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Abstract

The Manhattan-geodesic drawing convention for graphs requires that edges are drawn
as interior-disjoint monotone chains of axis-parallel line segments, that is, as geodesics
with respect to the Manhattan metric. In this work, we consider the problem whether a
given planar graph has a Manhattan-geodesic drawing such that the vertices are embedded
onto a given set of points. We show that this problem, which we call Geodesic Point-
Set Embeddability, is NP-hard in general. On the positive side, we give a simple
characterization of the yes-instances for the special case that the graph is a cycle. We
call this problem geodesic polygonization. Our characterization can easily be checked in
linear time, and we give an O(n log n) time algorithm to compute a polygonalization if
one exists. The results are obtained for drawings on a grid, but can be extended to the
setting without this restriction.

+
?

1 Introduction

One of the most popular conventions for drawing planar graphs is the orthogonal drawing
convention, which requires edges to be drawn as interior-disjoint rectilinear chains, that is,
chains of axis-parallel line segments. Restricting the number of edge directions potentially
yields very clear drawings. In the Manhattan-geodesic drawing convention, edges additionally
have to be drawn as monotone chains. Such chains are called Manhattan paths. Manhattan
paths are geodesics with respect to the Manhattan metric. The idea behind monotonicity is
that following the course of a monotone curve is potentially easier than following the course
of a curve that is allowed to make detours. It also combines the concept of orthogonal draw-
ings with the straight-line drawing convention, where edges must be embedded as Euclidean
geodesics. In this work, we consider the setting where we are given not just a graph, but also a
∗Faculty of Informatics, Karlsruhe Institute of Technology (KIT), {firstname.lastname}@kit.edu
†Institut für Informatik, Universität Würzburg, www1.informatik.uni-wuerzburg.de/en/staff
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2 COMPLEXITY OF GEODESIC POINT-SET EMBEDDABILITY 2

set of points (in the plane or on the grid) to which the vertices of the graph must be brought
into correspondence. We call this problem Geodesic Point-Set Embeddability. This
report complements our work on Manhattan-geodesic drawings [KKRW10]. There, we also
considered (a) the more restrictive case where one also gets a mapping between the vertices
and the points and (b) the less restrictive case where one does not get a point set at all.

Related Work. Kaufmann and Wiese [KW02] considered point-set embeddability (PSE)
with respect to the polyline drawing convention. They showed that it is NP-hard to decide
whether a graph can be embedded on a point set with at most one bend per edge and that
two bends suffice for any planar graph and any point set. Cabello [Cab06] showed that zero
bends are hard, too. In other words, it is NP-hard to decide whether a planar graph has a
straight-line embedding on a given point set.

A special case of both the straight-line and the orthogonal drawing convention has also
been considered. Rappaport [Rap86] showed that it is NP-hard to decide whether a set P
of n points has an orthogonal polygonization, that is, whether the n-cycle can be realized
on P using horizontal or vertical edges only. O’Rourke [O’R88] proved that if one forbids
180◦-degree angles in the vertices, then there exists at most one simple rectilinear polygon
with vertex set P . He also showed how to reconstruct the polygon from P in O(n log n) time.
We refer the reader to Demaine’s survey [Dem07] about problems related to polygonization.

PSE with the same drawing convention but with respect to a different graph class—perfect
matchings—was considered by Rendl and Woeginger [RW93]. They showed that given a set P
of n points in the plane, one can decide in O(n log n) optimal time whether each point can
be connected to exactly one other point with an axis-parallel line segment. They also showed
that the problem becomes hard if one insists that the segments do not cross. Hurtado [Hur06]
gave a simple O(n log n)-time algorithm for the matching problem under the geodesic drawing
convention. The idea is to alternatingly go up and down the occupied grid columns.

In this paper, we investigate the problem Geodesic PSE of deciding whether a given
planar graph can be embedded on a given set of grid points. We assume that we are not
given a bijection between vertices and points. Note that the variant where a bijection is
given is NP-hard as well [KKRW10]. First, we prove that in general, this problem is hard,
using a two-step reduction from Hamiltonian Cycle, see Section 2. Second, we show that
there is a simple characterization of the yes-instances for the case that the graph is a cycle,
see Section 3. This is the main result of this report. The proof of the correctness of our
characterization is constructive and yields a simple O(n log n)-time algorithm for this special
case of Geodesic PSE, which we call Geodesic Polygonization.

2 Complexity of Geodesic Point-Set Embeddability

In this section, we show that Geodesic PSE is NP-hard by reduction from the problem
Hamiltonian Cycle Completion (HCC), which is defined as follows. Given a non-
Hamiltonian cubic graph G, decide whether G has two vertices u and v such that G+ uv (i)
is planar, (ii) has a Hamiltonian cycle H, and (iii) has an embedding such that u and v are
adjacent to at most two faces on the same side of H. We first show that HCC is hard.

Lemma 1. Hamiltonian Cycle Completion is NP-hard.

Proof. We reduce from the NP-hard problem Hamiltonian Cycle (HC), where the task
is to decide whether a given planar cubic graph is Hamiltonian [GJ79]. Given an instance
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Fig. 1: Gadget that replaces the edge uv of G in Guv (when reducing from HC to HCC)

G = (V,E) of HC, we construct, for each uv ∈ E, an instance Guv of HCC. The graph Guv is
a copy of G where we replace uv by the gadget depicted in Fig. 1a. We claim that an edge uv
lies on some Hamiltonian cycle in G if and only if Guv is a yes-instance of HCC.

We first assume that Guv is a yes-instance of HCC. Then there is a pair {a, b} of vertices
such that Guv +ab is Hamiltonian, see Fig. 1b. The vertices a and b must lie in our gadget, one
on each side (albeit not necessarily {a, b} = {ū, v̄}); otherwise u or v would remain separators.
It is obvious how to transform a Hamiltonian cycle in Guv +ab into a Hamiltonian cycle in G.

Conversely, assume G contains a Hamiltonian cycle H that uses some edge uv. We observe
two things. First, if we add the edge ūv̄ to Guv, then the concatenation of ūv̄, the bold black
edges in the gadget, and H−uv forms a Hamiltonian cycle H̄ in Guv + ūv̄. Second, the planar
embedding that Guv + ūv̄ inherits from G and from the embedding of the gadget as depicted
in Fig. 1b makes sure that ū and v̄ are incident to two faces on each side of H̄.

Thus, we could apply a hypothetical algorithm for HCC to Guv for each edge uv of G. As
soon as the algorithm finds a vertex pair {a, b} such that Guv + ab is Hamiltonian, it’s easy
to construct the corresponding Hamiltonian cycle in G. If, on the other hand, the algorithm
decides for each edge uv of G that Guv is a no-instance, we can conclude that G is not
Hamiltonian. This yields the NP-hardness of HCC.

Now we are ready to show the hardness of Geodesic PSE.

Theorem 1. Geodesic PSE is NP-hard, even for subdivisions of cubic graphs.

Proof. Our proof is by reduction from HCC. Given an instance G = (V,E) of HCC, note
that n = |V | is even. Let k = n/2 + 1. Given three non-negative integers k0, k1, k2, let P0 =
{(−j, 0) | j = 0, . . . , k0 − 1}, P1 = {(j, nj) | j = 1, . . . , k1}, P2 = {(j,−nj) | j = 1, . . . , k2},
and P (k0, k1, k2) = P0 ∪ P1 ∪ P2, see Fig. 2a. Note that the points in P (k0, k1, k2) are placed
such that between any two consecutive non-empty rows of the integer grid there are n − 1
empty rows. We now construct a graph G′ = (V ′, E′) by splitting every edge of G by a vertex
of degree 2. This yields |V ′| = |V | + |E| = 2n − 1 + k. In the following, we show that G′

can be embedded on P (2n − 1, k1, k2) for some k1, k2 with k1 + k2 = k if and only if G is a
yes-instance of HCC.

Assume G is a yes-instance of HCC. Then there is a pair {u, v} of vertices such that G+uv
contains a Hamiltonian cycle and u and v are incident to two faces on either side of this cycle.
Without loss of generality, we can assume that uv is incident to the outer face. An example of
a plane graph G′ is depicted in Fig. 2b; the splitting nodes are marked with circles, the original
nodes of G with black disks. Maintaining the combinatorial embedding, we can embed the
Hamiltonian path connecting u and v including its splitting nodes on a set of 2n − 1 points
on a horizontal line as in Fig. 2c. We embed the faces inside the cycle above the path and
the faces outside the cycle below. Since each vertex of G′ has degree at most 3, each vertex
has at most one edge going up or down—except u and v, which both have exactly one edge
going up and one going down. Set k1 and k2 to the numbers of edges inside and outside
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Fig. 2: Reduction of HCC to Geodesic PSE.

the cycle, respectively. Then we can map the splitting vertices of the remaining edges to
the point sets P1 and P2, and route the edges as follows, see Fig. 2d. Each splitting node v
that is mapped to a point in P1 ∪ P2 has two neighbors, a left neighbor v− and a right
neighbor v+ (according to their x-coordinates). We route the edge vv− with one bend and
the edge vv+ with two bends. Note that the empty rows leave enough space for all horizontal
edge segments.

Conversely, assume G′ has a geodesic embedding on P (2n − 1, k1, k2) with k1 + k2 = k.
Then, the k vertices that are mapped to points in P1 ∪P2 are incident to at most 2k = n+ 2
edges. This is due to the fact that each such edge has its lexicographically larger endpoint
in either P1 or P2, and we claim that no point in P1 ∪ P2 can be adjacent to more than two
lexicographically smaller points. To see the claim, note that for any point v ∈ P1 the set of
lexicographically smaller points is contained in the third quadrant with respect to v. Clearly,
at most two geodesics can go from v to points in any fixed quadrant. For points in P2, the
argument is symmetric. Thus our claim holds.

Since G is cubic, G′ has 3n edges. This leaves 3n − (n + 2) = 2n − 2 edges incident to
points in P0 only. Since |P0| = 2n− 1, P0 induces a path π that alternates between vertices
of degree 3 (original nodes) and degree 2 (splitting nodes). There are two possibilities: either
both endpoints—call them s and t—have degree 2 or both have degree 3. In the former case,
π would contain n− 1 degree-3 vertices, and s and t would be adjacent to the only remaining
degree-3 vertex (not in P0). This would mean that G is Hamiltonian—contradiction.

Thus we may assume that s and t have degree 3. In this case, π witnesses a Hamiltonian
path connecting s and t in G. This Hamiltonian path can be completed to a Hamiltonian
cycle by an edge through the outer face of G. Since both u and v are incident to one edge
pointing up and one edge pointing down from the path, they are incident to two faces on
either side of the cycle in this embedding. This shows that G is indeed a yes-instance of
HCC.

Note that the proof of Theorem 1 implies that the result extends to the problem where
the (Manhattan-) geodesics are not restricted to the grid.
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3 A Special Case: Geodesic Polygonization

In this section, we present our main result—a simple characterization of the yes-instances
of Geodesic Polygonization. The proof is constructive; it yields an efficient algorithm
that, for a given set of grid points, computes a geodesic polygonization or proves that such a
polygonization does not exist.

To this end, we partition the grid points in a given axis-parallel rectangle B into two
groups as follows. We say that a grid point p in B is even (with respect to B) if its rectilinear
distance to the lower left corner of B is even. Otherwise, we say that p is odd (with respect
to B), see Fig. 3a.

We call a set of points degenerate if the set is contained in an axis-parallel line. It is clear
that a degenerate point set does not have a polygonization. We now characterize all point
sets that do have a polygonization.

Theorem 2. Let P be a non-degenerate set of points on the grid, let B(P ) be the bounding
box of P , and let h and w be the numbers of rows and columns spanned by B(P ), respectively.
Then P has a geodesic polygonization if and only if either (i) h or w is even or (ii) P does
not contain all even points with respect to B(P ).

We can test, in O(n) time, whether a given set of n points has a geodesic polygonization,
and if so, compute one within O(n log n) time.

Before we prove this theorem, let us quickly consider the case that we are not restricted
to the grid. If P is a non-degenerate set of points in the plane, we can use the grid Γ(P )
induced by P . If P fulfills the requirements of Theorem 2 with respect to Γ(P ), we have a
very natural polygonization of P . Otherwise—if Γ(P ) has an odd number of both rows and
columns, and P contains all even points with respect to B(P )—it is sufficient to introduce
one additional column between any two existing columns of Γ(P ) to meet the requirements
of Theorem 2. Hence, we obtain the following corollary of Theorem 2.

Corollary 1. Every non-degenerate set of points in the plane has a geodesic polygonization
off the grid. Such a polygonization can be computed in O(n log n) time.

Proof of Theorem 2. Given the above characterization is correct, testing for the existence of
a polygonalization can clearly be done in linear time: Determine the bounding box, count
even points and return yes if either one dimension of the bounding box is even or if not all
even points of the bounding box are occupied. Hence, the focus will be on the proof of the
characterization. It is constructive and can be extended to an efficient algorithm. It is easy

B

(a)

B

(b)

Fig. 3: (a) A polygon hits even grid points (black disks) and odd grid points (circles) alternatingly.
(b) If a point set contains a corner of its bounding box, we can assume that it also contains
the (marked) points at distance 1 from that corner.
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Fig. 4: Polygonalization according to case 1: U contains (a) an even number of occupied columns or
(b) an odd number of occupied columns plus (at least) one empty column, marked gray.

to see that each of the cases considered in the proof can be solved by a simple algorithm with
running time O(n log n).

Unless stated otherwise, even and odd always refers to B(P ). We first show that P does
not have a polygonization if h and w are both odd and P contains all even points: Observe
that any polygonization of P must contain an equal number of even and odd grid points on its
boundary (see Fig. 3a). If h and w are both odd, the number of even points in B(P ) exceeds
the number of odd points in B(P ) by one. Hence, P does not have a geodesic polygonization
in this case.

In the remainder of the proof, we show that we can construct a polygonization in the
other cases. Note that the fact that P has a polygonization is invariant under rotation by
multiples of 90 degrees and reflection at vertical or horizontal lines.

The key idea of the proof is to partition (some rotation or reflection of) P into two sets U
and U such that U contains all the points on the topmost occupied row and U = P \U . A nice
path for U is a path that (a) connects all points in U by geodesics, (b) ends in the topmost
point of U in the leftmost column and in the topmost point of U in the rightmost column, and
(c) does not occupy the grid points above the two endpoints. To motivate (c), see the thick
gray path in Fig. 4a. Note that, by definition, U is not empty, and by construction of the nice
path, it is easy to connect the endpoints of the nice path in U by a path that contains all points
in U such that the concatenation of the two paths yields the desired geodesic polygonization
of P . Thus, the problem of finding a geodesic polygonization of P reduces to the problem of
finding a nice path in U .

Without loss of generality, we can also assume the following. If a corner of B(P ) lies in P ,
then both points in B(P ) at distance 1 from the corner also lie in P . This follows from the
fact that any polygonization containing the corner of B(P ) must contain these two points as
well (see Fig. 3b). This observation ensures that any partition of P into U and U as described
above has the property that the leftmost column and the rightmost column of U are the same
as those of P , that is, any nice path can be extended to a polygonization. We now consider
two cases.
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Case 1: We can partition P (or some rotation or reflection of P ) into U and U as described
above such that either (i) the number of occupied columns in U is even or (ii) it is odd and
there is at least one unoccupied column in U .

First, assume that the number of occupied columns is even. Then we can sweep the points
in U from left to right and alternatingly from top to bottom and vice versa, starting at the
topmost point of the leftmost column in downward direction. Imagine that all bends of our
tour lie on the boundary of B(U). Then some pairs of points of U that are consecutive in
our tour may be connected by U-shaped pieces of the tour, which are not geodesics. This,
however, can easily be fixed by shortening each U-shape in the sense that its horizontal part
is moved away from the boundary of B(U) until it hits at least one of the two endpoints of
the U-shape. The result is either an L-shaped or simply a horizontal connection, and hence
a geodesic. This process is depicted in Fig. 4a.

Since the number of columns is even, the endpoints are exactly the topmost points on the
leftmost and rightmost column, respectively, and the unoccupied points above the endpoints
of the path are not used.

Next, assume that the number of occupied columns is odd and there is an unoccupied
column (somewhere between, but not necessarily adjacent to two occupied columns). In this
case we use the same approach with the only difference that we also alternate the vertical
sweeping at exactly one of the unoccupied columns. Note that this does not necessarily mean
that there is a bend in the unoccupied column. As illustrated in Fig. 4b, the last point before
the unoccupied row is linked to the first point after the unoccupied row by two horizontal and
one (possibly degenerated) vertical straight-line segment that uses the unoccupied column.

Case 2: We cannot partition P as described in case 1. Then the numbers of occupied
columns and rows of P are both odd, and every partition (of a rotation or reflection) of P
into U and U has the property that every row and every column in U has at least one occupied
point. We know that B(P ) \ P contains an even point, that is, there is an unoccupied even
point in B(P ).

Before we proceed, we introduce the following notation, see Fig. 5. Let X be a non-
degenerate set of points on the grid, and let q be a grid point in B(X). Then we define the
height of q with respect to X to be maxp∈X{y(p)}−y(q), where y(r) denotes the y-coordinate of
a point r ∈ R2. Similarly, we define the depth of q with respect to X to be y(q)−minp∈X{y(p)}.
Finally, we define the stretch of X to be maxp∈X{y(p)}−minp∈X{y(p)}+1, that is, the stretch
of X is the number of rows spanned by X.

depth(q)

height(q)


stretch(X)

X

q

Fig. 5: Stretch of a set X of grid points; height
and depth of a grid point q w.r.t. B(X)
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U

Uleft Umid Uright

p∗

Fig. 6: Partition of P into U and U , and par-
tition of U into Uleft, Umid, Uright

Umid

m

Fig. 7: Relaxed definition of
a nice path for Umid

We now claim the following. In the above situation, we can find a partition of some
reflection or rotation of P into two sets U and U as well as a partition of U into three
sets Uleft, Umid, and Uright as depicted in Fig. 6 such that the following three requirements
are fulfilled.

(R1) The set U contains the points in the topmost row of P , and U = P \ U .

(R2) The set Umid consists of the points in three consecutive columns of U ; the corresponding
subsets of Umid are U1

mid, U
2
mid, and U3

mid (from left to right). Let U23
mid = U2

mid ∪ U3
mid,

and let `1 denote the lowest point in U1
mid. Then, at least one of the following three

statements holds:

(U1) The stretch of U23
mid ∪ {`1} is odd.

(U2) The middle column of Umid contains an unoccupied point p∗ with even height and
odd depth with respect to U23

mid ∪ {`1}.
(U3) The rightmost column of Umid contains an unoccupied point p∗ with odd height

and even depth with respect to U23
mid ∪ {`1}.

(R3) The sets Uleft and Uright are the (possibly empty) sets of points of U to the left and to
the right of Umid, respectively.

We call a partition of P fulfilling (R1)–(R3) an odd partition.
We postpone the proof of the claim for now. Given an odd partition, we first show how to

find a nice path for U by finding and linking nice paths for Uleft, Umid, and Uright. We slightly
modify the definition of a nice path for Umid by allowing the path to end in a point m of the
middle column of Umid if all points in Umid either lie to the left or below m and if the path
does not go through the point to the right of m, see Fig. 7.

Note that we can find nice paths for Uleft and Uright as in case 1 since both sets consist
of an even number of occupied columns. In other words, we need only consider Umid. The
first part of the nice path for Umid consists of a vertical straight-line segment containing all
points on the leftmost column of Umid. Now we follow the case distinction concerning the
shape of U23

mid in the above definition of an odd partition.

Case 2.U1: The stretch of U23
mid ∪ {`1} is odd.

We sweep the second and third column of Umid row by row from bottom to top, starting
at the bottommost row of U23

mid ∪ {`1} and alternating the walking direction between right
and left in each (not necessarily occupied) row. This yields an ordering of the points in U23

mid.
We link consecutive points in this ordering by geodesics (see Fig. 8a). The geodesics can
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(a) (U1)

p∗ p∗

`1 `1

(b) (U2)

p∗

`1

p∗

`1

(c) (U3)

Fig. 8: Nice paths for Umid according to subcases (U1)–(U3). Each figure shows the sweep starting
in the bottommost row of U23

mid ∪ {`1} (left) and the resulting geodesic path (right).

be drawn such that they are interior-disjoint since, if two consecutive points aren’t already
connected by a geodesic, they are either in the same column or there must be at least one
empty row between them. Let m be the last point on the resulting path. Since the stretch
of U23

mid∪{`1} is odd, the path reaches m coming from below or from the left. Hence, our path
is a nice path for U23

mid. It can be connected to `1 since the sweep goes left-to-right through
the bottommost row of U23

mid ∪ {`1}.
Case 2.U2: The middle column of Umid contains an unoccupied point p∗ with even height
and odd depth with respect to U23

mid ∪ {`1}.
In this case we compute the nice path as illustrated in Fig. 8b. We sweep U23

mid from
bottom to top starting at the lowest (not necessarily occupied) row in U23

mid ∪ {`1} from left
to right. We alternate the walking direction between right and left in each (not necessarily
occupied) row skipping the row that contains p∗. Since the depth of p∗ is odd, the walking
direction is left-to-right in the row below p∗. Hence, our sweep leaves out p∗. We link points
that were swept consecutively by geodesics as in the previous subcase. Again, the resulting
path is nice.
Case 2.U3: The rightmost column of Umid contains an unoccupied point p∗ with odd height
and even depth with respect to U23

mid ∪ {`1}.
This case is very similar to the previous subcase. We skip the row containing p∗ in the

sweep. Since the depth of p∗ is even, the walking direction in the row below p∗ is right-to-left.
Hence, we leave out a point in the right column, which is exactly p∗. An example for this
case is depicted in Fig. 8c.

In all three cases the two geodesic paths for U1
mid and U23

mid can be combined to a nice path
for Umid since the path for U23

mid (a) starts at the leftmost point on the lowest row of U23
mid∪{`1}

and (b) stops at the topmost point of U23
mid without going through the point to the right of

the topmost point. Hence, we have found a nice path for Umid.
We now turn to the claim whose proof we postponed before.

Claim: Suppose that case 1 does not apply, that is, the numbers of occupied columns and
rows of P are both odd and the partition of any rotation or reflection of P into U and U has
the property that every row and every column in U has at least one occupied point and there
is an even point in B(P ) \ P .

In this setting, we show how to find an odd partition of P , and in cases (U2) and (U3) a
corresponding point p∗ as stated in the claim. Note that any rotation and any reflection ϕ of
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the point set maps even points to even points and odd points to odd points with respect to
the new positions, respectively. In order to prove the claim, we consider two cases:

Case (i): There is an unoccupied even point p0 on the boundary of B(P ).
We assume without loss of generality that p0 is in the bottom row r0 of B(P ). Since r0

is non-empty, there must be an occupied point on r0, say, to the left of p0. Let p∗ be the
leftmost unoccupied even point of r0 such that there is an occupied point to the left of p∗.
Since p∗ is an even point in r0, there is an even number of occupied columns in U to the left
of p∗. By the choice of p∗ this number of columns is at least 1 and hence there are at least
two occupied columns to the left of p∗.

Let U be the set of points in the top row of P . Let U = P \ U , and let Umid be the
subset of U in the column of p∗ and the two columns to its left. Since p∗ is an even point
on the lowest row, there must be an even number of columns to the left and right of Umid,
respectively, and we fix Uleft and Uright accordingly.

Since p∗ is on the lowest row the depth of p∗ with respect to U23
mid∪{`1} is zero and, hence,

even. If the stretch of U23
mid ∪ {`1} is even, then the height of p∗ with respect to U23

mid is odd
and its depth is even. Since p∗ is in the rightmost column with respect to Umid, this yields
an odd partition according to case (U3). If the stretch of U23

mid ∪ {`1} is odd, this yields an
odd partition according to case (U1).

Case (ii): All even points on the boundary of B(P ) are occupied.
Again, we let U be the top row of B(P ) and let U = P \U . Let p0 be a leftmost unoccupied

even point in B(U). Such a point must exist, since all even points on the boundary are in
P and U only contains points on the boundary. This also implies that there is at least one
occupied column to the left of p0. Note that by assumption all even points to the left of p0

are occupied. We distinguish two cases:
First, suppose that there is an even number of columns to the left of p0. Let U23

mid consist
of the points in the column of p0 and the two columns to its left and choose Uleft and Uright

accordingly. Let p∗ be the lowest unoccupied even point in the column of p0. Since p∗ is an
even point with an even number of columns to the left and since all even points below p∗ are
occupied, p∗ has an even depth with respect to U23

mid. If the height of p∗ is even, then the
stretch of Umid is odd, hence, this yields an odd partition according to case (U1). Otherwise,
this yields an odd partition according to case (U3).

Next, assume that there is an odd number of columns to the left of p0. In this case we
mirror the instance on a vertical line, that is, p0 is in the rightmost column containing an
unoccupied even point and there is an odd number of columns to the right of p0 whose even
points are all occupied. We let Umid consist of all the points of U in the columns of p0 and
its two neighboring columns and choose Uleft and Uright accordingly. Let p∗ be the lowest
unoccupied even point on the column of p0. Since p∗ is an even point with an odd number
of columns to the left and since all even points on the column to its right are occupied, p∗

has an odd depth with respect to Umid. If the height of p∗ is odd as well, then the stretch
of Umid is odd, and therefore, this yields an odd partition according to case (U1). Otherwise
the height of p∗ is even, and this yields an odd partition according to case (U2).
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