and translation between both co-ordinate systems. The result of 
the co-ordinate transformation for (9) is the same position, but now in the test item co-
ordinate system 

( ) trRDRtrRDRtrRDRP pqqpqqpqqpqqpqpqp +=+=+= ∗∗∗∗
11,111,12,2, . (10) 

The quaternion pP,2 is a pure quaternion and can be directly assigned as a vector pP,2 in U3. In 
(10) the catenation of quaternions is evident and both quaternions (qR, q1) can be summarized 
in a matrix Q like (6). With (5) the vector pP,2 has then the following form 
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and the only unknown is the time t in the terms q0 and qz from (8) (cf. (2)). 

Every measured position to the rotating arm from the test item can be expressed by (11). A 
single measurand, like angle or distance, can be calculated and now expressed as a function of 
the time t, which is the unknown delay time. The non-linear equations of the measurand 
cannot be solved analytical, but must be solved numerically e.g. by Newton's method. This 
iterative solution follows from the definition of recursion of Newton iteration. The algorithm 
is described in [2], [3]. The required initial value for the delay time determination delivers the 
time of the reference point for every measured position (cf. 2.3). 

 

 

 

 

 

 

 

 

 

Figure 3: one rotation; rotating arm         Figure 4: two rotations; rotating arm and test item 

3.2.2. Polar modeling with two rotations 

A second rotation results from the direct drive under the test item. If the test item has locked a 
prism or sensor and the second direct drive starts with rotation, the test item must countersteer 
to track the prism or sensor. The test item is then the center of a circle, with the measured 
distance as radius (Fig. 4). If at the same time the rotating arm starts with a rotation, then for 
every new position the circle's radius varies. The resulting trajectory depends on the angular 

 



  
 
 
 
velocity of both direct drives and the arrangement of the tiltable rotating arm. The formation 
is neither a circle of the rotating arm nor a circle with the test item as center [3], [4].  

For the second rotation of the test item a further quaternion q2 (12) will be used, with the Z-
axis of the test item system as rotation axis and ωP as angular velocity. The time t is the same 
time like that of the quaternion q1. 
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The starting point is as before the homepoint pD,1 as a pure quaternion. With (9) the first 
rotation by the rotating arm is described. Then the transformation in the test item system with 
the quaternions qR and qtr (10) follows. Until now it is the same procedure as if there is only 
one rotation. In the same time whereas the arm has rotated, the second direct drive under the 
test item rotates and the pure quaternion pP,2 will be rotated by the unit quaternion q2 to the 
new pure quaternion pP,3 

 ( ) ( ) ∗∗∗∗∗∗ +=+== 22121,12211,1222,23, qpqqqqpqqqqpqqpqqqqpqp trRDRtrRDRPP  . (13) 

The quaternion q2, qR, q1 can be summarized by piecewise multiplication e.g. in a new 
quaternion q3 and then with (6) a matrix Q3 can be designed. With the quaternion q2 as matrix 
Q2 equation (13) can be simplified as follows 

tr1D3P ppp 2,3, QQ +=  , (14) 

whereas pP,3 is directly the spatiotemporal vector of the resulting trajectory. Every single 
measurand of the test item can be calculated by (14) and the only unknown in this non-linear 
equation is the delay time t. By the Newton iteration and the reference time as start value the 
delay time can be determined. 

3.3. Modeling for Angular Measuring Systems 
A spatiotemporal co-ordinate based on solely angular measuring can be determined by spatial 
intersection. A measuring system which based on solely angular measuring is e.g. the iGPS. 
This measuring system is described in [6], [1]. For the co-ordinate determination at least two 
test item position points are known and typically four measurands are used. For the modeling 
of a spatial intersection a vector model offers itself as an intersection of two skew straight 
lines. More details about this are given in [3]. 

For the delay time determination every measurand of the test item must correspond to a 
spatiotemporal position on the rotating arm. Then the measurand, e.g. an elevation, can be 
expressed as a function of the delay time. The first position of the test item is equivalent to the 
point of origin for the test item co-ordinate system. In this way it is the same as if a polar 
measurement system will be used. For the co-ordinate transformation the quaternion qr and ptr 
must be calculated and then the formal equation (10) can be used. From (11) both angles on 
this test item point are calculated and with the Newton iteration a delay time is determined. 

If the test item's co-ordinate system is arranged in this way, that the second test item point 
coincide with the X-axis, then both points differ by a vector pbase  

( )Ths 2,12,1 0=basep , (15) 



  
 
 
 
with s1,2 as distance and h1,2 as height between both test item points. The position on the 
rotating arm pP,2B from the second test item point is built as follows 

baseP,2P,2B ppp −=  . (16) 

From (16) again both angles and the delay time is calculated for the second test item position. 
More detailed formulas are given in [3]. In this case an ideal spatial intersection can be 
assumed, because only the measurands of the test item are used for the delay time 
determination.  

3.4. Measurement Uncertainty 
In order to make a statement about the quality of the delay times, a measurement uncertainty 
must be determined for every discrete delay time. The measurement uncertainty will be 
deduced from the static determined co-ordinate transformation. The residuals of this 
transformation include the measurement uncertainty of the rotating arm, as well as the 
measurement uncertainty of the test item. From these residuals for every measurand of the test 
item a standard uncertainty is determined which in the following will be assumed as a 
boundary value for the determination of measurement uncertainty for delay times.  

Co-ordinates in the rotating arm system are calculated with an increment of 1 ms for every 
rotating arm velocity. Afterwards the co-ordinates will be transformed into the test item 
system and translated in mesaurands of the test item. In this way measurement values with a 
temporal distance of 1 ms are given for every measurand. The result of the differences 
between these values is a sinusoidal function because of the circular trajectory. For every 
rotating arm position a function value can be calculated and then the measurement uncertainty 
of the delay time is given by the quotient of the boundary value and a function value. In order 
to increase the confidence interval of the measurement uncertainty a multiplication by a factor 
k = 2 gives the expanded measurement uncertainty (Uk=2) of every delay time. More details 
are given in [3]. Due to the characteristics of the direct drive, the quality of the co-ordinate 
transformation between the test item and the test equipment was increased by using a very 
slow rotation of the rotating arm instead a static measurement.  

4. Exemplary Measuring Results 
The delay time determination for the measurands of a robotic-tacheometer is presented in [3] 
and indicates precise examination results. The measurements with a lasertracker illustrate the 
high quality of the test and calibration system. Therefore, delay times for the lasertracker were 
derived by self-calibrating methods, such as changing the rotation direction of the rotating 
arm and/or varying the test item distance. These methods enable to separate effects of the test 
item and the test equipment. 

The following exemplary results are executed with a Leica LTD500 lasertracker and with a 
Leica Absolute Tracker AT901-MR with TCAM. The rotating arm is arranged in a vertical 
position. The time referencing is realized with a function generator as external trigger, with a 
clock frequency of 40 Hz. For the co-ordinate transformation the measurement is executed by 
an angular velocity of 5°/s for the rotating arm. The test item was positioned in the rotating 
axis at a distance of about 1.4 m. A first impression of measurement results delivers a 3D 
circle fitting using the least-squares method. For AT901 without TCAM Fig. 5 shows the 
planar deviations (perpendicular to the plane of the circle) and Fig. 6 the radial deviations 
with an angular velocity ωD of 190°/s and 23 rounds. This corresponds to a maximum angular 



  
 
 
 
velocity ωTmax of the lasertracker head of 3.8 m/s @ 1.4 m and 2.7 rad/s, respectively, which 
is inside of the specification (“tracking speed lateral < 4 m/s” [9]). The changes of moving 
direction of the lasertracker head are at the rotating arm position of -117° and -297°. The 
planar deviations by a velocity of 5°/s are less than ±50 µm and the radial deviations remain 
nearly in the same range. In this way both results show a stable behavior of the rotating arm at 
higher velocities. 
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Figure 5: planar deviation at ωD =190°/s,             Figure 6: radial deviation at ωD = 190°/s,       
AT901 @ ωTmax = 2.7 rad/s                                   AT901 @ ωTmax = 2.7 rad/s     

After the co-ordinates of the lasertracker are transformed into the rotating arm system, the 
angles in relation to the homepoint (rotating arm position = 0°) are calculated. In the best case 
these angles are, within the accuracy of the calibration system and test item, the same as the 
time-referenced angles of the PMAC-encoder. Fig 7 shows the differences between both 
angles, calculated as a tangential distance for the AT901 without TCAM, again at an angular 
velocity ωD = 190°/s. At the angular velocity of 5°/s the range is between ±25 µm.  
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Figure 7: tangential deviation at ωD =190°/s,        Figure 8: tangential deviation at ωD = 50°/s, 
AT901 w/o TCAM @ ωTmax = 2.7 rad/s      AT901 with TCAM @ ωTmax = 1.4 rad/s 

With lasertracker remained in the same position and the TCAM mounted, the angular velocity 
of the rotating arm was reduced to ωD = 50°/s (corresponding to ωTmax = 1.4 rad/s and 1 m/s 
@ 1.4 m) because of the specification with TCAM (“tracking speed lateral < 1 m/s” [9]). Fig. 
8 shows the tangential deviations. With respect to the moving direction of the lasertracker 
head, the negative and positive values show a more clearly trend with the TCAM mounted 



  
 
 
 
than without TCAM. Measurements beyond the specification intensify this trend, but should 
be used only for verification. A change of the rotation direction of the rotating arm gives the 
same results, so effects of the test equipment can be excluded widely. 

Delay times were determined for the lasertracker with and without TCAM including their 
uncertainties. Due to geometrical restrictions, there are angular ranges, which are not suited to 
derive delay times (see Fig. 9 and 10, bottom). Note, that with decreasing angular velocity, 
the uncertainty of the delay time increases. Fig. 9 (top) shows the delay time for the vertical 
angle of the lasertracker without TCAM. The range is less than ±0.03 ms and corresponds to 
the interpolation interval of the lasertracker. The measurement uncertainty is similar to the 
dimension of the delay time. Fig. 10 shows the delay time for the experiment with the TCAM 
mounted, and therefore the angular velocity ωD = 50°/s. The TCAM seems to produce larger 
delay times, but note, that the measurement uncertainty due to the reduced angular velocity 
increases also. The delay time determination for the horizontal angle shows similar results. 
The LTD500 exhibits under the same conditions nearly the same results as AT901 without 
TCAM. 

−360 −300 −240 −180 −120 −60 0
−0.06

−0.03

0

0.03

0.06

d
e

la
y 

tim
e

 [
m

s]

−360 −300 −240 −180 −120 −60 0
0

0.03

0.06

 U
 [

m
s]

rotating arm position [°]

−360 −300 −240 −180 −120 −60 0
−0.06

−0.03

0

0.03

0.06

d
e

la
y 

tim
e

 [
m

s]

−360 −300 −240 −180 −120 −60 0
0

0.03

0.06

U
  

[m
s]

rotating arm position [°]  

Figure 9: delay time vertical angle (top),      Figure 10: delay time vertical angle (top),    
ωD = 190°/s, AT901 w/o TCAM                     ωD = 50°/s, AT901 with TCAM 

5. Conclusion 
By using kinematic optical measuring systems delay times will lead to deviations in 
spatiotemporal position determination of moving objects. For the determination of delay times 
a time-referenced 4D test and calibration system and an adequate modeling were developed. 
The modeling bases on the theory of quaternions. The aim of modeling is the determination of 
the delay time for every measurand of a test item. Therefore the measurand itself must be 
expressed as a function of the delay time. The lasertracker test measurements show the high 
quality of the test and calibration system and the successful modeling. First investigations 
show that both lasertrackers (LTD500, AT901) works fine within its operation range. To 
verify these results a more detailed modeling, which include the internal mechanism will be 
useful.  

References 
 

[1] Depenthal, C.; Schwendemann, J.: iGPS – a New System for Static and Kinematic 
Measurements. 9th Conference on Optical 3D Measurement Techniques, 2009  



  
 
 
 
[2] Depenthal, C.: Quaternion-Based Delay time determination for kinematic optical 

measuring systems. Eurocon 2009, International IEEE Conference, Saint-Petersburg, 
Russia, 2009 (in print) 

[3] Depenthal, C.: Entwicklung eines zeitreferenzierten 4-D-Kalibrier- und Prüfsystems für 
kinematische optische Messsysteme. Deutsche Geodätische Kommission (DGK), Reihe 
C, Heft-Nr. 627, 2009 

[4] Depenthal, C.: A Time-referenced 4D Calibration System for Kinematic Optical 
Measuring Systems. Proceedings of 1st International Conference on Machine Control & 
Guidance, 24-26 June 2008, Zurich, Switzerland 

[5]  Depenthal, C.: Automatisierte Kalibrierung von Richtungsmesssystemen in rotativen 
Direktantrieben. AVN 8/9/2006, p. 305-309, 2006 

[6] Hedges, T., Takagi, H., Pratt, T., Sobel, M. J.: Position Measurement System and 
Method using Cone Math Calibration. US Patent No. US 6,535,282 B2, 2003 

[7] Horn, B. K. P.: Closed-form solution of absolute orientation using unit quaternions. 
Journal of the Optical Society of America A, Vol.4, No.4 p. 629-642, 1987 

[8] Kuipers, J. B.: Quaternions and Rotation Sequences - A Primer with Applications to 
Orbits, Aerospace, and Virtual Reality. Princeton University Press, 1999 

[9] Leica Geosystems: PCMM System Specifications, Leica Absolute Tracker and Leica T-
Products. www.leica-geosystems.com/metrology, 2008 

[10] Mächtel, M.: Entstehung von Latenzzeiten in Betriebssystemen und Methoden zur 
Messtechnischen Erfassung. Fortschritt-Berichte VDI Reihe 8 Nr. 808, VDI-Verlag 
Düsseldorf, 2000 

[11] Wörn, H.; Bringschulte, U.: Echtzeitsysteme. Springer-Verlag Berlin Heidelberg, 2005 
 
 
 
 
published in: 
 
Grün, A. / Kahmen, H. (eds.), Optical 3-D Measurement Techniques IX, Vol. I,  
Vienna / Austria, Jul. 1-3, 2009, pp. 105-114, 2009. 


