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Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit der Semantik der Java Modeling Langua-
ge (JML). JML is eine weitverbreitete Spezi�kationssprache, die speziell auf
Java zugeschnitten ist und sowohl zur statischen als auch zur Laufzeitana-
lyse von Programmen verwandt wird. Bislang beschränkt sich die o�zielle
Spezi�kation von JML auf eine weitgehend verbale De�nition der Semantik,
die zudem teilweise unvollständig oder widersprüchlich ist. Daraus erwächst
unter anderem, dass die verschiedenen Software-Werkzeuge, die JML imple-
mentieren, Sprachelemente der JML unterschiedlich auslegen.

Bisherige Arbeiten zur formalen Semantik basieren auf Logiken höherer
Ordnung oder dynamischen Logiken. In dieser Arbeit wird ein Ansatz vor-
gestellt, der nur auf elementaren mathematischen Konzepten wie Mengen,
Funktionen und Prädikatenlogik erster Ordnung beruht. In dieser Arbeit wird
eine simple Abstraktion einer Maschine vorgestellt, auf der der semantische
Unterbau basiert, auf welchen Ausdrücke und Spezi�kationen von JML ab-
gebildet werden, um eine nahezu vollständige Übersicht der Spezi�kationen
für sequentielle Java-Programme zu entwickeln.

v
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Chapter 1

Introduction

This thesis is concerned with the Java Modeling Language (JML), a wide-
spread speci�cation language for Java, which is used in both static and run-
time analysis of programs. Yet, the o�cial reference mostly lacks semantics,
while several tools which implement JML do not agree on their interpretation
of JML speci�cations. Past approaches have all centered around a certain
veri�cation tool and are highly depending on speci�c higher order logics. In
this work, we develop a formalization with little requirements. Upon a sim-
ple machine model we describe JML artifacts in basic notations such as �rst
order logic. In that, we provide a nearly comprehensive overview of features
which cover nearly all speci�cation elements for sequential Java programs.

1.1 The Java Modeling Language

The Java Modeling Language [LBR99, LBR03, LC05, LCC+05, CKLP06], or
JML for short, is a formal speci�cation language especially tailored to the
Java programming language [AG96]. JML is targeted to provide a compre-
hensive speci�cation of both interfaces (syntax) and behavior (semantics)1

for every aspect of Java and, at the same time, to retain an easy-to-read
format. [LBR03] outlines these three major goals:

• �JML must be able to document the interfaces and behavior
of existing software, regardless of the analyses and design
methods to create it. [. . . ]

• The notation used in JML should be readily understandable
by Java programmers, including those with only standard
mathematical training. [. . . ]

1Therefore, some authors use the term �Behavioral Interface Speci�cation Language�
(BISL). [CL94, HLL+09]

1



2 Chapter 1. Introduction

• The language must be capable of being given a rigorous for-
mal semantics, and must also be amendable to tool support.�

This enumeration shows that one aim is, to have a language which is (syn-
tactically) close to Java, not too abstract like speci�cation languages like Z
[ASM80]. It is also primarily intended to specify existing code, rather than
to implement programs according to a preexisting speci�cation.

JML Speci�cations are written directly into the source �les of Java mod-
ules. The basic syntax of expressions in JML is � with some extensions �
the same as in Java. By this, it is expected from the targeted user (pro-
grammers, not theoretically trained) to develop an intuitive understanding
of the semantics of the language. And, as speci�cation are always given inside
comments (similar to Javadoc), JML constitutes as a proper extension to the
Java language which does not interfere with the execution of the program.

Unlike the Object Constraint Language (OCL) [OCL05], which is part of
the UML standard, JML is not regulated by some governing body, but rather
constitutes as a community e�ort led by Gary T. Leavens at the University
of Central Florida.

Uses of JML

As stated above, JML primarily serves the purpose of documenting artifacts
of the Java language. There is nothing like the application for JML, but
rather a few. This includes both static type checking, run-time assertion
checking as well as formal veri�cation methods [LCC+05]. There are also
other tools which produce JML speci�cations as output, like the Daikon tool
for loop invariant detection. For an overview of JML tools, refer to [BCC+05].
Some of them are discussed in Sect. 5.1.

Since Java is by far one of the most popular programming languages,
being �simple, object oriented, and familiar� [GM95], JML gained signi�cant
popularity over the past few years, too. In fact, it is much more accepted
among programmers than Z, OCL etc. On many parts, this fact might rely
on the syntactical similarities between both languages.

The claimed primary antecedent of JML is the Larch speci�cation lan-
guage [GHW85, Lea99] which follows a similar approach for the C++ pro-
gramming language. In addition, several features are taken from the re-
�nement calculus [BvW98]. The approach of writing speci�cations in the
speci�ed language itself (or a similar looking one), is in part inspired by
languages like Ei�el [Mey92b].
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Language structure

JML can be subdivided into a common expression language,2 which is very
similar to Java, and on top of this, several speci�cation elements which are
meant to describe the behavior of the program in di�erent ways. This in-
cludes �classical� features such as assertion statements within the program
code (for run-time checking). As more �high-level� elements, there aremethod
speci�cations based on the design-by-contract paradigm [Mey92a]. In few
words, this means that a method call is regulated by a contract: A caller
guarantees some preconditions and the receiver in turn guarantees some con-
ditions to hold after the execution of the method. Finally, there are type
speci�cations such as invariants which have to be preserved throughout the
run of the program. JML also features variables and �elds which may be
additionally used in speci�cations (model �elds, ghost variables/�elds).

1.2 JML by example

In this section, we will take a �rst look on an example speci�cation in JML.
This only features basic syntax elements and is intended to create some
intuitive understanding. We share no interest in implementation details �
those are omitted � but in according speci�cations.

Consider a small library with some books for lend. In our �rst consider-
ations, a book can be lent or not and the library gives it away as long as it
is present. To be present in this context means, the library owns it and it is
not lent at the time. This leads to the �rst speci�cation shown in Fig. 1.1.

This is basically Java code with a most basic method speci�cation for
lend. This method speci�cation is directly attached to the method declara-
tion in Line 13 and is enclosed in a block comment. Only comments begin-
ning with an at-symbol (@) are taken to be JML speci�cations. A leading
at-symbol in every line is not required by syntax, but used by convention.
Every speci�cation clause has to be terminated with a semicolon (;), like
declarations in Java.

The method speci�cation begins in Line 8 with a Java-style privacy mod-
i�er and the keyword normal_behavior. The latter requires the method
to terminate normally, i.e. without exceptions. The precondition, i.e. the
caller's obligation to establish, is marked with requires and the postcon-
dition, i.e. the receiver's guarantee in the post-state, with ensures. The
appearing logical operators ! (negation) and && (short-circuit conjunction)

2We denote the full expression language by JML-E1, and a sub-language which can be
evaluated in one state by JML-E0.
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1 public class Book {

2 private /*@ spec_public @*/ boolean lent;

3 }

5 public class Library {

6 private Collection coll;

8 /*@ public normal_behavior

9 @ requires coll.contains(b)

10 @ && !b.lent;

11 @ ensures b.lent;

12 @*/

13 public void lend (Book b);

14 }

Figure 1.1: A small library which lends books at good-will.

are used as in Java. It is also allowed to use side-e�ect free method invo-
cations as shown in Line 9. Thus, the meaning of this method speci�cation
is: If the book is available, then any invocation of method lend terminates
successfully with the book being lent then. Privacy modi�ers are not inside
the center of our concern, JML syntax rules however require speci�cations to
be at least as private as the �elds they address. To use a public speci�cation,
we are forced to assign to the given �elds speci�cation-only privacy modi�ers
like spec_public.

To make things more interesting, we modify this example in that lend
returns a numbered receipt represented by an integral value. The library
keeps a global (i.e., static in Java/JML terms) counter rctCnt on receipt
numbers, which is shared between all libraries in the universe, and is in-
creased every time a book is successfully lent to avoid duplicate numbers. To
implement these amendments, we use special JML expressions to add two
postconditions:

//@ ensures \result == rctCnt;

//@ ensures rcpCnt == \old(rcpCnt) +1;

Both expressions are pre�xed with a backslash (\) to distinguish them
from other (Java-compatible) expressions. \result as the name suggests,
stands for the return value of the speci�ed method. The \old expression
is applied on an arbitrary expression to yield the value of the pre-state. In
this case, it means that rctCnt is incremented by 1 during the execution of
lend. Of course, both expressions only make sense in a context in which there
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exists a previous state to refer to. Therefore, they may not be used in the
precondition. At last to notice, both lines are given within Java end-of-line
comments, again beginning with an at-symbol.

So far, we have only speci�ed the behavior of lend in a successful case.
But what if the (likewise common) case applies, in which a customer requests
a book which is already lent? In this case, the book cannot be lent again
and the counter is not stepped. Furthermore, it has to be signaled to the
customer that this was not possible. The Java way � and thus the JML way
� to achieve this, is to throw an exception. Thus, the lines shown in Fig. 1.2
are added to our method speci�cation.

1 /*@ public exceptional_behavior

2 @ requires !coll.contains(b)

3 @ || b.lent;

4 @ signals (BookNotFoundException e)

5 @ b.lent == \old(b.lent) &&

6 @ rctCnt == \old(rctCnt );

7 @*/

Figure 1.2: An exceptional case added.

This speci�cation case looks much like the one discussed above with the
exception that it begins with exceptional_behavior and the postcondition
is marked with signals. The signals clause describes the post-state in case
the method invocation was unsuccessful. This is a su�cient condition, not a
necessary one, i.e. it does not require the method to throw an exception.

This however, is implicitly included in the declaration exceptional-
_behavior which excludes normal behavior. Likewise, the normal_behavior
declaration above is given to exclude exceptional behavior. Both of them re-
quire the method to terminate. These declarations can be �desugared� to a
more general form which we will be using in Sect. 4.2.1.

Finally, we will make some use of class speci�cations. We could think of
some invariant which postulates that all costumers of our library are so very
thoughtful, that no book is ever lost. As it turns out, this property cannot be
represented as an invariant. Not because, we could not imagine such a library,
but because �not lost� expresses some temporal property. As invariants are
meant to represent a �time-less fact�, they are not the speci�cation element
of choice. Happily, JML also features history constraints which are meant to
be used in those situations to relate two points in time with each other. Let
us add the following line to the class declaration of Library:

/*@ public constraint (\ forall Book x;
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@ \old(coll.contains(x)); coll.contains(x));

@*/

In this example we make use of the \old expression again to compare two
points in time somewhere during the existence of our library. As it can be
seen, it may be applied to a more complex expression than just to a reference.
The newly introduced construct in this line is the quanti�er \forall. Its
meaning is quite straight-forward: Every book which was contained in the
collection before, is contained in the collection right now. The two expressions
following the binding of the variable can be read as a guard condition.

We can still add some invariant, say, to postulate that the collection
contains at least two di�erent books. Using existential quanti�cation, this
looks like that:

/*@ public invariant (\ exists Book y, z; y != z;

@ coll.contains(y) && coll.contains(z));

@*/

The �nal version of our example can be seen in Fig. 1.3. We have conjoined
the multiple postconditions and put the two speci�cation cases together with
the keyword also.

1.3 Goal and approach of this work

As it was said in the introductory section, JML is meant to describe the
semantics of Java artifacts in a rigorous way. This raises � most naturally �
the question for evenly rigorous, formal semantics of JML in turn. (In fact,
this is backed up by the third major goal of page 2.) Most of JML is speci�ed
in its reference manual [LPC+08]. Although it is quite voluminous already,
it is at the time of writing still in a draft version. While formal syntax
de�nitions are comprehensive, at several occasions, there are still some non-
trivial holes in semantical explanations. If semantics are given, their quality
usually ranges between informal intentions and a verbal explanation of formal
properties at best. These are often unclear or ambiguous. In addition, there
are several parts in which semantics are disputed even among the community.

On the other hand, there are several tools which implement JML, or
rather a subset of it. But even on a common language subset, these tools
do often disagree on semantics. Furthermore, interpretations are depending
on the target language. Most approaches use complex higher order logics,
which are not easily interchangeable (or their translations). This emerges the
need for semantics which are both rigorously formal and at the same time
independent from other formal languages.
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1 public class Library {

2 private Collection coll;

3 private static int rctCnt;

5 /*@ public constraint (\ forall Book x;

6 @ \old(coll.contains(x)); coll.contains(x));

7 @ public invariant (\ exists Book y, z; y != z;

8 @ coll.contains(y) && coll.contains(z));

9 @*/

12 /*@ public normal_behavior

13 @ requires coll.contains(b)

14 @ && !b.lent;

15 @ ensures b.lent && \result == rctCnt

16 @ && ensures rcpCnt == \old(rcpCnt) +1;

17 @ also

18 @ public exceptional_behavior

19 @ requires !coll.contains(b)

20 @ || b.lent;

21 @ signals (BookNotFoundException e)

22 @ b.lent == \old(b.lent) &&

23 @ rctCnt == \old(rctCnt );

24 @*/

25 public int lend (Book b);

26 }

Figure 1.3: The same library with at least two di�erent books and very
well-behaved customers, who never lose a single book.
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In this work we will only rely on elementary mathematical notations such
as sets, functions and �rst order predicate logic. By this, the given formal
semantics are widely understandable without any further introduction to
logical calculi or internal details of some implementing tool. At the same
time, we try to keep the part in which Java is involved, and in particular
how it is processed, rather small. Therefore, we propose a simple machine
model which serves as the semantical foundation of JML expressions.

Predominantly, the semantics given throughout this work are based on
the semi-formal descriptions found in the JML Reference Manual. On some
occasions, these are supplemented by teleological reasoning founded on the
available white papers, such as [LBR03], or replaced by our own considera-
tions which are mostly based on analogies to the semantics of Java.

1.4 Outline

The subsequent chapters are organized as follows:

• Chapter 2 contains the foundations for an elaboration on JML. In par-
ticular, we develop a formal notion of a system state and describe the
interaction between Java and JML. This is done using a black box
(nevertheless strong) interface to a virtual machine. This chapter is
meant to encapsulate every aspect of the Java language so that it may
be referred to it in later parts.

• Chapter 3 describes the sub-language of expressions. At �rst, we
present di�erent evaluation functions and several approaches for a def-
inition of validity. In the following few sections, we discuss the imple-
mentation of more complex features like model �elds, axioms and data
groups. In the remainder of that chapter, we discuss the evaluation of
several expressions in JML aligned with several examples. A compre-
hensive enumeration of expressions can be found in Appendix A.

• Chapter 4 elaborates on the various speci�cation elements. It is struc-
tured from �more speci�c� to more general semantics. It starts with
speci�cations speci�c to classes or interfaces, namely invariants and
history constraints. Then, it covers method speci�cations with pre-
and postconditions and frame conditions. It concludes with speci�ca-
tions which are directly annotated to the runnable part of the program
code, i.e. assertions and loop invariants and variants. All of this builds
upon the de�nition of the black box (Chapter 2) and the de�nition of
validity from Chapter 3.
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• Chapter 5 begins with a treatise on related work, then summarizes our
results and concludes with directions for further work.





Chapter 2

Semantic Foundations for Java

Programs

As explained in the introduction, this thesis puts its focus on the Java Mod-
eling Language, not on the Java programming language. Of course, JML can
be seen in some sense as an extension to Java, or at least that it relies on Java
in various contexts. Therefore, Java cannot be blanked out completely. The
goal of this chapter is to cover every issue concerning Java, so that we can
refer to it later. On the other hand, it contains very little JML-only features;
this mainly includes the types which are added by JML to the otherwise
common type structure.

The principle concept is, to regard the execution of Java code as a black
box. In particular, throughout the later chapters, we will never talk about
certain passages of code, not to mention single assignments or operations
of the underlying machine. We are not interested in how the Java code is
processed internally, but rather which behavior is observable. To concretize
this, we impose strong assumptions on our black box in order to obtain
su�cient information on the functional behavior of the program.

To start from, we have still to cover the basic de�nitions such as a pro-
gram, identi�ers or types. Then we develop a simple notion of a system state
based on an abstraction of Java's memory model.

2.1 Java programs

Under a Java program Π we understand a �xed collection of compilation
units. It is assumed to be syntactically correct according to Language Spec-
i�cation [GJSB00], i.e. compile correct. We only consider closed programs,
which do contain all necessary information by themselves. In the pursuit of

11
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this work, we will �xate a certain program Π.
A program consists of a set of classes and interfaces C. This includes both

classes and interfaces de�ned in the program itself as well as imported ones,
e.g. from java.lang. For reasons of simplicity, classes and interfaces are
identi�ed with their identi�ers, e.g. we say �Object is a class�. The program
is structured in packages. The set of packages P is a partition of C.

A code fragment π is a statement block from the source code of a class
C ∈ C. (This implies both syntactical completeness and executability.) It will
typically be the body of a method. A code fragment π may be annotated by
a set A of JML in-code annotations (see Sect. 4.3). πA is called the annotated
code fragment.

The set of valid identi�ers I is given as the union of the set of natural
numbers3 (for array access) and a non-empty, countably in�nite set of alpha-
numerical strings as de�ned in [GJSB00, Sect. 3.8] (for object and primitive
type references).

We say x ∈ I is a �eld (of type T ) in class (or interface) C if it is declared
through T x in the corresponding portion of the source code. If we want to
refer to the type of a �eld de�nition x, we will write typeof(x). Analoguously,
a method with identi�er m ∈ I is declared in a class.

2.2 Types and values

Types

JML types include both Java types (primitive, array and reference types)
as well as types \bigint and \real representing the mathematical integers
and real numbers respectively. There is also a special type \TYPE (in capital
letters) to represent the collection of Java types. The JML reference manual
describes it as being �equivalent to java.lang.Class�.

De�nition 2.1 (Type).

• boolean is a type.

• long, int, short, byte, char are types called integral types.

• double, float are types called �oating point types.

• \bigint, \real are types.

3The set of natural numbers N always contains 0. This coincides with the de�nition of
arrays in Java, where the �rst element is addressed as 0. If 0 should be excluded, we will
write N+.
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• If C is a class or interface in Π, then C is a type called reference type.

• \TYPE is a type.

• If T is a type, then T[] is also a type called array type.

Integral and �oating point types along with \bigint and \real are also
called numerical types. Numerical types and boolean are called primitive
types. Integral, �oating point and reference types along with the array types
constructed from them are Java types. The set of all types de�ned above
is denoted by T . Note that it is also allowed to construct array types from
\TYPE.

The re�exive and transitive subtype relation is denoted by v. It is the
exact same as in Java [GJSB00, Sect. 8.1] and de�ned for the program by dec-
larations of class inheritance and interface implementation. This de�nition is
meant to be complete, e.g. for a numerical type N and a reference type R it
is both N 6v R and R 6v N . Even so, \bigint and \real are not super-types
of any numerical type. Numerical types may however be converted to each
other. \TYPE and the array types derived from it are incomparable with any
other type. As in Java, interfaces and array types (except for \bigint[],
\TYPE[], etc.) are subtypes of Object. An excerpt of JML type hierarchy
can be seen in Fig. 2.1.

Comparable

String

Object

int[] Object[]

Comparable[]

String[]

Object[][]

\TYPE

int

\TYPE[]

Figure 2.1: JML type hierarchy. Genuine JML types are unrelated to
Java types.

Values

For every primitive type T of the Java language we de�ne a value set or
domain VT according to [GJSB00]. These are displayed in Tab. 2.2 along
with the JML-de�ned primitive types. Note, that we postulated all integral
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types to share a common domain, namely a subset of mathematical integers.
Likewise, (numerical) �oating-point type values are contained in the set of
rational numbers.

For reference types however, we need to make a distinction between a
direct instance of a class and the set of domain elements which are applica-
ble to the class/interface de�nition. This distinction re�ects the distinction
between dynamic and static types in Java. The domain of \TYPE contains
all Java types, including null and void, which are not types according to our
de�nition, but included in java.lang.Class.4

De�nition 2.2 (\TYPE values).

V\TYPE := {T ∈ T | T v Object} ∪
{boolean, long, int, short, byte, char, double, float, null, void}

For every primitive type P , it is V 0
P := VP .

Vboolean := {true, false}
V\bigint := Z
Vlong := {−263, . . . , 263 − 1} ⊂ Z
Vint := {−231, . . . , 231 − 1} ⊂ Vlong
Vshort := {−215, . . . , 215 − 1} ⊂ Vint
Vbyte := {−27, . . . , 27 − 1} ⊂ Vshort
Vchar := {u0000, . . . , uffff}
V\real := R
Vdouble := Qdouble ∪ {−∞,+∞, NaN}
Vfloat := Qfloat ∪ {−∞,+∞, NaN} ⊂ Vdouble

where Qdouble = {±m · 2e | m ∈ [0, 253 − 1], e ∈ [−1074, 971]} ⊂ Q
and Qfloat = {±m · 2e | m ∈ [0, 224 − 1], e ∈ [−149, 104]} ⊂ Qdouble

Table 2.2: Values of JML primitive types.

De�nition 2.3 (Reference and array values).

1. For every non-abstract class C the domain is a countably in�nite set
V 0
C := {c1, c2, . . .}.

2. For every abstract class or interface A the domain is empty: V 0
A := ∅.

4The reference manual is not clear on whether to include them. In fact, the �type�
void has no use after all. But we tried to keep up the analogy to Class, as anticipated.
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3. For every array type T[] the domain is a countably in�nite set V 0
T[] :=

{a1, a2, . . .}.

4. Domains are mutually exclusive: For types T1 6= T2 it is V 0
T1
∩ V 0

T2
= ∅.

5. For every class, interface or array type T we de�ne a set of compatible
domain elements

VT :=
⋃
DvT

V 0
D ∪̇ {null}

The null element is included in any VT , but excluded from every V 0
T . If

we want to exclude null from the set of compatible elements, we will write
V −T := VT \ {null} for short. The domain sets for (non-abstract) classes and
array types need to be in�nite due to the arbitrary number of instances which
may eventually be created. (See Sect. 2.4.1 for more on object creation.)
A domain element of reference type will occasionally be identi�ed with an
(semantical) object .

The (disjoint) union of all domain sets de�ned above and additionally
including null is called the universe U of the program Π:

U :=
⋃
T∈T

V 0
T ∪ {null}

2.3 System states

We will now model a system state through a functional abstraction of Java's
two memory structures � Heap and Stack � as well as a call stack. We take
an abstract view of a memory as a mapping of locations to domain elements.
This approach was presented in [Ulb08].

Heap

De�nition 2.4 (Location). A location is a tuple (o, x) ∈ U×(I∪{\created})
of a domain element of reference or array type and an identi�er representing
a �eld.

1. To a reference type T and a (possibly static, possibly ghost) �eld x in
T there is a location (o, x) for every o ∈ VT .

2. To an array type T[] there is a location (o, n) for every o ∈ VT[] and
n ∈ N. There is also a location (o, length) referencing the length of
the array.
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3. (o, \created) is a location for every o ∈ VObject∪VT[] for some type T ,
indicating whether it has been created.

With this de�nition, a type T inherits all �elds (including static ones)
from its super-types. Since \bigint[], \TYPE[], etc. are not sub-types of
Object, they do not inherit anything. Nevertheless, the �elds length and
\created also exist for those non-Java array types.

The least set containing all locations according to this de�nition will be
denoted by L. This de�nition explicitly includes the null element. In this
way it is guaranteed for any type to have at least one applicable domain
element and there is at least one location for a static �eld. To achieve a most
general notation, we include both not yet created to the locations of concern,
but their values are underspeci�ed5.

Locations which are persistent throughout program execution reside on
the Heap. The Heap can be seen as a representation of a global system state
while no execution is in progress.

De�nition 2.5 (Java Heap). A Heap description is a function h : L → U
satisfying the following constraints:

1. h(o, x) ∈ Vtypeof(x) and h(o, \created) ∈ {true, false} for o ∈ VObject.

2. h(a, n) ∈ VT and h(a, length) ∈ Vint ∩ N for a ∈ VT[].

3. If s is a static �eld in type C, then h(o1, s) = h(o2, s) for any two
o1, o2 ∈ VC .

Stack

Not all values are stored on the heap. Variables in Java are part of the state
of a running execution and stored on the stack. These include local variables
and method parameters. In any case, they are local to the current method
frame. For any variable which does not belong to the current method frame,
its value is underspeci�ed.

De�nition 2.6 (Java Stack).
A Stack description is a partial function σ : I 7→ U .

De�nition 2.7 (Update). Let θ : I 7→ U be a partial function, then the
following is also a stack description:

σθ(ι) :=


θ(ι) ι ∈ dom(θ)
σ(ι) ι ∈ dom(σ) \ dom(θ)
unde�ned otherwise

5The handling of unde�nedness will be discussed in Sect. 3.1.2.
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Likewise, we consider a partial function θ : U × I → U and introduce an
update hθ on the heap.

hθ(o, ι) =

{
θ(o, ι) (o, ι) ∈ dom(θ)
h(o, ι) otherwise

Call stack

To keep track of the overall program trace, we also introduce a call stack
which stacks up the currently running methods. At �rst, we need to formalize
the notation of a method.

De�nition 2.8 (Method). A method µ is formally given by a tuple
(C,m, π, 〈(T1, ι1), . . . , (Tk, ιk)〉, TR) where

• C v Object is a class,

• m is an identi�er which denotes a (possibly constructor) method which
is de�ned C,

• π is code fragment, called the method body,

• (Tj, ιj) are pairs of types and identi�ers given as parameters of m (the
set may be empty),

• TR ∈ T ∪ {void} is the return type.

A non-static method de�ned in class C may be called on an object o ∈ V −C .
In this case, o is called the receiver For a constructor, we de�ne the object
to initialize as the receiver. Static methods lack a receiver.

In Java, there may be several method declarations in the same class with
the same method identi�er. This is known as method overloading . They are
distinguished by their signature which is made up of the identi�er and the
sequence of parameter types. Return types of methods with common signa-
tures are required to equal in Java.6 These methods are always considered
di�erent both in Java and JML.

In addition, non-static methods declared in super-classes can be overrid-
den in sub-classes by methods with the same signature. These methods are
also considered di�erent, but share a common appearance. In di�erent con-
texts, the same method call (which is given by the signature) thus leads to
invocations of di�erent methods. In this case, known as dynamic dispatch,

6This is at least true for Java 1.4, which we assume throughout this work. See Ap-
pendix B for a discussion on Java revisions.
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the chosen method depends on the dynamic type of the receiver object. The
most-speci�c method is then taken from the least class (according to the given
type hierarchy) which contains a method declaration with that signature.

Let s be a method signature and M(s) the set of methods with that
signature. Since Java only allows one method with the same signature to
appear in a class, M(s) can unambiguously be partially ordered by v. For a
given signature s and receiver object o ∈ V 0

T , for which at least one method
of that signature is declared in a super-class of T , the most speci�c method
is then given by:

msp(s, o) = min
v
{µ ∈M(s) | µ = (T ′, . . . ), T v T ′}

De�nition 2.9 (Call stack). Let C denote the set consisting of all static
methods of program Π and pairs (µ, r) of non-static methods or constructors
and receivers r ∈ VObject.

A call stack χ is a partial function χ : N+ 7→ C such that there is a k ∈ N
with domχ = [1, k]. (It is domχ = ∅ for k = 0.) Let X denote the set of
call stacks. We de�ne the following stack operations :

1. push : X × C → X with

push(χ, c)(n) =


χ(n) n ≤ |χ|
c n = |χ|+ 1
unde�ned otherwise

2. top : X 7→ C with

top(χ) =

{
χ(|χ|) |χ| > 0
unde�ned otherwise

3. pop : X → X with

pop(χ)(n) =

{
χ(n) n < |χ|
unde�ned otherwise

We also overload the set inclusion relation ∈ in that we write c ∈ χ for
∃n ∈ [1, |χ|] : χ(n) = c. A call stack represents the state of a program �ow.
In particular, there is an element top(χ) referencing the method currently in
progress.
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System states

The triple (h, σ, χ) of Heap and Stack and call stack will be called a system
state or simply a state. The set of all system states of a program Π is denoted
by S. For a partial function θ : I∪L 7→ U we write sθ := (hθ, σθ, χ) for short.
(It should be clear to distinguish which values are on the heap and which on
the stack.)

It will later become necessary (or at least very helpful) to restrict states to
some sort of reachability. To assume a �global pre-state�, which corresponds
to an invocation of the main method of a program, is too restrictive for
our more modular method speci�cations. When later dealing with method
speci�cations, we will consider all theoretically possible pre-states, not just
those which appear in an actual program execution. The following de�nition
thus describes all states which are reachable by some program. It basically
postulates that we only have to deal with created objects and there are only
�nitely many of them.

De�nition 2.10 (Reachable state). Let s = (h, σ, χ) ∈ S be a system state.
s is reachable if

• The call stack is non-empty: χ 6= ∅,

• There are only �nitely many created objects:

|{o ∈ VObject | h(o, \created) = true}| <∞

• Every receiver on the call stack is created:

(µ, o) ∈ χ⇒ h(o, \created) = true

• Every object reference on the Stack is either created or null:

σ(ι) ∈ V −Object ⇒ h(σ(ι), \created) = true

• Created objects only refer to created objects:

o ∈ V −Object ∧ h(o, \created) = true⇒
∀x ∈ I.((o, x) ∈ L ∧ h(o, x) ∈ V −Object ⇒

h(h(o, x), \created) = true)

• All classes and interfaces have been successfully loaded and initialized.

In the following, we will require a pre-state of a program execution to be
reachable. In that way, it is guaranteed for the code to invoke an expected
behavior. E.g. if the above set X is restrained to call stacks of reachable
states, the stack operation top becomes a total function.
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2.4 Java � a Black Box

We are now able to describe the execution behaviour of a Java code fragment
through a black box using a Java Virtual Machine (JVM) [LY99, SSB01].
Although we take no inside view of neither the program code nor how it is
processed, we expect every change of the memory state to be observable (to
the extend of how we de�ned the state). Therefore, the black box yields a
complete sequence of system states through which the program �ow has run.

We further expect the machine not to throw any unexpected errors7,
i.e. errors which are not explicitly or implicitly (e.g. by assertions in Java8)
declared in the given code fragment. E.g. we wish the machine not to run
out of memory, while an explicitely thrown new OutOfMemoryError() may
occur within the program code. Allowing such behavior would contradict a
deterministic execution. Nevertheless, exceptions may be thrown at any time
without any further restriction.

2.4.1 Object creation

As we have discussed before in Sect. 2.2, objects are not really created nor are
they destroyed in any way. This approach is widely used in formal veri�ca-
tion, especially with dynamic logic, where this feature is called the constant
domain assumption [Har84, BHS07]. Since all objects exist (from a set-
theoretical view) a-priori, we have introduced an implicit �nal �eld \created

of type boolean to domain elements of type Object to distinguish created
from not yet created objects.

The process of �creating� new instances can be broken down into three
steps:

1. Creation: The new command is invoked for a type T . This causes an
unused (i.e. h(o, \created) = false) element o to be (deterministi-
cally9) fetched from V 0

T . The location (o, \created) evaluates to true
in the post-state.

2. Preparation: To all (non-static) �elds de�ned in T and its super-types
their default values are assigned (according to [GJSB00], see Table 2.3).

7Java de�nes any instance of Throwable or its subclasses to be an error unless it is an
instance of Exception or its subclasses [Sun04].

8Not to be confused with JML's assertions (Sect. 4.3.2)!
9This can be done with an implicit counter on the domain elements as it has been done

with <nextToCreate> in [BHS07].
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3. Initialization: A constructor (of T or a super-class) is invoked. After the
constructor invocation has �nished (possibly abruptly) no �eld declared
as �nal may be changed.

The reason for this quite complicated construction is that even if an object is
not yet initialized � e.g. because the constructor terminates abruptly throw-
ing an exception � it is already created and thus invariants are required to
hold from now on. Furthermore, the reason why \created is given as a �eld
rather than a predicate of some �higher logic� is that it has to be included in
the de�nition of a system state. It could be thought of \created as a �nal
ghost �eld in class Object, but since it is used slightly di�erent from other
ghosts, it is mentioned separately. Firstly, it has to denote a location even
for those non-Java array types like \bigint[], which are not subtypes of
Object. And secondly, usual �elds do not have values as long as the object
is not created. Thus it cannot take the value false prior to being created. We
would have to mention explicitly which value \created holds and postulate
that it is always legal to access this value.

Type T Default value
d(T ) ∈ VT

boolean false
\bigint, long, int, short, byte 0
char u0000

\real, double, float 0
reference or array type null
\TYPE null

Table 2.3: Default values for types.

Although the reference manual mentions the need of explicit constraining
the state of an object on some occasion, e.g. regarding the range of quan-
ti�cation, yet there is no possibility to do so (like the use of the \created

�eld).
Static initialization will not be considered in this work (see Appendix B).

We expect all static �elds to be initialized in every system state.

2.4.2 The black box

A (possibly in�nite) sequence of states reached throughout the execution of
a code fragment is called a run. A run thus can be seen as a partial function
N 7→ S which is either total or, there is a k ∈ N such that every n ≤ k is
in the domain and every m > k is not in the domain. This is important not
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only to tell two states apart from each other, but also recognize the position
of a certain state within the run. E.g. the pre- and post-state of a program
fragment {x = x;} are identical, but there have been read and write accesses
to the location of x. From a set-theoretical view, an element of a run would
be an ordered pair (n, s) ∈ N × S. Since this looks too monstrous for most
uses, we carefully identify this pair with the state s. To retain at least a little
precision, we will speak of a state of the run s ∈ R. We distinguish states of
the run through indices. E.g. we say that a state si appears before a state sj
if i < j, while it may still occur that those states coincide.

De�nition 2.11 (JVM black box). Let s ∈ S be a reachable system state
and πA an annotated code fragment. A Java Virtual Machine black box
execution is represented by a function J with J (s, πA) = (R, λa, λw, α,Ω, ρ)
where

• R is the run of π executed in state s. R contains at least two states (pre-
and post-state) for every statement which requires a memory operation
of the underlying virtual machine.10 In particular, s appears as the 0th
element of R. It is of in�nite length if and only if π does not terminate.
In any other case, there is a particular last element (the post-state).

• λa, λw : N2 → 2L map pairs of states represented by their position in the
run to the sets of accessed (read) and respectively assigned (written)
locations between those states.

• α : R → (N 7→ A) maps states of the run to sequences of annotations
(see Sect. 4.3). For a loop annotation, the state after the loop condi-
tion has been evaluated is mapped to the annotation. For any other
annotation, it is the state reached after the evaluation of the preceding
Java statement.

• Ω ∈ VThrowable indicates the mode of termination (if any): normal or
abrupt termination by a throwable object, i.e. an exception or an error.
A program fragment terminates normally if, execution reached the end
of the statement block or it is terminated abruptly without the throw
of a throwable object, i.e. by one of the built-in statements break,
continue or return. Normal termination is signaled by Ω = null.11

10This may include loading of constant values. Consider the code fragment
while (true);. There is neither access on the Heap nor on the Stack. We however
expect it to yield a run of in�nite length.

11It is not possible that a method is terminated exceptionally through the throw of (the
exception) null. If the throw of null is declared, the program terminates exceptionally with
an instance of NullPointerException [LPC+08, Sect. 14.17].
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• ρ ∈ U is a return value. Nothing is said in the cases where Ω 6= null or
the return type of π is void. If π is the body of a constructor, then ρ
is the initialized object.

The black box execution follows the Java speci�cation [GJSB00, LY99]. It
particularly ensures that:

• It is executed deterministically and no unexpected error is thrown.

• Objects are created as given above.

Three important observations follow from this de�nition: First of all,
every state of the run is reachable. Secondly, the values of �nal �elds never
change after the constructor invocation is �nished. I.e. for any state (h, σ, χ)
which occurs in any sequence after the post-state (h0, σ0, χ0) of a constructor
invocation for an object o (or o has already been initialized in the pre-state)
it is h(o, x) = h0(o, x) for a �nal �eld x. This particularly includes \created.
And �nally, upon a method invocation the method/receiver-pair is put on the
call stack and the values of all local variables (including method parameters)
are de�ned through the stack description. After the method invocation is
�nished the before values of all parameters are restored.12

Example 2.12. Consider this short code fragment calculating the factorial of
some integer value stored in x:

• h ⊆ {(o, \created) 7→ true, (o, x) 7→ 10}, σ = {y 7→ 1} and top(χ) =
{(µ, o)}

• πA := while (x > 0) { y = y * x--; }

Here, o is the only created object, (o, x) the only location of interest and y a
local variable. Then, the black box calculates

• R = 〈s0 = (h, σ, χ), . . . , sk = (h′, σ′, χ′)〉

• λa(0, k) = λw(0, k) = {(o, x)}

• α = {s 7→ ∅ | s ∈ R} and Ω = null

with h′ ⊆ {(o, \created) 7→ true, (o, x) 7→ 0}, σ′ = {y 7→ 3628800} and
χ′ = χ.

12This is important not only because JML does always refer to the values of parameters
in the pre-state (see Sect. 4.2), but also in order for the black box to handle recursion
correctly.
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In the above de�nition, we omitted giving an exact measure of the gran-
ularity of R. The reason for this is, that is not trivial to declare a one-to-one
relation of source code and states. While it may appear that some lines of
code do not have any e�ect on the internal state of the machine, on the
other hand it may well be that one single assignment requires several steps.
As we wish to record every access (reading or writing) on the Heap, even
a self-assignment such as a.x = a.x; does require at least two elements to
appear in the run. Therein, it is of no importance that those two represent
the very same state, but that access on the Heap occurred.

It also does not matter how many intermediate states are contained within
the run. One could for instance think of 1 for loading the local variable a,
2 for loading the �eld x and 3 for the assignment � or 5 since a.x needs to
be loaded twice, or maybe even more. The question of how many memory
accesses take place is none of the syntax of a program, but of a compiler
which transforms the program to machine code or an intermediate (e.g. Java
bytecode). Therefore, we used the terminology �required memory operation�
to signify that any Java compiler would instruct the machine to take such
an operation. As a result, we do not have a lower boundary of granularity.

2.5 Privacy and inheritance

Privacy modi�ers

In JML, not only classes and their members may be pre�xed with a privacy
modi�er, but also speci�cations such as invariants or behavioral cases in a
method speci�cation. These modi�ers are the same as in Java: private,
protected, default (package visibility), public.

It has been argued [Mey97] that a speci�cation should not refer to �elds,
methods, classes etc. which are more private than itself. E.g. a public invari-
ant may only constrain public �elds. We do not question this approach so far
and assume every speci�cation to be syntactically valid which includes these
access restrictions. To work around those, one can alter privacy modi�ca-
tions given in Java via JML's spec_public and spec_protected modi�ers,
for instance:

private /*@ spec_public @*/ int z;

To a Java program z is still private while in a speci�cation context it may
be accessed publicly.

Privacy modi�ers are mostly a syntactical feature, and access rules are
therefore ignored in this work. The only di�erence they impose on semantics,
whether speci�cations of super-types are inherited by sub-types.
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Inheritance of speci�cations

Speci�cation elements such as invariants, history constraints or method spec-
i�cations de�ned in some type are inherited by its sub-types. This principle
follows Java privacy rules for inheritance: A speci�cation is inherited if and
only if its visibility is at least protected, or it has default visibility and both
super- and sub-type are contained in the same package.

This means for a method in a class C to respect all invariants and history
constraints of super-classes of C, as well to ful�ll the method contracts of ev-
ery method which it overrides. (Note that there may exist methods with the
same name but di�erent parameter types which are not overridden, but over-
loaded, and thus (at least in a formal sense) una�liated.) As a consequence,
speci�cations which are added in the sub-class must not be any weaker than
the inherited speci�cations, e�ectively. Particularly, within a method speci-
�cation, preconditions may only be weakened, and the list of locations of a
frame condition (such as only_assigns) may only be amended.

The latter gives rise to a particular problem since speci�cations in super-
classes have no way to refer to �elds de�ned in sub-classes. JML's solution
to this is the introduction of data groups (see Sect. 3.2). An example can be
found in Fig. 3.3. This example also shows that there exist di�erent concepts
about the term �sub-type�. JML semantics enforce sub-typing always to be
behavioral [LW94]. But this discussion will not be part of this work.

The meaning of all inherited speci�cations is typically captured into a
single clause or expression, e.g. inherited preconditions of a method speci�-
cations are conjoined together. Since expressions are linear by nature, the
type hierarchy is not. Therefore, we have to de�ne a linear ordering of those
speci�cations, i.e. a linear ordering on types which is compliant with the
given type hierarchy.

De�nition 2.13. A binary relation � is a linear type hierarchy if

(i) it is a total ordering on T and

(ii) it preserves the type hierarchy: A v B ⇒ A � B

Since the Java/JML type hierarchy is directed and acyclic, there always
exists a linear form.Linear type hierarchies can for instance be found by
breadth-�rst-searches starting in java.lang.Object. The position of all
other types (i.e. primitive and JML types) is unimportant and thus may
be chosen arbitrarily. For example the types given in Fig. 2.1 can be or-
dered linearly as Object � Comparable � int[] � Object[] � String �
Comparable[] � Object[][] � String[] � int � \TYPE � \TYPE[].





Chapter 3

Expressions in JML

This chapter discusses the values of expressions in JML. Some of them are
directly taken from Java, such as numerical expressions and most boolean
expressions. There are additional boolean operators in JML, such as ==>

(forward implication), <== (backward implication), <==> (equivalence) and
<!=> (antivalence). Those are only short-hand for existing logical operations,
while quanti�ers \forall and \exists signi�cantly enhance the expressive-
ness of the language. JML also allows �side-e�ect free� methods to be used
like mathematical functions. In addition, there are expressions which are
exclusively used in postconditions of method speci�cations and history con-
straints. Firstly, there are predicates for the speci�cation of frame properties,
e.g. \not_assigned names those locations which must not have been assigned
to. Secondly, the operator \old allows one to refer to the pre-state value of
arbitrary expressions.

We will denote the sub-language of expressions which are allowed to ap-
pear anywhere, e.g. in preconditions, and do not contain reference to model
�elds by JML-E0. This means that those expressions must not contain key-
words like \old which refer to another state. Thus, JML-E0 can always be
evaluated within one single state. The full set of expression will be denoted
JML-E1. The complete syntax de�nition of expressions is given in [LPC+08,
Sect. 11.3]. In this work, we only consider well-formed expressions according
to this reference.

JML expressions are typed, such that we may refer to expressions of boolean,
numerical, reference type, etc. By an expression expr of type T we mean that
it is syntactically compatible with type T , i.e. expr has static type T . In the
rare cases where we are interested in a speci�c dynamic type T we will deter-
mine it through the set of direct instances V 0

T . In particular, we will speak
of expressions of boolean type rather than logical formulae. The de�nition

27
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of validity is thus based on boolean expressions which valuate to true. We
denote the set of well-formed expressions by E and the subset of boolean
expressions Ebool.

In this chapter we will at �rst evolve a notion for the evaluation of expres-
sions and a de�nition of validity for boolean expressions. In the beginning, we
only take JML-E0 expressions into account, which evaluation only depends
on one system state. This can be seen as a �naïve approach� for evaluation.
The more general case, in which it is both allowed to refer to the pre-state
and to use model �elds, is based on that �rst approach. Following that,
Section 3.2 explains the notion of data groups, which de�ne collections of
locations to be used within frame conditions. In the �nal section, we will
discuss the values of all covered JML expressions.

3.1 Evaluation function and validity de�nition

In this section we lay the grounds for the evaluation of expressions. Basically,
we employ a valuation function val which maps expressions (of any type) to
semantical elements of the universe, which we have de�ned in the preceding
chapter.

Beneath that, we de�ne a well-de�nition predicate wd, which asserts the
semantically legal use of a (syntactically well-formed) expression in some
context. In order for a boolean expression, i.e. the equivalent to a formula,
to be valid, it has to valuate to true and to be well-de�ned.

Since expressions in general may have side-e�ects, we also have to discuss
how to capture information on side-e�ects caused by certain expressions.
Following that thought, we introduce a function ω which maps expressions
to a state transition function.

The �rst approach to validity of expressions only takes expressions of the
sub-language JML-E0 into account. With this de�nition, �one-state proper-
ties� like preconditions and invariants which do not contain model �elds can
be evaluated. This is important for the succeeding de�nition of model �eld
valuation, which is built upon that �primitive� �rst de�nition of validity. The
second approach to validity thus incorporates both a way to refer to model
�eld values as well as semantical support for the \old expression and frame
conditions.

For a �nal de�nition of validity, axioms are taken into account, addition-
ally. These can be seen as propositions which are �always true�. This is
equivalent to: If any axiom does not hold (in some context), then any other
proposition becomes true trivially.
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3.1.1 Valuation function

The valuation function val : E → U evaluates expressions in a composi-
tional manner. The value of an expression thus depends on the values of its
sub-expressions. Atomic expressions are constants, local variables and the
keyword this.

Since tertium-non-datur holds for boolean expressions (at least on the
semantical domain), we only provide the case in which it evaluates to true.
E.g. �val(a || b) = true i� val(a) = true or val(b) = true� is short-hand for
the following de�nition:

val(a || b) =

{
true val(a) = true or val(b) = true
false otherwise

The evaluation of references depends on a system state in which the
expression is evaluated. Local variables are valuated through the Stack and
�elds through the Heap. We denote the evaluation in state s by adding a
subscript vals.13 Let for instance be s = (h, σ, χ). It is

vals(x) =

{
σ(x) x is a local variable14

h(vals(this), x) x is a �eld

Since for some expressions, their value does only depend on their sub-
expressions and not on the system state, we will partly omit naming it.

One fundamental problem is how to refer to semantical entities from some
expression. Since we have de�ned the Heap function for the pair of a seman-
tical object and an identi�er, there has to be some point to begin evaluation.
(In the preceding example we have inserted this to circumvent this prob-
lem.) A similar situation applies to method calls; in order to evaluate it,
there has to be a semantical object present. This is easy to deduce if the
�rst reference of a chain is a local variable, e.g. a.b.c can be evaluated if a
is a local variable. In the case it denotes a �eld, the expression has to be
transformed in order to be evaluated.

De�nition 3.1 (Normalized expression). To an expression e there is a se-
mantical equivalent expression eN in which

• every non-static �eld or method identi�er is pre�xed with �this.�

13The state written in subscript can be seen as a �rst parameter of val : S × E → U
14Remember that σ is de�ned as a partial function. Any identi�er which is not a local

variable is not in the domain of σ. In order for val to be a total function, we de�ne the
respective values as underspeci�ed. (See also Sect. 3.1.2)



30 Chapter 3. Expressions in JML

• every static �eld or method identi�er of class C is pre�xed with �C.�.
�super� is replaced accordingly.

We call this the normalized expression. It can easily be produced using
(syntactical) substitutions.

In a normalized expression, a reference to a non-static �eld x is trans-
formed into this.x. this is a special keyword representing the current re-
ceiver object, which is evaluated from the system state's call stack. Thus,
normalized expressions are meant to be evaluated in a state in which this

evaluates to the receiver.

3.1.2 Unde�nedness

Throughout the evolution of both formal logic and computer programming,
the issue on how to treat the unde�ned gave birth to several di�erent ap-
proaches. Early logicians developed three-valued (or more general multi-
valued) logics [�uk20]. These include explicit truth values �unde�ned�. Three-
valued logics however may di�er in the way they extend the operators of
classical logic.

Underspeci�cation versus exceptions

More recent approaches [GS95] avoid explicit unde�ned values by underspec-
i�cation. The basic idea is to extend partial functions to total ones by adding
well-de�ned but unknown result values to argument tuples which are not in
the domain. E.g. there is some integer x satisfying x = 23/0. It is the re-
sponsibility of the speci�cation to rule out that there will ever be an illegal
operation like division by zero, e.g. z = 0 ∨ x = 23/z. The great advantage
with this approach is that axioms of classical logic, such as tertium-non-
datur, are still valid. E.g. x = 23/z → x = 23/z still holds � even if z
evaluates to zero. [Häh05] argues that this approach is superior in the con-
text of speci�cation. Other speci�cation languages such as OCL also follow
this approach [OCL05].

Modern programming languages like Java, on the other hand, usually
deploy facilities such as errors or exceptions, which are thrown at runtime
when execution is faced with unde�ned values. This is the only reasonable
action on the program level, but it raises the question of how exceptions
should be represented on the semantical level.

Initially, JML semantics for unde�nedness were also based on underspeci-
�cation [LCC+05, Sect. 4], but as a major change in 2007, semantics are now
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based on �strong validity� [KTB91]. The JML reference manual [LPC+08,
Sect. 2.7] de�nes this by:

[A]n assertion is taken to be valid if and only if its interpretation
does not cause an exception to be raised, and yields the value
true.

This does in fact not cover the whole issue. JML features Java's short circuit
evaluation as a protective element: Earlier clauses (more left in the for-
mula) can protect later ones against unde�nedness. The example from above
z == 0 || x == 23/z still holds since the exception is never thrown due to
short circuit evaluation. Likewise, on the speci�cation level preconditions
may protect invariants and postconditions.

Although this approach deviates a long way from classical (two-valued,
commutative) logic15, it has been argued that it helps to locate programming
errors more quickly, and it is better understood by programmers [Cha07]. In
this work we will both use the underspeci�cation technique for otherwise
unde�ned values as well introduce a predicate which asserts well-de�nition
of expressions, i.e. the absence of exception.

Well-de�nition predicate

As it has been explained in length above, JML boolean expressions do not
form a standard two-valued logic. Therefore we need to introduce a well-
de�nition predicate wd besides the valuation function val. This has been
proposed in [Cha07]. It is primarily used to tell whether Java would throw
an exception on evaluation of that expression. Therefore, we will mention
the respective exception type, if this is applicable.

The well-de�nition function can be seen as a kind of a second, orthogonal
evaluation function. On the top-level, a boolean expression is taken to be
valid if and only if it evaluates to true and it is well-de�ned.

For all expressions except the short-circuit versions of boolean operators,
wd is true if and only if wd holds for every subexpression. Consider for
instance the short-circuit disjunction || again. The second operand is only
evaluated if the �rst one evaluates to false. This leads to:

• val(a || b) = true i�

� val(a) = true and wd(a) or

� val(b) = true and both wd(a) and wd(b).

15It may be seen as a �covered� three-values logic approach with an exceptional truth
value.
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• wd(a || b) i� wd(a) and if val(a) = false then also wd(b).

This de�nition reveals the semantic di�erence between JML's two implication
operators: (a ==> b) is equivalent to (!a || b) whereas (a <== b) is equivalent
to (a || !b). In the �rst case, b does not need to be well-de�ned if a is false,
while in the second case b does not need to be well-de�ned if a is true.

The well-de�nition predicate is not used to tell whether an expression is
syntactically well-formed. Syntactical correctness is always assumed. In
particular, wd does not report Java expression which result into an error at
compile time according to [GJSB00], but exceptions which would be risen at
run-time. E.g. null != 42 is not a syntactically valid expression since the
inequality operator is typed in Java. (And thus in JML.) However, it would
be well-de�ned (and valuate to true) in our formalization.

Like the valuation function, wd also depends on the state of evaluation.
Consider for instance a �eld access through an expression a.x where a is
an expression of reference type and x denotes a �eld. With s = (h, σ, χ),
valuation is done by vals(a.x) = h(vals(a), x). But this expression is only
well-de�ned if a is not a null reference. (This corresponds to the throw of a
NullPointerException in Java.) Thus, a necessary condition for wds(a.x)
is vals(a) 6= null.

3.1.3 Expressions with side-e�ects

In JML, expressions are not necessarily completely free of side-e�ects. This
means that subexpressions may be evaluated in di�erent states. JML does
however restrict expressions to be pure, which can be seen as �weakly side-
e�ect free�.

Pure methods

It has been found very helpful for speci�cations to make use of program
methods which behave similarly to mathematical functions. For this reason,
in JML methods can be declared pure. This means they must terminate
(normally or exceptionally) in any case and may not change locations which
have existed in the pre-state, i.e. they are (to some extent) side-e�ect free.

They also have a trivially true pre-condition, so that they may be called
in any context. Pure methods might however throw exceptions and as a
consequence not always deliver a valid return value. In combination with the
de�nition of unde�nedness (see Sect. 3.1.2), this de�nitely makes sense since
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parameters of a pure method should not be restricted to values for which
exists a result.

According to the JML reference manual [LPC+08], one can rely on all
pure methods of Java standard libraries being already declared pure. Classes
may also be declared pure which declares every method to be pure (those of
sub-classes too). [SR05] covers methods of purity analysis for Java methods.
But that is not part of this work.

Weak purity

Constructors may also be declared pure. In this case, they are only al-
lowed to assign �elds of the instance they create (referred to as this). This
means however, that the post-state of a pure method (which may have called
pure constructors) does not necessarily equal its pre-state [BNSS05]. Such a
method is called weakly pure [Cok05, DM06].16 In this context, some authors
regard it as �side-e�ect free�, since it does not assign locations which were
present in the pre-state.

From a practitioner's point of view, this is a very common and accepted
technique. By the principles of object-orientation, any data which represents
more than a single numerical value is represented as an object. E.g. in Java,
a String is not a sequence of characters, but an object which needs to be
created. As another example, Java does not allow an element to be appended
to an existing array (since it has �xed length), but to copy its contents to
a newly created array. In addition, methods often create temporary objects
such as iterators.

From a theoretical view however, this raises the question, in which state
an expression containing calls to weakly pure methods is evaluated and how it
does a�ect later computations. The JML reference manual does not mention
this at all. We base our interpretation on three principles:

1. Speci�cation expressions must not interfere with computation. There-
fore, the scope of an altered system state is bounded to expression
evaluation. Computation continues from the original state.

2. In order to conform with overall JML policy, the behaviour of expres-
sions should resemble their counterparts in Java. In particular, the
values of new objects should be as expected. E.g. new Integer(3).

equals(new Integer(3)) should hold, but new Integer(3) == new

Integer(3) is not necessarily true. It is also desirable to imitate the
linear order of evaluation.

16In this way, pure methods in JML do di�er from queries in UML [RJB99], which are
required to be absolutely free of side-e�ects.



34 Chapter 3. Expressions in JML

3. After all, semantics have to be well-de�ned. It should for instance be
decidable within �nite time whether
(\forall Object x; true; x == new Object()) holds. (It should
certainly not.) Therefore, the interpretation may only change the state
of evaluation a �nite number of times.

[DM06] presents a solution based on pure successor states. In this, every
speci�cation expression does not only yield a value, but also a transition be-
tween states. In this way, the left-most subexpression yields a successor state
which serves as the state of evaluation for the second left-most subexpression,
and so on.

ω function

The pure successor function ω : E → (S → S) assigns a state transition
operator to every expression. It is ine�ective on most expressions, however.
Only creation of new objects (which may be invoked by weakly pure methods)
leads to transitions from the original state of evaluation to a pure successor
state. In general, the resulting transition function is just the composition of
the transition functions of all sub-expressions. Let us consider the predicate
\fresh applied on n expressions:

ω(\fresh(e1, . . . , en)) = ω(en) ◦ ω(en−1) ◦ . . . ◦ ω(e1)

As we have discussed above, these transitions should resemble those of
Java expressions. Thus, for the short-circuit logical operators, only those
sub-expressions which are evaluated may produce a pure successor:

ω(a || b)(s) =

{
ω(a)(s) vals(a) = true
ω(b)(ω(a)(s)) vals(a) = false

The major disadvantage of this approach is that the order of subexpres-
sions does always matter, e.g. a simple numerical addition will not be com-
mutative anymore:

vals(a + b) = vals(a) +int valω(a)(s)(b) 6= vals(b + a)

As we will later show in detail, a successor of a reachable state is always
reachable, too.

3.1.4 A �rst de�nition of validity

As we have discussed above, a boolean expression is (semantically) valid on
the top-level if it valuates to true and it is well-de�ned. Putting this in a
formal de�nition leads us to the following:
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De�nition 3.2 (Validity of expressions � 1st approach). Let φ be a normal-
ized expression of type boolean and s ∈ S be a state. φ is valid in s i�
vals(φ) = true and wds(φ) holds. We write s � φ.

This de�nition resembles in a way truth de�nitions of modal logics.17

And, it is su�cient for the evaluation of the sub-language JML-E0. Several
features of JML however, force us to further extend this de�nition.

First of all, the \old operator forces us to reason about two di�erent
states at a time. Some approaches try to master this by application of
substitutions (see for instance [BBS01, Eng05]). We will however pursue
a more elegant approach involving valuation with two states. Furthermore,
reasoning about method speci�cations (Sect. 4.2) will require to take re-
sult values and accessed/assigned locations into account. We extend val to
val(s0,s1,La,Lw,M,ρ) (and wd alike) where s1 is the �current� state and s0 is the
�old� state, La and Lw ⊆ L are sets of accessible resp. assignable locations
and ρ ∈ U the return value. M : S × U × I → U is a special valuation
function, which will be explained in the up-following subsection. We will call
the tuple Σ = (s0, s1, La, Lw,M, ρ) a logical state (as opposed to a system
state).18 This leads to the following de�nition:

De�nition 3.3 (Validity of expressions � 2nd approach). Let φ be a nor-
malized expression of type boolean and Σ a logical state. φ is valid in Σ i�
valΣ(φ) = true and wdΣ(φ) holds. We write Σ � φ.

If the evaluation of an expression does not depend on some part of the logi-
cal state, it will be partly omitted (e.g. val, vals or val(s0,s1) may occur). This
means for all parts not mentioned to be passed to subexpressions without fur-
ther notice. E.g. we write vals(n + m) = vals(n) + valω(n)(s)(m) as short-hand
for val(s′,s,La,Lw,M,ρ)(n + m) = val(s′,s,La,Lw,M,ρ)(n) + val(s′,ω(n)(s),La,Lw,M,ρ)(m).
Likewise, if the validity of an expression must not depend on the whole tuple,
we will write s � φ for short. This means for all parts not mentioned to be
arbitrary.

3.1.5 Model �elds

One feature of JML annotations to Java programs is that additional �elds
may be added for the purpose of abstraction. As with all other features,

17In opposition to most formal logics, we completely omitted a reference to a kind of
logical signature or at least the universe of domain elements. This is purely for convenience
reasons. Everything we need as structural foundations is present in the program Π which
we �xated for our considerations, such as the universe U . (See Sect. 2.1)

18With the evaluation in a logical state, val has e�ectively signature S ×S × 2L × 2L ×
{S × U × I→ U} × U × E → U .
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those model �elds [CLSE05] are not part of a program and are only used
throughout speci�cation. Model �elds are declared similarly to regular �elds,
but within comments, e.g. through //@ public model int z;. Model �elds
may have any JML type, including \TYPE. Model �elds may be declared in
both interfaces and abstract classes.

In contrast to regular �elds, model �elds are not directly assigned (by
neither the program nor assignments on the speci�cation level), but they
are meant to represent some abstraction from concrete values. Therefore, we
explicitly excluded model �elds from the de�nition of locations (see Sect. 2.3).
Values of model �elds are speci�ed using the represents statement. It comes
in two �avours:

• Functional abstraction: The syntax is as for an assignment to the model
�eld m with a compatible expression e on the right-hand side. It means
that in every state the values of m and e must be equal.

• Relational abstraction: A boolean expression b, the representation clause,
is given, which must evaluate to true in every state. This is de�ned
with the keyword pair represents/\such_that.

It can be easily seen that the former is just a special case of the latter with
b = (m == e). For simplicity we will only consider relational abstractions.
These can be thought of as strong invariants, i.e. they are meant to hold
in every state.19 The following example de�nes an integer z which has no
concrete value but is constrained to be a positive even number.

/*@ public model int z;

@ represents z \such_that z > 0 && z%2 == 0;

@*/

Representation clauses are in general de�ned with the following speci�-
cation:

//@ M represents x \such_that ψ;

Where M is a privacy modi�er. The representation clause ψ is a boolean
expression. Since the model �eld may be inherited, there may be additional
representation clauses declared in subtypes. If a model �eld is declared in
type T and we consider an instance o ∈ VT ′ with T ′ v T as receiver for

19The JML reference manual postulated a weaker condition, such that these represen-
tation clauses only have to be met in certain states, namely visible states. This design
decision is primary made under certain assumptions on observability and enforceability,
which are unimportant to our theoretical considerations. Therefore, our viewpoint is tele-
ologically justi�ed.
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this �eld, the public and protected representation clauses of all types T ′′

with T ′ v T ′′ v T , as well as all representation clauses with default privacy
of all types T ′′′ with {T ′′′, T} ⊆ P ∈ P and T ′ v T ′′′ v T apply. Let Ψ
be the set of all applicable representation clauses. Since any type contains
at most one representation clause, Ψ can be ordered totally by some linear
type hierarchy (see Def. 2.13). Let 〈ψ1, ψ2, . . . , ψk〉 be the resulting ordered
sequence of normalized representation clauses from Ψ. We denote the short-
circuit conjunction by ψTT ′ := ψ1 && ψ2 && . . . && ψk, and de�ne ψTT ′ := true

in the case Ψ = ∅.

Evaluation of model �elds

So far, the values of model �elds have not yet been taken into account. The
main reason for this is, that they can not be valuated the straight way. As
it has been discussed above, model �elds only represent an abstract value.
The issue of handling model �elds is still subject to on-going research. As an
early approach, it has been proposed in [Mül02] to regard model �elds as a
sort of pure method, which is evaluated when needed. This however covers
only the special case of functional abstraction.

Several approaches [BP03, Eng05, LM06, DM06] try to incorporate the
more general case of relational abstraction in which the model �eld may
not have a concrete value. Model �elds and their representation clauses are
also inherited; where additional representation clauses may be added by the
inheriting class. In addition, model �elds may depend on other model �elds.
This fact might turn the problem more complicated. Let us lay some common
ground for reasoning about model �elds.

De�nition 3.4 (Model �eld characterization). Every model �eld instance is
characterized by a tuple (o, x, ψ̄) ∈ U × I× Ebool where

• o ∈ V 0
T ′ is the receiver of the (possibly static) �eld20, or o = null,

• x is the identi�er of the �eld declared in type T and

• ψ̄ := ψTT ′ is the conjunction of all applicable representation clauses. If
o = null it is ψ̄ := ψTT .

The set of all these tuples (for all possible receivers) is denoted by M.

As for concrete �elds, there is a (o, x, ψ̄) to a static �eld x for every
o ∈ VT . It is vital to have the null object included in this de�nition. Since
model �elds are allowed to appear as members of interfaces, there may be no

20o is not necessarily created.
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other instance of that type. (Consider for instance an interface with static
�elds, but it is never implemented by a non-abstract class.)

A quanti�cation-based approach

[BP03] presents two approaches using quanti�cation, which are widely used.
We will discuss them in short and then point out why they are insu�cient.
Every expression φ is transformed in a way that it appears as the body of a
quanti�er expression with the model �eld as the variable to be quanti�ed over.
The clear advantage of this technique is, that everything can be determined
on the expression level. The �rst of those two approaches uses existential
quanti�cation:

φ ; (\exists T x; ψ̄;φ)

This transformation takes place recursively for every element of M. However,
this condition is clearly too weak since it only asserts the existence of one
value satisfying the representation clause.

The second approach builds on both universal and existential quanti�ca-
tion. It does both assert φ under the precondition that ψ̄ holds, as well as the
existence of such a value. (Universal quanti�cation alone would mean any
expression to be trivially true if one representation clause is unsatis�able.)

φ ; (\forall T x; ψ̄;φ) && (\exists T x; true; ψ̄)

This approach still has got some major �aws. First of all, the order in
which the expression is transformed, i.e. an ordering imposed on M, does
matter. Model �elds may depend on each other, so if ψ̄ contains reference
to another model �eld y, the scope of quanti�cation of y has to include ψ̄.
This would mean the semantics of model �elds only to be well-de�ned if
there exists a linear ordering of dependencies in M. This not always given:
Consider a case in which the representation clauses of M are declared to
produce cyclic dependencies.

Secondly, in the presence of the \old operator, these substitutions do not
produce well-formed expressions. Consider a model �eld identi�er bound by
\old. It cannot be bound by quanti�ers, too. In this case, there is need for
additional substitutions such as storing old values in separate model �elds.21

The most severe problem with this approach is that it only talks about all
values which satisfy the representation clause simultaneously. But there is
no way to tell how one concrete value would behave. In particular, assuming
concrete values � or more generally, strengthening the representation clause �

21In [Eng05], which also takes on this approach, this problem is avoided as the substi-
tutions do not take place on the JML expression level, but the level of dynamic logic.
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always leads to falsity. Consider the example in Fig. 3.1. Obviously, the two
preconditions together cover every concrete value of x. But neither one holds
itself for every concrete value, because (\forall int x; x==0 || x==1;

x==a) is unsatis�able for any a.

1 public class Model {

2 //@ public model int x;

3 //@ represents x \such_that x == 0 || x == 1;

5 /*@ public normal_behavior

6 @ requires x == 0;

7 @ ensures false;

8 @ also

9 @ public normal_behavior

10 @ requires x == 1;

11 @ ensures false;

12 @*/

13 public void foo ();

14 }

Figure 3.1: Example for model �eld values based on quanti�cation. The
precondition becomes unsatis�able when transformed according to the
quanti�cation-based approach.

This is not what we wanted. Intuitively, a model �eld is not supposed
to be yet another way to impose invariants, but to represent some concrete
value. As it turns out, any approach which builds on substitution on the
expression level is insu�cient. Therefore, in the following subsection, we will
present an approach which works on a �higher level�.

An approach with concrete values

Our own approach is based on the idea that model �elds do denote concrete
values, just as concrete �elds do. [LM06] follows a similar thought and also
stores model �eld values on the Heap. We however separate concrete and
model �elds, as to keep the program and its speci�cation apart. Therefore,
we introduce a function M called model �eld valuator which assigns a con-
crete value depending on the state of evaluation. The notion of locations is
extended to include abstract locations :

L′ := L ∪ {` ∈ U × I | (`, ψ) ∈M}
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In the following de�nition, we describe model �eld valuators by imitating
concrete locations and their valuation through the Heap. That is, we extend
the Heap of state s through the addition of model �elds, such that every
abstract location ` is mapped to a value denoted by M(s, `).

De�nition 3.5. Let M be the set of model �eld characterizations as de�ned
above. The setM is either the least set containing all functionsM : S×L′ →
U such that for every system state s ∈ S and every (o, x, ψ) ∈M it is

• M(s, o, x) ∈ Vtypeof(x),

• vals′(ψ̂) = true22 and

• wds′(ψ̂) holds,

where s′ coincides with s{ 7̀→M(s,`)|(`,ψ′)∈M} except for vals′(this) = o and

ψ̂ :=

{
ψ for static x
this.\created ==> ψ otherwise

or, if this set is empty, thenM := {∅}.

In the former case,M contains every valuation function which conforms
to any representation clause at the same time. This only applies to created
objects since otherwise concrete �elds on which the model �eld depends may
not contain speci�ed values. In the latter case, ∅ can be seen as a partial
function with signature S × L′ 7→ U which is unde�ned for any parameter.
The dependency problem discussed above does not occur in this approach
since valuators �directly� assign concrete values to all model �elds in parallel.

Taking model �elds into account, speci�cations are always meant to hold
for every possible valuator. E.g. the intuitive meaning of a method contract
is: For every model �eld valuator and every system state in which the pre-
condition holds, if the program terminates normally, then in the post-state
the postcondition holds. In this approach, the interpretation of model �elds
is not local to one particular state, but to the whole speci�cation. By this,
we mean that in the pre-state, in the post-state and in any single one in
between, model �elds are valuated with one and the same valuator function
M . In this way it is very easy to talk about concrete values. In particular,
\old may be used in a sound way and it does always yield the same value
for a �xed M .

22Since representation clauses are not allowed to use \old, \result, etc., it is su�cient
to consider valuation in a single state s′. I.e. all other components of the logical state are
de�ned arbitrarily. Representation clauses may still refer to other model �elds, but they
behave as if they were regular �elds in that they are valuated through the Heap.
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This approach also allows the use of any JML expression within repre-
sentation clauses. This is in contrast to [LM06], which explicitly disallows
any method invocations. It is also possible to use side-e�ects of weakly pure
methods in representation clauses, which are evaluated at every occurrence
of the method �eld reference.

1 public class Sqrt {

2 private int x;

3 /*@ public model int z;

4 @ represents z \such_that x >= 0 ==>

5 @ (x-1 < z*z && z*z <= x);

6 @*/

8 /*@ public normal_behavior

9 @ requires 0 <= x

10 @ && x <= Integer.MAX_VALUE /4;

11 @ ensures z == 2 * \old(z);

12 @*/

13 public void times4 () {

14 x = x * 4;

15 }

16 }

Figure 3.2: Example for a model �eld with a concrete value.

Example 3.6. Consider the de�nition of class Sqrt in Fig. 3.2. It declares
a model �eld z which holds a square root of a positive integer x (rounded
towards zero). For given x, there are only two possible values for z � positive
or negative � or just one if x valuates to zero. Nothing is said about the case
in which x is negative.

Let o ∈ VSqrt be an instance of this class. Let sj = (hj, σ, χ) with j ∈
Vint be a family of system states which coincide on everything except for
hj(o, x) = j for every j ∈ Vint. Then,M can be partitioned in two subsets
M+ andM−, such that for every M± ∈M± (for ± ∈ {+,−}) it is

M±(sj, o, z) = ±
⌊√

valsj
(x)
⌋

= ±
⌊√

j
⌋
for j ∈ [0, 231 − 1]

(The values for j < 0 are of no interest to us.) Let us now �xate a valuator
function M ∈M+.

Finally, we will regard times4 and its postcondition. Let sk be its pre-
state with k ∈ [0, 229 − 1] (this is what the precondition says). Then, since
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we excluded a possible over�ow, we can assume a post-state s4k (without
further looking at details). Thus, the postcondition is evaluated in a logical
state Σ = (sk, s4k, La, Lw,M, ρ), where La, Lw, ρ are unimportant to our
considerations. It is valΣ(z == 2*\old(z)) = true if and only if valΣ(z) =
valΣ(2*\old(z)).

It is valΣ(z) = M(s4k, o, z) =
⌊√

4k
⌋

= 2
⌊√

k
⌋
and

valΣ(2*\old(z)) = 2 ·int valΣ(\old(z))
= 2 ·int val(sk,sk,La,Lw,M,ρ)(z)
= 2 ·int M(sk, o, z)

= 2 ·int
⌊√

k
⌋

= 2
⌊√

k
⌋

As it can be seen, in both pre- and post-state the same valuator functionM is
used to valuate the model �eld. Thus, we can conclude that the postcondition
holds.

The only question left open so far is: What if there is no model �eld
valuator to satisfy the representation clauses?23 In the following, we will
always formulate semantics of speci�cations under the assumption that there
exists at least one. Therefore, we de�ned the set M in a way that it always
contains at least one element, the empty set. In this case, there is no value for
any model and we insert underspeci�ed values. Every reference to a model
�eld will be marked as not well-formed. However, expressions which do not
depend on the values of any model �eld are still satis�able. The following
example has no model, but the invariant is still tautological:

public class NoModel {

//@ model int z;

//@ represents z \such_that false;

//@ invariant true || z == 42;

}

3.1.6 Axioms

For a �nal de�nition of validity we have still to consider that JML possesses
the notion of axioms, which are assumed �whenever such an assumption is
needed� [LPC+08, Sect. 8.6]. This de�nition is not very precise. With an
intuitive meaning of axioms in mind, we will introduce an extended de�nition
of validity which builds on the previous one.

23As a reminder, valuator functions are de�ned to have to satisfy all representation
clauses at the same time.
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The reference manual does not say anything additional about syntax and
semantics of axioms. We assume an axiom to be a JML-E0 expression, i.e. it
must not contain one of the \old, \result or frame expressions. We further
assume that axioms are always non-static and apply on created non-null (as
this is the default in JML) instances of the type where it is de�ned. In
contrast to most other speci�cation features, the privacy of axioms cannot
be modi�ed.24 From this, we also conclude that axioms are not meant to be
inherited.

De�nition 3.7 (Validity of expressions, 3rd approach). Let φ be a normalized
boolean expression and Σ a logical state. φ is valid in Σ, written Σ �̀ φ, i� :
Σ � φ, or there is an axiom X de�ned in type T and an instance o ∈ V 0

T

such that
Σ′ 2 X

where Σ′ coincides with Σ except for valΣ′(this) = o
and valΣ′(this.\created) = true.

In praxis, the use of axioms is very similar to those of invariants. However,
axioms are assumed in every state, but never asserted.

3.2 Data groups

As we have discussed before on multiple occasions, JML allows the compi-
lation of several locations into data groups . They are especially useful when
JML's frame conditions (e.g. \assignable, see Sect. 4.2) are used. Orig-
inally, data groups were introduced to cope with method overrides which
change more locations than the overridden method [Lei98]. (See also the
example in Fig. 3.3.) The set of locations in a data group can be seen as
a re�nement from a �more crude� location which denotes the data group.
In addition, data groups also allow model �elds (see Sect. 3.1.5) to be used
within frame conditions. As it has been discussed above, model �elds do not
have (concrete) locations where they are stored. We will use data groups of
abstract locations to refer to the concrete locations on which they depend.

As a foundation, every concrete �eld in JML de�nes a data group with the
same name and with itself as the only element. Every model �eld also de�nes
a data group which is intended to include every concrete location on which
it (transitively) depends. This is however not required by the de�nition of
the data group.

24This is actually mentioned in the reference manual.
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1 public class Square {

2 protected double width;

3 //@ public model double area;

4 //@ private represents area = width * width;

6 /*@ public normal_behavior

7 @ ensures \result == area;

8 @ accessible width;

9 @*/

10 public double getArea () {

11 return Math.pow(width , 2);

12 }

13 }

15 public class Rectangle extends Square {

16 protected double length;

17 //@ private represents area = width * length;

18 //@ maps length \into width;

20 // (specification inherited from above)

21 public double getArea () {

22 return width * length;

23 }

24 }

Figure 3.3: Example of inherited method speci�cations. Rectangle

inherits a speci�cation which would be unsatis�able without the data
group mapping in Line 18 since length is also accessed but not listed
in the accessible clause. With this clause, length is included in the
set of accessible locations. The model �eld area is used to show the
abstract property which is used in both classes.
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Finally, one can de�ne data groups to be included in each other. JML
de�nes two variants: Static inclusion is written immediately after the de�-
nition of the �eld to include using the keyword in. Dynamic mapping is the
more general form, though it is also written right after a �eld declaration. It
declares a more general location expression to be included in a list of data
groups using the keyword-pair maps-\into. An example is given in Fig. 3.3.
The static kind can easily be desugared to the dynamic one, so we only have
to consider mappings of the dynamic kind:

int z; //@ in x; ===> int z; //@ maps this.z \into x;

A location expression25 is constructed in the same way as a reference
expression, i.e. an expression which refers to a �eld. Location expressions
however refer to (abstract) locations as the name suggests. Therefore, they
are evaluated through a di�erent function loc : E → 2L

′
which is given below.

In addition to �classical� references, location expressions may use wild-cards,
such as array[*] to refer to all �elds resp. array elements, as well as the
special keywords \nothing and \everything.

De�nition 3.8 (Location expressions). Let s be a system state.

• locs(r.x) = {(vals(r), x)} for an expression r of reference type and x a
(possibly model) �eld identi�er

• locs(C.x) = {(o, x) | o ∈ V 0
C} for a static (possibly model) �eld identi�er

x in class C

• locs(r.*) = {(vals(r), ι) | ι ∈ I} ∩ L′

• locs(C.*) = {(o, ι) | o ∈ V 0
C , ι ∈ I} ∩ L′

• locs(a[n]) = {(vals(a), valω(a)(s)(n))} for an expression a of array type
and n expression of an integer type

• locs(a[n..m]) = {(vals(a), k) | valω(a)(s)(n) ≤ k ≤ valω(n)(ω(a)(s))(m)}
for an expression a of array type and n,m expressions of integer types

• locs(a[*]) = locs(a[0 .. a.length− 1])

• locs(e1, e2, . . . , en) =
⋃n
i=1 loc~ωi−1(s)(ei)

with ~ωi := ω(ei)◦ω(ei−1)◦ . . .◦ω(e1) and ~ω0 := id for a list of references

• loc(\nothing) = ∅
25This is called �Store Ref� in the JML reference manual [LPC+08, Sect. 11.7].



46 Chapter 3. Expressions in JML

• loc(\everything) = L′

In the declaration of data groups not all these expressions may be used.
The left-hand side of a maps-into-clause may only contain concrete refer-
ences and use simple references, such that x.y, x.*, x[n], x[n..m], x[*],
x[n1][n2], . . . where x is meant to refer to the �eld which has just been
declared.

De�nition 3.9 (Data group). Let s be a system state. The least function
D : L′ → 2L satisfying the following assigns a location to its data group.

• Base case: ` ∈ D(`) for every concrete location ` ∈ L

• Data group mapping: For every instance o of class C and the following
(normalized) clause in C maps x \into r1.z1,. . .,rn.zn; (where x is a
location expression and ri.zi are references to data groups26 ) it is

⋃
`∈locs′ (x)

D(`) ⊆
n⋂
i=1

D((vals′(ri), zi))

where s′ coincides with s except for vals′(this) = o.

While this formal de�nition is a very straight forward translation of the
informal description, it is not clear to see that such a function does always
exist. But, at least the set of all locations L satis�es both requirements.

3.3 JML expressions

This section discusses the details of valuation of some representative JML
expressions. In particular, in some places, in which the JML reference manual
[LPC+08] is not clear enough, we will comment on our conclusions in depth.
To give a more simple view, in most cases we omitted the states in which
subexpressions are evaluated.

The structure of this section is mirrored by Appendix A, which contains
a comprehensive enumeration of de�nitions for all covered expressions.27

26The requirement for ri be concrete has been made in [Lei98].
27Refer to Appendix B for JML expressions which are not covered.
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3.3.1 Boolean expressions

The values of the logical operators !, && , & , ||, | are the exact same
as in Java. JML's addition to these compromises of implications in both
directions, ==> and <== , as well as equivalence <==> and antivalence <!=> .
All of them are short-circuit operators. This means both well-de�nition and
side-e�ects depend on the value of the �rst operand. Consider for example
the forward-implication:

• vals(a ==> b) = true i� vals(a) = false or valω(a)(s)(b) = true

• wds(a ==> b) i� wds(a) holds, and vals(a) = false or wdω(a)(s)(b) holds

• ω(a ==> b)(s) =

{
ω(a)(s) vals(a) = false
ω(b)(ω(a)(s)) otherwise

Equality predicates

Equality and inequality predicates are the exact same as in Java. It should
be noted however, that we assume them to be untyped on the semantical
level:

• vals(a == b) = true i� vals(a) = valω(a)(s)(b) and vals(a) 6= NaN

• wds(a == b) i� wds(a) and wdω(a)(s)(b)

• ω(a == b) = ω(b) ◦ ω(a)

The syntax of JML already requires equality to be typed and thus only
comparisons of compatible types are well-formed. Numerical expressions on
the other hand may always be compared with each other; in this case a
numerical promotion procedure takes place.28 NaN is incomparable with
itself according to the IEEE 754 standard [Kah87].

3.3.2 Numerical expressions

Unlike most other speci�cation languages, JML semantics by default rely on
Java integers and �oating point numbers, rather than mathematical integers
and real numbers. This means that over�ows (integers) and missing precision
(�oats) also occur in speci�cations. Although this approach is not unsound, it
might lead to some unexpected results, e.g. Integer.MIN_VALUE * 2 == 0.

28This may lead to some unexpected results. E.g. val(16777217 == 16777216.0) = true
since promotion from int to float comes with a loss of precision.
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Support for mathematical integers and real numbers has been added mean-
while [Cha03], introducing the speci�cation-only types \bigint and \real.
However, numerical expressions are still evaluated according to Java rules.
It has been proposed in [Cha04] to implement di�erent math modes :

1. Java math, which uses Java rules as mentioned above,

2. Bigint math, in which every numerical expression is implicitly converted
to the respective mathematical entity and

3. Safe math, in which over�ows throw exceptions.

In this paper, we will stick to the �classical JML�, i.e. Java math. It
would not be much work given semantics for the other cases, but it would
not be very informative. Also, we would like to avoid switching between the
di�erent modes (see Appendix B).

Numerical expressions behave almost as in Java, i.e. with over�ow se-
mantics for integral types29 and �oating point types behaving according to
[Kah87]. We added semantics for \bigint and \real types. Since nothing is
said in the reference manual, we assume the same operations as for �oating
point types. This example shows division for \real:

• val(x/y) =

{
arbitrary val(y) = 0
val(x)/val(y) otherwise

• wd(x/y) i� wd(x) and wd(y) and val(y) 6= 0

Division by zero has to treated separately however. Although wd(x/y) is not
satis�ed in this case30, we still have to assign a legal, but underspeci�ed value
in order for val to be a total function. Since division by zero always leads to
falsity on the top-level, e.g. n/0 == n/0 is not valid, but the concrete value
is in fact unimportant.

This applies to integral types, too. But not to �oating point types, since
every division by zero results inNaN which is a built-in element for unde�ned
numerical values in IEEE 754. E.g. n/0.0 != n/0.0 is a valid expression
(and a tautology).

29Consider for instance multiplication in type int:

val(n * m) = (val(n) · val(m) + 231) mod 232 − 231

30Division by zero would cause an ArithmeticException in Java.
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3.3.3 Type expressions

In JML, there can be expressions of type \TYPE, which is meant to represent
the set of Java types. These type expressions can be used in comparisons,
i.e. equality predicates, the subtype predicate or the instanceof predicate.

\typeof returns the dynamic type of an expression of reference type.
Since null has no dynamic type, in this case the expression is not well-de�ned.
In all other case, there is an unambiguous value set which contains the ele-
ment.

When applied to expressions of a primitive type, \typeof does return
an according wrapper type, e.g. java.lang.Integer for expressions of type
\int. According to the reference manual this is always �the most-speci�c�
dynamic type of the expression's value. However, for numerical expressions it
might be ambiguous which type to chose since value sets are neither exclusive
nor subsets of each other, e.g. ∅ ( Vint ∩ Vfloat ( Vint. We assume that
integral types are �more speci�c� than �oating-point numbers in this context.
This leads to the following de�nition:

val(\typeof(e)) =



Boolean val(e) ∈ Vbool
Character val(e) ∈ Vchar
Byte val(e) ∈ Vbyte
Short val(e) ∈ Vshort \ Vbyte
Integer val(e) ∈ Vint \ Vshort
Long val(e) ∈ Vlong \ Vint
Float val(e) ∈ Vfloat \ Vlong
Double val(e) ∈ Vdouble \ Vfloat
T̃ val(e) ∈ V 0

T̃
and T̃ v Object

arbitrary otherwise

The last case applies when e denotes an expression of a type other than a
Java type, e.g. \bigint or \TYPE. According to the reference manual, JML
syntax does not outlaw them, but \TYPE is de�ned only to contain Java types.

wd(\typeof(e)) i� val(e) ∈
⋃

T∈V\TYPE

V 0
T

\elemtype returns the type of elements for a given (Java) array type
represented by an expression t of type \TYPE. If the given type is not array
type, then the elements are per de�nition of �type null�. Since non-Java
array types like \bigint[] are excluded from the value set of \TYPE, the
result type is a Java type, too. Therefore, this expression is well-de�ned if
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and only if the \TYPE expression is well-de�ned.

val(\elemtype(t)) =

{
T ′ val(t) = T ′[]
null otherwise

wd(\elemtype(t)) i� wd(t)

3.3.4 Type cast

Casting an expression of reference type to another reference type does not
change its semantics:

val((T) a) = val(a)

As Java would throw a ClassCastException, this expression is not well-
de�ned if the casted element a is not an instance of the type T :

wd((T) a) i� val((T) a) ∈ VT

Note, that instances of \bigint[], \real[], \TYPE[], etc. are not compat-
ible to Object and cannot be used in a well-de�ned cast expression.

In the case that both types are numerical, there is a special conversion
procedure in Java [GJSB00, Chapter 5] which ensures that there is always
an element in the domain of the target type. E.g. val((int) NaN) = 0. We
included \bigint and \real in an extended conversion procedure for JML
numerical types in the obvious way.31 In the opposite direction, values are
usually rounded or set to in�nite. For instance the conversion from \real to
double:

val((double)a) =


+∞ a > max Qreal

−∞ a < min Qreal

rtnVreal otherwise

However, we decided that the conversion of NaN or in�nite values should
also lead to the throw of an exception. (After all, NaN stands for �not a
number�.) Therefore, it is val((\real) NaN) = NaN , but since NaN 6∈ R
the expression is not well-de�ned.

3.3.5 Reference expressions

The values of concrete references are determined from the system state s =
(h, σ, χ). Local variables (including parameters and caught exceptions) are

31The reference manual is not clear on whether such a conversion procedure exists in
JML. If not, there would be not way of comparing Java primitive numerical types with
\bigint or \real.
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valuated through the stack σ. The value of this is determined from the top
element of the call stack χ. Fields and array elements are valuated through
the heap h:

• vals(v) =

{
σ(v) v ∈ dom(σ)
arbitrary otherwise

for a local variable v

• vals(this) = o where (µ, o) = top(χ) for some method µ

• vals(r.x) = ĥ(vals(r), x) for an expression r of reference type and x a
non-static non-model �eld identi�er where ω(r)(s) = (ĥ, . . . )

• vals(T.x) = h(o, x) for a static non-model �eld x de�ned in type T with
o ∈ VT

• vals(a[n]) = ȟ(vals(a), valω(a)(s)(n)) for an expression a of array type
and n expression of an integer type with ω(n)(ω(a)(s)) = (ȟ, . . . )

Identi�ers which are not local variables, i.e. they do not belong to the
current method frame, are outside the domain of the Stack σ. Their values
are underspeci�ed. Therefore, expressions including local variables are only
well-de�ned if the variable is on the Stack:

wds(v) i� v ∈ dom(σ)

For a reference chain, the value is determined recursively, e.g. val(a.b.c) =
h(h(val(a), b), c). For a normalized expression, such a chain always termi-
nates in either a local variable or this. Note that since each expression
may contain (weakly pure) side-e�ects, it is not necessarily the same heap
function applied on each reference, e.g. val(new Integer(5).value) = 5.

Non-static references are well-de�ned if and only if the receiver is evalu-
ated without exceptions, it is not null (Java would throw a NullPointerEx-
ception in that case) and it is created:

wds(r.x) i� wds(r), vals(r) 6= null and vals(r.\created) = true

One might wonder why well-de�nition requires the receiver object to be
created since in Java there would be no reference with non-created receivers.
In JML however, there are possibilities to refer to objects which are not
created, e.g. through quanti�cation. For instance, the following expression
does not valuate to true since there de�nitely are objects of type Integer

which are not created (in particular in�nitely many):

(\ forall Integer z; true;

z.value() <= Integer.MAX_VALUE)
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Static references on the other hand are always well-de�ned since there is no
receiver to be determined from an expression.

Well-de�nition of array expressions also requires the index to be inside
bounds, since otherwise Java would throw an ArrayIndexOutOfBoundsEx-
ception: wds(a[n]) i� wds(a), vals(a) 6= null, vals(a.\created) = true,
wdω(a)(s)(n) and 0 ≤ valω(a)(s)(n) < vals(a.length)

Model �elds

In contrast to concrete �elds, model �elds do not denote locations (see
Sect. 2.3). As explained in Sect. 3.1.5, we use a special evaluation func-
tion M : S × U × I → U , called model �eld valuator, to assign a concrete
value to the abstract location of a model �eld depending on the current sys-
tem state of evaluation. The model �eld valuator is part of a logical state
Σ = (s0, s1, La, Lw, ρ,M), thus evaluation depends on Σ:

• valΣ(r.x) =

{
M(ω(r)(s1), vals1(r), x) M 6= ∅
arbitrary M = ∅ for an expression r of

reference type and x a non-static model �eld identi�er

• valΣ(T.x) =

{
M(s1, o, x) M 6= ∅
arbitrary M = ∅ for a static model �eld x de�ned

in type T with o ∈ VT
In the case that a representation clause is unsatis�able, there is no legal

model �eld valuator function and M = ∅. Any expression referring to model
�elds in this case is not well-de�ned. This would probably correspond to a
NoSuchFieldException in Java. The full de�nition of well-de�nition for a
non-static model �eld thus is the following:

wdΣ(r.x) i� wdΣ(r), valΣ(r.\created) = true, valΣ(r) 6= null and M 6= ∅

Since representation clauses for model �elds may have side-e�ects, we have
to take those into account on every evaluation of a model �eld reference.
Consider for instance the following declaration, in which a new object is
created32 every time h is referred to.

private static char[] hw = {'H','e','l','l','o',

' ','W','o','r','l','d'};

/*@ public model String h;

@ represents h \such_that h == new String (hw);

@*/

32Creation of String objects using double-quotes, e.g. "Hello World", is not a legal
expression in JML. There is no string concatenation operator + neither.
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Thus for a model �eld r.x with (val(r), x, ψ) ∈M it is ω(r.x) = ω(ψ) ◦ ω(r).

3.3.6 Pure method invocation

As it has been explained in Sect. 3.1.3, pure methods may be used in ex-
pressions almost like mathematical functions. In particular, every reachable
system state quali�es as pre-state for a pure method since it has a trivially
true precondition.

We will assume a pure non-static method being invoked, the static case
behaves very similar. Let s = (h, σ, χ) be a system state, a an expression
of reference type, m a method identi�er referring to a (non-void) non-static
method and e1, . . . , en expressions of respective types T1, . . . , Tn.

Consider now the call in a state s through the expression a.m(e1, . . . , en).
First of all, the method to be invoked has to be determined.33 Let

msp(m, 〈T1, . . . Tn〉, vals(a)) = (C,m, π, 〈(T1, ι1), . . . , (Tn, ιn)〉, TR) =: µ

As a reminder, the tuple µ is made up of a class C, where it is declared, an
identi�er m, a method body π, a (possibly empty) sequence of pairs (Tj, ιj)
of types and identi�ers for parameters and a return type TR.

Secondly, the values of passed parameters including the receiver have to
be evaluated. Since they might have side-e�ects, we de�ne state transition
functions ~ωj for 0 ≤ j ≤ n:

~ωj := ω(ej) ◦ ω(ej−1) ◦ · · · ◦ ω(e1) ◦ ω(a)

Next, we construct the pre-state s̃ of the invocation by assigning the
(explicitly) passed values to the parameter identi�ers ιj via updates on the
stack. The method µ with receiver val(a) is pushed onto the call stack:

s̃ := ~ωn((h, σ
{ιj 7→val~ωj−1(s)(ej)|1≤j≤n}

, push(χ, (µ, vals(a)))))

Finally, we can make use of the black box function. Since pure methods
are required to terminate, there is always a post-state, which is reachable by
de�nition.

J (s̃, π) = (〈s0, . . . , sk〉, λa, λw, α,Ω, ρ)

λ and α are of no interest to us. We �rst concentrate on the return value
ρ ∈ VTR

. This will be the value of the above expression:

vals(a.m(e1, . . . , en)) = ρ

33For a static method, this would not be needed since there is no overriding.
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For this expression to be well-de�ned, the receiver expression a and all
parameter expressions have to be well-de�ned. Also the pre-state must be
reachable, i.e. a must be created and not refer to the null object.34 And
�nally, pure methods are still allowed to terminate with an exception thrown.
So, it also has to be Ω = null.35

wds(a.m(e1, . . . , en)) i�


• wds(a)
• vals(a) 6= null
• vals(a.\created) = true
• wd~ωi−1

(ei)
• Ω = null

At last, to determine the value of ω, we examine the post-state s′ =
(h′, σ′, χ′). It does not necessarily equal the pre-state. Firstly, the stack
functions di�er on the values of local variables including parameters. This is
unimportant however; since these are local to the method, they have to be
reset to the previous values. The signi�cant change might have occurred to
the heap function if the execution of µ included the (pure) creation of new
objects. The call stack is the same as in the constructed pre-state. Thus,
the successor state to the original system state s coincides on heap with s′

and on stack with s.

ω(a.m(e1, . . . , en))(s) = (h′, σ, χ)

Clearly, this state is reachable, too.

Pure constructors

The invocation of pure constructors is very similar to that of pure methods.
The di�erence is, that black box execution of the constructor body only
corresponds to the initialization phase (see Sect. 2.4.1). The pre-state to
construct has already to include the creation and preparation of the new
object. We assume ρ to be a �fresh� domain element of the respective type and
to be fetched with the same mechanism as the black box would do. The pre-
state heap h̃ then coincides with the original h except for h̃(ρ, \created) =
true and every non-static �eld x holds its default value: h̃(ρ, x) = d(T (x)).
ρ then serves as the receiver for the constructor invocation. The remaining
procedure is analogous to above.

34This is analogous to well-de�nition of reference expressions.
35In all other cases, ρ is underspeci�ed according to our de�nition of the black box

(Sect. 2.4).
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3.3.7 Array creation

Arrays are created very similar to Java.36 The only di�erence is that JML re-
quires using the new keyword, while in Java arrays may be created just by ini-
tializers. Creation of multi-dimensional arrays however includes the creation
of �lower-dimensional� arrays, e.g. new int[n][m] includes the creation of m
new arrays of type int[] with length n. Using array initializers within this
�nested creation� is allowed in JML. For instance
new int[][] { {0}, {0,1}, {0,1,2} } is a legal JML expression. There-
fore, we included the de�nition of initializers in this expression reference,
even though they must not be declared solely.

Array initializer

An array initializer consists of a list of n expressions e0, . . . , en−1 of respective
types T0, . . . , Tn−1. These types are required to be comparable with each
other, i.e. there is a least common super-type T to which all of them may be
cast without raising an exception.37

Since the expressions within the initializer might have side-e�ects, we need
to de�ne ~ωj := ω(ej) ◦ ω(ej−1) ◦ · · · ◦ ω(e0) with ~ω−1 := id and ~ωn−1(s) = s′.

The value of the initializer expression then is just a fresh domain element
a ∈ V 0

T[]:
vals({e0, . . . , en−1}) = a

Well-de�nition depends on well-de�nition of the sub-expressions:

wds({e0, . . . , en−1}) i� wd~ωj−1(s)(ej) for every j ∈ [0, n− 1]

The state of evaluation is altered in the way that a is created has a length of
n and its components evaluate to the values passed by the initializer:

• ω({e0, . . . , en−1})(s) = s′′ where s′′ := (h′′, σ′′, χ′′) coincides with s′

except for

� h′′(a, \created) = true

36The JML reference manual only mentions that there are array creation expressions,
but does not provide semantics. To assume no di�erence to Java seems most reliable in
this case.

37Due to multiple inheritance via interface implementation, it is ambiguous to
chose a common super-type. In our approach, this already decides the dy-
namic type of the array and possibly turns \typeof undecidable. For example:
\typeof(new Object[] {new Short(23), new Long(42)}) could both yield Number[]

or Comparable[]. For now, we just assume that there is an appropriate type which is
chosen.
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� h′′(a, length) = n

� h′′(a, i) = val~ωi−1
(ei) for every i ∈ [0, n− 1]

New array declaration

For an array declaration using the keyword new, we only consider the gen-
eral case in which both all dimensions and complementing initializers (of the
correct length) are given. For any other case refer to the Java language spec-
i�cation [GJSB00, Sect. 15.10]. We consider the creation of a k-dimensional
array over a type T . The dimension expressions n1, . . . , nk are expressions of
type int and init is an array initializer. The dimension expressions might
have side-e�ects, so let ~ωj := ω(nj) ◦ ω(nj−1) ◦ · · · ◦ ω(n1).

The value of the whole expression mostly depends on the initializer,
though it is evaluated after the dimension expressions:

vals(new T[n1][n2] · · · [nk]init) = val~ωk(s)(init)

Negative dimensions would cause Java to throw a NegativeArraySizeEx-
ception. And passing an incompatible initializer to the new expression re-
sults in an ArrayStoreException. Thus, both has to be satis�ed in order
for the expression to be well-de�ned.

• wds(new T[n1][n2] · · · [nk]init) i�

� for every i ∈ [1, k] : val~ωi−1(s)(ni) ≥ 0,

� wd~ωk(s)(init) and

� val~ωk(s)(init) ∈ VT[]...[]

3.3.8 Referring to old values

The \old expression is used in postconditions and history constraints to refer
to values of the pre-state. Since our valuation function is always equipped
with two states of valuation, valuation of \old causes the �current state� to
be replaced by the pre-state:

val(s0,s1)(\old(expr)) = val(s0,s0)(expr)

Nested uses of \old are ignored thereby.
Unlike OCL's @pre operator [OCL05] which can only be applied to refer-

ences, \old may enclose any expression. However, JML's syntax allows \old
only to be applied to pre�xes of references since su�xes are no expressions
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on their own. E.g. a.b.\old(c) and a.\old(b).c are not well-formed expres-
sions, while \old(a).b.c, \old(a.b).c and \old(a.b.c) are valid. The expression
\old(a.b.c) then is equivalent to the OCL expression a@pre.b@pre.c@pre. As
a consequence, certain (meaningful) expressions are not allowed and objects
of the pre-state are not referable. An example can be seen in Fig. 3.4.

a

b

c

d

this x y
y

x
y

y

Figure 3.4: Example showing the meaning of \old. (Semantical) objects
are represented by nodes, while references are shown as arrows. Solid
lines represent references in the pre-state, dotted lines in the post-state.
We can refer to a as \old(x).y, to b as \old(x.y) and to d as x.y, but
there is no way to refer to c.

In contrast to [DM06], we consider all side-e�ects of the enclosed expres-
sion to be without e�ect on the outside, i.e. ω(\old(expr)) = id for any
expression. The reason for that is not to make the successor function com-
plicated in that it describes transition for both states. This decision does only
a�ect a few pathological cases, namely the creation of new objects through
weakly pure methods within the \old clause. It seems questionable which
sense an expression like the following should make.

\old( new Object () ) == o

It looks a little bit like traveling back in time and changing the future. . .
However, any expression enclosed in the \old clause may create new instances
and thus alter the state of evaluation within the clause. E.g. the following
expression is valid.

val(\old(new Integer(23).intValue() == 23)) = true
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3.3.9 Type predicates

The subtype predicate <: yields true if the �rst type (or rather expression
of type \TYPE) is a subtype of the second. It is de�ned to be re�exive on the
domain of \TYPE, so this applies to null and void, too, even though they do
not denote types.

• val(t1 <: t2) = true i� val(t1) v val(t2) or val(t1) = val(t2) ∈
{null, void}

• wd(t1 <: t2) i� wd(t1) and wd(t2)

The same considerations apply to the instance-of predicate which yields
true if the referenced element e is of static type t2. This is as in Java, with
the exception that the right-hand side may be an expression of type \TYPE.
Except from null, there is always an unambiguous value set to contain e.

• val(e instanceof t2) = true i� T ′ v val(t2) with val(e) ∈ V 0
T ′

• wd(e instanceof t2) i� wd(e), wd(t2), and val(e) 6= null

• ω(e instanceof t2) = ω(t2) ◦ ω(e)

Null references are allowed to appear on the right-hand side, but always yield
false since null is not a type.

3.3.10 Expressing frame properties

Beneath using frame clauses in method speci�cations, there are boolean pred-
icates to express frame properties, such as accessed or assigned locations, in
postconditions and history constraints.

In JML, these properties are strict. If a location has the same value in
both pre- and post-state, it does not necessarily mean it hasn't been assigned.
Therefore, JML possesses di�erent predicates for those di�erent meanings:
\not_modified yields whether the values equal, while \not_assigned yields
whether the locations were assigned at all. The two other predicates, \only_
accessed and \only_assigned on the other hand list those locations which
may be accessed resp. assigned. In that sense they are similar to the frame
properties (accessible and assignable clauses) in method speci�cations
(see 4.2.1).

Each frame predicate takes a list of references to (possibly abstract) lo-
cations which is being evaluated using the loc function of Sect. 3.2 and in
turn the corresponding data group (which contains only concrete locations)
is compared to the set of locations which were a�ected (i.e. resp. accessed
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or assigned) during execution (those are the sets La resp. Lw as part of the
logical state passed with the valuation function).

Let us consider the \only_assigned predicate for instance:

val(s0,s1,La,Lw,ρ,M)(\only_assigned(Λ)) = true i� Lw \
⋃
`∈LΛ

D(`) ⊆ L∗

It means that only the locations of the data group of list Λ may be assigned.
In this de�nition, all locations which were �not present� in the pre-state, i.e.
they belong to objects which were not created in the pre-state, are excluded.
Hence, it reads �subset of the set of those locations� L∗ = {(o, x) ∈ L |
h0(o, \created) = false} rather than �to equal the empty set�. In this
limited sense, a weakly pure method does �not assign� any locations.

Another question is, in which state the data groups are determined. This
is not made clear in the reference manual. However, since it does clarify this
question for method speci�cations [LPC+08, Sect. 9.6.2], we conform to this
point. There, it is said that it is evaluated in the pre-state. Thus, the set LΛ

is de�ned as LΛ := locs0(Λ). A visualized example can be seen in Fig. 3.5.

a

b

c

d

this x y
y

x
y

y

Figure 3.5: Locations for frame conditions are determined in the pre-
state. Solid lines represent references in the pre-state, dotted lines in the
post-state. The predicate \only_assigned(x, x.y) allows x.y to evaluate
to a, b or c in the post-state � but not to d.

The \not_assigned predicate looks very similar, but it asserts that the
locations to which Λ refers were not assigned since the pre-state. In this
case, the intersection of the set of those locations and the set Lw of assigned
locations requires to be a subset of L∗.

val(s0,s1,La,Lw,ρ,M)(\not_assigned(Λ)) = true i� Lw ∩
⋃
`∈LΛ

D(`) ⊆ L∗
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As already explained above, the \not_modified expression is de�ned
di�erently in that it just compares values of �elds. (Where si = (hi, σi, χi).)

val(s0,s1,La,Lw,ρ,M)(\not_modified(Λ)) = true i�

h0(`′) = h1(`′) for every `′ ∈
⋃
`∈LΛ

D(`)

For any frame predicate F it is wdΣ(F(Λ)) i� wds0(Λ). And ω(F(Λ)) =
ω(Λ).

3.3.11 \fresh

This predicate is used in postconditions etc. to tell whether a (non-null)
object was created since the pre-state. In general, it takes a list of expressions
of reference type as arguments. For reasons of simplicity, we consider the case
with just one reference expression:

Let s0 = (h0, . . . ) and s1 = (h1, . . . ) be system states and x an expression
of reference type. val(s0,s1)(\fresh(x)) = true i�

• vals1(x) 6= null,

• vals1(x.\created) = true and

• h0(vals1(x), \created) = false

Note that in both pre- and post-state, the value of x is determined in the
post-state. This ensures that both cases refer to one and the same object.

It is not correct to assert \fresh(this) in the post-state of a constructor.
As explained in Sect. 2.4.1, a constructor does only initialize an already
created object. \fresh on the other hand yields true if the new construct
was involved. E.g. the expression \fresh(new Object()) always evaluates to
true.

3.3.12 \nonnullelements

This predicate asserts to an array and its members not to refer to null.
vals(\nonnullelements(a)) = true i�

• vals(a) 6= null and

• for every i ∈ {0, . . . , vals(a.length)− 1} : vals(a[i]) 6= null
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Since Object is a common super-type for every (Java) array type, it is
not statically decidable whether an object reference refers to an array at
run-time. Thus, well-de�nition of this expression depends on whether the
referenced element is in fact an array:

wds(\nonnullelements(a)) i� wds(a) and vals(a) ∈ VT[] for some type T

3.3.13 Quanti�ers

Logical quanti�ers

Universal and existential quanti�cation are present in JML. These are always
typed and consist of a range expression a, which acts as a guard condition,
and a body b:

• val(s0,s1)(\forall nullable T x; a; b) = true i� for all o ∈ VT it is

val
(s
{x 7→o}
0 ,s

{x 7→o}
1 )

(a ==> b) = true

• val(s0,s1)(\exists nullable T x; a; b) = true i� for some o ∈ VT it is

val
(s
{x 7→o}
0 ,s

{x 7→o}
1 )

(a && b) = true

Since both system states s0 and s1 are updated, there is no problem with the
quanti�ed variable occurring within the scope of \old.

Quanti�cation over reference types includes all objects, regardless of being
created or not [LPC+08, Sect. 11.4.24.6]. Not created objects have to be
excluded explicitly. JML as described in the reference manual yet has got no
feature to assert creation. In this thesis, we use the special �eld \created,
which is not part of the JML standard.

Per default, the scope of quanti�cation does not include null (as always
in JML). For the most general form, we expect them always to be de�ned
nullable. If non-nullity is desired, this can be conjoined to the assumptions
in the range expression:

val(\forall T x; a; b) = val(\forall nullable T x;x != null && a; b)

Logical quanti�ers are well-de�ned if and only if the expression (a ==> b)
for every valuation of x resp. (a && b) for one valuation of x is well-de�ned.38

In both cases, the range expression a guards the body b from unde�nedness.

38Following our de�nition of the conjunction operator, the sub-expressions need to be
well-de�ned in order for the compound expression to valuate to true.
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One important decision was to disallow quanti�ers to have side-e�ects.
Otherwise, we would not only have to consider if they are evaluated in parallel
or sequentially (and in what order), but could also create an in�nite number
of instances. In this case, the successor function ω would not preserve the
�nite state invariant. Consider for instance the following expression:

(\ exists Object x; true; x == new Object ())

In our formalization, this expression would create a new object for every
valuation of x. This is done in parallel with every case valuating in the same
state. But any information about newly created objects will be dropped
after the evaluation. By the way, it will yield true since there exists an
object which is the next one to be created.

Generalized quanti�ers

JML features �ve �generalized� quanti�ers which respectively yield the sum,
product, maximum or minimum of a �nite set of numbers as well as the size
of a �nite set. Although there do exist values (not only limits) for certain
in�nite sets (e.g.

∏
x∈Z x = 0), we restrict every expression to �nite sets for

reasons of uniformity:
wd(Q nullable T x; b; e) i� wd(b) for every value of x, wd(e) and |Z| <

∞ for every generalized quanti�er Q where Z := {z ∈ VT | vals{x7→z}(b) =
true}.

Now for the values. As the expression possibly does not have a value
in the mathematical for an in�nite set Z, these values remain underspeci-
�ed. Let us now assume Z to be �nite. There is another problem with sum
and product since they are determined using arithmetic of the body type.
For \bigint and \real this is just mathematical arithmetic. For integral
types the respective modulo arithmetic is in force. Since addition and mul-
tiplication are commutative and associative for integral types (i.e. they form
commutative rings, e.g. Vint

∼= Z/232Z), this is well-de�ned:

vals(\sum nullable T x; b; e) =
⊕
z∈VT

vals{x 7→z}(b ? e : 0)

Where
⊕

denotes addition modulo 2n to distinguish it from the unbounded
sum. Likewise

⊗
denotes multiplication modulo 2n.

For �oating point types, such a de�nition would not be well-de�ned as
they are not associative due to the lack of precision. E.g.

val((pow(2.0,24.0) +1) -1) = 224 − 1
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while
val(pow(2.0,24.0) + (1 - 1)) = 224

in type �oat. One approach would be to consider the range of sum and
product to be ordered. This approach is very fragile since semantics would
heavily depend on that order. We decided to calculate sum or product ac-
cording to mathematical rules �rst, and then to cast the result back to the
desired �oating point type. This means the exact mathematical result to be
rounded or to be set to ±∞:

vals(\sum nullable T x; b; e) = cast(\real, T ′,
∑
z∈VT

vals{x 7→z}(b ? e : 0))

The \max and \min quanti�ers return the maximum resp. minimum of
the (�nite) set {valω(b)(s{x 7→z})(e) | z ∈ Z} if it is not empty. For an empty
set, JML de�nes \max to be the minimum of values of the body type, \min
resp. the maximum.39 E.g.

val(\forall int x; false; x) = −231

This is however only well-de�ned for �nite numerical types, not for \bigint
and \real. In those cases, we have to extend the well-de�nition function:

wd(Q nullable T x; b; e) i� wd(b) for every value of x, wd(e), |Z| <∞
and if T ′ ∈ {\bigint, \real} then Z 6= ∅ for Q ∈ {\max, \min}

To ω the same considerations as for logical quanti�ers apply. Thus
ω(Q nullable T x; b; e) = id for any generalized quanti�er Q.

39It does not seem very reasonable to assign de�nite values to unde�ned cases. In
particular, this does not conform overall JML policy. However, this interpretation is
disputed and might soon be changed.





Chapter 4

The Meaning of JML

Speci�cations

This chapter covers the di�erent elements of speci�cation in JML � (class)
invariants and history constraints, method contracts and general (in-code)
assertions. The structure of this chapter is mostly based on the syntactical
context in which speci�cations are given. Invariants and history constraints
are de�ned for classes and interfaces and thus for all methods of this class
or interface. Method contracts specify the behavior of one certain method.
And assertions are given somewhere within the runnable code.

It is not trivial to discuss them separately, since they heavily depend on
each other. As it will be discussed in each section, the meaning of all speci�-
cation elements is given in the context of methods. This means the de�nition
of all speci�cation elements depends on method speci�cations (particularly
preconditions) while they in turn depend on class invariants.

In the context of veri�cation, for a method to be totally correct with
respect to its speci�cation, it has not only to ful�ll its method speci�cation,
but also to respect the invariants and history constraints of the program
and let every assertion hold in its respective states. Total correctness of the
program Π is given if every method of Π is totally correct. The de�nitions
in this chapter however take no assumptions on the correctness of other
methods.

Sect. 4.3.1 describes an approach to handle the values of ghost �elds, i.e.
�elds which are added to the purpose of speci�cation. Although it is very
fundamental to this work as a whole, we decided to include it in the section
on annotations.

65
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4.1 Class and interface speci�cations

This section focusses on type, i.e. class or interface, speci�cations. This
includes both invariants and history constraints, which describe a relation
between two states. A third type speci�cation element, the initially clause
will be described in the follow-up section on method speci�cations, since it
only speci�es postconditions for constructors. In JML, invariants and history
constraints are meant to hold in certain states, called visible states. The �rst
subsection covers their de�nition and a treatise on how to deduce visibility
from the run of an execution.

4.1.1 Visible states

Although invariants are always speci�ed within a class or interface, their
e�ective scope is global. E.g. a method m in a class C is obliged to respect
invariants of class D.

An exception are helper methods . They are thought to do very little
computation and can therefore be freed from respecting invariants.40 Any
method or constructor can be declared helper in JML without any further
requirement. Since helper methods are only important for the determination
of visible states, anywhere else throughout this paper no distinction will be
made.

While in some contexts the semantics of invariants are based on observable
states [BHS07, Sect. 8.2], JML uses the notation of visible states [Poe97],
which are certain states reached throughout the execution of a code frag-
ment. These two approaches are based on di�erent paradigms. A principle
di�erence is that visible states are not necessarily meant to be visible to an
observer, but rather to semantical objects of the program. The targets of
visibility, i.e. the objects for which a state is visible, are determined from
the running execution and its receivers. The rationale behind that is, that it
is primarily intended to impose strong invariants,41 i.e. which are obliged to
hold every intermediate state, but secondarily to allow temporary violations
of invariants if the �violated object� is a current method receiver. Following
the observable state approach, invariants which hold at the beginning of a
method invocation also hold at the end. This means that the exact pre-
and post-states are the only states observable. Visible states however are
intermediate states in this sense. According to [LPC+08, Sect. 8.2] they are

40However, they are still obliged to ful�ll their method contract.
41This thought applies to history constraints likewise.
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de�ned as follows.42

De�nition 4.1 (Visible states (informal)). A state is visible for an object o
if it is reached at one of the following moments in a program's execution:

1. at the end of a constructor invocation which is initializing o,

2. at the beginning and the end of a non-static (non-helper) method in-
vocation with o as the receiver, i.e. a method like o.m is called,

3. at the beginning and the end of a static (non-helper) method invocation
of a class C with o ∈ VC ,

4. when none of the aforementioned invocations is in progress.

The crucial one seems to be the last item. That could be seen overly
strict as it seems to require us to check the invariants of nearly every object
in every state reached throughout execution. But if we consider a situation
in which a class declaration contains public �elds, it is desirable to secure
they are not arbitrarily changed.

1 public class Invariants {

2 private int z = 1;

3 //@ private invariant z > 0;

5 public void a() {

6 z++= 0;

7 }

9 public void b() {

10 z = 0;

11 a();

12 }

13 }

Figure 4.1: Example illustrating di�erent invariant semantics

Example 4.2. Fig. 4.1 illustrates the scope of di�erent invariant semantics.
The invariant in line 3 requires the value of z to be positive. Obviously, after
every execution of a or b the value of z is equal to 1. They both preserve
the invariant. Line 11 however corresponds to a visible state since there is a

42The case of �nalizers however is omitted. See Appendix B.
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method invocation. At that point of execution the value of z equals zero, so
the invariant is violated after all.

Line 6 also corresponds to a state in which z equals zero. This state is
however not visible since it does not involve a method call but the incremen-
tation primitive.

Intermediate states of a constructor are visible

It may appear at the �rst look as if the �rst three cases of De�nition 4.1
are reducible to the last case. This is not correct: Any method may invoke
another one with identical receiver. In this example, the second case applies,
while the forth does not. Even the �rst case (constructor) has to be treated
separately because a constructor might invoke another constructor. The
post-state of this second invocation is visible to the object which is being
initialized. An example is shown in Fig. 4.2. Since A's constructor's post-
state is visible, B's invariant is missed.

1 public class A {

2 public A ();

3 }

5 public class B extends A {

6 private /*@ spec_public @*/ int z;

7 //@ public invariant z > 0;

9 public B () {

10 super ();

11 // visible state for this

12 z = 42;

13 }

14 }

Figure 4.2: Example with invariant not established by the constructor
of the super-class.

Although there is no problem in de�ning formal semantics, this is a serious
problem in praxis. It would imply for virtually every constructor to break
its invariant. If not declared explicitly, like in our example, Java enforces
calls to super() to happen �rst on every constructor invocation. Even if the
super-class constructor establishes its invariant, it has no knowledge of �elds
in sub-classes which need to be assigned to establish the invariant of the
sub-class. But according to De�nition 4.1, its post-state (which is an interior
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state of the sub-class constructor) is visible for the to-initialize object � even
though it is yet not fully initialized.

There are several approaches to deal with this design �aw:

1. Declare every (super-class) constructor which may be called by another
one helper. This is much like breaking a �y on the wheel as it would
free virtually any constructor from establishing its own invariant. In
addition, this would require much speci�cation work, so this is not
feasible at all.

2. Leavens [Lea06, Lea09] proposed to implement a guard condition sim-
ilar to the one according to the Boogie methodology [BDF+04]: Every
class de�nition contains a ghost �eld valid of dynamic type Object,
which is set by every constructor to some direct instance. (See exam-
ple in Fig. 4.3.) The invariant is then being guarded by an expression
which assumes that this �eld has static type of the sub-class:

Inv ; this.valid instanceof \typeof(this) ==> Inv

As in our example, in the post-state of A's constructor, valid has
dynamic type A, which is not a subtype of B, so the invariant is triv-
ially true. Although this approach looks quite elegant, this is still a
workaround on the speci�er level. I.e. every constructor and invari-
ant has to be modi�ed. (It could be done automatically by some tool,
however).

3. As a variant of the �rst approach, one could think of super invocations
being implicitly declared helper. As it will be described below, our
formalization using call stacks of a certain run can be slightly modi�ed
to exclude post-states of �inner� constructors. This would mean to
modify the o�cial visible state semantics.

4. The most simple approach would be to exclude post-states of construc-
tors at all from the de�nition of visible states. Since only the �out-most�
constructor has to establish the invariant of its class, it is su�cient to
assert it in the post-state. All we have to do after all, is to conjoin
the invariant to the constructors postcondition as we will do anyway in
Sect. 4.2. A state, in which a constructor invokes a (non-constructor)
method will be still visible, however. The disadvantage of this approach
is that this interpretation does not conform o�cial JML speci�cations.
Since those are in our opinion inappropriate to use in any speci�cation,
we regard our deviation justi�ed.
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1 public class A {

2 //@ public ghost Object valid;

3 //@ private final static ghost A validForA;

4 public A () {

5 //@ set valid = validForA;

6 }

7 }

9 public class B extends A {

10 //@ private final static ghost B validForB;

12 private /*@ spec_public @*/ int z;

13 /*@ public invariant valid instanceof \typeof(this)

14 @ ==> z > 0;

15 @*/

17 public B () {

18 super ();

19 //@ assert \typeof(valid) == \type(A);

20 z = 42;

21 //@ set valid = validForB;

22 }

23 }

Figure 4.3: Guarded invariants as proposed with approach 2.
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The static case

According to [LPC+08], a state is visible for a type T (i.e. class or interface) if
it occurs after static initialization of T and it is a visible state for some object
of static type T . Leaving out static initialization � which we do in this paper
� this would lead to the fact that every state reached by the virtual machine
is visible to every class and interface. This is because there is always an
in�nite number of instances for which the fourth case of Def. 4.1 applies. So,
this de�nition would be too strong as intermediate states of a static method
invocation would be visible.

On the other hand, this de�nition would be too weak in some cases.
Consider an abstract class with static �elds but no concrete sub-classes and
thus no instances. In this case, no state would be visible since there are no
instances for which it would be visible.

To overcome this, we will use another de�nition for visibility which is not
based on visibility for instances, but rather constructed dually:43

De�nition 4.3 (Visible states (informal, static case)). A state is a visible
state for a type T if it is reached at one of these moments in a program's
execution:

• at the beginning or end of a non-helper method invocation of a static
method of T or a sub-type of T or

• when no static method of T or a subtype of T is in progress, and when
its visible for all instances of T .

A formalization of visible states

The above de�nition of visible states can be further re�ned using the de�-
nition of system states. We do not only inspect the state in question but a
whole run in which it occurs. An example can be seen in Fig. 4.4. The �rst
three items in following enumeration are meant to mirror the cases of De�ni-
tion 4.1 (excluding constructors as discussed above), while 4 and 5 cover the
static case (Def. 4.3). Let MC be the set of all non-helper methods of class
C or its super-classes.

De�nition 4.4 (Visibility relation). Let R = 〈. . . , si, si+1, . . .〉 be a run
containing at least two states (with sj = (hj, σj, χj)). The visibility relation
VR ⊆ R× (U ∪ C) is given as the least set satisfying:

43This de�nition has yet not been accepted to JML, but has been discussed in [Lea09].
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1. (si, o) ∈ VR if top(χ1) = (µ, o) for a (non-helper, non-constructor, non-
static) method µ and pop(χ1) = χi (beginning of invocation on o).
(si+1, o) ∈ VR in the dual case (end of invocation on o).

2. (si, o) ∈ VR if top(χi+1) = µ for a (non-helper) static method µ in C,
pop(χi+1) = χ0 and o ∈ V −C (beginning of static invocation). (si+1, o) ∈
VR in the dual case (end of static invocation).

3. (sj, o) ∈ VR if o ∈
⋃
C∈C
{u ∈ V −C | ∀µ ∈ MC .((µ, u) 6∈ χj ∧ µ 6∈ χj)} (no

invocation in progress)

4. (si, C) ∈ VR if top(χi+1) = µ for a (non-helper) static method µ in
D v C, pop(χi+1) = χ0 (beginning of static invocation). (si+1, C) ∈ VR
in the dual case (end of static invocation).

5. (sj, C) ∈ VR if (sj, o) ∈ VR for every o ∈ V −C and for every static method
µ of a class D v C it is µ 6∈ χj (no static invocation in progress).

The JML reference manual does not clarify whether states can be visible
to objects which are not created. We decided to have all objects (except null)
included. Of course, an instance invariant only makes sense when applied to
created objects. As a �corrective�, we will later restrict the de�nition of an
instance invariant to created ones. In the aforementioned case in which a
type T has absolutely no instances, states are visible for T if and only if no
static method of T is in progress.

Theorem 4.5 (Visible state theorem). A state s is visible to an element
x ∈ U ∪ C if and only if (s, x) ∈ VR for some run R with s ∈ R.

4.1.2 Invariants

One of the most important and widely-used speci�cation elements in object-
orientation are type invariants. These can be seen as conditions to constrain
the state an instance can be in. But as we have discussed above, there is in
fact no �the� invariant to be preserved by methods, but rather all invariants of
the program. At �rst, we need to capture all invariants which are applicable
to the class or interface of concern. There may be several invariant de�nitions
which must all be respected, so they are equal to a single invariant consisting
of a conjunction of the former. And of course, invariants may be inherited,
too.
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1 public class CoffeeMaker {

2 private Water w;

3 private Beans b;

5 public Coffee make() {

6 if (!empty ()) {

7 w.boil ();

8 return new Coffee (w, b);

9 }

10 }

12 protected boolean empty () {

13 return w == null || b.grind() == null;

14 }

15 }

run

call stack

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

m m m m m m m m
m m

b
m w c

m

Figure 4.4: An example for visible states deduced from the call stack.
Consider the program code above and objects m, w, b, c of types
CoffeeMaker, Water, Beans and Coffee respectably. The changing call
stack of the run of make is shown below.
For w, b and c all states are visible, except those in which they act as
receiver (s3, s6, s8 respectively). s0 � s7 are visible for c, too, though
it is not yet created. For m only the pre- and post-states of method
invocations are visible: s0/s10 and s1/s5.
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Augmented invariant

In the following, we collect all of these to a single formula which will be called
the augmented invariant of class C. Consider a class (or interface) C = C0

with the following speci�cations where Mi are privacy and static modi�ers:

/*@ M01 invariant expr01;

@ ... ...

@ M0n invariant expr0n;

@*/

Then, the short-circuit conjunction over all expr0i is part of the augmented
invariant of C. C also inherits all non-static44 invariants from its super-
classes and implemented interfaces if they possess at most protected privacy
or they possess default privacy and are declared in a class/interface which
is contained in the same package as C. Private and static invariants are
never inherited. Since invariants protect each other against unde�nedness
(see [LPC+08, Sect. 2.7]), their exact order does matter.45

Let (T ,�) be a linear type hierarchy (see Def. 2.13) and C0 ≺ C1 ≺
. . . ≺ Ck the complete ascending chain from C = C0 on. Let the inherited
expressions of Cj be exprj1, . . . , exprjnj

. The augmented invariant of C0

�nally is the (short-circuit) conjunction of all those properties in the following
order:

Iaug
C := (exprk1 && . . . && exprknk

&& . . . && expr01 && . . . && expr0n)N

Note that the augmented invariant also contains static invariants of class
C. This is not problematic since we de�ned static �elds to be contained in
every instance of the class (see Sect. 2.3). The normalized (short-circuit)
conjunction of all static invariants of C is denoted by Istatic

C . Note that
even though there are no applicable direct instances, interfaces and abstract
classes may be annotated with instance invariants.

Meaning of invariants

The meaning of invariants is that they hold at every state which is visible to
the object or type of concern. This can be broken down to the requirement
that invariants are respected by all available methods, i.e. if the invariant and
at least one of the method's augmented preconditions (see Sect. 4.2.2) hold

44At the time of writing it was still an open discussion whether static invariants and
(history constraints) are inherited. E�ectively, this does not make a great di�erence.

45Although it is not mentioned in the reference manual, we expect that invariants spec-
i�ed in super-classes protect those of sub-classes.
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in the pre-state, then the invariant must hold in every visible state reached
by the method.

An interesting consequence of visible state semantics is that it is deter-
minable from the given system state which invariants hold. Since we require
the preservation of invariants in every possible pre-state, we essentially re-
quire that every combination of invariants is preserved by the method. E.g. if
no other method is currently running (i.e. on the call stack), all invariants of
every object or type are applicable. Every method, which resides additionally
on the call stack, again reduces the number of applicable invariants.

De�nition 4.6 (Respect). Let µ be a [non-]static method with body π,
[receiver object r] and an augmented precondition pre. Let M ∈ M be a
model �eld valuator and s ∈ S a system state with [vals(this) = r and]

(s, s, La, Lw,M, ρ)) �̀ pre

Let the black box execution J (s, π) yield a run R.

• Let for every class or interface C ∈ C with (s, C) ∈ VR the augmented
static invariant hold:

(s, s, L′a, L
′
w,M, ρ′)) �̀ Istatic

C

• Let for every (non-abstract) class C ∈ C and every o ∈ V 0
C with (s, o) ∈

VR the augmented instance invariant hold:

(s′, s′, L′a, L
′
w,M, ρ′)) �̀ Iaug

C

with s′ coinciding with s except for vals′(this) = o and
vals′(this.\created) = true and La, L′a, Lw, L

′
w, ρ, ρ

′ are arbitrary.

µ weakly respects the invariants of Π if, in every state s∗ ∈ R∗

• with (s∗, C) ∈ VR∗ the augmented static invariant holds for every C ∈
C:

(s∗, s∗, L′′a, L
′′
w,M, ρ′′) �̀ Istatic

C

• and for every o ∈ V 0
C with (s∗, o) ∈ VR∗ the augmented instance invari-

ant holds:
(s′′, s′′, L′′a, L

′′
w,M, ρ′′) �̀ Iaug

C

where s′′ coincides with s∗ except for vals′′(this) = o and
vals′′(this.\created) = true and L′′a, L

′′
w, ρ

′′ are again arbitrary.
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µ respects the invariants of Π, if it weakly respects them for every reachable
pre-state s ∈ S and model �eld valuator M ∈M.

R∗ denotes the updated run of Sect. 4.3.1. We are neither interested in
accessed/assigned locations nor the return value of any logical state since
neither storage expressions nor the result expression are allowed in precondi-
tions and invariants. In addition, we evaluate only with one state since the
\old clause would not make sense and thus is ignored. We made no mention
of parameters to the method µ since the set of all possible states already
contains the values for all possible parameters.

Note that the kind of termination of a method does not matter. Regard-
less of terminating normally, exceptionally or erroneously, a method has to
meet the invariant in every visible state. The Reference Manual does not
say anything regarding errors. One could postulate the speci�cation to be
met trivially in this case, as this would be an analogy to method speci�-
cations (see Sect. 4.2). We however assume stronger invariant semantics.
(After all, an error is an error and, it may be caused by bad programming or
speci�cations which could be uncovered.) The same consideration applies to
non-termination, but in this case there may be in�nitely many visible states.

4.1.3 History constraints

History constraints [LW93] are in a way similar to invariants as they con-
strain the state which an object may be in. But while invariants must hold
for every visible state, history constraints describe the relation of two visible
states following each other throughout a possible program execution. His-
tory constraints may rely on syntactical features which are used to measure
changes between states such as the \old clause as well as frame expressions.

Similar to invariants, there may be several constraint de�nitions and non-
private constraints are be inherited. Therefore we introduce an augmented
history constraint Haug

C and a static variant Hstatic
C which are constructed

analogously to above.

De�nition 4.7 (Respect). Let µ be a method with body π, receiver object
r if it is non-static, and an augmented precondition pre. Let M ∈ M be a
model �eld valuator and s = (h, σ, χ) ∈ S a system state with vals(this) = r
(if µ is non-static)

(s, s, La, Lw,M, ρ)) �̀ pre

where La, Lw, ρ are unknown but �xed. Let the black box execution yield
J (s, π) = (R, λa, λw, α,Ω, ν).

µ weakly respects the history constraints of Π if,
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• for every C ∈ C and every ordered pair of states si, sj ∈ R∗ with i ≤ j
and with (si, C), (sj, C) ∈ VR∗ , it holds that

(si, sj, λa(i, j), λw(i, j),M, ρ′) �̀ Hstatic
C

• and for every o ∈ V 0
C and every ordered pair of states si′ , sj′ ∈ R∗ with

i′ ≤ j′ and with (si′ , o), (sj′ , o) ∈ VR∗ , it holds that

(s̃i′ , s̃j′ , λa(i
′, j′), λw(i′, j′),M, ρ′) �̀ Haug

C

where s̃k coincide with sk except for vals̃k
(this) = o and

vals̃i′
(this.\created) = true and ρ′ is arbitrary.

µ respects the history constraints of Π if it weakly respects them for every
system state s ∈ S and model �eld valuator M ∈M.

In particular, the pre-state s may occur as �rst argument of the consid-
ered pairs of states and, if the method terminates, the post-state as second
argument. Thus it is a special case of the meaning of the constraint that it
relates pre- and post-condition.46

The JML reference manual designates history constraints to denote re-
�exive and transitive relations. Both characteristics are sensible since it is
non-trivial for an observer to deduce which states are visible. Transitivity
immediately follows from the requirement that history constraints are de�ned
for every pair of states, rather than just two succeeding states. Re�exivity is
enforced by the re�exive relation ≤ on R∗.

4.2 Method speci�cations

Method speci�cations, ormethod contracts47, are primary means for the spec-
i�cation of the behavior of a speci�c method. In JML, there is large variety of
method speci�cation clauses. It does not conform a classical �precondition/-
postcondition schema� of Hoare logic [Hoa69]. Instead, it can be speci�ed
both normal termination, abrupt termination by the throw of an exception
and non-termination. To any of these cases there exists a corresponding con-
dition. In this way, JML speci�cations may be more speci�c than formulae
in dynamic logic or constraints in OCL. In addition, several frame properties
can be speci�ed which have to hold in the case of termination.

46The JML reference manual [LPC+08, Sect. 8.3] does only call this relation �respect�,
but we extended this notation to every visible state.

47We use these terms synonymously.
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In this section, we develop a formalization from the informal descrip-
tion of method speci�cations given in the JML reference manual [LPC+08,
Sect. 9.6.3]:

�Consider a particular call of the method m. The state of the
program after passing parameters to m, but before running any
of the code of m is called the pre-state of the method call.

Suppose all applicable invariants hold in the pre-state of this
call. [. . . ] Suppose also that [. . . ] the precondition, P , from
the requires clause, holds. [. . . ] Then one of the following must
also hold:

• the diverges predicate, D, holds in the augmented pre-state
and the execution of the method does not terminate [. . . ] or

• the Java virtual machine throws an error [. . . ], or

• the method terminates by returning or throwing an excep-
tion, reaching a state called its post-state, in which all of the
following hold. [. . . ]

� During execution of the method (which includes all di-
rectly and indirectly called methods and constructors),
only locations that either did not exist in the pre-state,
that are local to the method (including the method's for-
mal parameters), or that are either named in the lists R
and A found in the accessible and assignable clauses
or that are dependees [. . . ] of such locations, are read
from. [. . . ]

� During execution of the method, only locations that ei-
ther did not exist in the pre-state, that are local to the
method, or that are either named by the assignable

clause's list, A, or are dependees [. . . ] of such locations,
are assigned to. [. . . ]

� If the execution of the method terminates by returning
normally, then the normal postcondition, Q, given in
the ensures clause, holds in the post-state.

� If the execution of the method terminates by throw-
ing an exception of some type Ea that is a subtype of
java.lang.Exception, then: [. . . ] if Ea is a subtype
of the type E given in the signals clause, then the ex-
ceptional postcondition R must hold in the post-state,
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augmented by a binding from the variable e to the ex-
ception object thrown.

� All applicable invariants and history constraints hold in
the post-state.�

Exceptions and errors

Programs may throw exceptions and errors in some kind of abnormal execu-
tion. Java traditionally discriminates between exceptions and errors . While
the former is meant to be caught by some handler within the program, the
latter is reserved for most severe problems. Errors are not meant to be caught
but to terminate the whole program abruptly. A typical example for an error
is that the (physical) machine runs out of memory.

In the JML view of things, an execution which terminates by a thrown
exception is still within the scope of speci�cation considerations. It is dis-
tinguished between normal and exceptional post-conditions (see Sect. 4.2).
This is perfectly reasonable since it is deterministic whether an exception is
thrown or not.

This is not true for errors. The JML reference manual de�nes any method
contract to be met if the method terminates with an error [LPC+08, Sect. 9.6.2].
On the one hand, errors may appear in an unpredictable manner (and thus
in some sense nondeterministically), so it may be justi�ed to ignore them.
On the other hand, an error represents a severe failure of the software system
and must not be overlooked [Blo01].

One pathological example would be the di�erence between assertions in
JML (within Java comments) and the assert statement in Java. If the prop-
erty is not met at the desired program point, the JML assertion is not valid.
Whereas an assertion which is written directly within Java code would throw
an AssertionError. As an alternative, it has been proposed that JML
should treat the throw of an error as a kind of non-termination [Eng05].
For this work however, we try to stick to the reference manual as close as
possible.48

Non-null by default

By default, JML excludes null references from the scope of reference type
�elds, variables, parameters and return values. While this de�nition di�ers
from Java, it has been argued [CR06] that it is a most common programming
(and speci�cation) error to forget that null is included with every static type.

48Nevertheless, we restrict our machine model to not throwing any unpredicted errors.
(See Sect. 2.4)
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In this work we will almost always consider the more general form, including
null. This means every reference (of parameters and return values) has to be
declared with the keyword nullable. The non-null default can be seen as
syntactical sugar for a constraining expression in class invariants or method
contracts.

4.2.1 Desugaring method speci�cations

To begin with, we need to �nd a suitable syntactical form to de�ne seman-
tics on. There may be several pre- and post-conditions as well as exception
speci�cations. To make things more complicated, method speci�cations may
be nested, too. This emerges the need for a �canonical�, de-sugared form of
method speci�cations. [RL00] presents an extensive 11-item list of substitu-
tions. Following this approach thoroughly might render the speci�cation not
very readable, however. We assume the following steps:

1. Modify every reference type occurring as (explicit) parameter or return
type with nullable and desugar non_null (i.e. default) modi�ers.

2. Desugar pure modi�ers to requires true, diverges false and
assignable \nothing.

3. Eliminate nested speci�cations from the inside out.

4. Desugar di�erent behavioral cases (e.g. normal_behavior to behavior
with adding signals false and diverges false).

5. Standardize signals and signals_only clauses to just one signals

clause with Exception as caught exception type.

6. Conjoin (short-circuit) multiple clauses of the same kind (e.g. requires).

This roughly corresponds to the �rst nine steps of [RL00], but does not
conjoin speci�cation cases (i.e. blocks beginning with behavior). An example
can be seen in Fig. 4.5.

This leads to a number of canonized speci�cation cases as displayed in
Fig. 4.6. Where Mi is a privacy modi�er, and the requires, ensures,
signals and diverges clauses accommodate boolean expressions. Ar and
Aw are lists of reference expressions. We further require all clauses to be
fully speci�ed49 and normalized. We will denote the speci�cation case by the

49Although JML allows the keyword not_specified, its interpretation is meant to be
determined by an implementing tool, not by the language speci�cation.
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1 /*@ public normal_behavior

2 @ requires o instanceof Float;

3 @ {|

4 @ requires o.value() != Float.NaN;

5 @ ensures \result.length () > 3;

6 @ |}

7 @

8 @ also

9 @

10 @ public exceptional_behavior

11 @ requires !(o instanceof Float);

12 @ signals (UnsupportedOperationException e) true;

13 @ signals_only RuntimeException;

14 @*/

15 public static String toString (Object o);

18 /*@ public behavior

19 @ requires o != null && o instanceof Float

20 @ && o.value() != Float.NaN;

21 @ ensures \result != null

22 @ && \result.length () > 3;

23 @ signals (Exception e) false;

24 @ diverges false;

25 @

26 @ also

27 @

28 @ public behavior

29 @ requires o != null && !(o instanceof Float);

30 @ ensures false;

31 @ signals (Exception e)

32 @ (e instanceof UnsupportedOperationException)

33 @ ==> true

34 @ && !(e instanceof RuntimeException)

35 @ ==> false;

36 @ diverges false;

37 @*/

38 public static /*@ nullable @*/ String

39 toString (/*@ nullable @*/ Object o);

Figure 4.5: Method speci�cation with syntactical sugar (above) and a
semantical equivalent �diet� version (below).
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1 /*@ Mi behavior

2 @ requires prei;
3 @ ensures posti;
4 @ signals (Exception e) xposti;
5 @ diverges dprei;
6 @ accessible Ar;
7 @ assignable Aw;
8 @*/

Figure 4.6: The canonized form of a method speci�cation case.

tuple Bi := (prei, posti, xposti, dprei, Ari, Awi). The set of all speci�cation
cases for a given method is called the method contract .

As with all other speci�cation elements, method speci�cation cases are
inherited according to Java rules (see also Sect. 2.5). Since these speci�ca-
tions are attached to certain methods in super-classes, it is not completely
trivial to decide which speci�cations a method inherits. It does inherit ex-
actly those inheritable method speci�cation cases which are annotated to
a method which is overridden, i.e. a method which possesses an identical
signature.

4.2.2 Method speci�cations formally

Augmented precondition

Coming up next, it is to determine what is meant by �all applicable invari-
ants�. As it was described in Sect. 4.1.1, invariants are applicable if and only
if the state is visible for an instance or type, which is speci�ed with that
invariant. But for which of them is the pre-state visible? As a complication,
we de�ned visible states only within certain runs. On a closer look however,
there is only one (augmented) invariant which can be assumed applicable.
The method speci�cation has to hold for every system state which quali�es
as pre-state (i.e. all parameters (including this) valuate to the values passed
to the method). Thus, in the worst case, all created objects are receivers of
methods on the call stack, and there is a static method for every class on
the call stack. This means that the pre-state is only visible for the receiver
object of the method of concern itself (resp. for the class if the method is
static).

Although the reference manual is not clear on that point, we assume that
invariants protect the precondition from unde�nedness. (Quite typical an
invariant speci�es a �eld to be non-null and all method speci�cations rely on
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this, for instance.) Of course, a constructor cannot assume any invariant.
To capture applicable invariants, we de�ne the augmented precondition

pre, given a method µ with precondition pre, as

pre :=


pre µ is a constructor
Iaug
C && pre µ is a non-static method with receiver o ∈ V 0

C

Istatic
C && pre µ is a static method in class C

Augmented postcondition

Parameters are allowed to appear in both normal and exceptional postcondi-
tions. In speci�cation, they are always meant to refer to the values which are
passed to the method. (Those are not mentioned here since they are implic-
itly included in the pre-state's Stack.) In execution however, they are local
to the method and their values may be changed. Therefore, parameters are
always evaluated in the pre-state [LPC+08, Sect. 9.9.6]. We will syntactically
replace all parameters p with \old(p).

We also have to ensure that if the method terminates (normally or excep-
tionally), then �all applicable� invariants50 hold. We could in fact try a more
modular approach and not require invariants to hold in the post-state as it is
a visible state (see Sect. 4.1.1). However since we left out constructors from
the de�nition of visible states (Def. 4.4), this has already become necessary
(at least for constructors).

With constructors always comes another JML-speciality: initially
clauses. Syntactically these are type speci�cations, but in fact denote addi-
tional post-conditions for all constructors of the speci�ed type. initially

clauses are inherited just like invariants. Let initC be the accordingly con-
structed (with respect to some linear type hierarchy (see De�nition 2.13))
short-circuit conjunction of all initially clauses de�ned in super-types of
class C and inherited according to Java rules. Note that even interfaces
can be speci�ed with initially clauses even though they do not possess
constructors.

To include invariants and valuate parameters in the right state, we de-
�ne the augmented postcondition post, given a method µ with parameter
identi�ers p1, . . . , pn and a (normal or exceptional) postcondition post, as

post :=


post′ && Iaug

C && initC µ is a (non-helper) constructor in class C
post′ && Iaug

C µ is non-static with receiver o ∈ V 0
C

post′ && Istatic
C µ is a static method in class C

50To be precise, the reference manual speaks of �invariants and history constraints�. But
since history constraints are no single-state properties, this would make no sense.
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where post′ is constructed from post by replacing every occurrence of pj by
\old(pj).51

Speci�cation ful�llment

The properties arising from frame conditions share much similarity with their
�predicate counterparts� (see Sect. 3.3.10, p. 58), as di�erence, locations from
the assignable clause are implicitly included in the list of locations from
the accessible clause.

We are �nally led to the following de�nition:

De�nition 4.8 (Ful�llment). Let µ be a method of class C with code frag-
ment π and {B1, . . . , Bk} its method contract with Bj = (prei, posti, xposti,
dprei, Ari, Awi). µ ful�lls its contract if

in every system state s0 and for every model �eld valuator M ∈ M,
and if µ is non-static for every o ∈ V 0

C with vals0(o.\created) = true and
vals0(this) = o, the following holds for all Bi:

If (s0, s0, La, Lw,M, υ) �̀ prei holds where La, Lw and υ are arbitrary and
J (s0, π) = (R, λa, λw, α,Ω, ρ), then one of the following also holds:

• (Non-termination) |R| =∞ and (s0, s0, L
′
a, L

′
w,M, υ′) �̀ dprei with L′a,

L′w and υ′ unknown but �xed

• (Erroneous termination) Ω ∈ VThrowable \ VException

• (Normal termination)

� R∗ = 〈s0, . . . , sk〉, Ω = null,

� (s0, sk, λa(0, k), λw(0, k),M, ρ) �̀ posti

� λa(0, k) \
⋃

`∈locs0 (Ari∪Awi)

D(`) ⊆ L∗ and

� λw(0, k) \
⋃

`∈locs0 (Awi)

D(`) ⊆ L∗

• (Exceptional termination)

� R∗ = 〈s0, . . . , sk〉, Ω ∈ V −Exception,

� (s′0, s
′
k, λa(0, k), λw(0, k),M, ρ) � xposti with s′j = s

{e7→Ω}
j

� λa(0, k) \
⋃

`∈locs0 (Ari∪Awi)

D(`) ⊆ L∗ and

51Since we de�ned the black box to restore parameters at the end of a method invocation,
it is not really necessary to put an explicit \old. We however keep it for reasons of clarity.
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� λw(0, k) \
⋃

`∈locs0 (Awi)

D(`) ⊆ L∗

where L∗ := {(o, x) ∈ L | h(o, \created) = false}.

Here, R∗ denotes the updated run of Sect. 4.3.1.
In this de�nition (and the o�cial one in the reference manual), frame

properties are only required to hold whenever there is a de�nite post-state, i.e.
upon normal or exceptional termination. For some purposes this condition is
too weak. Consider for instance a method which is speci�ed to loop forever
� something which is very common in praxis. In this case it would be freed
from respecting assignable clauses. To some extend, namely if the in�nite
loop contains visible states, these frame properties can be speci�ed using
history constraints. To achieve a more general notion, it has been recently
proposed [Leh09] to have those properties included in every termination case.
Since the run might be of in�nite length, the above de�nition needs to be
generalized in that the condition does hold for every pair of pre-state and any
other state within the run, as opposed to just the pair pre-state/post-state.

Example 4.9 (JML and dynamic logic52). As it has been explained above,
dynamic logic (DL), in contrast to JML method speci�cations, only discrim-
inates between the case where normal termination is necessary and every
other case. The basic DL formula with pre- and postconditions pre→ [π]post
can be modeled in JML as:

/*@ requires pre;
@ ensures post;
@ diverges true;

@ signals (Exception e) true;

@*/

If termination is required, both diverges and signals clauses must carry
false. Due to some workaround using Java's try/catch blocks, DL is also
capable of expressing a method speci�cation where the signals clause is not
trivially true or false:

pre→ [try {π} catch(Exception e)]((e = null→ post)∧(e 6= null→ xpost))

For a non-trivial diverges clause div the DL formula is split into two impli-
cations, specifying partial correctness resp. (normal) termination:

(pre→ [π]post) ∧ (¬div → 〈π〉true)
52See also [Eng05, Sect. 5.1]
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4.3 Annotation Statements

Annotation statements are JML statements which may occur anywhere within
Java code as a comment. Although the three covered annotation statements
serve very di�erent purposes, they are grouped here due to their common
appearance. For most generality, an annotation statement is verbatim a key-
word (e.g. assert;) followed by an appropriate expression. In contrast to
all other speci�cation elements, annotations are not attached to some syn-
tactical entity (such as a method declaration), but rather to certain states53

which occur during the execution of a program. In particular, there is no
inheritance of annotations.

Section 2.1 already de�ned the annotated code fragment πA with a set
A of annotation statements and the de�nition of the Java black box (2.4)
included the relation α. We will use this relation to determine the speci�ed
states.

4.3.1 Updating ghost variables and �elds

Beneath model �elds, JML also features additional speci�cation-only vari-
ables and �elds, which are used almost like variables and �elds declared in
the program. In contrast to model �elds, these ghost variables and �elds
are explicitly assigned to through a special annotation statement, the set

statement.
With the exception that ghost �elds may appear as members of inter-

faces, they do not di�er syntactically or semantically from their counterparts
de�ned with the program. In particular, they share a common name space.
Therefore, we assumed that they are not treated di�erently in expression
evaluation and are likewise addressed via Heap and Stack.

Ghost variables and �elds may only be assigned through annotations but
not within the program. This means that the black box execution � which is
restricted to evaluate Java � is not capable of assigning these values and we
need to do this �manually�. On the other hand, execution does not depend
on them. So it is possible to assign them a-posteriori. In our approach, we
�rst let the black box yield a complete run and then, we apply the respective
assignments on all states of the run. This is done by altering valuation
through Heap and Stack.

There may be several annotations to the code fragment such that their
position within the code corresponds to the very same state within the run.

53Since the JML reference manual does itself not provide a clear de�nition of a state, it
is not clear either which state an annotation according to the o�cial reference denotes.
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Since those may be con�icting, i.e. they are not parallelizable, we have to
apply them one at a time. A set statement always consists of a Java-like
assignment. The right-hand-side must be a pure expression.54 Other expres-
sions (with impure side-e�ects) such as x++ are not allowed.

At �rst, we need to de�ne how assignments through the set statements
are applied. Let A, R and α be given as of Sect. 2.4. We de�ne an application
function Θ : A → (S → S) which applies a single assignment to a system
state.

Θ(set x=v;)(s) :=


ω(v)(s){x 7→vals(v)} x variable
ω(v)(s){locs(xN )7→vals(v)} x non-static �eld
ω(v)(s){(o,x)7→vals(v)|o∈VC} x static �eld of class C

It is Θ(a) := id for any annotation a which is not a set statement. In the
case x denotes a variable, we simply update the Stack through adding the
appropriate value. If x denotes a �eld, which receiver is not necessarily the
receiver of the current method, we have to evaluate the location to which x
refers to �rst.

Secondly, we collect all applicable assignments. For every state sj of the
run R = 〈s0, s1, . . . 〉 we de�ne the sequence As of applicable assignments:

Asj
= 〈α(s0)(1), . . . , α(s0)(|α(s0)|), . . . , α(sj−1)(1), . . . , α(sj−1)(|α(sj−1)|)〉

This includes all assignments which are associated to states of the run preced-
ing sj in the exact order in which they appear in the program code. Finally,
we retrieve a notion for updating a state, resp. a whole run.

De�nition 4.10. Let s ∈ R be a reachable system state and the elements
of As be given as a1, . . . , ak.55

1. To s the updated state s∗ is given by s∗ = (Θ(ak)◦Θ(ak−1)◦· · ·◦Θ(a1))(s)

2. The updated run R∗ is retrieved from R by replacing every s by its
updated counterpart s∗. We also write α∗ as short-hand with α∗(s∗) =
α(s).

Example 4.11. Consider the code fragment from Example 2.12 annotated
with a ghost variable z which counts the number of loop iterations. In order
for the loop to be correct, the value of z in the post-state must equal the
value of x in the pre-state.

54It might however have side-e�ects.
55Since A is always a �nite set, every state at a �nite position in R, i.e. a reachable

state, is updated only a �nite number of times. Therefore this de�nition is well-de�ned.
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1 public int factorial (int x) {

2 int y = 1;

3 //@ ghost int z = 0;

4 while (x > 0) {

5 //@ set z = z + 1;

6 y = y * x--;

7 }

8 //@ assert \old(x) == z || z == 0;

9 return y;

10 }

Every loop iteration corresponds to at least one state sj in a run R =
〈s0, . . . , sn〉. WLOG this denotes the state before the control �ow enters
the loop. Then it is α(s0) = 〈(set z = 0;)〉 and α(sj) = 〈(set z = z+1;)〉
for every j ∈ [1, n]. While valsj

(z) is underspeci�ed for every j, i.e. the iden-
ti�er z is not on the Stack, in the updated run it is vals∗j (z) = j. We can
�nally prove that vals0(x) = vals∗n(z).

Since we have shown that the valuation of every pure expression preserves
the reachable state property, every updated state s∗ is reachable if and only
if the original state s is reachable.

4.3.2 Assertions and assumptions

Assertions [Hoa69] in JML pose yet another, more �low-level�, speci�cation
instrument. When the validity of assertions is concerned, there is a question
of the context in which they are evaluated. Since they historically are in-
corporated from run-time checking, one could argue that they should hold
in any program run reached from the main method. We instead require a
stronger and more modular interpretation: For every legal execution (i.e. a
precondition and all applicable invariants hold) of a method, the assertions
annotated to the method body must hold.

JML also introduces annotations beginning with the assume keyword.
These are meant to be dual to assertions, in the sense that assertions have
to be veri�ed, whereas assumptions are � as the name suggests � assumed
to hold. The reference manual does however not give a clear semantics for
assumptions [LPC+08, Sect. 12.4.1]. We take the position to see an assump-
tion as a kind of �in-code-precondition�, i.e. if it does not hold, no assertion
occurring later within the code needs to be proven. By this, we only cap-
ture states in which the assumption holds.56 We however restrict the scope

56Following this approach, a runtime checker, for instance, would immediately stop
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of assumptions to be used only in the context of assertions. Invariants and
method speci�cations remain una�ected.

De�nition 4.12 (Shortened run). Let R = 〈s0, . . . 〉 be a run, M ∈ M a
model �eld valuator and α : R→ (N+ 7→ A) an annotation function.

1. A state si ∈ R∗ misses its assumptions if there is a a = (assume φ;)
with a ∈ α∗(si) such that

(s0, si, λa(0, i), λw(0, i),M, υ) 2̀ φ

where υ ∈ U is arbitrary.

2. Let k ∈ N be the index position of the �rst state to miss its assumptions.
Then, the sequence R↓ := {sj ∈ R∗ | j < k} is called the shortened
run. If no state misses its assumptions, we de�ne R↓ := R∗.

De�nition 4.13. Let µ be a method with annotated method body πA

and augmented precondition pre. Let M ∈ M be a model �eld valua-
tor and s0 = (h, σ, χ) a system state. If µ is non-static with receiver ob-
ject r let h(r, \created) = true and vals0(this) = r. Let J (s0, π

A) =
(R, λa, λw, α,Ω, ρ) be the black box execution. If pre hold in s0, then it also
has to hold:

For every a = (assert a;) ∈ A (with a boolean expression) and for every
s∗j ∈ R↓ with a ∈ α∗(s∗j) and for every υ ∈ U it is

(s0, s
∗
j , λa(0, j), λw(0, j),M, υ) �̀ a

µ respects its constraints if the above property holds for every �nite system
state s ∈ S and model �eld valuator M ∈M.

Assertions have to be met irregardless of the termination status Ω. They
may use the \old expression and storage expressions to refer to the pre-state
s. Assertions may appear more than once within a run, this is the reason
why α is de�ned as a general relation rather than a function. Consider for
example the annotated code in Fig. 4.7. Here, a loop invariant is represented
as an annotation within the loop and has to hold on every iteration. The
assumption causes every run where the initial value of x is negative not to
be regarded. Note that the �old� value of x is the value at the beginning of
the enclosing method invocation, not the beginning of the loop.

Historically, JML contained assertion speci�cations while the Java lan-
guage did not. Meanwhile, own Java assertions have been introduced [Blo99],
which are part of the program and thus not of the speci�cation. If a Java
assertion is missed (throughout program execution), an AssertionError is
thrown. Since this is an instance of Error, it is not caught in any way.

processing after reaching an unsatis�ed assumption.



90 Chapter 4. The Meaning of JML Speci�cations

1 public int factorial (int x) {

2 int y = 1;

3 //@ assume x >= 0;

4 while (x != 0) {

5 y = y * x--;

6 /*@ assert y== (\ product int z;

7 @ z > x & z <= \old(x); z);

8 @*/

9 }

10 return y;

11 }

Figure 4.7: Loop invariant as an assert statement.

4.3.3 Loop invariants and variants

Invariants and variants are important tools for the speci�cation of loops in
programs. In particular, formal veri�cation techniques are able to process
programs without loops automatically with ease. In order to verify loops
too, invariants are sometimes provided by hand. To have invariants provided
directly with the code is very useful this way. And there are even tools like
Daikon [EPG+07], which automatically generates possible invariants from
from the source code heuristically and puts out JML speci�cations.57

The usefulness of invariants lies in this well-known consequence of math-
ematical induction: If the invariant holds before the loop is evaluated and it
is preserved by every iteration, then it also holds after each iteration. Ad-
ditionally, termination of loops can be proven through the use of variants
which are non-negative integral expressions which are required to decrease
strictly on every iteration. Termination then can be deduced from the fact
that there cannot be an in�nite decrease.

Compared to other features, the syntax of loop annotations is very simple.
They may consist of several invariants indicated by the keyword maintaining
and several variants indicated by the keyword decreasing which are expres-
sions of integral type. The most general form (with B a boolean expression
and π the loop body) is given in Fig. 4.8.

As with assertions, there is context required in which loop speci�cations
can make sense. Therefore, we always consider a run of the enclosing method
and treat loop speci�cations similar to assertions. Since the loop condition B
might be impure, it is important to which state the loop speci�cation refers.

57Another notable work on retrieving invariants by static analysis is [Wei07]. It does
not use JML as output language, however.
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1 /*@ maintaining Inv1;

2

...

3 @ maintaining Invn;
4 @ decreasing var1;

5

...

6 @ decreasing varm;

7 @*/

8 while (B) {

9 π
10 }

Figure 4.8: The general appearance a loop speci�cation

In JML, this is the state reached after the evaluation of B. Let us assume
all invariants and variants to be normalized.

De�nition 4.14. Let µ be a method with (receiver o if µ is non-static),
annotated body πA and an augmented precondition pre. Let a be a method
speci�cation as shown above. µ ful�lls the loop speci�cation a i� the following
holds:

Let Σ = (s0, s1, La, Lw, ν,M) be a logical state with Σ �̀ pre (and if µ
is non-static valΣ(this) = o). Let the black box execution yield J (s1, π) =
(R, λa, λw, α,Ω, ρ). Let Λ be the (possibly in�nite) sequence of states after
the evaluation of the loop condition:58

Λ := {si ∈ R∗ | a ∈ α∗(si)}

Then it holds that:

• The invariant holds for every loop iteration i ≥ 0:

(s1, si, λa(1, i), λw(1, i),M, ν ′) �̀ Inv1 && . . . && Invn

where ν ′ ∈ U is arbitrary

• Every variant strictly decreases on every iteration:
0 ≤ val~ωj−1(si)(varj) < val~ωj−1(si−1)(varj) where ~ωk = ω(vark)◦ω(vark−1)◦
· · · ◦ ω(var1)

58It might well occur that Λ is still �nite while R is not.
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As the elements of Λ always denote states at the beginning of the loop,
the invariant does not necessarily hold after the loop has been terminated
with a break statement. If this is desired, it can be added as an assertion.

Variants may have side-e�ects on each other. Therefore every variant is
evaluated in a successor state of the previous evaluation. We assume that
invariants and variants do not have side-e�ects vice versa.

It is vital to evaluate the variant in mathematical arithmetic. Java inte-
gers in contrast may cause an in�nite loop due to their under�ow semantics.
The following example does not ful�ll its speci�cation, even though the in-
variant is obviously satis�ed in every state and the variant is �decreased�
through Java's subtraction operator.

1 int i;

2 //@ maintaining i >= Integer.MIN_VALUE;

3 //@ decreasing (i - Integer.MIN_VALUE) /2;

4 while (true) {

5 i= i - 2;

6 }

As for assert statements, the \old expression refers to the pre-state
of the method invocation, not the beginning of the loop. Although it is
not mentioned in the reference manual, we expect this to apply to frame
properties, too, e.g. \not_assigned indicates whether the listed location
have not been assigned to since the method's pre-state. In this way, it is not
possible to specify frame properties for the loop itself.
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Conclusion

5.1 Related work

This section enumerates works and papers which are related to this work in
the sense that their aim is to provide comprehensive semantics for JML. All
of them are related to formal veri�cation tools, of which KeY is the only
publicly available.

While many features of JML are unsupported by the latter discussed
tools, it should be noted that JML is still in development. This means there
may be features newly added or, semantics of existing features may have been
changed. Notably, the latter case applies to the handling of unde�ned expres-
sions. This happened in late 2007 and thus postdates everything mentioned
in this section.

5.1.1 LOOP

One of the �rst works on formal semantics for JML is the one by Jacobs and
Poll [JP01]. They describe the development of the LOOP tool which is used
to verify Java Card [Gut97] programs. LOOP translates program code from
�essentially all of sequential Java� into theories of Hoare logic describing
its semantics. These represent very basic memory operations, rather than
abstract method invocations. Reasoning is done through one of the well-
known higher order logic tools, PVS [ORR+96] or Isabelle [Pau94]. This
treatise so far only covers method speci�cations, other speci�cation elements
are not named.

93
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5.1.2 JIVE

Another notable work has been done by Darvas and Müller [DM07a]. The aim
is to provide JML as an input language for the JIVE tool [MMP97]. JIVE
is used for interactive veri�cation of programs written in a subset of Java
Card, known as Diet Java Card. It is based on the storage logic presented
in [Poe97, PM98] and uses Isabelle as back-end prover.

JIVE is targeted at supporting JML Level 0. JML language levels have
been de�ned [LPC+08, Sect. 2.9] with the aim to divide the grammar in
various levels in order for non-scholars to learn the language more easily.59

Level 0 is meant to form the core of JML. It does exclude such features
as pure method declarations, static invariants and history constraints, loop
variants and the \bigint type.

Additionally, JIVE does not support any static member of a type, history
constraints, annotations or \TYPE. Invariants are conjoined to the pre- and
postconditions of methods; visible state semantics are not observed. On the
other hand, it does support (non-static) ghost and model �elds as well as
data groups.

5.1.3 KeY

KeY [ABHS07, BHS07] is a tool for formal veri�cation of Java Card pro-
grams. In contrast to other tools, it does not invoke some back-end higher
order logic tool, but uses an own deduction system based on dynamic logic
[Bec01]. Originally, KeY only supported OCL as input speci�cation lan-
guage. Support for JML has been added later, in particular based on Engel's
thesis [Eng05, ER07].

Currently, it does not support data groups and \TYPE. Assignable clauses
are not supported either; it uses a �modi�es� clause instead, which is not part
of the JML standard. KeY does not use visible state semantics for invariants
and history constraints, these are conjoined to pre- and postconditions of
methods. On the other hand, ghost and model �elds are fully supported.
KeY also supports all three math modes (see Sect. 3.3.2), of which \bigint

is the default. Most notably, KeY is the only tool known to make use of both
loop invariants and variants, as well as assignable clauses for loops (which
are not part of the JML standard).

59This hierarchy is primarily used to hide certain syntactical structures, not to group
elements of related semantics. Thus, it is largely unimportant to our work and has been
disregarded till now.
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5.2 Summary and results

In this thesis, we have developed a rigorous formalization of the Java Model-
ing Language. Our approach is based on an abstraction of the Java memory
model with types and system states. Expressions are evaluated to semantical
entities. This respects JML's particularities such as side-e�ects and a de�ni-
tion of validity which is not based on classical logic. We further sub-divided
the expression repertoire into two sub-languages, which evaluation require
more or less complexity in semantical underpinning. Finally, we provided
semantics for all of JML's speci�cation elements.

Methodologically, we primarily oriented towards formalizing the verbal
descriptions of the JML reference manual. This was mostly reliable. On
some occasions however, the descriptions are unavailable (e.g. array creation
expressions (see Sect. 3.3.7)) or incomplete (e.g. evaluation of locations in
frame predicates (see Sect. 3.3.10)). In those cases, we applied our own
thoughts, which are mostly backed by Java semantics or the available white
papers on JML.

The issue of visible states deserves to be noted separately. Here, we
consciously deviated from the o�cial semantics for the reason that those
are severely impracticable, respectively they partly contradict the intuitive
understanding of invariants. In both cases, this has been discussed with the
community (see [Lea09]). Despite those di�erences, this thesis is the only
work on JML semantics so far which extensively comments on the visible
state paradigm.

We covered a large variety of JML features. This area coincides with
Level 2 of the de�ned language levels (see [LPC+08, Sect. 2.9]) to a large
extent. For instance, our work particularly includes frame predicate expres-
sions or the type \TYPE. Since some �advanced� features (in the sense of the
language level hierarchy) are purely syntactical sugar, or they are not widely
used, we have refrained from naming them. Any feature which occurs in the
reference manual, but not in this work, is discussed in Appendix B.

We have provided a formal semantics for JML, which are only based on
elementary mathematical notions. We also paid attention on not interfering
with Java itself; in our view, JML constitutes as a proper extension to Java.
E.g. assertions or ghost variables do not have any e�ect on computations. In
this way, it is applicable of being used as a common ground for the various
veri�cation tools.
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5.3 Further work

Further work extending this thesis can take on two paths: extending this
approach or improving the implementing tools.

There are some features of JML which are left out of focus of this work.
These particularly include model types and model methods, which are a topic
of on-going research, as well as everything which has to do with concurrency
or real-time behavior. The latter however would require rather severe changes
in our semantical basis. Although JML provides some facilities for expressing
real-time constraints, this not widely used and does not seem to be a primary
research topic in the near future. It seems more advantageous to focus on
concurrency, which is in fact essential to Java, if not to dedicate oneself to
the adaptation to Java 5/6/7 of a forth-coming release of JML.

Although we have tried to be most general and to not focus on particular-
ities of some implementing tool, this thesis has been written with a possible
re-write of the JML implementation to the KeY tool in mind. As we have
explained in the pre-preceding section, KeY is yet one of the most capable
veri�cation tools for JML. In our opinion, there is not much need for so-
phisticated add-ons. Probable improvements would be an implementation of
data groups or support for (static) checking of assertions (although the latter
does not necessarily belong to the domain of formal methods).
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JML Expression Reference

A.1 Boolean expressions

De�nition A.1 (Evaluation of logical operators). Let s be a system state,
a and b expressions of type boolean and ŝ := ω(a)(s).

• vals(!a) = true i� vals(a) = false and wds(a)

• vals(a | b) = true i�

� vals(a) = true or valŝ(b) = true and

� wds(a) and wdŝ(b)

• vals(a || b) = true i�

� vals(a) = true and wds(a) or

� wds(a) and wdŝ(b) and valŝ(b) = true

• vals(a & b) = true i� vals(a) = valŝ(b) = true and wds(a) and wdŝ(b)

• vals(a && b) = true i� vals(a) = valŝ(b) = true and wds(a) and wdŝ(b)

• vals(a ==> b) = true i�

� vals(a) = false and wds(a) or

� wds(a) and wdŝ(b) and valŝ(b) = true

• vals(a <== b) = true i�

� vals(a) = true and wds(a) or

� wds(a) and wdŝ(b) and valŝ(b) = false

97
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• vals(a <==> b) = true i� vals(a) = valŝ(b) and wds(a) and wdŝ(b)

• vals(a^b) = true i� vals(a) = valŝ(b) and wds(a) and wdŝ(b)

• vals(a <!=> b) = true i� vals(a) 6= valŝ(b) and wds(a) and wdŝ(b)

De�nition A.2 (Well-de�nition of logical operators). Let s be a system
state, a and b expressions of type boolean and ŝ := ω(a)(s).

• wds(!a) i� wds(a)

• wds(a || b) and wds(a <== b) i�

� wds(a) and vals(a) = true or

� wds(a) and wdŝ(b)

• wds(a && b) and wds(a ==> b) i�

� wds(a) and vals(a) = false or

� wds(a) and wdŝ(b)

• wds(a | b), wds(a & b), wds(a ^ b), wds(a <==> b) and wds(a <!=> b)
i� wds(a) and wdŝ(b)

De�nition A.3 (State-transition function for logical operators). Let s be a
system state and a and b expressions of type boolean.

• ω(!a) = ω(a)

• ω(a | b) = ω(a & b) = ω(a ^ b) = ω(a <==> b) = ω(a <!=> b) =
ω(b) ◦ ω(a)

• ω(a || b)(s) = ω(a <== b)(s) =

{
ω(a)(s) vals(a) = true
ω(b)(ω(a)(s)) vals(a) = false

• ω(a && b)(s) = ω(a ==> b)(s) =

{
ω(b)(ω(a)(s)) vals(a) = true
ω(a) vals(a) = false

De�nition A.4 (Equality predicate operators). Let a and b be expressions
of compatible types T1 and T2. Let n and m be expressions of numerical
types. Let s be a system state and ŝ := ω(a)(s) or ω(n)(s) respectively.

• vals(a == b) = true i� vals(a) = valŝ(b) and vals(a) 6= NaN

• vals(a != b) = true i� vals(a == b) = false
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• vals(n < m) = true i� vals(n) < valŝ(m) and vals(n), valŝ(m) 6= NaN

• vals(n <= m) = true i� vals(n < m) = true or vals(n == m) = true

• vals(n > m) = true i� vals(n) > valŝ(m) and vals(n), valŝ(m) 6= NaN

• vals(n => m) = true i� vals(n > m) = true or vals(n == m) = true

For every equality predicate (a?b) it is wds(a?b) i� wds(a) and wdŝ(b). And
ω(a ? b) = ω(b) ◦ ω(a).

A.2 Other simple expressions

De�nition A.5 (Numerical operators). Let n, m be expressions of exact
dynamic integer types T1 and T2, ? ∈ {+, -, *, /, %, <<, >>, >>>, &, |, ^} (binary)
and � ∈ {+, -, ~} (unary). Let s be a system state and ŝ := ω(n)(s).

• vals(n ? m) =

{
arbitrary ? ∈ {/, %} and valŝ(m) = 0
vals(n) ?T ′ valŝ(m) otherwise

where ?T ′ represents the corresponding mathematical operation with

the modulo/over�ow semantics of type T ′ :=

{
long T1 or T2 = long
int otherwise

.

• wds(n ? m) i�

� wds(n) and wdŝ(m) and

� ? 6∈ {/, %} or valŝ(m) 6= 0

• ω(n ? m) = ω(m) ◦ ω(n)

• vals(�n) = �T1vals(n)

• wds(�n) i� wds(n)

• ω(�n) = ω(n)

Let e, f be expressions of exact dynamic �oating point types T1 and T2

(WLOG T1 v T2) and ? ∈ {+, -, *, /, %}, ± ∈ {+, -}. Let s be a system state
and ŝ := ω(e)(s).

• vals(e ? f) = vals(e) ?T2 valŝ(f)

• wds(e ? f) i� wds(e) and wdŝ(f)

• ω(e ? f) = ω(f) ◦ ω(e)
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• vals(±e) = ±T2vals(e)

• wds(±e) i� wds(e)

• ω(±e) = ω(e)

Let x, y be expressions of exact dynamic type \bigint or \real and ? ∈
{+, -, *, /, %}, ± ∈ {+, -}. Let s be a system state and ŝ := ω(x)(s).

• vals(x ? y) =

{
arbitrary ? ∈ {/, %} and valŝ(y) = 0
vals(x) ?R valŝ(y) otherwise

where ?R represents the corresponding mathematical operation

• wds(x ? y) i�

� wds(x) and wdŝ(y) and

� ? 6∈ {/, %} or valŝ(y) 6= 0

• ω(x ? y) = ω(y) ◦ ω(x)

• vals(±x) = ±vals(x)

• wds(±x) i� wds(x)

• ω(±x) = ω(x)

De�nition A.6 (Conditional expression). Let b be a boolean expression and
c, d expressions of comparable types. Let s be a system state and ŝ := ω(b)(s).

• vals(b?c:d) =

{
valŝ(c) vals(b) = true
valŝ(d) vals(b) = false

• wd(b?c:d) i�

� vals(b) = true and wds(b) and wdŝ(c) or

� vals(b) = false and wds(b) and wdŝ(d)

• ω(b?c:d)(s) =

{
ω(c)(ŝ) vals(b) = true
ω(d)(ŝ) vals(b) = false

De�nition A.7 (Type expressions). Let T be a type, e be an expression
and and t an expression of type \TYPE.

• val(\type(T )) = T

• wd(\type(T )) i� T ∈ V\TYPE
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• ω(\type(T )) = id

• val(\typeof(e)) =



Boolean val(e) ∈ Vbool
Character val(e) ∈ Vchar
Byte val(e) ∈ Vbyte
Short val(e) ∈ Vshort \ Vbyte
Integer val(e) ∈ Vint \ Vshort
Long val(e) ∈ Vlong \ Vint
Float val(e) ∈ Vfloat \ Vlong
Double val(e) ∈ Vdouble \ Vfloat
T̃ val(e) ∈ V 0

T̃
where T̃ v Object

arbitrary otherwise

• wd(\typeof(e)) i� val(e) ∈
⋃
T∈V\TYPE V

0
T

• ω(\typeof(e)) = ω(e)

• val(\elemtype(t)) =

{
T ′ val(t) = T ′[]
null otherwise

• wd(\elemtype(t)) i� wd(t)

• ω(\elemtype(t)) = ω(t)

De�nition A.8 (Type cast). Let T ′ be a type and a an expression of type
T .

• val((T ′) a) =

{
cast(T, T ′, val(a)) T and T ′ numerical
val(a) otherwise

• wd((T ′) a) i� val((T ′) a) ∈ VT ′

• ω((T ′) a) = ω(a)

Where the numerical promotion function cast : T × T × U → U is given as
follows: (Where rtnM rounds to the nearest element of M and rtz rounds to
the next integer towards zero.)

• cast(I, F, a) = rtnVT
(a) for I integral, F �oating point type

• cast(Ix, Iy, a) = ls(rs(a) mod 2y) for In are n-bit signed integral types

where rs(b) =

{
b b ≥ 0
b+ 2x b < 0

and ls(b) =

{
b− 2y b ≥ 2y−1

b b < 2y−1

• cast(Ix, char, a) = rs(a) mod 216

where Vchar is identi�ed with {0, . . . , 216 − 1}
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• cast(char, Iy, a) = ls(a mod 2y)

• cast(F,L, a) =


0 a = NaN
max(minVL, rtz(a)) a ≤ 0
min(maxVL, rtz(a)) a > 0

for F �oating point type, L ∈ {int, long}

• cast(F, S, a) = cast(S, int, cast(int, F, a)) for F �oating point type, S ∈
{short, byte, char}

• cast(T, F, a) =


+∞ a > max QF

−∞ a < min QF

rtnVF
otherwise

for T ∈ {\bigint, \real}, F �oating point type

• cast(T, I, a) = cast(double, I, cast(T, double, a))
for T ∈ {\bigint, \real}, I integral type

• cast(F, \real, a) = a for F �oating point type

• cast(F, \bigint, a) = cast(\real, \bigint, cast(F, \real, a)) for F �oat-
ing point type

• cast(\real, \bigint, a) = rtnZ(a)

• cast(T1, T2, a) = a otherwise

A.3 Reference expressions

De�nition A.9 (Values of reference expressions). Let s = (h, σ, χ) be a
system state. Let Σ = (s0, s1, La, Lw, ρ,M) be a logical state.

• vals(c) = c for a constant (primitive value) c

• vals(v) =

{
σ(v) v ∈ dom(σ)
arbitrary otherwise

for a local variable v

• vals(this) =

{
o (µ, o) = top(χ) for some method µ
arbitrary otherwise

• valΣ(\result) = ρ

• vals(r.x) = ĥ(vals(r), x) for an expression r of reference type and x a
non-static non-model �eld identi�er with ω(a)(s) = (ĥ, . . . )
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• valΣ(r.x) =

{
Mω(r)(s1)(vals1(r), x) M 6= ∅
arbitrary M = ∅ for an expression r of ref-

erence type and x a non-static model �eld identi�er

• vals(T.x) = h(o, x) for a static non-model �eld x de�ned in type T with
o ∈ VT

• valΣ(T.x) =

{
Ms1(o, x) M 6= ∅
arbitrary M = ∅ for a static model �eld x de�ned in

type T with o ∈ VT

• vals(a[n]) = ȟ(vals(a), valω(a)(s)(n)) for an expression a of array type
and n expression of an integer type with ω(n)(ω(a)(s)) = (ȟ, . . . )

De�nition A.10 (Location expressions).

• locs(r.x) = {(vals(r), x)} for an expression r of reference type and x a
(possibly model) �eld identi�er

• locs(T.x) = {(o, x) | o ∈ VC} for a static (possibly model) �eld identi�er
x in type T

• locs(r.*) = {(vals(r), ι) | ι ∈ I} ∩ L′

• locs(T.*) = {(o, ι) | o ∈ VT , ι ∈ I} ∩ L′

• locs(a[n]) = {(vals(a), valω(a)(s)(n))} for an expression a of array type
and n expression of an integer type

• locs(a[n..m]) = {(vals(a), k) | valω(a)(s)(n) ≤ k ≤ valω(a)(s)(m)} for an
expression a of array type and n,m expressions of integer types

• locs(a[*]) = locs(a[0 .. vals(a.length)− 1])

• locs(e1, e2, . . . , en) =
⋃n
i=1 loc~ωi−1(s)(ei)

with ~ωi := ω(ei)◦ω(ei−1)◦ . . .◦ω(e1) and ~ω0 := id for a list of references

• loc(\nothing) = ∅

• loc(\everything) = L′

De�nition A.11 (Well-de�nition of reference expressions). Let everything
be as above.

• wd(c), wd(\result), wd(T.*), wd(\nothing), wd(\everything) al-
ways hold
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• wds(v) i� v ∈ dom(σ)

• wds(this) i� top(χ) ∈M × U

• wds(r.\created) i� wds(r) and vals(r) 6= null

• wds(r.x) with x 6= \created i�

� wds(r),

� vals(r) 6= null and

� vals(r.\created) = true

� and if x is a model �eld, then also M 6= ∅

• wds(r.*) i� wds(r), vals(r) 6= null and vals(r.\created) = true

• wds(T.x) i� x is concrete or M 6= ∅

• wds(a[n]) i� wds(a), vals(a) 6= null, vals(a.\created) = true,
wdω(a)(s)(n) and 0 ≤ valω(a)(s)(n) < vals(a.length)

• wds(a[n..m]) i� wds(a), vals(a) 6= null, vals(a.\created) = true
wdω(a)(s)(n), wdω(a)(ω(n)(s))(m) and
0 ≤ valω(a)(s)(n) ≤ valω(a)(ω(n)(s))(m) < vals(a.length)

• wds(a[*]) i� wds(a) and vals(a) 6= null and vals(a.\created) = true

• wds(e1, e2, . . . , en) i� wd~ωi−1(s)(ei) for every i ∈ [1, n]

De�nition A.12 (State transition function for reference expressions). Let
everything be as above.

• ω(c) = ω(v) = ω(this) = ω(\result) = ω(T.*) = ω(\nothing) =
ω(\everything) = id

• ω(r.x) =

{
ω(ψ) ◦ ω(r) x is a model �eld with (val(r), x, ψ) ∈M

ω(r) otherwise

• ω(r.*) = ω(r)

• ω(T.x) =

{
ω(ψ) x is a model �eld with (o, x, ψ) ∈M for o ∈ VT
id otherwise

• ω(a[n]) = ω(n) ◦ ω(a)

• ω(a[n..m]) = ω(m) ◦ ω(n) ◦ ω(a)
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• ω(a[*]) = ω(a)

• ω(e1, e2, . . . , en) = ~ωn

De�nition A.13 (Pure method invocation).

• Let s = (h, σ, χ) be a system state, a an expression of reference type,
e1, . . . , en expressions of respective types T1, . . . , Tn and

msp(m, 〈T1, . . . , Tn〉, vals(a)) = µ = (m,π, 〈(T1, ι1), . . . , (Tn, ιn)〉, TR)

a pure (non-void) non-static method.

� vals(a.m(e1, . . . , en)) = ρ ∈ VTR

� wds(a.m(e1, . . . , en)) i� wds(a), vals(a) 6= null,
vals(a.\created) = true and wd~ωi−1

(ei) and Ω = null

� ω(a.m(e1, . . . , en))(s) = (h′, σ, χ)

Where

� J (s̃, π) = (〈s0, . . . , sk〉, λa, λw, α,Ω, ρ) with sk = (h′, σ′, χ′),

� s̃ = ~ωn((h, σ
{ιj 7→val~ωj−1(s)(ej)|1≤j≤n}

, push(χ, (µ, vals(a))))),

� ~ωj := ω(ej) ◦ ω(ej−1) ◦ . . . ◦ ω(e1) ◦ ω(a).

• Let s = (h, σ, χ) be a system state, e1, . . . , en expressions of respective
types T1, . . . , Tn and µ = (m,π, 〈(T1, ι1), . . . , (Tn, ιn)〉, TR) a pure (non-
void non-constructor) static method of class C

� vals(C.m(e1, . . . , en)) = ρ ∈ VTR

� wds(C.m(e1, . . . , en)) i� vals(t) 6= null, wd~ωi−1(s)(ei) and Ω = null

� ω(C.m(e1, . . . , en))(s) = (h′, σ, χ)

Where

� J (s̃, π) = (〈s0, . . . , sk〉, λa, λw, α,Ω, ρ) with sk = (h′, σ′, χ′),

� s̃ = ~ωn((h, σ
{ιj 7→val~ωj−1(s)(ej)|1≤j≤n}

, push(χ, µ))),

� ~ωj := ω(ej) ◦ ω(ej−1) ◦ . . . ◦ ω(e1), ~ω0 := id.

• Let s = (h, σ, χ) be a system state, e1, . . . , en expressions of respec-
tive types T1, . . . , Tn and µ = (T, π, 〈(T1, ι1), . . . , (Tn, ιn)〉, T ) a pure
constructor of type T 60

60This might be the (implicitly given) default constructor if none is explicitly de�ned.
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� vals(new T (e1, . . . , en)) = ρ ∈ VT
� wds(new T (e1, . . . , en)) i� wd~ωi−1(s)(ei) and Ω = null

� ω(new T (e1, . . . , en))(s) = (h′, σ, χ)

Where

� ρ ∈ V 0
T is a fresh domain element,

� J (s̃, π) = (〈s0, . . . , sk)〉, λa, λw, α,Ω, ρ) with sk = (h′, σ′, χ′),

� s̃ = ~ωn((h̃, σ
{ιj 7→val~ωj−1(s)(ej)|1≤j≤n}

, push(χ, (µ, ρ))))

� h̃ coincides with h except for h̃(ρ, \created) = true and for every
non-static �eld x in T it is h̃(ρ, x) = d(T (x)),

� ~ωj := ω(ej) ◦ ω(ej−1) ◦ . . . ◦ ω(e1), ~ω0 := id.

De�nition A.14 (New array declaration). Let s be a system state.

• (Array initializer) Let e0, . . . , en−1 be expressions of respective (com-
parable) types T0, . . . , Tn−1. Let T be a least common super-type. Let
~ωj := ω(ej) ◦ ω(ej−1) ◦ · · · ◦ ω(e0), ~ω−1 := id and ~ωn−1(s) = (h′, σ′, χ′).

� vals({e0, . . . , en−1}) = a where a ∈ V 0
T[] is a fresh domain element

� wds({e0, . . . , en−1}) i� wd~ωj−1(s)(ej) for every j ∈ [0, n− 1]

� ω({e0, . . . , en−1})(s) = (h′′, σ′, χ′) where h′′ coincides with h′ ex-
cept for

∗ h′′(a, \created) = true

∗ h′′(a, length) = n

∗ h′′(a, i) = val~ωi−1
(ei) for every i ∈ [0, n− 1]

• (new array invocation) Let T be a type, n1, . . . , nk expressions of
type int and init an array initializer. Let ~ωj := ω(nj) ◦ ω(nj−1) ◦ · · · ◦
ω(n1). Let T[]k denote the result type T [] . . . []︸ ︷︷ ︸

k

.

� vals(new T[n1][n2] · · · [nk]init) = val~ωk(s)(init)

� wds(new T[n1][n2] · · · [nk]init) i� val~ωi−1(s)(ni) ≥ 0 for every
i ∈ [1, k], wd~ωk(s)(init) and val~ωk(s)(init) ∈ VT[]k

� ω(new T[n1][n2] · · · [nk]init) = ω(init) ◦ ~ωk

De�nition A.15 (\old). Let s0, s1 ∈ S be system states and expr some
expression.
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• val(s0,s1)(\old(expr)) = val(s0,s0)(expr)

• wd(s0,s1)(\old(expr)) i� wd(s0,s0)(expr) and

• ω(\old(expr)) = id.

A.4 JML predicates

De�nition A.16 (Type predicates). Let t1, t2 be expressions of type \TYPE
and e an expression of type T .

• vals(t1 <: t2) = true i� vals(t1) v valω(t1)(s)(t2)
or vals(t1) = valω(t1)(s)(t2) ∈ {null, void}

• wds(t1 <: t2) i� wds(t1) and wdω(t1)(s)(t2)

• ω(t1 <: t2) = ω(t2) ◦ ω(t1)

• vals(e instanceof t2) = true i� T ′ v valω(e)(s)(t2) with vals(e) ∈ V 0
T ′

• wds(e instanceof t2) i� wds(e), wdω(e)(s)(t2), and vals(e) 6= null

• ω(e instanceof t2) = ω(t2) ◦ ω(e)

De�nition A.17 (Frame predicates). Let Σ = (s0, s1, La, Lw, ρ,M) be a log-
ical state with sj = (hj, σj, χj). Let Λ be a list of normalized storage reference
expressions, LΛ := locs0(Λ) and L∗ = {(o, x) ∈ L | h0(o, \created) = false}.

• valΣ(\not_assigned(Λ)) = true i� Lw ∩
⋃
`∈LΛ

D(`) ⊆ L∗

• valΣ(\only_accessed(Λ)) = true i� La \
⋃
`∈LΛ

D(`) ⊆ L∗

• valΣ(\only_assigned(Λ)) = true i� Lw \
⋃
`∈LΛ

D(`) ⊆ L∗

• valΣ(\not_modified(Λ)) = true i� for every `′ ∈
⋃
`∈LΛ

D(`) it is h0(`′) =

h1(`′)

For any frame predicate F it is wdΣ(F(Λ)) i� wds0(Λ). And ω(F(Λ)) = ω(Λ).

De�nition A.18 (\fresh). Let e1, . . . , en be expressions of reference types
and s0 = (h0, σ0, χ0), s1 = (h1, σ1, χ1) be system states.
val(s0,s1)(\fresh(e1, . . . , en)) = true i� for every i ∈ [1, n]
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• val~ωi−1(s1)(ei) 6= null,

• val~ωi−1(s1)(ei.\created) = true and

• h0(val~ωi−1(s1)(ei), \created)) = false

where ~ωk := ω(ek) ◦ ω(ek−1) ◦ . . . ◦ ω(e1) and ~ω0 := id.

• wd(s0,s1)(\fresh(e1, . . . , en))) i� wd~ωi−1(s1)(ei) for every i ∈ [1, n]

• ω(\fresh(e1, . . . , en)) = ~ωn

De�nition A.19 (\nonnullelements). Let a be an expression of array type
and s a system state.

• vals(\nonnullelements(a)) = true i�

� vals(a) 6= null and

� for every i ∈ {0, . . . , vals(a.length)} : vals(a[i]) 6= null

• It is wds(\nonnullelements(a)) i� wds(a) and vals(a) ∈ VT[] for some
type T ∈ T

• ω(\nonnullelements(a)) = ω(a).

A.5 Quanti�ers

De�nition A.20 (Logical quanti�ers). Let T be a type, x an identi�er and
a, b boolean expressions.

• val(s0,s1)(\forall nullable T x; a; b) = true i� for all o ∈ VT it is

val
(s
{x 7→o}
0 ,s

{x 7→o}
1 )

(a ==> b) = true

• val(s0,s1)(\exists nullable T x; a; b) = true i� for some o ∈ VT it is

val
(s
{x 7→o}
0 ,s

{x 7→o}
1 )

(a && b) = true

• wd(s0,s1)(\forall nullable T x; a; b) i� for all o ∈ VT it is

wd
(s
{x7→o}
0 ,s

{x 7→o}
1 )

(a ==> b)
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• wd(s0,s1)(\exists nullable T x; a; b) i� for some o ∈ VT it is

wd
(s
{x 7→o}
0 ,s

{x 7→o}
1 )

(a && b)

For both quanti�ers it is ω(. . .) = id.

De�nition A.21 (Generalized quanti�ers). Let T be a type, x an identi�er,
b a boolean expression and e an expression of numerical type T ′. Let Z :=
{z ∈ VT | vals{x 7→z}(b) = true}.

• vals(\sum nullable T x; b; e) =
arbitrary |Z| =∞⊕
z∈VT

vals{x 7→z}(b ? e : 0) |Z| <∞, T ′ integral

cast(\real, T ′,
∑
z∈VT

vals{x 7→z}(b ? e : 0)) otherwise

• vals(\product nullable T x; b; e) =
arbitrary |Z| =∞⊗
z∈VT

vals{x 7→z}(b ? e : 1) |Z| <∞, T ′ integral

cast(\real, T ′,
∏
z∈VT

vals{x 7→z}(b ? e : 1)) otherwise

• vals(\max nullable T x; b; e) =
arbitrary |Z| =∞
arbitrary Z = ∅, T ′ ∈ {\bigint, \real}
minVT ′ Z = ∅, T ′ 6∈ {\bigint, \real}
max Z̃ otherwise

where Z̃ := {valω(b)(s{x7→z})(e) | z ∈ Z}.

• vals(\min nullable T x; b; e) =
arbitrary |Z| =∞
arbitrary Z = ∅, T ′ ∈ {\bigint, \real}
maxVT ′ Z = ∅, T ′ 6∈ {\bigint, \real}
min Z̃ otherwise

• vals(\num_of nullable T x; a; b) = vals(\sum nullable T x; a && b; 1L)

Where
⊕

and
⊗

denote addition and multiplication according to the seman-
tics of type T ′ (i.e. including possible over�ows). 1L denotes the constant 1
with dynamic type long, thus enforcing respective over�ow semantics.



110 Appendix A. JML Expression Reference

• wd(Q nullable T x; b; e) i� wd(b) for every value of x, wd(e) and
|Z| <∞ for Q ∈ {\sum, \product, \num_of}

• wd(Q nullable T x; b; e) i� wd(b) for every value of x, wd(e), |Z| <∞
and if T ′ ∈ {\bigint, \real} then Z 6= ∅ for Q ∈ {\max, \min}

• ω(Q nullable T x; b; e) = id for every generalized quanti�er Q
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What's Missing?

B.1 Omitted Java features

Java 5

One assumption for this work is, that the speci�ed programming language is
Java as of version 1.4. In particular, only non-generic types are considered.
As of the time of writing, the Java Modeling Language has yet no support
for generics. An adaptation of JML to Java 6 has been recently proposed
[Cok08].

Static initialization

Static initialization of classes [GJSB00, Sect. 8.7] is not considered in this
work for reasons of simplicity. In fact, it is never easy to tell when exactly
classes are initialized, especially if initialization occurs during the evaluation
of expressions. Consider for instance an access on a static �eld in the precon-
dition of a method speci�cation. At �rst, we need to apply case distinction
whether the class is yet initialized and if, invoke the initializer and evaluate
the location in the post-state of the initializer. This again raises the question
whether the class is initialized in the post-state of the method in question,
since it was not initialized in the pre-state (but only during evaluation of the
speci�cation).

Static initialization has e�ects on semantics, however small: States are
only visible for a type if it has �nished static initialization. In our approach,
this is always given since we require all classes to be fully initialized. The
predicate \is_initialized has been omitted from the expression reference
since it would trivially yield true in every state.

111
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Reachability and �nalizers

Our approach only covers a part of the live-cycle of objects in Java. A basic
notion of reachability could be included, it is though not necessary. Reach-
ability itself has to e�ect on the semantics of JML since all speci�cations
are de�ned for any object � regardless of reachability. On the �Java hand�,
an unreachable object will not only be removed from memory by garbage
collection eventually (which also does not matter to us); but it will also in-
voke �nalizers [GJSB00, Sect. 12.6]. Finalizers are problematical for three
reasons:

• Finalizers run concurrently to the main thread and each other. We
decided not to cover concurrency (see below).

• Though �nalizers are only invoked on unreachable objects, they may
refer to reachable ones. This includes making the receiver reachable
again as well as making other objects unreachable. As it can be seen
in [GJSB00, p. 246], the complete life-cycle model includes 11 states.

• It is not clear, exactly when a �nalizer is invoked after an object has
become unreachable. This can be seen as a kind of indeterministic
program �ow.

B.2 JML features not covered

Real-time and concurrency issues

Neither real-time nor concurrency speci�cations appear in this work. This
would perhaps �ll a thesis of its own. Even the reference manual admits that
the current version of JML focusses on sequential programs. Not covered are
thus the monitors_for, duration, working_space and when clauses in type,
resp. method speci�cations as well as the following expressions: \duration,
\space, \working_space, \max, \lockset and the lockset order predicate.

Model methods and model types

In JML, not only �elds may be added for means of speci�cation, but also
methods and types. The interpretation of model methods [SLN07] and types
[Cha06, DM07b] is an issue of on-going research. There is no approach to
describe model types in general, yet. In [DM07b], every model type is stati-
cally mapped to an entity in another formal language (in this case Isabelle).
E.g. JMLObjectSet is mapped to Isabelle's set representation. Even the JML
run-time checker [JML08] is yet incapable of coping with model types.
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JML's rendition of (�nite) sets, sequences, functions and other mathemat-
ical entities are based on model types and model methods and are therefore
left out.

The Universe Type System

The Universe Type System [MP01, Mül02] is an ownership type system. It
de�nes owners for references to objects through which they may be accessed.
This might be used, for instance, to create a more modular de�nition of
invariants. It heavily a�ects the type system, in that for every type T of our
de�nition in Sect. 2.2 there would be three types instead: rep T , peer T ,
and readonly T .

Math modes

As already explained in Sect. 3.3.2, there are three di�erent arithmetical
modes which de�ne di�erent semantics of numerical expressions. JML allows
them to be switched from one class to another, e.g. the invariants of a class
C modi�ed with spec_save_math are de�ned with the safe math extension,
while a method of class D, which uses the default Java arithmetic, has to
respect that invariant. This seems needlessly complicated, so we do not
concern switching math modes.

readable and writable clauses

The readable and writable clauses are type speci�cations which name nec-
essary conditions for accessing resp. assigning �elds. The main di�erence
to accessible/assignable clauses of method speci�cations is, that these
conditions have to hold in the very state in which the �eld is accessed. Fur-
thermore, this de�nition is very di�erent to the other type speci�cations in
that is has to hold in every state, not just visible ones.

Therefore, readable and writable cannot be desugared to any other
speci�cation element (method speci�cations, invariants or history constraints).
Although it would not be very complicated to add another speci�cation ele-
ment to Sect. 4.1, we refrain from this idea because it would not reveal many
new insights.

The keyword for (history constraints)

A history constraint may be weakened in that it only has to be preserved
by the (non-helper) methods named after the for argument. The default is
\everything, which is assumed in Sect. 4.1.3.
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forall and old clauses

In method speci�cations, variables may be bound by forall or old clauses
which scope is the whole speci�cation case (i.e. all clauses within the current
behavior). The intuitive meaning of forall is that the speci�cation is valid
for every valuation of the named variables. Since speci�cations are already
meant to be valid for any pre-state, this is purely a syntactical feature.

old T v = x binds a variable v to the pre-state value of an expression
x for later use in one of the postconditions. This is again purely syntactical
since we can substitute \old(x) for v in the postcondition.

callable clause

Similar to an assignable clause, method speci�cations can bear a callable
clause which lists all methods which may be (directly or indirectly) invoked.
To extend our model to include an interpretation for this clause, we would
have to resolve the listed method identi�ers and check whether they occur
on any call stack of the run.

measured_by clause

The measured_by clause is used for the proof of termination for recursive or
mutually recursive methods. It takes an expression of type int which must
decrease at every method invocation during a run. To extend our model to
include an interpretation for this clause, we would have to investigate any
call stack of the run and assert the decrease in every state in which a method
has just been pushed on the stack. (See [HLL+09, Sect. 2.3.5].)

captures clause

In a method speci�cation, it can be speci�ed whether objects referenced by
parameters are captured by the method. An object is captured if its reference
appears on the right-hand side of an assignment. As assignments are within
the domain of the black box in our approach, there is no way of describing
this clause formally.

Re�ning statements

The keyword refining introduces the possibility of annotating any (possibly
annotated) statement block. The speci�cation grammar is identical to a
method speci�cation. In this way, there may be given frame conditions to
loops (or any other program fragment), for instance.
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\old with labels

Within assertions in annotations, the \old may be used not only to refer
to the pre-state, but also to intermediate states which are reached in the
execution of program code carrying a label. By this, expressions would not
be evaluated with respect to two states (pre-state and current), but to an
arbitrary number.

The \invariant_for expression

The expression \invariant_for(x) for an expression x of reference type
is meant to tell whether val(x) satis�es the invariant of the static type of
x. Of course, this only makes sense for states which are not visible for
val(x). The problem with this expression is, that is not possible to stati-
cally deduce the exact run-time type of an expression. E.g. the expression
\invariant_for((Number) new Integer()) is meant to refer to the invari-
ant of type Number, but the expression (Number) new Integer() is seman-
tically equivalent to new Integer().

The \reach expression

The \reach expression is used to tell which objects are currently reachable
from some reference. In theory, is a very sensible expression. It however relies
on the model type JMLObjectSet which we excluded from our considerations
(see above).

1 public class Node {

2 private int value;

3 private /*@ nullable @*/ Node leftChild;

4 private /*@ nullable @*/ Node rightChild;

6 public static Node root;

8 /*@ private invariant (\ forall Node n;

9 @ \reach(root); n.value > 0);

10 @*/

11 }

Figure B.1: A possible alternative de�nition of object reachability with-
out using model types.

In our opinion, it would generally be a good idea to give another de�nition
of reachability which does not depend on model types. One could think of a
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predicate which can be used as range of quanti�cation. E.g. the speci�cation
in Fig. B.1 for a binary tree is meant to span over the nodes of the tree.

Informal predicates, redundancy, debugging etc.

There is a variety of JML features which do not have an e�ect on formal
semantics, but are used to describe speci�cations in an informal and intuitive
way. This is mostly to give the viewer, e.g. a programmer, some intuition on
what the formal speci�cations means, e.g. through an example.

To this category belong �informal predicates�, which are just common
comments within the program code. With the keywords hence_by, for_ex-
ample and A_redundantly (where A is a speci�cation clause such as requi-
res) logical conclusions or examples can written to an existing formal speci-
�cation. E.g. one could conclude that the factorial of a non-negative number
is strictly greater than zero:

/*@ public normal_behavior

@ requires x >= 0;

@ ensures \result ==

@ (\ product int z; 0 < z & z <= x; z);

@ ensures_redundantly \result > 0;

@*/

public int factorial (int x);

Furthermore, there are statements which are used for debugging and la-
beling with a run-time checker. They possess, of course, no formal semantics.
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List of Symbols

C set of classes and interfaces, 11
D data group, 46
E set of expressions, 28
J black box function, 22
L set of (concrete) locations, 15
L′ set of locations, incl. abstract, 40
N normalization (super-script), 29
P set of packages, 12
S set of system states, 18
T set of types, 13
U universe, 15
VR visibility relation, 69
α annotation function, 22
α∗ updated annotation function, 85
χ call stack, 18
λa accessed locations, 22
λw assigned (written) locations, 22
Ω termination mode, 22
ω successor function, 34
Π program, 11
πA annotated code fragment, 12
Σ logical state, 35
σ Stack, 16
h Heap, 16
loc location valuation function, 45
M model �eld valuator, 39
msp most-speci�c method, 18
R∗ updated run, 85
s∗ updated state, 85
VT domain (compatible elements), 13
V −T domain (compatible elements, excl. null), 15
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V 0
T domain (direct instances), 14
val valuation function, 28
wd well-de�nition predicate, 28
I set of identi�ers, 12
M set of model �eld characterizations, 37
v subtype relation, 13
� validity relation (without axioms), 35
�̀ validity relation (with axioms), 43
<: subtype relation (JML expression), 57
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<: , 58

abstract location, 39
accessible, 78
annotation statement, 86
assert, 89
assignable, 78
assume, 88
augmented postcondition, 83
augmented precondition, 83
axiom, 42

Behavioral Interface Speci�cation Lan-
guage, 1

behavioral subtype, 25
\bigint, 12, 48

call stack, 17, 18
class, 12
Class (type), 12
code fragment, 12

annotated, 12
constraint, see history constraint
correctness

total, 65
\created, 16, 19, 20

data group, 25, 43, 46
decreasing, 90
design-by-contract, 3
diverges, 78
domain, 13
dynamic logic, 85

\elemtype, 49
ensures, 78
Error, 20, 79
evaluation

short circuit, 31
\everything, 46
exception, 30
exceptional_behavior, 5
\exists, 6, 61
expression, 27

boolean
value, 47

JML-E0, 27, 35
JML-E1, 27
normalized, 30
numerical
value, 47

validity, 35, 43

�nal, 21
�nalizer, 112
\forall, 6, 61
\fresh, 34, 60

generics, 111
ghost �eld, 86
ghost variable, 86

Heap, 16
helper method, 66
history constraint, 5, 76

augmented, 76

128



Index 129

identi�er, 12
inheritance, 25

of invariants, 74
of representation clauses, 36

initialization
instance, 21
static, 111

initially, 66, 83
instanceof, 58
invariant, 72�76

applicable, 82
augmented, 74
inheritance, 74
respect, 75

Java, 11�23
Java Card, 93, 94
Java Virtual Machine, 20, see black

box
JML, 1

Level 0, 94
Level 2, 95

JML-E0, 27, 35
JML-E1, 27

linear type hierarchy, 25
location, 15

abstract, 39
location expression, 45�46
logical state, 35
loop invariant, 90
loop variant, 90

maintaining, 90
\max, 63
method, 17

helper, 66
most-speci�c, 18
overloading, 17
overriding, 17
receiver, 17
signature, 17

method call, 17
method contract, 82
method speci�cation

ful�llment, 84
\min, 63
model �eld, 35�42, 52

characterization, 37
valuator, 39

\nonnullelements, 60
normal_behavior, 3, 80
\not_assigned, 58
\nothing, 45
\not_modified, 58
nullable, 80

object, 15
OCL, 2, 30, 56, 77

@pre, 56
\old, 4, 56, 56

time travel through, 57
\only_accessed, 58
\only_assigned, 58

parameter, 83
postcondition

augmented, 83
pre-state, 78
precondition

augmented, 83
privacy modi�er, 24
program, 11
purity, 32, 53�54

weak, 33

quanti�er
\exists, 61
\forall, 61
generalized, 62
logical, 61
\max, 63
\min, 63
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\sum, 62

reachable state, 19
\real, 12, 48
representation clause, 36

model �eld, 36
represents, 36
requires, 78
respect

constraint, 89
respect (history constraint), 76
respect (invariant), 75
\result, 4
run, 21

shortened, 89
updated, 87

set, 86, 87
shortened run, 89
signals, 78
speci�cation element, 3
spec_protected, 24
spec_public, 4, 24
Stack, 16
state

logical, 35
observable, 66
reachable, 19
system, see system state
visible, 71, 66�72

static initialization, 111
subtype, 13

behavioral, 25
\sum, 62
system state, 19, 15�19

type, 12
dynamic in Java, 14
of an expression, 27
primitive, 13
static in Java, 14

\TYPE, 12, 49, 58

type cast, 50
type hierarchy, 13

linear, 25
\typeof, 49

unde�nedness, 30�32
underspeci�cation, 30
universe, 15
update, 16
updated run, 87
updated state, 87

validity, 35, 43
valuation function, 28, 29, 29
valuator (model �eld), 39
value set, see domain
virtual machine, see black box
visibility relation, 71
visible state, 71, 66�72

constructors and, 68
static methods and, 71

well-de�nition predicate, 28, 31
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