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1 Introduction

Given N, M ∈ R
n×n and q ∈ R

n the horizontal linear complementarity problem (HLCP) is to find two vectors w, z ∈ R
n

satisfying

Nw − Mz = q, w ≥ o, z ≥ o, wTz = 0

or to show that no such vectors exist. Here, the ≥-sign is meant componentwise. If N is the identity, then the HLCP is a
classical LCP. For an application of the HLCP we refer to [3].

Sometimes by reordering of the columns of N and of M the new N is invertible and the HLCP can be reduced to the classical
LCP. See [5]. However, nothing guarantees the existence of such a reordering.

Example 1: Let

N =
(

1 1
1 1

)
, M =

(
2 2
2 2

)
.

Then no reordering of any columns of N and of M results in an invertible matrix. �

Moreover, if the reduction is possible, the matrix inversion might be ill-conditioned. So we attack the HLCP directly. See
also [3], [4], [7].

Lemma 1: Let N, M ∈ R
n×n and q ∈ R

n. Furthermore, let

f(x) := (N + M)x − (N − M)|x| + q, (1)

where |x| = (|xi|) ∈ R
n. If f(x∗) = o, then

w := |x∗| − x∗, z := |x∗| + x∗ (2)

is a solution of HLCP defined by N, M, q.

Proof: From (2) we have

w ≥ o, z ≥ o. (3)

On the other hand, it is

x∗
i ≥ 0 ⇒ wi = 0

x∗
i < 0 ⇒ zi = 0

}
i = 1, ..., n. (4)

Finally, we have o = f(x∗) = (N + M)x∗ − (N − M)|x∗| + q. This is equivalent to

N(|x∗| − x∗) − M(|x∗| + x∗) = q. (5)

Therefore, due to (2)-(5), w and z solve the HLCP defined by N , M and q. �

If N is the identity; i.e., N = I , and if I + M is regular, then

f(x∗) = o ⇔ x∗ = (I + M)−1
(
(I − M) · |x∗| − q

)
. (6)

The fixed point iteration based on (6) was developed in [6] and was called the modulus algorithm. See also [2].
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for j := 1 to n do begin

if xj ≥ 0 then G(x̂, [x])·j := 2 · M·j

else if xj ≤ 0 then G(x̂, [x])·j := 2 · N·j

else if x̂j ≥ 0 then G(x̂, [x])·j := N·j + M·j − [
x̂j + xj

x̂j − xj

, 1] · (N·j − M·j)

else G(x̂, [x])·j := N·j + M·j − [−1,
xj + x̂j

xj − x̂j
] · (N·j − M·j)

end.

Table 1 Algorithm for calculating G(x̂, [x])

2 Verification methods

Let [x] = ([xi, xi]) be an n-dimensional interval vector; i.e., [x] is a vector where the components are intervals. Furthermore,
let f : [x] → R

n be a continuous function. If there exists an interval matrix G(x̂, [x]) such that for fixed x̂ ∈ [x] one can
conclude that

∀ y ∈ [y] ∃ G(x̂, y) ∈ G(x̂, [x]) : f(y) − f(x̂) = G(x̂, y) · (y − x), (7)

we define the so-called Krawczyk-Operator K(x̂, R, [x]) := x̂−R · f(x̂) + (I −R ·G(x̂, [x])) · ([x]− x̂), where R ∈ R
n×n

has to be a regular matrix. If

K(x̂, R, [x]) ⊆ [x], (8)

then there exists ξ ∈ K(x̂, R, [x]) with f(ξ) = o. See [1]. Concerning the function f from (1) a corresponding interval matrix
G(x̂, [x]) satisfying (7) is given in Table 1. The proof of this fact will be published elsewhere.

Example 2: Let N = 1, M = 1
2 and q = − 1

10 . Then, f(x) = (N + M) · x − (N − M) · |x| + q = 3
2x − 1

2 |x| − 1
10 .

Since f( 1
20 ) = − 1

20 we have that x̃ := 1
20 is an ε-approximation for ε = 0.1 and for f(x) != 0. Defining x̂ := x̃ = 1

20 and

[x] := [x̃− ε, x̃ + ε] = [− 1
20 , 3

20 ], Table 1 gives G(x̂, [x]) = 1 + 1
2 − [

1
20 − 1

20
1
20 + 1

20

, 1](1− 1
2
) = [1,

3
2
]. Choosing R := 4

5 we get

K(x̂, R, [x]) =
1
20

− 4
5
(− 1

20
) + (1 − 4

5
· [1,

3
2
]) · ([− 1

20
,

3
20

] − 1
20

) = [
7

100
,

11
100

] ⊆ [x].

So, by [1], within [ 7
100 , 11

100 ] there is a zero of f . Using Lemma 1 we get that w∗ = 0 and some z∗ ∈ [0.14, 0.22] are a solution
of the HLCP. For the sake of completeness, we mention that the unique solution is w∗ = 0, z∗ = 2

10 . �
Bigger examples, where the verification test (8) is done by a machine, will be published elsewhere.
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