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Abstract. Accelerating the computation of quickest paths in road networks has been undergoing a rapid de-
velopment during the last years. The breakthrough idea for handling road networks with tens of millions of
nodes was the concept of shortcuts, i.e., additional arcs that represent long paths in the input. Very recently,
this concept has been transferred to time-dependent road networks where travel times on arcs are given by func-
tions. Unfortunately, the concept of shortcuts yields a high increase in space consumption for time-dependent
road networks since the travel time functions assigned to the shortcuts may become quite complex.

In this work, we present how the space overhead induced by time-dependent SHARC, a technique relying on
shortcuts as well, can be reduced significantely. As a result, we are able to reduce the overhead stemming from
SHARC by a factor of up to 11.5 for the price of a loss in query performance of a factor of 4. The methods we
present allow a flexible trade-off between space consumption and query performance.

1 Introduction

Route Planning is a prime example of algorithm engineering. Modeling the network as graph
G with arc weights depicting travel times, the shortest path in G equals the quickest connec-
tion in the transportation network. In general, DIJIKSTRA’s algorithm [11] solves this task, but
unfortunately, the algorithm is way to slow to be used in transportation networks with tens of
millions of nodes. For this reason, many speed-up techniques have been developed within the
last years. Such techniques split the work into two parts. During an offline phase, called pre-
processing, additional data is computed that accelerates queries during the online phase. The
main concept for route planning in road networks was the introduction of so called shortcuts,
1.e., arcs representing long paths, to the graph. A speed-up technique then relaxes the shortcut
instead of the whole path if the target is “sufficiently far away”.

However, adapting the concept of shortcuts to time-dependent road networks yields several
problems. A travel time function assigned to the shortcut is as complex as all arc functions
the shortcut represents. The reason for this is that we need to link piece-wise linear functions
(cf. [7] for details). For example, Contraction Hierarchies [12], a technique relying solely on
shortcuts yields an overhead of ~ 1000 bytes per node [1] in a time-dependent scenario whereas
the overhead in a time-independent scenario is almost negligible. In this work, we study the
problem of reducing the space consumption of time-dependent SHARC [7], a combination
of the arc-flags approach [16, 17] and contraction [12]. Our memory efficient variant of time-
dependent SHARC is still 500 times faster than DIJKSTRA’s algorithm but yields only a very
small overhead of ~ 13 bytes per node, including shortcut unpacking information.

Related Work. An overview on time-independent speed-up techniques can be found in [8],
while [10] summarizes the recent work on time-dependent speed-up techniques. As already
mentioned, all efficiently speed-up techniques for road networks rely on adding shortcuts to the
graph making the usage of them in a limited time-dependent environment complicated. Mem-
ory efficient variants of time-independent speed-up techniques however exist. For example,
Contraction Hierarchies [12] have been implemented on a mobile device [21]. Unfortunately,
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the time-dependent variant [1] is very space-consuming. The ALT [14] algorithm, which works
in a time-dependent scenario as well [19], has been implemented on an external device [15] as
well. However, space consumption of ALT is rather high and performance is clearly inferior to
SHARC. Work on the compression of time-independent graph data structures can also be found
in [3,4]. To the best of our knowledge, we are the first who study the problem of compressing
a high-performance time-dependent speed-up technique.

Our Contribution. In this work, we present how to compress the preprocessing of SHARC,
introduced in [2] and augmented to the time-dependent scenario in [7], without too high of a
loss in query performance. The key idea is to identify unimportant parts of the preprocessing
and remove them in such a way that correctness of SHARC can still be guaranteed. After
settling preliminaries and recalling SHARC in Section 2, we present our main contribution
in Section 3. There, we show how to reduce the overhead stemming from arc-flags stored to
the graph, by mapping unimportant arc-flag vectors to important ones. The advantage of this
approach over other compression schemes such as bloom filters [5] is that we do not need to
change the query algorithm of SHARC. Due to this fact, we keep the additional computational
effort limited. Moreover, we show that we can remove shortcuts from SHARC, again without
changing the query algorithm. Finally, we may even remove the complex travel time functions
from the shortcuts by reproducing the length function on-the-fly. In Section 4 we run extensive
tests in order to show the feasibility of our compression schemes. It turns out that we can safely
remove 40% of the arc-flag information without any loss in query performance. Moreover,
about 30% of the shortcuts added by SHARC are of limited use as well. So, we may also
remove them. Finally, it turns out that by removing the travel time functions from the remaining
shortcuts, we can reduce the overall overhead of SHARC significantely. As a result, we were
able to reduce the overhead induced by SHARC by a factor of up to 11.5. The resulting memory
efficient variant of SHARC yields an overhead of 13.5 (instead of 156) bytes per node combined
with average query times of about 3 ms (on the German road network with realistic time-
dependent traffic), around 500 times faster than DIJKSTRA’s algorithm. Part of this work is
based on preliminary results of the student research projects of two authors of this work: [13]
deals with arc-flags compression, while [6] focuses on removing shortcuts.

2 Preliminaries

A (directed) graph G = (V,A) consists of a finite set V of nodes and a finite set E of arcs. An arc
is an ordered pair («,v) of nodes u,v € V, the node u is called the fail of the arc, v the head. The
number of nodes |V| is denoted by n, the number of arcs by m. Throughout the whole work we
restrict ourselves to directed graphs which are weighted by a piece-wise linear periodic travel
time function len. A travel time function /en(e) is defined by several interpolation points, each
consisting of a timestamp ¢ and a travel time w > 0, depicting the travel time on e at time . The
travel time between two interpolation points is done by linear interpolation. The composition
of two travel time functions f, g is defined by f® g := f+ (go (f +id)).

A partition of V is a family € = {Cy,C},...,Cy} of sets C; C V such that each node v € V is
contained in exactly one set C;. An element of a partition is called a cell. A multilevel partition
of V is a family of partitions {€°,%,..., %"} such that for each i < [ and each C, € " a cell
CiHl ¢ ¢! exists with Ci C Ci+!. In that case the cell Ci! is called the supercell of Ci. The
supercell of a level-/ cell is V.



Multi-Level Arc-Flags. The original arc-flag approach [17, 16] first computes a partition ¢
of the graph and then attaches a label AF to each arc e. A label contains, for each cell C; € €, a
flag AF¢,(e) which is true if a shortest path to a node in C; starts with e. A modified DIIKSTRA
then only considers those arcs for which the flag of the target node’s cell is true. Given two arc-
flag vectors AF'|,AF,. The OR arc-flags vector AF| VAF» has all arc-flags set to true that are
true in AF| or AF|. The AND of two arc-flags vectors is defined analogously and is denoted
by AF| NAF),.

Note that more and more arcs have a flag set for the target’s cell when approaching the target
cell (called the coning effect) and finally, all arcs are considered as soon as the search enters the
target cell. Hence, [18] introduces a second layer of arc-flags for each cell. Therefore, each cell
is again partitioned into several subcells and arc-flags are computed for each. This approach
can be extended to a multi-level arc-flags scenario easily. A multi-level arc-flags query then
first uses the flags on the topmost level and as soon as the query enters the target’s cell on the
topmost level, the lower-level arc-flags are used for pruning.. In following we denote by the
level of an arc-flag the level of layer it is responsible for.

SHARC [2] . The main disadvantage of a multi-level arc-flags approach is the time-consuming
preprocessing [16]. SHARC improves on this by the integrating of contraction, i.e., a routine
iteratively removing unimportant nodes and adding shortcuts in order to preserve distances
between non-removed nodes. Preprocessing of SHARC is an iterative process: during each it-
eration step i, we contract the graph and then compute the level i arc-flags. One key observation
of SHARC is that we are able to assign arc-flags to all bypassed arcs during contraction. More
precisely, any arc (u,v) outgoing from a non-removed node and heading to a removed one gets
only one flag set to true, namely, for the region v is assigned to. Any other bypassed arc gets
all flags set to true. By this procedure, unimportant arcs are only relaxed at the beginning and
end of a query. Although these suboptimal arc-flags already yield a good query performance,
SHARC improves on this by a (very local) arc-flag refinement routine. The key observation
here is that bypassed arcs may inherit flags from arcs not bypassed during contraction (cf. [2]
for details). It should be noted SHARC integrates contraction in such a natrual way that the
multi-level arc-flags query can be applied to SHARC without modification.

Augmented Scenarios. Due to its unidirectional query algorithm, SHARC was a natural
choice for augmenting it to a time-dependent [7] and a multi-criteria scenario [9]. The idea
is the same for both augmentations: adapt the basic ingredients of the preprocessing, i.e., arc-
flags, contraction, and arc-flags refinement, such that correctness of them can still be guaranteed
and leave the basic concept untouched. It turns out that SHARC performs pretty well in both
augmented scenarios.

However, a crucial problem for time-dependent route planning is the introduction of short-
cuts representing paths in the original graph. While this is “cheap” in time-independent net-
works, the travel time functions assigned to time-dependent shortcuts may become quite com-
plex. In fact, the number of interpolation points defining the shortcut is approximately the
sum of all interpolation points assigned to the arcs the shortcut represents. See [7] for details.
In fact, the overhead of SHARC increases by a factor of up to 10 when switching from a
time-independent to a time-dependent scenario exactly because of these complex travel time
functions.



Overhead. SHARC adds auxiliary data to the graph. More precisely, the overhead stems from
several ingredients: Region information, arc-flags, topological information of shortcuts, the
travel time functions of shortcuts and shortcut unpacking information. We call the graph en-
riched by shortcuts and any other auxiliary data the output graph of SHARC.

The first overhead, i.e., the region information, is used for determining which arc-flag to
evaluate during query times. This information is encoded by an integer and cannot be com-
pressed without a significant performance penalty. We have a arc-flags vector for each arc.
However, the number of unique arc-flags vectors is much smaller than the number of arcs. So,
instead of storing the arc-flags directly at each arc, we use a separate table containing all possi-
ble unique arc-flags sets. In order to access the flags efficiently, we assign an additional pointer
to each arc indexing the correct arc-flags set in the table. The main overhead, however, stems
from the shortcuts we add to the graph. For each added shortcut, we need to store the topo-
logical information, i.e., the head and tail of the arc, and the travel time function depicting the
travel time on the path the shortcut represents. Moreover, we need to store the arcs the shortcut
represents in order to retrieve the complete description of a computed path.

3 Preprocessing Compression

In this section, we show how to reduce the space consumption of SHARC. More precisely,
we first show that we can safely reduce the number of unique arc-flag sets by flipping some
unset bits to set one. Then, we show how to remove shortcuts without violating correctness of
SHARC. Finally, we present how to reduce the number of interpolation points.

3.1 Arc-Flags

The first source of overhead for SHARC is storing the arc-flags for each arc. As already men-
tioned, our original SHARC implementation already compresses the arc-flag information by
storing each unique arc-flag set separately in a table (called the arc-flags table) and each arc
stores an index to the arc-flag table. Figure 1 gives a small example.

Lemma 1. Given a correct SHARC preprocessing. Flipping (arbitrary) arc-flags from false
to true does not violate the correctness of SHARC.

Proof. Let P= (uy,...,u;) be an arbitrary shortest path in G. Since SHARC-Routing is correct,
we know that each arc (u;,u;11),1 < i < k has the arc-flag being responsible for ¢ set to true.
Since we only flip bits from false to true, this holds after bit-flipping as well. a

Fig. 1. Compression of Arc-Flags. The input is partitioned into three cells, indicated by coloring. A set arc-flag is indicated by
color and a one. Instead of storing the flags directly at the arcs (left figure), we store each unique arc-flags vector in a separate
table with arcs indexing the right arc-flags vector (middle figure). We additionally compress the table by flipping bits from
false to true (right figure) and thus, we reduce the number of entries in the table. The remapped indices are drawn thicker.
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This lemma allows us to flip bits in the arc-flag table from false to true. Hence, we
compress the arc-flag table by bit-flipping. Let AF,,AF,, be two unique arc-flag vectors such
that AF, C AF,,, i.e., all arc-flags set in AF, are also set in AF,,. Then, we may remove AF,
from our arc-flag table and all arcs indexing AF, are remapped to AF,,. Figure 1 gives an
example.

Theorem 1. Bit-Flipping preserves correctness of SHARC.
Proof. The proof follows directly from Lemma 1. ad

Note that this compression scheme has no impact on the query algorithm. We still may use
the default SHARC query-algorithm (cf. Section 2).

Arc-Flag Costs. The compression rate achieved by bit-flipping highly depends on which arc-
flag vectors to remove and to which arc-flag vectors they are mapped. We introduce an arc-
flag costs function cost assigning an importance value to each arc-flags vector. The idea is as
follows: for each layer i of the multi-level partition, we introduce a value cost;. Let |AF;| be the
number of flags set to true on level i. Then we define cost(AF) = Y!_, cost;-|AF;|. The higher
the costs of an arc-flags vector scores, the more important it is.

So, a good candidate for removing it from the table should have low costs. The remaining
question is what a good candidate for mapping is. Therefore, we define the flipping costs be-
tween two arc-flag vectors AF,,AF,, with AF, C AF,, as cost(AF,AAF,,). A good mapping
candidate AF,, for a vector AF, to be removed is the arc-flags vector with minimal flipping
costs. It is easy to see that cost(AF, AAF,,) = cost(AF,,) — cost(AF,) holds.

Iterative Mapping. We reduce the overhead induced by arc-flags by iteratively removing arc-
flags vectors from the table. Therefore, we order the unique arc-flags vectors non-decreasing
by their costs. Then, we remove the arc-flags vector AF, with lowest costs from the table and
remap all arcs indexing AF, to the arc-flags vector AF,, with minimal costs and for which
AF, C AF,, holds. In Section 4 we evaluate different cost functions and how much the arc-flags
table can be compressed without too high of a query performance decrease.

3.2 Shortcuts

In Section 2, we discussed that, at least in the time-dependent scenario, the main source of
overhead derives from the (time-dependent) shortcuts added to the graph. So, we here present
how to compress this overhead. On the hand, we show that we can safely remove a shortcut
from SHARC, while on the other hand, we discuss that some shortcuts should be kept but the
complex travel time function needs may be removed.

Removing Shortcuts. In [2], we already presented a subroutine to remove all shortcuts from
SHARC. However, this yielded a high penalty in query performance. The following lemma
recaps the main idea.

Lemma 2. Given a correct SHARC preprocessing. Let (u,v) be an added shortcut during pre-
processing and let P,,, = (u,u, . ..,ux,v) be the path it represents. By removing (u,v) from the
graph and setting AF (u,ug) = AF (u,up) VAF (u,v), correctness of SHARC is not violated.



Proof. Let P=(s,...,u,v,...,t) be an arbitrary shortest path using shortcut (u,v) in the output
graph of SHARC. Let also P,, = (u,up,...,ux,v) be the path (u,v) represents in the original
graph. We need to show that after removing (u,v), the path P’ = (s,...,u,uo,...,t) has all flags
for ¢ set to true. Since SHARC is correct, we know that the subpath (s,...,u) has correct
flags set. Moreover, (u,ug) has proper flag set as well, since we propagate all flags from (u,v)
to (u,up). We also know that the shortest path from g to + must not contain (u,v) since we
restrict ourselves to positive length functions (cf. Section 2). Due to correctness of SHARC,
the shortest path from u to r must have proper flags set. Hence, P’ has proper flags set as well.

Figure 2 gives a small example. The lemma allows
us to remove arbitrary shortcuts from SHARC prepro-
cessing. Our shortcut-removal compression scheme iter-
atively removes shortcuts from the graph and sets arc-
flags according to Lemma 2.

Theorem 2. Shortcut-Removal preserves correctness of
SHARC.

Proof. The proof directly follows from Lemma 2. a Fig. 2. Removal of shortcuts. The shortcut (u,v),

representing (u,uq,uy,v) is removed by propa-
In other words, we reroute any shortest path query  gaging all set flags from (u,v) to (, uo).

using the shortcut (u,v) to its path it represents. Note that
we may again leave the SHARC query untouched.

Ordering. Some shortcuts are more important than others and the ordering in which we remove
shortcuts has a high impact on the resulting query performance. Generally, a removed shortcut
should only have low arc-flags costs (cf. Section 4.1). Furthermore, let /(1) be the level of an
arbitrary node u, given by iteration u was removed during the original preprocessing of SHARC
(cf. Section 2). We define the tail-level of a shortcut (u,v) by I(u), while [(v) is the head-level.
Presumably, shortcuts with low head and tail levels are less important than those with high
ones. A fourth indicator for the importance of a shortcut is the so-called search space coning
coefficient. Let (u,v) be a shortcut and let P,, = (u,uy,...,ux,v) be the path it represents. Then
the search space coning coefficient of (u,v) is given by

ssce(u,v) = Z Z cost (AF (u,v) NAF (uj,w)) .

u;€Pyy (ui,w)€EE WUt

In other words, the search space coning coefficient depicts how many arcs may be relaxed ad-
ditionally if (u,v) was removed, i.e., the search cones. Therefore, the arc-flags of any outgoing
arc from u; € P,, is examined and whenever a flag is set that is also set for the shortcut, the
search space coning coefficient increases.

We use a priority queue to determine which shortcut to remove next. The priority of a
shortcut is given by a linear combination of its head level, its tail level, its arc-flag costs, and
the search space coning coefficient. In order to remedy the problem of different scaling, we
normalize these values by their maximal values encountered during initialization. In Section 4,
we evaluate how many shortcuts may be removed and which indicator is more important than
others.



Removing Travel Time Functions. Removing shortcuts from the output graph of SHARC
may increase the search space since unnecessary arcs may be relaxed during traversing the
path the shortcut represents. However, the main problem of time-dependent shortcuts are their
complex travel time functions. Another possibility to remedy this space consumption is to re-
move the travel time functions but to keep the shortcut itself. Now, when a shortcut is relaxed,
we compute the weight of it by unpacking the shortcut on-the-fly. The advantage of this over
complete removal of the shortcut is that the search space does not increase. However, due to
on-the-fly unpacking query times may increase.

Again, like for removing shortcuts and arc-flags compression, we are able to remove the
travel time functions only from some of the shortcuts. On the one hand, we want to remove
a shortcut with a complex function, and on the other hand, it should not be relaxed too fre-
quentely. Hence, we use a priority queue in order to determine which function to delete next.
As key for (u,v) we use a linear combination of the number of interpolation points of len(u,v)
and the arc-flag costs of AF (u,v).

4 Experiments

Our experimental evaluation has been done on one core of an AMD Operon 2218 running SUSE
Linux 11.1. The machine is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache.
The program was compiled with GCC 4.3, using optimization level 3. Our implementation is
written in C++. As priority queue we use a binary heap.

Inputs. We use the German road network as input, it has approximately 4.7 million nodes and
10.8 million arcs. We have access to five different traffic scenarios, generated from realistic
traffic simulations: Monday, midweek (Tuesday till Thursday), Friday, Saturday, and Sunday.
As expected, congestion of the roads is higher during the week than on the weekend: ~ 8% of
the arcs are time-dependent for Monday, midweek, and Friday. The corresponding figures for
Saturday and Sunday are ~ 5% and ~ 3%, respectively. All data has been provided by PTV
AG [20] for scientific use.

Default Settings. For testing our compression schemes, we run a complete time-dependent
SHARC preprocessing (heuristic variant [7]) on our Monday instance, we use our default
parameters from [7]. The input has a space consumption of 44.2 bytes per node. SHARC
adds about 2.7 million shortcuts and increases the number of interpolation points (for time-
dependent arcs) from 12.7 million to about 92.1 million, yielding a total overhead of 156.94
additional bytes per node. Form those 156.94 bytes per node, 11.55 are stemming from short-
cuts (topology and unpacking information), 8.2 from the arc-flag information, 2.0 from the
region information, while 135.31 bytes per node stem from the additional interpolation points
added to the graph. Hence, the main overhead stems from the latter. Note that the total over-
head is slightly higher than reported in [7]. The reason for this is a change (we now store no
interpolation point for a time-independent edge) to a more space-efficient graph data structure.
Note that the heuristic variant of SHARC may compute a path that is slightly longer than the
shortest in very few occasions (cf. [7] for details). However, all insights gained her also hold
for any other variant of SHARC.

In order to evaluate how well our schemes work, we evaluate the query performance of this
SHARC preprocessing after compression. Therefore, we run 100 000 s-¢ queries for which we

7



18 2 22
| | |
O x 4+ O
2323
©Rr >
N2=R
D NN~— =
g2
\O
\
\+
\\XL

) /

ya
- /o/ /+/+/
[

/

query times [ms]
1.2 14 16

1
|

o

o/

—~ —+

| o/o /+/+ x7"
— i —+— _Ném

g=R—p=x—p—h—x—w—N—R—R

06 0.8

T T T T T T T T T
0 10 20 30 40 50 60 70 80
removed unique flags [%]

Fig. 3. Removing arc-flags from SHARC with different arc-flag cost functions. The entry on the left indicates the costs for
flipping a low level flag, while the right most entry shows the costs for flipping the highest level.

pick s, t, and the departure time uniformly at random. Then, we provide the average query time.
Note that we do not report the time for unpacking the whole path. However, this can be done in
less than 0.1 ms.

4.1 Arc-Flags

We start our experimental evaluation on the compression of the arc-flags table. Figure 3 depicts
the performance of time-dependent SHARC in our Monday scenario after removing a varying
amount of arc-flags vectors for different cost functions. Note that we do not provide running
times for compression since it takes less than one minute to compress the arc-flags. This is only
a small fraction of the time the SHARC preprocessing takes (3-4 hours).

We observe that the choice of the cost function has a high impact on the success of our
flag compression scheme. As expected, a cost function that prefers flipping of low-level flags
(cost function 1,3,9,27,243) performs better than one that prefers high-level flags (cost function
16,8,4,2,1). Interestingly, we may remove up to 40% of the arc-flags vectors without any loss
in performance. This reduces the overhead induced by arc-flags from 8.2 bytes per node to 7.2.
By removing 60% of the vectors (resulting overhead: 6.9), the query performance decreases
only by 10%. However, removing more than 70% of the flags yields a significant penalty in
performance, although the overhead (for arc-flags) is only reduced to 6.3 bytes per node. So,
since arc-flags contribute only a small fraction to the overhead, it seems reasonable to settle for
a arc-flag compression rate of 40%.

4.2 Shortcuts

As already mentioned, the main overhead stems from adding shortcuts during preprocessing.
So, we here first focus on removing shortcuts completely from the graph and then analyze the
impact of removing travel time functions from the graph.

Removing Shortcuts. Figure 3 depicts the performance of SHARC after removing a varying
amount of shortcuts for different linear coefficients introduced in Section 3.2. Note again that

8



N
N o tail-level: 1, head—level: 1 5
+ tail-level: 1, head-level: 3
N | x tail-level: 1, head—level: 5
© o tail-level: 1, head-level: 1, arc-flag costs: 1, sscc: 1
= | °
— /S
g o
E ¥ °
E I/
ﬂé_ S ] 1)
. /it
=
o
@ | /6%
e _g—eg=8=8—X
g—p—R=B—F=8=0
©
©
T T T T T T T T T
0 10 20 30 40 50 60 70 80

removed shortcuts [%]

Fig. 4. Removing shortcuts from SHARC with different ordering. Coefficients not indicated are set to zero.

we do not report running times for compression since it takes less than one minute to obtain the
reduced preprocessed data.

We observe that we can remove up to 45% of the shortcuts yielding a mild increase in query
performance (= 10%). This reduces the overhead of the shortcuts from 11.55 bytes per node to
7.51. Moreover, the overhead induced by travel time functions is reduced from 135.31 to 118.72
bytes per node since some of the removed shortcuts are time-dependent. Up to 65%, the loss in
query performance is still acceptable (a factor of 2), especially when keeping the gain in mind:
the overhead for shortcuts reduces to 5.3 bytes per node and 97.7 bytes per node for additional
interpolation points. Analyzing the impact of ordering, we observe that the level of head and
tail seem to be the most important parameters. Interestingly, the head level seems to be more
important than the tail level. The reason for this is that shortcuts from lower to higher levels are
relaxed at the beginning of a query, while shortcuts from higher to lower levels are relaxed at
the end. Since removing shortcuts cones the query (cf. Section 3.2), the latter shortcuts are less
important. The influence of the search space coning coefficient is minor and only observable
for very low compression rates: at 20%, the loss in performance is almost negligible. In the
following, we will use values of 20%, 45%, and 65% as default parameters.

Removing Travel Time Functions. Figure 5 indicates the query performance of SHARC after
removing travel time functions from time-dependent shortcuts. We evaluate different orderings
given by different weights for the coefficients arc-flag costs and number of interpolation points,
as explained in Section 3.2.

We observe that for low compression rates, the arc-flag costs are more important than the
number of points on the shortcut. However, the situation is vice versa between compression
rates between 60% and 85%: here an ordering based on the number of points performs better
than the order based on arc-flag costs. However, the differences are marginal, hence we use
arc-flag costs as default for determing the ordering. In general, we may remove up to 40% of
the additional points for a loss of query performance of about 25%. This already reduces the
overhead induced by additional interpolation points to 81.2 bytes per node. The corresponding
figures for a compression rate of 60% are a query performance penalty of factor 2 and a result-
ing overhead of 63.1. Most remarkably, we may even remove all additional interpolation points
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Fig. 5. Removing travel time functions from SHARC. The x-axis indicates how many of the additional interpolation points are
removed by the compression scheme. Coefficients not indicated are set to zero.

from the output graph with paying “only” a loss of performance of a factor of 3.2. This yields
a total overhead of 21.6 bytes per node, a reduction of factor of 7.5 over the uncompressed
SHARC preprocessing. Still the average query performance of 2.3 ms is still a speedup of a
factor of 678 over DIJKSTRA’s algorithm.

4.3 Compression-Rates

Up to now, we evaluated each compression scheme separately. Table 1 now gives an overview
if we combine all three schemes among each other. We here report the overhead of the pre-
processed data in terms of additional bytes per node, compared to the original input graph.
For evaluating the query performance, we not only provide query times but also the average
number of settled nodes and relaxed arcs for 100 000 random s-¢ queries. Moreover, we report
the speed-up over our (efficient) implementation of time-dependent Dijkstra. On this input, the
latter settles about 2.2 million arcs in about 1.5 seconds on average.

We observe that we may vary the compression rate yielding different total overhead and
query performance. A good trade-off seems to be achieved for compressing shortcuts by 20%,

Table 1. Query performance for different combinations of our compression schemes. As input, we use the German road
network with traffic scenario Monday.

SHORTCUTS POINTS FLAGS TOTAL QUERIES
rem. overhead |rem. overhead|rem. overhead||overhead comp.|| #sett. #rel. time speed
[bytes/n]| [%] [bytes/n]| [%] [bytes/n]||[bytes/n] [%]||nodes arcs [ms] up

0 11.55) 0 13531 O 8.20|| 15694 0.0|| 775 984 0.68 2288
20 9.72| 40  75.67| 40 7.03 94.29 39.9|| 876 1095 0.87 1786
20 9.72| 60  50.22| 40 7.03 68.84 56.1|| 876 1095 1.26 1238
20 9.72| 100 0.00{ 40 7.03 18.62 88.1|| 8761095 2.44 636
45 7.51 40  67.19| 40 6.67 83.24 47.0| 949 1167 0.94 1654
45 7.51| 60  44.78| 40 6.67 60.83 61.2|| 949 1167 1.43 1087
45 7.51| 100 0.00{ 40 6.67 16.05 89.8|| 949 1167 2.56 606
65 5.30| 40  54.66| 40 6.34 68.17 56.6/(1717 1971 1.39 1118
65 5.30| 60  37.97| 40 6.34 51.48 67.2|[1717 1971 1.88 827
65 5.30| 100 0.00| 40 6.34 13.52 91.4(/1717 1971 2.98 521
65 5.30{ 100 0.00{ 60 6.10 13.27 91.5||1811 2085 3.07 506

—
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interpolation points by 60%, and flags by 40%. This reduces space overhead in total by a factor
of 2 and yields a loss in query performance by a factor of 1.85. For this is reason, we call these
values a medium compression setup. Our high compression setup removes 65% of all shortcuts,
removes all interpolation points from remaining time-dependent shortcuts and reduces the flag-
table by 40%. This reduces the overhead induced by SHARC by a factor of almost 11.5 while
query performance is ~ 4 times slower than without compression. Any compression beyond
this point yields a big performance loss without a significant reduction in preprocessed data.

4.4 'Traffic Scenarios

Our final testset evaluates the impact of different traffic scenarios on our compression schemes.
Besides our Monday scenario which we evaluated up to this point, we now also apply a mid-
week (Tuesday to Thursday), Friday, Saturday, Sunday, and “no traffic”” scenario. Note that the
latter is a time-independent network. Our graph data structures occupy 44.2, 44.1, 41.0, 31.4,
27.8, and 22.4 bytes per node, respectively. We here also report the additional overhead in-
duced by SHARC, as well as the total time of preprocessing (SHARC and compression). The
resulting figures can be found in Tab. 2.

We observe that for all time-dependent inputs, our medium compression setup reduces the
space consumption by a factor of 2 combined with a performance penalty between 1.5 and 1.9,
depending on the degree of time-dependency in the network. Our high compression rate yields
an overhead of ~ 13.5 bytes per node, independently of the applied traffic scenario. This even
holds for our “no traffic scenario”. The query performance however, varies between 0.37 ms
(no traffic) and 3.06 ms (midweek). The reason for this is that in a high traffic scenario, more
are arcs are time-dependent and hence, more arcs need to be evaluated when unpacking a (time-
dependent) shortcut on-the-fly. Since the no traffic input contains no time-dependent arcs, no
shortcut has a travel time function assigned. Hence, the costly on-the-fly unpacking needs not
to be done during query times.

Table 2. Query performance of heuristic time-dependent SHARC applying different traffic scenarios for our German road
network. Column compression rate indicates our default rates from Section 4.3. Columns increase edges, points indicate the
increase in number of edges and points compared to the input.

PREPROCESSING QUERIES
comp. time inc. inc.  space comp| #sett. #rel. time speed
scenario | rate [h:m] edges points [bytes/n] [%]|nodes arcs [ms] up

none 3:52 252% 621.1% 156.94 0.0| 775 984 0.68 2288
Monday | med 3:54 19.9% 230.5%  68.84 56.1| 876 1095 1.26 1238
high 3:54 82% 0.0% 13.52 91.4|1717 1971 298 521
none 3:46 25.2% 621.8% 156.45 0.0 777 990 0.68 2203
midweek| med 3:48 20.0% 229.3%  68.35 56.3| 8801102 1.28 1177
high 3:48 82% 0.0% 13.54 91.3|17151971 3.06 491
none 3:22 25.1% 654.4% 14290 0.0 733 930 0.63 2400
Friday med 3:24 19.9% 240.4%  63.22 55.8| 8371043 1.17 1302
high 3:24 82% 0.0% 13.59 90.5/1691 1932 2.79 543
none 2:24 24.7% 784.2%  92.37 0.0| 624 782 0.49 3001
Saturday | med 2:26 19.6% 286.8%  44.58 51.7| 726 892 0.81 1825
high 2:26 8.0% 0.0% 13.69 85.2|/16151817 1.95 752
none 1:53 24.3% 859.4%  67.43 0.0 593 735 0.44 3299
Sunday | med 1:5519.2% 317.8%  35.58 47.2| 693 844 0.68 2159
high 1:55 79% 0.0% 13.64 79.8|/1576 1762 1.64 893
none 0:1023.3% 0.0% 20.90 0.0 277 336 0.18 6784
no med 0:12184% 0.0% 17.80 14.8| 327 390 0.20 5990
high 0:12 75% 0.0% 13.12 37.2| 758 838 0.37 3332
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5 Conclusion

In this work, we showed how to reduce the space consumption of SHARC without too high of
a loss in query performance. The key idea is to identify unimportant parts of the preprocessing
and remove them in such a way that correctness of SHARC can still be guaranteed. More pre-
cisely, we showed how to reduce the overhead stemming from arc-flags stored to the graph, how
to remove shortcuts and how to remove complex travel time functions assigned to shortcuts. As
a result, we were able to reduce the overhead induced by SHARC by a factor of up to 11.
Compared to time-dependent Contraction Hierarchies [1], the overhead of memory-efficient
time-dependent SHARC is ~ 78 times smaller. Regarding future work, it would be interest-
ing to compress the time-dependent input graphs. Maybe techniques from [3,4,21] might help
here. The main challenge seems to be the reduction of the space consumption needed for storing
the travel time functions.
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