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Abstract

In this work a novel modification of the REDIM method is presented. The method follows the main
concept of decomposition of time scales. It is based on the assumption of existence of invariant slow man-
ifolds in the thermo-chemical composition space (state space) of a reacting flow. A central point of the cur-
rent modification is its capability to include both transport and thermo-chemical processes and their
coupling into the definition of the reduced model. This feature makes the method more problem oriented,
and more accurate in predicting the detailed system dynamics. The manifold of the reduced model is
approximated by applying the so-called invariance condition together with repeated integrations of the
reduced model in an iterative way. The latter is needed to improve the estimate of gradients of the reduced
model parameters (coordinates which define the reduced manifold locally). To verify the approach one-
dimensional stationary laminar methane/air and syngas/air flames are investigated. In particular, it is
shown that the adaptive REDIM method recovers the full stationary system dynamics governed by
detailed chemical kinetics and the molecular transport in the case of a one dimensional reduced model
and, therefore, includes the so-called flamelet method as a limiting case.
� 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: ILDM; Reduction; Invariant manifolds; Laminar and diffusion flames
1. Introduction

Dimension reduction strategies for reacting
flow systems are widely used in reacting flow cal-
culations. Typically, detailed chemical kinetic
models in engineering applications are extremely
large, stiff and non-linear [1–3]. Even for small
hydrocarbons, the number of species can easily
exceed 100, and the number of reactions several
thousands. As a result the detailed models can
generally not be used for simulations of complex
reacting flows in engineering problems. Although
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the computational power and the efficiency of
the numerical schemes have been improved con-
stantly over the last decades there is a strong need
for algorithms that handle the enormous dimen-
sion, stiffness, and non-linearity of reacting flow
systems.

Therefore, methods performing automatic
model reduction have to be devised. At present
there are a lot of methods to reduce the stiffness,
the dimension, and the CPU time and memory
storage (see e.g. [4–7] for an overview of methods).
Most of the existing methods exploit the so-called
natural multi-scale structure of the system of gov-
erning equations. It is assumed that there are
some fast modes or processes which are relaxed
quickly and that only the slow processes govern
ute. Published by Elsevier Inc. All rights reserved.
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the overall system dynamics. As a result, the long
term system evolution is represented primarily by
the dynamics of the slow reactions along a stable
geometrical attractor with invariant properties,
while the fast processes are relaxed. Moreover,
removing the fast modes and reducing the dimen-
sion decreases the stiffness of the system of differ-
ential equations. This in turn allows larger time
steps during the integration and, therefore, solves
one of the major problems of the numerical
implementation.

For that reason, most of the existing reduc-
tion methods try to characterize this decom-
posed structure and then use this special
representation for reduction purposes. Of course
this decomposition does not always exist and
the assumption that the fast motions are not
important for the overall system dynamics does
not generally hold [8,9]. However, for reacting
flow systems the validity of this approach is
confirmed by the fact that the chemical kinetics
system accesses only a small portion of the state
or composition space [10].

Another difficult and fundamental problem of
model reduction is the coupling of molecular
transport with thermo-chemical processes. It is a
very difficult problem normally solved by either
neglecting such an interaction globally or by
applying operator splitting methodologies (see
e.g. [11]), which implies neglecting of the coupling
locally either in time or in space. In both cases, the
interaction is not taken into account and excluded
from the reduced model. Hence, typically only the
thermo-chemical source term is analyzed to yield
the reduced model. There are a few exceptions like
the so-called flamelet method [12,13], which is
based on detailed system solutions and, therefore,
naturally accounts for this coupling (see e.g. [9]
for more references and approaches).

In the present work, we further develop an
approach (Reaction–Diffusion Manifold meth-
ods—REDIM [14,15]), which is able to treat the
influence of the transport processes on the
reduced model. In the previous work [14], the
transport processes were included into the reduced
description through an estimate of the local
parameter gradient (of the low dimensional slow
manifold which approximates the stationary sys-
tem’s dynamics), and the dependence on this esti-
mation has been studied in detail. Now, by using
an iterative procedure to solve an invariance equa-
tion [7,14] and a test integration of the resulting
reduced model, the problem of parameter’s gradi-
ent estimation is overcome effectively. It is impor-
tant to note, that the 1D REDIM method
considered here, being used with exact gradients
from flame simulations, fully corresponds to the
flamelet method simply because it reproduces the
detailed stationary solution. However, it allows
an extension to higher dimensions and, therefore,
permits to attack problems where 1D flamelets
cease to describe the complex chemistry–transport
interaction in an accurate way.
2. Mathematical description

In the following the mathematical concept of the
REDIM method is presented together with the sug-
gested improvement. In order to simplify the pre-
sentation of the suggested technique let us first
introduce a vector notation. The vector
w = (w1, . . . ,wn) will characterize the thermo-
chemical state of the system, where wi represents
thermo-chemical quantities as the pressure of mix-
ture, the enthalpy, the mass fraction of chemical
species etc. In this vector notation the system of
governing equations for a reacting flow can be writ-
ten as [14]

ow
ot
¼ UðwÞ � F ðwÞ þ Gðw;rw;r2wÞ;

w ¼ wðx; tÞ 2 Rn;

ð1Þ

where the first term is related to chemical kinetics
(it is also called a source term) and the second one
describes the physical processes (convection and
diffusion):

Gðw;rw;r2wÞ ¼ �v grad w� 1

q
divðD grad wÞ:

ð2Þ
Here v is the flow velocity, q—the density and D is
the generalized diffusion matrix [16]. Initial and
boundary conditions depend on the structure of
the considered problem, but e.g. for a premixed
one dimensional flame, one boundary corresponds
to the fresh combustible mixture composition,
while the other is the completely reacted/burnt
state behind the flame front. For non-premixed
flames boundary conditions are, e.g., pure fuel
or oxidizer, or (for two-dimensional REDIM)
the mixing line between fuel and oxidizer and
the curve of complete reaction to the products.

The assumption that an invariant (with respect
to the system Eq. (1)) slow manifold Ms

(dimMs = m) of low dimension exists in the state
space:

M s ¼ fw ¼ wðhÞ; h 2 Rmg; m� n ð3Þ
leads to a straightforward application of the geo-
metrical theory (see e.g. [7]) and yields the follow-
ing equation for the manifold’s explicit
representation w(h) in Eq. (3):

ðwhðh0ÞÞ? � Uðwðh0ÞÞ ¼ 0; ð4Þ

which means that the flow of the vector field Eq.
(1) belongs to the tangent subspace of the mani-
fold at any point h0 on it. (wh(h0))\ denotes the
orthogonal complement of the tangent space. An
equivalent way to represent this condition, which
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actually has been used in the REDIM formula-
tion, is given by (see [14] for more detail)

ðI � whðh0Þwþh ðh0ÞÞ � Uðwðh0ÞÞ ¼ 0: ð5Þ
It states that the projection onto the normal sub-
space of the vector field vanishes on the slow
invariant manifold. The Moore Penrose pseudo-
inverse matrix wþh ¼ ðwh � wT

h Þ
�1wT

h (which always
exists when the tangent space does not degenerate)
and the identity matrix I are applied to define the
projection operator P M?s

¼ ðI � whw
þ
h Þ.

In order to solve Eq. (5) and approximate the
manifold in a certain defined domain of the state
space an iterative procedure has been suggested
in [15] based on a reformulation as a multidimen-
sional parabolic system:

owðhÞ
ot ¼ ðI � whðhÞwþh ðhÞÞ � UðwðhÞÞ

w0 ¼ wexðhÞ

(
; ð6Þ

with initial and boundary conditions given by an
extended ILDM manifold w = wex(h), which has
been introduced in [14], or by some other initial
guess. The stationary solution of Eq. (6) satisfies
exactly the invariance condition given by Eqs.
(4), (5) (see e.g. [7]) and, therefore, approximates
the manifold needed for the reduced system for-
mulation. Now, the only problem with Eq. (6) is
the transport term which, after substitution of
Eq. (3) into Eq. (2) and after applying the equal
diffusivity assumption D = d � I, contains a term
describing the dependence of the reduced model
on the spatial variable (see [15] for more rigorous
consideration). Note that an assumption of equal
diffusivities is applied here for simplicity only; a
generalization of the concept for non-equal diffu-
sivities is possible without principle difficulties.
Thus, Eq. (6) has the following simplified form:
owðhÞ
ot ¼ ðI � whðhÞwþh ðhÞÞ � F ðwðhÞÞ � d

q grad h � whhðhÞ � grad h
� �

w0 ¼ wexðhÞ

8<
: : ð7Þ
The convection term plays no role in the descrip-
tion of the invariant manifold, because it formally
cancels out after applying the invariance condi-
tion Eq. (5) and rewriting it as the system Eq.
(7) defining the manifold’s evolution to the invari-
ant form (see [15]). The dependence on the vari-
ables’ spatial gradients was studied in detail in
[15], where a constant approximation of the
parameter’s gradient gradh was introduced.
Now, we suggest a method to approximate the re-
duced system gradient as a function gradh = f(h)
of the parameter of the reduced manifold. Note,
however, that in general this correspondence is
not always well defined due to possibly differing
dimensions: the spatial dimension of the problem
and the reduced model dimension. This happens if
the dimension of the reduced model does not coin-
cide with the spatial dimension of the considered
problem. Even for equal dimensions singularities
can occur perturbing a one-to-one correspondence
between the parameter and its spatial gradient. In
the current stage of the study such situations are
excluded from consideration. Moreover, these
problems could be easily overcome by using esti-
mates for the components of missing dimensions
in the gradient gradh. Furthermore, typically,
the above mentioned singularities are a result of
the high complexity of hydrodynamic structure
of the combustion process and occur in transient
regimes, which we are not focusing on in the cur-
rent study.

2.1. General algorithm

Now, let us present the proposed method, which
does not depend on the gradient estimates and,
therefore, represents a better way to overcome the
problem of dependence on the spatial coordinates.
An additional iterative procedure is suggested by
determining automatically the parameter gradient
as a function of the parameter itself. A constant
approximation gradh = c* = const for this depen-
dence in Eq. (7) is assumed in order to obtain the
first approximation of the slow manifold w1(h). In
[15] it has been shown that even for the constant
approximation it is possible to achieve an appropri-
ate accuracy of the reduced model, especially, if the
dimension of the reduced model is reasonably high.
Next, the reduced model w1(h) is used for integra-
tion to obtain the reduced model’s stationary solu-
tion h1(x) by solving the following reduced system:

ohðx; tÞ
ot

¼ w1þ

h ðhðx; tÞÞUðw
1ðhðx; tÞÞÞ: ð8Þ
Then, h1(x) is used to find an approximation of
the gradient of the manifold’s parameter as
gradh ¼ oh1ðxÞ

ox and the gradient’s dependence on
h, gradh = f1(h), is determined as follows: within
the range of h we define the spatial coordinate
x* which corresponds to some fixed value of the
parameter h*, and in order to find the gradient
at h*, we calculate the derivative at this spatial
point:

h� ¼ h1ðx�Þ ) f 1ðh�Þ ¼
oh1ðxÞ

ox

����
x¼x�

: ð9Þ

The rest is obvious; the better representation of
the gradient on the manifold is applied to improve
the reduced manifold by using f1(h) in Eq. (7)
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together with w0 = w1(h) as an initial guess. After
the relaxed (iterated until convergence) solution of
Eq. (7), w2(h), has been found, it can be used in
Eq. (8) to update the gradient dependence
gradh = f2(h), etc. Note that Eq. (7) represents a
continuous version of the invariance condition gi-
ven by Eq. (5), such that the stationary solution of
Eq. (7), defining a manifold satisfies exactly the
invariance condition, whereas Eq. (8) is the gov-
erning equation for the reduced state space speci-
fied as a confinement of the system Eq. (1) to the
invariant manifold Eq. (7).

The main steps of the REDIM adaptation con-
cept and the detailed implementation scheme are
given as follows:

(1) Generate an extended ILDM wex(h),
h = (h1, . . . ,hm) as an initial guess (see [14]
for details).

(2) Estimate the initial guess of the parameter’s
gradient gradh = f0(h) = const.

(3) Integrate Eq. (7) to find the stationary solu-
tion w = w1(h).

(4) Integrate Eq. (8) and improve the gradient
dependence gradh = f1(h) based on the sta-
tionary solution Eq. (9).

(5) Return to step (3) and repeat iteration until
convergence is reached.

The REDIM method has been implemented in
the codes INSFLA and HOMREA [10,17]. It has
to be noted that there are some crucial theoretical
issues like, for instance: the convergence of the
suggested iterative procedures; a rigorous defini-
tion of the dependence gradh = f(h) in case of dif-
fering dimensions of spatial and reduced spaces;
the existence of the slow manifold in the state
space etc., which will be analyzed and studied in
the near future. For example, one of main obsta-
cles with the application of the method is in the
consistent definition of boundary conditions for
Eq. (7). One possible way to overcome the prob-
lem (for arbitrary initial guess of the invariant
manifold) can be a hierarchical implementation
of the method that applies as a boundary an
invariant manifold of lower dimension. The prob-
lem with different dimensions of the spatial and
reduced spaces, which is in the list above, can be
handled similarly as it has been done here for
the case of equal dimensions. Namely, one can
use iteratively the reduced model stationary solu-
tions, in order to improve not the exact gradients,
but the gradient’s estimate. Note that with the
increase of the reduced model dimension (see
[15] for more details and discussions) the depen-
dence of the reduced model on the gradient’s esti-
mation becomes weaker.

In order to apply the method to an unsteady
problem describing transient regimes of combus-
tion, one can follow the standard procedure of
the ILDM or flamelet methods, namely, one can
use at any time step of integration an appropriate
table defining the reduced model (assuming the
solution has already relaxed onto a lower dimen-
sional manifold). Instationary problems can also
be described by low-dimensional manifolds,
although maybe the required dimension might
be higher. Due to the general formulation for
arbitrary dimensions the method is able to handle
such problems. In the following different struc-
tures of laminar flames are used to validate the
model. Stability and robustness of the method
are demonstrated, convergence, however, is tested
a posteriori.

2.2. Illustrative example: Michael Davis and Rex
Skodje model

As an illustration of the suggested iterative
approach let us take the well known example of
Davis–Skodje often used as a test/benchmark case
(see e.g. [18–20]):

oy1

ot ¼ �y1 þ D o2y1

ox2 ; x 2 ½0; 1�
oy2

ot ¼ �cy2 þ
ðc�1Þy1þcy2

1

ð1þy2
1
Þ þ D o2y2

ox2

8<
: ; ð10Þ

with the following boundary and initial conditions

y1ðt; 0Þ
y2ðt; 0Þ

� �
¼

0

0

� �
;

y1ðt; 1Þ
y2ðt; 1Þ

� �
¼

1

3=4

� �
;

y1ð0; xÞ
y2ð0; xÞ

� �
¼

x

3x=4

� �
:

ð11Þ
The commonly used system parameters are
c = 10,100; D = 0.1, where c is the large system
parameter, which defines the differences in chemi-
cal time scales and, consequently, the stiffness of
the system’s source term. In the two dimensional
case only a one-dimensional reduced model exists,
therefore, the reduced manifold has to coincide
with the system’s stationary solution. In this case
it is very simple to control and compare the de-
tailed and reduced models generated by the im-
proved REDIM method. In this example a
straight line connecting boundary values in the
state space (y1,y2) is used as an initial guess for
all approximations of the invariant manifold
M in

s ¼ fðyin
1 ðhÞ; yin

2 ðhÞÞ; h ¼ 1; . . . ;Ng. Then by
solving Eq. (7) the first approximation
M1

s ¼ fðy1
1ðhÞ; y1

2ðhÞÞ; h ¼ 1; . . . ;Ng is obtained.
This solution is used to solve Eq. (8) yielding the
stationary solution h = h1(x), which is then used
to define gradh = f1(h) for the next iteration step.

In Fig. 1 the influence of the parameter’s gradi-
ent is studied. The number of points for both the
manifold’s parameterization and the spatial vari-
able is chosen to be N = 100. The first approxima-
tion deviates significantly from the initial guess
(compare straight dotted line and first iteration in
Fig. 1 on the left). Because the gradient is underes-
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timated, the reduced curve is governed mainly by
the source term. It is known that the source term
of this model yields the invariant slow manifold
given by y2 = y1/(1 + y1) (see e.g. [21] and Fig. 1
dashed line), which attracts the solution of Eq. (7)
if the transport term is small. During the next iter-
ations the solution quickly approaches the station-
ary system solution. After the third iteration, it is
not possible to distinguish further solutions in
Fig. 1 left. The considered example illustrates that
the method gives an impression of the general
behavior of the iterations and can be useful to
enhance better understanding of the behavior of
more complex combustion models in the state
space.
3. Results: syngas and methane/air laminar flames

To verify the approach in detail one-dimen-
sional stationary premixed and diffusion flames
have been simulated by using both detailed and
reduced chemical kinetic models. The detailed
description of mathematical models that have been
used below for illustration purposes can be found in
[1,10,17].
3.1. Premixed flame, methane/air stoichiometric
system

At first, the methane/air combustion system
(n = 36) has been examined in the laminar pre-
mixed combustion regime to validate the one-
dimensional reduced model (m = 1). The results
are summarized in Fig. 2 which shows specific mole
numbers of some major and minor species. The ini-
tial gradient in this case is estimated by the follow-
ing empirical function. It merely acts as a starting
guess,

CðxÞ ¼ exp � 2ðx� aÞb

a

 !
; ð12Þ
where b = 8, a = 0.01 m have been chosen to rep-
resent the typical flame thickness. Note, however,
that an arbitrary choice of the estimate is also pos-
sible, but would probably need more iterations to
yield the fully converged solution. Then, the initial
or starting solution yielding an initial guess for the
reduced manifold in the state space is defined by
the straight line joining the mixing/unburnt wu

and equilibrium/burnt wb states

wiðx; 0Þ ¼ ð1� CðxÞÞwu
i þ CðxÞwb

i ; i ¼ 1; . . . ; n:

ð13Þ
It can be interpreted as an initial guess of the man-
ifold (can be seen in Fig. 2) instead of the ILDM
used in definition of Eq. (7). Then we find the sta-
tionary solution of Eq. (7). The generalized coor-
dinate h is applied to parameterize the straight line
Eq. (13) (see e.g. [14,16]) and, therefore, the
parameter’s gradient:

gradwiðx; 0Þ ¼ ð1� C0ðxÞÞwu
i þ C0ðxÞwb

i ;

i ¼ 1; . . . ; ngradh ¼ wþh gradw ¼ f0ðhÞ:
ð14Þ

Now let us show how the REDIM method is
implemented. First, Eq. (7) is solved with the ini-
tial guess given by Eq. (13) and gradient estimated
using Eq. (14) to yield w1(h). Next Eq. (8) is inte-
grated to improve the gradient dependence on the
parameter h Eq. (14) giving gradh = f1(h), etc. (see
Fig. 2).

In Fig. 2 on the right, the initial guess can not
be seen because it is very close to the x axis. In
particular, one can see that starting with the
straight line (not even an extended ILDM!) the
iteration converges fast and we do not notice
any changes in the manifold after the third itera-
tion. To see how the reduced model defines the
properties of the reacting flow we calculate the rel-
ative error (with respect to the detailed solution)
of the stationary flame velocities. In the consid-
ered example the relative errors are 28.3%, 3.4%,
0.8% and decrease with the following error depen-
dence on the iterations exp[�1.77i], i = 1, 2, 3,
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which means that the relative error decreases
exponentially for the considered system
parameters.

3.2. Premixed flame, syngas/air stoichiometric
system

The second combustion model is a premixed
flame of carbon monoxide/hydrogen/nitrogen/
oxygen (CO/H2/N2/O2), the so-called syngas/air
system. In this case the overall system dimension
is 15 and the system dimension, now, is reduced
to two dimensions (m = 2). A 2D reduced model
is compared to the extended ILDM [14], and the
detailed solution. The gradients of the parameter
of the REDIM reduced model are estimated on
a basis of the extended ILDM, exactly as it has
been described in Section 2. Already the first step
of the implementation scheme gives a quite accu-
rate REDIM manifold, which does not change
notably in further iterations. The flame velocity
estimated by the 2D REDIM model is within
one percent accuracy in comparison to the
detailed one. The profiles are presented and com-
pared in Fig. 3(a–c). The comparison between the
stationary solutions shows that in the domain
close to states corresponding to the fresh mixture,
the REDIM improves considerably the flame
structure not only for the major, but for minor
species as well (c and d). Note that in large parts
of the domain the adaptive REDIM solution can-
not be distinguished from the detailed solution.

3.3. Diffusion flame, syngas combustion system

The third test case is a diffusion flame of the
syngas/air system described above. The starting
linear solution in the state space for the diffusion
flame joins the points corresponding to the fresh
mixture of the fuel mixture flow from one side
with the point describing the air flow from the
other side. The REDIM iteration procedure,
Eqs. (7) and (8), has been performed with an ini-
tial estimation of the local parameter gradient
given by k(gradh)2/ qcp = 5 	 103 (see e.g. [14]).
The estimate has been chosen to agree with the
strain rate of the counter-flow and with the
detailed solution within the same order of
magnitude.

Figure 4 shows that already the second itera-
tion matches well the detailed solution in the state
space projection for minor species like CH2O, and
also reproduces accurately the system profile
(OH) in spatial coordinates. Of course the first
iteration fails to give an appropriate solution
because it was based on the rough constant esti-
mate of the parameter gradient.
4. Conclusions

An iterative method for determining an
approximation of an invariant manifold of slow
motions in the state space for complex combus-
tion problem has been presented and discussed.
It is based on the so-called invariance equation
and a set of reduced model solutions. The mani-
fold is approximated by a mesh representing a
low-dimensional manifold in the composition or
state space. The mesh is tabulated by vertices hav-
ing integer indices and used as the generalized
coordinates. The invariance equation is solved
iteratively to yield the approximation of the man-
ifold, while the reduced model is integrated in
order to obtain an improved parameter’s gradient
as a function of the parameter (local coordinate of
the manifold). The procedure is recursive and
allows improving the reduced model step by step.
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The method is implemented in the standard
ILDM code and applied to a number of meaning-
ful test problems: premixed and non-premixed
laminar flames. The results for both types of lam-
inar flames show extremely fast convergence of
the REDIM manifold to the stationary solutions
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representing the approximation of slow invariant
system manifold. Although results have been
shown for one-dimensional flames only, the
method can also be used for more complex flows
without principle difficulties.
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