On Tamir's algorithm for solving the nonlinear complementarity problem

Uwe Schäfer ${ }^{1, *}$
${ }^{1}$ Institut für Angewandte und Numerische Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany.

Some comments concerning Tamir's algorithm for solving the nonlinear complementarity problem are given.
© 2007 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction

Given a vector $f=\left(f_{1}, \ldots, f_{n}\right)^{\mathrm{T}}$ of n real, nonlinear functions of a real vector $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$, the nonlinear complementarity problem $N C P(f)$ is to find a vector x such that

$$
f(x) \geq 0, \quad x \geq 0, \quad x^{\mathrm{T}} f(x)=0,
$$

or to show that no such vector exists (see Facchinei and Pang [2] or Harker and Pang [4]). Here, the \geq-sign is meant componentwise.

In 1974, Tamir [7] published an algorithm for solving the $N C P(f)$ for the case that f is a so-called Z-function, where f is called a Z-function if for any $x \in \mathbb{R}^{n}$ the functions $\varphi_{i j}(t):=f_{i}\left(x+t e_{j}\right), i \neq j, i, j=1, \ldots, n$ are antitone and e_{j} denotes the j th unit vector. Tamir's algorithm is a generalization of Chandrasekaran's algorithm which solves the linear complementarity problem for the case that the given matrix M is a so-called Z-matrix (see Chandrasekaran [1]).

2 Tamir's algorithm

Tamir's algorithm is given in Table 1 , where \mathbb{R}_{+}^{k} denotes the positive orthant of \mathbb{R}^{k}; i.e., $\mathbb{R}_{+}^{k}=\left\{x \in \mathbb{R}^{k}: x_{j} \geq 0, j=\right.$ $1, \ldots, k\}$. We remark that the pseudocode in Table 1 is not the original pseudocode presented by Tamir. We have removed the modified Jacobi process. Instead, we use the lines 5-7.

```
begin
\(k:=0 ; z:=0 ; J:=\emptyset\);
if \(f(z) \geq 0\) then goto 10
else repeat \(k:=k+1\);
    choose \(i_{k} \in\{1, \ldots, n\}\) with \(f_{i_{k}}(z)<0\);
    \(J:=J \cup\left\{i_{k}\right\}\);
    let \(J=\left\{i_{1}, \ldots, i_{k}\right\}\) and \(g^{(k)}: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}^{k}\) be defined as
    \(\left(\begin{array}{c}t_{1} \\ \vdots \\ t_{k}\end{array}\right) \mapsto\left(\begin{array}{c}f_{i_{1}}\left(\sum_{j=1}^{k} t_{j} e_{i_{j}}\right) \\ \vdots \\ f_{i_{k}}\left(\sum_{j=1}^{k} t_{j} e_{i_{j}}\right)\end{array}\right) ;\)
5: let \(M^{(k)}:=\left\{t \in \mathbb{R}_{+}^{k}: g^{(k)}(t)=0, t_{j} \geq z_{i_{j}}, j=1, \ldots, k-1\right\}\);
6: \(\quad\) if \(M^{(k)} \neq \emptyset\) then
7: \(\quad\) begin \(t^{(k)}:=\inf M^{(k)} ; z:=\sum_{j=1}^{k} t_{j}^{(k)} e_{i_{j}}\) end
    else begin write(' \(\mathrm{NCP}(f)\) has no solution'); goto 20 end;
    until \(f(z) \geq 0\);
10: write('The solution is ',\(z\) );
20: end.
```

Table 1 Tamir's algorithm

[^0]| n | \tilde{s} | running time |
| :---: | :---: | :---: |
| 10 | 1.349931 | 0.001 s |
| 50 | 1.372619 | 0.017 s |
| 100 | 1.379208 | 0.114 s |
| 150 | 1.390799 | 0.720 s |
| 200 | 1.389587 | 1.507 s |
| 250 | 1.388859 | 3.962 s |
| 500 | 1.387397 | 20.478 s |

n	\tilde{s}	running time
10	1.349931	0.001 s
50	1.372619	0.028 s
100	1.393210	0.201 s
150	1.390799	0.831 s
200	1.389587	2.192 s
250	1.388859	4.577 s
500	1.393042	29.514 s

Table 2

$$
\varepsilon=10^{-5}
$$

$$
\varepsilon=10^{-11}
$$

3 Numerical examples

We consider the ordinary free boundary problem:
Find $s>0$ and $z(x):[0, \infty) \rightarrow \mathbb{R}$ such that

$$
\begin{gather*}
z^{\prime \prime}(x)=\sqrt{1+z(x)^{2}}, \text { for } x \in[0, s] \\
z(0)=1, \quad z^{\prime}(s)=0 \tag{1}\\
z(x)=0, \text { for } x \in[s, \infty)
\end{gather*}
$$

One can show that (1) has a unique solution, say $\{\hat{s}, \hat{z}(x)\}$, and that $\hat{s} \leq \sqrt{2}$, see Schäfer [5] and Thompson [8]. Choosing $n \in \mathbb{N}$ and setting $l:=\frac{1}{n+1} \sqrt{2}, x_{i}:=i \cdot l, z_{i}: \approx \hat{z}\left(x_{i}\right), i:=1, \ldots, n$, the $N C P(f)$ is arising with $f(z)=M z+\Phi(z)+q$ where

$$
M=\left(\begin{array}{rrrrr}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right), \Phi(z)=l^{2}\left(\begin{array}{c}
\sqrt{1+z_{1}^{2}} \\
\vdots \\
\vdots \\
\vdots \\
\sqrt{1+z_{n}^{2}}
\end{array}\right), q=\left(\begin{array}{r}
-1 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right) .
$$

Obviously, f is a continuous Z-function. Furthermore, it is well-known that M is regular satisfying $M^{-1} \geq O$. Therefore, it is easy to see that $f(z), z \geq 0$ is injective. As a result, applying Tamir's algorithm for solving $N C P(f)$, all sets $M^{(k)}$ are either empty or a singleton. In contrast to the original paper of Tamir [7], the method for calculating a zero of $g^{(k)}$ is not fixed in Table 1. So, it is left to the programmer which method for calculating a zero is chosen.

The results presented in Table 2 are based on the following implementation (see Hammer [3]): The input data are n and the tolerance $\varepsilon>0$. As the method for calculating a zero of $g^{(k)}$ Newton's method was chosen, where

$$
t_{\text {start }}:=\left\{\begin{array}{cc}
0 & \text { if } k=1 \\
\binom{t^{(k-1)}}{0} & \text { if } k>1
\end{array}\right.
$$

was taken as the starting point, respectively. If $z_{i}>0$ and $z_{i+1}=0$, then $\tilde{s}:=\frac{1}{2}\left(x_{i}+x_{i+1}\right)$ was taken as an approximation for \hat{s}. See Table 2 for some examples. Note, that the exact value of \hat{s} satisfies $\hat{s} \in[1.393206,1.397715]$; see Schäfer [6].

References

[1] R. Chandrasekaran, A special case of the complementary pivot problem, Opsearch, 7, 263-268 (1970).
[2] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequality and Complementarity Problems, Volume I + II, Springer-Verlag (2003).
[3] D. Hammer, Eine Verallgemeinerung des Algorithmus von Chandrasekaran zur Lösung nichtlinearer Komplementaritätsprobleme, Diplomarbeit, Universität Karlsruhe (2006).
[4] P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programming, 48, 161-220 (1990).
[5] U. Schäfer, Unique solvability of an ordinary free boundary problem, Rocky Mountain J. Math., 34, 341-346 (2004).
[6] U. Schäfer, Accelerated enclosure methods for ordinary free boundary problems, Reliab. Comput., 9, 391-403 (2003).
[7] A. Tamir, Minimality and complementarity properties associated with Z-functions and M-functions, Math. Programming 7, 17-31 (1974).
[8] R. C. Thompson, A note on monotonicity properties of a free boundary problem for an ordinary differential equation, Rocky Mountain J. Math. 12, 735-739 (1982)

[^0]: * Corresponding author E-mail: Uwe.Schaefer@math.uni-karlsruhe.de, Phone: +49 721608 7746, Fax: +49 7216083767

