On Tamir's algorithm for solving the nonlinear complementarity problem

Uwe Schäfer^{1,*}

¹ Institut für Angewandte und Numerische Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany.

Some comments concerning Tamir's algorithm for solving the nonlinear complementarity problem are given.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Given a vector $f = (f_1, ..., f_n)^T$ of n real, nonlinear functions of a real vector $x = (x_1, ..., x_n)^T$, the nonlinear complementarity problem NCP(f) is to find a vector x such that

$$f(x) \ge 0, \quad x \ge 0, \quad x^{\mathrm{T}} f(x) = 0,$$

or to show that no such vector exists (see Facchinei and Pang [2] or Harker and Pang [4]). Here, the \geq -sign is meant componentwise.

In 1974, Tamir [7] published an algorithm for solving the NCP(f) for the case that f is a so-called Z-function, where f is called a Z-function if for any $x \in \mathbb{R}^n$ the functions $\varphi_{ij}(t) := f_i(x + te_j), i \neq j, i, j = 1, ..., n$ are antitone and e_j denotes the *j*th unit vector. Tamir's algorithm is a generalization of Chandrasekaran's algorithm which solves the linear complementarity problem for the case that the given matrix M is a so-called Z-matrix (see Chandrasekaran [1]).

2 Tamir's algorithm

Tamir's algorithm is given in Table 1, where \mathbb{R}^k_+ denotes the positive orthant of \mathbb{R}^k ; i.e., $\mathbb{R}^k_+ = \{x \in \mathbb{R}^k : x_j \ge 0, j = 1, ..., k\}$. We remark that the pseudocode in Table 1 is not the original pseudocode presented by Tamir. We have removed the modified Jacobi process. Instead, we use the lines 5-7.

$$\begin{array}{l} \textbf{begin}\\ k := 0 \; ; \; z := 0 \; ; \; J := \emptyset \; ;\\ \textbf{if } f(z) \geq 0 \; \textbf{then goto} \; 10 \\ \textbf{else repeat } k := k + 1;\\ \text{choose } i_k \in \{1, ..., n\} \; \text{with } f_{i_k}(z) < 0 \; ;\\ J := J \cup \{i_k\} \; ;\\ \text{let } J = \{i_1, ..., i_k\} \; \text{and } g^{(k)} : \mathbb{R}^k_+ \to \mathbb{R}^k \; \text{be defined as} \\ \left(\begin{array}{c} t_1 \\ \vdots \\ t_k \end{array}\right) \mapsto \left(\begin{array}{c} f_{i_1} (\sum\limits_{j=1}^k t_j e_{i_j}) \\ \vdots \\ f_{i_k} (\sum\limits_{j=1}^k t_j e_{i_j}) \end{array}\right);\\ \textbf{5:} \; \text{let } M^{(k)} := \{t \in \mathbb{R}^k_+ : g^{(k)}(t) = 0, \; t_j \geq z_{i_j}, \; j = 1, ..., k-1\};\\ \textbf{6:} \; \text{ if } M^{(k)} \neq \emptyset \; \textbf{then} \\ \textbf{7:} \; \text{ begin } t^{(k)} := \inf M^{(k)}; \; z := \sum\limits_{j=1}^k t_j^{(k)} e_{i_j} \; \textbf{end} \\ \text{ else begin write}(\text{'NCP}(f) \; \text{has no solution'}); \; \textbf{goto } 20 \; \textbf{end}; \\ \textbf{until } f(z) \geq 0;\\ \textbf{10: write}(\text{The solution is '}, z);\\ 20: \; \textbf{end.} \end{array}\right)$$

Table 1Tamir's algorithm

^{*} Corresponding author E-mail: Uwe.Schaefer@math.uni-karlsruhe.de, Phone: +49721 6087746, Fax: +49721 6083767

n	\widetilde{s}	running time)	n	\widetilde{s}	running time
10	1.349931	0.001 s		10	1.349931	0.001 s
50	1.372619	0.017 s		50	1.372619	0.028 s
100	1.379208	0.114 s		100	1 393210	0.201 s
150	1 390799	0.720 s		150	1 390799	0.831 s
200	1.380587	1 507 s		200	1 380587	$2102\mathrm{s}$
200	1.303307	1.507 s		200	1.303507	2.172 s
500	1.300039 1.997207	3.902 s		200 500	1.300039	4.5778
300	1.38/39/	20.4788	J	300	1.595042	29.314 8
$\varepsilon = 10^{-5}$				$\varepsilon = 10^{-11}$		

Table 2

3 Numerical examples

We consider the ordinary free boundary problem:

Find
$$s > 0$$
 and $z(x) : [0, \infty) \to \mathbb{R}$ such that
 $z''(x) = \sqrt{1 + z(x)^2}, \text{ for } x \in [0, s],$
 $z(0) = 1, \quad z'(s) = 0,$
 $z(x) = 0, \text{ for } x \in [s, \infty).$
(1)

One can show that (1) has a unique solution, say $\{\hat{s}, \hat{z}(x)\}$, and that $\hat{s} \leq \sqrt{2}$, see Schäfer [5] and Thompson [8]. Choosing $n \in \mathbb{N}$ and setting $l := \frac{1}{n+1}\sqrt{2}$, $x_i := i \cdot l$, $z_i :\approx \hat{z}(x_i)$, i := 1, ..., n, the NCP(f) is arising with $f(z) = Mz + \Phi(z) + q$ where

$$M = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}, \Phi(z) = l^2 \begin{pmatrix} \sqrt{1+z_1^2} \\ \vdots \\ \vdots \\ \sqrt{1+z_n^2} \end{pmatrix}, q = \begin{pmatrix} -1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}.$$

Obviously, f is a continuous Z-function. Furthermore, it is well-known that M is regular satisfying $M^{-1} \ge 0$. Therefore, it is easy to see that $f(z), z \ge 0$ is injective. As a result, applying Tamir's algorithm for solving NCP(f), all sets $M^{(k)}$ are either empty or a singleton. In contrast to the original paper of Tamir [7], the method for calculating a zero of $g^{(k)}$ is not fixed in Table 1. So, it is left to the programmer which method for calculating a zero is chosen.

The results presented in Table 2 are based on the following implementation (see Hammer [3]): The input data are n and the tolerance $\varepsilon > 0$. As the method for calculating a zero of $g^{(k)}$ Newton's method was chosen, where

$$t_{start} := \left\{ \begin{array}{cc} 0 & \text{if } k = 1 \\ \left(\begin{array}{c} t^{(k-1)} \\ 0 \end{array} \right) & \text{if } k > 1 \end{array} \right.$$

was taken as the starting point, respectively. If $z_i > 0$ and $z_{i+1} = 0$, then $\tilde{s} := \frac{1}{2}(x_i + x_{i+1})$ was taken as an approximation for \hat{s} . See Table 2 for some examples. Note, that the exact value of \hat{s} satisfies $\hat{s} \in [1.393206, 1.397715]$; see Schäfer [6].

References

- [1] R. Chandrasekaran, A special case of the complementary pivot problem, Opsearch, 7, 263-268 (1970).
- [2] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequality and Complementarity Problems, Volume I + II, Springer-Verlag (2003).
- [3] D. Hammer, Eine Verallgemeinerung des Algorithmus von Chandrasekaran zur Lösung nichtlinearer Komplementaritätsprobleme, Diplomarbeit, Universität Karlsruhe (2006).
- [4] P.T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programming, 48, 161-220 (1990).
- [5] U. Schäfer, Unique solvability of an ordinary free boundary problem, Rocky Mountain J. Math., 34, 341-346 (2004).
- [6] U. Schäfer, Accelerated enclosure methods for ordinary free boundary problems, Reliab. Comput., 9, 391-403 (2003).
- [7] A. Tamir, Minimality and complementarity properties associated with Z-functions and M-functions, Math. Programming 7, 17-31 (1974).
- [8] R. C. Thompson, A note on monotonicity properties of a free boundary problem for an ordinary differential equation, Rocky Mountain J. Math. 12, 735-739 (1982).