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On Tamir’s algorithm for solving the nonlinear complementarity problem

Uwe Schiifer!*
! Institut fiir Angewandte und Numerische Mathematik, Universitit Karlsruhe, D-76128 Karlsruhe, Germany.

Some comments concerning Tamir’s algorithm for solving the nonlinear complementarity problem are given.
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1 Introduction

Given a vector f = (f1,..., fn)T of n real, nonlinear functions of a real vector z = (1, ...,7,)T, the nonlinear complemen-
tarity problem NCP(f) is to find a vector = such that

fx)>0, >0, z'f(z)=0,

or to show that no such vector exists (see Facchinei and Pang [2] or Harker and Pang [4]). Here, the >-sign is meant
componentwise.

In 1974, Tamir [7] published an algorithm for solving the NC'P( f) for the case that f is a so-called Z-function, where f is
called a Z-function if for any = € R™ the functions ¢;; (t) := fi(z +te;), 7 # j,i,j = 1, ..., n are antitone and e; denotes the
jth unit vector. Tamir’s algorithm is a generalization of Chandrasekaran’s algorithm which solves the linear complementarity
problem for the case that the given matrix M is a so-called Z-matrix (see Chandrasekaran [1]).

2 Tamir’s algorithm

Tamir’s algorithm is given in Table 1, where Rﬁ denotes the positive orthant of R¥; i.e., Ri = {z € RF: z; > 0,7 =
., k}. We remark that the pseudocode in Table 1 is not the original pseudocode presented by Tamir. We have removed the
modified Jacobi process. Instead, we use the lines 5-7.

begin
k:=0;2:=0;J:=0;
if f(z) > 0 then goto 10

else repeat k& := k + 1;
choose i, € {1, ...,n} with f;, (2) <0;

Ji=JU{ig};
let J = {iy, ..., } and g(® : Rﬁ — R* be defined as
k
. fin (22 tjeq;)
1 j=1
: = )
(2%
ftk<z t; eLJ

50 let M) .= {t ¢ Rk g<k>( )=0,t; >z, j=1,...,k—1}
6: if M%) £ () then
7: begin t*) = inf M*); » .= Zt e;, end

else begin wrlte( NCP(f) has no solution’); goto 20 end,;
until f(z) >

10: write("The solution is 7,2);

20: end.

Table 1 Tamir’s algorithm
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n S running time n S running time
10 | 1.349931 0.001 s 10 | 1.349931 0.001 s
50 | 1.372619 0.017 s 50 | 1.372619 0.028 s
100 | 1.379208 0.114 s 100 | 1.393210 0.201 s
150 | 1.390799 0.720 s 150 | 1.390799 0.831s
200 | 1.389587 1.507 s 200 | 1.389587 2.192s
250 | 1.388859 3.962s 250 | 1.388859 4.577s
500 | 1.387397 20.478 s 500 | 1.393042 29.514 s
Table 2 e=10"° e=10""

3 Numerical examples

We consider the ordinary free boundary problem:
Find s > 0 and z(x) : [0,00) — R such that
2"(x) = \/1+ 2(x)2, for z € [0,s], N
z(0)=1, 2'(s)=0,
z(x) =0, for x € [s,00).

One can show that (1) has a unique solution, say {3, Z(z)}, and that § < /2, see Schifer [5] and Thompson [8]. Choosing
n € N and setting [ := %ﬂ 2,2 =101,z = Z(x;), 1 :=1,...,n, the NCP(f) is arising with f(z) = Mz + ®(2) + ¢

where
2 -1 0 - 0 V1422 1
-1 2 -1 . : .
M = 0 . . o |.ex) =02 : ,q=

oo —1 2 -1 : :

0 - 0 -1 2 VI+22 0
Obviously, f is a continuous Z-function. Furthermore, it is well-known that M is regular satisfying M ~! > O. Therefore,
it is easy to see that f(z), z > 0 is injective. As a result, applying Tamir’s algorithm for solving NC'P(f), all sets M *) are
either empty or a singleton. In contrast to the original paper of Tamir [7], the method for calculating a zero of ¢*) is not fixed
in Table 1. So, it is left to the programmer which method for calculating a zero is chosen.

The results presented in Table 2 are based on the following implementation (see Hammer [3]): The input data are n and the

tolerance € > 0. As the method for calculating a zero of ¢(¥) Newton’s method was chosen, where

0 k=1
tstart = (k—1)
fart (to ) i k> 1

(; + x;41) was taken as an approximation
[1.393206, 1.397715]; see Schifer [6].

was taken as the starting point, respectively. If z; > 0 and z;41 = 0, then § :=
for 5. See Table 2 for some examples. Note, that the exact value of § satisfies §

M o~
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