KIT | KIT-Bibliothek | Impressum | Datenschutz

Existence and Approximation Results for Shape Optimization Problems in Rotordynamics

Strauss, F.; Heuveline, V.; Schweizer, B.

Abstract:

We consider a shape optimization problem in rotordynamics where the mass of a rotor is minimized subject to constraints on the natural frequencies. Our analyis is based on a class of rotors described by a Rayleigh beam model including effects of rotary inertia and gyroscopic moments. The solution of the equation of motion leads to a generalized eigenvalue problem. The governing operators are non-symmetric due to the gyroscopic terms. We prove the existence of solutions for the optimization problem by using the theory of compact operators. For the numerical treatment of the problem a finite element discretization based on a variational formulation is considered. Applying results on spectral approximation of linear operators we prove that the solution of the discretized optimization problem converges towards the solution of the continuous problem if the discretization parameter tends to zero. Finally, a priori estimates for the convergence order of the eigenvalues are presented and illustrated by a numerical example.


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2008
Sprache Englisch
Identifikator ISSN: 0029-599X
KITopen-ID: 1000012557
Erschienen in Numerische Mathematik
Verlag Springer
Band 109
Heft 2
Seiten 313-332
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page