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Some comments concerning Tamir’s algorithm for solving the nonlinear complementarity problem are given.

1 Introduction

Given a vector f = (f1, ..., fn)T of n real, nonlinear functions of a real vector x = (x1, ..., xn)T, the nonlinear complemen-
tarity problem NCP (f) is to find a vector x such that

f(x) ≥ 0, x ≥ 0, xTf(x) = 0,

or to show that no such vector exists (see Facchinei and Pang [2] or Harker and Pang [4]). Here, the ≥-sign is meant
componentwise.

In 1974, Tamir [7] published an algorithm for solving the NCP (f) for the case that f is a so-called Z-function, where f is
called a Z-function if for any x ∈ R

n the functions ϕij(t) := fi(x+ tej), i �= j, i, j = 1, ..., n are antitone and ej denotes the
jth unit vector. Tamir’s algorithm is a generalization of Chandrasekaran’s algorithm which solves the linear complementarity
problem for the case that the given matrix M is a so-called Z-matrix (see Chandrasekaran [1]).

2 Tamir’s algorithm

Tamir’s algorithm is given in Table 1, where R
k
+ denotes the positive orthant of R

k; i.e., R
k
+ = {x ∈ R

k : xj ≥ 0, j =
1, ..., k}. We remark that the pseudocode in Table 1 is not the original pseudocode presented by Tamir. We have removed the
modified Jacobi process. Instead, we use the lines 5-7.

begin
k := 0 ; z := 0 ; J := ∅ ;
if f(z) ≥ 0 then goto 10

else repeat k := k + 1;
choose ik ∈ {1, ..., n} with fik

(z) < 0 ;
J := J ∪ {ik} ;
let J = {i1, ..., ik} and g(k) : R

k
+ → R

k be defined as

⎛
⎜⎝

t1
...
tk

⎞
⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎝

fi1(
k∑

j=1

tjeij
)

...

fik
(

k∑
j=1

tjeij
)

⎞
⎟⎟⎟⎟⎟⎟⎠

;

5: let M (k) := {t ∈ R
k
+ : g(k)(t) = 0, tj ≥ zij

, j = 1, ..., k − 1};

6: if M (k) �= ∅ then

7: begin t(k) := inf M (k); z :=
k∑

j=1

t
(k)
j eij

end

else begin write(’NCP(f ) has no solution’); goto 20 end;
until f(z) ≥ 0 ;

10: write(’The solution is ’,z);
20: end.

Table 1 Tamir’s algorithm
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n s̃ running time
10 1.349931 0.001 s
50 1.372619 0.017 s
100 1.379208 0.114 s
150 1.390799 0.720 s
200 1.389587 1.507 s
250 1.388859 3.962 s
500 1.387397 20.478 s

n s̃ running time
10 1.349931 0.001 s
50 1.372619 0.028 s
100 1.393210 0.201 s
150 1.390799 0.831 s
200 1.389587 2.192 s
250 1.388859 4.577 s
500 1.393042 29.514 s

Table 2 ε = 10
−5

ε = 10
−11

3 Numerical examples

We consider the ordinary free boundary problem:

Find s > 0 and z(x) : [0,∞) → R such that

z′′(x) =
√

1 + z(x)2, for x ∈ [0, s],

z(0) = 1, z′(s) = 0,

z(x) = 0, for x ∈ [s,∞).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1)

One can show that (1) has a unique solution, say {ŝ, ẑ(x)}, and that ŝ ≤ √
2, see Schäfer [5] and Thompson [8]. Choosing

n ∈ N and setting l := 1
n+1

√
2, xi := i · l, zi :≈ ẑ(xi), i := 1, ..., n, the NCP (f) is arising with f(z) = Mz + Φ(z) + q

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Φ(z) = l2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
1 + z2

1
...
...
...√

1 + z2
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Obviously, f is a continuous Z-function. Furthermore, it is well-known that M is regular satisfying M−1 ≥ O. Therefore,
it is easy to see that f(z), z ≥ 0 is injective. As a result, applying Tamir’s algorithm for solving NCP (f), all sets M (k) are
either empty or a singleton. In contrast to the original paper of Tamir [7], the method for calculating a zero of g(k) is not fixed
in Table 1. So, it is left to the programmer which method for calculating a zero is chosen.

The results presented in Table 2 are based on the following implementation (see Hammer [3]): The input data are n and the
tolerance ε > 0. As the method for calculating a zero of g(k) Newton’s method was chosen, where

tstart :=

⎧⎪⎨
⎪⎩

0 if k = 1(
t(k−1)

0

)
if k > 1

was taken as the starting point, respectively. If zi > 0 and zi+1 = 0, then s̃ := 1
2 (xi + xi+1) was taken as an approximation

for ŝ. See Table 2 for some examples. Note, that the exact value of ŝ satisfies ŝ ∈ [1.393206, 1.397715]; see Schäfer [6].
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