Verification Methods for the Horizontal Linear Complementarity Problem

Uwe Schäfer*
Institut für Angewandte und Numerische Mathematik, Universität Karlsruhe, D-76128 Karlsruhe

1 Introduction

Given $N, M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$ the horizontal linear complementarity problem (HLCP) is to find two vectors $w, z \in \mathbb{R}^{n}$ satisfying

$$
N w-M z=q, \quad w \geq o, z \geq o, \quad w^{\mathrm{T}} z=0
$$

or to show that no such vectors exist. Here, the \geq-sign is meant componentwise. If N is the identity, then the HLCP is a classical LCP. For an application of the HLCP we refer to [3].

Sometimes by reordering of the columns of N and of M the new N is invertible and the HLCP can be reduced to the classical LCP. See [5]. However, nothing guarantees the existence of such a reordering.

Example 1: Let

$$
N=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad M=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) .
$$

Then no reordering of any columns of N and of M results in an invertible matrix.
Moreover, if the reduction is possible, the matrix inversion might be ill-conditioned. So we attack the HLCP directly. See also [3], [4], [7].
Lemma 1: Let $N, M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$. Furthermore, let

$$
\begin{equation*}
f(x):=(N+M) x-(N-M)|x|+q, \tag{1}
\end{equation*}
$$

where $|x|=\left(\left|x_{i}\right|\right) \in \mathbb{R}^{n}$. If $f\left(x^{*}\right)=o$, then

$$
\begin{equation*}
w:=\left|x^{*}\right|-x^{*}, \quad z:=\left|x^{*}\right|+x^{*} \tag{2}
\end{equation*}
$$

is a solution of HLCP defined by N, M, q.
Proof: From (2) we have

$$
\begin{equation*}
w \geq o, \quad z \geq o . \tag{3}
\end{equation*}
$$

On the other hand, it is

$$
\left.\begin{array}{rl}
x_{i}^{*} \geq 0 \quad & \Rightarrow \quad w_{i}=0 \tag{4}\\
x_{i}^{*}<0 \quad \Rightarrow \quad z_{i}=0
\end{array}\right\} \quad i=1, \ldots, n .
$$

Finally, we have $o=f\left(x^{*}\right)=(N+M) x^{*}-(N-M)\left|x^{*}\right|+q$. This is equivalent to

$$
\begin{equation*}
N\left(\left|x^{*}\right|-x^{*}\right)-M\left(\left|x^{*}\right|+x^{*}\right)=q . \tag{5}
\end{equation*}
$$

Therefore, due to (2)-(5), w and z solve the HLCP defined by N, M and q.
If N is the identity; i.e., $N=I$, and if $I+M$ is regular, then

$$
\begin{equation*}
f\left(x^{*}\right)=o \quad \Leftrightarrow \quad x^{*}=(I+M)^{-1}\left((I-M) \cdot\left|x^{*}\right|-q\right) . \tag{6}
\end{equation*}
$$

The fixed point iteration based on (6) was developed in [6] and was called the modulus algorithm. See also [2].

[^0](3)WILEY
\[

$$
\begin{aligned}
& \text { for } j:=1 \text { to } n \text { do begin } \\
& \text { if } \underline{x}_{j} \geq 0 \text { then } G(\hat{x},[x]) \cdot j:=2 \cdot M_{\cdot j} \\
& \text { else if } \bar{x}_{j} \leq 0 \text { then } G(\hat{x},[x])_{\cdot j}:=2 \cdot N_{\cdot j} \\
& \text { else if } \hat{x}_{j} \geq 0 \text { then } G(\hat{x},[x])_{\cdot j}:=N_{\cdot j}+M_{\cdot j}-\left[\frac{\hat{x}_{j}+\underline{x}_{j}}{\hat{x}_{j}-\underline{x}_{j}}, 1\right] \cdot\left(N_{\cdot j}-M_{\cdot j}\right) \\
& \qquad \text { else } G(\hat{x},[x])_{\cdot j}:=N_{\cdot j}+M_{\cdot j}-\left[-1, \frac{\bar{x}_{j}+\hat{x}_{j}}{\bar{x}_{j}-\hat{x}_{j}}\right] \cdot\left(N_{\cdot j}-M_{\cdot j}\right)
\end{aligned}
$$
\]

end.
Table 1 Algorithm for calculating $G(\hat{x},[x])$

2 Verification methods

Let $[x]=\left(\left[\underline{x}_{i}, \bar{x}_{i}\right]\right)$ be an n-dimensional interval vector; i.e., $[x]$ is a vector where the components are intervals. Furthermore, let $f:[x] \rightarrow \mathbb{R}^{n}$ be a continuous function. If there exists an interval matrix $G(\hat{x},[x])$ such that for fixed $\hat{x} \in[x]$ one can conclude that

$$
\begin{equation*}
\forall y \in[y] \exists G(\hat{x}, y) \in G(\hat{x},[x]): f(y)-f(\hat{x})=G(\hat{x}, y) \cdot(y-x) \tag{7}
\end{equation*}
$$

we define the so-called Krawczyk-Operator $K(\hat{x}, R,[x]):=\hat{x}-R \cdot f(\hat{x})+(I-R \cdot G(\hat{x},[x])) \cdot([x]-\hat{x})$, where $R \in \mathbb{R}^{n \times n}$ has to be a regular matrix. If

$$
\begin{equation*}
K(\hat{x}, R,[x]) \subseteq[x], \tag{8}
\end{equation*}
$$

then there exists $\xi \in K(\hat{x}, R,[x])$ with $f(\xi)=o$. See [1]. Concerning the function f from (1) a corresponding interval matrix $G(\hat{x},[x])$ satisfying (7) is given in Table 1. The proof of this fact will be published elsewhere.

Example 2: Let $N=1, M=\frac{1}{2}$ and $q=-\frac{1}{10}$. Then, $f(x)=(N+M) \cdot x-(N-M) \cdot|x|+q=\frac{3}{2} x-\frac{1}{2}|x|-\frac{1}{10}$. Since $f\left(\frac{1}{20}\right)=-\frac{1}{20}$ we have that $\tilde{x}:=\frac{1}{20}$ is an ε-approximation for $\varepsilon=0.1$ and for $f(x) \stackrel{!}{=} 0$. Defining $\hat{x}:=\tilde{x}=\frac{1}{20}$ and $[x]:=[\tilde{x}-\varepsilon, \tilde{x}+\varepsilon]=\left[-\frac{1}{20}, \frac{3}{20}\right]$, Table 1 gives $G(\hat{x},[x])=1+\frac{1}{2}-\left[\frac{\frac{1}{20}-\frac{1}{20}}{\frac{1}{20}+\frac{1}{20}}, 1\right]\left(1-\frac{1}{2}\right)=\left[1, \frac{3}{2}\right]$. Choosing $R:=\frac{4}{5}$ we get

$$
K(\hat{x}, R,[x])=\frac{1}{20}-\frac{4}{5}\left(-\frac{1}{20}\right)+\left(1-\frac{4}{5} \cdot\left[1, \frac{3}{2}\right]\right) \cdot\left(\left[-\frac{1}{20}, \frac{3}{20}\right]-\frac{1}{20}\right)=\left[\frac{7}{100}, \frac{11}{100}\right] \subseteq[x] .
$$

So, by [1], within $\left[\frac{7}{100}, \frac{11}{100}\right]$ there is a zero of f. Using Lemma 1 we get that $w^{*}=0$ and some $z^{*} \in[0.14,0.22]$ are a solution of the HLCP. For the sake of completeness, we mention that the unique solution is $w^{*}=0, z^{*}=\frac{2}{10}$.
Bigger examples, where the verification test (8) is done by a machine, will be published elsewhere.

References

[1] G. E. Alefeld, X. Chen and F. A. Potra, Numerical validation of solutions of linear complementarity problems, Numer. Math. 83, pp. 1-23 (1999).
[2] B. C. Eaves and C. E. Lemke, Equivalence of LCP and PLS, Math. Oper. Res. 6, pp. 475-484 (1981).
[3] B. de Moor, L. Vandenberghe and J. Vandewalle, The generalized linear complementarity problem and an algorithm to find all its solutions, Math. Program. 57, pp. 415-426 (1992).
[4] F. A. Potra, Corrector-predictor methods for monotone linear complementarity problems in a wide neighborhood of the central path, Math. Program. 111, pp. 243-272 (2008).
[5] R. H. Tütüncü and M. J. Todd, Reducing horizontal linear complementarity problems, Linear Algebra Appl. 223/224, pp. 717-729 (1995).
[6] W. M. G. van Bokhoven, Piecewise linear modelling and analysis, Proefschrift, Eindhoven 1981.
[7] Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM J. Optim. 4, pp. 208-227 (1994).

[^0]: * E-mail: Uwe.Schaefer@math.uni-karlsruhe.de, Phone: +497216087746, Fax: +497216083767

