
Applied Formal Methods in

Wireless Sensor Networks

zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

der Fakultät für Informatik

der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Frank Werner

aus Lebach

Tag der mündlichen Prüfung: 22.07.2009

Erster Gutachter: Prof. Dr. P. H. Schmitt, Universität Karlsruhe (TH)

Zweiter Gutachter: Prof. Dr. F. Freiling, Universität Mannheim

“It is fair to state, that in this digital era correct
systems for information processing are more
valuable than gold.”

H. BARENDREGT: The Quest for Correctness
Images of SMC Research 1996, pages 39-58

Acknowledgements

This thesis is a result of three years work of research during which I had the chance to meet
new and formerly unknown people that influenced many thoughts and gave a concrete
shape to many bright ideas.

Most of all I am deeply grateful to my advisor Prof. Dr. Peter H. Schmitt, who opened me
the door to research with many challenging missions, various paths to be traversed, many
things to learn, and constantly broadening my horizon. His vision of formal methods
and their application to real-world scenarios gave me constant motivation and never
exhausting ambition.

I want to thank my second reviewer Prof. Dr. Felix Freiling from the University of
Mannheim for his positive response and feed back to my work.

Much of this success is owned to my colleagues from the chair of Logic and Formal
Methods as they were good listeners for questions and problems. I especially appreciate
the kind help of Dr. Steffen Schlager and Dr. Richard Bubel during the first year of my
work. But I also want to thank Christian Engel, David Faragó, Mattias Ulbrich, and
Benjamin Weiß for the pleasant work atmosphere and appealing discussions.

I thank the members of the ZeuS project for their kind cooperation and the support
that I received when working on practical aspects of sensor networks. Foremost to name
Simon Kellner, Joachim Wilke, Dr. Zina Benenson, Dr. Erik-Oliver Blaß, and all the others
that truly gave inspiration and prospect to this work.

In the end I like to express my gratitude to my parents who supported my education
over all those years. Without them all of this would have never worked out. Finally I want
to thank Andrea with all my heart for her overall moral support and patience. Thank you
to all of you!

Karlsruhe, July 2009
Frank Werner

Zusammenfassung

Unter der Anwendung Formaler Methoden versteht man den Einsatz mathematischer
Modelle und Techniken zur Analyse von Informations- und Kommunikationstechnolo-
gien. Modellprüfverfahren sind ein Teilgebiet hiervon und erlauben dem Benutzer eine
vollständige Untersuchung des Suchraums der vom modellierten System aufgespannt
wird mittels brute-force Suche. Analysen beschränken sich hierbei nicht ausschließlich
auf Aussagen qualitativer Natur wie z.B. “Ist das System fehlerfrei?” Auch lassen sich
quantitative Folgerungen treffen. Die Anwendung von Verifikationstechniken im Bereich
Drahtloser Sensornetze ist Bestandteil dieser Arbeit und gliedert sich in zwei Teile.

Zum Einen wurde untersucht inwieweit sich existierende Modellprüfungsverfahren
(Model Checking) zur Ermittlung von quantitativen Energieverbräuchen nutzen lassen.
Hierbei wurden geeignete mathematische Modelle basierend auf Timed Automata Theorie
entwickelt, in denen sich beispielsweise der Energieverbrauch eines Sensorknotens in
einem vorgegebenen Szenario bestimmen lässt. Außerdem können dank der integrierten
Mechanismen aus allen erfüllenden Pfaden die einer Suche entsprechen die jeweils energie-
optimalen ausgewählt werden.

Für probabilistische Algorithmen existiert dieser Ansatz nur zum Teil, da hier keine
erfüllenden Pfade bestimmt werden können. Dennoch lassen sich auch hier durch die An-
wendung Formaler Methoden entsprechende Aussagen treffen. Diese können zum Beispiel
lauten “mit Wahrscheinlichkeit p läuft das System stabil”. Bestimmt wurde in der vorliegen-
den Arbeit die geeignete Wahl der Parameter durch probabilistische Modellprüfung, mit
Hilfe derer sich ein kleinst möglicher Energieverbrauch für ein authentifiziertes Trans-
portprotokoll einstellt. Von besonderem Vorteil hat sich die hohe Präzision der Resultate
erwiesen da die Ergebnisse berechnet und nicht simuliert werden. Dennoch ließ sich die
Methode wegen der schnell steigenden Komplexität der verwendeten Modelle nur auf
kleine Sensornetze mit bis zu 20 Knoten anwenden.

Der zweite Teil der Arbeit befasst sich mit der Verifikation von Protokollen und ein-
gebetteter Software aus dem Bereich von Sensornetzen. Die Vorgehensweise ist hierbei
häufig die modellbasierte Verifikation. Hierbei wird gemäß der Funktionalität ein System
händisch modelliert und später verifiziert.

So wurde gemäß einem Übertragungsprotokoll ein probabilistisches Modell entworfen
und gezeigt, dass eine zuvor hergeleitete Formel fehlerhaft ist. Insbesondere wurde bei
dem Formalismus — der aus verschiedenen Parametern die Wahrscheinlichkeit berechnet,
dass ein Knoten eine gefälschte Anfrage weiterleitet — bewiesen, dass eine Annahme
bezüglich der Unabhängigkeit zweier Parameter für die fehlerhafte Wahrscheinlichkeit
verantwortlich ist. Im Laufe der Arbeit konnte eine korrekte Formel basierend auf der
Entwicklung hyper-geometrischer Reihen hergeleitet und als korrekt bewiesen werden.

Grundsätzlich besteht bei manuell entwickelten Modellen das Problem, dass sich bereits
beim Entwurf Mängel einschleichen können, die später im Verlauf der Analyse dann zu
unerklärlichen Fehlern und Fehlverhalten führen. Da diese Vorgehensweise fehleranfällig
ist und außerdem hinreichend große Modelliererfahrung und -kenntnisse erfordert, ist
hier die automatische Modellgenerierung zu empfehlen. Hierbei wird ein Modell entgegen
dem zuvor präsentierten Ansatz automatisch abgeleitet.

Als Beispiel hierfür lässt sich die Entwicklungsplattform TinyOS anführen, in der Pro-
grammcode für verschiedene Plattformen von Sensorknoten implementiert wird. Mit Hilfe
einer geeigneten Abstraktion einer Hardware Plattform lassen sich beliebige Protokolle die
in TinyOS existieren in ANSI-C Code überführen und anschließend verifizieren. Da dieser
Schritt unter Umständen eine anschließende Anpassung der Softwarequellen erfordert
um unter anderem der fehlenden Software-Hardware Kommunikation gerecht zu werden,
lässt sich durch geeignete Transformationen der Aufwand zumindest reduzieren was den
abschließenden Verifikationsprozess erleichtert.

Auf diese Art und Weise wurde ein Concast Protokoll mittels der NULL Plattform
abgeleitet und untersucht. Als Werkzeug wurde Software Bounded Model Checking
angewendet, wodurch sich Korrektheitsaussagen wie typ-korrekte Dereferenzierung von
Zeigern, Null-Division und andere Kriterien sich anhand der Software Quellen beweisen
lassen. In einem weiteren Schritt wurden Spezifikationen definiert, die beispielsweise die
protokoll-konforme Behandlung von Paketen garantieren und im Verlauf verifiziert. Die
hier betrachtete Software Verifikation lässt sich jedoch nur auf Programme anwenden, die
in TinyOS implementiert wurden.

Desweiteren existieren auch andere Plattformen in denen sich Software für drahtlose
Sensornetze entwickeln lässt. Ein Beispiel hierfür sind die SunSPOT, die eine virtuelle
Maschine besitzen und die Ausführung eines JAVA Dialekts erlauben. In einer weite-
ren Untersuchung wurden quell-offene Teile der SunSPOTs Bibliothek auf Korrektheit
überprüft. Hierzu wurden Spezifikationen aus verfügbaren Hersteller Dokumenten und
auch dem Quellcode erstellt und mit Hilfe eines Theorembeweisers verifiziert.

Abstract

When considering the use of formal methods, a still prevailing view is its application of
mathematical models and techniques for the analysis of information and communication
technologies. Model checking is a branch of this, offering an exhaustive investigation
method of the model spanned search space via brute-force algorithms. Hereby the analysis
is not only restricted to qualitative statements for example ”Is the system error free?” Instead,
quantitative statements can also be checked. The application of these verification tech-
niques in the area of wireless sensor networks is the objective of this work which subdivides
in two parts.

In the first part we investigate the extent to which model checking can be used for the
analysis of quantitative energy draws. In this sense suitable mathematical models based
on timed automata theory are developed which are in turn used for example to determine
the energy use of a sensor node in a predefined setting. Furthermore, due to the integrated
mechanisms, we can choose among all fulfilling paths that correspond to a search those,
which are energy optimal.

For probabilistic systems similar approaches only exist to some degree, since no fulfilling
paths are provided by the search algorithm. Nevertheless, similar results can also be
obtained in this setting by the application of formal methods. These can for example be
”with probability p the system is running stable”.

In the work at hand, we determined an appropriate parameter setting for an authenti-
cated dissemination protocol, which delivers a minimal energy draw. In this case the high
precision of the obtained results is advantageous, since the outcomes were computed and
not simulated. Mainly caused by the fast increasing complexity of the models under in-
vestigation, this method can only be applied to relatively small networks of up to 20 nodes.

The second part of this work covers the verification of protocols and embedded software
from the field of sensor networks. The procedural method is hereby often based on model
based verification. Here, a system is modeled by hand according to a functional description
and later on verified.

In this sense, a probabilistic model is designed according to a transport protocol, show-
ing that an earlier derived formula is erroneous. Essentially, the formalism uses different
input parameters and computes the probability for a fake query to be forwarded by a
legitimate node. Eventually we were able to formally prove that a neglected dependency
constraint between two parameters is to blame for the inaccurate probability results.
Within the course of this work, a correct formula based on the evolution of the hyper-
geometric distribution is derived and proved to be correct.

Basically all manually developed systems have the intrinsic problem that within the
modeling phase failures can be introduced which are later during the analysis almost
impossible to detect. In consequence these errors often lead to inexplicable failures of the
system under investigation. Since this approach is error prone and in addition extensive
modeling expertise and knowledge is required, the automated model generation is in this
sense advisable. Here, a model is derived fully automatically in contrary to the previously
presented approach.

As an example we consider the development platform TinyOS in use for the implemen-

tation of programs for different sensor node types. By finding a suitable abstraction of a
hardware platform, arbitrary programs can be translated from the TinyOS implementation
into ANSI-C code for the further verification. Under some circumstances, this step requires
manual interference to modify the software sources appropriately and adapt them for
the missing software-hardware communication. Still, using an adequate translation, the
manual overhead is at least reduced, which also facilitates the consecutive verification
process.

Doing so, a Concast protocol was derived by the use of the NULL platform and analyzed.
As a tool we chose a software bounded model checker, which is capable to apply correct-
ness checks like type-correct pointer dereferencing, division by null, and other criteria
using the software behavior model of the sensor node. In a subsequent step specifications
which guarantee a protocol-compliant treatment of packets were inferred. The verification
of the specifications afterwards, is an additional element of this work. So far, the consid-
ered software verification is only applied to software of sensor nodes implemented in
TinyOS.

Moreover, also other platforms exist which allow the development of sensor node
specific software. An example for this are the SunSPOT sensor nodes. They run a virtual
machine and allow the execution of programs in a JAVA like dialect. We investigated
parts of the open-source networking library deployed on the SunSPOTs and checked it
for correct behavior. To achieve this, specifications were defined according to available
sources like data sheets and by the SunSPOT’s source code, and eventually verified using
a theorem prover.

Contents

List of Figures XII

List of Tables XIV

1 Introduction 1
1.1 Formal Methods . 1
1.2 Formal Methods in Wireless Sensor Networks 2
1.3 Contributions . 4

1.3.1 Quantitative Energy Estimation . 4
1.3.2 Protocol and Software Correctness 5

1.4 Thesis Outline . 7

2 Foundation 9
2.1 Introduction . 9
2.2 Formal Verification Techniques . 10

2.2.1 Model-based Simulation . 11
2.2.2 Model-based Testing . 11
2.2.3 Theorem Proving . 12
2.2.4 Model Checking . 12

2.3 Tools and Theory . 14
2.3.1 SPIN . 14
2.3.2 Uppaal . 15
2.3.3 Prism . 17
2.3.4 C Bounded Model Checker . 20
2.3.5 The KeY Tool . 20

2.4 Wireless Sensor Networks . 21
2.4.1 Weakness of Wireless Sensor Networks 22
2.4.2 The Adversary Model . 23
2.4.3 Sensor Node Platforms and Implementations 24

2.5 Summary . 27

X Contents

3 Energy Efficient Routing and Scheduling 29
3.1 Introduction . 29
3.2 Modeling Method . 31
3.3 Sensor Network Scenario . 31

3.3.1 Modeling the Communication Medium 32
3.4 A Timed Automata Model . 33

3.4.1 Sensor Network Devices . 34
3.4.2 Energy Cost Estimation . 37
3.4.3 State Space Reduction . 38

3.5 Specification . 39
3.5.1 Reachability . 40
3.5.2 Safety . 40
3.5.3 Liveness . 40

3.6 Results . 42
3.7 Conclusion . 46

4 Performance Evaluation of Probabilistic Flooding Protocols 47
4.1 Introduction . 47
4.2 Probabilistic Flooding in Simple Network Topologies 48

4.2.1 Networking Models based on Markov Chains 49
4.2.2 Inter Module Communication . 52
4.2.3 Specifying PCTL Properties . 53
4.2.4 Results . 55

4.3 Authenticated Query Flooding Algorithm 56
4.4 Incorporating Energy into Sensor Networks 58

4.4.1 Application Scenarios . 58
4.4.2 An Energy Model for the TMote Sky Node 60
4.4.3 Reward Property . 61

4.5 Results . 62
4.5.1 Comparing Energy Requirements of Networks 62
4.5.2 Energy/Security Tradeoff using Topology 5 65

4.6 Conclusion . 66

5 Checking Formal Correctness of Probabilistic Query Dissemination 69
5.1 Introduction . 69
5.2 Authenticated Query Dissemination . 71

5.2.1 The sAQF Algorithm . 72
5.2.2 Problem Definition . 72
5.2.3 Using Probabilistic Query Dissemination 73

5.3 Deriving a Probability Measure for sAQF 74
5.3.1 Random Set Theory . 74
5.3.2 Hyper-Geometric Distribution . 76
5.3.3 Differences in the Views . 79

5.4 Proof Techniques Using Formal Methods 80
5.4.1 Verification Models for the sAQF Formula 81
5.4.2 Safety of the AQF Protocol . 83

5.5 Results . 85

Contents XI

5.5.1 Correctness of the sAQF Formula 85
5.5.2 Restricted Safety Property for AQF 86
5.5.3 Forwarding Likelihood based on Hyper Geometric Distribution . . 87
5.5.4 Simulation versus Verification . 89

5.6 Conclusion . 89

6 A Verifiable and Secure Concast Protocol 93
6.1 Introduction . 93
6.2 Secure Aggregation in Wireless Sensor Networks 96
6.3 A Correctness Proof using the Spin Model Checker 97

6.3.1 Network and Intruder . 97
6.3.2 Adversary Model . 97
6.3.3 Modeling the Network . 98
6.3.4 Security Related Properties . 100

6.4 Software Model Checking of Embedded Software 100
6.4.1 Generation of Software Sources . 101
6.4.2 Requirement & Specification . 102
6.4.3 Treatment of Model Insufficiencies 105
6.4.4 Software Bounded Model Checking using CBMC 106

6.5 Results . 107
6.5.1 Concurrent and Distributed Analysis 108
6.5.2 Software Analysis . 108

6.6 Conclusion . 111

7 Survey of the Sun SPOT’s Networking Library 113
7.1 Introduction . 113
7.2 SunSPOT’s Network Library . 114

7.2.1 The LoWPAN Adaption Layer . 115
7.3 Verification of the Network Library . 116
7.4 Results . 117

7.4.1 The Networking Library . 117
7.4.2 A detailed Example . 118
7.4.3 General Problems & Results . 119

7.5 Conclusion . 121

8 Conclusion & Thoughts about Future Work 123

Bibliography 127

A Energy Efficient Routing and Scheduling 137
A.1 Additional Functions for the Uppaal Analysis 137
A.2 Various Constant Definitions . 138

B Analyzing Probabilistic Flooding 139
B.1 Prism Model of the Scenario 1 . 139
B.2 Energy Computation for TMote Sky Nodes 140

B.2.1 Energy for faked and legitimate queries 141

XII Contents

B.3 Prism Verification Results . 141
B.3.1 Comparison of Prism and theoretical results 141
B.3.2 Comparing different topologies . 141

B.4 Prism Model for topology 4 . 143

C The pf Formula 145
C.1 Notes on Random Sets . 145
C.2 Correctness of pf . 147

C.2.1 PCTL Formula . 147
C.2.2 Prism Model Description . 147

C.3 Proving Safety of the AQF algorithm . 148
C.3.1 PCTL Formula . 148
C.3.2 Prism Model Description . 148
C.3.3 Hyper-Geometric Distribution: Implementation 149

D ESAWN models 151
D.1 Spin Model . 151

Index 157

List of Figures

2.1 Empirical Data related to errors and costs. 10
2.2 Valid states for some basic CTL properties. 17
2.3 Different node platforms . 25

3.1 The model description with the scenario and the model’s internal represen-
tation of the distance matrix. 32

3.2 The hidden terminal problem. 33
3.3 UPPAAL timed automata model of the sensor network. 36
3.4 Definition of the UPPAAL cost function. 38
3.5 Network with the routes using different transmissions. 44
3.6 Results from the energy measurement using the timed automata model. . 45

4.1 Basis network setups studied and modeled by Markov chains. 49
4.2 The way partial probabilities from problem 2 contribute to the resulting

probability for the event, that 3 nodes accept the query. 51
4.3 Communication model for the flooding protocol with pf the forwarding

probability and pc the probability that a communication link fails. 53
4.4 Markov model and related PRISM description for a single node. 53
4.5 Probability for topologies 1 to 3 that exactly n nodes forward a query

expressed through ACCn and respectively drop a query denoted by REJn. 55
4.6 Considered symmetric and asymmetric topologies. 59
4.7 Total energy required for the flooding with varying AQF parameters and

simple non-authenticated flooding. 63
4.8 Comparison of energy requirements per node for different topologies using

simple flooding and the AQF protocol. 63
4.9 Input parameters like authenticator size m, number of keys per node k, and

the number of keys in the keypool ` correlate with the energy use. 64
4.10 Relation between faked queries in percent, the probability of forwarding a

fake query pf , and the corresponding energy draw. 66

5.1 Dissemination sequence of a fake query. 75

XIV List of Figures

5.2 Probabilistic state model for the adversary where states for Xi|i 3 are omitted. 77
5.3 Simulation results with corresponding deviation around the mean for dif-

ferent parameter settings. 80
5.4 Probabilistic system of the node process. 82
5.5 Probabilistic system of the adversary process. 82
5.6 Node process for the safety property of the AQF protocol. 84
5.7 Base station process for the safety property of the AQF protocol. 85
5.8 Comparison of results obtained by Random-Set-theory formula, the simula-

tion script, and the verification with PRISM. 86
5.9 Probabilities that node and authenticator from the base station share keys. 88
5.10 Probability of forwarding a forged query under certain parameter settings. 89
5.11 Computed results and relative difference that simulated values deviate for

the sAQF algorithm. 90

6.1 ESAWN scenario of an aggregation tree with parameters w = 2, the original
data value A from node leaf . 97

6.2 Promela code for a compromised node. 99
6.3 Structure of verification relevant status packets. 103
6.4 ESAWN packet definition . 105
6.5 Message Sequence Charts (MSCs) for ESAWN properties in SPIN. 109

7.1 SunSPOT’s network layer model. 115
7.2 Frame structure of the SunSPOTs . 116
7.3 Sources and JML annotation of function getHopsLeft(). 119
7.4 KeY tacklet for the Lemma estimateOrJlong256. 120

List of Tables

2.1 Overview of often used LTL formulae with their meaning. 15
2.2 Parallel composition constructs in PRISM. 18
2.3 Typical operation conditions of the TMote Sky node. 27

3.1 Energy consumed by the MicaZ Sensor in each state. 39
3.2 Liveness, safety and reachability properties verified with UPPAAL. 43
3.3 Energy consumed by the sensor device for different transmission ranges. . 43
3.4 Energy consumed by the reference ZigBee router under different scenarios. 45

4.1 Annotation for the variable meanings and parameters for the AQF algo-
rithm that contribute to the forwarding probability. 57

4.2 Power draws of the TMote Sky sensor node for receiving, sending, and
authenticator validation. 61

5.1 Overview about safety (ps) and liveness (pl) properties for legitimate queries
and their forged counterpart expressed by p′s and p′l. 90

6.1 Verification results for parameters n = 5, k = 2, w = 3 108
6.2 Verification results for status packets for a valid loop unwinding of 4. . 110
6.3 Verification results for unwinding assertion using ESAWN packets. 110

7.1 Number of methods and attributes of the classes involved in the verification
process. 117

B.1 AQF Energy use for fake packets Efake and legitimate packets Enonfake. . 142

XVI List of Tables

CHAPTER 1

Introduction

1.1 Formal Methods

The application of formal methods is still a young technique with increasing popularity,
especially in the modern industrial development processes, where software developers
of innovative companies recognized its potential. For example companies like Microsoft
make great efforts for improving the correctness of code and finding bugs.

Present in academia for more than two decades, this technology has now reached a stage
of maturity that allows a wide range of applications starting from abstract models that
implement mutual exclusion, up to verification of object oriented software and operating
system drivers. For correctness checking of object oriented software there exists a variety
of tools like KeY [BHS07], ESC/JAVA [RNS00], or Spec# [BLS04] that gained notability even
beyond academic borders. For Verification of C like software tools like BLAST [BHJM07],
CBMC [CKL04], VCC [CMST08], HAVOC [CLQR07], and others proved suitability in
case studies. Although other analysis techniques exist, the use of formal methods has
advantages that are unmatched by any other approach. Especially in areas where secure,
safe and dependable systems are crucial, their exhaustive checking in comparison to
simulation tools is a unique feature.

This success story of formal methods is mainly due to the fact that simulation does allow
for prototypical checking of a system, but they cannot be used to check for all possible
system interleavings. In the area of probabilistic algorithms this advantage is a superb
feature that distinguishes the application of formal tools from simulation and testing tools.
In addition, their mathematical rigor and correctness, allows the precise formulation of
the model describing the semantic and the related specifications that a model has to fulfill.

Yet, this technology is still far away from providing push-button proof checks, and in
reality the use of these tools is like leading mathematical proofs: It is often a time and
work intense business. For checking systems on an abstract level a model needs to be
designed with an appropriate phrasing of the desired properties. Essentially all relevant
features need modeling and having the proof goals in mind, well suited mechanisms need

2 Chapter 1. Introduction

to be added to the model to allow property checking.
Since this task requires a considerable amount of time and is error prone, approaches

exists that ease the modeling and specification part. By automatic model generation
a proof-basis can be derived that allows further ongoing analysis. But in many cases
the model still needs a manual reconfiguration which requires engineers to have a deep
understanding of formal methods and the product under verification. Even though many
improvements were introduced that lead the application of formal methods into the indus-
trial application area, much effort still has to be spent on theory, formalisms, algorithms
and their final synthesis into usable tools.

1.2 Formal Methods in Wireless Sensor Networks

In the field of networks the use of formal methods is relatively sparse, if present at all and
strongly competing with simulation frameworks, although scientists realized the potential
of logics and their application to security protocols very early. A prominent formalism
in this context is the BAN-logic [BAN90], published in the 1990s that was designed to
verify cryptographic aspects of security protocols and has means to account for shared-key,
public-key, and hash-functions in signatures. The focus hereby is more on security and
cryptography related questions like “Does the protocol do anything unnecessary that could be
left out without weakening it?” Although logics to verify cryptographic aspects of security
protocols were developed, the influence on sensor networks is only minor. In essence, the
application of formal methods in the domain of wireless sensor networks (WSN) suggest
itself since programs are relatively simple and the devices are restricted with respect to
several points.

To start with, they are small in size in comparison to a desktop computer and the biggest
component is their attached energy storage, the battery. Nevertheless, this source of energy
can only power a small micro processor running at a few mega hertz and a relatively
small memory of at most 1 MB. Since the deployed program and the collected data during
runtime share this memory space it is clear, that only simple programs and tasks can
be run on the hardware. In case that a program is executed and much information is
collected — for example like sensor information or even routing tree information — the
admissible program space even decreases further. From the processor speed and the
memory restrictions results the fact that only symmetric encryption methods are useful
since complex public-key encryption would be too expensive. So far, one could argue
that methods which prevailed in the world of personal computers also have a good to
establish also in sensor networks world since devices here are much simpler.

A further argument to motivate the use of formal methods is that a sensor network is
a collection of devices that only differ in their individual ID or network address. In this
sense they are excellent candidates since once a model of a sensor node is designed, it can
be copied and adapted using different network addresses or IDs. Under this assumption,
such systems can nicely be modeled as a concurrent system, having the additional potential
that symmetry reductions can be applied very efficiently.

The question why formal methods are not widely used in wireless sensor networks
cannot be answered that easily. One explanation is that in many existing application
areas like i.e., structure monitoring, safety is only sometimes considered. As a fact, the

1.2. Formal Methods in Wireless Sensor Networks 3

deployment area of highly confidential, reliable and dependable systems is in practice less
relevant and only a minor issue.

Another reason that the application of formal methods is rarely used in the wireless
sensor networking context is that no off-the-shelf verification tools exist. Therefore a
suitable representation needs to be chosen that often only allows the modeling of some
desired aspects. Where in the networking community simulation tools like NS2 [Net] or
the TOSSIM emulator [LL03, LLWC03] that comes with the TinyOS platform are widely
accepted, there is no such tool that implements formal method verification. Another
downside of model checking is that an initial model has to be refined throughout several
iteration steps. Reducing a model which allows the application of formal methods is very
often a cumbersome and tedious process. Essentially, the complexity has to be reduced by
abstracting from irrelevant details in order to emphasize the important aspects and not
increase the complexity of the system under investigation. It is even the case that different
aspects of a network need diversified modeling and differentiated applications to check
them.

As a fact, many arguments can be found that suggest the application of formal tech-
niques in the wireless domain due to the intrinsically distributed character. In addition
models can be designed at a refinement level, containing all the features of interest, and
abstract from negligible functionality. Once a single sensor node is modeled as a reference
design, it can be used to create a wireless network by parallel composition of this model in-
stance. This is a nice property since most of the settings require sensors that have identical
algorithms and only their unique ID or networking address make them differentiable.

General areas of interest in the WSN field not covered by simulation tools, hardware
testbeds or other testing methods are vast. One of the prominent areas is the verification of
sensor node software and it is indisputable that for security related applications they have
to fulfill certain safety standards. This application of formal methods to check qualitative
aspects is probably the most prominent example and hence mostly known as software
verification. Existing tools that check safety and dependable systems must also be applied
to software protocols to highlight algorithmic aspects in sensor networks.

In addition, the application of formal methods is not only restricted to the software
design process. In particular, quantitative measures can be computed by the concepts
like Timed Automata [BY04] or Linearly Priced Timed Automata [BLR05, RLS04a, LBB+01], a
concept that allows the annotation with a function to express costs of a delay or a specific
action. By the help of this formalism energy predictions can be stated to forecast for
example the maximum life time of a battery powered sensor network. In general, this tool
domain can deal with problems related to time, which can also be found in the context of
WSN. For example predictions about the time to response can be met with an extraordinary
high precision thanks to the mathematical foundation.

Another field that gained emphasis is the area of probabilistic algorithms and their
analysis. In this context, decisions in a distributed network can be either accomplished by
a distributed decision-making through probability or a central entity, sending the decision
globally around in the network and hereby causing a communication overhead. So a
distributed algorithm can be used as a counter measure avoiding the costly sending and
receiving of messages by the use of probabilistic decision-making. The formalisms that
allow the modeling of those systems belong to the family of Markov Processes and Markovian
Systems. These methods can be used to analyze reachability of nodes, or energy costs of

4 Chapter 1. Introduction

probabilistic protocols. Here the application of simulation techniques is inadequate since
experiments have to be repeated sufficiently often to gain a considerable high precision,
and this can sometimes be more than 1 million times. Otherwise confidence criteria are
not sufficiently fulfilled and the statistical reasoning about the results can infer errors on
the protocol and the overall performance.

1.3 Contributions

This thesis analyzes the applicability of formal methods to the world of wireless sensor
nodes and the networks that can be constructed of them. In principle all of the formalisms
used are derived from the verification community and proved in previous case studies.
Some of the tools are even established and reached a stable and reliable state.

The application of the verification formalisms is twofold. In the first part verification is
used to obtain quantitative results about network properties. That is for example, ”How
much energy can be saved in a scenario when using a specific parameter setting?”. The
second part treats prominent application of formal methods, that is to check for correctness
of software, protocols and algorithms.

1.3.1 Quantitative Energy Estimation

The idea to use methods from the field of formal verification and apply them for constraint
solving in the context of wireless sensor networks was already proposed in case studies
before. In addition case studies exists that analyze performance issues in combination
with general safety and liveness properties of security protocols or network protocols in
general like the IEEE 1394 Firewire standard. In the work of [TCCP08] security aspects of
the µ-Tesla protocol are analyzed. The work of [FvHM07a] models and verifies the LMAC
protocol, a medium access control protocol for wireless sensor networks. In their approach
they investigate all possible connected topologies consisting of four up to five nodes and
focus in mainly on the detection and resolution of collisions.

The innovation with the approach as shown in this thesis is to apply techniques known
from the verification domain to problems in the sensor network domain to efficiently
compute energy usage. As known to the author, there exists no comparable work that
incorporates the energy aspect into models. The possibilities that show up in combination
with the versatile propositional logic offer a variety of investigation possibilities. As such
any thinkable scenario can be easily and quickly configured. Thanks to the exhaustive
character of the underlying model checking framework, any situation that can occur, can be
computed. We consider situations that only show up with a vanishing but still considerable
probability, and precisely compute the energy spent in these settings. Essentially these
situations are even hard to detect in simulations due to their rare occurrence.

Results furthermore indicate that the Timed Automata formalism is an appropriate
candidate for modeling a sensor network. As it turns out, the successful analysis of a
network is only promising if a notion of time is present that can be incorporated into the
specification. Moreover the use of non-determinism makes the model very flexible, and
offers a compact design and human readable models.

1.3. Contributions 5

Probabilistic decision-making is a widely used method in distributed systems since no
additional message passing is required. By running the algorithm distributed entities can
option autonomously. Since Timed Automata simply have no mean to express probabilistic
branching, a probabilistic modeling formalism is required that is capable of handling
probabilities. Such a formalism is for example represented by the class of Markovian
processes and chains, that offer constructs to account for likelihood, but in turn lack a notion
of time.

For probabilistic systems, studies exists that investigate for example dynamic power
management switching [NPK+02, NPK+03] where based on a randomized power man-
agement strategy the average power dissipation should be minimized. In the context
of energy optimizing is also the work of [KNP05] that investigated the performance of
real-time embedded systems using dynamic voltage scaling. Low-rate wireless personal
area networks are explored using probabilistic timed automata theory in [Fru06]. The
tradeoff hereby is that either the battery life is prolonged or the performance of the battery
powered processor in increased.

In the present work we drop the time notion since the probabilistic effects have a
stronger impact on the results. A model based on Markov chains is developed and applied
to an existing secure query dissemination protocol. As in the analysis of the previous
chapter the focus of this analysis is on energy related questions. Based on the results it is
possible to claim that different topologies are more or less vulnerable to an attack of the
investigated probabilistic protocol. Further on, it turns out when using the probabilistic
query dissemination scheme that nodes close to the adversary are more vulnerable to
forged queries and more concerned about energy draining of forged queries.

Essentially it shows how to select the protocol parameters in an optimal way to obtain
maximum security at a minimum energy use. In this way, a cost optimal setting is derived,
depending on the estimated frequency on which attacks happen.

1.3.2 Protocol and Software Correctness

The second part of this work applies general verification methods in the general sense,
namely to verify the correctness of algorithms. It is indeed the case that each algorithm
needs to be considered on its own and very seldom there is a beneficial contribution from
related work. Although literature is full of correctness proofs for all kinds of protocols,
they strongly depend on the context.

In this thesis a networking protocol for authenticated query dissemination (simple
authenticated query flooding – sAQF) is investigated. To the best of our knowledge there
is no such correctness proof for the protocol under investigation since the verification was
applied during the design of the algorithm and even before its publication.

Since the proposed protocol was new and no formal investigation existed, the approach
required special modeling of the analyzed topic. It shows that during the formal evaluation
of the Markov model, errors in a simulation script, that was developed independently
from the formal analysis, were found. As the simulation results would end in wrong
assumptions and a bogus choice of parameters, the overall efficiency would be not correctly
computed and any conclusion drawn would be simply wrong. It is considered as a fact,
that without the help of the formal investigation this modeling error would have never
been found, and having a simulation and a formal model both strengthen the belief in the

6 Chapter 1. Introduction

implemented models.

Further on, for the evaluation of the parameters and the derived probabilistic formula,
the presented analysis reveals a neglected dependability constraint. In the course of this
work, a correct probability formula is derived that is formally verified to compute the
correct probability. The use of rigorous techniques applied during the analysis of the
authenticated query flooding protocol helped in the present case to find potential errors
that have a tremendous impact on the performance of the protocol.

The fact that the model was artificially created does not enforce the belief in its cor-
rectness, although eventually the simulation and the corrected formula suggest identical
results. And for more complex software systems the model based verification approach is
far from being feasible. In addition, errors can be introduced into the model that hamper
the verification process.

The automated application of correctness checks for TinyOS programs is studied in the
work of [KMG08] using a tool called FSMGen. In addition the Slede tool [Han07] offers a
possibility to investigate protocols for a fixed topology using a protocol model generator.

In this work the approach is different in the following sense. Instead of deriving an
abstraction of the model, a fully functional behavior model is generated and analyzed
which contains a complete low-level description of the sensor node in a software model.
This has the advantage, that no model is needed, since the original sources of the protocol
implementation are considered. Secondly, the user must not learn another formalism to
understand the details of the implementation since they are expressed in ANSI-C. And
in the end, very powerful tools already exist in the community for the verification of
software. Using the proposed approach we benefit essentially from synergistic effects. To
demonstrate the capabilities of the recommended analysis, we exemplify it by the analysis
of a concast protocol. For the verification of properties we use the technique of software
bounded model checking, employed in a tool that in addition offers general correctness
checks applicable to software code, like type-correct pointer dereferences, division by zero,
etc. Since the distributed behavior and the concurrent character of sensor networks are
difficult to investigate, a distributed scenario is designed which is analyzed by the use of
conventional model checking.

Besides the TinyOS framework which represents the classical embedded system ap-
proach also other engineering platforms emerged lately. An example for a JAVA-based
development platform are the SunSPOTs which run a virtual machine. In this thesis we
survey the SunSPOT’s networking library. Since the library consists of more than ten thou-
sand lines of code, we restrict the analysis to a small part which considered the LoWPAN
layer (low-power wireless personal area network). One functional aspect is verified in
this work that covers the dispatch-mechanism. In this investigation specifications are
derived from product data sheets and network standards and verified by the use of a
theorem prover called KeY. As shown by the case study, state-of-the-art tools exist which
are extremely powerful, but they have evident limits. In the present example low-level
operations like bit-vector handling is still very complicated matter even for the use of
sophisticated software and potent computing hardware.

1.4. Thesis Outline 7

1.4 Thesis Outline

The thesis is organized as follows. In the next Chapter 2 the two fundamental views which
are comprised in this thesis are introduced. This is on the one hand the concept of Formal
Method that also subsume the application of model checking. And on the other hand
the ideas and technical details from the field of wireless sensor networks, indicating their
applicability, and weakness. In addition, this chapter gives an overview about the logics,
theory of automata, and their implementation in tools.

After this introduction and foundation, the first of the two parts of the thesis starts which
covers the analysis of energy consumption and how they can efficiently be computed using
different theoretical concepts. In Chapter 3 a sensor network scenario is analyzed based on
the theoretic model of timed automata with respect to safety, and liveness properties, and
in addition energy draws are added to investigate the energy spent in different settings.
Chapter 4 analyzes the energy use of a probabilistic protocol for authenticated query
dissemination called AQF (authenticated query flooding) in dependency of an adverse entity.

The second part covers qualitative aspects of software verification like correctness of
protocols. A query dissemination protocol for particular small networks called simple
authenticated query flooding (sAQF) is checked for correctness using probabilistic models
in Chapter 5. Thereafter Chapter 6 investigates the correctness of the Concast protocol
ESAWN (Extended Secure Aggregation for Wireless Sensor Networks) by means of the SPIN

model checker and software bounded model checking (SBMC). In Chapter 7 parts of the
SunSPOT’s networking library in charge for the sending of packets is verified using the
KeY tool.

The rest of the thesis is understood as a closure: In the final Chapter 8 the present work
is wrapped up, giving a short summary about the presented results and further tasks for
future work are proposed that result from the contribution of this thesis.

8 Chapter 1. Introduction

CHAPTER 2

Foundation

2.1 Introduction

This chapter is a foundational part of this work since it gives a general overview about the
topic of this thesis. It furthermore introduces the key techniques from the area of formal
methods and some of the tools which made it beyond the borders of academia. Since their
understanding is relevant for the comprehension of the whole subject, they are explained
in detail, and additional references for further reading are provided where needed.

Also in the world of the sensor nodes conventions must be explained to establish a
common view on devices. The way nodes are built, what their key features are, their
drawbacks, but also their strength are essential for the understanding of the following
chapters. For the definition of safety and security related properties, an appropriate threat
model is introduced to better understand the covered aspects of protocols, their weakness
and points of intrusion. For this reason this part lays the principal building blocks relevant
for the understanding of the following analysis where this adversary is modeled and its
abilities are considered when arguing about protocol safety.

The field of formal methods as well as the area of sensor networks are still very active
fields of research. This does not only hold for the presented applications that rapidly
change. Also their efficiency and the implemented algorithms are continuously improved.
It is also valid for the wireless node world where devices become smaller and smaller
and their effectiveness steadily increases. In this sense, it is very likely that in a few years
from now some of the presented material will be subject to changes but the techniques in
principle will remain.

This chapter bridges the gap between the theoretical formalisms in the model checking
world and the application area of sensor node devices which is a central part of this work.
It is relevant since major aspect of this thesis investigates the usability of proof techniques
in the area of sensor devices or more accurately ”Applied Formal Methods in Wireless Sensor
Networks”.

10 Chapter 2. Foundation

 0

 10

 20

 30

 40

 50

 60

 0

 2500

 5000

 7500

 10000

 12500

 15000
re

la
tiv

e
nu

m
be

rs
 [

%
]

co
st

s
fo

r
co

rr
ec

tio
n

in
 [E

U
R

]

analysis design implementation developer test system test field

introduced
 errors [%]

detected
 errors [%]

costs for
correction
per error [EUR]

Figure 2.1: Empirical Data related to errors and costs (see [Möl96]).

Overview This foundation chapter is structured in the following way. In Section 2.2 fun-
damental aspects of this work are mentioned, covering the application of formal methods
in general, and the use of model checking techniques. In the subsequent Section 2.3 we
present tools used for the verification task. Along with their description we provide a
short abstract about implemented theories, and give references to the literature. In the last
section (see 2.4) the major aspects of wireless sensor networks are explained including an
adversary model, and different types of sensor node platforms.

2.2 Formal Verification Techniques

Since the design of software and hardware systems is increasing in complexity, more
time is spent on checking their correctness than on their actual construction [Kat03]. The
demand for appropriate techniques that increase the coverage of verification efforts while
reducing their work load is present. As case studies showed about 90% of all errors are
introduced within the early design and implementation phase of a product (see Figure 2.1).
In addition, detecting such defects at an early state is relatively cheap, but if errors stay
undetected up to the system test or even the field test, it is causing massive expenditures to
fix them. By applying formal methods in the product development cycle and integrating
them actively into the design process the required time and the costs for verification are
reduced.

What is in fact hidden behind the term formal methods is a sound mathematical structure
that allows for modeling and the later analysis of systems mainly from the information and
communication domain. And through their mathematical rigor, the correctness of highly
dependable systems can be established. In the fields of software and hardware verification

2.2. Formal Verification Techniques 11

of safety-critical systems, the use of formal methods is widely adopted due to its potential.
During the last decade there has been enormous success in the development of verification
techniques that lead to sophisticated tools and various automation steps in the verification
process. In fact by the use of formal procedures, investigations have revealed prominent
defects as in systems, like the Ariane-5 Missile [Mar97], Mars Pathfinder, or the Intel’s
Pentium II bug.

In general two distinct fields of formal verification exist. Deductive methods belong
to the one area and can be found in tools like theorem provers and proof checkers that
determine the correctness of a system through a mathematical theory with the highest
possible precision. On the other side model-based verification exists, describing the system
through mathematical models in a precise and unambiguous fashion. The verification
is accomplished by using a system model that consists of an accurate definition and a
specification, and all possible modeling states are exhaustively explored with the help
of a search algorithm. Many specialized verification techniques exists that range from
experiments in reality known as testing, simulations executed in a restrictive set of scenarios,
up to the exhaustive exploration of all possible states, referred as model checking.

In this work the focus in on the later technique namely model checking although the
others do play an important role and thus their major aspects are just briefly introduced.
For an in-depth explanation refer to the work of [Kat03].

2.2.1 Model-based Simulation

When deciding about the quality of a prototypical implementation, model-based simulation
is in particular useful. To achieve this, a model obtains external stimuli and the observable
reaction of the model can help to reveal early design flaws in the implementation. This
can never be an exhaustive checking since for most systems it is infeasible to analyze all
possible system settings by simulation. Due to this disadvantage generating exhaustive
scenarios for the simulation is time consuming and very costly. And in fact unexplored
scenarios may still remain that can contain a flaw. Furthermore assertion about the
systems degree of correctness — the so called coverage criteria — are hard to quantify and
estimations are only very rough. For many scenarios a safety guarantee stating that in 99
percent of all cases, the system is fine is sufficient, but due to the afore mentioned problems
even these statements can hardly be proposed.

2.2.2 Model-based Testing

The application of model-based testing is useful in areas were the creation of a system
model is hard or even impossible to obtain. Depending on the accessibility of the system
internals, different kinds of testing are feasible. So called white box testing is applicable
where the internal structure of the system is fully accessible. If only parts of the internals
are available to build tests, gray box testing is accomplished, and last black box testing is
employed if there is no access to internal details and their structure is completely hidden.
One of the major advantages of testing is their application to final products as opposing
to restricted models that only represent a subset of the fully implemented features. But
similar to simulation techniques as mentioned before, model based “testing can only show
the presence of errors, never their absence” [Dij72].

12 Chapter 2. Foundation

2.2.3 Theorem Proving

Theorem proving is using mathematical theory in terms of a logic to infer the system’s
correctness. So the system needs to be transformed into some logic. In combination with
a set of axioms — that are fundamental laws formulated as theorems which are always
valid — a proof is generated by the theorem prover.

The major advantage of proof checkers is their applicability to infinite state systems
since they rely on mathematical principles such as structural induction. Since they make
use of parameter settings as non-discrete values, their application is not restricted to
numerical application scenarios. Although successful applications of theorem proving
exist, developing these proofs is usually very time consuming, labor intensive and prone
to errors.

The implemented logics by theorem provers range from variants of first order logics,
typed logics, up to higher logics (typed-order logics where variables range over function
types of predicate types) that can handle object oriented programming languages. Promi-
nent proof checkers for higher-order logics are PVS [SOR93], Coq [BC04], Isabelle [Pau94]
etc. For the verification of software a group of theorem provers are well-established that
transform a program into an appropriate logical representation. Tools that belong to this
category of theorem provers are the KeY [BHS07], or BLAST [BHJM07].

The last prominent technique in the field of model based verification is model checking
which is introduced in full detail in the following.

2.2.4 Model Checking

The term Model Checking was coined in the early eighties by the work of Clarke and
Emerson [CE82] who worked on automatic brute force examination of programs automat-
ically synthesized from a high-level temporal logic specification. Independently from the
above Queille and Sifakis [QS82] discovered similar methods when analyzing concurrent
systems in CESAR.

The technique behind model checking explores all possible system states of a model
M under investigation through efficient algorithms and data structures in a systematic
manner. Hence if a state satisfying a property ϕ is found, a mathematical proof is provided
that can be used to compute the conditions that lead to it. The challenge is to examine
the largest possible state space that still fits into the memory and which can be searched
for property ϕ. The maximum size of the state space varies for state-of-the-art model
checkers between 108 and 109 states with explicit state-space enumeration. Using suf-
ficiently sophisticated algorithms and data structures, larger state-spaces consisting of
up to 10476 states [Kat03] lie still within the feasibility for some problem instances. And
in consequence even subtle errors that remain undiscovered by emulation, testing and
simulation can potentially be revealed by the model checking approach.

The majority of checkable problems have a qualitative nature like “Does the system
ever recover from a failure?” or “Can a deadlock situation be reached?” The term deadlock
refers hereby to an unintended halt of the entire system mostly caused by concurrent
processes mutually waiting for each other. Also livelocks are possible where processes
cycle continuously between different states forever, but cannot escape this sequence.

2.2. Formal Verification Techniques 13

The system model is often automatically generated from model descriptions specified in
some appropriate programming language like C, JAVA, or hardware description languages
such as Verilog or VHDL. But it can also be the case that it is manually created. The model
description How does the system behave? and the property specification What should the
system do and what not? are then fed into the model checker which examines all possible
states satisfying the property. If a violating state is found, a counter-example is provided
showing the path from the initial state to the violating system configuration.

The technique of model checking as been applied to many fields ranging from the appli-
cation of on-line airline reservation systems, over modern e-commerce protocols up to
software employed in the storm surge barrier in the harbor of Rotterdam [CTW99, Pim98].
During these investigations several serious design issues were revealed that did not show
during testing and simulation.

In the area of wireless sensor networks the application of formal methods has recently
started. Since the method is very flexible and versatile, it is applicable to all systems with
the appropriate degree of realism. For distributed systems — and WSN can be as such
considered as a distributed system — their application is extremely suited through models
like finite state machines that especially emphasize their concurrent nature. Fortunately, in
most of the application domains in the field of wireless sensor networks one is interested
in only a small set of properties requiring only a small fraction of the temporal logic. In
fact, this matter allows the user a degree of freedom to choose the appropriate modeling
mechanism which best reflects the model under consideration.

But there are also downsides involved with the model checking approach that one
should keep in mind. The probably most prevailing to name addresses the size of the
system, since only finite models can be considered with the proposed technique. Otherwise
the verification algorithm is running out of space and does not provide any answer about
the property of interest. This problem is intrinsic for all tools that employ the model
checking technique and is referred in literature as the state space explosion problem.

Over the years many technologies to combat the downsides of model checking have
been implemented. In principle they all introduce counter measures for the fast and
accelerating increase in the model size and the resulting state space.

A commonly used method is to use abstraction and hereby decrease the complexity
to an extent which makes the application of model checking feasible. Since right at
the beginning one is interested in predefined properties, the simplification can reduce
unnecessary details that do not influence the considered behavior. Nevertheless, the
reduced system can only be checked if the applied abstraction is sound, meaning that the
properties on the original model must also hold on the reduced model. Since the reduction
of the model freed resources due to a decrease in the model’s complexity, subsequent
refinement processes are possible where features of interest can be modeled now in detail.

For explicit state model checking tools the application of partial order reduction can lead
to a tremendous decrease of the model’s complexity by a magnitude of more than hundred.
It works on the generated explicit state graph by finding independent interleaving of
concurrent processes that can be safely removed from the model. In essence, for many
parallel and similarly behaving processes as found in the domain of wireless sensor
networks, the complexity savings are mostly due to symmetry reduction techniques.

By the use of symbolic algorithms the performance of model checking can be increased

14 Chapter 2. Foundation

as well. With this technique no graph of the finite state machine is built up in memory. In
contrary, a graph implicit representation for the propositional formula is chosen.

2.3 Tools and Theory

The tools presented in this section implement completely or partially different theories.
For this reason we give a short overview of the software used for the modeling and
verification, and introduce their theoretical background where required.

2.3.1 SPIN

The development of the SPIN model checker [Spi09] started 1980 at the Computing Sciences
Research Center of Bell Labs. Since 1991 the software is freely available. It fully implements
the linear temporal logic (LTL) that offers modalities to reason about time, like the future of
paths under which a condition should evaluate to true. The syntax of the propositional
logic is given by the following definition.

Definition 1 (Linear Temporal Logic – Syntax) For an atomic proposition ap, and valid LTL
formulas Φ,Ψ, formulas in LTL are constructed according to the following rules:

Φ ::= ap | ¬Φ | Φ ∨Ψ | XΦ | ΦU Ψ | 2Φ | 3Φ

The semantics of LTL is defined by quantification over a single path. Hereby ap is a
propositional formula which only depends on the current state. Further on, ¬Φ is satisfied,
if Φ does not hold on the path, and Φ ∨Ψ is true if either Φ or Ψ holds on the path. The
claim X Φ is satisfied, if Φ is satisfied in the next state, meaning the actual state plays no
role. The construct ΦU Ψ states that Ψ has to hold in a successor state, and in all of the
previous states Φ has to hold. The last two LTL formulae are auxiliary and do not add
expressiveness to the language. In fact, they facilitate the process of specifying complex
properties and in spoken language they read as eventually and always properties.

SPIN models are defined in Promela, a process meta language that is further explained
in [Hol03]. Promela models consist of asynchronous processes defined by proctype,
synchronization statements, and message channels. The final automata is instantiated
using the defined processes with interleaving. Inter-process communication is realized
using channels chans that can be either buffered with an arbitrary size or unbuffered.
Preprocessor commands can be added to Promela which appear at the very beginning of
a model definition similar to C. In addition complex data types can be defined. Atomicity
can be arbitrary added to enforce atomic block building by the construct atomic{..}. By
the use of keywords xr and xs an exclusive read- and write access — so called channel
assertion — is set on channels which is checked by the tool at runtime.

SPIN is able to deal with huge state spaces. In particular, by use of the implemented par-
tial order reduction techniques and on-the-fly interpretation, that avoids the construction
of an explicit Kripke structure, efficient model checking is possible. Furthermore C-Code
can be embedded in the Promela model to act as a real implementation.

The SPIN model checker offers different modes of operation. It can act as an interactive
simulator which is helpful in analyzing the model for sanity, or the exhaustive verifier can
check arbitrary LTL formulas for validity.

2.3. Tools and Theory 15

formula natural language type
2p always p invariance
3p eventually p guarantee
p→ 3q p implies eventually q response
p→ qUr p implies q until r precedence
23p always eventually p recurrence (progress)
32p eventually always p stability (non-progress)
3p→ 3q eventually p implies eventually q correlation

Table 2.1: Overview of often used LTL formulae with their meaning.

Basic properties that can be analyzed through SPIN are properties like safety checks
in terms of validity of end states and assertions. Over paths properties declarations like
non-progress cycle and acceptance cycle existence are possible which are known as liveness
checks. Furthermore SPIN allows to check for never claims, correctness of exclusive access
on variables and channels, and the existence of unreachable code fragments.

The syntax from LTL can be directly translated into SPIN syntax. In this sense operator
! is for negation, ‖ for disjunction, U as the until operator, and X as the next operator. The
resulting SPIN syntax for property specification in LTL is:

〈 atomic proposition 〉 ::= true | false | 〈 boolean expression 〉
〈 path formula 〉 ::= 〈 atomic proposition 〉 | X〈 path formula 〉 |

!〈 path formula 〉 |
〈 path formula 〉 ‖ 〈 path formula 〉 |
〈 path formula 〉 U 〈 path formula 〉

There exist a number of linear temporal properties often used to state assertions about
recurrence or response properties. The most prominent LTL statements are listed in
Table 2.1.

2.3.2 Uppaal

UPPAAL [BDL04, LPY97] is based on the theory of Timed Safety Automata [HCSY92,
HNSY94], that can be used for the verification of real-time systems. In UPPAAL a model
is a representation of automata A that is extended with a clock variable. All clocks run
synchronously and have the same notion of progress. If one clock is advancing, all the
other clocks in the system need to advance by the same portion. Clocks are initially set
to zero, but then tick as automata transitions are executed. In addition transitions are
executed instantaneously, without the elapse of time. Constraints and guards on clocks
and invariants are defined in [Kat03]:

Definition 2 (Clock Constraints) Let C be a set of clocks, x ∈ C, and c a natural number. The
clock constraints over C denoted as ConstraintsC satisfy the following rules:

• x < c and x ≤ c are clock constraints

• if α is a clock constraints, then ¬α is a clock constraint

16 Chapter 2. Foundation

• if α and β are clock constraints, the α ∧ β is a clock constraint

Important to note is that clock constraints need to follow a very restrictive syntax,
because otherwise the model checking problem becomes undecidable. So for clocks α, β
and a ∈ R+, b ∈ N the term α ≤ a+ b is admissible whereas two clocks on the left side like
α + β ≤ a are not. Furthermore, rational clocks constraints are valid since they can be
transformed into natural numbers by scaling all clocks of the system by the least common
multiple of the denominators of all constants that appear in conditions or invariants.

Automata can synchronize on channels by the use of binary- or broadcast synchronization.
For each synchronization tuple C, a sender C! and a receiver C? are explicitly defined by
the user. The difference between binary and broadcasting lies is the following. In a binary
synchronization a sender and a receiver have to be present, otherwise the system’s sender
is blocked. In the broadcasting scheme the sender is never blocked and instead of having
one receiver, there can be multiple ones at the same instance.

State changes within an automaton occur by taking transitions. Like the following
transition s

g,c,u→ s′ from state s to s′ (s, s′ ∈ S), each transition comprises the following
three elements of which all are optional. An edge is enabled if the guard g — a construct
on the clocks and integer variables — evaluates to true. In case that a synchronization
partner is present for a channel c, transitions are jointly executed. Afterwards, the update
u is updating variables and executes the clock resets. If no guards or synchronization
terms are present, the edge is enabled.

Essentially two kinds of time constraints on the automata exist. On the one hand clock
variables in the form of guards are possible on transitions with the notion that an edge is
only enabled if the guard is fulfilled. Or they can be added as an invariant to states, that
allow an automaton to stay in this state as long as the invariant is not violated. Hence a
state must be left in order not to violate the invariant. Invariants can be understood as
the complement to guards in the sense that guards allow a state to be left and location
invariants enforce such state change.

In UPPAAL location labels urgent and committed exist, that can be understood as
invariants over time on states. An urgent label indicates that no time is allowed to pass
while the system is in this state. For committed locations it is even the case that on the
next step each committed location must be left.

Each automaton is included in the system through a template that allows to instantiate
arbitrary combinations of modeled automata. Since modeling in UPPAAL is mostly done
in the graphical interface, the definition of the syntax is omitted here, but can be found
in [BDL04].

The Semantics of an UPPAAL system automaton can be explained using the concepts
of action and timed trace. The automaton concept from [HCSY92, HNSY94] comprises of a
set Σ of actions. For UPPAAL automata this is a derived concept.

The behavior of an UPPAAL automaton A is defined by the set run(A) of all its possible
runs. A run is a finite or infinite sequence s0, s1, . . . , si . . . of states. A state in turn is a
pair (`, u) of a location ` ∈ L, and a function u that associates values to all variables and
clocks. Of course, we require that `0 is the initial state and u0 assigns the initial values.
If we look at a system of automata the state of the system is the pair (~̀, u) where ~̀ is a
vector (`1, . . . , `k) of locations for all automata A1, . . . ,Ak in the system, and u assigns

2.3. Tools and Theory 17

(a) E3blue (b) E2blue

(c) A3blue (d) A2blue

Figure 2.2: Valid states for some basic CTL properties are marked by blue nodes.

values to all local-, and global variables, and clocks. A sequence s0, s1, . . . , si . . . of states
is in run(A) if there is a timed trace (t1, b1), . . . , (ti, bi), . . . that demonstrates that A can
reach the given states in the given order. This is to say that for all i the automaton A
can change from state si−1 = (`i−1, ui−1) to si = (`i, ui) via the timed action (ti, bi). This
change comes in two parts. In the first part from (`i−1, ui−1) to (`i−1, u

′
i−1) only the clock

variables change by di = ti− ti−1 (with t0 = 0), i.e., u and u′ differ only on variables x ∈ C,
and u′i−1(x) = ui−1(x) + di. The second part is the firing of the edge or the pair of edges bi
in state (`i−1, u

′
i−1) with end states si = (`i, ui) as already explained above.

A CTL like Query Language is used to specify properties that allow not only to make
assertions about one possible successor state [Kat03], but over a whole branch of the
following states. As in CTL, the query language allows assertions like some or all of the
states starting in a starting state s fulfill a property, something which cannot be expressed
through a LTL formula. In general, CTL distinguishes between state formulae that allow
quantification over states, and path formulae expressing the property of a path. Essentially
the UPPAAL query language does only handle a simple subset of CTL without the nesting
of properties. Some basic properties are shown in Figure 2.2.

2.3.3 Prism

PRISM [Pri] is a probabilistic model checker for modeling and the analysis of probabilistic
systems. Three types of probabilistic models are supported, which are discrete-time Markov
chain (DTMCs), Markov decision process (MDP), and continuous-time Markov chains (CTMCs).
Since CTMCs are not used within this work, we refrain from further explaining its syntax
and semantics. PRISM internally uses multi-terminal binary decision diagrams (MTBDDs)

18 Chapter 2. Foundation

PRISM coded composition involved actions
mod 1 || mod 2 full parallel all
mod 1 ||| mod 2 asynchronous parallel none
mod 1 |[act 1,..,act n]| mod 2 restricted parallel only act 1..act n
mod 1 {act 1,..,act n} action hiding none
mod 1 {act 1<-act 2,..} action renaming act 2

Table 2.2: Parallel composition constructs in PRISM.

which extend BDDs through the representation of arbitrary function ranges instead of
values 0 or 1.

The PRISM language is state-based and derived from the formalism of reactive mod-
ules [AH99]. Models in the PRISM context are composed of modules through parallel
composition where variable hiding etc. is possible. Each module has local variables
that constitute the state of the module. The behavior of a module is described through
commands of the form:

[action] guard -> p_1:update_1 + ... + p_n:update_n

In the above command guard is a predicate over all module variables, and if it evaluates
to true, the operations next to the arrow are executed. p 1 up to p n describe the probability
with which their related update is executed. What is important to note is that in DTMC
models, the sum of all p i’s has to be equal one where is a MDP modeling this does not
need to hold. update i describes the updates that are executed if the guard is fulfilled.
Via the action label [action] which can even be the empty action label [] concurrent
modules can synchronize their commands.

Variables can be of type Boolean or integer or even define a range of integers. In addition
it is possible to assign variables with an initial value using the keyword initial. The
composition of modules is accomplished by the use of the operators shown in Table 2.2.
If no explicit composition is given, full parallel composition is assumed for all modules.
Global variables are prefixed with the key word global and appear before the module
declaration.

Costs and Rewards can be added to model a wider range of quantitative measures. For
example questions like “what is the expected time until failure” or “what is the expected
power consumption?” are feasible through this. Rewards are added to the model using
a rewards ... endrewards construct. Within this construct different rewards are
added using a guard:reward scheme, meaning that whenever the guard is fulfilled,
the value of reward is accumulated to express the expected costs.

Property Specification is accomplished using a querying language based on the tem-
poral logics of Probabilistic Computation Tree Logic (PCTL) [HJ94, BdA95] for DTMC-
s/MDPs, and Continuous Stochastic Logic (CSL) [ASSB96, BKH99] for CTMC models.

Specifications for DTMCs and Markov Processes are defined using PCTL (Probabilistic
Computation Tree Logic), which is a probabilistic extension of CTL [RKNP04]. Like in CTL,
the user is not only able to make assertions about one possible successor state [Kat03], but
also over a whole branch of the following states. PCTL formulae are interpreted over states

2.3. Tools and Theory 19

of Markov chains. We distinguish between state formulae Φ, and path formulae ψ that are
evaluated over states and respectively over paths. When specifying a property, one starts
with a state formula since path formulae only occur as a parameter of the P./p[ψ] operator.
In other words, a state s satisfies P./p[ψ] if the probability of taking a path starting at s
satisfying ψ is in the interval ./ p with ./∈ {≤, <,≥, >}, and p ∈ [0, 1].

A cost or reward operator E is added to the language specification. As opposed to
model checking of timed automata in PCTL it is not possible to determine the probability
with which a certain path formula is satisfied and thus no failure states of the model can
be identified. It can only be determined whether the computed probability is within a
certain bound. The PCTL syntax is given through

Φ ::= true | false | 〈expression〉 |
Φ & Φ′ | Φ | Φ′ | P bound [Ψ] | S bound [Φ]

with bound equal the ./ p operator and ./∈ {≤, <,≥, >}, p ∈ [0, 1], as mentioned before.

ψ ::= X Φ | Φ U Φ′ | Φ U time Φ′ |
F Φ | F time Φ | G Φ | G time Φ

and

time::= >=t | <=t | [t,t].

The operator X represents the next operation, U the until, F the eventually and G has the
notion of always as known from other logics.

Reward based Properties can be added to PRISM models to analyze properties that
relate to the expected value of certain reward variables. A reward based operator is
denoted i.e., as R bound [rewardprop]. The following four reward properties are
supported in PRISM:

The reachability reward written as F prop refers to the accumulated reward along the
path until the specified point is reached. For DTMCs and MDPs the total reward can be
counted as the total sum of all state rewards assigned along the path plus the sum of
transition rewards. The cumulative reward property written as C<=t associates the model’s
reward of all paths up to the time bound t. Instantaneous rewards denoted by I=t refer to
a reward at a certain instance of time t. And last, steady-state reward properties can only be
applied for CTMCs and compute the rewards in the long run, when the steady state is
reached.

PCTL Model Checking The way PCTL model checking works is explained in detail
in [RKNP04]: Let D = (S, s0,P, label,C) be a labeled DTMC with S a finite set of states,
s0 ∈ S the initial state, P : S × S → [0, 1] the transition matrix, label a labeling function,
and C a cost function. As input to the algorithm DTMC D and a PCTL formula Φ is
taken. The output Sat(Φ) = {s ∈ S| � Φ} that is generated and contains all model states
satisfying Φ. In the parse tree that is constructed according to formula Φ, each node is

20 Chapter 2. Foundation

labeled with a sub formula of Φ and leaves are labeled with either true or an atomic
proposition. From the leaves upwards to the root of the tree the set of satisfying states is
computed for each sub formula contained. Upon termination the algorithm determined
whether each state satisfies formula Φ.

2.3.4 C Bounded Model Checker

CBMC (C bounded model checker) [CKL04] is a tool that can be used to verify low level
ANSI-C code. It can handle almost all ANSI-C language features like recursion, float
and double types, dynamic memory allocation, and pointer arithmetics. In addition to
user specified properties, the tool can automatically derive properties that enforce code
safety through pointer checks, array bounds, division by zero checks, and unwinding
assertions to ensure that the user defined bound is sufficiently large. The user can hereby
add assertions into the C source code and check them.

In bounded model checking, a transition relation with its specification is jointly unrolled
up to a user defined upper bound. The resulting Boolean formula can afterwards be
checked for satisfiability. If it is satisfiable, an error trace leading to that error will be
generated using the SAT procedure. Since unwinding assertions are automatically added
by the tool, it is ensured that enough unwinding are accomplished. The transformation is
described in full detail in [CKY03] and occurs in five steps.

Within these steps the ANSI-C program is brought into a bit vector equation by first
removing side effects that come from break , continue and for statements. Af-
terwards only while loops are present which are unrolled n times and appended to an
if-guard carrying the same condition as the original while loop. The added unwinding
assertion assures that sufficient loop unwinding are done and n is sufficiently large. In
the following, variables are renamed to obtain a single assignment program. Pre- and post
increment operators, assignment operators, and function calls are recursively removed,
hereby introducing new temporary variables.

The resulting bit-vector equation that consists of a constraint C and a property equation P
are combined into a CNF (Conjunctive Normal Form) equation C ∧ ¬P and checked for
satisfiability by a SAT solver like Minisat [ES03]. If the CNF is unsatisfiable, the property
holds.

2.3.5 The KeY Tool

KeY [BHS07] supports the formal development of object oriented software by integrat-
ing design, implementation, formal specification and formal verification. It enabled
non-specialists in formal methods the use of formal artifacts and their understanding.
Currently the verification of JAVA programs — or more precisely, a subset of JAVA called
JAVACard — is fully supported. Specifications can be provided using either UML’s Object
Constraint Language (OCL) or the JAVA Modeling Language (JML). Specifications and
proof obligations are fully automatically translated into a free variable sequent calculus
for first-order dynamic logic which is checked using a deductive theorem prover.

The JAVA modeling language is not standardized by an organization and obtains most
of its development through efforts by its community. The JML language is included in
the JAVA sources in terms of a JAVAdoc comment, which may also serve a documentation
purpose. By this approach it is relatively easy for developers acquainted with JAVA to

2.4. Wireless Sensor Networks 21

write specifications. A detailed manual is found at [LPC+08] and rich examples showing
basic design decisions are treated in [LBR98].

The important keywords expressed by JML are denoted in the sequel. By the use of
the requires keyword, the user defines the subsequent condition to be a part of the
precondition of the contract. The final precondition is then computed as the conjunction of
all preconditions that appear in the JML specification. In analogy, using ensures defines
the following conditions to be included in the post condition of the contract. Since some of
the elements of a JAVA class should be excluded from changes, the keyword assignable
gives a list of elements which are allowed to change during the execution of the method.

The theoretical foundation underlying the KeY tool’s verification engine is JAVACard
DL [Bec01], an instance of dynamic logic (DL). What is special about JAVADL is that
operators 〈p〉 and [p] are used to build formulae, where p is a sequence of legal JAVACard
statements. Formulas can be prefixed using the above operators. For example, 〈p〉φ
denotes that program p terminates in a state in which φ holds. In contrary [p]φ does not
require termination and stresses, if p terminates φ will hold in the final state.

2.4 Wireless Sensor Networks

The omnipresent phenomenon of our time is the increasing miniaturization. This trend
is not restricted to special application domains. It is present in daily applications like
mobile phones, laptops, et cetera. The performance of today’s mobile devices exceed
the capability of desktop-like computing hardware from a decade ago and this shift in
paradigm is measurable for example through the transistors count of micro controllers. In
the early 1960s the first main frame computers were equipped with a memory of up to
64 kB, the same that today’s low energy miniaturized computers have.

And in fact, the measurable technological progress is not only limited to micro con-
troller and their available memory. It also occurs from the perspective of networks and
communication thus increasing the connectivity and offering completely new application
domains. Essentially the network speed increased from some kilobytes using dial-up
modems a decade ago up to high speed transmissions using broadband cable modems or
the G3 standard for mobile devices.

It is obvious to state that this trend is fostered by mass marketing. So today’s electronic
devices grew from nice products to the market of disposable consumer electronics. This
shift does not only allow every body to participate in technological change, it does also
cause prices for electronic components to drop rapidly. And low prices in combination
with the miniaturization and the connectivity open a new range of application domains,
like wireless sensor networks: They are cheap in price allowing scenarios with hundreds
of nodes. Furthermore nodes are capable of collecting environmental information in-
cluding the execution of complex algorithms and since they are fully connected to other
nodes they can share information with their neighborhood using the wireless link. In
addition no infrastructure is required for communication since self-organizing algorithms
are implemented that allow spontaneous action upon events or external triggers. All the
above contributes to the view one should have on such a wireless network: a collection of
autonomous systems that fulfill a common task by cooperation.

22 Chapter 2. Foundation

Today a vast number of useful applications settings exists for example like the surveil-
lance of elderly people by health monitoring. Here, a dozen of sensors monitor the state of
health through blood pressure, heart frequency, or other blood parameters. It is even think-
able that sensors in the shape of a pill can be swallowed to measure in-body parameters to
complete the observable overall state of health. But this has still a visionary character and
due to the low energy density of conventional batteries a challenge for future research.

What is already common is to use sensor nodes for environmental or structural moni-
toring of buildings, bridges, or other places that are hard to access. Also appealing in the
context of wireless sensor nodes is the use for stock keeping purpose in companies. This
is investigated for example in the use case of smart drums [KDD04]. In this scenario drums
that contain chemicals are equipped with sensor nodes that allow in-situ monitoring of
storage limits and indicate by an alarm if incompatible chemicals like reactive substances
are brought too close together.

Up to this point wireless sensor networks seem to be a technological break-through and
the technology of the future, but there are drawbacks involved. The power supply that
these devices use is stored in a battery, a critical and limiting element. And in fact processor
and memory grew exponentially in size according to Moore’s Law, whereas the energy
density of batteries did not do so. In contrary to the growth of transistors that double
their transistor count about every 2 years, the energy density of batteries increases only
linear. For example chemical Lithium-Ion batteries have an energy density of 0.3Wh/g
(Watt hours per gram) and the energy storage of the next generation like Methanol driven
fuel cells under development for several decades reach only up to 3.0Wh/g. Since battery
driven devices seem to enable unlimited visionary scenarios, the major restrictions are
caused by the energy shortage that create a natural boundary on most of these dreams.

On the other hand the fact that nodes are using batteries brings them in the fortunate
situation that they are not bound to a static place. Instead they can roam around and
due to their wireless transceiver still forward collected data to the base station. Multiple
applications fields exists and it seems that many visionary scenarios from years ago are
now becoming feasible. As the most famous to name is the vision of small, smart, cheap
and disposable devices that can be deployed as thousands of nodes like the prominent
ubiquitous computing [Wei91, Wei88] setting. Here, these small mini computers are
ominously present and very thoroughly integrated into everybody’s life and activities.

2.4.1 Weakness of Wireless Sensor Networks

All of the above properties show the obvious strength but also the inferred weakness that
is involved when using wireless sensor networks for real-life scenarios. In principle just
the single matter that nodes employ a wireless medium for communication has many
positive effects but in turn also causes additional constraints to consider.

In this sense transportation protocols must be robust to recover from channel errors. So
appropriate mechanisms have to assure that a reliable transport of packets is guaranteed.
This can be accomplished by the use of multi-path routing that can even withstand the
complete loss of nodes on one particular route, but in turn requires an enormous overhead
since every additional route in use increases the energy spending. In fact this strategy is
seldom employed since it is conflicting to an energy preserving set up. More advisable

2.4. Wireless Sensor Networks 23

is the use of a conservative approach that uses conventional packet checking algorithms.
Hereby the energy use is evenly distributed. But for the normal use we rely on the network
built-in resend mechanisms that detect corrupted packets and prevent data loss.

In contrary to wired network links, the wireless medium is affected by interference from
external radiation sources. It could even be possible that an adverse entity is trying to stop
the proper function of the network by a denial of service attack. In the wireless domain
this is relatively easy to conduct by radio jamming i.e., the transmission of radio signals
that disrupt communication by a decrease in the signal to noise ratio. If the network
service has no built in counter-measure this technique can be used to drain the batteries
and thus fully stop the operation of the network.

For a sensor node, the battery provides a limited source of energy. Although energy
harvesting methods exists outside the classical wireless sensor network approach, that
try to overcome resource constraints by generating power using ambient air temperature,
the flow of air or vibrations, these techniques play only a minor role. Essentially these
technological advances are worth to consider but they do only generate a limited amount
of energy. For this reason the nodes mainly depend on energy preserving communications
protocols and special algorithms developed for the wireless sensor node world that ensure
a long lifetime.

Since wireless sensor networks are not only restricted to indoor use, they are often
deployed outside where they can easily be manipulated, removed, destroyed or even
reprogrammed by an adverse entity. Also tamper proof sensor nodes are available that
hide their memory internals to unauthorized individuals, they are only deployed in small
networks due to their costs. In this sense, the traditional view still considers physical
access of an adversary on the devices. Furthermore it is important to consider intrusion
attacks to define what an adverse entity can do and what not.

2.4.2 The Adversary Model

The model of an active adverse entity is adopted from the work of [Ben08]. It is able to
intercept communication and is not limited to a small part of the wireless network. In
detail, the adversary is able to capture nodes, bring them under its control by reprogram-
ming and let them act according to its needs. Thus compromised nodes seem to behave
legitimately and according to the protocol but all of a sudden they can act maliciously.
From outside, adverse acting nodes cannot be distinguished from sound nodes since they
behave protocol conform for most of the time unless they exhibit their fraudulent behavior
which is visible.

Corrupted nodes collaborate to pursue the goals of the adversary [BCF07] during an
attack and share their knowledge instantaneously with other adverse nodes using out-
of-band mechanisms. In addition the communication between compromised devices is
instantaneous in a sense that it requires no time. So the knowledge of a secret key to
one compromised node is immediately known to all the nodes under the control of the
adversary.

An important assumption is that only a fraction of nodes is affected by the adver-
sary [BB08] and the majority of nodes are still sound. When neglecting this assumption
and the adversary has for example more than half of the nodes under its control, it is able
to manipulate all network traffic, and no trustworthy operation of the network is longer

24 Chapter 2. Foundation

possible.
Essentially, the adversary’s interest is to gain valuable information from the network

that brings him some advantage. In consequence, it is only willing to take efforts up to
a threshold beyond which it will no longer be profitable to him. In other words, if the
attack is too costly, he will rather try to find other opportunities than starting an attack
and infiltrating the sensor network. In this sense, taking over all nodes of the network
would require much effort and time — maybe more than he is willing to spent — and
surely narrows the profit of the network intrusion.

After some nodes in the network are compromised, the adversary has access to the
wireless network. In addition we allow access to more powerful machines like a laptop
like device or wide range antennas and hereby gain access to any region of the network.
Due to the symmetric encryption the adversary can even interfere during the initial setup
phase of the network when the aggregation tree is distributed and protocol parameters
are passed around. But it is also limited, e.g., the adversary is not able to take control over
the base station since this means that the user would not longer have access to sound data.
In this way all information that the user would receive from the base station could be
potentially forged.

2.4.3 Sensor Node Platforms and Implementations

Today’s sensor node devices typically consist of a micro controller with an attached
memory that is separated into flash memory carrying the operating system and the
executable program, and a volatile RAM to store runtime data. The source of energy is
usually in the form of conventional AA-batteries. Many sensor nodes are able to collect
environmental data like noise, temperature, light, humidity, etc. using their built-in sensor
hardware. Through their attached transceiver they are able to communicate among each
other, forming huge networks of thousand nodes.

TinyOS

TinyOS is an open source operating system for embedded devices and widely used in
academia for the programming of embedded software. It has been developed at the
University of California, Berkeley and receives today its main contribution through the
open source community. The component based architecture of TinyOS and an event
driven execution model make it very suitable for resource constrained hardware systems
with respect to memory, computation power, energy shortness, etc. The energy efficiency
goal is pursued by executing tasks from the task queue and then moving into an energy
preserving mode where the highest portion of energy is saved.

The software developing platform TinyOS is offering means to program code for various
hardware platforms. The node software is written in nesC a C dialect having special
constructs for embedded devices. Furthermore it supports a variety of different platforms
through a modular design. The hardware abstraction layer (HAL) consists of elementary
components like transceiver or timer that represent the lower level of the hierarchical
component model. In TinyOS a program is considered as a graph of components, of
which each one has a frame and a structure of private variables. Three abstractions for
components exists like commands, events, and tasks. Through commands and events

2.4. Wireless Sensor Networks 25

(a) MicaZ node by Crossbow (b) TMote Sky node by MoteIV (c) Sun SPOT by Sun Microsys-
tems

Figure 2.3: Different node platforms

the inter-component communication is realized while tasks are used to express intra-
component concurrency. What makes TinyOS very attractive is the hardware- and network
simulator TOSSIM that is integrated into its environment.

TOSSIM [LL03, LLWC03] is a discrete event simulator for wireless sensor networks that is
run on conventional PC hardware. Its primary goal is to simulate TinyOS applications
with a high fidelity. Due to this, its focus is rather on simulation of TinyOS software and its
execution than the simulation of realistic scenarios. In TOSSIM real world phenomena are
abstracted like bit errors and no radio propagation model exists. Nevertheless, asymmetric
links can be modeled by the use of directed bit error rates. By simply adding power draws
for components, the simulator allows for thorough estimation of the energy consumption.
Due to the solid integration into TinyOS the executable binaries can be directly derived
from the nesC code for later deployment on real-life nodes or the software can be compiled,
integrated, and emulated through the TOSSIM simulator.

Still, there exist some downsides that stem from the imperfect world mapping. On
real nodes for example an interrupt can fire while other code is running where this is not
possible in the emulator. In the emulation interrupts are treated non-preemptively due
to the discrete event simulator, and this may cause the emulation to behave differently
from real world scenarios. Last to name is the transceiver simulating the Mica networking
stack with MAC, encoding, timing, and synchronous acknowledgements, rather than a
simulation of the entire ChipCon CC100 stack, found in some of the nodes.

A vast selection of sensor node devices exists, developed by industrial companies and
academic institutions. What they mostly have in common is their size, their restricted
memory, and the low clock speed of the micro controller. But also differences exist in the
attached sensor hardware, available memory and of course their market price.

26 Chapter 2. Foundation

MicaZ

The MicaZ (MPR2400CA) node (see Figure 2.3a) produced by Crossbow [CT, Cro05] is
equipped with an 8-bit ATmega128L micro controller from Atmel [Atm] running at 8 MHz.
Its CC2420 radio chip [Chi07] produced by TI (formerly ChipCon) is compliant to the IEEE
802.15.4 / ZigBee [Soc06] wireless standard allowing communication rates of 250 kbps.
It even offers hardware based security mechanism through AES-128. The MicaZ has an
internal programmable flash memory of 128 kB and a configuration EEPROM of 4 kB size.
Its current draw is 8 mA while active and in sleep mode below 15 µA. It is programmable
using its serial UART connection and in addition offers digital interfaces such as I2C and
SPI. Its 10-bit analog-digital converter (ADC) has a measurable input range between 0 and
3 V.

Sun SPOTS

Sun SPOTs [Sun08] (Small Programmable Object Technology) (see Figure 2.3c) developed
by Sun Microsystems Laboratories are small mobile computers with a wireless network
interface. Although often used, the terminology sensor network device is not appropriate
and misleading since their main processor is a 32-bit ARM920T ARM RISC processor
operating at 180MHz maximum internal clock speed. Two 16kB caches for data and
instructions make it both fast, but at the same time very energy consuming. What is also
exceptional is the fact that no embedded device OS is employed but rather a JAVA-Virtual
Machine called Squawk VM that is shipped with a boot loader. The library itself is written
mostly in JAVA and introduces special constructs for embedded applications.

Its memory consists of a 4MB flash and a 512kB pseudo-static random access memory.
The ARM’s operation modes are controlled using an additional power controller — an
8-bit Atmel ATmega88 micro controller. This micro controller wakes up the system from
deep-sleep when an alarm occurs and vice versa, putting the ARM into sleep mode. In
addition it also controls the bicolor LED, measures the battery voltage, the charge and
discharge current.

On the communication board a CC2420 [Chi07] is used that is IEEE 802.15.4 compliant,
and operates in the 2.4 GHz ISM unlicensed band with an effective bit rate of 250 kbps.
Many peripheral interface units exists like USB host port, USB device port, Ethernet
MAC, serial peripherals interface (SPI), universal synchronous/asynchronous serial in-
terface (USART) and others. The sensors that reside on the board measure acceleration,
temperature and light.

TMote Sky

The TMote Sky [Mot06] is designed at the University of California, Berkeley and distributed
through MoteIV Corporation. They run an 8MHz TI MSP4300 micro controller having an
on-chip RAM size of 10kB, an allocated program space of 48kB and a hardware protected
external flash of 1MB. TMote Skys offer integrated humidity, light, and temperature sen-
sors. In addition the nodes are capable of internal temperature and voltage monitoring.
Their Chipcon Radio controller is IEEE 802.15.4 compliant with a mesh networking feature
reaching transmission rates of 250kbps. The sensor nodes offer a number of integrated
peripherals including a 12-bit ADC and DAC, and support I2C, SPI and the UART bus

2.5. Summary 27

minimum normal maximum
Supply voltage [V] 2.1 3.6
MCU on, Radio RX [mA] 21.8 23
MCU on, Radio TX [mA] 19.5 21
MCU on, Radio off [µA] 1800 2400
MCU idle, Radio off [µA] 54.5 1200
MCU standby [µA] 5.1 21.0

Table 2.3: Typical operation conditions of the TMote Sky node taken from the
datasheet [Mot06].

protocols. The current draw of the TMote is taken from the data sheets and displayed in
Table 2.3.

2.5 Summary

So far the necessary tools and the principles of wireless sensor networks are introduced.
For the remainder of this work we investigate problems and questions that arise in the
context of wireless sensor networks and strive for a solution by formal methods. Due to
this reason, we now proceed with a new block, namely the application of formal methods
to argue about the efficiency and energy consumption in wireless sensor networks.

In this sense, in the following chapter the energy use for sensor nodes is analyzed within
a topology. To obtain energy related results, a UPPAAL model is defined in a first step and
later on analyzed by the definition of appropriate specifications.

28 Chapter 2. Foundation

CHAPTER 3

Energy Efficient Routing and Scheduling

3.1 Introduction

The technique of model checking has been successfully used in many application areas.
It has proved particularly useful in very early design stages when only a model or a
blueprint of the product is available. Mainly contributing to its success is the exhaustive
treatment of all states and possible interleavings. When involving and integrating formal
methods within the development cycle of a system, it has proved that many flaws and
errors can be revealed early, reducing costly changes in the later product design cycle.

Up to these days many case studies were carried out by using model checking techniques
in this conventional way where one is interested in finding bugs and flaws in systems and
model designs. The answer one is interested in has in most of these cases a dual character,
namely yes, the system is safe. Or no if there is the possibility of livelocks, deadlocks, and
errors which occur under special constraints revealed by the model checking algorithms.

A yet not very common application area evolved in the niche of constraint solving over
the last years: the application of model checking techniques in the domain of reachability
analysis. With this technique, the search mechanism of model checkers is used to find
feasible and optimal schedules of a system instead of the discovery of hidden bugs.

The main advantage of this approach is that scheduling problems with changing pa-
rameter settings can be easily and clearly modeled and solved by means of reachability
analysis. Especially timed automata which form a rich class of models has proven to be
in particular useful for this kind of analysis, since the strategy of the shortest path is
efficiently solved using the algorithms implemented in model checking tools like UPPAAL.

Moreover, once the automata model is defined, and proved to be a correct mapping to
its real-world counter part, it is comparatively easy to propose queries or do constraint
solving. By simply formulating the query in an appropriate specification language, the
verification is automated and the model checking algorithm provides its results, which
can either be a flaw of the system or a cost optimal schedule.

In the field of embedded real-time systems with limited memory and power constraints
the idea of finding optimal schedules using the search algorithms of model checking

30 Chapter 3. Energy Efficient Routing and Scheduling

is relatively new. When choosing the right degree of abstraction they can contribute to
interesting new insights and surprising results.

In fact the analysis carried out by the use of model checking cannot be directly compared
with modern state-of-the-art simulators like NS2 [Net], GloMoSim [ZBG98], etc. that
analyze networks of thousand nodes including all intermediate layers with a nearly perfect
abstraction. Formal methods will never replace simulation but its valuable exhaustive
state search can round up investigations based on simulation. In this sense the outcomes
of simulation and verification should be considered as complementary approaches. Tools
based on formal methods can produce highly trust worthy data since these tools do
have the indisputable advantage of being exhaustive and that their results are accurate
and precise. Especially the distributed character of wireless sensor networks, where all
interleavings need to be considered, suggests the application of the exhaustive search
algorithms to this group of problems.

Related Work In the work of [FvHM07b] a medium access control protocol for wireless
sensor networks called LMAC is modeled and verified. UPPAAL is used for the repre-
sentation of the timed automata model, that has at most five nodes where all possible
connected topologies are checked. The main property of interest is to detect and resolve
collisions that occur when using several nodes for sending.

Model-based validation of quality of service parameters using biomedical sensor net-
works (BSN) is investigated in [TXY08]. The authors use a formal model based on timed
automata to model temporal configuration parameters of the BSN to meet quality of
service (QoS) requirements on network connectivity, packet delivery ratio, and end-to-
end delay. The employed model uses timed automata that allow a study of dynamic
reconfigurations of the network topology caused by physical movements. The verification
results are compared with simulations in OMNeT++, a simulation tool for wireless sensor
networks.

A model to compute optimal lacquer production schedules is introduced in the work
of [BBHM05]. The authors show the feasibility to use techniques from the search mecha-
nism of model checkers and apply them to reachability analysis. In this work the UPPAAL

tool is used to find feasible and optimal schedules for storage costs, delay costs, etc.
In the work of [WS07, SW07] model checking is used to investigate a network of MicaZ

sensor nodes using Timed Safety Automata. Using an energy computation cost-optimal
schedules can be computed using the UPPAAL tool.

Overview This chapter is structured as follows: Section 3.2 will motivate the application
of timed automata theory for the used setup. Section 3.3 explains the investigated wireless
sensor network and the requirements that apply for the communication medium in order
to gain a realistic scenario mapping. Thereafter Section 3.4 explains how the setting
is mapped to the timed automata model and introduces the different network devices
like sensor nodes, routers, and a network controller that the final composition will include.
Furthermore means for the power draw are implemented that will enable the energy
efficient cost estimation. The specifications tested against the model are denoted in
Section 3.5 that represent safety and liveness properties, each model has to fulfill a desired
degree of realism. Results of the analysis are discussed thereafter in Section 3.6 with the
focus on a reference sensor end device, and a router. The conclusion then summarizes

3.2. Modeling Method 31

the work, reflecting the formal approach with timed automata and giving the experience
learned from the experiments with UPPAAL.

3.2 Modeling Method

Having a concrete idea of the problem instance in mind, the question that needs to be
answered is which tool is best suited for a networking scenario where nodes of different
kinds interact to fulfill a common task. One of the aspects that is surely targeted is the
use of energy over different sleep modes which is strongly related to time. Therefore the
model should have a notion of time and a good candidate for this task is the UPPAAL tool
(see Section 2.3.2) with its underlying timed automata concept. Although also probabilistic
aspects like transmission errors — that occur with high probability noisy areas — would
be an interesting point of research, the drawback of probabilistic tools overweight here:
no traces to the satisfying states are provided and they lack constructs to denote time
which is essential when considering a system with limited resources. Due to this reason
we decided to use UPPAAL.

UPPAAL is a fairly efficient and integrated tool environment for the design, simulation,
and verification of real-time systems. Although the simulation cannot be compared with
modern network simulators it has still proven very useful during the design phase since it
gives the user the possibility to validate the model and check it for plausibility. The tool is
eminently adequate for systems that can be modeled as a collection on non-deterministic
processes. For communication and inter-process message passing either shared variables,
binary-, and broadcasting channels can be used, combining a finite control structure
with the use of real-valued clocks. Furthermore, it is easy to use since the verification
algorithm works fully automatically, and in case a state satisfying property ϕ is found, a
trace reaching that very state is provided. By different strategies like “shortest” which
returns the shortest path in terms of automata-steps, or “fastest” returning the shortest
path with respect to time, the user can select the best suited solving-strategy.

3.3 Sensor Network Scenario

The analyzed model represents a wireless networking scenario in which three different
kinds of sensor nodes perform a common task. Considering the illustrations in Figure 3.1a,
one possible routing tree at a transmission strength of −10dBm is indicated by the lines
interconnecting the nodes. The task could be for example to collect a temperature reading
at the end devices and forward it using the routers to the network controller positioned at
the sink where the user can access the readings. This scenario will then be evaluated with
respect to different properties that will be described in more detail in the specification
Section 3.5.

From the different topologies that exist, the mesh network seems to be most appropriate
for the selected scenario, since it is versatile and offers a wide range of scenarios in contrary
to the other settings (e.g., star topology, cluster tree, hybrid architecture). In the considered
case each node can act as a dynamic router and communicate directly with other nodes
without the use of a central entity. We consider the network in non-beacon mode where
periods of sleeping and awakening are asynchronously spread over time. This has the

32 Chapter 3. Energy Efficient Routing and Scheduling

(a) A sample scenario of a sensor network with reference end device
(RED), end devices (ED), reference routing device (RRD), routing
device (RD), and the network controller device (CD) at a sending
strength of −10dBm.

























0 4 8 8 2 6 4 6

4 0 8 8 2 6 4 6

8 8 0 4 6 2 4 6

8 8 4 0 6 2 4 6

2 2 6 6 0 4 2 4

6 6 2 2 4 0 2 4

4 4 4 4 2 2 0 2

6 6 6 6 4 4 2 0

























(b) Distance matrix for the se-
lected scenario carrying unit-less
distances entries.

Figure 3.1: The model description with the scenario and the model’s internal representation
of the distance matrix.

big advantage that the interesting observations about collisions and individual sleeping
periods can be investigated. In contrary the beacon mode is fully coordinated and a super
frame is broadcasted by the PAN coordinator on which nodes can synchronize. In the
considered scenario each node decides autonomously upon its current state which action
to pursue next. Consequently devices are able to wake up independently of each other in
certain intervals, collect information from their surrounding, communicate with proximity
nodes and fall back to sleep.

Since most energy is preserved in sleep mode where processor and on-board transmis-
sion unit are shut down, we target an average duty cycle of 1% [LO05] by setting model
variables ActivePeriod as 1 and ActiveCycle as 100. Explicitly note at this point, that
the model is beacon-disabled without a contention free period i.e., collisions can always
occur. Distances between respective entities are modeled using the distance matrix as
shown in Figure 3.1b to determine the flow of packets within the network. Further, the
number of hops until a packet arrives at its destinations is determined by the entries of a
distance matrix. Values herein can be changed but stay fixed for the selected experiments.

3.3.1 Modeling the Communication Medium

The communication medium is modeled as one channel over which all devices transmit
and receive. Hence each device has, according to its selected transmission range, a certain
range in which it can receive packets.

The ZigBee protocol [Zig05] or the IEEE 802.15.4 [Soc06] stack are real world realizations
which are considered as role guideline for the here developed model. The inter-device
communication is realized using the CSMA/CA (Carrier Sense Multiple Access with Col-

3.4. A Timed Automata Model 33

sending radius

A B C

Figure 3.2: The hidden terminal problem.

lision Avoidance) access mechanism over which all devices send and receive. That is in
principle if a device has data to send, it will listen on the channel for ongoing communica-
tion. In case the medium is found to be idle, the node will send data and wait until an
acknowledgement from the recipient are received.

As the transmission power is increased for each device more nodes can be reached at
the expense of energy. And although packets can be delivered faster since they need less
hops, the number of collisions especially in busy networks increases. In addition, the effect
of the so called hidden-terminal problem will increase and contribute to packet collisions.
This issue also known as hidden-station problem refers to a setting in which hidden nodes
simultaneously try to communicate with a shared and visible node. Since the two hidden
nodes cannot detect each other (node A and C in Figure 3.2), meaning they cannot sense
ongoing transmissions on the channel, they will concurrently sent, causing a collision at
the receiver’s side (node B).

An increase in the sending strength might be advantageous under some constellations,
although it might also harm in others. Although the model makes no use of changing
transmission rates during execution due to complexity considerations, the ranges can
be changed for each execution in discrete steps. Possible rates are −10dBm for the low
transmission range sending over 2 distance units, −5dBm for a range of 4, and the
maximum sending strength at 0dBm with a range of 6 units. The unit-less sending
range is related to the distance matrix which contains the distances between nodes and
hereby denotes the scenario. The investigated topology is stored in the distance matrix of
Figure 3.1b. To account for a very restricted state space, the model’s transmission rates are
constant but changed for different properties to imitate different scenarios. This means
that the sending strength is fixed by setting it to either low, medium or high during the
analysis of a scenario. Note that the reception rate has no such parameter and is hence
kept constant.

3.4 A Timed Automata Model

In order to obtain a deeper understanding of the timed automata model, functions and
essential variables are explained. Each automaton is labeled with a unique ID to make
instantiations of the same template distinguishable. In addition there is a global clock t
which can be accessed by each process, giving the model a notion of time.

In the automaton shown in Figure 3.3b nodes labeled by Down, Send, Idle, and Rcv are

34 Chapter 3. Energy Efficient Routing and Scheduling

examples of locations. The initial location — this is the leftmost — is recognizable by the
double circle. Whenever the globally modeled clock exceeds a value where a new round
should be started (t>=ActiveCycle), the controller is initiating a new cycle by waking
up all devices from sleep-state through broadcast of action GoIdle!. The out-going edge
in Figure 3.3c from the initial node carries the guard t>=ActiveCycle which means that
the transition is enabled when the guard is true. It does not say that the edge must fire as
soon as t gets greater than ActiveCycle. By the additional invariant t<=ActiveCycle on
the Down state, the automata is allowed to stay in the down state as long as the invariant is
not violated. The behavior resulting from this combination of guard and invariant forces
the automaton to leave the state Down exactly at time ActiveCycle.

As a consequence, all devices wake up and all reference devices update their energy
consumption by calling the cost energy function CE(). In addition, the end devices (see
Figure 3.3a) collect sensor values which are queued (q=(q+1)%MOD). From now on, each
device is allowed to process and transmit data individually until the active period expires
(t<=ActivePeriod). Note at this point that the router and controller have an active
period prolonged by one time unit to account for network management and configuration
messages. All devices have to leave state Idlewhenever the state invariant (blue and bold
labels in Figure 3.3) labeling the idle state is violated. Sensor nodes can fall back to sleep-
mode earlier before ActivePeriod expired, that is if their sensor value is successfully
transmitted to the network.

Much of the modeling is encoded in functions to retain a human-readable system design.
The main functions that were used are function CheckID(id) which checks whether
any device of id is within the receivers range in which case true is returned. Functions
Clean(id) and CleanAll(id) take care for a reset of the channel to the idle state
denoted by -1. The difference is that the first function is used after a sending attempt
during which the channel was sensed busy for clearing all channels with identity id,
where CleanAll clears all channel entries. Finally, by the use of CheckAv the availability
of other nodes is inspected. This complicated modeling of the channel is required since
in reality a signal once sent by a node is fading over time. In contrary, the channel in the
model requires an explicit reset to an idle state or otherwise it will stay busy forever. The
sources of the function bodies can be found in Appendix A.1.

Communication Medium The medium is modeled in UPPAAL as follows: The array
a[] of length N denotes the availability of sensors and is manipulated by the transition
updates during the operation of the network. For each i, 0 ≤ i ≤ N the array entry a[]
will be one of the values in {−1, 0, . . . , N − 1, N}. The intended meaning behind this is,
that a[i]==j if and only if a sending sensor j intends to send, and a node i is within the
reception range of j. In addition variable a[i]==-1 is set to signal that the channel within
the proximity of sensor i is idle. Variable a[i]==N is assigned to indicate that a collision
occurred at node i caused by any of the neighboring sensor nodes on the channel.

3.4.1 Sensor Network Devices

In the selected approach of building a sensor device model using timed automata, homo-
geneous nodes are used which are all equal in their capabilities. Also the nodes are in
charge of different tasks they have to fulfill. They can, for example, be implemented on

3.4. A Timed Automata Model 35

the same hardware, like the well known MicaZ platform [Cro05].
Three different node tasks will be modeled, that is the end device ED that will collect

environmental information and transmit it to the network. The routing devices R that
interlink different nodes and route information through the network until the sink is
reached. The base station or network controller CD will manage the network activities
and all actions that take place, i.e., decide upon the sleep phases of the sensor network.
The corresponding UPPAAL models are depicted in Figure 3.3. Obviously, there are only
subliminal differences between the three templates.

To reduce the complexity of the model and thus increase the number of possible in-
stances that can be checked, nodes are modeled to contain only their characteristic parts
which are needed to fulfill their task. This means, that the end device does not need a
receiving part since its main task is to sense information and broadcast it to the network.

End Device

The sensor nodes in Figure 3.3a collecting data from the environment are the only devices
that have the capability to collect sensor values, but in turn, they have no mean to receive
packets from the rest of the network. From state Down they become active with the
GoIdle signal issued by the network controller and move to state Idle where they stay
either until their timer expires (increasing above ActivePeriod+1) or until their queue
is emptied (q==0). A queue becomes empty by sending its content to the network and it
is filled with a packet when waking up and moving to state Idle.

The activity of sending occurs in several stages. If a node has a packet to transmit,
it is taking the transition to state Send if the following guard constraints are fulfilled.
There is a packet in the queue q>0, there is no ongoing communication nearby indicated
by variable a[id]==-1, and the time since the last sleep phase is still less or equal to
ActivePeriod-1. When the transition is taken, function CheckAv(id) is checking
whether any nodes in the neighborhood are available for the reception of packets. After
the channel is sensed, the transition to state Send is taken and by this the automata checks
for ready to receive nodes in the scenario. Ongoing transmissions are sensed by function
CheckID(id). This is done by checking whether any device within range of device ID —
expressed by dist[id][i] — exists in which case true is returned. If the node has no
exclusive access on the channel and no nodes can be reached by the preset range, false is
returned and the automata returns back to state Idle. Otherwise the node sends its data
to nodes within range in state Idle using action Sync! and waits for acknowledgements.
In case the packet is acknowledged it is removed from the queue, the snd counter is
incremented, the queue size q is decremented, and the channel is cleared for the node
with ID using function CleanAll(id). In the other case that no acknowledgement is
received, the node will also mark the channel idle again by calling CleanAll(id) but its
packet will still stay in the queue. Essentially variables snd, and q will need no update,
since the packet could not be sent. This describes the behavior of the sensor node.

Network Router

The network router depicted in Figure 3.3b is interlinking nodes and is hence required
to send and receive packets. Since the sending part is similar to the sensor nodes, the
receiving mechanism will be described in the following.

36 Chapter 3. Energy Efficient Routing and Scheduling

Send

Idle

t<=ActivePeriodDown

CheckID(id)

Clean(id),
CE(PSnd+PRcv)

received[id]==0
CleanAll(id),
sid=N
received[id]>0
q=(MOD+q-1)%MOD,
received[id]=0,
snd=(snd+1)%MOD,
CleanAll(id),
sid=N

Col?
Clean(id),
CE(PSnd+PRcv)

!CheckID(id)
sid=id,
CE(PSnd)

GoIdle?
CE(PDown+PIdle),
q=(q+1)%MOD

q==0 || t>=ActivePeriod
CE(PIdle)

Sync!
CE(PRcv)

q>0 &&
a[id]==-1 &&
t<=ActivePeriod
CheckAv(id),
CE(PIdle)

(a) Template for reference sensor node

Rcv

Send

Idle

t<=ActivePeriod+1Down

t>=ActivePeriod+1

CheckID(id)
Clean(id),
CE(PSnd+PRcv)

received[id]==0
CleanAll(id),
sid=N
received[id]>0
snd=(snd+1)%MOD,
q=(MOD+q-1)%MOD,
received[id]=0,
CleanAll(id),
sid=N

Col?
Clean(id),
CE(PSnd+PRcv)

!CheckID(id)
sid=id,
CE(PSnd)

Col!
CE(PSnd)

a[id]==N
Sync?

col=(col+1)%MOD,
a[id]=-1,
CE(PIdle+PRcv)

GoIdle?
CE(PDown+PIdle)

sid==a[id]
Sync?
rcv=(rcv+1)%MOD,
q=(q+1)%MOD,
received[sid]=(received[sid]+1)%MOD,
CE(PIdle+PRcv)

Sync!
CE(PRcv)

q>0 &&
a[id]==-1 &&
t<=ActivePeriod-1
CheckAv(id),
CE(PIdle)

(b) Template for reference routers

Rcv

Idle
t<=ActivePeriod+1

Down

t<=ActiveCycle

t>=ActivePeriod+1
t=0

t>=ActiveCycle

t=0

Col!

a[id]==N
Sync?

col=(col+1)%MOD,
a[id]=-1

GoIdle!

sid==a[id]
Sync?
rcv=(rcv+1)%MOD,
q=(q+1)%MOD,
received[sid]=(received[sid]+1)%MOD

(c) Template for network controller

Figure 3.3: UPPAAL timed automata model of the sensor network.

3.4. A Timed Automata Model 37

Devices are only able for the reception of packets while being in state Idle. In this state
they synchronize on the signal Sync! broadcast by a sender and move to the receiving
state Rcv. Notice that there are two transitions possible, that is the left transition which
represents the occurrence of a collision denoted by the array a[id]. Since this value
equals to N there are more than one sending events and consequently the node increments
its collision counter (col=(col+1)%MOD), clears its array entry and computes the cost
for this failed reception attempt.

The right transition represents a successful reception of a packet. This is because
no sender is interfering with the ongoing transmission and thus sid==a[id]. Upon
this, the reception counter is incremented (rcv=(rcv+1)%MOD), the packet is enqueued
(q=(q+1)%MOD) and the acknowledgment is sent back to the sending process. Modeling
the acknowledgements is done through array received[sid] where the respective
position is incremented ((received[sid]+1)%MOD) for each reception of a sensor node
the value in the array is incremented.

Network Controller

The remaining template belongs to the network controller displayed in Figure 3.3c which
is always uniquely present in the scenario. The controller is placed at the sink through
which a user can access the network. Due to complexity, this device is only equipped
with a receiving part which is similar to the receiving side at the router. So it will not be
described in detail.

3.4.2 Energy Cost Estimation

Since one of the goals is to find optimal cost schedules with the modeled automata, re-
alistic energy values need to be incorporated into the model. For being comparable to
results obtained from simulation and real time evaluation in a testbed, the energy draw of
the MicaZ sensor nodes (see Table 3.1) is used due to several reasons. First of all, these
devices — which are manufactured by Crossbow Inc. — provide a versatile platform
for low-energy sensor networks because they can beneficially be used in combining low
transmission rates while behaving energy conscious. Especially in academia where Cross-
bow is showing presence on conferences and workshops the popularity of the Mica-Mode
family gained popularity and can be seen as the reference platform.

The power draw of the MicaZ nodes [Cro05] is incorporated into the model, using the
values shown in Table 3.1. Every relevant state change within the model is accompanied
by a call to the energy function CE() (see Figure 3.4) which accumulates the energy use.

The radio strength is given in dBm, a unit that relates the sending power level to an
absolute magnitude of 1mW , a common used dimension in the field of high frequency
radio techniques [Win05]. In consequence when relating the performance ratio of the
sending power P1 to P2 = 1mW , the resulting sending strength can be computed:

P = 10 · lg
(
P1

P2

)
dBm = 10 · lg

(
P1

1mW

)
dBm (3.1)

As mentioned before function CE() accumulates costs from Table 3.1 to account for
state changes of the automata. Respectively adopted to this design is the cost of leaving

38 Chapter 3. Energy Efficient Routing and Scheduling

void CE (int e){
//Compute Energy of Mote modulo CMOD
c = (c+e) % CMOD ;

}

Figure 3.4: Definition of the UPPAAL cost function.

state Down. Using cost as a product of PDown and 99 time units gives an accurate energy
consumption for the time spent in this state, totaling the transition costs to PDown’ =
1 547µA. This approach is used since real valued clock values cannot be incorporated in
arithmetic calculations in the present UPPAAL version 4.0.3 at hand from October 2006.

To avoid an unnecessary blow-up of the state space, not every device model has a
cost estimation function CE(). That means in particular that only one single reference
sensor node (see Figure 3.3a) and one reference router presented at Figure 3.3b are used in
the system of distributed timed automata. The decision not to include a cost estimation
function into the controller node is motivated since this sink has an unlimited power
supply.

For the retrieval of proper estimates to account for the energy used, it is required that
UPPAAL uses the cost from Table 3.1 multiplied with the corresponding time spent in each
of the states. Unfortunately due to type constraints of the involved figures, this did not lead
to the expected results in the present program version. In particular, when considering the
multiplication of energy values with the corresponding time, a type mismatch occurred.
The workaround that was used is to precompute the energy needed for sending, and
receiving of a packet depending on the actual transmission strength, a proper estimate is
found. Also the energy for the idle state is estimated by the product of the idle energy draw
and the time spent in the idle state over approximated by ActiveCycle. By integrating
this power draws in the model, an energy computation is albeit the variable type constraint
still feasible.

Besides this, the use of priced timed automata [BLR05, RLS04b] as proposed in many
studies [BBHM05] is also investigated. The application of UPPAAL Cora which is using
this technique of cost optimal reachability analysis in linearly priced timed automata did
not deliver the desired results and completely failed in the example at hand. Although
several case studies did provide promising results and hinted the application of this tool,
it failed to do so for the selected application scenario. Albeit its utilization in simpler cases,
it failed to do when working with increased complexity as in the selected example.

3.4.3 State Space Reduction

Several efficiency means were introduced to reduce the complexity to a degree which
finally enabled the verification of queries. For example many of the variables are declared
in combination with the UPPAAL keyword meta. Consequently these variables will not be
part of the state vector spanning the state space. Note that this construct needs careful
handling for the following reason. If a variable is essential for the model to properly
function but not included in the state vector, two snapshots of the automata in which the
model is in different states could be mapped to the same state in the state space. Although

3.5. Specification 39

state processor [µA] transceiver [µA] remarks
PDown 15 1 energy draw in sleep
PSleep 8 000 1 MCU up, TX/Rx down
PIdle 8 000 20 MCU up, TX/Rx up
PSnd1 8 000 11 000 sending at −10dBm
PSnd2 8 000 14 000 sending at −5dBm
PSnd3 8 000 17 400 sending at 0dBm
PRcv 8 000 19 700 receiving mode

Table 3.1: Energy consumed by the MicaZ Sensor in each state.

the simulator correctly represents the model behavior, the verification will not do so and
properties about the state will be falsely interpreted.

The reason for using constant MOD stems from the requirement imposed by all model
checking approaches that the number of states should be finite. Hereby it is possible to
limit natural numbers m involved in all arithmetic operations by the use of the modulo
operation m%MOD. As a result, the numbers are within the range of 0, . . .MOD−1. Any
kind of counting — in the present application that is the number of collisions, number of
packets sent or received and also the energy consumption — has to be truncated in that
way.

Another way to reduce the state space is by omission of variables not required by the
present analysis. These can for example be commented out. Similar to this, the reference
models of the sensor node and the router are only included in the model if they are
important for the actual property. In case that one is not interested in energy and just
concerned with other properties, the energy related variables and means can safely be
neglected.

3.5 Specification

The properties will be formulated in the querying language CTL (see [Kat03]) which is
suited for the analysis of real-time systems. Although UPPAAL will only allow the use of a
subset of the expressiveness of CTL — that is a combination of path and state quantifiers
without nesting of temporal operators — still many useful and interesting properties can
be formulated in the available querying language.

Before the model is analyzed using the energy-related measures, it is necessary to assure
the model’s correctness by verifying certain properties. For sanity checking it is required
that the following state formula holds. It describes the safety criterion as the absence of
deadlocks in terms of the CTL formula

A2no deadlock (3.2)

The keyword deadlock is a built in construct in UPPAAL, describing a state of the
model in which no further transitions are possible. If deadlocks would exist, the model
could get stuck and become inoperable for the analysis.

40 Chapter 3. Energy Efficient Routing and Scheduling

3.5.1 Reachability

In addition, the following reachability properties have to be true, that is that certain states
are reachable. In the selected scenario possible properties of this form are for example
“Does there exist a state where the controllerCD receives a packet?” The formal equivalent
query is

E3CD(7).rcv = 1 (3.3)

In addition each end device in the network must be able to send a packet. For the
reference end device RED this can be states as:

E3RED(0).snd = 1 (3.4)

Since reachability testing has the incentive to perform sanity checks on the model, more
properties with respect to the actual model behavior need to be defined. Especially the
properties often cited as safety and liveness properties are of special interest in this context.

3.5.2 Safety

In principle, a safety property stresses that nothing bad will ever happen. This could for
example be that it is not possible for a node to block the channel for ever and thus prevent
others from accessing it. We formulate such a safety property in a positive way, namely
that something good is invariantly true.

One property that should always hold involves the transmission range of nodes. To
test it the following setting is considered: Using a transmission range of 2 spaces the
controller CD(7) can only receive packets from the router RD(6) since all other nodes
are not within its range (see Figure 3.1a). This means that no packet collisions can occur.
When switching now to a higher transmission range collisions will emerge due to the
hidden-terminal effect. To test for this situation the following property is specified and
verified with different transmission ranges.

A2CD(7).col = 0 (3.5)

3.5.3 Liveness

Essentially for a sound model are the liveness properties, stressing that eventually some-
thing good will happen. Since UPPAAL forbids nesting of operators, is has a special
construct to account for response properties. To express properties like whenever φ is
satisfied then eventually ψ will be satisfied the UPPAAL construct (written as -->) is added
to the UPPAAL query language to denote leads to or response properties.

The property whether there is message passing on the channel is fundamental for the
later analysis. To check that the channel is utilized and does not stay idle is expressed in
the querying language as:

A3 sid = −1 (3.6)

3.5. Specification 41

Also important for the proper function of the model is the property that a node will not
block the channel forever which is similar to the above property. As such the situation
that sensor node with ID 3 will not block the channel forever can be formulated in CTL as:

A3 sid = 3 (3.7)

Another important issue is the reliable packet transport. That is exemplified in terms
of the UPPAAL model that if a packet is sent, it will eventually be received by another
node. In particular, it should hold that if node RED(0) has sent a packet that collides with
packets sent by other end devices (note that only end devices can initiate packets in the
selected scenario), this packet will eventually arrive at the sink.

(RED(0).snd = 1 ∧ ED(1).snd = 0 ∧ ED(2).snd = 0
∧ ED(3).snd = 0) CD(7).rcv = 1

(3.8)

The following property states that if a packet is queued, it is either sent, or a collision
occurs

RED(0).q = 1 (RED(0).snd = 0 ∨R(4).col = 1) (3.9)

Also considered bad is the property that messages will get lost in the network, and in
consequence the reliable transfer of messages must be guaranteed. This is formulated as

(R(4).rcv = 0 ∧ RED(0).q = 1)
((RED(0).snd = 1 ∧ RED(0).q = 0 ∧R(4).rcv = 1)
∨ (RED(0).snd = 0 ∧ RED(0).q = 1 ∧R(4).rcv = 0))

(3.10)

Additionally to the above specified properties the model is used for the computation of
energy requirements. Since the controller is assumed to have unlimited energy resources
it will not be considered for the analysis of the power use.

Sensor nodes are analyzed in the following experiment by the use of a reference sensor
node RED(0). The following property is of special interest: “How much energy does the
reference node spend by sending a packet (RED(0).snd = 1) routed through the network
and eventually received by the controller (CD(7).rcv = 1)?” This property is expressed in
the CTL query language of UPPAAL as

E3CD(7).rcv = 1 ∧ RED(0).snd = 1 (3.11)

By the use of the temporal operator E3ϕ (“Does there exist a path such that ϕ eventually
holds?”) the path is returned which satisfies this property and since the strategy which
returns the shortest path is chosen, this will even be cost optimal.

42 Chapter 3. Energy Efficient Routing and Scheduling

Routers After having studied the energy use by sensor devices a further step is to
investigate the costs that occur at the routing devices since they need more power due to
higher activity. For this scenario, the reference router RRD(6) from Figure 3.1a has been
chosen, since it interlinks the controller with the rest of the network, and is hence most
critical to energy constraints. The analysis observes the energy consumption by the router
using different transmission rates and numbers of collisions. These properties are stated
in the following specifications 3.12 to 3.15.

E3CD(7).rcv = 1 (3.12)

E3CD(7).rcv = 1 ∧ RRD(6).col = 1 (3.13)

E3CD(7).rcv = 1 ∧ RRD(6).col = 2 (3.14)

E3CD(7).rcv = 1 ∧ RRD(6).col = 3 (3.15)

3.6 Results

In the following the results from the verification are discussed in detail. Properties are
verified using a hash table size of 512MB for state hashing in UPPAAL. The format of the
diagnostic trace which is important for the energy related tasks is selected as shortest path,
since the major goal is to find cost optimal energy consumption for queries.

Before the outcomes of the energy requirements are computed, the model is checked for
possible errors introduced into the model by validating the CTL queries 3.2 to 3.5 as noted
in Section 3.5. Fortunately all of the above statements are verifiable, and the results are as
expected. This holds also for Property 3.7 which is invalid. Otherwise this would mean
that the channel can be blocked forever by a node, and no further communication would
be possible. This would clearly indicate a modeling error.

For Property 3.5 the situation is changing with increased transmission range. Where at a
range of 2 and 4 the property can be confirmed, it is invalidated with a transmission range
of 6 which can be explained in a natural way as follows. At a range of 2 all communication
to the sink directly flows over the router RRD(6). When increasing the range to 4 there are
two more devices — that is router RD(4) and RD(5) — which can talk to the controller.
Since RD(4) and RD(5) are also separated by 4 spaces, they can hear each other and due
to the CSMA scheme they will not send colliding packets.

This situation now turns when increasing the range to 6 units. In this situation even
RED(0) and ED(3) can directly send packets to the sink since they are only 6 spaces away.
But their distance among each other is 8 spaces and in consequence they cannot hear
each other when sensing the channel for ongoing transmissions. Up to this point the
model at hand fulfills the demanded networking characteristics and suggest that the timed
automata model is sound. This is also proved using formal means of model checking. The
results are summarized in Table 3.2 for different transmission ranges.

Thereafter, the model is used for a deeper analysis since the model at hand seems to
fulfill the demanded networking characteristics, i.e., it is free from deadlocks. In addition

3.6. Results 43

sending strength
property 2 4 6

3.2 valid
3.3 valid
3.4 valid
3.5 valid valid invalid
3.6 valid
3.7 invalid
3.8 valid
3.9 valid

3.10 valid valid

Table 3.2: Liveness, safety and reachability properties verified with UPPAAL.

distance TX[dBm] power use [mA]
2 −10 64.3
4 −5 67.3
6 0 70.7

Table 3.3: Energy consumed by the sensor device for different transmission ranges for
property E3CD(7).rcv = 1 ∧ RED(0).snd = 1.

we showed, that the controller is able to receive a packet and sensor nodes can send
packets. As in real networks it is also possible that collisions can occur, but a reliable
data transfer is guaranteed meaning that no packets are lost. In the sequel, the energy
estimation is used with the model described above.

Sensor End Devices and their need of energy is investigated in the first analysis.
The results from specification 3.11 are as follows. As expected the energy is increasing
from 64.3mA at the lowest sending strength over 67.4mA up to 70.7mA for the highest
transmission setting (see Table 3.3). Hence for a packet to send, the sensor node requires
more energy the higher the selected transmission strength is. The variation in these results
can be explained by referring to the sending energy as shown in Table 3.1 which was
incorporated into the model. So the discrepancy in the energy use stem exclusively from
the different transmission draws in the sending state. In particular, the energy draw in the
idle state, in the sleep state and for reception stay the same.

Routers do require more energy than the end devices since they have more packets to
send. To investigate this, Property 3.12 to 3.15 are analyzed — that is how much energy
has router RRD(6) to spend in for a cost optimal routing — with the following outcome
(see Table 3.4). For readability Figure 3.6 depicts all properties with their resulting energy
draw.

As anticipated, the analysis for Property 3.12 — where no collisions occur — shows that
a cost optimal path which satisfies formula E3CD(7).rcv = 1 exists. Figure 3.5 depicts
two scenarios with different transmission settings and their corresponding routing trees.

44 Chapter 3. Energy Efficient Routing and Scheduling

(a) TX strength of −10dBm (b) TX strength of −5dBm (c) TX strength of 0dBm

Figure 3.5: Network showing routes for different transmissions. The gray lines indicate
links already present when using a smaller sending strength, where the black lines show
links only possible with the current strength.

Depending on the transmission setting this figure is increasing when switching from
−10dBm to −5dBm but then rapidly falls at 0dBm to 46mA. The explanation for this is
at the lower sending level the energy expenses at the router increase, since the sending
state now requires more energy. Instead, if the transmission power is set to maximum, the
router does no longer need to forward packets, since the router RD(4) can now directly
communicate with the network controller device at the sink. Hence the required energy
for the router RRD(6) reduces if all devices send at a strength of −5dBm.

When considering the second query (formula 3.13) with one emerging collision the
situation is changing. Due to the collision occurring at the routing device RRD(6) more
energy is needed. But with increasing sending strength the energy use drops for a similar
reason as above, namely that more devices can directly talk to the network controller.
Notice that this scenario only considers the cost optimal routes for the reference routing
device. For other nodes in the network this means that their expenses on energy increase
since they have to spend more energy on their communication to reach directly the sink
and hence this figures have to be treated with care.

Further increasing the number of collisions up to three keeping the transmission strength
constant to −10dBm, the energy draw is also increasing. This does not need any further
explanation. Just by an increase of the transmission range and hereby the number of
nodes that are reached and keeping the range constant to four, it is peculiar that a minimal
energy level exists which is even the same for 1 and 2 collisions.

In general it is important to say that when increasing the number of collisions this
does not necessarily imply that hereby also the energy use will increase as shown in the
middle column of Table 3.4. For a more detailed and illustrative view refer to the graphical
representation at Figure 3.6.

3.6. Results 45

distance 2 4 6
TX [dBm] −10 −5 0

property power use [mA]
E3CD(7).rcv = 1 120 126 46

E3CD(7).rcv = 1 ∧ RRD(6).col = 1 156 104 107
E3CD(7).rcv = 1 ∧ RRD(6).col = 2 211 104 168
E3CD(7).rcv = 1 ∧ RRD(6).col = 3 266 162 229

Table 3.4: Energy consumed by the reference ZigBee router under different scenarios.

 50

 100

 150

 200

 250

 2 4 6

e
n

e
rg

y
 d

ra
w

 [
m

A
]

transmission range [units]

Energy Use at Node RRD(6)

104 mA

126 mA

162 mA

0 cols
1 cols
2 cols
3 cols

Figure 3.6: Results from the energy measurement using the timed automata model.

46 Chapter 3. Energy Efficient Routing and Scheduling

3.7 Conclusion

The use of formal methods and the application on timed automata models as used in this
chapter shows the feasibility of this technology in the world of wireless sensor nodes.
Especially the sound basis that was developed in terms of the UPPAAL model is a good
start to reflect arbitrary scenarios. That is in particular the use of the distance matrix for
modeling topologies, the use of different types of nodes by embracing the energy model,
and the sensing mechanism for the channel. The use of the querying language of UPPAAL

allows various situations to be analyzed, combining the exhaustive search algorithms of
model checking with the visual and human readable representation in terms of the timed
automata model.

The conducted analysis shows that the timed automata model presented here are a
good start for the analysis of energy consumption of sensor devices. The soundness of the
model has been proved, that is especially liveness-, soundness-, and reachability properties
that show the model’s ability to fulfill essential networking functions. Furthermore the
existence of energy optimal routes for fixed nodes are computed based on the energy
requirements of MicaZ nodes. This analysis for example shows that higher transmission
strength leads to a new optimal routing tree since nodes can transfer packets using less
intermediate hops to deliver their packets to the sink.

Unfortunately all the analysis goes along with restrictions imposed on the complexity
with different regards. As such the nodes’ ability to do CSMA is only rudimentarily imple-
mented since a more detailed model would no longer be suitable for analysis. In addition
one has to confess that the restriction to small networks does not seem to be competi-
tive with simulation tools. So the big advantage of the presented analysis should be kept
in mind, that is the exhaustive treatment of the scenario which considers all possible states.

Within the focus of the current chapter is the energy required for the packet transport
from the sensor nodes down to the base station. What we did not consider so far is
the opposite direction. This is essentially useful to distribute information to the sensor
network and is covered in the following chapter using an authenticated flooding protocol.
Since sensor nodes may run out of energy, the effectiveness of the protocol is pinpointed
for different parameter settings that directly correspond with the energy draw and the
involved authenticity of packets.

CHAPTER 4

Performance Evaluation of Probabilistic Flooding Protocols

4.1 Introduction

Communication in wireless sensor networks is characterized by the fact that no centralized
knowledge about the identity, reachability, or the location of the individual nodes is
present. Although the nodes have been given an identity in terms of a MAC address
or a unique ID before deployment, the knowledge about the topology after the initial
setup is not available to every node. Thus it is important that nodes start to learn about
their proximity, interchange routing information, and finally proceed with their task. The
tradeoff hereby is whether information about the topology should be collected fast at the
expense of energy or not.

An important class of security protocols depends on the use of probabilistic choices
which are well suited for many purposes that also include signing contracts, sending certi-
fied email or protecting the anonymity of communication agents. Given these constraints
a simple flooding strategy has become an accepted communication paradigm that was
already topic in many previous studies and exists in many variations. Furthermore prob-
abilistic flooding protocols play an important role in the context of low-energy wireless
networks. Where in the simple flooding protocol every node sends the received message
to all surrounding nodes, this happens in the context of the probabilistic algorithm with a
likelihood p < 1. Here a node either forwards the message with probability p or drops the
query with 1− p. In consequence this mechanism can greatly reduce traffic or packet colli-
sions (broadcasting storm), and hence there can be significant energy savings. Broadcasting
flooding protocols were intensely studied in the work of [NTCS99].

The here presented probabilistic analysis is executed by the use of the PRISM tool — a
probabilistic model checker [KNP01, KNP07, HKNP06]. In particular its application to the
field of wireless sensor networks is studied with respect to modeling, usability of the tools,
and its suitability to the application domain. Although the tool might not immediately
suggest itself for the job of analyzing probabilistic protocols that are more in focus of
state-of-the-art simulation tools like NS2 [Net], a comparable analysis of model checking
techniques can be conducted.

48 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

What made PRISM attractive from our point of view is its solid foundation on the theory
of Markov chains and its comfortable graphical user interface. The size of the Markov
chain models accessible to analysis by PRISM is restricted. This is partly caused by the fact
that not only typical situations, that occur in 95% of all simulation runs are considered,
but all possible interleavings are taken into account, no matter how low their likelihood to
occur is.

Consider for example a topology as shown in Figure 4.1a. When the query is sent by a
node A and each consecutive node propagates the query using a probability of 5%, the
likelihood that the query reached node E is 6.25 · 10−6 (= 0.054). In turn this means that
in 1 million simulation runs the query reaches state E on average 6 times. But it can
also happen that the situation does not occur in 1 million runs. In fact about 100 million
independent simulation runs are necessary to obtain meaningful results, which supports
the idea of computing precise and accurate probabilities by the use of Markov chains.

Related Work Probabilistic flooding protocols are investigated in the work of [FG06]
with respect to their general application. The authors focus on quantitative performance
measures, compare the applicability of formal methods, and focus on quantitative perfor-
mance measures. Moreover background information about probabilistic actions systems
is provided. The work concludes by analyzing a system consisting of five nodes using a
modeled channel behavior that accounts for clashes and transmission delays.

In the work of [KNS02] the authors apply probabilistic model checking to the IEEE 802.11
standard [Soc07] using a medium access control mechanism that employs CSMA/CA. The
focus of this work is to investigate the randomized exponential back-off using a two-way
handshake with a fixed network topology. A probabilistic timed automata model is then
used to verify the quality of the back-off algorithm like “at most 5 000 microseconds pass
before a station sends its query correctly”.

In [KNSW04] symbolic model checking is analyzed with respect to its applicability
to probabilistic timed automata. The authors present their symbolic model checking
algorithms and apply it to case studies like the CSMA/CD protocol and the Fire Wire root
contention protocol.

Overview This chapter is structured as follows: In Section 4.2 three simple topologies
are analyzed on a theoretical basis with related question “What is the probability that node
i receives a query?” Here also preparatory work is done that facilitates the development
of PRISM model later on. In addition the PCTL query language, and communication
mechanisms are investigated. Section 4.3 introduces the authenticated query flooding
algorithm (AQF). The energy requirements are covered in Section 4.4 which also includes
energy measurements of the TMote Sky Sensor node. Thereafter in Section 4.5 the results
are presented for the relevant topologies. With the conclusion in Section 4.6 the results are
discussed, analyzing the contribution and relating it to other work.

4.2 Probabilistic Flooding in Simple Network Topologies

In this section some simple settings are analyzed using a simple probabilistic flooding
approach. It is of particular interest how such dissemination protocols can be transferred

4.2. Probabilistic Flooding in Simple Network Topologies 49

A

B

C

D

E

(a) topology 1: Lined-up sensor
nodes

A

B

C

D

E

F

G

H

I

(b) topology 2: two-path diver-
gence

A

B

C

D

E

F

G

H

I

(c) topology 3: interlinked diver-
gence

Figure 4.1: Basis network setups studied and modeled by Markov chains.

to Markov chains and to define the properties of interest. Since in the end a PRISM model
needs to be constructed for the analysis of real world scenarios it is important to become
familiar with the fundamental modeling concept. For this reason some simple settings
are investigated and analyzed using the probabilistic flooding approach that are later
expanded to more realistic network settings.

The simple topologies chosen are displayed in Figure 4.1, starting with a basic setting
were the nodes are lined up in a row, over a more complicated example for which it is
still possible to compute the resulting probability by hand. And finally a setting as shown
in Figure 4.1c where different routes are possible for a packet to traverse. Furthermore
what is different in this topology is that links change their nature from directional to
bidirectional and hence the inter-connectivity of the whole setting is rising. Or stated
otherwise, the arrows are used if there is only one possible way for the query to be sent
through the topology. For the lines which interlink nodes, the packet can be sent in both
directions depending on which node receives the query first.

The analysis using probability theory is not meant to have revolutionary character but
rather tries to estimate the complexity of different topology settings and obtain a general
“feeling” of how probability measures behave in such strongly interlinked structures and
the way they can be computed. Later during this work problems are modeled in PRISM to
compare the impact of different networking topologies w.r.t. energy considerations.

4.2.1 Networking Models based on Markov Chains

The PRISM model for the networks to be investigated is a DTMC. We do not consider an
initial phase of the network where the topology is built up by exchanging routing tables
to establish links. In this sense the topology is already fixed and not subject to changes.
Each node is represented by a module having two internal states and communicate by
the use of global bit variables which they can set to 1 to signal that a packet has arrived.
So whenever a module sees a query through its global variable, the decision procedure is

50 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

started by throwing a dice. Depending on the outcome it either forwards the packet with
certain probability to its directly reachable neighbor nodes within one hop distance. Or
the packet is dropped.

The probability that a node forwards a query to all neighboring nodes is referred to as
the forwarding probability pf . The related inverse namely the probability that packets are
dropped and consequently not forwarded is denoted by 1− pf . A node accepts a query
if it forwards it, otherwise we say the node rejects the query. The node close to the base
station which always receives the query is node A.

Topology 1 – Lined-up Nodes Consider a network topology where nodes are lined-up
in row like in Figure 4.1a. We will start with this scenario to find a way for the PRISM

models and then turn to more complex network structures. This scenario is relatively
simple since the resulting probabilities can be computed by multiplying the probabilities of
the individual events along the path. So, the probability that a node accepts and forwards
a received packet can be computed by the use of basic probability theory as

Pr[query is accepted by exactly i nodes]
= Pr[query is forwarded by i-1 nodes] · Pr[node i forwards the request]

(4.1)

The counter part is computed as the probability that there exist a path starting at the
first node A from which a number of i nodes can be reached multiplied by the probability
that node i drops the query. This can be formulated as the probability that node i discards
a packet denoted as

Pr[request is dropped at node i]
= Pr[request is forwarded by i-1 nodes] · Pr[node i drops request]

(4.2)

Further, if nodes are lined-up, it is obvious that node i can only receive a request if
all the other i− 1 nodes forwarded it. Hence the probability that all nodes up to node i
receive a request can be expressed by

Pr[query is accepted by i nodes] = pi (4.3)

Hence the probability that node i discards the query which all i − 1 nodes before
accepted can be denoted as

Pr[request is dropped at node i]
= Pr[request is forwarded by i-1 nodes] · Pr[node i drops request]

= pi−1 · (1− p)
(4.4)

In the simple scenario where the nodes are lined-up no 2 sensors can reject at a time
since this would mean that nodes are skipped, in consequence probability

Pr[request is dropped at node i and j] = 0

4.2. Probabilistic Flooding in Simple Network Topologies 51

pf =

at leat 3 nodes at leat 4 nodes

A

B

C

F

G

+

A

B

C

F

G

+

A

B

C

F

G

–

A

B

C

F

G

–

A

B

C

F

G

Figure 4.2: The way partial probabilities from problem 2 contribute to the resulting
probability for the event, that 3 nodes accept the query.

.
In the PRISM model for the line-up scenario node A initiates flooding by running its

probabilistic algorithm and proceeds with probability p setting the global reception bit
of node B (b’=1) and hereby signaling that a packet arrived. Afterwards it is changing
its local state to a’=1 to remember that it has processed the query and to avoid multi-
ple sending operations (packet repetition). With probability 1-p it just moves to state
a’=2 and thus drops the packet. The PRISM sources are attached and can be found in
Appendix B.1.

Topology 2 – 2-Path Divergence The topology of the two-path divergence as displayed
in Figure 4.1b is treated in the following. In contrary to the afore mentioned scenario it is
more sophisticated due to the divergence of the query into two distinct and independent
paths after the first sensor node. As before the probabilities of events can be calculated by
the probability of the event’s path.

For example, consider the probability for three nodes being reached by a query in
Figure 4.2. Basically three possible settings exist that represent this situation, namely
B-A-F, A-F-G, and C-B-A. By simply adding the probabilities of the individual events,
certain events are counted doubly. The paths that need to be subtracted can be constructed
of the previous mentioned paths by finding the paths that only differ in one edge and
unify their nodes. This can be done by subtracting all the possible combinations of events,
having a predecessor and differ in exactly two nodes. The resulting formula for recursively
computing the exact number of nodes that receive the request is as follows:

Pr[query q is accepted by exactly i nodes]
= Pr[q is accepted by at least i nodes]− Pr[q is accepted by at least i+1 nodes]

=
(
i · pi − (i− 1) · pi+1

)
−
(
(i+ 1) · pi+1 − i · pi+2

)
=
(
i · pi · (1− 2p+ p2)

)
= i · pi(1− p)2

(4.5)

At this point it turns out that the theoretical results computed by formula 4.5 and the
outcome by PRISM do only perfectly match up to i = 5. Beyond that, some difference
arises that is comparatively large at the beginning but then smooths for higher values of

52 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

i (see Table B.3.1). The reason lies in the modeling: In the PRISM model, a finite model
is used with 9 nodes where the longest path is containing 5 nodes, that is A-B-C-D-E.
Formula 4.5 in contrary anticipates an infinite model that is unbound on each of the two
branches.

The figure for the number of nodes that drop a request is more complicated since even
for i = 1 there are 20 possible paths that contribute to the probability, neglecting even the
number of double-counted ones.

Topology 3 – Interlinked Divergence In problem 3 as displayed in Figure 4.1c, the
scenario from before is extended by adding three additional links to the node pairs of B-G,
C-F, and D-G. Hereby links in this setting change their function. For the first time some of
the links obtain a bidirectional nature which was not the case in the previous settings and
which dramatically increase the complexity of the model since many dependabilities need
to be considered when computing the probabilities. In detail the number of transitions in
the DTMC model grows from 172 in Topology 2 to 2 182 with 811 total states. Bidirectional
in this context means that the communication is possible for two directions, in contrary to
a one-way channel where one party can only send and the other only receive. Especially
since all possible paths that reach a certain node need to be identified, it is almost impos-
sible to solve this by hand. In summary, while topology 1 and 2 are easy to compute by
hand topology 3 is not. Still, the probability can be computed by PRISM and is shown in
the right illustration of Figure 4.5.

4.2.2 Inter Module Communication

The only communication is by global variables. This keeps the model relatively simple
and reduces the complexity while essential functionality of the network links are still
retained. As such the links are bidirectional and communication can take place in both
directions. The communication is assumed to be reliable, meaning that whenever a packet
is sent, it will reach the receiver with probability pc = 1. When assuming communications
below 1 to model lossy channels, the model can be adopted for this by incorporating the
probability pc into the decision of the probabilistic flooding algorithm. This would then
mean in detail that instead of moving with probability pf to another state one would move
with probability pc · pf to that state and otherwise (1 − pc) · pf move to a “lossy state”
where the packet is lost due to a communication failure.

It can also be explained from another point, that when considering regular networking
conditions a BER (bit error ratio) of 10−6 is often used. Hence bit errors occur only once out
of 1 million bits which can safely be neglected.

The fact that no collisions are modeled is motivated by the low forwarding probability
pf which is used throughout the model. In reality by doing simulation in NS2 it turned
out that when dealing with probabilities pc in the range of 10%, collisions are negligible
since they almost never occur.

In Figure 4.3 the resulting model is displayed. It reads as follows: upon arrival at node A,
the query is either dropped with probability 1− pf in which the Markov chain is stopping
and the node changes to the sleeping state As. This helps for example to avoid duplicated
request. With probability pf the node decides to forward the request by moving to state
At. Considering pc = 1 as motivated earlier, node C and B receive the query and repeat

4.2. Probabilistic Flooding in Simple Network Topologies 53

Arquery

As

At

Br

Bs

Bt

Cr

Cs

Ct

Dr

Ds

Dt

Er

Es

Et

Fr

Fs

Ft

1− pf

pf

pc

pc

pc

1− pf

pf

pc

pc

1− pf

pf

pc

pc

1− pf

pf

pc

pc

1− pf

pf

pc

1− pf

pf
pc

Figure 4.3: Communication model for the flooding protocol with pf the forwarding
probability and pc the probability that a communication link fails.

the same procedure, but independently of each other. So this action is then repeated for
all nodes until at some point either the whole network is reached, meaning that all PRISM

modules are either in state As or At. When choosing the value of pf too low, it can happen
that not all nodes in the topology are reached, and the query is lost on its way through the
network.

4.2.3 Specifying PCTL Properties

Before we start with the computation of the probabilities on the Markov chain model
using PRISM, the appropriate specifications need to be defined in terms of PCTL formu-

la=0

la=1, b=1, c=1
la=2

Ar

As

At

1− pf

pf

pc

pc

(a) Model of node A with local and global
variables.

1 // Global Variables
//0 - Nothing received
//1 - received and deciding
global a : [0 . . 1] init 1 ;

6 module sensA
//Local Variables
//0 - Nothing received
//1 - accepted query
//2 - rejected query

11 la : [0 . . 2] init 0 ;

[] (a=1) & (la=0) −> pf : (la ’=1) & (b ’=1) +
(1−pf) : (la ’=2) ;

endmodule

(b) PRISM model of node A.

Figure 4.4: Markov model and related PRISM description for a single node.

54 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

lae [BdA95, HJ94]. Afterwards the state space can be searched for a fulfilling state of the
specification.

In particular it is interesting to know whether the whole network is reached given a
certain forwarding probability or not. Additionally, labels are added which allow the
user to reuse variable assertions for different property specifications. The following label
named asACCj (see formula 4.6) becomes true if exactly j nodes accept a packet by setting
their respective local variable to 1. The term li denotes the local variable l of module i. In
addition if-then-else constructs are used in an abbreviation form as known from modern
programming languages. For example (c?a1 : a2) denotes if c then a1 else a2.

ACCj :

 ∑
i={a,b,c,d,e}

(li = 1?1 : 0)

 = j (4.6)

It turns to true if exactly j nodes change their local variables li to 1 meaning that they
accept a query. The final PCTL property that returns the probability that j nodes accept
the packet is then composed as

P =? [true U (“ACCj”)] (4.7)

Since the computed probabilities also comprise all intermediate stages, that is where the
dissemination process is still in progress and the flooding did not terminate, the results
are not very meaningful. Thus the formula needs to be expanded by a conjunction with
the deadlock property. This property is a build-in construct in PRISM and turns true if
the Markov chain is residing in a state where no further transitions are possible to take.
When talking about the network model this construct allows only valid end states to
be considered for the final probability where the flooding process terminates. So the
probability that “exactly i nodes accept a query” upon termination follows by

P =? [true U (“ACCj”) & (“deadlock”)] (4.8)

Similar to the accepting properties the rejecting properties are defined in PCTL. The
label REJj added turns true if j nodes reside in a state where their local variable is set to
2.

REJj :

 ∑
i={a,b,c,d,e}

(li = 2?1 : 0)

 = j (4.9)

As before the probability that “at least i nodes reject a request” is expressed through the
following PCTL formula that already adopts for the “deadlock” state

P =? [true U (“REJj”) & (“deadlock”)] (4.10)

4.2. Probabilistic Flooding in Simple Network Topologies 55

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

p
ro

b
a
b
ili

ty
 (

p
f)

topology 1

REJ
ACC

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9

number of nodes

topology 2

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9

Topology 3

Figure 4.5: Probability for topologies 1 to 3 that exactly n nodes forward a query expressed
through ACCn and respectively drop a query denoted by REJn.

4.2.4 Results

All computations are carried out with the verification engine of PRISM unless stated
otherwise. Therefore these results are exact since they precisely represent the probability
as opposed to simulation where sometimes several thousand simulations runs are required
to reach a desired level of confidence. In each topology the flooding algorithm always
starts at node A.

The plot presented at Figure 4.5 shows the number of nodes being affected by a query
in relation to the probability for the events “exactly i nodes reached” (ACCi) and “exactly
i nodes dropped the query” (REJi). For all experiments the forwarding probability is set
to p = 0.14. The x-axis denotes the number of nodes. Due to the very quickly vanishing
probabilities a logarithmic scaling is used on the ordinate.

For topology 1 (see Figure 4.5) there are only two outcomes for dropping the query.
Either no node drops a packet or one does, but there can never be more than one node
dropping a packet. All other cases only occur with probability 0. In topology 2 different
scenarios for dropping nodes are thinkable, and in the final topology 3 there are 5 settings
for dropping a query. In the last problem the probability for REJi≥5 drops to 0 since the
maximal number of rejecting nodes is 4. Similar, the maximal number of nodes accepting
a query and forwarding it is 9 which results in ACCi≥10 = 2.07e− 8

56 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

4.3 Authenticated Query Flooding Algorithm

Since sensor devices that interchange information through wireless communication are
prone to attacks, there is an urgent need for security mechanisms. The challenge involved
hereby is the fact that an adversary is hard to predict and often the attack stays undetected
since appropriate detection mechanisms are missing. A comprehensive adversary model
that is underlying this thesis is found in the foundation chapter at Section 2.4.2.

The number of thinkable attack scenarios and the adversaries potential cover a wide
spectrum [BCF07]. They reach from a physical attack where the adversary is in possession
of a node up to denial of service attacks where the nodes becomes inoperable. In case
that the attacker brought a node under its physical control, it can read the node’s memory
including secret keys and reprogram it to suit to its needs. Or an adversary might post
illegitimate or fake queries disrupting the networks service or compromise nodes in a way
that let him control the nodes, or even parts of the network.

The authenticated query flooding algorithm (AQF) [BFH+06] assumes an ID-based key
pre-distribution scheme (see [ZXSJ03]). Out of a pool of keys numbered from 1 to ` every
node receives a ring of k randomly chosen keys. The way this pre-distribution may
be organized is sketched in [BFH+06]. When the base station wants to disseminate a
query q, it first computes the value x = hash(q) of some given hash function hash and
then uses x as a seed to compute m pseudo random numbers (kid1, . . . , kidm). These
numbers are interpreted as the numbers of keys (kkid1 , . . . , kkidm) from the pool. These
keys are used to compute m message authentication codes (MACs). We stick to the design
decision from [BFH+06] to use 1-bit MACs. Thus, using key kkidi

on x = h(q) the bit mi

is computed. The sequence (m1, . . . ,mk) = macs(q) is called the authenticator for q. The
base station then floods query q together with macs(q) into the sensor network.

Upon receiving a query q and the authenticator m a sensor node, which is assumed
to share the hash function h and the pseudo number generator with the base station,
computes the indices (kid1, . . . , kidm) used to encode m. If for at least one of the keys
kkidi

that also belong to its own key ring it detects a mismatch between the computed
and the receives value mi, it does not forward the query. In all other cases it sends it to
all its neighbors. As in [BFH+06], we are only interested in the analysis of the flooding
algorithm and ignore the question when a sensor node considers a query as genuine and
replies to it. Furthermore, the node memorizes processed queries and immediately ignores
them when receiving them for a second time. It follows from the design of the algorithm,
that obviously a legitimate query q will be received by all reachable nodes in the network.

The adversary model adopted in [BFH+06] assumes that an attacker can feed messages
plus authenticators into the network in the same way as the base station does. It is
furthermore assumed that an adversary may capture sensor nodes and thus obtain their
keys. Consequently it may start the dissemination with query q using the correct MAC-
bits for the keys it has captured and randomly guesses the remaining authenticator bits.
Assuming that an attacker has captured ñ nodes using the theory of random sets the
average number b̃ of keys known to the adversary and the expected value B of correct
MAC-bits in a fake query authenticator can be computed.

The probability pf that a sensor forwards a query with a fake authenticator [BFH+06]
can be derived through random set theory and is

4.3. Authenticated Query Flooding Algorithm 57

variable value range description
n 12 14 number of nodes in the network
` 1 000 - 10 000 number of keys in the key pool
k 50 - 250 number of keys in the key ring of a node

keylen 128 length of one key
m 100 - 500 size of the authenticator

MNKK - mean number of keys a sensor has to validate per query
data 8 data bits
d 2 - 4 network density
ñ ≥ 1 Number of captured nodes
b̃ - number of captured keys
Eb̃ - keys in the authenticator known by an adversary
B - number of right bits in the fake authenticator
pf - probability that the message will be forwarded

Table 4.1: Annotation for the variable meanings and parameters for the AQF algorithm
that contribute to the forwarding probability pf . Blank fields depend on the setting and
need individual computation.

pf =
(
`− k
`

+
k B

` m

)m

=

(
1 +

k

2`

(
1
m
− 1−

(
1− k

l

)ñ
))m (4.11)

It is an essential contribution of the authors from AQF to suggest a criterion for choosing
plausible values for pf . Based on the theory of random graphs it is suggested to chose
pf in a way that the sensor network turns into a disconnected graph. This leads to the
requirement that pf · d < 1, where d is the average number of neighbors in the network,
also known as the density of the network. Table 4.1 shows typical parameter values that
are investigated with the corresponding probability pf .

Experiments considered later will use topologies with densities varying between 2.3
and 4.1 and forwarding probabilities between 5% and 40%. Especially when using smaller
forwarding probabilities energy can be saved. This will satisfy the property of discon-
nected networks for forged queries due to the following fact: Fake queries are dropped
with probability pf but queries with a valid authenticator pass through the network with
probability 1. So the disconnected graph only refers to a forged query.

Another property is that queries for which a node is not able to decide whether they
are sound or not due to not-matching keys are forwarded by the node. An attacker could
take advantage of this by sending queries with authenticator bits which only very few
nodes know. Consequently these queries will be spread through the network draining the
networks energy.

In fact, only a single matching key from the authenticator is sufficient for a node to
accept it. This can very well be exploited by an adversary by just sending two queries,
one with an authenticator set to 1 and the other to 0. This obvious vulnerability can be

58 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

checked using a safety property. The safety criterion states that if a node s accepts a query
(the query is legitimate), then with probability ps it is legitimate.

Since another flooding — the simple authenticated query flooding (sAQF) — is checked
for safety, and correctness properties, the task of verifying the safety of AQF is postponed
to Chapter 5. Instead we focus here on energy related questions.

4.4 Incorporating Energy into Sensor Networks

Since the energy supply is a critical resource in the field of wireless sensors, this sections
introduced six topologies. In combination with an energy model derived from the TMote
Sky sensor node, the Markov chain model is analyzed. Especially in combination with
the authenticated flooding mechanism, it is promising to find a tradeoff between energy
and safety. Hence an optimal combination of the parameters can be computed which
minimized the use of energy for a predefined safety level.

So far it seems evident to assume that average energy consumption of a node depends
to a large degree on the sensor’s proximity, since in dense networks the probability of
occurring collisions or interference is much higher. Denser networks have the additional
property that even when using small forwarding probabilities almost all nodes are reached.

Where in Section 4.2 we did not differentiate between legitimate or fake query, this is
changed in this section. From now on a faked query is considered which is injected into
the network at node A although any other point is also feasible. Additionally the adversary
can inject its queries at two or even more nodes in the network which is admissible, but
not covered. In computing the energy balance from the network, all sensors will be taken
into account to obtain a global energy view on the topology.

4.4.1 Application Scenarios

The networks that we will investigate are strongly interlinked, consisting of at most 18
nodes as shown in Figure 4.6 with nodes having at most 6 neighbors. The settings are
chosen since they represent different symmetric and asymmetric topologies with a varying
network density that will help to generalize the results. Furthermore topology 4 and 5 are
similar and only differ in nodes G and C which are missing in topology 5. The setups in
topology 6 and 7 have nearly the same number of nodes and differ only in their shape.
Topology 8 has a tree-like look and queries that start at node A will later not interfere with
each other since the branches are separated. The last topology 9 is chosen according to a
real-world network deployed at Intel Berkeley Research [lab04]. In the subsequent part
these topologies are analyzed under the objective of power constraints.

By modeling these wireless sensor networks as a DTMC (Discrete Time Markov Chain)
the energy draw is computed using the reward analysis with the probabilistic model
checker PRISM. So a sensor node specific energy consumption function is used to formulate
the energy constraints within the model. The later analysis will reveal how parameters
change when dealing with different topologies, and to which extent the impact of the
topology will influence the level of security.

Notable here is the fact that no timing can be computed by the PRISM model. Although
the timings for computing the hash values, receiving and sending for the TMote Sky node
are present, the Markov Model does not allow timed modeling.

4.4. Incorporating Energy into Sensor Networks 59

A

B C

E FD

G H

I J K

L M

N

(a) topology 4

A

B

E FD

H

I J K

L M

N

(b) topology 5

A B C

D E F

G H I

J K L

(c) topology 6

A

B C

D E

F G H

I J K

L M

(d) topology 7

A C

D

B

E

F

G

H I

M

Q

R

J

L

K

N

P

O

(e) topology 8

A

B
C

D

EF

G

H

I

J

K

L

M

N

O

P

Q
R

(f) topology 9

Figure 4.6: Considered symmetric and asymmetric topologies.

60 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

4.4.2 An Energy Model for the TMote Sky Node

For the energy model key figures from TMote Sky sensors by MoteIV [Mot06] are used and
computed using a Perl script (see Appendix B.2). Hereby the exact energy for different
packet sizes is exactly computed. The considered topologies, as mentioned before, are
used for the analysis. The analysis shows how the choice of the topology is influencing
the security-energy ratio.

The initial setup phase of the network during which routing tables and network param-
eters are negotiated are not considered since this routing information is in the network
under analysis already present. More precisely, the connecting lines between the nodes
represent these links. Especially the network’s setup time and the hereby used energy
does not only depend on congestion in the air but also on physical barriers like walls, trees,
etc. that impede signal strength and the flow of queries. Since this may also vary with
the topology it does not contribute to a comparison of the flooding algorithm in different
settings. The here presented attempt is chosen to consider a network after successful
termination of the initial phase since this greatly depends on the proximity.

Also noticeable is the fact that we do not account for state changes of the controller to
obtain even more realistic results, since this influences the delay and the power constraints
of sensor node, too. As such the here presented analysis gives a solution for a formally
derived energy use.

Due to the fact that the TMote Sky sensor supports IEEE802.15.4 [Soc06, Zig05], no
emerging packet collisions are considered since it is assumed that the underlying transport
of packets occurs by time division multiple access (TDMA). As such, the here chosen
approach is promising to deliver precise energy related data through formal methods,
although real world results are expected to be higher since side effects are not considered
in the model.

The energy operation figures that directly influence the reward model of the sensor
network are briefly sketched in the following. For a detailed view of the background
refer to the sources of the script at Appendix B.2. The energy draw of the radio controller
integrated in the board is assumed to be 59mW for receiving, and 5.6mW for sending. The
micro controller is able to compute 6 million operations per second (MIPS) with a related
power need of 6mW (battery voltage of 3V). For moving data from the radio controller to
the CPU and vice versa an energy amount of 65mW is needed, since the transceiver and
CPU have to be switched on. All power needs are computed for a packet of 8bit size, a
128-bit key length, and increasing authenticator size.

Some energy figure with increasing authenticator m, related mean number of keys
known (MNKK), and resulting energy of the TMote Sky Sensor board are displayed in
Table 4.2. All sensors are either in receive mode during the flooding procedure, or try to
authenticate the received query. Upon successful authentication, and in case of not being
able to authenticate the data packet, they forward the query to nearby nodes according to
the protocol description. Since propagation of fake queries should be limited to a small
part of the network, variable pf is chosen < 1/d. For some topologies, especially the dense
ones, the forwarding probability need to be even lower.

4.4. Incorporating Energy into Sensor Networks 61

energy draw in [mJ]
m MNKK pf E(R) E(R+C) E(R+C+S)
- - - 0.1648 0.1648 0.3280

100 1.67 0.439 0.2313 0.2574 0.4857
150 2.50 0.291 0.2645 0.2999 0.5608
200 3.33 0.193 0.2977 0.3425 0.6359
250 4.17 0.128 0.3309 0.3850 0.7110
300 5.00 0.085 0.3641 0.4276 0.7862
350 5.83 0.056 0.3973 0.4701 0.8613
400 6.67 0.037 0.4306 0.5127 0.9364
450 7.50 0.025 0.4638 0.5552 1.0115
500 8.33 0.016 0.4970 0.5978 1.0866

Table 4.2: Powers draw of the TMote Sky sensor node for the following operations: receiv-
ing E(R), computing and comparing the hash values E(R+C), and sending to E(R+C+S) for
an 8 bit data packet and a 128 bit key length. The first line is without the AQF algorithm,
for the remaining entries the total number of keys is fixed to ` = 6 000, the number of
keys on each sensor is k = 100. Parameter MNKK is representing the mean number of keys
known by a sensor node and the authenticator parameter m is varying.

4.4.3 Reward Property

As input parameters for the PRISM model a 1-byte data packet is used. The key length for
the authenticated query flooding is 128-bits, which seems to be a sound value considering
an available memory of 8kB and the relatively high security level induced hereby. As
varying parameters, the total number of keys in the keypool ` is chosen between 1 000
and 10 000 appropriate for small networks, the size of the authenticator m between 100
and 500, and the number of keys with which each sensor node is pre-loaded (k) to be in
between 100 and 250.

The assumption underlying the model is that the adversary knows only the keys
deployed on a single node, which are k valid keys. During the network operation, a node
has to validate about mean number of keys known (MNKK) on average. This figure depends
on variable input parameters and needs to be computed for each pair separately through

MNKK =
m · k
`

(4.12)

The MD2 (Message Digest Algorithm) [Kal92] cryptographic hash function is used since
it seems to be a good choice in the area of 8-bit micro controllers dealing with a key length
of 128 bit. Using these numbers a varying forwarding probability pf (that a sensor node
accepts the query with a fake authenticator) is obtained. This probability is in turn used as
an input parameter for the PRISM model. An example for varying the authenticator size
m while ` and k are kept constant is shown in Table 4.2.

To compute the energy, the Markov chain model is augmented with information about
the costs from the TMote Sky node using the reachability reward by the R operator. The
reachability reward property [KNP07] associates a reward with each path that occurs in
the model. More specifically, the total reward of the sum of state rewards for each state

62 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

along the path plus the sum of transition rewards for each transition between these state is
taken into account. To receive the energy that is computed by the Markov chain model,
the following PCTL query is used. It considers the total reachability reward for the model,
which is the rewards accumulated along a path until the solving state — in this case the
“deadlock” state — is reached.

R =? [F (“deadlock”)] (4.13)

The term “deadlock” in the specification can be misleading, but it is defining the appro-
priate state within the model in which all queries are processed and no further model
execution is possible. The convenient nature of this modeling is that it does not need
any further specification. Whether the flooding algorithms stops, due to dropping of the
queries or due to the fact that the whole network is already reached, does not need further
specification.

4.5 Results

For a better comparison of the effectiveness for AQF, the energy of a simply flooding is
computed in addition. Simple flooding is a protocol in which each sensor node receives
and forwards with probability 1. Hence no hashes and authenticators need to be validated
and each query is spread to surrounding sensor nodes.

At this point it is necessary to point out, that the results of the reward rate computation
are not easy to compare since topologies vary in network density, the total number of
nodes and results would show significant differences. To account for this, an average rate
per node is computed. When considering these findings one should keep in mind the
drawback of this figure. In fact the remaining energy of nodes is not evenly distributed
over the network as sensor nodes close by the base station tend to have higher spending
as others located further away. In the current setting it is particularly the nodes located
close to the adversary that receive many forged queries during an attack but only forward
a small portion to the network.

4.5.1 Comparing Energy Requirements of Networks

In the following experiment, it is assumed that only faked queries are sent into the network
at sensor node A. So the energy draw is obtained for flooding a forged query and it can
then be generalized for a certain percentage of faked packets. Figure 4.7 and 4.8 illustrates
different topologies with varying parameter pf denoted on the x-axis. Horizontal lines on
top of the figure represent the power need of nodes without the authentication algorithm
which is independent to the forwarding probability pf .

The curves for the network topologies with varying parameters are left curved with an
upward slope and each having a global energy minimum. These minima are topology
dependent and vary with the forwarding probability pf for a fake packet between 5% and
15%. Results are displayed in the appendix (see Table B.3.2) with the related authenticator
size m and figure MNKK .

With increasing pf , the level of security drops while more and more sensor nodes are
affected by a faked query, and consequently the energy draw increases. Although the

4.5. Results 63

 1

 3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

to
ta

l
e

n
e

rg
y
 i
n

 m
J

probability (pf)

total energy use for a faked query

energy minima

topology 4
topology 5
topology 6
topology 7
topology 8

Figure 4.7: Total energy required for the flooding with varying AQF parameters shown by
the curves. The horizontal lines indicate the energy level for simple flooding.

 0.03125

 0.0625

 0.125

 0.25

 0 0.05 0.1 0.15 0.2 0.25 0.3

e
n
e
rg

y
/n

o
d
e
 [
m

J
]

pf [%]

Energy use per node for a faked query

0.32803

top 4 w/ AQF
top 5 w/ AQF
top 6 w/ AQF
top 7 w/ AQF
top 8 w/ AQF

simple flooding

 0.05 0.1 0.15

Figure 4.8: Comparison of energy requirements per node for different topologies using
simple flooding and the AQF protocol.

64 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

 150

 300

 450

 100

 200

 0

 2

 4

l=1000

m
k

 0 4

 150

 300

 450

 100

 200

 0

 2

 4

l=5000

pf=0.61

m
k

 0 4

 150

 300

 450

 100

 200

 0

 2

 4

l=10000 pf=0.78

m
k

 0 4

Figure 4.9: Input parameters like authenticator size m, number of keys per node k, and
the number of keys in the keypool ` correlate with the energy use.

choice of topologies 4 and 5 are similar and only differ in 2 nodes, this has a visible impact
on the power needs. Especially the missing node C in topology 5 reduces the connectivity
at the first nodes, creating a “bottleneck” and flattening the flooding depth. The energy
curve of topology 6 and 7 have a similar shape with a small offset. This is due to the fact
that after node A the query is forwarded to 2 consecutive nodes and apparently this has
an impact on overall consumed energy. Topology 7 has obviously the lowest energy draw
for higher values of pf thanks to the low interconnectivity between the nodes. According
to this, its slope is comparatively flat, even up to a propagation probability of 40%. It turns
out that for topology 9 no results can be computed due to memory restrictions, meaning
that more than the available 32GB of memory are needed to successfully complete the
model checking of this were not sufficient for the checking procedure. Although this
scenario has only 18 nodes, the complexity is mainly caused by the amount of links.

As can be seen from the figure that although the additional computation effort is
required by using AQF, the energy is far below the line of the unsecured networks when
assuming that 100% of the queries are sent by an attacker.

Finding the right mix of parameters that determine probability pf and especially the
way they contribute to the energy is the key for successfully applying the AQF algorithm.
Due to this task, Figure 4.9 illustrates their computed correlation with an average energy
draw per node ratio denoted on the z-axis. It is remarkable that the three planes do have
no intersection, meaning that there exists no single configuration that allows an optimal
parameter setting for all scenarios. Instead, each network setup to be optimal needs a
special configuration that includes also parameters like key pool size `, authenticator size
m, and the number of keys deployed on each node k.

Using a key pool with ` = 1 000 keys, the plane is relatively flat with an energy max-
imum at k = 250, m = 500 of 7.8598mJ . The value for pf is at this point 0%, meaning
that fake queries are dropped with a probability of 100%. With increasing parameter ` the
plane shifts to a new energy maximum at m = 100, k = 50 of 17.9234mJ . Choosing a key
pool of size 10 000 the power requirements even increase up to 28.6455mJ .

The explanation for this lies in the probability pf for which we do only indirectly

4.5. Results 65

account through the parameter of m, k, and `. In fact the evident increase in energy
as shown in Figure 4.9 is due to the rapid increase of pf which grows at many points
beyond the admissible threshold of 50%, e.g., the energy maxima for ` = 5 000, ` = 10 000
are pf = 0.59% and pf = 0.78%. For this reason it is important to chose parameter `
according to the topology since a keypool of 10 000 keys does not achieve the desired
effect when having only 15 sensor nodes in a networking scenario. For detailed results
refer to Table B.1 in the appendix.

4.5.2 Energy/Security Tradeoff using Topology 5

Since the energy efficient operation does highly depend on the level of security as well
as the severity of the intrusion and the number of faked queries hereby sent, an energy-
security correlation is required to phrase an objective statement. Otherwise no meaningful
results can be obtained. Due to this reason the focus in the remainder of this section is, as
motivated earlier in the introduction, to find an adequate level of energy that secures the
network from outside intrusion. In particular, by estimating the number of nodes that an
intruder brings under its control, the security level can be adopted to reduce the security
overhead to a minimum.

By giving the solution for the energy-security tradeoff in relation to the number of
queries sent by an adversary, the optimum operation parameters can be defined. Due to
this reason a new variable is included into the model, which represents the ratio of fake
queries among sound ones, ranging from 0 up to 100 percent. Since such a figure was
missing in the previous setting, quantitative predictions can now be stated about how the
energy and security level relate to the severeness of the intrusion.

This analysis considers the total amount of energy required to flood a query in topology
5 but can also be applied to other scenarios. For fixed parameters ` = 4 000, k = 50, and m
varying between 100bit and 500bit, the resulting probability pf and the hereby required
energy is computed. At this point there may be more than one parameter configuration
that lead exactly to the same forwarding probability, i.e., when doubling ` and k the same
probability pf is obtained due to obvious reasons. The only problem that shows up is that
if the keypool size is doubled, the probability that a node has none of the keys required
for the authentication of the query also doubles. Hence the keypool size has to be chosen
appropriately to fit the number of nodes in the network. The corresponding Figure 4.10
shows the results.

The labels are percentage of faked queries on the x-axis, the security level as explained
by the formula above on the y-axis, and the corresponding energy need in mJ on the
z-axis. Two different data sources are contained in the illustration.

The red line on the left side at pf = 0 shows the energy that would be used without
the use of any securing mean. So no AQF algorithm is employed here. That is queries
are received by a node and transmitted again without the computation of hash values,
and validation of keys in between. In this case a constant amount of 3.94mJ is needed
for dissemination of a query in the network which is completely independent from the
probability of forwarding a fake packet pf .

The second point of interest is the plane showing the relation of forged queries, and
relate pf to the amount of energy hereby involved. This graph reads as follows: If we
assume only sound queries to be sent and only little security in use — that is pf is high

66 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

 0

 0.25

 0.5

 0.75

 1

 0
 0.1

 0.2
 0.3

 0.4

 0

 2

 4

 6

 8

 10

 12

 14

Energy [mJ]

Energy/Security Tradeoff using AQF

simple flooding
AQF flooding

faked queries

pf

Energy [mJ]
 0

 2

 4

 6

 8

 10

 12

 14

Figure 4.10: Area representing the relation between faked queries in percent, the probabil-
ity of forwarding a fake query pf , and the corresponding energy draw for topology 5.

— the AQF algorithm exceeds the regular flooding procedure with respect to energy. By
increasing the portion of faked queries, the authenticated flooding shows effect and the
energy draw starts to drop. On the other end of the scale (pf = 0.05 and no fake queries)
the situation is opposing, since the securing mean does not show any effect and reaches an
energy maximum of 13.0392mJ . As the number of faked queries that reach the network
is increasing, more and more queries are “filtered” out of the network causing a rapid
drop of the energy down to 0.5236mJ . Still, the lowest energy use is not at the far end for
pf = 0, but at pf = 0.056. The draw at this particular point is 0.4755mJ for a faked query
but in contrary 10.3352mJ for a legitimate query. The AQF parameters used at this point
are m = 350, k = 50, and l = 3000.

4.6 Conclusion

The analysis presented here shows how probabilistic model checking can be applied to
challenging problems in the field of wireless sensor networks. Although common known
problems like state space explosion prevail, the present application offers a wide range
of investigation. Beyond the probabilistic probes that where conducted by PRISM, many
other figures, mainly known from the field of network simulation tools, can be computed.
As proven by previous work [WWB+08], the application of model checking techniques
is a well suited analysis method, having surely its drawback but also strong pros. Its
strength and what differs them from common simulation tools is the high precision of the
obtained results that go without the need of confidence levels since no deviation from the
mean is present.

By using the cumulative reward functions quantitative assertions for a variety of proper-

4.6. Conclusion 67

ties can be verified. These include in detail the search for cost-optimal parameter settings.
It turns out that although the number of nodes was far below hundred as proposed
in [BFH+06] still valuable results are obtained using formal methods. Essentially, the here
presented analysis should be understood as a complementary approach that can be used
to render simulation input parameters more precisely.

Hence it shows, against previous anticipations, that the choice of the topology has a
tremendous impact on the network security, especially for probabilistic protocols like
AQF. In particular the number of nodes that are in the neighborhood of the injected forged
query play an important role. If they are sparse, the probability that the whole network is
reached already drops below an acceptable threshold. The problem hereby is just that the
attacked location is often unknown prior to deployment.

Though the analysis is restricted in the number of nodes, we could still compute for-
warding probabilities with a high precision up to networks of 18 nodes. In particular it
showed that not only the number of nodes contributes to the complexity of the considered
networks. Also the interconnectivity of nodes is an issue since topology 8 and 9 have 18
nodes, but the forwarding probability of the later could not be computed due to memory
restrictions. We further believe that the results presented here do not scale for bigger
networks due to the program internal representation. Where in [CTTV04] the authors
were able to decompose networks of homogeneous nodes ordered in a ring topology into
verifiable components, this idea cannot be applied for the selected instances and the AQF
algorithm. Fortunately since the forwarding probability is rapidly dropping to values
below pf = 0.0625, the probability that forged queries reach the inner network is dropping
as well.

This chapter concludes the energy efficient analysis of the authenticated query flooding
protocol. Up to this point we considered the energy draw of sensor nodes and tried to
computed relevant energy draws by the application of formal methods. This happened
in both directions. Once, the energy for packet sending from the nodes to the sink in the
previous chapter, and in the current chapter, a probabilistic mean to broadcast information
in an authentic way from the base station up to the leaves.

In the next chapters we change the focus from the energy related analysis methods
and consider the verification and correctness of protocols and embedded software by
formal methods. Up to now such properties only played a minor role. For this reason, we
give formal proof, that the forwarding probability for a probabilistic flooding protocol is
correctly expressed by a formula in the following chapter.

68 Chapter 4. Performance Evaluation of Probabilistic Flooding Protocols

CHAPTER 5

Checking Formal Correctness of Probabilistic Query Dissemination

5.1 Introduction

The transport of information from the sink to the network is in the field of low power
sensors often solved by the use of query dissemination. This method offers many means
to achieve a desired level of reliability and security which can almost be arbitrarily chosen
in combination with the power in use. The degree of freedom to design a protocol for
energy efficient operation makes it well suited for applications especially in the field of
wireless sensor networks.

Secure query dissemination is an often used scheme for the transport of information
to legitimate nodes in a network. By the use of authenticated query flooding only an
authorized entity like a base station will gain access to sensor nodes thus controlling the
network by sending appropriate commands. Such an operation could for example be
to instruct nodes within a particular region to start measuring temperature and forward
these data values to the sink. By using authenticated dissemination a non-legitimate
outsider should be hindered from spreading his own commands in the network, thus
collecting for example private information or manipulate measured data values.

The authenticity of the query dissemination is induced by additional information
called the authenticator that is appended to each packet sent through the network. This
information is dynamically and independently computed for each query according to
a secret combination of keys. So every node can check the authenticator of each query
received and ascertain that the query is sent by a legitimate entity. Since only the base
station is capable of computing an authenticator which is accepted by all nodes, an
adversary has only little chance of breaking the authenticity of the protocol.

Most existing approaches that address similar problems have a deterministic nature
meaning, that they allow an arbitrary sensor node to ascertain the authenticity of a
query with a probability of one. So no mistakes in the validation of the authenticator are
admissible. Since this high assurance level is costly to maintain, much energy can be saved
when relaxing this energy consuming authenticator checking by introducing probabilistic
algorithms. In more detail this means that a legitimate query is accepted by all sensor

70 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

nodes with 100% probability. In contrast it is admissible that a node fails to discover a
forged query sent by an adverse entity with a small but not negligible probability.

The authenticated query flooding is such a protocol introduced in the work of [BFH+06]
where the authors put special emphasis on large networks of the size of several thousand
nodes. By relaxing the authenticity constraints from the AQF protocol it turns out that
shorter authenticators would be much cheaper to compute. Since the number of sensor
nodes is in practice in the range of ten up to twenty nodes [HCL08, BISV08], there is an
urge to design new transport protocols appropriate for these tasks.

Due to the probabilistic nature of the algorithm simulations, conventional analysis strate-
gies may fail to provide sufficient confidence. At this place the use of formal methods is an
attractive solution since it establishes system and protocol correctness with mathematical
rigor [Kat03]. Lately their success story gained popularity in the field of software as well
as hardware verification. Due to the high potential involved they are suitable for the
analysis of safety critical systems. Hence the application of those mathematical models for
probabilistic algorithms is promising to deliver correct results due to their exceptionally
high precision.

In this chapter the proposed simple authenticated query flooding (sAQF) protocol [Ben08]
is analyzed using formal methods. Safety and liveness properties are considered that need
to be fulfilled in order to guarantee proper operation of the protocol. By developing a
probabilistic system that will comprise the formal model, a quantitative formula expressing
the probability of accepting a forged query is derived and verified. In addition the
outstanding check for the safety property for the AQF algorithm from Chapter 4 is
provided.

In this way it turns out that existing simulations previously used to analyzed the
protocol are not sufficient and will hence be supplemented by the use of formal method
approach. By the help of Markov chains, probabilities can be computed with higher
precision. Fortunately this will help to argue about the correctness of the derived formula
as well as the authenticity and security of the proposed algorithm. Among the desired
properties that should hold, criteria to assess the algorithm’s safety and liveness are
defined and validated against the formal model. Results will then be compared with
deliverables resulting from simulation and the analytic formula.

Related Work Due to the fact that this work concentrated on the formal aspects of the
proposed query dissemination protocol we will not descend to details of the protocol.

Probabilistic flooding protocols are investigated in the work of [FG06] with respect to
their universal application. The authors focus on quantitative performance measures, com-
pare the applicability of formal methods, and focus on quantitative performance measures.
Moreover background information about probabilistic actions systems is provided. The
work concludes by analyzing a system consisting of five nodes using a modeled channel
behavior that accounts for clashes and transmission delays.

In previous work of [WS08] an earlier version called authenticated query flooding (AQF)
was analyzed with quantitative performance figures e.g., the energy level of sensor nodes
(see Chapter 4). Under various parameter settings topology dependent energy draws are
computed that — as opposing to simulation — reflect the true performance of the protocol
by precise and accurate values.

5.2. Authenticated Query Dissemination 71

Overview This chapter is structured in the following way. Section 5.2 gives an intro-
duction to the system model and the underlying simple authenticated query flooding
algorithm (sAQF). The problem definition specified later motivates the use of the pro-
posed method. In the subsequent Section 5.3 on page 74 a probability measure is derived
using two distinct ways like random-set theory which is not accurate but therefore easy to
compute. The correct derivation is based on hyper-geometric distributions (Section 5.3.2),
deriving the correct probability but the computation requires extensive understanding.

The formal models for the correctness of the formula and safety property are explained
in Section 5.4. In addition the safety property related to the AQF algorithm from Chapter 4
on page 47 is derived and checked. The results in Section 5.5 for the correctness proof
show the differences between the two derived probability measures. In addition, the
validity of the safety and liveness properties is provided for both query dissemination
protocols AQF and sAQF. The chapter is concluded in Section 5.6.

5.2 Authenticated Query Dissemination

Before we start with a theoretical consideration about the protocol’s properties the model
and the algorithm’s functionality are discussed. Later a simulation is given to illustrate
one of the dissemination properties, that is illegitimate queries are dropped quickly and
hence they only reach a small region of the network. Since these results are solely based on
the forwarding probability and do not consider the algorithm behind the query flooding
protocol, no knowledge about the query dissemination is necessary at this point.

Thereafter two different formulae are derived which both compute the probability of
forwarding a forged query but using different approaches. The first solution is using
Random Set Theory and the second a formula based on the evolution of the hyper-
geometric distribution. The derived formulae and their results are formally verified for a
specific parameter set and compared with the results from simulation.

The scenario that is used throughout this chapter represents a wireless sensor network
consisting of n devices that fulfill a common task. The network is accessed by the user
using the base station through which legitimate queries can be disseminated to the net-
work. When using the authenticated query flooding (AQF) from Section 4.3 on page 56
queries can be authenticated by nodes using a key ring. Since none of the sensor devices
does know all keys and the keys for the authenticator are randomly chosen, there is a
chance that some of the nodes cannot authenticate the query. This is a disadvantage of the
previous protocol which will be eliminated with the new proposed simple authenticated
query flooding (sAQF) protocol.

The adversary model used in this work is firstly introduced in the foundation 2.4.2 on
page 23 and did not play a role in the chapters before. It assumes that the adverse entity
is in possession of several keys that he gained by capturing ñ of n total sensor nodes.
In consequence this means that the adversary can read the devices’ memory including
all cryptographic keys. The adversary can use these captured keys to inject forged and
illegitimate queries into the network. If a node is not compromised the adverse entity has
no means to figure out its cryptographic keys.

72 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

5.2.1 The sAQF Algorithm

The sAQF algorithm is proposed in the work of [Ben08] and works as follows. In the
initialization phase a hash function h() which does not need to be cryptographically secure
is chosen. This function is known to all participants of the system and used throughout
the protocol. The base station is loaded which ` randomly generated keys key1, . . . , key`

with respective IDs 1, . . . , ` denoted as the key pool. Before deployment each sensor node
receives its key ring consisting of k keys from the key pool. The key rings are randomly
chosen and drawn independently for each sensor node according to a uniform probability
distribution. In addition, each sensor knows the ID i that corresponds to the appropriate
key in its keyring.

Before the query Q is spread by the base station, an authenticator is computed by
hashing the query and obtaining h(Q). For each key of the key pool key1, . . . , key` an
1-bit-MAC bi is computed by taking the last bit of the hash of the concatenation of keyi

and the hash of the query h(Q). The subsequent formula illustrates this computation:

bi = 1 bit MAC(keyi, h(Q)) = [h(keyi@h(Q))]last bit (5.1)

The message m is then constructed as a combination of the authenticator consisting of `
1-bit-MACs and the query Q and can then be sent to the network as

mQ = (b1, . . . , b`)@Q (5.2)

What each sensor node does upon receiving the message mQ is the following. It
computes the hash of the received query using h(Q). For all k keys keyi of its key ring a
verification 1-bit-MAC b′i is computed according to the formula (5.1). If for all computable
b′is it holds that bi = b′i then the query Q is legitimate and originated from the base station.
Otherwise the query is forged by an adversary and should be rejected. Doing so there
are bits in the authenticator that the node cannot compute due to incomplete knowledge.
These bits are simply ignored.

Essentially the main difference with the AQF algorithm from before is that instead of
using m random keys for the authenticator, for the sAQF protocol the base station is using
all ` keys from the key pool. In consequence where AQF uses a key pool of thousand and
more keys, the sAQF only requires 200 to 400.

5.2.2 Problem Definition

The here defined issue is two fold. On the one hand a correctness proof for the quality of
the dissemination protocol is necessary to argue about forwarding probabilities of queries.
Only on the basis of a correctly derived formula, a proper evaluation of the forwarding
probability can be obtained. The corresponding formula is derived in the sequel giving
two alternative although mutual exclusive ways. Since the forwarding probability is
considered to be a central and important part of the protocol this formula is verified using
a formal model.

The second issue concerns protocol relevant safety and liveness properties that must
naturally hold. To assure this, another model is created to test these validities. The

5.2. Authenticated Query Dissemination 73

following definitions are adopted from the work of [Ben08] and provide the problem
definition of the authenticated query dissemination protocol sAQF. When dealing with
energy related questions in Chapter 4, the proposed liveness and safety checks as promised
there are still an open issue. Therefore we will also give a specification of these properties
here and apply them to the authenticated query flooding protocol.

What makes the use of formal methods interesting in this particular application is the
relaxation of the safety and liveness properties in a probabilistic way, namely to reduce
the authenticator size and hereby contribute to energy savings. The relaxed definition
looks as follows

Definition 3 (Probabilistic Authenticated Query Flooding) A relaxed form of safety and
liveness properties is defined by

• The property probabilistic safety ps holds if a sensor node in a wireless sensor network
(WSN) accepts the query q as legitimate, then with probability ps it is a legitimate query.

• The probabilistic liveness property p` is fulfilled if any legitimate query q will be received
by every node in the WSN with probability p`.

In particular, the contrary position is often very useful that is talking about illegitimate
queries. Doing so safety and liveness properties can be formulated in a similar way to
reason about queries sent by an adverse entity. The properties from above can be adopted
appropriately and read as follows:

Corollary 4 (Liveness and Safety for non-legitimate Queries) We consider a query qnl to
be non-legitimate and SN a non-compromised sensor node within a WSN .

• The non-legitimate probabilistic safety property p′s for a non-legitimate query reads as
follows: SN treats with probability p′s the query qnl as legitimate and fails to detect it as fake.

• Similar the property for non-legitimate probabilistic liveness p` is fulfilled if qnl will be
received by every node in the WSN with probability p′`. Notice that p′` equals the forwarding
probability pf from Chapter 4 (pf = p′`).

So far only the probabilistic versions of liveness and safety for non-legitimate queries
are interesting to verify since their counter parts are already fulfilled by the design of the
protocol. The properties for legitimate queries will hence be not treated.

5.2.3 Using Probabilistic Query Dissemination

In the following we assume that the mechanism how all the protocol parameters contribute
to the AQF formula is known (see Formula (4.11) in Section 4.3). When adjusted to proper
values a fake query would reach only a small region of the network, and fortunately this
probability is even dropping very fast due to the multiplication of probabilities as shown
in Section 4.2.4 on page 55. In order to illustrate this property a small topology of 14 nodes
will be used as an application example as depicted in Figure 5.1. The topology is already
introduced before in Figure 4.6 on page 59.

Underlying this scenario, the probability of forwarding an illegitimate query pf is set to
30%. Within this topology a fake query is injected by the adversary at node E. Although

74 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

the first node will very likely accept the illegitimate query, the probability is dropping
when reaching the outer nodes located 2 hops away. So the probability for reaching node
N with an illegitimate query is 12.826% whereas the probability for node K and node I is
even 12.725%. The probability that one of these nodes even accepts a forged query is even
less, namely 3.818%. Figure 5.1a shows the regions with similar likelihood of accepting a
query.

5.3 Deriving a Probability Measure for sAQF

In the course of this section a probability measure is derived to compute the probability
of an adversary to pose a query which will be accepted by a particular sensor node SN .
The adversary is assumed to capture ñ nodes each holding k keys. There is a pool P of
keys containing elements {1, . . . , `}. Each of the sensor nodes SN possesses a key ring
of size k. In addition it is assumed that the adversary knows the key rings of ñ captured
sensor nodes which are at most k · ñ keys, but more likely less, since the key rings will
have overlapping keys.

For the probability measure two different approaches are presented that will solve the
purpose of describing the probability of a forged packet being accepted by a legitimate
node. The first solution will derive a compact formulation based on Random Set Theory,
neglecting a dependency relation between the parameters. But as can be shown, the results
— especially those for scenarios with many captured nodes or very large key pools — will
only marginally differ from the true expected probabilities. The second solution provides
a recursive formulation with highly accurate results, that are complex to compute.

5.3.1 Random Set Theory

Every message mQ that is flooded into the sensor network is accompanied with an
authenticator — a sequence of ` bits which are computed using the sAQF algorithm
— as mentioned before. The i-th bit in the authenticator sequence is computed using
key number i from the pool P . When receiving a query each node checks k bits of the
authenticator that correspond to the keys in its key ring. The adversary can read correct
bits from ñ captured nodes and guess the remaining authenticator bits. The probability that
a forged message m̃q can be constructed in a way which makes it indistinguishable from
a legitimate query to a sensor node is pf . By legitimate query a message that originates
from the base station is meant.

Let pz denote the probability that the attacker knows exactly z keys of the key ring
which should not be confused with an exponential expression. We obtain

pf =
k∑

z=0

pz ·
(

1
2

)k−z

(5.3)

According to the results in Appendix C.1 the probability that the attacker does not know
a key of SN is (1− k

`)ñ. Thus the probability p0 for 0 keys known is approximately

p0 =

((
1− k

`

)ñ
)k

(5.4)

5.3. Deriving a Probability Measure for sAQF 75

probabilistic query dissemination in topology 4

A

B C

D E F

G H

J

L M

I K

N
probability

 0.16
 0.08
 0.04

(a) Isolines showing the regions where a forged query is accepted by nodes with a certain probability using
a node’s forwarding probability pf of 30%.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

pf

probabilistic query dissemination in topology 4

A B C

D

E

F

G H J

L MI K N

node is reached
node accepts fake query

node rejects query

pf

(b) Probability for each of the nodes of topology 4 to either accept, reject, or to be reached by a forged query.

Figure 5.1: Dissemination sequence of a fake query using pf = 0.3

76 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

By approximately we denote that the above formulation of the probability is not fully
correct. When using the formula from above we know that an unresolved dependence
between the probability of knowing two distinct keys exists. For example if a node has
one key (k = 1) and one node is captured (ñ = 1) then by the formula from above there is
a non-zero probability that the attacker does not know any key. Or otherwise k = l. But
since the formula that is derived using random-set theory is a compact formulation as will
be shown later, we proceed with its derivation.

For a fixed key keyi in the key ring of sensor node SN the probability that key1 is the only
key that the attacker has captured is (1− (1− k

`)ñ) · ((1− k
`)ñ)k−1. To keep formulas more

readable we write qunknown or simply qu for the probability that a fixed key is unknown to
the adversary, and qk (qknown) for the probability that a fixed key is known to the adversary.
Thus qu = (1− k

`)ñ and qk = 1− qu. So the probability that key1 is the only key that the
attacker has captured can be written as qk · qk−1

u . Therefore, the probability that one key is
known to the adversary is denoted as:

p1 = k · qk · qk−1
u (5.5)

The probability that two distinct keys key1, key2 in the key ring of a SN are exactly the
keys known to the attacker is q2k · qk−2

u . Summing over all two-element subset of keys we
get

p2 =
(
k

2

)
· q2k · qk−2

u (5.6)

Now the general pattern is showing as:

pz =
(
k

z

)
· qz

k · qk−z
u (5.7)

Putting everything together we sum up over all possible combinations of known keys
and obtain the probability:

pf =
k∑

z=0

(
k

z

)
· qz

k · qk−z
u

(
1
2

)k−z

=
(

(1− qu) +
1
2
qu

)k

=
(

1− 1
2
qu

)k

=

(
1− 1

2

(
1− k

`

)ñ
)k

(5.8)

5.3.2 Hyper-Geometric Distribution

We start our analysis by calculating with which probability the adversary acquires how
many keys of the key-pool. We assume therefore, that the adversary captures nodes one

5.3. Deriving a Probability Measure for sAQF 77

X0 = 0

X1 = k

P (X1 = k|X0 = 0)

X2 = k

P (X2 = k|X1 = k)

X2 = k + 1 . . . X2 = 2k

P (X2 = 2k|X1 = k)

P (X2 = k + 1|X1 = k)

X3 = k X3 = k + 1 . . . X3 = 2k X3 = 2k + 1 . . . X3 = 3k

...

Figure 5.2: Probabilistic state model for the adversary where states for Xi|i 3 are omitted.

by one, reads out their data and gains those keys (of the nodes key-ring) it did not have
already before.

Afterwards we will be able to calculate the likelihood for a forged query, authenticated
using the captured keys and guess the remaining bits, in order to formulate a query that is
accepted by a sensor node.

As notation we write
Xj := number of keys known by an adversary after capturing j nodes
X ′j := Xj −Xj−1 = number of keys gained by an adversary on capturing the j-th node

The two parameters, number of captured nodes j and number of known keys a, in
Xj = a form a state of the adversary in a probabilistic model, shown in Figure 5.2.
Transitions describe the capturing of one node and the keys gained hereby. There will
always be Xj−1 = a → Xj = a + b with b ∈ {0, .., k} because on capturing one more
node the adversary can gain 0 to k keys. Transitions are taken with certain probabilities
P (Xj = a + b|Xj−1 = a) = P (X ′j = b|Xj−1 = a). This enables us to assign probabilities
P (Xj = a) to the states.

In the beginning the adversary has neither captured nodes nor knowledge about keys
(X0 = 0). Expressed as probability:

P (X0 = a) =

{
1 a = 0
0 a 6= 0

Obviously through capturing the first node he gains exactly the k keys known by that
node (X1 = k):

P (X1 = a) =

{
1 a = k

0 a 6= k

78 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

This knowledge is never lost:

P (Xj = a) = 0 for j > 1 and a < k

In order to calculate probabilities of the other states we need to determine the transition
probabilities P (X ′j = b|Xj−1 = a). It is only necessary to know how many keys the
adversary already gained, but not which ones. This is because the key rings of different
nodes are chosen independently and therefore the keys of the next captured node and
those gained by the adversary from other nodes are independent too since we assume that
no node is captured twice.

Capturing one node can be described using the hyper-geometric distribution: k keys are
drawn at once (without replacement) of l total. l− a of all keys are marked unknown to
the adversary. Hence the probability of drawing b unknown keys is:

P (X ′j = b|Xj−1 = a) = h(b|l, l − a, k) =

(
l−a
b

)(
a

k−b

)(
l
k

)
Putting together this formula and the restrictions to transitions we get
for c ≥ k:

P (Xj = c) =
c∑

a=c−k

P (Xj = c,Xj−1)

X′j=Xj−Xj−1

=
c∑

a=c−k

P (X ′j = c− a,Xj−1 = a)

=
c∑

a=c−k

P (X ′j = c− a|Xj−1 = a)P (Xj−1 = a)

⇒

P (Xj = c) =
c∑

a=c−k

(
l−a
c−a

)(
a

k−(c−a)

)(
l
k

) · P (Xj−1 = a) (5.9)

Using Formula (5.9) we are able to calculate the probability distribution for the attacker
knowing a certain number of keys. This is done starting with j = 0 captured nodes
recursively up to j = ñ.
In a very similar way we develop a way to calculate the probability distribution about
how many guessed authenticator bits a node is able to check, which in turn directly leads
us to the probability of mistaking the query for a legitimate one.

Let Y be the number of keys known by checking node, but not known to adversary.
Fortunately it turns out that Y = X ′ñ+1. That is because the keys known by the checking
node but not by the adversary are just those the adversary could gain by capturing this
one more node. Therefore

P (Y = b|Xñ = a) = P (X ′ñ+1 = b|Xñ = a) =

(
l−a
b

)(
a

k−b

)(
l
k

)

5.3. Deriving a Probability Measure for sAQF 79

⇒

P (Y = b) =
l∑

a=0

P (Y = b,Xñ = a)

=
l∑

a=0

P (Y = b|Xñ = a)P (Xñ = a)

⇒

P (Y = b) =
l∑

a=0

(
l−a
b

)(
a

k−b

)(
l
k

) · P (Xñ = a) (5.10)

Now, for every bit to be guessed and checked, there is a chance of 1
2 of being right. This

leads us to

P ([fake query accepted as legitimate]|Y = b) =
(

1
2

)b

and hence

pf = P ([fake query accepted as legitimate]) =
k∑

b=0

(
1
2

)b

P (Y = b) (5.11)

5.3.3 Differences in the Views

The two approaches tackle the problem from different perspectives and their advantages
and respective drawbacks are evident. Using Random Set theory the results are overes-
timated using the Formula (5.8) as shown before since the dependence is neglected and
especially for small numbers of ñ the results differ most. Due to this reason the obtained
results are higher than they should be. On the other hand this solution provides a way to
compute the resulting probability using a compact formula, that is easy to compute.

The hyper-geometric Formula (5.11) is delivering precise outcomes at the cost of com-
plexity. The implementation in a JAVA program shows the complexity of the algorithm
mainly caused by the recursion and the required high internal high precision for internal
variables (see Appendix C.3.3).

Preliminary sAQF Results

With the results from above a forwarding probability pf can be obtained for different
parameter settings. These results from the two formulas are compared with the output
from the simulation script written in Python which is a contribution of Benenson et al.
Doing so, the general tendency of the results obtained from the derived formulas can
be recognized whether they roughly fit the simulation or heavily deviate from it. A
comprehensive comparison between the two formulas, the simulation, and the verification
is given later, after the formal model is introduced and evaluated.

Before starting with the verification work, different settings are simulated using the
above mentioned script and the results are evaluated. As parameters the key ring size
k, the key pool size `, and the number of captured nodes denoted as ñ are used. The

80 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

p
f

k

Query Dissemination Probability with errors

l=200 n=20
l=200 n=50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

p
f

k

Query Dissemination Probability with errors

l=400 n=20
l=400 n=50

Figure 5.3: Simulation results with corresponding deviation around the mean for different
parameter settings. Each value was simulated for 10 000 times.

simulation outcome is displayed in Figure 5.3 for 10 000 simulation runs per value with
the variance around the mean indicated through the error bars.

What is noticeable is that the curves are not perfectly smooth due to the variance in
the simulation results. This is a common known drawback when applying simulation.
In the present scenario there is a high variation in the results. This is mainly due to the
case that expected values expressed by the mean over all data samples does not represent
the correct mean with a sufficiently high confidence. Rather the simulation results can be
used as the best effort estimate. It is very likely that higher precision can be reached when
increasing the number of simulation runs to some million since this would level out the
outliers.

5.4 Proof Techniques Using Formal Methods

A formal proof using formal probabilistic verification is provided to ensure correctness
aspects of the sAQF algorithm. By correctness it is first meant that the probability pf that
is obtained when applying formulas (5.8) and (5.11) equal the probabilities that originate
from the formal model. This means that we only provide a partial verification since the
range of input parameters is restricted to feasible values due to the limitations of the PRISM

model. And if values for a fixed parameter setting equal the formal model, we consider
them as correct, although in principle we should also give proof about the correctness of
the formal verification model.

Second, the liveness property as stated before is checked whether it holds, or since the
model is probabilistic this can be stated more precisely in a probabilistic sense as ”What
is the probability that a legitimate query is not accepted by a node or by all nodes in the
WSN ¿‘ Due to the different nature of both properties the second statement needs separate
modeling.

In addition we are still in debt for giving a safety and liveness proof for the AQF
algorithm from Section 4.3 on page 56. Luckily the same model as for the sAQF checking
can be used to accomplish this.

5.4. Proof Techniques Using Formal Methods 81

5.4.1 Verification Models for the sAQF Formula

In the following a verification model is introduced as a Node and an adversary process
based on the theory of probabilistic systems (see [McI06, BCHG99]) as introduced in the
work of [BCHG99, McI06]. The model is used to verify the correctness of the simple
authenticated query flooding algorithm.

Correctness of the sAQF Formula

The two processes modeled imitate the scenario where an adverse entity tries to construct
an illegitimate query and send to an uncompromised node which will check the acceptance
of the authenticator. Hereby the node- and the adversary process behave according to the
protocol definition. After the model is completed, the verification is started by defining a
PCTL query. The outcome of the verification results is afterwards matched with the two
formulas for the random-set theory (see 5.3.1) and the recursive hyper-geometric distribution
(see 5.3.2) on page 74. The comparison will then show whether the probability obtained
when applying the formulas equals the results from the formal model.

Global System Definition The following global variables are used in addition to the
probabilistic system description to analyze the model using PRISM. The following short-
hands are introduced. We use for the assignment of an array index ni = 1 as an abbre-
viation for setting the value of array n at position i to value 1, i.e., n[i] = 1. Moreover,
we write n0,...,`−1 = 0 to stress that all indices up to ` − 1 of array n are set to 0, i.e.,
n[0] = 0, n[1] = 0, . . . , n[` − 1] = 0. Arrays n, u, and a are read- and writable by all
processes to establish a global inter-process communication. The parameters externally
set by the user originate from the protocol. We use k as the number of keys per sensor
node and ñ to denote the number of captured keys by an adversary. For the length of the
authenticator b denotes the number of bits to be checked. The final system is instantiated
using the parallel composition without renaming as

System =̂Node ‖Adversary

Node Process The Node process represents the sensor network device which receives
a forged query from the adversary. Since the key distribution is random and independent
for all sensor nodes this process is modeled as follows: The Node process has variable
n0,...,`−1 — an 1-bit-array of size ` — representing the key ring of one particular node.
After the initialization phase is completed, the counter i is set to 0 and all k array values
are assigned to 2. This value represents an undefined or unassigned value in the model.
For the remainder the node process is choosing non-deterministically of its ` unassigned
array locations k bits. When doing so a chosen array entry is set to either 0 or 1 with
probability 1

2 . Subsequently the node holds k keys which are assigned to randomly chosen
locations in the array as required by the protocol description. After this step the node
process terminates. In terms of a probabilistic system the description of the node model is
shown in Figure 5.4.

Adversary Process The process imitating the adversary behavior has two arrays (see
Figure 5.5). That is an array a0,...,`−1 containing the keys already known and correctly

82 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

Node=̂

 var i : {0, . . . , k}, n0,...,`−1 : {0, 1, 2}
initialy i := 0, n0,...,`−1 := 2
[]a:{1,...,b} : (i < k ∧ na = 2) → (na := 1 ∧ i := i+ 1) 0.5 ⊕ (ni := 0 ∧ i := i+ 1)



Figure 5.4: Probabilistic system of the node process.

Adversary=̂

var j : {0, . . . , k}, h : {−1, . . . , n}, a0,...,`−1 : {0, . . . , 3}, u0,...,`−1 : {0, . . . , 2}
initialy i := 0, a0,...,`−1 := 2, u0,...,`−1 := 0
[]act:{1,...,b} (j = k ∧ h < n) → (u1,...,b := 0)
[]act:{1,...,b} (j < k ∧ uact = 0 ∧ aact = 2 ∧ h < n) → (aact := 3 ∧ uact := 1 ∧ j := j + 1)

0.5 ⊕ (ni := 0 ∧ uact := 1 ∧ i := i+ 1)
[]act:{1,...,b} (j < k ∧ uact = 0 ∧ aact 6= 2 ∧ h < n) → (uact := 1 ∧ j := j + 1)
[]act:{1,...,b} (h = n ∧ j = 0 ∧ aact = 2) → (aact := 0 0.5 ⊕ aact := 1)



Figure 5.5: Probabilistic system of the adversary process.

probed and array u0,...,`−1 used to keep track of the captured bits in the current round. The
values assignable to array a0,...,`−1 are 2 for unknown bit, 3 for correct bit, and 0 or 1 if the
bit is guessed with the corresponding value.

Similar to the process from above, randomly chosen locations are assigned with value 3
in the adversary process to denote correct bits captured from a node. As such in the first
round k bits that originate from legitimate nodes carrying a true keyring are assigned.
By the use of array u (unique bits per node) we keep track that no bits are double assigned
within one round. Not doing so would mean that a bit is read twice and in effect the
overall results would be distorted since each node can only contribute once with each
key. Whenever within one round a bit is used on a sensor it is indicated by setting the
corresponding bit at array u. In addition we check by the guard ai 6= 2 in line 5 whether
the bit of the compromised node is already known to the adversary. In this case the bit
does not need to be updated.

After all possible transitions are taken and consequently all k bits of the first compro-
mised node are read, we proceed with the second captured node by incrementing the
round counter h. In this round the same task is performed, namely filling up the bits
an adversary knows from a legitimate sensor node. After k consecutive runs there is a
high chance that some of the locations of array a are still empty (ai = 2) since none of the
captured nodes had these keys. For all of these locations bits are now randomly guessed,
i.e., with probability 0.5 value 1 is assigned and otherwise value 0. If all unknown bits are
guessed we end the adversary process and start with the probabilistic analysis.

PCTL Property Checking The following formula describes the probability of a faked
query being accepted by a legitimate sensor node and returns a single numerical value. It
states the probability to reach a state in which the properties expressed by the conjunction
over all bits that contribute to the authenticator.

The conjunction term reads as follows:

5.4. Proof Techniques Using Formal Methods 83

If ai = 3 so the adversary knows the right bit true is returned. Otherwise if ni = 2 then
the node does not know bit i and consequently it cannot tell whether the authenticator bit
is correct or not. Last, if ai = ni then adversary guessed the same bit that the node has.

So the node will falsely accept the query sent by the adversary and the probability to
reach that state is returned. In addition the deadlock statement is added to stress that the
desired state is final i.e., no further execution steps are possible. If all of the above failed,
then the node discovers a forged authenticator.

P =? [trueU (deadlock)
bits∧
i=1

(ai = 3 ? true : (ni = 2 ? true : (ai = ni ? true : false)))]

(5.12)

Safety Property

To recall, the property as stated earlier is to verify whether an arbitrary node accepts a
query q as legitimate. The reason for the safety property to hold is more than obvious.
If we assume that the authenticator is composed of ` keys from the base station’s key
pool, of which each node’s key ring is a subset, then a node can always verify exactly k
authenticator bits. This property is trivially true and will always hold for legitimate query.
In this case the probability is equal ps = 1. So no further proof is necessary.

Liveness Property

This task is to check whether any legitimate query will be received by all nodes in the
network. At this point it is worth to mention that the size of the authenticator appended to
each query equals the size of the key pool. Due to this, the liveness property is evidently
true.

In this trivial case each node shares at least one key with the base station and conse-
quently a legitimate query having a true authenticator is reached by every node. Of course
only assuming that the transportation layer of the network protocol does recover trans-
mission errors. Only when considering flipping authenticator bits that stay undiscovered,
a sound query that stems from the base station can be considered as fake. But since this
case is treated by the reliable data transport layer, the liveness property is considered as
valid and consequently needs no further treatment.

5.4.2 Safety of the AQF Protocol

When considering the authenticated query flooding protocol [Ben08] from Section 4.3 on
page 56 the safety criterion is important to consider. That is the case if less than ` bits from
the authenticator known to the node are readable. It can be the case that the authenticator
from the base station does not even contain a single bit for which the node owns a key. In
the following the authenticator m is set to be m < `.

84 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

Node=̂

 var i : {0, . . . , k}, n1,...,m : {0, 1}
initialy i := 0, n1,...,m := 0
[]a:{1,...,m} (i ≤ k ∧ na = 0) → (na = 1 ∧ i = i+ 1)



Figure 5.6: Node process for the safety property of the AQF protocol.

Scenarios with certain parameter combinations exist for key matchings that do not
assure the 100% validity of this property. By the use of a formal model, this property is
analyzed and verified in the following.

Global System Definition

Giving a model description by means of a probabilistic system, the following two processes
represent the scenario under analysis, that are checked with PRISM. The variables defined
are n1,...,m to account for the key ring of the node and the appropriate counter part at the
base station expressed through b1,...,m.

Variables exogenic defined are k to denote the number of keys per node, ` the size of the
key pool and hence the maximum number of bits that can contribute to an authenticator.
Finally variable m is fixed through the PRISM model. The final system is instantiated as a
node and a base station using the parallel composition operator

System =̂Node ‖BaseStation

Node Process

The description of the sensor node process is shown in Figure 5.6 and does the following:
after initializing the variables, k of its bits are set to 1 using the demonic non-deterministic
choice. Hence, the key loading at the sensor nodes is imitated. Upon termination the
process has exactly k key bits set.

Base Station Process

The algorithm implemented on the base station is similar to the one running at the node.
After the initialization phase all bits that appear in the authenticator (m many) are set. As
mentioned before we differentiate between ` representing the size of the key ring, and the
size of the authenticator denoted as m. It is admissible to leave bits in the authenticator of
a message blank, as in the example of the AQF algorithm, causing the safety probability to
drop (ps < 1).

PCTL Property Checking

The desired property is described by the following PCTL query computing the probability
of reaching a valid end state in which property ”deadlock“ holds. In addition variable
CommonKeys is externally set representing the number of keys that are known to both
node and base station. The terms in the sum are ni to specify the value of the sensor

5.5. Results 85

BaseStation=̂

 var j : {0, . . . , `}, b1,...,m : {0, 1}
initialy j := 0, b1,...,m := 0
[]a:{1,...,m} (j ≤ ` ∧ ba = 0) → (ba = 1 ∧ j = j + 1)



Figure 5.7: Base station process for the safety property of the AQF protocol.

node bit at position i and bi to denote the value at the base station at position i. What the
query stresses is that either sensor node and base station have the same value at position i
(ni = bi) in which case the value of the summand is bi or it is 0. The term evaluates to true
if the sum equals variable CommonKeys.

P =? [trueU (”CommonKeys ==
m∑

i=1

(ni = bi ? bi : 0)”) ∧ (”deadlock”)] (5.13)

5.5 Results

Deliverables shown in this section are obtained by automatic evaluation of the probabilistic
systems. For the evaluation of the models the PRISM tool (see Section 2.3.3 on page 17) is
used with standard settings.

Since the capability of modern probabilistic verification tools is somewhat restricted in
the number of states and the complexity, the verification tasks is executed using a keypool
size of 8 bits. The simulation is adopted and fixed to the same parameters, using 10 000
simulation runs per value.

5.5.1 Correctness of the sAQF Formula

The results of the formal model are compared against the theoretical formulas from
Section 5.3 and against simulation results. The number of bits used in the PRISM tool is set
to 8 while varying ñ between 0 and 8. For a parameter 0 ≤ k ≤ 8 series are computed and
plotted in Figure 5.8. The simulation results are obtained by the use of the Python script,
the verification data is computed by the PRISM tool.

It turns out, that the verification results equal the computed probabilities using the
hyper-geometric formula. Hence, Formula (5.11) correctly computes the probability of
forwarding a fake query, for the used scope if input parameters. Beyond that range we
have strong indication that the formula is still correct although this is not formally proven
due to the limitation of the verification tool PRISM. For a choice of parameters out of
that range, the simulation results fit perfectly with the computed probabilities of the
hyper-geometric formula.

The results also show, that simulation and verification are roughly equal when ne-
glecting the variance that is introduced by simulations. Since simulation experiments
are repeated sufficiently often, their mean very closely fits with the probabilistic model
checking data. What is obvious is that these results do not map to the results obtained
when computing the random-set theory formula (see Figure (5.8)). Considering the fig-
ure for ñ ≥ 1 there is a discrepancy between the correct value and the formula. At the

86 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

p
f

k

 Random-Set formula

 n
~

=0

 n
~

=1

 n
~

=2

 n
~

=3

 n
~

=4

 n
~

=5

 n
~

=6

 n
~

=7

 n
~

=8
verification tool

simulation script

Figure 5.8: Comparison of results obtained by Random-Set-theory formula, the simulation
script, and the verification with PRISM using `=8. The values computed by the hyper-
geometric formula are omitted since they equal the verification tool results.

beginning (ñ = 1) this fault is relatively high but vanishes for higher values of ñ. Also
noteworthy is that for values of k = 1 the failure does not show up since there is no
dependency for a single key to consider. In consequence the exponent which contributed
to the error disappears and the computed probability using the random-set formula is
correct. Remember, this error is introduced by neglecting the dependency relation during
the derivation of the formula as denoted earlier. We are aware of the failure but by the use
of the formula a compact way of computing the forwarding probability is obtained at the
cost of precision.

5.5.2 Restricted Safety Property for AQF

In order to argue about the safety property six different settings with a changing number
of common keys are analyzed and printed. By common keys the number of keys is meant,
known to the base station, chosen for the authenticator and in addition they are also
known to a sensor node. This is in fact important for the following reason: If base station
and a node share no keys, the query cannot be authenticated and its legitimacy cannot be
assured. In this case the query is sent to other nodes for authentication. On the other hand
using only few keys in the authenticator weakens the authentication mechanism since an
adversary can guess one bit with probability 0.5.

As denoted earlier, the authenticator size is smaller than the keypool size (m < `). The
case that m = ` is treated in the simple authenticated query flooding (sAQF) in Chap-
ter 5.2.1 on page 72, where the safety property becomes trivially true.

5.5. Results 87

The assumptions underlying the results are as follows. Authenticator m is varying
between 2 and 10 bit in steps of two bit. The keypool size ` is fixed to 16 bit and the
number of key per node k varies between 1 and 8 keys. Higher values for k above 8 can
be ignored since the AQF protocol uses a key ring size of at most one fourth the size of the
key pool.

Although the input parameters are small in comparison to the proposed values from
the AQF description, the results scale for larger numbers. Figure 5.9 shows the obtained
results computed with PRISM. Figure 5.9a shows the probability that the authenticator of
size m send from a base station with keypool size ` and a node with key ring size k share
exactly zero keys. This is the bad case since the node cannot authenticate a legitimate
authenticator.

For m = 2 this value is still considerably high, but is dropping for higher values of
m and k. Essentially this is caused since the number of shared keys exceeds 1 as more
and more keys are shared in the authenticator. As an example, for k = 6 and m = 8 the
probability is vanishing small around 0.35% that no common keys are shared.

In Figure 5.9b where nodes know at least one key from the authenticator, the probabili-
ties for m ≥ 6 and k ≥ 2 are above 0.5. Note that this figure also includes the probabilities
for 2 and more keys that contribute to the final probability. This is still a bad configuration
and only for higher values of m and k a probability above 95% is reached.

The remaining Figures 5.9c to 5.9e show probabilities for more common keys between
an authenticator and a node. It shows that as Figure 5.9e the probabilities for the node to
know four keys out of the key ring are relatively low. As an example consider the setting
m = 6, k = 5: With a probability of 94.23% at least one key is shared, a minimum of two
keys is shared with 65.38% and there is still a fifty percent chance that 3 keys are shared.

5.5.3 Forwarding Likelihood based on Hyper Geometric Distribution

The hyper-geometric formula that is derived in 5.3.2 is implemented in a JAVA program to
compute a forwarding probability pf based on different settings. The results are shown
for two series with ` = 200 and ` = 400 in Figure 5.10. On the Y-axis the number of
captured nodes ñ is denoted and parameter k on the X-axis. As in the first setting (see
Figure 5.10a) with a key pool of 200 keys the protocol can still handle up to 10 captured
nodes independent of k. Of course the parameters of k have to reach some substantial
value to introduce some security. But even values of k = 7 suffice to reduce the forwarding
probability even up to 10 captured nodes below 5%. So using a parameter k between 7
and 13 provides a sufficiently low security close to 0. As such it is not surprising that the
lowest probability is reached for small numbers of ñ < 5 and high k > 45 that are almost
0.

When using a key pool of ` = 400 the situation is scaling in a sense that now twice as
much captured nodes lead to the same probability than in the situation before. Now for
values of k around 10 and ñ up to 40 the authenticity induced by the sAQF algorithm even
prevents that forged messages are sent with a probability around 3%. The figure clearly
shows the danger of using to many keys per node in a situation with high values of ñ.
Doing so raises the probability pf rapidly to unacceptable high values that do not longer
provide a decent security in the network.

88 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

p
ro

b
a
b
ili

ty

k

m=2
m=4
m=6
m=8

m=10

(a) node shares no key with base station

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

p
ro

b
a
b
ili

ty

k

m=2
m=4
m=6
m=8

m=10

(b) probability ≥ 1 common key

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

p
ro

b
a
b
ili

ty

k

m=2
m=4
m=6
m=8

m=10

(c) probability ≥ 2 common key

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

p
ro

b
a
b
ili

ty

k

m=2
m=4
m=6
m=8

m=10

(d) probability ≥ 3 common key

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

p
ro

b
a
b
ili

ty

k

m=2
m=4
m=6
m=8

m=10

(e) probability ≥ 4 common key

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

p
ro

b
a
b
ili

ty

k

m=2
m=4
m=6
m=8

m=10

(f) probability ≥ 5 common key

Figure 5.9: Probabilities that node and authenticator from the base station share keys.

5.6. Conclusion 89

 0 10 20 30 40 50

k

 0

 10

 20

 30

 40

 50

 n
~

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) sAQF with ` = 200

 0 10 20 30 40 50

k

 0

 20

 40

 60

 80

 100

 n
~

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(b) sAQF with ` = 400

Figure 5.10: Probability of forwarding a forged query under certain parameter settings.
The data is computed based on an implementation using the hyper geometric distribution.

When comparing the two illustrations on should keep in mind that there exist technical
constraints on the maximum message size that can be sent. Using a ` of 200 means that the
authenticator is also 200 bit. When switching now to ` = 400 the security is increased but
at the same instance the maximal size of a message content is reduced by 200bit (25byte)
since the authenticator required more space.

5.5.4 Simulation versus Verification

When comparing the results obtained by simulation the drawbacks become obvious.
Simulated models generate data with a high variation which can be combat by sufficiently
many simulation runs to reach results with an adequately high precision. In general
this level of confidence is difficult to estimate when only doing simulation. In this case
no reference values can be considered for comparison and the question ”how much is
enough?” is not easily answered. Presumably even when doing over 1 million runs, the
results will still embody a strong variation. To illustrate this in more detail, error bars are
added to the plot in Figure 5.3. What the error bars denote is the standard deviation of the
simulated probabilities.

In addition consider Figure 5.11. The upper four plots of the graph show the results
of the forwarding probability pf when using the sAQF algorithm. This probabilities are
computed by use of the hyper-geometric Formula (5.11) which computes exact results.
The lower plot depicts the relative deviation in percent which is induced by the simulation.

Even for 10 000 simulation runs as in the present case the deviation is on average
around 1%, in some cases even above. For example consider the setting of the blue line
(l = 400, ñ = 20). Here some outliers almost reach 4%, but on average they are less.

5.6 Conclusion

The present results show the importance of thoroughly exercised correctness proofs and
quality estimates for query dissemination protocols. Especially the impact of their results
and the vast range of application domains make them especially useful.

90 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p f

l=200, n~ =20
l=200, n~ =50
l=400, n~ =20
l=400, n~ =50

4.0

3.0

2.0

1.0

0.0

0 10 20 30 40 50

re
la

tiv
 d

ev
ia

tio
n

[%
]

k

Figure 5.11: Computed values for the sAQF algorithm and the relative deviation of the
simulated values for 10 000 runs.

AQF sAQF

legitimate queries
ps (1− ε) ≤ (see 5.5.2) =1 (see 5.4.1)
p` (1− ε) ≤ =1 (see 5.4.1)

forged queries
p′s pf AQF pf sAQF (see 5.5.1)
p′` < ε < ε

Table 5.1: Overview about safety (ps) and liveness (pl) properties for legitimate queries
and their forged counterpart expressed by p′s and p′l. < ε is used to indicate very small
values.

5.6. Conclusion 91

By construction of a formal model in terms of a probabilistic system, safety property is
formally verified using PRISM. Especially the safety property can be used to argue about
the quality induced when using a specific parameter setting. Table 5.1 summarizes the
protocol properties for the AQF and sAQF protocol. It is important to notice, that the
safety- and liveness property for the AQF algorithm are below 1 meaning that there can be
legitimate queries rejected by a node and hence these will not reach the whole network. In
addition the properties for forged queries are summarized which fulfill the safety property
p′s which equals the respective forwarding probability and forged queries reach in both
cases only a small part of the network indicated by p′l < ε.

As in the present situation there is a big difference on the induced security mechanism
that depends on the authenticator bits. Hence there is a fundamental difference whether
one bit, two bits or more authenticator bits are checked by a node. Since an adversary
can guess one bit with a probability of one half, the probability to correctly guess two
bits already decreases to one-fourth. This quality assurance is provided by the figure of
common keys (CommonKeys) between the authenticator and a specific node.

When comparing sAQF with the AQF protocol [BFH+06] from Section 4.3 on page 56,
the main difference lies in the authenticator. In the sAQF protocol all keys from the keypool
(` bits) are used, and hereby all nodes can check the legitimacy of the authenticator using
always k bits from their key ring. In contrary, for the AQF algorithm a randomly chosen
subset of the keypool is used to construct the authenticator. This disadvantage of this is as
stated before that liveness and safety properties are not fully satisfied.

In the present work the application of a model based verification approach did especially
reveal the advantage of rigorous mathematical proofs in the field of probabilistic systems.
They have proven to be durable in situations were the occurrence of errors occurs with
some probability in contrary to their fragile simulation based counter parts. Much of this
success is due to the sound and mathematical foundation.

Contribution Using rigorous techniques as offered by formal methods helped in finding
potential errors in the performance and correctness analysis of the query dissemination
protocol. Within the present work there were errors hidden in the simulation script that
caused erroneous data. This fault was highlighted by the development and evaluation of
a formal model. Essentially, this course of action shows that a higher degree of confidence
about a model or formula can be reached when using several distinct and independent
investigation methods. Hence the advantage of each approach can be beneficially used
and incorporated in the final results. As in the present situation, it is very likely that
the error in the formula would be hard to discover using simulation alone due to its
variation. Since theses results have a strong impact on the qualitative statements about
the developed protocol, they are deceptive and lead to wrong conclusions.

Furthermore this work analyzed the derived random-set theory formula and discovered
the neglected treatment of a dependent variable. In addition the neglected dependency
constraint of the random-set formula that led to a minor but still present error in the
results is shown by the application of formal methods. Theses faulty assumption leads
to results that would not have been discovered by the pure use of simulation techniques.
Even with a correct simulation were the preliminary errors are fixed the obtained results
have such a variation that makes it hard to compare against mathematically computed
figures. In consequence results are misleading due to their very deviation from the mean.

92 Chapter 5. Checking Formal Correctness of Probabilistic Query Dissemination

Using a defective statement like the pf formula in the present scenario results in delusive
conclusions about the efficiency of the developed algorithm.

Since the random set formula cannot be fixed, we investigated and derived a new
formula to compute the correct probability which is based on the evolution of the hyper-
geometric distribution. Its properness for a selected range of input variables is proven
albeit we do not give a total correctness proof covering all possible input parameters.

In the present chapter we gave evidence using a probabilistic model manually designed,
that the derived hyper-geometric formula is correct in a sense, that it computes the
probability for forwarding a forged packet in an accurate way. In addition we formally
verified a safety property of the AQF algorithm from the previous chapter by construction
of a suitable model.

In general for manually created artifacts it is difficult to state guarantees since whenever
human intervention is involved, there is the potential possibility of errors. In addition
the modeling process is time consuming and an annoying matter. With regard to this,
an automated model generation has many advantages, but in turn the models become
enormously complex since the abstraction level is reduced or even completely removed.

In the following chapter we investigate a generation mechanism which translates models
into software behavior models that can be verified using conventional software verification
tools. We exemplify this idea using a concast protocol for parameterized and secure data
aggregation.

CHAPTER 6

A Verifiable and Secure Concast Protocol

6.1 Introduction

The design of secure and dependable protocols is nowadays a challenge to software
engineers, and not only restricted to emerging technologies in the field of safety critical
applications. As a fact, embedded systems moved from niche products to ubiquitously
present systems which fulfill the demand of highly distributed and real-time applications.
Since theses systems gain an increasing relevance in daily life, there is a strong urge to
ensure that these every day applications on which we rely become more dependable and
secure.

The application of formal methods to embedded systems could be the key to overcome
this dilemma, but it is tempting to assume, that verification in the area of small gadgets is
nowadays nothing but a push-button process. Although embedded devices carry only
several hundred kilobytes of memory — which is in comparison with a modern operating
system on personal computers relatively small — proving formal correctness is far from
being an easy task. However, considerable progress has been obtained in the field of
hardware verification, and software correctness checking and appropriate tools exist.

In fact, embedded software systems are very difficult to verify due to their concurrent
nature. Very often they employ a behavior which uses heavy interaction of software and
hardware through common channels, for example like I/O register. For this reason the
software does not need to be considered on its own, but in combination with a well suited
hardware model underneath. Another challenge in the context of embedded devices
is that they are deployed to autonomously interact with their physical environment by
obtaining external stimuli to the hardware and respond with an adequate action on that.
This continuous monitoring and task execution is difficult, and since formal models need
to be finite in size, an abstraction is required. In addition a sophisticated modeling has
to fulfill an appropriate abstraction from essential features. Furthermore, the proper
definition of specifications is essential to tackle the verification task.

In this context, wireless sensor networks can be understood as embedded devices
which employ nearly all characteristics from embedded systems in a single product. In

94 Chapter 6. A Verifiable and Secure Concast Protocol

addition they run complex algorithms for encryption, distributed data management (i.e.,
TinyDB [MFHH05]), and wireless communication making them a challenging but perfect
candidate for the application of formal methods. In this sense we consider for a model
based verification the simultaneous access to the wireless medium, and an appropriate
modeling of implemented algorithms to be essential challenges in providing correctness
proofs of the software implementation and the underlying hardware. Yet a comprehensive
model requires refinement from its real world counterpart, a contradicting matter since the
level of abstraction inversely influences the complexity of the model under consideration.
So, the closer the real-world system is mapped onto the model, the more realistic is may
appear but in turn the formal analysis is gaining complexity, making thorough checking
impossible.

By now different approaches have been established when considering the formal cor-
rectness analysis of distributed software systems. On the one hand these instances can be
checked with the help of theorem provers also used in the traditional software verification
process. These tools can nicely be used on infinite state systems and in particular by their
abstract representation of discrete values, they are very powerful tools. In addition to
this there is either an automated translation into an intermediate language or the theorem
checkers can directly be applied to the source code. Very often the user has only to provide
the specification and the tools can construct a proof almost automatically. Either way,
this group of verification tools has a significant drawback, that is gaining importance in
modern computer systems: They cannot handle threads, and consequently the verification
of the concurrent behavior of modern multi-tasking systems is impossible.

Here another course of action comes into play, the so called model based verification
approach which subsumes model checking. Model checking is based on a model that
the user has to provide, hereby influencing the degree of abstraction and the level of
detail but in turn the manual model building may also introduce errors. And in particular
when the specification is available previous to the model design and the features under
investigation are well known, the later model can abstract from insignificant matters and
solely contain the interesting mechanism. The theory of model checking is eminently
useful for the proof of distributed systems where concurrent and independent events can
simultaneously occur.

Yet, the application of model checking as well as other model based approaches did not
make it into development cycles in industry since it exhibits some drawbacks. First of
all, they are prone to errors since the model needs to be manually inferred from manuals
and descriptions and in-detail knowledge and experience is often required. The devel-
opment of models is costly since the artifacts are only required for the verification and
cannot be used further during the development process of the product. In addition it is
indisputable that especially during the design phase blue-prints of the product rapidly
change and hence there is additional work required to keep the verification model and
the implementation in sync. The most important fact is however the danger to abstract
from fault-prone details due to missing constructs in the modeling language or human
misconduct and in consequence these errors will not be revealed. Due to these reasons, a
method is required which automatically generates models for the verification process to
eliminate all of the human introduced errors and reduce the risk of mistakes to a minimum.

In this chapter a concast protocol [CGSW99] for secure and parameterized aggregation

6.1. Introduction 95

called ESAWN [BWZ08] is considered. By concast we mean essentially the inverse of
a multicast that uses a best-effort service to accomplish the delivery of packets. So in
contrary to a multicast paradigm, in concast a receiver merges packets obtained from
multiple senders at confluence points in the network. Hereby a notable amount of energy
can be saved since instead of sending multiple packets, the confluence — the aggregation
of individual packets according to an aggregation function — is sent.

For the verification task a combination of software verification and model based verifica-
tion is opted to benefit from both techniques. To guarantee safety and liveness properties
that originate from the distributed character of the network, a SPIN model is developed
and selected specifications are verified. Since the SPIN model checker has means to express
the concurrent nature of wireless sensor networks it is promising to find potential errors.

The second analysis will complement the distributed verification and account for the
thorough checking of generated software sources that fully comprises the behavior of the
sensor node. Afterwards, the formal verification is accomplished using software bounded
model checking (see Section 2.3.4), a technique that is not related to model checking in
the classical sense although the terminology suggest so. Instead, the software behavior is
encoded into a SAT instance which is checkable for satisfiability using SAT solvers.

Related Work In the work of [KMG08] a formalism is described which automatically
derives a high-level system logic from low-level TinyOS programs. The technique of
symbolic execution is used and adopted to handle the event-driven nature of the TinyOS
framework. The formalism is finally employed in a tool called FSMGen. In particular
generic components are provided that approximate the behavior of sensor network com-
ponents. The resulting finite state machine representation of components is obtained by
predicate abstraction.

In the work [Han07] a tool called Slede is proposed for error and bug detection in security
protocols. This tool automatically extracts a model from a provided nesC implementation.
In addition the user defines a topology and the verification goals. Out of the protocol
specification, an intrusion model is automatically generated. All of these models are
combined using a protocol model generator into a Promela model. By the use of SPIN

the final model description is verified. An obvious drawback of the used approach is the
implemented intrusion model that only allows the Dolev-Yao threat model. In addition it
turns out that only software written in TinyOS 1.0 can be used as input for the verification
tool.

The FeaVer verification system [HS00] offers means to mechanically extract a verification
model from implementations in C, guided by user-defined lookup. Hereby essential parts
are either replaced using a non-deterministic function, irrelevant parts are suppressed,
and not considered statements are stripped from the model. The verification is performed
using a standard logic model checker. The tool is exercised using a call processing software
for an access server called PathStar.

KLEE [CDE08] is a symbolic execution tool for the analysis of embedded C code, generat-
ing high coverage tests. It is capable of interaction with an environment and its constraint
solving optimization can deeply check applications using a space efficient representation
of checked paths. By applying efficient search heuristics, paths are chosen to obtain high
code coverage. Still the code coverage is not 100% in contrast to classical model checking

96 Chapter 6. A Verifiable and Secure Concast Protocol

approaches and consequently not all traces violating a property are found.

Overview This chapter is structured in the following way. In Section 6.2 we give a
short introduction to the investigated aggregation protocol, its parameters and a simple
application scenario. Thereafter in Section 6.3 a distributed scenario is modeled with SPIN

that includes a network mode, an adopted adversary from Section 2.4.2, and the models
of different sensor nodes. A correctness proof is provided which especially accounts for
the distributed nature of the protocol.

The model in Section 6.4 covers the behavior of sensor nodes which is derived from
software sources. Furthermore, the specification of software sources and final verification
using software bounded model checking is presented. Results are collected in Section 6.5.
Afterwards the chapter is concluded in the last Section 6.6 summarizing and comparing
the results of both approaches and the feasibility of software verification in embedded
systems and especially in wireless sensor networks.

6.2 Secure Aggregation in Wireless Sensor Networks

We consider a concast protocol [CGSW99] that is extended by a probabilistic relaxation
of authenticity called ESAWN [BWZ08] (Extended Secure Aggregation for Wireless sensor
Networks). It is different from previous work since it handles the transport and aggregation
of messages with guaranteed end-to-end authenticity in the presence of multiple malicious
nodes. By malicious nodes we consider devices that are in the network but under the
control of an adverse entity (see Section 2.4.2). Since authenticity of the aggregated
data and energy preserving mechanisms are in the focus of this protocol, it offers these
parameters to influence the behavior. This means that in case the user is willing to relax
the credibility constraint of the data by allowing data to be authentic according only to
some probability p (i.e., 50%) instead of 100%, a notable amount of energy can be saved.
So the tradeoff that is involved hereby is that sacrificing energy at the cost of authenticity
of the collected data and vice versa.

Essentially this energy preservation is accomplished by accumulating software packets
as done in concast protocols and in addition with a probability 0 ≤ p ≤ 1 witnessing nodes
on the route to the sink are used to attest the authenticity of the sent data packet. Since
the use of witnesses increases the energy draw, the choice of the parameter p influences
the overall energy savings. The second parameter of the protocol specifies the number
of witnesses to be used which must always be more than the number of malicious nodes
since a forged aggregate can otherwise not be detected.

Instead of sending a data packet, data values are pre-processed by the use of an ag-
gregation function fagg that can be for example the maximum function or anything else,
depending on the requirements. When considering Figure 6.1 a linear aggregation tree is
shown. Here the leaf node (n4) starts to send the data value A to node n3. Since node n3

could also be compromised, data is also sent to w consecutive nodes on the aggregation
path. For two witnesses (w = 2) that is node n2 and n1. Each node ni which receives a
packet computes the aggregate fagg = f(ni, nn−1).

In this way energy is preserved since data is already aggregated in the network and
hence fewer radio transmissions are required in comparison to standard multi-hop com-
munication. Obviously, the security related problem that exists is that adverse nodes

6.3. A Correctness Proof using the Spin Model Checker 97

n4 n3 n2 n1 n0

leaf node

root node

A

A

A

aggn3

aggn3

aggn3

aggn2

aggn2

aggn1

Figure 6.1: ESAWN scenario of an aggregation tree with parameters w = 2, the original
data value A from node leaf . The data from node n3 in aggregated with the value A in
the packet aggn3 .

may cheat be forwarding wrong computed aggregate. Such a fraudulent behavior can be
discovered by the use of witnesses and hence the authenticity of the aggregated value is
verifiable all the way down to the root.

6.3 A Correctness Proof using the Spin Model Checker

6.3.1 Network and Intruder

As opposing to the ESAWN model where a probabilistic relaxation of the authenticity is
considered due to energy, we assume that in the SPIN model every node forwards the
aggregate with probability 1 to witnessing nodes. This is motivated since probabilistic
behavior is difficult to model within the SPIN model checker. Since we are not interested in
quantitative properties to be checked — like what is the energy when using a probability
of 5% — modeling probabilistic relaxation of the authenticity property is not considered
here.

In the selected scenario nodes are lined up as Figure 6.1 depicts. In fact this is a special
case in which the protocol is not working most efficiently since on every node the aggregate
is built using only two values, not a very efficient application case of ESAWN. But due to
modeling reasons, this topology essentially represents all of the desired properties, while
being relatively easy to verify. In addition, it can be proven that the same properties hold
here like in a more tree-like setting, and hence this topology is a good candidate for the
SPIN model.

The use of ESAWN’s aggregation function does not need special modeling in SPIN as
well as the computation of parent nodes and the computation tree since in our setting
every node ni aggregates and forwards to ni−1 up to ni−w nodes for w being the witness
parameter from before.

6.3.2 Adversary Model

The abilities of the adverse entity are already described in Section 2.4.2. It can compromise
some nodes in the network by reading out the nodes’ memory and obtain their secret keys,
reprogram nodes, inject its own code, and place nodes again undetected back into the

98 Chapter 6. A Verifiable and Secure Concast Protocol

network. In addition nodes are completely randomly chosen by the adversary and the
only two nodes fixed are leaf and root node.

In this sense we expect the root and leaf node to be out of the adversary’s reach,
operating honestly and always compliant to the protocol. The reason for this is that if
the root node would act maliciously there would be no meaningful verification of the
authenticity possible since the user could not trust the base station as already stated in
Section 2.4.2 on page 23. Furthermore, if the adversary has control over the root node, it
has all means to take over control of the whole network by sending his own request which
will possibly not be recognized by the user. This does also hold in a similar way for the
leaf node. Here one could never check whether the external measured data is correct or
forged by a physical manipulation of the hardware sensors. This could for example be
done by simply using a lighter at the node’s temperature sensor thus artificially raising
the measured values and pretending wrong results.

In addition it is assumed, that if the adversary wants to compromise, he coordinates
its nodes and starts the attack simultaneously by exposing a protocol non-compliant
behavior, and thus amplifying the impact of his attack. In particular by the use of out-of-
band communication means that make the knowledge of one node immediately known to
other nodes, the severity of the attack can be increased.

6.3.3 Modeling the Network

In the Promela definition the real world ESAWN protocol is modeled by the initial defi-
nition of the network size by a parameter N . By variable k the number of compromised
nodes is denoted that counterfeit packets from time to time but operate normal and incon-
spicuous most of the time. Parameter w indicates the witnessing nodes, i.e., a node has to
send each packet to at least w parent nodes which verify the correctness of its aggregates.

For the network scenario four types of nodes are considered. The leaf node is in charge
of doing measurements and sending the initially collected sensor data to the network.
Among inner nodes (nodes n1, . . . , n3 in Figure 6.1) two different types of nodes are
considered which are InnerNotCorrupt and InnerCorrupt with a behavior as suggested
by their names. The node at the sink is the root where the aggregated data is received and
made available to the used.

Channels interconnecting Nodes

Before the ESAWN protocol actually runs, each node initializes the required message
channels on the aggregation path. This means that a node obtains input channels from
children nodes and allocates outgoing channels to parent nodes on the aggregation path.
Channels are modeled as unbuffered 1-byte variables of type chans. The use of separate
channels is legitimate and can be motivated by the pairwise symmetric encryption in
the ESAWN protocol using SKEY (Secure KEYing, see [BCZ05, ZB06]). In consequence no
other but the destination to whom a message is addressed is able to decrypt it and read its
content. In the SPIN model these requirements are met by the use of channel assertions
(see Section 2.3.1) that guarantee exclusive access of the process to whom the channel
belongs.

6.3. A Correctness Proof using the Spin Model Checker 99

1 i = 0 ;
do
: : else −>

/* send */
ch = channel [myid − (i+ 1)] .c [i] ;

6 /* generate any data */
if

/* correct data */
: : data = 0 ;
/* incorrect data */

11 : : data = 1 ; FakePacketsSend++
fi ;
ch !data ;
i++;

: : i>K | | i>=myid −> break ;
16 od ;

Figure 6.2: Promela code for a compromised node.

State Variables

The overall state of the model is expressed by global variables which are used to specify
the LTL proof obligations. CheatingDetected represents a discovered faked packet, only
detected and issued by nodes InnerNotCorrupt and root since the adversary has no
incentive to expose an attack.

ByAnnounceReceived the root process declares the reception of a packet. If the received
packet is as expected variable ReceivedDataCorrect is set to true. The number of fake
packets is counted by FakePacketsSend and increased whenever an additional fake
packet is sent.

Processes

In the initial configuration all four processes setup their channels with the designated child
and parent node on the aggregation tree. The leaf node afterwards sends a sample with
value 0 that represents an initial sensor value. InnerNotCorrupt nodes behave loyal with
respect to the protocol and receive all the packets and compare all of them for equality.
Essentially if aggStore[i]! = aggStore[i− 1] then variable CheatingDetected is set to true.
Otherwise the results is sent to subsequent w nodes.

InnerCorrupt nodes behave different in a sense that they forge packets and instead
of forwarding value 0 they forward 1. Forging occurs on a packet basis, meaning that
for every packet corrupt nodes decide whether to forge or not. Since compromised
nodes cooperate, they will not reveal an attack if they receive faked aggregates. Finally
the root node checks for the consistency of data as the InnerNotCorrupt nodes. In
addition, if the last pair of results is validated and all packets are checked correctly,
variable ReceivedDataCorrect is set. Upon reception of the last expected packet, the root
node issues an AnnounceReceived and all processes terminate. The relevant Promela code
is shown in Figure 6.2.

100 Chapter 6. A Verifiable and Secure Concast Protocol

6.3.4 Security Related Properties

For checking the properties no assertions are used. In the following four properties of
interest are specified using LTL.

For a proper function of the network it is important that no message is lost. So we
expect that either the root receives data (AnnounceReceived) or one or more nodes are
cheating which is detected by at least one node (CheatingDetected). The use of ”one
node” is sufficient since it will trigger already the alarm. This property is specified by:

3(AnnounceReceived ∨ CheatingDetected) (6.1)

In the following property we denote that either correct data is transmitted in the
presence of corrupt nodes or a forged aggregate is detected. This means that if the root
node ever receives a data packet (AnnounceReceived) it is either identical with the one
sent by the leaf node and no faked aggregates sent (ReceivedDataCorrect) or at least one
node detected a corruption (CheatingDetected):

2AnnounceReceived→ (ReceivedDataCorrect ∨ CheatingDetected) (6.2)

Essential for the ESAWN protocol is that whenever there is a corrupt packet sent
(FakePacketsSend > 0) this will eventually be reported:

2(FakePacketsSend > 0→ 3CheatingDetected) (6.3)

In addition, the following property states that whenever the data packet received by
the root node is correct, there has been no corrupt packet send (FakePacketsSend > 0)
although malicious nodes might be present:

2(ReceivedDataCorrect→!(FakePacketsSend > 0)) (6.4)

Before we present the results from the distributed model in SPIN, the second approach
is discussed which automatically generates the behavior of a sensor node in terms of
software code. Afterwards the results of both solutions are presented and compared.

6.4 Software Model Checking of Embedded Software

In the previous section the topic of a formally verified protocol is based on a manually
created model. Since especially the process of abstraction is crucial and error prone we
propose in the following a way of automating the code generation from TinyOS (see
Section 2.4.3) based implementations. We identify several ways of deriving software
sources and discuss their advantage in detail. The related specifications are derived
from the protocol requirements. Together with the most appropriate software model, the
specifications are investigated and verified using bounded model checking.

6.4. Software Model Checking of Embedded Software 101

6.4.1 Generation of Software Sources

We essentially point out three approaches to obtain a software model from the software
implementation of the ESAWN protocol using the built-in nesC compiler. In fact, the
derived software model is an intermediate stage in the software deployment process. This
means that software in TinyOS is built up out of components which are linked using the
nesC compiler with hardware specific modules before they are compiled and deployed on
real hardware. So before the final software for a platform is compiled, the corresponding
sources of the implementation are built. Note at this point that each hardware platform
requires individual building and linking of the hardware specific modules that handle i.e.,
access to hardware specific registers, interfaces to the internal bus architecture, and the
incorporation of specific chipset.

As it turns out each of this proposed software generation steps has pros and cons that
have to be traded against each other. The considered model derivations are essentially
the MicaZ model using the MicaZ platform as hardware model, the TOSSIM sources which
produce software sources and libraries in C and Python for the network emulator TOSSIM,
and finally the NULL platform. What is unique about the NULL platform is that all
hardware dependent routines like access to hardware dependent I/O registers as well as
the transceiver are abstracted.

It is worth to note that one could always manipulate the generated sources by hand to
obtain a simpler model of the protocol. But this is contradicting with the earlier mentioned
thought to automate the software derivation and generate models which do not require
any human interference and which can directly be fed into a formal verification tool.

MicaZ Sources

The first presented option is to obtain the software behavior model form the MicaZ
hardware platform (make micaz). This generated software can in this form be very well
compiled and deployed on actual MicaZ nodes. The problem with the sources is just
that many TinyOS functions are still present, for example constructs that calibrate the
hardware clock, functionality to access the ADC (analog digital converter), UART etc. In
addition the implementation makes frequent use of registers which are normally provided
by the hardware, but missing and undefined in the obtained software code. Finally the
concurrent behavior of the software model is lost due to the missing simultaneous and
independent execution of software and hardware.

Considering the verification of this generated implementation it turns out that a hard-
ware model would be additionally needed to fully specify and verify the software. At the
same time, it is very likely to assume that due to complexity considerations, a combination
of software and hardware showing a concurrent behavior would be much to complex for
a deeper analysis.

TOSSIM Sources

The second investigated way is to generate software sources used for emulation in the
TOSSIM simulator. In addition to the software sources, an executable simulation frame-
work is hereby added to the source code. The advantage of this implementation is that
the hardware is already abstracted and consequently there is no use to access registers

102 Chapter 6. A Verifiable and Secure Concast Protocol

for controlling the program. In addition ADC models, and a proper abstraction of the
communication is provided. Since in the TOSSIM emulator node’s internal clocks are
directly controlled using the simulator instead of the node hardware clock, the generated
software promises a good start for the verification.

The downside is that parts from the software implementation are written in C, others
are written in Python to connect the simulation engine. In addition there are many
library references that also hamper the verification process and add complexity to the
software under verification. Of course, there would also be an optional start for a manual
modification of the sources but due to the afore mentioned properties of manually written
or modified software this not the best way to proceed.

NULL Platform

The last investigated way is the actually used one. It suggests the use of the NULL plat-
form which is shipped with the TinyOS package and generates a hardware independent
software model. In particular the platform can be understood as a skeletal structure
containing only the functionality of the protocol plus some overhead like scheduling func-
tions for jobs, the jobs queue and so on. But all hardware specific functions are abstracted
and generated with an empty function body (e.g., UART, LEDs, ...). This has the major
advantage that no platform must be considered when specifying the properties.

Even here some disadvantages exist. Since the platform is hardware independent, the
functionality for the transceiver is lost and removed from the sources. In the ESAWN
protocol under investigation nodes depend excessively on the use of packet sending and
receiving, the empty function bodies need to be manually completed with the correct
packet handling information. This manual manipulation is error prone since errors can be
introduced hereby.

Additional open questions are the treatment of concurrent behavior which stems from
hardware-software interaction. This means for example that no external interrupts can be
issued by the hardware to signal events and preempt tasks. In turn, since no preemption
is possible also the atomic statements can safely be ignored and removed which further
reduces the complexity of the protocol.

Summarizing the three proposed approaches, the NULL platform deliveries the best
start for a further analysis using a verification tools. By the use of the NULL platform we
were able to reduce the complexity of the implementation from originally 21 000 lines of
code as in the case of the MicaZ platform to 4 500 lines. In the following, specifications are
defined that need to hold for a sound protocol execution.

6.4.2 Requirement & Specification

For the specification purpose an autostart function is added to the sources that starts the
protocol with well defined parameters right after the initialization. Whether the values set
by the autostart routine are correctly set can be checked using assertions at the end of the
execution in the main function. Furthermore the protocol has a built-in alarm function
which indicates a wrong behavior of the protocol or reveals a potential attack. By adding
assert statements to this function erroneous packets can be discovered and a protocol
unspecific behavior is revealed.

6.4. Software Model Checking of Embedded Software 103

Figure 6.3: Structure of verification relevant status packets.

In addition to the sources used for the verification, we maintained an optional version
of the node behavior with debugging statements. This was in particular useful for the
analysis and the specification of properties because instead of verifying properties using
the model, the sources could be compiled to obtain a simulation run of the ESAWN
protocol with the current parameter setting.

What needs to be specified in the protocol is the correct treatment of the possible packets
which are used by the ESAWN protocol. Essentially two kinds of packets exist. On the
one hand status packets are in charge to initially transmit information of the network
topology, the protocol parameters, and the parent-children relation which is required to
correctly compute and verify the aggregates. The other type of packets are ESAWN packets
used during protocol runs to transfer the aggregates through the network.

Status Packets

In the specification we concentrate for the moment on packets that deliver the major
functionality of the protocol and ignore for example packets that broadcast alarm events,
etc. Since the investigation of the implemented RC5 cipher is complex and probably worth
another verification task, we consider for the moment unencrypted packets. Furthermore
we omit logging messages constantly sent to the base station to describe the protocol state.

The first specification covers packets of type status set which are sent initially by the
base station to make protocol parameters known to the network. In detail a packet of this
type contains the number of nodes in the network (num nodes), the ESAWN parameter
which determines the number of witnesses (w), the probabilistic relaxation parameter p,
and a variable fake agg to indicate whether the receiver should fake aggregates. The
following property states that a node processes this type of packet correctly:

status set(num nodes, k, p, fake agg) is processed correctly (6.5)

The second type of specification considers packets sent to make the aggregation tree
public. For these reasons each node obtains information about nodes to which it has a
parent-child relation. This aggregation information is sent out using status setagg
packets. They are sent to every node in the network and contain fields node id and

104 Chapter 6. A Verifiable and Secure Concast Protocol

parent id. It is a critical point to correctly broadcast this information, and hence the
following specification must be valid for a fixed node id and all possible parent nodes on
the aggregation tree:

status setagg(node id, parent id) is handled correctly (6.6)

Another important aspect is the information sent through packets of type status go
which initiate a protocol run by causing the leaf nodes of the topology to send data values
to the sink. The contained value interval denotes the interval of two consecutive data
values which are measured and sent. In case the interval is 0, the protocol in only executed
once.

there is an action upon receiving status go(interval) (6.7)

Of course other message like status reset causing a hard reset of the node, or
status alarm can be specified, but we omit these trivial specifications here and keep it
for future research.

ESAWN Packets

The ESAWN packets are used during protocol runs to exchange aggregates between nodes
(see Figure 6.4). Since nodes relay packets to children nodes down the aggregation tree
using their direct neighbor, this information is in the original version of the protocol
encrypted using symmetric keys (cf. SKEY). For the correctness of the aggregation han-
dling and forwarding of the protocol, it is sufficient to check, whether a well defined
packet is treated correctly. In fact the protocol conform handling of a packet implies
the correctness of all involved functions. The functions involved in the computation of
an aggregate are the computation of the relay count which indicates to a node to how
many children it should relay the aggregate. Also functionality for the computation of
the aggregate is relevant in this case. As aggregation function fagg the simple sum is used
(fagg(a, b) = a+ b).

For the verification of ESAWN packets the topology from Figure 6.1 is assumed. As
in the previous case, an autostart function initialized the network parameters using a
status packet with parameters w = 2, p = 1, and num nodes=5. In the specification
definition we consider node n2 in the aggregation tree which is expecting w aggregates
from its parent nodes and in consequence sends w packets to children nodes. We further
assume that means for external measurement are abstracted therefore each node sends as
data value its node ID. Since it is unique it does not introduce any overhead to the model.

We consider the following packet which is sent to node n2 for authentication and
aggregation. It contains a sequence number, the originator of the packet in the field from,
and the value in plain text in the field value. Since no encryption is used, the field tan
can be safely ignored.

packet ESAWN [from = 3|value = 7|from = 4|value = 4] is handled correctly (6.8)

6.4. Software Model Checking of Embedded Software 105

Figure 6.4: ESAWN packet definition

Especially if the protocol should properly function, no ESAWN alarm should occur
which is monitored by assert statements in the alarm function.

Further, a node which has to verify an aggregate agg receives data packets not only
from its immediate ancestor, but also from source nodes of its ancestor. If it receives
multiple aggregates aggni to aggnj is has to compute its own aggregate and compare it to
the received packets, such that for any valid aggregate agg = aggni = . . . = aggnj has to
hold. This means that the aggregates a node receives from its ancestor have to be correct:

∀i ≤ w : (agg = aggni)?true : Alarm(8) (6.9)

This property states that all w aggregates must be considered by a node, and if the equal
checking fails, a raise alarm message (Alarm(8)) has to be issued and sent to all w + 1
ancestors in the aggregation tree. In this case it is either possible that the direct ancestor of
the node forged the aggregate, or a non-direct ancestor — possibly any node up to k steps
away from the verifying node — faked the aggregate. The correct handling of an alarm
message can be checked using the outgoing packet queue of the node. In fact for a node i
there must be w + 1 alarm messages send to nodes ni−1 . . . ni−w−1 in the outgoing queue.

if(alarm at node i) : alarm messages are sent to ni−1 . . . ni−w−1 nodes (6.10)

6.4.3 Treatment of Model Insufficiencies

Up to this point the software still contains construct which are not longer used. In this
sense still functions for initializing the scheduler queue and the assignment of the empty
task element are present. This functionality introduces additional complexity. Further,
there are still routines for initializing the hardware platform present which are called
before the actual program is started. In addition the software is initialized, meaning that
serial interface for sending and receiving is initialized, the random seed is computed,
and internal timer are calibrated. All of the above mentioned can be safely ignored for

106 Chapter 6. A Verifiable and Secure Concast Protocol

the verification task, and therefore we simply take a short cut and remove all of this
functionality since it has no impact on the protocol behavior under investigation.

Another issue considers the nature of embedded systems. In principle the ESAWN
software is designed for continuous operation. This means that the task scheduler is
permanently executing jobs in the task queue. If there are no jobs in the queue, the node
is going to sleep mode for a defined time span. Afterwards it wakes up to check the
scheduling queue again. If a job is found in the queue, it is executed.

This continuous queue checking, sleeping, and execution of tasks makes a direct correct-
ness check impossible due to memory restrictions. In particular the verification task is only
feasible for a finite set of states and terminating programs. However, the source code does
usually not terminate due to its controller like nature: once the node is switched on, it does
permanently interact with its environment, sensing data, generating and processing new
packets. In contrast to this finding any setting with a bound number of processed packets
can be covered using a terminating abstraction. It can even be formally proven, that
the implementation is still correct since individual messages are processed and received
protocol conform.

For these reasons a modification is inserted into the software which executed a fixed
number of jobs, hereby introducing an upper bound for the complexity. After the bound
is reached, the node stops any further execution and terminates.

Another shortcoming of the model concerns the analysis of protocols running on differ-
ent nodes, physically distinct by their location. The derived software does not account for
a distributed setting where messages are interchanged. To imitate such a setting with more
than one node and the interchange of information, we propose the following solution.
By interchanging the node’s ID at runtime we can imitate the distributed processing of
packets.

For example consider a node with ID i which has a packet to send to node i′. In this
sense, a packet is built which holds the destination address i′ and is enqueued into the
task queue. In the real TinyOS implementation, packets from the task queue are frequently
probed and sent using a dedicated sending tasks which copies the packet from the packet
queue to the transceiver queue. From there the packet is transmitted using the hardware
chip.

The proposed modification starts with the packet in the sending queue, and instead of
calling the send routine, the node ID is changed to i′. In case the send task is called, the
node detects that the packet reached its destination, namely node i′. In effect, instead of
sending the packet, it is processed by the same node which changed its ID from i to i′.
Using this revision of the source model, a distributed network behavior can be imitated.

6.4.4 Software Bounded Model Checking using CBMC

So far we provided a specification of an essential set of properties that must hold to argue
about a proper functionality of this limited set. Since the sources still use heavily pointer
arithmetics, a verification tool is needed which is capable of nearly full ANSI-C source
code. Such a tool is for example CBMC [CKL04], a software bounded model checking
(SBMC) implementation for C programs. Before CBMC is described in detail, we will first
review the technique SBMC. SBMC computes a solution to the following problem:

6.5. Results 107

Definition 5 (The SBMC Problem) For a program P , a bound k and a property f , does there
exist a path p of at most length k that violates the property f?

A program state can be characterized by the content of heap, stack, all registers and a
program counter. A path is a sequence of program states where a transition between states
is triggered by a C statement. One interpretation of the length of a path in a program is
the number of statements in a program. Properties declare some error states, or invalid
sequences of program states, that shall never occur in any execution.

Usually three possible results for the SBMC problem are implemented [CKL04]:

• The property f holds for all paths.

• The property f does not hold for at least one path p′.

• The bound is too small for at least one path p′.

In the two later cases a witness path p′ is computed. This witness is a counter-example
having the form of a concrete program execution. For a program that contains a finite
set of finite paths, k can always be set large enough such that a sound and complete
verification of the property f can be achieved. If the bound is too small it can be iteratively
increased. Finite state programs that terminate for every input are relatively common in
the domain of embedded systems.

CBMC (see 2.3.4 on page 20) implements SBMC for C programs. Properties have to be
specified by assert(f) statements. The semantics of such a statement is that whenever
a program execution reaches the statement, the condition f must evaluate to true. The
semantic of the bound on the length of paths in CBMC is the following:

Definition 6 (CBMC Bound) For CBMC the positive integer bound denotes the maximum
number of loop body executions and the maximum recursive depth.

The recursive depth of a path is the number of equal return addresses stored in the stack.
For a given program, the bound limits the number of statements on any path. Note that in
CBMC the bound can be set individually for each C loop occurring in the program.

The commonly used decision procedure in CBMC to decide the SBMC problem is a
DPLL-style propositional satisfiability (SAT) solver. CBMC internally uses the SAT solver
Minisat2 [ES03]. If the SAT problem is satisfiable, CBMC generates a concrete counter-
example from the satisfying assignment produced by the solver. If the SAT problem is not
satisfiable then the property holds for all program executions and the program always
terminates.

6.5 Results

This section covers results from both the distributed analysis with SPIN using a manual
design with concurrent processes, and the formal analysis of generated software sources
from TinyOS using software bounded model checking with CBMC.

108 Chapter 6. A Verifiable and Secure Concast Protocol

property states transitions memory [MB] result
6.1 3 002 790 3 728 272 49.864 valid
6.2 1 352 775 1 720 044 50.450 valid
6.3 47 505 63 387 3.868 not valid
6.4 19 015 27 653 3.477 not valid

Table 6.1: Verification results for parameters n = 5, k = 2, w = 3

6.5.1 Concurrent and Distributed Analysis

The LTL properties 6.1 to 6.4 are checked using the model checker SPIN. In SPIN the
memory of 512MB is guaranteed and partial order reduction is switched off. In addition
an estimated state space size of 500 · 103 is specified with maximum search depth of 10 000
steps. The setting is fixed for a network of five nodes (n = 5), and two randomly placed
compromised nodes (k = 2). This means in turn that 3 nodes behave protocol conform.
Note in this context that the SPIN model’s internal parameter w which accounts for the
witnessing nodes has to be set appropriately and exceed k by one (w = 3), since otherwise
the ESAWN protocol cannot work in the presence of malicious nodes and the verification
of properties would fail.

The verification results are captured in Table 6.1. In fact it is only surprising at first
glance that properties 3 and 4 are violated. This is mainly caused by the cooperation of
compromised nodes. Since an adversary wants to remain undetected, a compromised
node will not trigger an alarm upon reception of a fraudulent packet.

This situation is better illustrated by the message sequence charts (MCSs) in Figure 6.5
that display one possible trace of execution until the processes terminate. Variables
CorruptedNodeDetected or BetrayedPaket are globally used and indicated using
dashed lines. In detail, Figure 6.5a shows a protocol run where node 2 and node 1 are
compromised. They both fake an aggregate and finally the corruption of the packet sent
by node 1 is detected by the root.

A scenario where properties 6.3 and 6.4 are violated is depicted in Figure 6.5b. Here a
fake aggregate is sent by node 2. Since we assumed that the adversary wants to remain
undetected, node 3 will not trigger an alarm since corrupt nodes cooperate. In consequence,
the root received two valid aggregates although an aggregate was forged in between.

Note that this property does not state that we discovered a flaw in the ESAWN protocol.
It rather pinpoints that a setting is possible where data is compromised and still the root
node will receive correct data and not notice the fake aggregate.

6.5.2 Software Analysis

The generated software is equipped with the assertions which specify the above defined
properties. Since packet types for status messages which are initially sent around are
independent of ESAWN packets, they are treated independently. Before the respective
properties are checked, it is important to find the maximum number of loop unwinding
for each property. For this reason the unwindings are individually checked for each packet
sent. Afterwards the remaining specifications are verified. The results for the considered
status messages are displayed in Table 6.2. We use ”?” to indicate that no results could

6.5. Results 109

Node4 (leaf) Node3 Node2* Node1* Node0(root)

data

data

data

stop

data

data

data

stopped

fake

data

stopped

fake

Corruption detected

stopped

stopped

(a) MSC for parameters n=5, k=2, w=3

Node4(leaf) Node3 Node2* Node1* Node0(root)

data

data

data

stop

data

data

data

stopped

fake

BetrayedPackets 1

data

stopped

data

stopped

ReceivedDataCorrect 1

AnnoucedReceived 1

stopped

(b) scenario where property 3 and 4 fail.

Figure 6.5: Message Sequence Charts (MSCs) for ESAWN properties in SPIN.

110 Chapter 6. A Verifiable and Secure Concast Protocol

status set check successful injected error # claims

Property 6.5

unwinding 4 – ?
assertions yes found 6
bounds yes – 60
pointer no – 181

status setagg check successful injected error # claims

Property 6.6

unwinding 4 – ?
assertions no – 4
bounds yes – 60
pointer no – 177

status go check successful injected error # claims

Property 6.7

unwinding 4 – ?
assertions yes – 4
bounds yes – 59
pointer no – 175

Table 6.2: Verification results for status packets for a valid loop unwinding of 4.

checked property property successful
correct packet treatment 6.8 ?
correct aggregate computation 6.9 ?
correct distribution of alarm messages 6.10 ?

Table 6.3: Verification results for unwinding assertion using ESAWN packets.

be obtained due to memory restrictions, or due to a missing implementation in CBMC.
The available memory was 32GB on the host system in use for the verification.

The results in Table 6.2 show that an unwinding depth of 4 is sufficient for each packet
type. For Property 6.5 all but the pointer check are successful. This means that in turn, that
when receiving a status set packet, the node does correctly set the initial configuration.
On the other side, the built-in pointer check failed for every packet type. We think that this
is not a failure in the ESAWN protocol as these failures are caused by CBMC which does
not find correct symbols during its pointer-analysis and in consequence there is either no
target or no valid target assigned. In addition we inject erroneous assertions that are also
found by the bounded model checking tool.

For broadcasting information of the aggregation tree using packet type status setagg,
in addition the assertion is violated, meaning that Property 6.6 does not hold. This seems
to be a problem with the CBMC version at hand that is unable to handle e.g., arrays of
structures.

The results regarding the sophisticated properties of ESAWN packets are captured in
Table 6.3. Here the situation is disappointing since not a single property could be validated
since CBMC did not reach a sufficient unwind. The highest unwinding tested was 11 and
it took over 3 hours and about 30 GB of RAM to generate a counter example.

6.6. Conclusion 111

6.6 Conclusion

The presented results are twofold. We presented a formal analysis based on a manual
created model and verified protocol related propertied using SPIN. It turns out that all
critical properties hold which indicates that at least the specified behavior is valid in the
model of the ESAWN protocol. The danger by using the term valid is, that the model
fulfills the defined specifications, but the SPIN model is obtained by manual ”design”
which involves downsides. For example, there can be aspects of the ESAWN protocol
which are modeled wrong since SPIN does not have appropriate formalisms to correctly
reflect the intended behavior. In this sense, we cannot infer the protocol’s correctness by
verifying a manual created artefact. Hence a more realistic model is needed that is derived
using almost no manual interference.

The second approach fulfills this criterion. Here a new software model is almost
fully automatically derived from a description of sensor node in TinyOS, a development
platform for sensor network software. Special about this model is, that is represents the
behavior of a fully functional sensor node, defined in ANSI-C. Furthermore, the model
has no level of abstraction since it represents the real node behavior.

For proving correctness of the ESAWN protocol, we defined important properties and
added them to the software code by assert(f) statements. These properties are then
checked using bounded software model checking. In the example at hand, we used CBMC
(see Section 2.3.4) for this task which offers in addition to assertion checking also safety
checks on the C code. Eventually we were able to prove some of the properties. In the
example considering the assertion checking of Property 6.6 we also added errors to the
code that were in turn found by verification.

In fact it turned out for the software model that the main problem is caused by the
bounded model checker and its handling of the sending and receiving procedure. Since
ESAWN heavily depends on message passing between nodes, CBMC was not able to
handle the sophisticated property that covers the correct treatment of ESAWN packets.
For the basic properties that cover the broadcast of the initial configuration, properties
were successfully checked.

Although the proposed handling of complicated sending and receiving routines, that
involve more than one node could be possible using another tool, we did not check on
that. Instead we hope that a new release of CBMC will fix the missing formalisms and in
particular enables the treatment of more sophisticated properties.

In the current case we were able to witness the complexity of automatically generated
software from the TinyOS platform. Still, it requires some more abstraction to obtain
suitable models which can be formally verified. At this point it is worth to state that
besides the TinyOS platform also alternative node platforms exist, which run for example
a virtual machine, similar to the concept of JAVA.

A candidate for software written in JAVA is the SunSPOT platform which is investigated
by formal methods in the following chapter. Essentially, we declare in the following
specifications for the SunSPOT’s underlying networking library and investigate them
using a theorem prover called KeY.

112 Chapter 6. A Verifiable and Secure Concast Protocol

CHAPTER 7

Survey of the Sun SPOT’s Networking Library

7.1 Introduction

Verification, specification, and excessive testing are elementary phases in the life cycle
of any software product. Especially by giving a formal proof that the software fulfills
the specifications, a desired degree of confidence is obtained. In the field of embedded
devices (e.g., airbag controllers, control logics in avionics, etc.) which include safety critical
software, the application of rigorous testing and verification methods is even essential.

Very often it turns out that the critical part of the verification is not the use of the verifica-
tion tool. It is rather the combination of using the correct specification, the appropriate tool,
and the expertise that finally lead to a successful software correctness proof. In particular
the specification of ”what should the system do?” and ”how should it should react on
failures?” is difficult to obtain since it requires a global view on the software product.
Such a global view is very hard to maintain, due to the rising complexity and the fact that
many software engineers from different disciplines contribute to the software with their
expert knowledge. As a result it is difficult to infer specification from the software sources,
even if they are well documented. What is likely to happen is that the use of an informal
documentation written in English can be misunderstood, misinterpreted, and in effect
a resulting erroneous specifications will very likely not reveal any error in the software
code.

However, as the complexity of modern embedded devices increases, the development
of sophisticated new tools and verification environments is required to keep up with
the technological progress. The KeY tool (see Section 2.3.5) is such an environment that
supports the formal development of object oriented software. It offers an integrated
software design of object oriented software, its formal specification and - verification. KeY
allows the verification of full JAVACard, a subset of the JAVA language. Furthermore, the
KeY tool has proven to be an excellent candidate for the verification of object oriented
software in previous case studies like [Ton07, BH05].

In the presented work [Sch08] parts of a commercial software library for embedded
devices called SunSPOTs (Small Programmable Object Technology) from Sun Microsystems

114 Chapter 7. Survey of the Sun SPOT’s Networking Library

(see Section 2.4.3) is verified. The SunSPOTs are small mobile computers with a wireless
network interface that run a JAVA virtual machine. What is special about the SunSPOT’s
software implementation is that most of it is written using JAVA and only minor parts
that directly interlink the software to the hardware like I/O-library and native code are
implemented using C.

For the reason that the SunSPOT’s networking library is a complex artefact built of
thousand lines of code (or even hundred thousands lines of code), the verification task is
not an easy endeavor, and in fact to apply formal methods to the whole library would be a
work for several person-years. For this reason only a part of the network stack — the so
called LoWPAN (low-power wireless personal area networks) layer — is identified for the
verification task. We believe and have strong indication to assume bugs hidden in this
part of the library.

Related Work

The afore mentioned case study motivated the application of deductive verification meth-
ods on the SunSPOT’s network library as conducted in the work of [Sch08]. To our best
knowledge, there is no research that verifies object oriented software for embedded sensor
node applications using formal methods. Within this context this work is a novel approach
that verified a considerable portion of the SunSPOT’s network library using KeY and
proved correctness of the implementation with respect to a formal specification inferred
from the available sources.

Other related work can be found in [Mos07] where a reference implementation of the
JAVACard API is formally verified using a deductive verification approach. For this case
study the KeY verification environment is also used, that allows a symbolic execution of
the JAVA sources.

Overview

The work is organized as follows: In Section 7.2 a short overview about the SunSPOT’s
architecture is given, showing the relevant parts which are considered for the verification.
In the following Section 7.3 we investigate a sending procedure from the networking
library with related classes which is called whenever a packets needs to be send on the
user level. An example of a verified method is given and related problems and potential
short coming of this work are pointed out. The final conclusion in Section 7.5 wraps up
the chapter at hand.

7.2 SunSPOT’s Network Library

Before the actual verification task is discussed, the SunSPOTs networking architecture is
explained which will help to classify the present work into the verification context and
highlight its results. The implemented network layer model for the SunSPOTs consists of
application layer, transport layer, network layer, data link, and the physical layer, just like
the TCP/IP model [RFC89]. The MAC sublayer and the physical layer hereby comply to
the wireless IEEE standard [Soc06]. In addition, the SunSPOTs have an intermediate layer
— called the LoWPAN layer — that is in charge of providing special functionality not found

7.2. SunSPOT’s Network Library 115

1

2

3

4

5

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Network Layer

LoWPAN Adaption Layer

Media Access Control Layer

Physical Layer

Figure 7.1: SunSPOT’s network layer model.

in conventional wired architectures. It allows the processing of packets as defined in the
low pan draft like link layer fragmentation and the option for mesh routing in combination
with the routing manager. The layers of the TCP/IP model and the architecture of the
SunSPOT’s network library with the additional LoWPAN adaption layer are displayed in
Figure 7.1.

7.2.1 The LoWPAN Adaption Layer

The LoWPAN adaption layer defines the payload of the IEEE 802.15.4 MAC protocol data
unit (PDU) [MKHC07]. Its main functionality provides the encapsulation of frames from
the above layer (IPv6 packets) and adds additional header information. Each LoWPAN
encapsulation frame contains zero up to four header fields which provide information like
mesh routing (mesh addressing), hop-by-hop options (broadcast/multicast), fragmentation,
and the payload. An overview of the mesh addressing header, LoWPAN adaption layer,
and the MAC layer is shown in Figure 7.2.

The mesh header is started by a one-bit followed by a zero-bit. The two flags that follow
thereafter are O and F to indicate whether the originator address and the final destination
address are specified as a 16-bit address or a 64-bit address. It is even possible to mix
16-bit and 64-bit addresses for origin and destination within a packet. The next four bits
are reserved for the HopsLeft counter which is decremented before a node forwards a
packet to its next hop. If the counter is decremented to 0, the packet is not sent any further.
If a hop-distance greater than 14 is required, the field HopsLeft is set to 0xF to indicate
that the following 8-bit deep hops left field (optHopsLeft) contains the hop counter.
The final fields contain the 16-bit or 64-bit addresses of the originator and destination.

In the LoWPAN frame, the information which follows the mesh header, is stored in the
broadcast header containing additional mesh routing functionality useful for a controlled
flooding or topology discovery. Its 8-bit counter is incremented whenever the originator
sends a new broadcast or multicast packet. The scope of the fragmentation header is to
break datagrams whose payload does not fit into a single frame and dispatch them. If the
entire payload fits in a single frame, no fragmentation header should be contained in the
LoWPAN frame.

116 Chapter 7. Survey of the Sun SPOT’s Networking Library

Figure 7.2: Frame structure of the SunSPOTs

Together with the protocol header and the actual payload from the network layer above,
the LoWPAN encapsulation frame is delivered to the MAC layer below. Here it is added as
MAC payload together with sequence number, address fields etc, into the MAC Protocol
Data (MPD) for further processing. In order to group the relevant layers into the context,
the functions which are specified and verified are highlighted in Figure 7.2.

Implementation

The implementation of the LoWPAN adaption layer consists of an interface and pro-
vides classes LowPan, LowPanHeader, LowPanHeaderInfo, and LowPanPacket. It
is implemented in the following way: Class LowPan provides the data service of the
LoWPAN adaption layer, encapsulated into an object of class LowPanPacket. This class
is responsible for the correctness of the LoWPAN structure of each encapsulation frame.
In addition, it provides the interfaces that support correct reading and writing to these
objects. The class LowPanHeader collects header information that is necessary to create
and send LoWPAN encapsulation frames.

In this sense, all information from the network layer can be written within one step
since all information about optional header is already present at this point. In class
LowPanHeaderInfo all header information of the LoWPAN encapsulation frame is
stored after the successful reception of a packet and decapsulation of its MAC payload.

7.3 Verification of the Network Library

As mentioned before we investigate the send procedure from the networking library.
These are essentially the classes that belong to the LoWPAN adaption layer and include
functionality for fragmentation, and packaging. Important classes for the verification task
are the classes LowPan, LowPanPacket, and LowPanHeader. For verification of other
classes and their interfaces not considered here we refer to the work of [Sch08].

In addition to the above mentioned classes, auxiliary methods are needed that realize
additional functionality and implement the radio packets. They are realized through the
classes RadioPacket, and Utils which provide methods for arithmetic calculations and
operations on byte arrays. The number of methods and attributes which are considered
during the verification process is illustrated in Table 7.1. As shown in the table, many of
the considered methods are relatively small. Only about 20 of the treated methods have

7.4. Results 117

Lo
wP
an

Lo
wP
an
He
ad
er

Lo
wP
an
Pa
ck
et

Ra
di
oP
ac
ke
t

Ut
il
s

methods 1-2 loc 6 27 6 31 26
methods 3-8 loc 6 1 28 27 8

methods 9-25 loc 6 1 16 2 0
methods ≥26 loc 13 0 6 1 0

total number of methods 31 29 56 61 34
number of attributes 18 32 31 33 3

Table 7.1: Number of methods and attributes of the classes involved in the verification
process.

26 or more lines of code (loc).
What is in this context meant by verification is a multistage approach which consists

of two steps. At the beginning a specification written in JML is added to each method.
Since the specifications must be inferred from the software, RFCs and other available
sources, this is an error prone and time intensive task. Afterwards, in the second step they
are checked against their implementation using the theorem prover KeY. In case that the
software matches the specification, they are considered as verified.

The verification strategy is chosen in a bottom-up manner which stipulates that firstly
all methods that involve no other method are specified and verified. In addition, also
methods which are trivial to specify are considered in this step. When doing so simple
methods that are easy to verify are treated first and later on more complex methods —
that make use of already verified methods — can be proved. In this way a verification
order is obtained starting with the simple methods that have no dependencies and later
on verify highly dependent functions.

7.4 Results

In this section the findings of the verification work with the KeY tool are presented. A short
overview of the actual state of affairs when considering the verification of the network
library is given in the consecutive Subsection 7.4.1. This is more or less only a general
overview of the previous work. A more detailed investigation is started afterwards where
a specific method is picked and proven. As an example method getHopsLeft() from
the LowPanPacket class is considered and verified in Subsection 7.4.2.

7.4.1 The Networking Library

No remarkable results like software errors or inconsistencies of the code from the network-
ing library were found. This can be either due to the fact that there exist none, or caused
simply by missing or wrong specifications. Still a third option with respect to the size of
proofs exists. Since some of the proofs could not be closed on a standard PC with 3 GB of

118 Chapter 7. Survey of the Sun SPOT’s Networking Library

RAM we are not able to give any statements about them. So it is unclear whether the code
of these methods meet their respective specifications or not.

The mechanism that covers the sending of a packet involves about 100 methods. As it
turned out, much of the time spent was for house-keeping reasons like proof management,
and problems with the KeY tool like the excessive use of bit operations. Due to this fact
not all of the verifications goals were accomplished. So eventually we were able to verify
approximately 80 of 100 methods. In addition much effort is spent on specifications added
to the methods. These specifications which are expressed in the JAVA Modeling Language
JML (see Section 2.3.5 on page 20) are annotated as comments to the code and sum up to
1 486 lines.

For the treated classes approximately 351 proofs exist. The largest ones have approx-
imately 182 000 proof steps. These proofs will not be discussed here in detail. For a
complete overview of the treated verification task we refer to [Sch08]. In the following
unpublished verification goals are illustrated.

7.4.2 A detailed Example

In the following part, the formal correctness of method getHopsLeft() and its verifi-
cation with the KeY environment is considered. The method’s source code and its JML
annotations are depicted in Figure 7.3. For each packet the method is invoked and com-
putes the number of hops left for a packet by decrementing the counter and writing it to
packets for dispatching as explained earlier in Section 7.2.1. If the hop counter exceeds 0,
this packet is dropped.

Specification

The considered method has one contract and is specified as follows:
The pre-condition is formulated by the use of two requires clauses which state that

the radio packet rp must be initialized and its payload must have a positive offset (≥ 0).
Hence it is guaranteed that only valid packets are considered.

The post condition has two ensures clauses and stresses that if the field HopsLeft
from the address field in the mesh header is equal 0xF (see Figure 7.2), the extended
hop counter is used. Remember that it is found in the 8-bit field opt.HopsLeft which
follows the 4-bit HopsLeft field in the mesh header. In case that variable extendedHops
equals true, then the result is a bit-wise conjunction of the MAC payload of packet rp
with 0xFF. Otherwise a bit-wise and is used to compute the results of HOPSLEFT BIT
that is 0x0F and the HopsLeft variable. The purpose of this method is to use bit-stuffing
to fill up the 4-bit hop counter to a byte.

By the specification of normal behavior a normal termination of the method is ex-
pected as a further post condition. The clause assignable \nothing; demands that
no location of the method should be altered during the call.

Verification

The basic proof obligations that need to be considered for every method are defined by
Lemma 8.10 from [BHS07]. We consider S to be a specification for a program P and
show the correctness of P with respect to S by proving the following three major proof

7.4. Results 119

JAVA + JML
/*@ public normal_behavior
@ requires rp.offsetsInitialised;
@ requires 0 <= rp.payloadOffset;
@ ensures extendedHops
@ ==> \result == (byte)(getRadioPacket().getMACPayloadAt(hopsLeftIndex)

& 255);
@ ensures !extendedHops
@ ==> \result == (byte)(getRadioPacket().getMACPayloadAt(hopsLeftIndex)

& HOPSLEFT_BITS);
@ assignable \nothing;
@*/

public /*@ pure @*/ byte getHopsLeft() {
byte hopsLeft = rp.getMACPayloadAt(hopsLeftIndex);
if (extendedHops)

return (byte)(hopsLeft & 0xff);
else

return (byte)(hopsLeft & HOPSLEFT_BITS);
}

JAVA + JML

Figure 7.3: Sources and JML annotation of function getHopsLeft().

obligations: the insurance that the method fulfills its post condition (EnsuresPost), the
RespectsModifies meaning that only the denoted locations of the methods are altered, and
finally the PreservesInv condition stating that all invariants are preserved by the execution
of the method.

In the first step, the verification of EnsuresPost of method getHopsLeft() takes 6 693
steps and the proof splits into 99 branches. By steps we mean the deductive application of
rules to the problem. Essentially this means that all proof goals can hereby be closed. The
proof for the RespectsModifies can be lead in 1 478 steps including 24 branches. The last
proof obligation that considers preserved invariants is trivially true since the considered
method is pure and the following Lemma holds (see Lemma 8.14 from [BHS07]):

Lemma 7 If all operation contracts opct applicable to an operation op have an empty modifies
clause and |= RespectsModifies(opct) then op preserves every invariant.

With this respect a complete correctness proof is given and method getHopsLeft() is
verified with the use of KeY.

7.4.3 General Problems & Results

Since some of the verification steps of the SunSPOT’s network libraries ran into problems,
we shortly discuss these in the following.

120 Chapter 7. Survey of the Sun SPOT’s Networking Library

KeY
estimateOrJint256 {

\find(orJint(x, y) >= 256)
\sameUpdateLevel
\replacewith(moduloInt(x) >= 256 | moduloInt(y) >= 256)
\heuristics(userTaclets1)

};

KeY

Figure 7.4: KeY tacklet for the Lemma estimateOrJlong256.

Bit Operations

In the software that in run on embedded systems bit operations are excessively used, e.g.
the networking layer heavily uses them for the computation of network masks, header
information and so on. The use of bitwise ands and ors lead to strongly splitting proofs.
This could partly be compensated by the use of lemma that turned out to be powerful
enough to handle all bit operations that occurred in this case study. In principle these
lemmas allow the term substitution like:

• commutation of bit operations, i.e., and(a,b) and(b,a)

• fusion of bit operators, i.e., and(and(a,b),b) and(a,b)

• estimation of bit operators, i.e., to estimate 8 bit integer values they are resolved in
KeY with the help of Lemma estimateOrJlong256 from Figure 7.4:

OrJint256(x,y)
 moduloLong(x) >=256 | moduloLong(y) >= 256
 ((x+263) % 264 - 263) >= 256 | ((y+263) % 264 - 263) >= 256

What is important to know is that 120 new lemmas are added to make the verification
with KeY feasible. Some of the lemma are easy to check where others exists, which do
not seem correct at first glance. Nevertheless there is no correctness proof of these lemma
used during the deductive verification.

Strategy ”Contracts”

For verifying methods with more than one contract the strategy was arbitrary chosen by
the KeY prover. In consequence the choice was in many cases insufficient in the context of
the strategy, causing proofs that were not optimal and sometimes even absurd. Further,
the strategy ”Contracts” was using the invariant of a class where a methods contract is
defined and was set as assumed-selection. Although this can be a very useful strategy,
corrupted proofs could be obtained using such a proof system. Fortunately this has been
fixed in the KeY tool which now uses a combination of all applicable pre-conditions

7.5. Conclusion 121

Other related problems

During the verification work we noticed problems with a more or less strong impact on
the considered case study. In this sense to name is the problem with the representation
of number ranges in JML and KeY. Where specifications in JML use a JAVA like number
representation, KeY uses a mathematical model with infinitely large numbers. When
translating the JML specification to JAVADL theses numbers cannot be mapped correctly.
This can be solved by adding special invariants to the requires clauses that incorporate a
JAVA-like view on the treatment of numbers.

Other problems that often appear are strongly splitting proofs caused by programs
with many method calls, or by a heavy use of if-cascades that excessively branch the
proof. Even complicated specifications can increase the complexity of proofs that cannot
be closed in consequence due to memory restrictions on the host system.

7.5 Conclusion

This chapter gives a brief overview of the application of the KeY tool to the SunSPOT’s
networking library and to classes of the LoWPAN adaption layer. In the verification the
built-in dispatch mechanism that the user can access using send() is formally proven.
The work is accomplished in two steps. As a first task the specification of relevant methods
in JML is considered. Secondly, proof obligations are verified that ensure the correctness
of post conditions, the respect of modifies clauses, and the preservation of invariants.
Eventually we were able to verify a large part of the library, and only physical constraints
like the computer’s memory size hindered use from proving more.

Although some challenges still exist, the here presented approach is promising for future
projects that use proof checking on a commercial object oriented software. Furthermore,
the work of [Sch08] gives a comprehensive overview about other important aspects and
problems including specifications and their subsequent verification.

Up to this point we applied many different tools and formalisms to sensor node related
topics, covering many aspects and methods. The following and last chapter summarizes
these results, that were obtained by investigating wireless sensor networks with practices
and tools from the formal method community. As some of the results could also influence
future work, we give suggestions for possible directions which promise to be interesting
for subsequent work in the following conclusion.

122 Chapter 7. Survey of the Sun SPOT’s Networking Library

CHAPTER 8

Conclusion & Thoughts about Future Work

This thesis covers the applicability of formalisms from the formal methods field to the
area of wireless sensor nodes, their software, protocols and transport mechanisms. In this
sense, after the fundamental basis is defined and the technical principles are introduced,
investigations start in different directions. In principle, we can identify in this work two
building blocks that capture interesting aspects of sensor networks in a broader sense.

The first block is covered in Chapter 3 and 4. Here, the objective is to analyze the
efficiency aspects and energy related topics which are meaningful since sensor nodes are
limited in energy and consequently have to operate energy-conscious and efficient. We
gave proof that for this type of experiments, a variety of formalisms from logics exist, to
obtain a suitable modeling, abstraction, and analysis.

The second building block considered in Chapters 5 to 7 provides correctness considera-
tions of protocols and algorithmic aspects. This area of research shows that for many tasks
appropriate models with the required level of abstraction exist. Nevertheless, without an
adequate level of abstraction, the complexity is growing rapidly and further verification is
no longer possible.

Due to the fact that all of the following chapters are almost independent of each other
since they pursue research in sensor network from different point of views, suggestions
for future work are contained after the conclusion of each individual chapter. In this sense,
we investigate in the third chapter the energy use for sensor nodes and different routing
strategies in a fixed but flexible topology.

Chapter 3: Energy Efficient Routing and Scheduling. In Chapter 3 we analyze the
applicability of search algorithms from the model checking area and their practical use in
the domain of wireless sensor networks. The computation of energy related results for
sensor nodes, and routing devices for the packet transport from the sensor nodes down to
the base station is in focus. On the basis of timed automata a node model is designed in
UPPAAL which is capable of collecting sensor information, and send data using multi-hop
in a flexible topology.

Since many of these sensor node models are combined, their concurrent execution

124 Chapter 8. Conclusion & Thoughts about Future Work

can be analyzed with respect to certain constraints like common safety and liveness
properties that guarantee the proper function of the network. In addition, energy related
questions are analyzed by integrating energy specific power draws into the model. By
this combination of timed automata models and sensor networks, we are able to answer
energy related questions like “what is the best sending strength to choose, causing the
fewest collisions?”

We belief that further investigations in this field are possible but would not gain any
further insights. What might be interesting is to check whether new releases of the used
tools allow the computation of actual timing information involved in the energy spending.
In the example at hand, no values for the product of time and the energy spent in a
state could be obtained automatically due to variable type constraints and therefore these
values were computed manually.

In the current chapter the packet transport from the leaves to the sink is treated. We
did not consider the opposite direction, namely the required energy for distributing
information from the sink to the leaves, and start with this study in the following chapter.

Chapter 4: Performance Evaluation of Probabilistic Flooding Protocols. We ana-
lyze a broadcasting mechanism for authenticated queries and determined the effectiveness
of different input parameters. Here we use a Markov model to give precise energy draws
as opposing to simulations, and show that the choice of the parameters and security
strongly depend on the considered topology. In addition, the tradeoff between energy
and security is described by a function, showing optimal reference values for different
scenarios. Since sensor nodes may run out of energy, the effectiveness of the protocol is
pinpointed for different parameter settings that directly correspond with the energy draw
and the involved authenticity of packets.

In future work, an extension of the modeled protocol is thinkable that also accounts for
undecidable queries, i.e., queries for which nodes cannot decide whether they carry a valid
authenticator or not. These are essentially packets equipped with an authenticator for
which a node does not have a single matching key. In the current considered approach the
queries are forwarded, but it is also worth to check if nodes only forward them sporadically
and hereby efficiently encounter battery draining attacks. With the use of such a model
the quality of results could be further increased.

This chapter concludes the energy analysis of this thesis, considered now from both
directions: In the previous chapter from sensor nodes to the sink, and in the current
chapter in the opposite direction. In the subsequent chapters a new part is started which
now considers the verification and correctness of protocols and embedded software by
formal methods. Until now such properties only played a minor role.

Chapter 5: Formal Verification of Probabilistic Query Dissemination. A novel pro-
tocol is investigated for authenticated query dissemination in the field of sensor networks
with respect to several properties. It turns out that the protocol’s underlying algorithm is
exceptionally useful for small networks since the overhead that is spent for authenticity is
minimal with respect to energy. Since this approach is probabilistic, the verification task is
more elaborate. To enable a quantitative comparison of the proposed protocol, a compact
recursive formula capturing the efficiency of the algorithm is derived. It’s correctness is
proved using formal methods. Additionally liveness and safety criteria that guarantee

125

a proper operation of the protocol are provided. Furthermore the safety analysis for the
AQF protocol is given, showing the probability that node and base station do not share
even a single key.

In this chapter no topic arose that would be worth a future investigation. This is mainly
the case since all relevant properties are checked. Of course, the models and conclusions
can be consulted for investigations which consider similar probabilistic protocols or in
detail cover a probabilistic authenticator checking.

The mere fact that the results of the model correspond to the derived probability
formula still give no exhaustive guarantee for its correctness. Even if unlikely, we have no
guarantee that these models are correct since the are developed by hand. Whenever human
intervention is involved, there is the potential possibility of errors, also in the present
situation. With regard to this, an automated model generation has many advantages, but
in turn models become complex since the abstraction level is reduced or even completely
removed. For this reason we provide in the following chapter a generation mechanism
which translates sensor node implementations into software behavior models that can be
used for verification.

Chapter 6: A Verifiable and Secure Concast Protocol We present a formal analysis of
a concast protocol and analyze two different aspects. The one aspect covers the correctness
based on a manually created model which is used to verify protocol related properties
with SPIN, where especially the distributed character plays a role. It basically has the
immense advantage that the modeled abstraction level can be independently chosen by
the user, and hence the model’s complexity is relatively low. But manual model creation
is annoying as it has many drawbacks. In addition, there can be aspects of the ESAWN
protocol which are modeled wrong since SPIN does not have appropriate formalisms to
correctly reflect the intended behavior. In this sense, we cannot conclude the protocol’s
correctness by verifying a manually created artefact. Hence a more realistic model is
needed that is derived using almost no manual interference.

The second approach fulfills this criterion. Here, a new software model is almost fully
automatically derived from a description of sensor nodes in TinyOS, a development
platform for sensor network software. Special about this model is, that it represents the
behavior of a full functional sensor node, defined in ANSI-C. In addition, the model has
no level of abstraction since it represents the real node behavior.

It turns out for the software model that the main problem is caused by the bounded
model checker and its handling of the sending and receiving procedure. Since ESAWN
heavily depends on message passing between nodes, CBMC is not able to handle the
sophisticated properties that cover the correct treatment of ESAWN packets. For the
basic properties that cover the broadcast of the initial configuration, specifications are
successfully checked.

Many of the main difficulties with the C Bounded Model Checker were caused due
to complex sending and receiving routines, which also involve the handling of sending
queues. It is possible that other existing tools can treat theses mechanisms better, although
we did no check on that. Instead we hope that a new release of CBMC will implement
the missing formalisms and, in particular, enable the treatment of more sophisticated
properties.

Special about this chapter is that many directions exist to proceed with the present work.

126 Chapter 8. Conclusion & Thoughts about Future Work

Due to the fact that we were not able to verify all specifications due to the missing imple-
mentation in the verification tool CBMC, this could be kept as a further task, although it
is not very challenging. By the use of SlicX [PK07], additional specifications which cover
temporal properties can be added and checked in a future step. It is also possible to test
the generated software model and the used verification tool by fault injection. This was
done for one property, but can likely be repeated for others.

An additional point of interest is also the following: A software behavior model in
TinyOS can never fully describe a real device behavior since it lacks a hardware model
and in consequence the resulting concurrent nature of these devices is not available. Two
problems are involved with this: First of all, a verifier which is capable of concurrent sys-
tems would be necessary. This is accomplished by bounded model checking of concurrent
programs with threats, investigated in the work of [RG05]. Secondly, a model description
of the hardware would be required which is then run concurrent to the software.

In a further research topic, a modification for the NULL platform which was used for
the model generation could be implemented, with some basic means for packet handling,
especially the sending and receiving. This would make the manual modifications com-
pletely obsolete. Furthermore, it is desirable for such a platform to introduce appropriate
abstraction for non-deterministic or random behavior by over approximation. But most
important, by using an appropriate platform description there are no limits on the ver-
ification of software written in TinyOS since all existing implementations can be easily
derived into ANSI-C. This would have a tremendous impact on the sensor network com-
munity because developers of software can now easily check the correctness of provided
specifications within only a few steps.

All of the work in this chapter only considers automated software generation from
the TinyOS platform. Another software environment is available in JAVA for the im-
plementation and deployment of SunSPOT networks which is covered in the following
chapter.

Chapter 7: Survey of the Sun SPOTs Networking Library In this chapter a theorem
prover called KeY is applied to the SunSPOT’s Networking Library, a commercial product
with publicly available software sources. By the specification of properties in JML, about
80 of 100 methods of the network library implementing the LoWPAN adaption layer are
verified. It turns out that the remaining 20 methods could not we proved mainly due to
the heavy use of bit operations that cause an exponential blow-up by branching. Still, the
here presented work shows the progress of deductive theorem provers and in particular
the usability of KeY.

Of course there always exists the challenge to prove also the remaining parts of the
SunSPOT’s networking library. But this would require not only valid specifications which
are very time consuming to derive without the knowledge of the software engineer, and
the later proof of such a huge system is also very work intensive.

In summary, we showed in the present work the applicability of techniques known
from the area of formal methods, and applied them to aspects from sensor networks, in
particular wireless sensor networks.

Bibliography

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive Modules. In Formal Methods
in System Design, pages 7–48, 1999.

[ASSB96] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying Continuous Time
Markov Chains. In Rajeev Alur and Thomas A. Henzinger, editors, Proc. 8th
International Conference on Computer Aided Verification (CAV’96), volume 1102
of LNCS, pages 269–276. Springer, July 1996.

[Atm] Atmel Corp. ATmega128 datasheet, atmel document no. 2467 edition. http:
//www.atmel.com/dyn/resources/proddocuments/doc2467.pdf.

[BAN90] Michael Burrows, Mart Abadi, and Roger Needham. A logic of authentication.
ACM Transactions on Computer Systems, 8:18–36, 1990.

[BB08] Erik-Oliver Blass and Zinaida Benenson. Das ZeuS-Angreifermodell. Techni-
cal Report TM-2008-1, Institut für Telematik, February 2008. ISSN 1613-849X.

[BBHM05] Gerd Behrmann, Ed Brinksma, Martijn Hendriks, and Angelika H. Mader.
Scheduling lacquer production by reachability analysis - A case study. In
P. Horacek, M. Simandl, and P. Zitek, editors, 16th IFAC World Congress,
Prague, Czech Republic, page Mo_A17_TO/3, Laxenburg, Austria, July 2005.
International Federation of Automatic Control (IFAC).

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Springer Verlag, 2004.

[BCF07] Zinaida Benenson, Peter M. Cholewinski, and Felix C. Freiling. Vulnerabilities
and Attacks in Wireless Sensor Networks, volume 1 of Cryptology & Information
Security Series (CIS), chapter Vulnerabilities and Attacks in Wireless Sensor
Networks. IOS Press, April 2007.

[BCHG99] Christel Baier, Edmund M. Clarke, and Vasiliki Hartonas-Garmhausen. On
the Semantic Foundations of Probabilistic Synchronous Reactive Programs.
Electronic Notes in Theoretical Computer Science, 22:3 – 28, 1999. PROBMIV’98,
First International Workshop on Probabilistic Methods in Verification.

http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf

128 Bibliography

[BCZ05] Erik-Oliver Blaß, Michael Conrad, and Martina Zitterbart. A Tree-Based
Approach for Secure Key Distribution in Wireless Sensor Networks. In REAL-
WSN – Workshop on Real-World Wireless Sensor Networks, Stockholm, Sweden,
June 2005.

[BdA95] A. Bianco and L. de Alfaro. Model Checking of Probabilistic and Nondeter-
ministic Systems. In P. Thiagarajan, editor, Proc. 15th Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 1026 of LNCS,
pages 499–513. Springer, 1995.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on UPPAAL.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT 2004, number 3185 in
LNCS, pages 200–236. Springer–Verlag, September 2004.

[Bec01] Bernhard Beckert. A Dynamic Logic for the Formal Verification of Java Card
Programs. In I. Attali and T. Jensen, editors, JavaCard ’00: Revised Papers
from the First International Workshop on Java on Smart Cards: Programming and
Security, volume 2041 of LNCS, pages 6–24, London, UK, 2001. Springer-
Verlag.

[Ben08] Zinaida Benenson. Access Control in Wireless Sensor Networks. PhD thesis,
Universität Mannheim, 2008.

[BFH+06] Zinaida Benenson, Felix C. Freiling, Ernest Hammerschmidt, Stefan Lucks,
and Lexi Pimenidis. Authenticated Query Flooding in Sensor Networks. Per-
vasive Computing and Communications Workshops, IEEE International Conference
on, 0:644–647, 2006.

[BH05] Richard Bubel and Reiner Hähnle. Formal Specification of Security-Critical
Railway Software with the KeY System. Software Tools for Technology Transfer,
7(3):197–211, June 2005.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The
Software Model Checker Blast. International Journal on Software Tools for Tech-
nology Transfer (STTT), 9(5-6):505–525, 2007.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[BISV08] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin Vet-
terli. The Hitchhiker’s Guide to Successful Wireless Sensor Network De-
ployments. In The 6th ACM Conference on Embedded Networked Sensor Systems
(SenSys 2008), pages 43–56, 2008.

[BKH99] Christel Baier, Jost-Pieter Katoen, and Holger Hermanns. Approximate Sym-
bolic Model Checking of Continuous-Time Markov Chains. In J. Baeten and
S. Mauw, editors, Proc. 10th International Conference on Concurrency Theory
(CONCUR’99), volume 1664 of LNCS, pages 146–161, Eindhoven, August
1999. Springer.

Bibliography 129

[BLR05] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev., 32(4):34–40,
2005.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In CASSIS 2004, LNCS vol. 3362, pages 49–69.
Springer, 2004.

[BWZ08] Erik-Oliver Blaß, Joachim Wilke, and Martina Zitterbart. Relaxed authenticity
for data aggregation in wireless sensor networks. In SecureComm ’08: Proceed-
ings of the 4th international conference on Security and privacy in communication
netowrks, pages 1–10, New York, NY, USA, 2008. ACM.

[BY04] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and
Tools. In Lectures on Concurrency and Petri Nets, pages 87–124. Springer Berlin
/ Heidelberg, July 2004.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Richard Draves and Robbert van Renesse, editors, 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, pages 209–224. USENIX Association,
2008.

[CE82] Edmund M. Clarke and Allen E. Emerson. Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic. In Logic of
Programs, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[CGSW99] Kenneth L. Calvert, James Griffioen, Amit Sehgal, and Su Wen. Concast:
Design and implementation of a new network service. In In Proceedings of
1999 International Conference on Network Protocols, 1999.

[Chi07] Chipcon. CC2420 manual: 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF
Transceiver (Rev. B), March 2007. http://focus.ti.com/lit/ds/
symlink/cc2420.pdf.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking
ANSI-C Programs . In Kurt Jensen and Andreas Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2004), volume
2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

[CKY03] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral Consis-
tency of C and Verilog Programs Using Bounded Model Checking. Technical
Report CMU-CS-03-126, School of Computer Science, Carnegie Mellon Uni-
versity, 2003.

[CLQR07] Shaunak Chatterjee, Shuvendu Lahiri, Shaz Qadeer, and Zvonimir Rakamaric.
A Reachability Predicate for Analyzing Low-Level Software. In Springer
Verlag, editor, Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 07, volume MSR-TR-2006-154. Microsoft Research, April 2007.

http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

130 Bibliography

[CMST08] Ernie Cohen, Michał Moskal, Wolfram Schulte, and Stephan Tobies. A Precise
Yet Efficient Memory Model For C. unpublished, October 2008.

[Cro05] Crossbow Inc. Motes, Smart Dust Sensors, Wireless Sensor Networks, 2005.
http://www.xbow.com/Products/productdetails.aspx?ais=3.

[CT] Inc. Crossbow Technology. MicaZ data sheet.

[CTTV04] Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith.
Verification by Network Decomposition. In Philippa Gardner and Nobuko
Yoshida, editors, CONCUR 2004 - Concurrency Theory, 15th International Con-
ference, London, UK, volume 3170 of Lecture Notes in Computer Science, pages
276–291. Springer, 2004.

[CTW99] M. Chaudron, J. Tretmans, and K. Wijbrans. Lessons from the Application
of Formal Methods to the Design of a Storm Surge Barrier Control System.
In J.M. Wing, J. Woodcock, and J. Davies, editors, FM’99 – World Congress
on Formal Methodsin the Development of Computing Systems II, volume 1709 of
Lecture Notes in Computer Science, pages 1511–1526. Springer-Verlag, 1999.

[Dij72] Edsger W. Dijkstra. Notes on structured programming. In O.-J. Dahl, E.W.
Dijkstra, , and C.A.R. Hoare, editors, Structured Programming, pages 1–81,
New York, 1972. Academic Press.

[ES03] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of Lecture
Notes in Computer Science, pages 502–518. Springer, 2003.

[FG06] Ansgar Fehnker and Peng Gao. Formal Verification and Simulation for Per-
formance Analysis for Probabilistic Broadcast Protocols. In 5th International
Conference on AD-HOC Networks & Wireless, volume 4104 of LNCS, pages
128–141. Springer, 2006.

[Fru06] M. Fruth. Probabilistic Model Checking of Contention Resolution in the IEEE
802.15.4 Low-Rate Wireless Personal Area Network Protocol. In Proc. 2nd In-
ternational Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (ISOLA’06), 2006.

[FvHM07a] Ansgar Fehnker, Lodewijk F. W. van Hoesel, and Angelika H. Mader. Mod-
elling and Verification of the LMAC Protocol for Wireless Sensor Networks.
In J. Davis and J. Gibbons, editors, Proceedings of the 6th International Confer-
ence on Integrated Formal Methods, IFM 2007, Oxford, Britain, volume 4591 of
Lecture Notes in Computer Science, pages 253–272, Berlin / Heidelberg, June
2007. Springer Verlag.

[FvHM07b] Ansgar Fehnker, Lodewijk F. W. van Hoesel, and Angelika H. Mader. Mod-
elling and Verification of the LMAC Protocol for Wireless Sensor Networks.
In J. Davis and J. Gibbons, editors, Proceedings of the 6th International Confer-
ence on Integrated Formal Methods, IFM 2007, Oxford, Britain, volume 4591 of
Lecture Notes in Computer Science, pages 253–272, Berlin / Heidelberg, June
2007. Springer Verlag.

http://www.xbow.com/Products/productdetails.aspx?ais=3

Bibliography 131

[Han07] Youssef Hanna. SLEDE: lightweight verification of sensor network security
protocol implementations. In ESEC-FSE companion ’07: The 6th Joint Meeting
on European software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering, pages 591–594, New York, NY, USA,
2007. ACM.

[HCL08] Gregory Hackmann, Octav Chipara, and Chenyang Lu. Robust topology
control for indoor wireless sensor networks. In SenSys ’08: Proceedings of the
6th ACM conference on Embedded network sensor systems, pages 57–70, New
York, NY, USA, 2008. ACM.

[HCSY92] Thomas A. Henzinger, Xavier Cicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In Proc. 7th Annual IEEE
Symposium on Logic in Computer Science, pages 394–406, 1992.

[HJ94] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[HKNP06] A. Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM:
A Tool for Automatic Verification of Probabilistic Systems. In Holger Her-
manns and J. Palsberg, editors, Proc. 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’06), volume
3920 of LNCS, pages 441–444. Springer, 2006.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Journal of Information and
Computation, 111(2):193–244, 1994.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.
Addison-Wesley Professional, September 2003.

[HS00] Gerard J. Holzmann and Margaret H. Schmith. Automating Software Feature
Verification. Technical report, Bell Labs Technical Journal, 2000.

[Kal92] B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. Technical report,
RSA Laboratories - Network Working Group, April 1992.

[Kat03] Jost-Pieter Katoen. Principles of Model Checking. University of Twente, Formal
Methods and Tools Group, lecture nodes edition, 2002/2003.

[KDD04] Uwe Kubach, Christian Decker, and Ken Douglas. Collaborative control
and coordination of hazardous chemicals. In 2nd international conference on
Embedded networked sensor systems 2004 (SenSys 2004), November 03 - 05 2004.

[KMG08] N. Kothari, T. Millstein, and R. Govindan. Deriving State Machines from
TinyOS Programs Using Symbolic Execution. In IPSN ’08: Proceedings of the
7th international conference on Information processing in sensor networks, pages
271–282, April 2008.

132 Bibliography

[KNP01] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic
Symbolic Model Checker. In P. Kemper, editor, Proc. Tools Session of Aachen
2001 International Multiconferenceon Measurement, Modelling and Evaluation of
Computer-CommunicationSystems, pages 7–12, September 2001. Available as
Technical Report 760/2001, University of Dortmund.

[KNP05] Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic Model
Checking and Power-Aware Computing. In Proc. 7th International Workshop on
Performability Modeling of Computer and Communication Systems (PMCCS’05),
pages 6–9, 2005.

[KNP07] Marta Kwiatkowska, Gethin Norman, and D Parker. Stochastic model check-
ing. In M. Bernardo and J. Hillston, editors, Formal Methods for the Design of
Computer, Communication and Software Systems: Performance Evaluation (SFM
2007), volume 4486 of LNCS (Tutorial Volume), pages pages 220–270. Springer,
2007.

[KNS02] Marta Kwiatkowska, Gethin Norman, and J. Sproston. Probabilistic Model
Checking of the IEEE 802.11 Wireless Local Area Network Protocol. In Holger
Hermanns and R. Segala, editors, Proc. 2nd Joint International Workshop on
Process Algebra and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV’02), volume 2399 of LNCS, pages 169–187. Springer, 2002.

[KNSW04] Marta Kwiatkowska, Gethin Norman, J. Sproston, and F. Wang. Symbolic
Model Checking for Probabilistic Timed Automata. In Y. Lakhnech and
S. Yovine, editors, Proc. Joint Conference on Formal Modelling and Analysis of
Timed Systems and Formal Techniques in Real-Time and Fault Tolerant Systems
(FORMATS/FTRTFT’04), volume 3253 of LNCS, pages 293–308. Springer, 2004.

[lab04] Intel Berkeley Research lab. Intel Lab Data. http://db.csail.mit.edu/
labdata/labdata.html, April 2004.

[LBB+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas
Hune, Paul Pettersson, and Judi Romijn. As Cheap as Possible: Efficient Cost-
Optimal Reachability for Priced Timed Automata. In G. Berry, H. Comon,
and A. Finkel, editors, Proceedings of CAV 2001, number 2102 in Lecture Notes
in Computer Science, pages 493–505. Springer–Verlag, 2001.

[LBR98] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report 98-06,
Iowa State University, Department of Computer Science, 1998.

[LL03] Philip Levis and Nelson Lee. TOSSIM: A Simulator for TinyOS Networks, 1.0
edition, September 2003.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In Proceedings of the
First ACM Conference on Embedded Networked Sensor Systems (SenSys ’03), pages
126–137, New York, NY, USA, 2003. ACM.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

Bibliography 133

[LO05] Ciaran Lynch and Fergus O’Reilly. Processor Choice for Wireless Sensor Net-
works. In Proc. 1st Workshop on Real-World Wireless Sensor Networks REALWSN,
number T2005:09 in SICS Technical Reports, pages 58–62. SICS, Stockholm,
Sweden, 2005.

[LPC+08] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M. Zimmerman.
JML Reference Manual, 1.235 (draft) edition, May 2008.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1997.

[Mar97] Dowson Mark. The Ariane 5 software failure. SIGSOFT Softw. Eng. Notes,
22(2):84, 1997.

[McI06] A. K. McIver. Quantitative refinement and model checking for the analysis
of probabilistic systems. In Proc. Formal Methods (FM 2006), volume 4085 of
LNCS, pages 131–146. Springer Verlag, 2006.

[MFHH05] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, March 2005.

[MKHC07] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. Network Working Group. Internet-Draft,
February 2007.

[Möl96] Karl-Heinz Möller. Ausgangsdaten für Qualitätsmetriken - Eine Fundgrube
für Analysen. Software-Metriken in der Praxis, 1996.

[Mos07] Wojciech Mostowski. Fully Verified Java Card API Reference Implementation.
In Bernhard Beckert, editor, Verify’07 4th International Verification Workshop,
volume 259 of CEUR WS, July 2007.

[Mot06] Moteiv Corporation. Tmote Sky Datasheet, 1.04 edition, November 2006. http:
//www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf.

[Net] Network Simulator ns-2. http://nsnam.isi.edu/nsnam/.

[NPK+02] Gethin Norman, David Parker, Marta Kwiatkowska, S. Shukla, and R. Gupta.
Formal Analysis and Validation of Continuous Time Markov Chain Based
System Level Power Management Strategies. In W. Rosenstiel, editor, Proc.
7th Annual IEEE International Workshop on High Level Design Validation and Test
(HLDVT’02), pages 45–50. IEEE Computer Society Press, 2002.

[NPK+03] Gethin Norman, David Parker, Marta Kwiatkowska, S. Shukla, and R. Gupta.
Using Probabilistic Model Checking for Dynamic Power Management. In
M. Leuschel, S. Gruner, and S. Lo Presti, editors, Proc. 3rd Workshop on Auto-
mated Verification of Critical Systems (AVoCS’03), Technical Report DSSE-TR-
2003-2, University of Southampton, pages 202–215, April 2003.

http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf
http://nsnam.isi.edu/nsnam/

134 Bibliography

[NTCS99] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The broad-
cast storm problem in a mobile ad hoc network. In MobiCom ’99: Proceedings
of the 5th annual ACM/IEEE international conference on Mobile computing and
networking, pages 151–162, New York, NY, USA, 1999. ACM.

[Pau94] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in Lecture
Notes in Computer Science. Springer – Berlin, 1994.

[Pim98] Kars Pim. Formal Methods in the Design of s Storm Surge Barrier Control
System. In Lectures on Embedded Systems, European Educational Forum, School
on Embedded Systems, pages 353–367, London, UK, 1998. Springer-Verlag.

[PK07] Hendrik Post and Wolfgang Küchlin. Integrated static analysis for linux
device driver verification. In Jim Davies and Jeremy Gibbons, editors, IFM,
volume 4591 of Lecture Notes in Computer Science, pages 518–537. Springer,
2007.

[Pri] Prism Manual, 3.2 edition. http://www.prismmodelchecker.org/.

[QS82] J. P. Quielle and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In In Proceedings of the 5th International Symposium on
Programming, pages 337–350, 1982.

[RFC89] RFC 1122 standard. Requirements for Internet Hosts—Communication Layers.
Internet Engineering Task Force (IETF), 1989.

[RG05] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent
programs. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume
3576 of Lecture Notes in Computer Science, pages 82–97. Springer, 2005.

[RKNP04] J.J.M.M. Rutten, Marta Kwiatkowska, Gethin Norman, and David Parker.
Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems, vol-
ume 23 of CRM Monograph Series. American Mathematical Society, 2004.

[RLS04a] Jacob Illum Rasmussen, Kim G. Larsen, and Kna Subramani. Resource-
optimal scheduling using priced timed automata. In 10th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’04), number
2988 in LNCS, pages 220–235. Springer, 2004.

[RLS04b] J.I. Rasmussen, Kim G. Larsen, and K. Subramani. Tools and Algorithms for the
Construction and Analysis of Systems, volume 2988 of LNCS, chapter Resource-
Optimal Scheduling Using Priced Timed Automata, pages 220–235. Springer,
2004.

[RNS00] Rustan, Greg Nelson, and James B. Saxe. ESC/Java User’s Manual. Technical
Note 2000-002, Compaq SRC, October 2000.

[Sch08] Chistoph Scheben. Verificatin of Sun SPOT’s Network Library. Master’s
thesis, University of Karlsruhe (TH), Faculty of Computer Science, Institute
of Theoretical Computer Science, May 2008.

http://www.prismmodelchecker.org/

Bibliography 135

[Soc06] IEEE Computer Society. IEEE std. 802.15.4 - 2006: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wire-
less Personal Area Networks (WPANs). Technical report, IEEE Computer
Society, September 2006.

[Soc07] IEEE Computer Society. IEEE Standard for Information technology, Telecom-
munications and information exchange between systems, Local and metropoli-
tan area networks,Specific requirements. Technical Report 802.11-2007, IEEE
Computer Society, June 2007.

[SOR93] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference
Manual. Computer Science Laboratory, SRI International, Menlo Park, CA,
February 1993.

[Spi09] The model checker Spin, 2009. http://spinroot.com/spin/whatispin.
html.

[Sun08] Sun Labs. Sun Small Programmable Object Technology (Sun SPOT): Theory of
Operation, August 2008.

[SW07] Peter H. Schmitt and Frank Werner. Model Checking for Energy Efficient
Scheduling in Wireless Sensor Networks. Technical Report 2007-01, Univer-
sität Karlsruhe, January 2007.

[TCCP08] Llanos Tobarra, Diego Cazorla, Fernando Cuartero, and J. Jose Pardo. Mod-
elling secure wireless sensor networks routing protocols with timed automata.
In PM2HW2N ’08: Proceedings of the 3nd ACM workshop on Performance monitor-
ing and measurement of heterogeneous wireless and wired networks, pages 51–58,
New York, NY, USA, 2008. ACM.

[Ton07] Isabel Tonin. Verifying the Mondex Case Study.The KeY Approach. Techischer
Bericht 2007-4, Fakultät für Informatik, Universität Karlsruhe, 2007.

[TXY08] Simon Tschirner, Liang Xuedong, and Wang Yi. Model-based validation of
QoS properties of biomedical sensor networks. In EMSOFT ’08: Proceedings of
the 7th ACM international conference on Embedded software, pages 69–78, New
York, NY, USA, 2008. ACM.

[Wei88] Mark Weiser. Ubiquitous Computing. http://www.ubiq.com/
hypertext/weiser/UbiHome.html, 1988.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American, February
1991.

[Win05] A. Winter. dB or not dB. Rohde & Schwarz, application note 1ma98 edition,
October 2005.

[WS07] Frank Werner and Peter H. Schmitt. Model Checking for Energy Efficient
Scheduling in WSN. Technical report, 6. Fachgespräch Sensornetzwerke
[GI/07], July 2007. Technischer Bericht der RWTH Aachen, Distrubuted
Systems Group.

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html

136 Bibliography

[WS08] Frank Werner and Peter H. Schmitt. Analysis of authenticated Query Flooding
by Probabilistic Means. In The 5th Annual Conference on Wireless on Demand
Network Systems and Services (WONS 2008), pages 101–104, January 2008.

[WWB+08] Joachim Wilke, Frank Werner, Markus Bestehorn, Zinaida Benenson, Simon
Kellner, and Erik-Oliver Blaß. Vergleichbarkeit von Ansätzen zur Netzw-
erkanalyse in drahtlosen Sensornetzen. In Hartmut Ritter, Kirsten Terfloth,
Georg Wittenburg, and Jochen Schiller, editors, Fachgespräch Sensornetze -
FGSN 2008, number B 08-12 in Proceedings of 7. Fachgespräch Sensornetzw-
erke, pages 97–100, Berlin, Deutschland, September 2008. 7. Fachgespräch
Sensornetzwerke.

[ZB06] Martina Zitterbart and Erik-Oliver Blaß. An Efficient Key Establishment
Scheme for Secure Aggregating Sensor Networks. In ACM Symposium on
Information, Computer and Communications Security, pages 303–310, Taipei,
Taiwan, March 2006. ISBN 1-59593-272-0.

[ZBG98] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A Library for Parallel
Simulation of Large-Scale Wireless Networks. In Workshop on Parallel and
Distributed Simulation, pages 154–161, 1998.

[Zig05] ZigBee Alliance. ZigBee Specification 1.0, June 2005.

[ZXSJ03] S. Zhu, S. Xu, S. Setia, and S. Jajodia. Establishing pair-wise keys for secure
communication in ad hoc networks: A probabilistic approach. George Mason
University, Tech. Rep. ISE-TR-03-01, March 2003.

APPENDIX A

Energy Efficient Routing and Scheduling

A.1 Additional Functions for the Uppaal Analysis

The following functions were used for the efficiency analysis from Chapter 3. Function
CheckID() is checking whether any device within range of device id (dist[id][i])
is able to receive in which case true is returned:
bool CheckID (id_t id){

bool rv=false ;
int i=0;

4 for (0 ; i<N ; i++)
if ((dist [id] [i]<=TXpowerLow) & (a [i]==N))

rv=true ;
return rv ;

}

Clean(id) is resetting the channel for devices that carry the flag of sensor id.
void Clean (id_t id){

2 int i=0;
for (0 ; i<N ; i++)
if ((dist [id] [i]<=TXpowerLow) & (a [i]==id))

a [i]=−1;
}

Function CleanAll(id) clears the channel of all gadgets within the transmission
range.
void CleanAll (id_t id){

int i=0;
for (0 ; i<N ; i++)

4 if (dist [id] [i]<=TXpowerLow)
a [i]=−1;

}

Function CheckAv(id) checks the availability of each device within the transmission
range by setting a flag on array a[].
void CheckAv (int id){

int i ;
for (0 ; i<N ; i++)

4 if (dist [id] [i]<=TXpowerLow)

138 Appendix A. Energy Efficient Routing and Scheduling

//Put Senders ID on Receivers Channel
if (a [i]==−1) a [i]=id ;

else
//Put Collision on Receivers Channel

9 if (a [i]>−1) a [i]=N ;
}

A.2 Various Constant Definitions

const int ProcActiveDraw=8000; //8 mA
const int ProcSleepDraw =15; //<15 muA
const int TransReceiveDraw = 19700 ; //19.7 mA
const int TransMinus10dBmDraw = 11000 ; //11 mA TX, -10 dBm

5 const int TransMinus5dBmDraw = 14000 ; //14 mA TX, -5 dBm
const int Trans0dBmDraw = 17400 ; //17.4 mA TX, 0 dBm
const int TransIdleDraw = 2 0 ; //20 mu A, voltage regular on
const int TransSleepDraw = 1 ; //1 mu A, voltage regulator off

10 //System Draw - States
const int PDown = 2 ; //15+1;
const int PSleep = 8 ; //8000 + 1;
const int PIdle = 8 ; //8000 + 20;
const int PRcv = 2 8 ; //8000 + 19700;

15
//different TX strength
//const int PSnd = 19; //8000 + 11000, Sending with -10dBm
//const int PSnd = 22; //8000 + 14000, Sending with -5dBm
const int PSnd = 2 5 ; //8000 + 17400, Sending with 0dBm

20
const int ActivePeriod=1; //Time Units a Mote stays active
const int ActiveCycle=100; //Time units between 2 consecutive beacons

APPENDIX B

Analyzing Probabilistic Flooding

B.1 Prism Model of the Scenario 1

probabilistic
const double pf ;

3
//Global Variables
//0 - Nothing received
//1 - received and deciding
global a : [0 . . 1] init 1 ;

8 global b : [0 . . 1] init 0 ;
global c : [0 . . 1] init 0 ;
global d : [0 . . 1] init 0 ;
global e : [0 . . 1] init 0 ;
global f : [0 . . 1] init 0 ;

13
module sensA

//Local Variables
//0 - Nothing received
//1 - accepted query

18 //2 - rejected query
la : [0 . . 2] init 0 ;

[] (a=1) & (la=0) −> pf : (la ’ = 1) & (b ’ = 1) +
(1−pf) : (la ’ = 2) ;

23 endmodule

//Instantiate other modules by renaming
module sensB=sensA [la=lb , a=b , b=c] endmodule
module sensC=sensA [la=lc , a=c , b=d] endmodule

28 module sensD=sensA [la=ld , a=d , b=e] endmodule
module sensE=sensA [la=le , a=e , b=f] endmodule

//Reward Variables
rewards

33 a=1: 1 ;
b=1: 1 ;
c=1: 1 ;
d=1: 1 ;
e=1: 1 ;

140 Appendix B. Analyzing Probabilistic Flooding

38 endrewards

B.2 Energy Computation for TMote Sky Nodes

use POSIX ;
2

my $m = 1 0 0 ; # authenticator size in bits
my $data = 8 ; # data length in bits
my $keylen = 1 2 8 ; # bits - alternatively 128 bit or 256 bit
my $l=1000; # key pool size

7 my $k=50; # keys per node
my $capNodes=1; # captures nodes

my $pf ; #probability of forwarding a faked packet
my $B ;

12 my $bsnail ;
my $matching_node_keys ;
my $payload = $m + $data ; # bits - compute for every m

Rounds running the MD2 cipher
17 my $md2_block_instr = 16 ∗ 10 + 16 ∗ 5 + 18 ∗ (48 ∗ 4 + 2) ;

my $mipms = 6 ∗ 1000 ;

#Energy Costs for the TMote Sky node
my $pow_rx = 0 . 0 5 9 ; # W

22 my $pow_tx = 0 . 0 5 6 ; # W
my $pow_mv = 0 . 0 6 5 ; # W
my $pow_cpu = 0 . 0 0 6 ; # W

#accumulator variables
27 my $tot_nrg = 0 ; # mJ

my $tot_tme = 0 ; # ms
my $energy = 0 ; # mJ
my $time = 0 ; # ms

32 sub ComputePF (){
#compute forwarding probability according to AQF
$bsnail= $l∗(1−(1− (($k/$l) ∗∗ $capNodes))) ;
$B=$m∗ (($bsnail + $l) / (2∗$l)) ;
$matching_node_keys=($m∗$k)/$l ;

37 $pf= ((($l−$k)/$l) + (($k∗$B) / ($l∗$m))) ∗∗ $m ;
}

sub ComputeEnergy (){
##Reset variables

42 $tot_nrg=0;
$tot_tme=0;

##CMP payload
$payload = $m + $data ;

47
packet reception
$time = 0 . 5 + 0 .035 ∗ ($payload / 8 . 0) ;
$energy = $pow_rx ∗ $time ;
$tot_nrg += $energy ; $tot_tme += $time ;

52
packet loading
$time = 2 + 0 . 0 5 ∗ ($payload / 8 . 0) ;
$energy = $pow_mv ∗ $time ;
$tot_nrg += $energy ; $tot_tme += $time ;

57 print "Energy (rcv): \t$tot_nrg\n" ;

hash of data
$time = $md2_block_instr ∗ floor ((floor (($data+7)/8) + 31)/16) / $mipms ;
$energy = $pow_cpu ∗ $time ;

62 $tot_nrg += $energy ; $tot_tme += $time ;

validating hashes

B.3. Prism Verification Results 141

$time = $matching_node_keys ∗ $md2_block_instr
∗ floor ((floor (($data + $keylen + 7)/8) + 31) / 16) / $mipms ;

67 $energy = $pow_cpu ∗ $time ;
$tot_nrg += $energy ; $tot_tme += $time ;
print "Energy (RCV+CMP): \t$tot_nrg mJ\n" ;

packet sending
72 $time = 2 + 0 . 0 5 ∗ ($payload / 8 . 0) ;

$energy = $pow_mv ∗ $time ;
$tot_nrg += $energy ; $tot_tme += $time ;

packet transmission
77 $time = 0 . 5 + 0 .035 ∗ ($payload / 8 . 0) ;

$energy = $pow_tx ∗ $time ;
$tot_nrg += $energy ; $tot_tme += $time ;
print "Energy (RCV+CMP): \t$tot_nrg mJ\n" ;

}
82

ComputePF () ;
ComputeEnergy () ;

B.2.1 Energy for faked and legitimate queries

B.3 Prism Verification Results

B.3.1 Comparison of Prism and theoretical results

Probabilities for problem 2 (see Figure 4.1b) computed using PRISM by the formula that i
nodes accept a query(ACCi) with pf = 0.14.

i Markov chain formula difference
0 8.600000E-01 0.000000E+00 8.600000E-01
1 1.035440E-01 1.035440E-01 0.000000E+00
2 2.899232E-02 2.899232E-02 0.000000E+00
3 6.088387E-03 6.088387E-03 0.000000E+00
4 1.136499E-03 1.136499E-03 0.000000E+00
5 2.118381E-04 1.988873E-04 1.295080E-05
6 2.408849E-05 3.341307E-05 -9.324577E-06
7 2.592751E-06 5.457468E-06 -2.864717E-06
8 2.538357E-07 8.731949E-07 -6.193592E-07
9 2.066105E-08 1.375282E-07 -1.168671E-07

10 0.000000E+00 2.139327E-08 -2.139327E-08

B.3.2 Comparing different topologies

Energy in mJ for different network topologies. The first line indicated the power use for
simple flooding without the AQF algorithm.

142 Appendix B. Analyzing Probabilistic Flooding

` = 1 000 ` = 5 000 ` = 10 000
m k Efake Enonfake Efake Enonfake Efake Enonfake

100 50 0.31 6.28 2.04 5.74 3.51 5.67
150 50 0.29 7.4 1.42 6.6 3.03 6.49
200 50 0.31 8.53 1.08 7.45 2.59 7.32
250 50 0.33 9.65 0.88 8.31 2.23 8.14
300 50 0.37 10.78 0.77 9.17 1.93 8.96
350 50 0.4 11.9 0.71 10.02 1.71 9.79
400 50 0.43 13.03 0.67 10.88 1.54 10.61
450 50 0.46 14.15 0.65 11.73 1.41 11.43
500 50 0.5 15.28 0.65 12.59 1.31 12.26
100 100 0.24 6.95 0.85 5.87 2.04 5.74
150 100 0.27 8.41 0.57 6.8 1.42 6.6
200 100 0.3 9.87 0.47 7.72 1.08 7.45
250 100 0.33 11.33 0.44 8.64 0.88 8.31
300 100 0.36 12.79 0.43 9.57 0.77 9.17
350 100 0.4 14.25 0.44 10.49 0.71 10.02
400 100 0.43 15.71 0.46 11.42 0.67 10.88
450 100 0.46 17.18 0.48 12.34 0.65 11.73
500 100 0.5 18.64 0.51 13.26 0.65 12.59
100 150 0.23 7.62 0.5 6.01 1.26 5.81
150 150 0.26 9.42 0.38 7 0.82 6.7
200 150 0.3 11.21 0.35 7.99 0.64 7.59
250 150 0.33 13.01 0.36 8.98 0.55 8.48
300 150 0.36 14.81 0.38 9.97 0.52 9.37
350 150 0.4 16.61 0.41 10.96 0.5 10.26
400 150 0.43 18.4 0.43 11.95 0.51 11.15
450 150 0.46 20.2 0.47 12.94 0.52 12.04
500 150 0.5 22 0.5 13.93 0.54 12.93
100 200 0.23 8.29 0.37 6.14 0.85 5.87
150 200 0.26 10.42 0.32 7.2 0.57 6.8
200 200 0.3 12.56 0.32 8.26 0.47 7.72
250 200 0.33 14.69 0.34 9.32 0.44 8.64
300 200 0.36 16.82 0.37 10.37 0.43 9.57
350 200 0.4 18.96 0.4 11.43 0.44 10.49
400 200 0.43 21.09 0.43 12.49 0.46 11.42
450 200 0.46 23.22 0.46 13.55 0.48 12.34
500 200 0.5 25.35 0.5 14.61 0.51 13.26
100 250 0.23 8.96 0.31 6.28 0.63 5.94
150 250 0.26 11.43 0.29 7.4 0.45 6.9
200 250 0.3 13.9 0.31 8.53 0.39 7.86
250 250 0.33 16.37 0.33 9.65 0.38 8.81
300 250 0.36 18.84 0.37 10.78 0.4 9.77
350 250 0.4 21.31 0.4 11.9 0.42 10.73
400 250 0.43 23.78 0.43 13.03 0.44 11.68
450 250 0.46 26.24 0.46 14.15 0.47 12.64
500 250 0.5 28.71 0.5 15.28 0.5 13.6

Table B.1: AQF Energy use for fake packets Efake and legitimate packets Enonfake.

B.4. Prism Model for topology 4 143

m MNKK pf top 4 top 5 top 6 top 7 top 8
- - - 45.0306 32.4785 28.9645 24.7955 39.3432

100 1.6667 0.4392 19.0830 10.4167 10.5800 8.2174 13.6913
150 2.5000 0.2911 12.3856 7.3820 7.4834 6.3961 9.6075
200 3.3333 0.1929 9.3111 6.2246 6.2778 5.7378 7.6218
250 4.1667 0.1278 7.9657 5.8281 5.8565 5.5641 6.6920
300 5.0000 0.0847 7.4321 5.7782 5.7932 5.6232 6.3185
350 5.8333 0.0561 7.3082 5.9081 5.9158 5.8112 6.2531
400 6.6667 0.0372 7.4101 6.1420 6.1459 6.0788 6.3672
450 7.5000 0.0247 7.6469 6.4412 6.4430 6.3988 6.5910
500 8.3333 0.0163 7.9696 6.7835 6.7844 6.7546 6.8848

B.4 Prism Model for topology 4

1 //Prism Model topology 4
probabilistic

const double pf ;
const double engr=42; //in mu As 42

6 const double engrs= 2 2 7 . 2 ; //in mu As 185.2

//0 - Nothing received
//1 - received and deciding
global a : [0 . . 1] init 1 ;

11 global b : [0 . . 1] init 1 ;
global c : [0 . . 1] init 1 ;
global d : [0 . . 1] init 1 ;
global e : [0 . . 1] init 0 ;
global f : [0 . . 1] init 0 ;

16 global g : [0 . . 1] init 0 ;
global h : [0 . . 1] init 0 ;
global i : [0 . . 1] init 0 ;
global j : [0 . . 1] init 0 ;
global k : [0 . . 1] init 0 ;

21 global l : [0 . . 1] init 0 ;
global m : [0 . . 1] init 0 ;
global n : [0 . . 1] init 0 ;

module sensA
26 la : [0 . . 3] init 0 ; //0 - Nothing,1 - accepted, 2 - rejected

[] (a=1) & (la=0) −> pf : (la ’=1)&(b ’=1)&(d ’=1)&(c ’ = 1)
+ 1−pf : (la ’ = 2) ;

[ar] (a=1) & (la=2) −> (la ’ = 3) ;
31 [ars] (a=1) & (la=1) −> (la ’ = 3) ;

endmodule

module sensB
lb : [0 . . 3] init 0 ; //0 - Nothing,1 - accepted, 2 - rejected

36
[] (b=1) & (lb=0) −> pf : (lb ’=1)&(a ’=1)&(d ’=1)&(g ’=1)&(e ’ = 1)

+ 1−pf : (lb ’ = 2) ;
[br] (b=1) & (lb=2) −> (lb ’ = 3) ;
[brs] (b=1) & (lb=1) −> (lb ’ = 3) ;

41 endmodule
module sensC=sensB [lb=lc , b=c , a=a , d=d , g=h , e=f , br=cr , brs=crs] endmodule

module sensD
ld : [0 . . 3] init 0 ; //0 - Nothing,1 - accepted, 2 - rejected

46
[] (d=1) & (ld=0) −> pf : (ld ’=1)&(a ’=1)&(c ’=1)&(h ’ = 1) &(j ’=1)&(g ’=1)&(b ’ = 1)

+ 1−pf : (ld ’ = 2) ;

144 Appendix B. Analyzing Probabilistic Flooding

[dr] (d=1) & (ld=2) −> (ld ’ = 3) ;
[drs] (d=1) & (ld=1) −> (ld ’ = 3) ;

51 endmodule

module sensF=sensA [la=lf ,a=f ,b=c ,d=h ,c=k ,ar=fr ,ars=frs] endmodule
module sensG=sensD [ld=lg ,d=g ,a=e ,c=b ,h=d ,j=j ,g=l ,b=i ,dr=gr ,drs=grs] endmodule

56 module sensH=sensD [ld=lh ,d=h ,a=d ,c=c ,h=f ,j=k ,g=m ,b=j ,dr=hr ,drs=hrs] endmodule
module sensI=sensA [la=li ,a=i ,b=e ,d=g ,c=l ,ar=ir ,ars=irs] endmodule
module sensK=sensA [la=lk ,a=k ,b=f ,d=h ,c=m ,ar=kr ,ars=krs] endmodule
module sensJ=sensD [ld=lj ,d=j ,a=g ,c=d ,h=h ,j=m ,g=n ,b=l ,dr=jr ,drs=jrs] endmodule
module sensL=sensB [lb=ll ,b=l ,a=i ,d=g ,g=j ,e=n ,br=lr ,brs=lrs] endmodule

61 module sensM=sensB [lb=lm ,b=m ,a=n ,d=j ,g=h ,e=k ,br=mr ,brs=mrs] endmodule
module sensN=sensA [la=ln ,a=n ,b=l ,d=j ,c=m ,ar=nr ,ars=nrs] endmodule

rewards ”power”
[ar] true :engr ;

66 [ars] true :engrs ;
[br] true :engr ;
[brs] true :engrs ;
[cr] true :engr ;
[crs] true :engrs ;

71 [dr] true :engr ;
[drs] true :engrs ;
[er] true :engr ;
[ers] true :engrs ;
[fr] true :engr ;

76 [frs] true :engrs ;
[gr] true :engr ;
[grs] true :engrs ;
[hr] true :engr ;
[hrs] true :engrs ;

81 [ir] true :engr ;
[irs] true :engrs ;
[jr] true :engr ;
[jrs] true :engrs ;
[kr] true :engr ;

86 [krs] true :engrs ;
[lr] true :engr ;
[lrs] true :engrs ;
[mr] true :engr ;
[mrs] true :engrs ;

91 [nr] true :engr ;
[nrs] true :engrs ;

endrewards

APPENDIX C

The pf Formula

C.1 Notes on Random Sets

Let V = {1, 2, . . . , `} be a finite set of elements. P(V) is used to denote the set of all subsets
of V . A k-subset S ⊆ V represents a subset of V containing exactly k elements. Analog
Pk(V) denotes the set of all k-subsets of V . Thus for every k-set S ∈ Pk(V) the uniform
discrete probability distribution is given by

P : Pk(V)→ [0, 1], P (S) =
(
`

k

)−1

=
k! · (`− k)!

`!

In addition the same letter P is used to denote the uniform probability measure on the set
of all subsets of Pk(V) with

P : P(Pk(V))→ [0, 1], P (S) = s ·
(
`

k

)−1

where s is the number of elements in S .

Lemma 8 (Random k-Set) Let e be an arbitrary element from V .
The probability that a random k-set contains element e is k

`

Proof: The desired probability measure can be computed out of b
a where a is the number

of all k-sets and b is the number of all k-sets containing element e. Now, b =
(

`
k

)
= `!

k!(`−k)!

while a is the number of all (k − 1)-subsets of V \ {e}, i.e., a =
(

`−1
k−1

)
= (`−1)!

(k−1)!(`−k)! . It thus
follows that

b

a
=

(k − 1)!(`− k)! `!
(`− 1)! k!(`− k)!

=
k

`

146 Appendix C. The pf Formula

Corollary 9 Let e be an arbitrary element from V .
With Lemma 8 it follows the probability that a random k-set does not contain element e is

1− k

`
=
`− k
k

Lemma 10 (Random Variable) A random variable X is a real-valued function with

X : Pk(V)→ R

Definition 11 (Expected Value) For an element e and a random variable X let X(Pk(V)) =
{X(s) | s ∈ Pk(V)} = {e1, . . . , er} be its range. The quantity

∑r
j=1 ej ·P (X = ej) is called the

expected value of X . In symbols

E(X) =
r∑

j=1

ej · P (X = ej)

As usual X = e is shorthand for the set {s ∈ Pk(V) | X(i) = e}.

Lemma 12 (Boolean Random Variable) Let X(Pk(V)) = {0, 1} be a Boolean random vari-
able. Then

E(X) = P (X = 1)

Proof As a simple example consider for i ∈ V the Boolean random variable

Xi(S) =
{

0 if i 6∈ S
1 if i ∈ S

Then E(Xi) = P (Xi = 1) = P (i ∈ S) = k
` .

Lemma 13 (Linearity of Expectation) Let X and Y be random variables on the same probabil-
ity space, a, b, c ∈ R. Out of the linearity of the expectation is follows that

E(a+ b ·X + c · Y) = a+ b · E(X) + c · E(Y)

Proof See any textbook on probability theory for the simple, but non-trivial proof.
Instead of the probability space (Pk(V), P) we are also interested in products of this space,
e.g., in ((Pk(V))m, P), with P ((S1, . . . , Sm)) = P (S1) · . . . · P (Sm). To avoid overloaded
notation we continue to use P for this probability distribution.

Lemma 14 Let X be the random variable on Pk(V)2 with X(S1, S2) = the number of elements
in S1 ∪ S2. Then

E(X) = `

(
1−

(
`− k
`

)2
)

C.2. Correctness of pf 147

Proof For 1 ≤ i ≤ ` let Xi be the Boolean random variable on Pk(V)2 defined by

Xi(S1, S2) =
{

1 if i 6∈ S1 ∪ S2

0 otherwise

By Corollary 9 and Lemma 12 we know E(Xi) = (`−k
`)2. Obviously, X = `−

∑`
i=1Xi. By

Lemma 13 we get

E(X) = `−
∑`

i=1E(Xi)
= `−

∑`
i=1(`−k

`)2

= `− ` · (`−k
`)2

= `(1− (`−k
`)2)

Lemma 15 Let X be the random variable on Pk(V)n with X(S1, . . . , Sn) = the number of
elements in S1 ∪ . . . ∪ Sn. Then

E(X) = `

(
1−

(
`− k
`

)n)

Proof Straightforward generalization of Lemma 14. Define

Xi(S1, . . . , Sn) =
{

1 if i 6∈ S1 ∪ . . . ∪ Sn

0 otherwise

We know E(Xi) = (`−k
`)n. Again X = `−

∑`
i=1Xi and the rest of the argument follows

as in the proof of Lemma 14.

C.2 Correctness of pf

C.2.1 PCTL Formula

P=? [true U ("p1") & ("p2") & ("p3") & ("p4") & ("deadlock")]
label "p1" = (a1=3? true: (n1=2? true: (a1=n1? true: false)));

C.2.2 Prism Model Description

//Proving the Correctness of the AQF Algorithm
2 probabilistic

//Bits per Node
const int k ;
//number of captured nodes

7 const int n ;//=4;

//Node Array - N
global n1 : [0 . . 2] init 2 ;
global n2 : [0 . . 2] init 2 ;

12 global n3 : [0 . . 2] init 2 ;
global n4 : [0 . . 2] init 2 ;

//Adversary
global a1 : [0 . . 3] init 2 ;

17 global a2 : [0 . . 3] init 2 ;

148 Appendix C. The pf Formula

global a3 : [0 . . 3] init 2 ;
global a4 : [0 . . 3] init 2 ;

//Bits by Adversary
22 global u1 : [0 . . 1] init 0 ;

global u2 : [0 . . 1] init 0 ;
global u3 : [0 . . 1] init 0 ;
global u4 : [0 . . 1] init 0 ;

27 global c : [0 . . 4] init 0 ;

module RunNode
i : [−1 . .k] init 0 ;

32 [] (i<k) & (n1=2) −> 0 . 5 : (n1 ’ = 1) & (i ’=i+1) + 0 . 5 : (n1 ’ = 0) & (i ’=i+ 1) ;
[] (i<k) & (n2=2) −> 0 . 5 : (n2 ’ = 1) & (i ’=i+1) + 0 . 5 : (n2 ’ = 0) & (i ’=i+ 1) ;
[] (i<k) & (n3=2) −> 0 . 5 : (n3 ’ = 1) & (i ’=i+1) + 0 . 5 : (n3 ’ = 0) & (i ’=i+ 1) ;
[] (i<k) & (n4=2) −> 0 . 5 : (n4 ’ = 1) & (i ’=i+1) + 0 . 5 : (n4 ’ = 0) & (i ’=i+ 1) ;

endmodule
37

module RunAdversary
j : [−1 . .k] init 0 ;
h : [−1 . .n] init 0 ;

42 [] (j=k) & (h<n) −> (j ’ = 0) & (h ’=h+1) & (u1 ’ = 0) & (u2 ’ = 0) & (u3 ’ = 0) & (u4 ’ = 0) ;

[] (j<k) & (u1=0) & (a1=2) & (h<n) −> (a1 ’ = 3) & (u1 ’ = 1) & (j ’=j+ 1) ;
[] (j<k) & (u2=0) & (a2=2) & (h<n) −> (a2 ’ = 3) & (u2 ’ = 1) & (j ’=j+ 1) ;
[] (j<k) & (u3=0) & (a3=2) & (h<n) −> (a3 ’ = 3) & (u3 ’ = 1) & (j ’=j+ 1) ;

47 [] (j<k) & (u4=0) & (a4=2) & (h<n) −> (a4 ’ = 3) & (u4 ’ = 1) & (j ’=j+ 1) ;

[] (j<k) & (u1=0) & (a1 ! = 2) & (h<n) −> (u1 ’ = 1) & (j ’=j+ 1) ;
[] (j<k) & (u2=0) & (a2 ! = 2) & (h<n) −> (u2 ’ = 1) & (j ’=j+ 1) ;
[] (j<k) & (u3=0) & (a3 ! = 2) & (h<n) −> (u3 ’ = 1) & (j ’=j+ 1) ;

52 [] (j<k) & (u4=0) & (a4 ! = 2) & (h<n) −> (u4 ’ = 1) & (j ’=j+ 1) ;

//Guess the remaining keys
[] (h=n) & (j=0) & (a1=2) −> 0 . 5 : (a1 ’ = 0) + 0 . 5 : (a1 ’ = 1) ;
[] (h=n) & (j=0) & (a2=2) −> 0 . 5 : (a2 ’ = 0) + 0 . 5 : (a2 ’ = 1) ;

57 [] (h=n) & (j=0) & (a3=2) −> 0 . 5 : (a3 ’ = 0) + 0 . 5 : (a3 ’ = 1) ;
[] (h=n) & (j=0) & (a4=2) −> 0 . 5 : (a4 ’ = 0) + 0 . 5 : (a4 ’ = 1) ;

endmodule

C.3 Proving Safety of the AQF algorithm

C.3.1 PCTL Formula

const int ComKey;
label "CommonKeys" = (n1=b1?b1:0)+(n2=b2?b2:0)+=ComKey;
P=? [true U ("CommonKeys") & ("deadlock")]

C.3.2 Prism Model Description

1 //Proving the Liveness Property of the sAQF Algorithm
probabilistic

const int k ; //Bits per Node
const int l ; //Authenticator

6
//Node Array - N
global n1 : [0 . . 1] init 0 ;
global n2 : [0 . . 1] init 0 ;
global n3 : [0 . . 1] init 0 ;

11 global n4 : [0 . . 1] init 0 ;
global n5 : [0 . . 1] init 0 ;

C.3. Proving Safety of the AQF algorithm 149

global n6 : [0 . . 1] init 0 ;
global n7 : [0 . . 1] init 0 ;
global n8 : [0 . . 1] init 0 ;

16 global n9 : [0 . . 1] init 0 ;
global n10 : [0 . . 1] init 0 ;

//Basestation - B
global b1 : [0 . . 1] init 0 ;

21 global b2 : [0 . . 1] init 0 ;
global b3 : [0 . . 1] init 0 ;
global b4 : [0 . . 1] init 0 ;
global b5 : [0 . . 1] init 0 ;
global b6 : [0 . . 1] init 0 ;

26 global b7 : [0 . . 1] init 0 ;
global b8 : [0 . . 1] init 0 ;
global b9 : [0 . . 1] init 0 ;
global b10 : [0 . . 1] init 0 ;

31
module RunNode

i : [0 . . k] init 0 ;

[] (i<k) & (n1=0) −> (n1 ’ = 1) & (i ’=i+ 1) ;
36 [] (i<k) & (n2=0) −> (n2 ’ = 1) & (i ’=i+ 1) ;

[] (i<k) & (n3=0) −> (n3 ’ = 1) & (i ’=i+ 1) ;
[] (i<k) & (n4=0) −> (n4 ’ = 1) & (i ’=i+ 1) ;
[] (i<k) & (n5=0) −> (n5 ’ = 1) & (i ’=i+ 1) ;
[] (i<k) & (n6=0) −> (n6 ’ = 1) & (i ’=i+ 1) ;

41 [] (i<k) & (n7=0) −> (n7 ’ = 1) & (i ’=i+ 1) ;
[] (i<k) & (n8=0) −> (n8 ’ = 1) & (i ’=i+ 1) ;
[] (i<k) & (n9=0) −> (n9 ’ = 1) & (i ’=i+ 1) ;
[] (i<k) & (n10=0) −> (n10 ’ = 1) & (i ’=i+ 1) ;

endmodule
46

module RunBasestation
j : [0 . . l] init 0 ;

[] (j<l) & (b1=0) −> (b1 ’ = 1) & (j ’=j+ 1) ;
51 [] (j<l) & (b2=0) −> (b2 ’ = 1) & (j ’=j+ 1) ;

[] (j<l) & (b3=0) −> (b3 ’ = 1) & (j ’=j+ 1) ;
[] (j<l) & (b4=0) −> (b4 ’ = 1) & (j ’=j+ 1) ;
[] (j<l) & (b5=0) −> (b5 ’ = 1) & (j ’=j+ 1) ;
[] (j<l) & (b6=0) −> (b6 ’ = 1) & (j ’=j+ 1) ;

56 [] (j<l) & (b7=0) −> (b7 ’ = 1) & (j ’=j+ 1) ;
[] (j<l) & (b8=0) −> (b8 ’ = 1) & (j ’=j+ 1) ;
[] (j<l) & (b9=0) −> (b9 ’ = 1) & (j ’=j+ 1) ;
[] (j<l) & (b10=0) −> (b10 ’ = 1) & (j ’=j+ 1) ;

endmodule

C.3.3 Hyper-Geometric Distribution: Implementation

The implementation using equations (5.9), (5.10) and (5.11) is straightforward. Using the
technique of dynamic programming, exponential complexity is avoided. However, to
circumvent loss of precision we do not use floating point data types to represent interme-
diate results. Instead the numbers are stored in BitInteger and divisions are postponed
to the very end. Consider the following alternations of equations (5.9), (5.10) and (5.11),
respectively:

150 Appendix C. The pf Formula

P (Xj = c)
(
l

k

)j

=
c∑

a=c−k

(
(
l − a
c− a

)(
a

k − (c− a)

)
) · P (Xj−1 = a)

(
l

k

)j−1

P (Y = b)
(
l

k

)ñ+1

=
l∑

a=0

(
(
l − a
b

)(
a

k − b

)
) · P (Xñ = a)

(
l

k

)ñ

pf =

(
k∑

b=0

P (Y = b)
(
l

k

)ñ+1

· 2k−b

)/((
l

k

)ñ+1

· 2k

)

Obviously, all divisions have been postponed until the last step, thus all intermediate
values are integers. These are stored without loss of precision using the JAVA data type
BigInteger. The division can then be accomplished with arbitrary precision. We set it
to maximum to hold by double-variables through this is output data type.
On the downside, the use of such long integers adds an additional factor to complex-
ity. In terms of space it is proportional to the length, in terms of time its length is
squared. It can nevertheless be proven that complexity stays polynomial, and specif-
ically, time-complexity ∈ O((k + ñ2)k3l log2 l) and space-complexity ∈ O((k + ñ)kl log l).

APPENDIX D

ESAWN models

D.1 Spin Model

This Model realizes a special case of an ESAWN data-transmission tree. In this case the
tree is a chain i.e., all nodes except leaves have outgoing degree of 1. The attacker/corrupt
node is enabled to send modified (=wrong) data, but it has to send it exactly when and to
the same receivers as a normal node would do.

define N 5 /* nr of nodes, N >= 2 */
define K 2 /* max nr of corrupt nodes, 0< K <= N-2 */
define Kp1 3 /* = K+1 */

5

/* communication channels */
typedef chans {

/* i sends to j p via channel[j].c[i-(j+1)] */
10 chan c [Kp1] = [1] of {byte} ;

}
chans channel [N] ;

/* system state variables for verification */
15 show bool CheatingDetected = false ;

show bool AnnounceReceived = false ;
show bool ReceivedDataCorrect = false ;
show byte FakeNodes=0;
show byte FakePacketsSend=0;

20 show byte sendData , receivedData ;

proctype LeafNode (show byte myid){

byte data , aggData , aggStore [Kp1] ;
25 byte i = 0 ;

chan ch ;

/* Channel Setup */
atomic {

30 do
: : i <= K −>

ch = channel [myid] . c [i] ;
xr ch ;
i++;

152 Appendix D. ESAWN models

35 : : i > K −> break ;
od ;
i = 0 ;
do
: : else −>

40 ch = channel [myid − (i+ 1)] .c [i] ;
xs ch ;
i++;

: : i>K | | i>=myid −> break ;
od ;

45 }

/* generate Data "0" to be send */
data=0;
sendData = data ;

50 /* send data */
i = 0 ;
do

: : else −>
ch = channel [myid − (i+ 1)] .c [i] ;

55 ch !data ;
i++;

: : i>K | | i>=myid −> break ;
od ;

}
60

proctype RootNode (show byte myid) {

byte data , aggData , aggStore [Kp1] ;
byte i = 0 ;

65 chan ch ;

/* Channel Setup */
atomic {

do
70 : : i <= K −>

ch = channel [myid] . c [i] ;
xr ch ;
i++;

: : i > K −> break ;
75 od ;

i = 0 ;
do
: : else −>

ch = channel [myid − (i+ 1)] .c [i] ;
80 xs ch ;

i++;
: : i>K | | i>=myid −> break ;
od ;
}

85
/* receive, aggregate and check */
if

: : K < N−1 − myid − 1 −> i = K ;
: : else −> i = N−1 − myid − 1 ;

90 fi ;
ch = channel [myid] . c [i] ;
ch?aggStore [i] ;
do
: : else −>

95 /* aggregate */
aggData = aggStore [i] ;
i−−;
/* receive from layer i below */
ch = channel [myid] . c [i] ;

100 ch?aggStore [i] ;
/* check aggregates */
if
: : aggStore [i] != aggData −>

D.1. Spin Model 153

CheatingDetected = true ;
105 goto ende ;

: : else −> skip ;
fi ;

: : i <= 0 −> break ;
od ;

110
/* root announces received */
receivedData = aggStore [0] ;
ReceivedDataCorrect = sendData == receivedData ;
AnnounceReceived = true ;

115
ende : skip ;

}

proctype CorruptNode (show byte myid){
120

byte data , aggData , aggStore [Kp1] ;
byte i = 0 ;
chan ch ;

125 /* Channel Setup */
atomic {

do
: : i <= K −>

ch = channel [myid] . c [i] ;
130 xr ch ;

i++;
: : i > K −> break ;
od ;
i = 0 ;

135 do
: : else −>

ch = channel [myid − (i+ 1)] .c [i] ;
xs ch ;
i++;

140 : : i>K | | i>=myid −> break ;
od ;
}

/* receive, aggregate and check */
145 if

: : K < N−1 − myid − 1 −> i = K ;
: : else −> i = N−1 − myid − 1 ;

fi ;
ch = channel [myid] . c [i] ;

150 ch?aggStore [i] ;
do
: : else −>

/* aggregate */
aggData = aggStore [i] ;

155 i−−;
/* receive from layer i below */
ch = channel [myid] . c [i] ;
ch?aggStore [i] ;
/* Corrupt nodes do not check aggregates and discover forgery*/

160 : : i <= 0 −> break ;
od ;

/* aggregate */
aggData = aggStore [i] ;

165

/* corrupt nodes send any data */
i = 0 ;
do

170 : : else −>
/* send */
ch = channel [myid − (i+ 1)] .c [i] ;

154 Appendix D. ESAWN models

/* generate any data */
if

175 /* correct data */
: : data = 0 ;
/* incorrect data */
: : data = 1 ; FakePacketsSend++
fi ;

180 ch !data ;
i++;

: : i>K | | i>=myid −> break ;
od ;

185 ende : skip ;
}

proctype HonestNode (show byte myid){
190

byte data , aggData , aggStore [Kp1] ;
byte i = 0 ;
chan ch ;

195 /* Channel Setup */
atomic {

do
: : i <= K −>

ch = channel [myid] . c [i] ;
200 xr ch ;

i++;
: : i > K −> break ;
od ;
i = 0 ;

205 do
: : else −>

ch = channel [myid − (i+ 1)] .c [i] ;
xs ch ;
i++;

210 : : i>K | | i>=myid −> break ;
od ;
}

/* receive, aggregate and check */
215 if

: : K < N−1 − myid − 1 −> i = K ;
: : else −> i = N−1 − myid − 1 ;

fi ;
ch = channel [myid] . c [i] ;

220 ch?aggStore [i] ;
do
: : else −>

/* aggregate */
aggData = aggStore [i] ;

225 i−−;
/* receive from layer i below */
ch = channel [myid] . c [i] ;
ch?aggStore [i] ;
/* check aggregates */

230 if
: : aggStore [i] != aggData −>

CheatingDetected = true ;
goto ende ;

: : else −> skip ;
235 fi ;

: : i <= 0 −> break ;
od ;

/* aggregate */
240 aggData = aggStore [i] ;

D.1. Spin Model 155

/* non-corrupt nodes send the data on */
/* send aggregated data */
i = 0 ;

245 do
: : else −>

ch = channel [myid − (i+ 1)] .c [i] ;
ch !aggData ;
i++;

250 : : i>K | | i>=myid −> break ;
od ;

ende : skip ;
}

255
/* -------- init process -------- */
init {

byte nodeNr , corr ;

260 atomic {
nodeNr = 0 ; /* start nodes */
corr = 0 ;
run RootNode (nodeNr) ;
nodeNr++;

265 do
: : nodeNr < N−1 −>

if
: : corr < K −>

run CorruptNode (nodeNr) ; corr++;
270 : : else −>

run HonestNode (nodeNr) ;
fi ;
nodeNr++;

: : nodeNr >= N−1 −>
275 break ;

od ;
run LeafNode (nodeNr) ;

}
skip ;

280 } ;

156 Appendix D. ESAWN models

Index

Symbols
B . 57
` . 57
b̃ . 57
ñ . 57
P(V) . 145
Pk(V) . 145
d .57
k .57
m . 57
n . 57
pf . 57
Eb̃ . 57
1-bit-MAC. .72, 72

A
acceptance cycle . 15
ActiveCycle . 32, 34, 38
ActivePeriod . 32, 34
address fields . 116
adversary . 23, 81

process . 81, 82
always

LTL . 14
PCTL . 19

AnnounceReceived . 99
application layer . 114
AQF . 56, 70–72
array bounds . 20
assertions . 15
asynchronous processes 14
ATmega128L. .26
authenticated query flooding 61, 70, 71

algorithm . 56
protocol . 83

authenticator. .60, 69, 72

size . 60

B
base station. .72, 74
BDD . 18
BER . 52
binary . 16
biomedical sensor networks 30
bit

-vector equation . 20
error ratio . 52
operations . 120

BLAST. 12
Boolean random variable 146
broadcast . 16

header . 115
storm . 47

brute force . 12
BSN . 30
buffered . 14

C
C bounded model checker 20
captured nodes . 79
CBMC . 20

break . 20
continue . 20
for . 20
single static assignment 20

CE() . 34, 38
CESAR . 12
channel

assertion . 14, 98
CheatingDetected . 99
CheckAv. 34
CheckAv(id) . 137

158 Index

CheckID() . 34, 137
Clean() . 34
Clean(id) . 137
CleanAll() . 34
CleanAll(id) . 137
clock

constraint . 15
variable . 15

cluster tree . 31
CNF . 20
code safety. .20
commands . 24
common keys . 86
concast . 96
conjunctive normal form 20
continuous stochastic logic 18
continuous-time . 17
cost . 19
cost energy function . 34
CSL. .18
CSMA . 42
CSMA/CA . 32
CTL . 39
CTMC . 17
cumulative reward .19

D
data . 57, 60, 61
data link . 114
deadlock . 12, 29, 54, 62

keyword . 39
deductive methods. .11
deep hops left . 115
demonic non-deterministic choice 84
discrete event simulator25
discrete-time . 17
distance matrix . 137
division by zero . 20
DL . 21
double . 20
Down. .33
DTMC . 17, 49, 58
duty cycle . 32
dynamic logic . 21
dynamic memory allocation.20

E
end device . 35
EnsuresPost . 119
ESAWN . 96, 98
events . 24
eventually

LTL . 14
PCTL . 19

exclusive access . 15
expected costs . 18
expected value . 146
Extended Secure Aggregation for Wireless

sensor Networks96

F
FakePacketsSend . 99
FeaVer . 95
final destination address 115
first order logics . 12
float . 20
flooding

authenticated query 56
simple . 62
simple authenticated query 70

fragmentation . 115
header . 115
link layer .115

FSMGen . 6, 95

G
GoIdle . 34

H
HAL . 24
hardware abstraction layer 24
hidden-station problem 33
hidden-terminal

effect . 40
problem . 33

hop-by-hop options . 115
HopsLeft . 115
hybrid architecture . 31
hyper-geometric

distribution . 71, 78
formula . 79

I
ID . 33
Idle . 33
IEEE 802.15.4 . 26, 32
InnerNotCorrupt . 99
Instantaneous rewards 19
interval . 104, 104

J
Java Card DL . 21
Java Modeling Language 20
JML . 20

Index 159

K
k-subset . 145
KeY . 12
key

pre-distribution . 56
length . 60
pool . 72
pool size . 79
ring . 72, 72, 74, 83
ring size . 79

keylen . 57
KLEE . 95

L
line-up scenario . 51
linear temporal logic . 14
linearity of expectation . 146
livelock . 12, 29
liveness . 40, 40, 46

checks. .15
LMAC . 30
lossy state . 52
LoWPAN

adaption layer . 115
layer . 114

LTL . 14

M
MAC . 56

layer . 115
payload . 116
protocol . 115

Markov
chain . 48, 49
decision process . 17

Markov chain . 48
continuous-time . 17
discrete-time . 17, 58

MD2 . 61
MDP. .17
mean number of keys known 60, 61
mesh

addressing header.115
network . 31
networking. .26
routing . 115, 115

message
authentication codes 56
channels . 14
digest algorithm . 61
sequence charts XIV, 109

MicaZ . 26

MIPS . 60
MNKK . 57, 60, 61, 61, 62
model checking 12, 12, 29, 39, 46

PCTL . 19
probabilistic . 17

model-based . 11
methods. .11
testing. .11

MoteIV . 60
MSCs . 109
MTBDD . 17
multi-terminal binary decision diagrams . 17

N
nesC . 24
network

controller . 35
layer . 114

never claims . 15
next . 19

PCTL . 19
Node . 81
node id . 103
nodes

captured . 79
non-beacon . 31
non-progress cycle . 15

O
Object Constraint Language 20
OCL . 20
OMNeT++ . 30
on-the-fly interpretation 14
originator address . 115

P
parent id . 104
partial order reduction.13, 14
payload . 115
PCTL . 18, 18, 19, 62

model checking . 19
PDown . 38, 39
physical layer . 114
PIdle . 39
PO . 14
pointer

arithmetics . 20
check. .20

PRcv. .39
PreservesInv . 119
priced timed automata 38, 38

160 Index

probabilistic . 17
computation tree logic 18
system . 70, 81

Probabilistic Computation Tree Logic 18
process meta language 14
Promela . 14
protocol header . 116
PSleep . 39

Q
QoS. .30
quantitative measures . 18
queue . 35

R
random

k-set . 145
set . 79
set theory . 71, 74
variable . 146

Rcv . 33
reachability .40, 46

reward . 19, 61
reactive modules . 18
real-time . 15
ReceivedDataCorrect . 99
recursion . 20
RespectsModifies . 119
reward . 18, 19
routing devices . 35

S
safety . 40

property . 40
sAQF . 70, 71, 86
SBMC. 7
Secure KEYing . 98
Send . 33
sequence number . 116
simple authenticated query flooding . 70, 71,

86
algorithm . 71, 81

simply flooding . 62
simulator . 14
single assignment . 20
SKEY . 98
Slede . 6, 95
sleep mode . 32, 106
sleep-state . 34
Small Programmable Object Technology . 26
snd . 35

software
bounded model checking 7
verification . 3

soundness . 46
SPIN

atomic statements 14
model checker .14

Squawk VM . 26
star topology. .31
state rewards . 61
status . 108
steady-state reward . 19
strongly splitting proofs 121
Sun SPOTs . 26
super frame. 32
symmetry reductions . 2
synchronization. .16

statement . 14

T
task scheduler . 106
tasks . 24
TDMA . 60
testing

black box . 11
gray box. .11
white box . 11

Theorem proving . 12
time division multiple access 60
timed automata 29, 42, 46

theory . 30
Timed Safety Automata 15
TinyOS . 24, 24
TMote Sky 26, 58, 60, 60, 61
TOSSIM . 25
transition

Uppaal . 15
transition rewards . 62
transport layer . 114
typed logics .12

U
unbuffered. .14
undecidable . 16
uniform probability measure145
unreachable code fragments 15
until

PCTL . 19
unwinding . 108

assertion . 20, 20
Uppaal . 15

committed . 16

Index 161

urgent .16

V
validity of end states . 15
verification engine . 55
verifier. .14

W
wireless sensor networks 2
WSN . 2, 73

Z
ZigBee . 26, 32

	List of Figures
	List of Tables
	Introduction
	Formal Methods
	Formal Methods in Wireless Sensor Networks
	Contributions
	Quantitative Energy Estimation
	Protocol and Software Correctness

	Thesis Outline

	Foundation
	Introduction
	Formal Verification Techniques
	Model-based Simulation
	Model-based Testing
	Theorem Proving
	Model Checking

	Tools and Theory
	Spin
	Uppaal
	Prism
	C Bounded Model Checker
	The KeY Tool

	Wireless Sensor Networks
	Weakness of Wireless Sensor Networks
	The Adversary Model
	Sensor Node Platforms and Implementations

	Summary

	Energy Efficient Routing and Scheduling
	Introduction
	Modeling Method
	Sensor Network Scenario
	Modeling the Communication Medium

	A Timed Automata Model
	Sensor Network Devices
	Energy Cost Estimation
	State Space Reduction

	Specification
	Reachability
	Safety
	Liveness

	Results
	Conclusion

	Performance Evaluation of Probabilistic Flooding Protocols
	Introduction
	Probabilistic Flooding in Simple Network Topologies
	Networking Models based on Markov Chains
	Inter Module Communication
	Specifying PCTL Properties
	Results

	Authenticated Query Flooding Algorithm
	Incorporating Energy into Sensor Networks
	Application Scenarios
	An Energy Model for the TMote Sky Node
	Reward Property

	Results
	Comparing Energy Requirements of Networks
	Energy/Security Tradeoff using Topology 5

	Conclusion

	Checking Formal Correctness of Probabilistic Query Dissemination
	Introduction
	Authenticated Query Dissemination
	The sAQF Algorithm
	Problem Definition
	Using Probabilistic Query Dissemination

	Deriving a Probability Measure for sAQF
	Random Set Theory
	Hyper-Geometric Distribution
	Differences in the Views

	Proof Techniques Using Formal Methods
	Verification Models for the sAQF Formula
	Safety of the AQF Protocol

	Results
	Correctness of the sAQF Formula
	Restricted Safety Property for AQF
	Forwarding Likelihood based on Hyper Geometric Distribution
	Simulation versus Verification

	Conclusion

	A Verifiable and Secure Concast Protocol
	Introduction
	Secure Aggregation in Wireless Sensor Networks
	A Correctness Proof using the Spin Model Checker
	Network and Intruder
	Adversary Model
	Modeling the Network
	Security Related Properties

	Software Model Checking of Embedded Software
	Generation of Software Sources
	Requirement & Specification
	Treatment of Model Insufficiencies
	Software Bounded Model Checking using CBMC

	Results
	Concurrent and Distributed Analysis
	Software Analysis

	Conclusion

	Survey of the Sun SPOT's Networking Library
	Introduction
	SunSPOT's Network Library
	The LoWPAN Adaption Layer

	Verification of the Network Library
	Results
	The Networking Library
	A detailed Example
	General Problems & Results

	Conclusion

	Conclusion & Thoughts about Future Work
	Bibliography
	Energy Efficient Routing and Scheduling
	Additional Functions for the Uppaal Analysis
	Various Constant Definitions

	Analyzing Probabilistic Flooding
	Prism Model of the Scenario 1
	Energy Computation for TMote Sky Nodes
	Energy for faked and legitimate queries

	Prism Verification Results
	Comparison of Prism and theoretical results
	Comparing different topologies

	Prism Model for topology 4

	The forwarding probability Formula
	Notes on Random Sets
	Correctness of forwarding probability
	PCTL Formula
	Prism Model Description

	Proving Safety of the AQF algorithm
	PCTL Formula
	Prism Model Description
	Hyper-Geometric Distribution: Implementation

	ESAWN models
	Spin Model

	Index

