Urban Maximilian Richter

Controlled
Self-Organisation

Using Learning Classifier Systems

AT *5isning

Urban Maximilian Richter

Controlled Self-Organisation
Using Learning Classifier Systems

Controlled Self-Organisation
Using Learning Classifier Systems

by
Urban Maximilian Richter

NCUT ishing

Dissertation, Universitit Karlsruhe (TH)
Fakultit fur Wirtschaftswissenschaften, 2009
Tag der miindlichen Prifung: 30. Juli 2009
Referent: Prof. Dr. Hartmut Schmeck
Korreferent: Prof. Dr. Karl-Heinz Waldmann

Impressum

Karlsruher Institut fir Technologie (KIT)
KIT Scientific Publishing

Stral3e am Forum 2

D-76131 Katrlsruhe

www.uvka.de

KIT — Universitit des Landes Baden-Wiirttemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

(S0

Diese Veroffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2009
Print on Demand

ISBN: 978-3-86644-431-7

Controlled Self-Organisation
Using Learning Classifier Systems

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultat fiir Wirtschaftswissenschaften
der Universitiat Karlsruhe (TH)

genehmigte
DISSERTATION

von

Dipl.-Wi.-Ing. Urban Maximilian Richter

Tag der miindlichen Priifung: 30. Juli 2009
Referent: Prof. Dr. Hartmut Schmeck
Korreferent: Prof. Dr. Karl-Heinz Waldmann

2009 Karlsruhe

I am not amused about killing so many chickens.

Abstract

The complexity of technical systems increases continuously. Breakdowns and fatal
errors occur quite often, respectively. Therefore, the mission of organic computing is
to tame these challenges in technical systems by providing appropriate degrees of
freedom for self-organised behaviour. Technical systems should adapt to changing
requirements of their execution environment, in particular with respect to human
needs. According to this vision an organic computer system should be aware of its
own capabilities, the requirements of the environment, and it should be equipped with
a number of so-called self-z-properties. These self-x-properties provide the anticipated
adaptiveness and allow reducing the complexity of system management. To name a
few characteristics, organic systems should self-organise, self-adapt, self-configure,
self-optimise, self-heal, self-protect, or self-explain.

To achieve these ambitious goals of designing and controlling complex systems,
adequate methods, techniques, and system architectures have to be developed, since
no general approach exists to build complex systems. Therefore, a regulatory feedback
mechanism is proposed, the so-called generic observer/controller architecture, which
constitutes one way to achieve controlled self-organisation in technical systems.

To improve the design of organic computing systems, the observer/controller
architecture is applied to (generic) multi-agent scenarios from the predator/prey
domain. These simple test scenarios serve as testbeds for evaluation. Furthermore,
the aspect of (on-line) learning as part of the controller is specially described and the
question is investigated, how technical systems can adapt to dynamically changing
environments using learning classifier systems as a machine learning technique.

Particularly, learning classifier systems are at the focus of many organic computing
projects, because they are a family of genetic- and rule-based machine learning
methods that fit well into the observer/controller framework. One of their great
advantages is that classifier systems aim at the autonomous generation of potentially
human-readable results, because they provide a compact generalised representation
whilst also maintaining high predictive accuracy. But, learning classifier systems also
have drawbacks. The number of reinforcement learning cycles a classifier system

Xl

Abstract

requires for learning largely depends on the complexity of the learning task. Thus,
different approaches to reduce this complexity and to speed up the learning process
are investigated and compared.

A straightforward way to reduce this complexity is to decompose the task into
smaller sub-problems and learn the sub-problems in parallel. It is shown that speeding
up the learning process largely depends on the designer’s decision, how to decompose
a problem into smaller and modular sub-problems. Thus, different single-agent
learning approaches are investigated, which use learning classifier systems that learn
in parallel.

Furthermore, these parallel learning classifier systems are compared with the
organic approach of the two-levelled learning architecture as part of the organic
controller. At the on-line level (level 1) the proposed architecture learns about
the environment, and about the performance of its control strategies. It does so
on-line. Level 2 implements a planning capability based on a simulated model of
the environment. At this level the agent can test and compare different alternative
strategies off-line, and thus plan its next action without actually acting in the
environment.

Finally, the potential and relevance of the different learning approaches is evaluated
in the case of simple predator/prey test scenarios with respect to more demanding
application scenarios.

XIl

Acknowledgements

Writing scientific publications, especially this thesis, is and has mostly been a lonely
business. At the end, only my name will occur on the title. All mistakes and all
achievements will be linked to me. However, research does not take place in an
evacuated place. There have always been people, supporting my way. Thus, I would
like to thank all those people, who have accompanied my way during the last years,
months, and weeks and who have given me advice in many kinds so that I have
finally accomplished this thesis.

Foremost, I would like to thank Prof. Dr. Hartmut Schmeck, my doctoral adviser,
for supporting me and my research during the last years. I have greatly benefited
from his long experience and his way of leading his research group. He has offered
me many degrees of freedom to settle down on research topics that became of my
personal interest. I am also extremely thankful for his commitment to timely review
this thesis despite his busy timetable.

I would also like to thank Prof. Dr. Karl-Heinz Waldmann, from Universitat Karls-
ruhe (TH), who, without hesitation, accepted the request to serve as second reviewer
on the examination committee. Furthermore, many thanks to Prof. Dr. Andreas
Oberweis and Prof. Dr. Hagen Lindstadt, both from Universitit Karlsruhe (TH),
who served as examiner and chairman respectively on the examination committee.

I am grateful to my friends and colleagues of the research group Efficient Algo-
rithms for the excellent and lively working atmosphere within the team. Special
thanks to Jiirgen Branke for mentoring my research project and Matthias Bonn for
supporting my research by JoSchKa, a really helpful tool to distribute computational
intensive simulation tasks among free workstations and servers. Also, many thanks to
Andreas Kamper and Holger Prothmann for productive, interesting, and encouraging
discussions and reviewing parts of this thesis. Thanks to all others of LSI for — not
only — having funny discussions on lunchtime.

Similarly, I am grateful to all external collaborators and project partners. In this
context, special thanks to Prof. Dr.-Ing. Christian Miiller-Schloer and Moez Mnif,
both from Leibniz Universitat Hannover. Various parts of this thesis are based on

X1

Acknowledgements

a creative collaboration with them. I have often benefited from common project
meetings, their experiences, and their opinion. Moreover, thanks to Emre Cakar,
Jorg Hahner, Fabian Rochner, and Sven Tomforde for making travel to Hannover,
several workshops, and conferences a lovely and regular experience.

Last but not least, I would like to thank my family and friends for their permanent
support and being there even in stressful and chaotic times. Special thanks to my
parents and my sister, who always believed in me and supported my way in every
respect. Thanks to my mother, my sister Helene, and Jan-Dirk for reviewing this
thesis concerning language and grammar. Moreover, I am grateful to Niklas, Ana,
and mostly Jule for their constant encouragement and for making my Karlsruhe
years wonderful and unforgettable.

Karlsruhe, October 2009 Urban Maximilian Richter

XIV

Contents

List of Tables XIX

List of Figures XXI

List of Abbreviations XXV

1 Introduction 1

1.1 Motivation 2

1.2 Objectives and Approach 4

1.3 Major Contributions, 6

1.4 Reader’s Guide to this Thesis 7

1.5 How this Thesis Was Written 8

2 Organic Computing (OC) 9

3 Controlled Self-Organisation 13

3.1 Self-Organisation, 15
3.1.1 Understanding Self-Organisation from the Viewpoint of Differ-

ent Sciences 15

3.1.2 Properties of Self-Organisation. 18

3.1.3 Definition of Self-Organisation 20

3.1.4 Summary 20

3.2 Emergenceo 21

3.3 Architectures for Controlled Self-Organisation 23

34 Summary 25

4 Observer/Controller Architecture 27

4.1 Observer 28

4.1.1 Model of Observation 30

4.1.2 Monitor 30

XV

Contents

XVI

413 LogkFile 31
4.1.4 Pre-Processor 31
4.1.5 Data Analyser 31
4.1.6 Predictor 40
4.1.7 Aggregator 42
4.1.8 Summary 42
4.2 Controller 42
421 Level 1. 44
422 Level 2. 45
4.2.3 Summary 45
4.3 On-Line Learning and Off-Line Planning Capabilities 46
4.4 Architectural Variants of the Observer/Controller Architecture 49
4.5 Related Architectures 52
4.5.1 Autonomic Computing 52
4.5.2 Operator/Controller Module 54
4.5.3 Sense, Plan, and Act (SPA) 57
4.5.4 Component Control, Change Management, and Goal Manage-
ment e e 62
4.5.5 Control Theory 64
4.5.6 Other Related Approaches 65
4.6 Summary . . oL o. ... 66
Learning to Control 69
5.1 General Thoughts on Learning 70
5.2 Machine Learning oo 72
5.3 Learning Classifier Systems (LCSs) 73
5.3.1 Pittsburgh vs. Michigan Style 74
5.3.2 Single-Step vs. Multi-Step Problems 75
5.3.3 Different Implementations 7
5.3.4 The eXtended Classifier System (XCS) 78
54 Drawbacks of LCSso 83
5.5 Parallelism in LCSs oo 84
5.5.1 Single-Agent Learning Approach 84
5.5.2 Multi-Agent Learning Approach 88
5.6 Level 2 and Another Covering Method 97
5.7 Summaryo 98
Test Scenarios 101
6.1 Multi-Agent Systems o 101
6.1.1 The Predator/Prey Example 104
6.1.2 Homogeneous and Non-Communicating Agents 104
6.1.3 Heterogeneous and Non-Communicating Agents 105

Contents

6.1.4 Homogeneous and Communicating Agents 105
6.1.5 Heterogeneous and Communicating Agents 107
6.1.6 Cooperative and Competitive Multi-Agent Learning 107
6.1.7 Concluding Remarks 109
6.2 Chicken Simulation oL 109
6.2.1 Agent Behaviour L. 112
6.2.2 General Simulation Structure 115
6.2.3 Observing the Chickens 116
6.2.4 Controlling the Chickens 121
6.2.5 Discussion of Special Aspects 128
6.3 Other Multi-Agent Scenarios 135
6.3.1 Lift Simulation oo 135
6.3.2 Cleaning Robots L. 138
6.3.3 Multi-Rover Scenario 139
6.4 Summary 139
Experimental Design 141
7.1 Design Guidelines 141
7.2 Pre-Experimental Planning 0. 142
7.2.1 Selection of the Response Variables 142
7.2.2 Choice of Factors, Levels, and Ranges 143
7.3 Choice of Experimental Designs 145
Results 147
8.1 Preliminary Experiments 147
8.1.1 Chicken Simulation without Control 148
8.1.2 Parameter Studies Using Single Fixed Rules Controller 148
8.2 Learning to Control 154
8.2.1 Effect of Varying the Search Space 157
8.2.2 Effect of Simulation Time 159
8.2.3 Effect of Varying Maximal Population Sizes 160
8.2.4 Effect of Reward Functions 161
8.2.5 Effect of Other Parameters as Known from Literature 163
8.2.6 Pure On-Line Learning 164
8.2.7 Learning over Thresholds 166
8.2.8 Summary 167
8.3 Parallel XCS Architectures 169
83.1 2PXCS 169
832 3PXCS. 171
83.3 HXCS 172
8.3.4 Limitations of the Single-Agent Learning Approach 173
8.4 Using Level 2 Learning 175

XVII

Contents

8.5 Using Another Metric on the Observer’s Side 177
8.6 Concluding Remarks on the Experiments 179

9 Conclusion and Outlook 181
9.1 Summary 181
9.2 Conclusion 184
9.2.1 LCSs as Part of the On-Line Learning Level 184

9.2.2 Speeding up the Learning Process by Parallelism 185

9.2.3 Combining On-Line Learning and Off-Line Planning 185

9.2.4 Generality of the Experimental Results 186

9.3 Outlook 186
9.3.1 Outlook from the Viewpoint of the Investigated Scenario . . . 187

9.3.2 Outlook from the Viewpoint of the OC Community 188

9.3.3 Outlook from the Viewpoint of the LCSs Community 188

94 Final Remarks. 189
References 191

XVIII

4.1

4.2

4.3

6.1
6.2

8.1
8.2
8.3
8.4

8.5
8.6

8.7

List of Tables

Comparison of the different levels in the observer/controller architec-
ture vs. the operator/controller module 57
Comparison of the different levels in the observer/controller archi-
tecture vs. the three-layered architecture from the area of (mobile)
robotics 61
Comparison of the different levels in the observer/controller archi-
tecture vs. the three-levelled architecture for self-managed software

systems 63
Parameters of the chicken simulation 114
Observable parameters 118
Chicken simulation without control 148
Combinations of fixed single rules controller parameters 150
Results of the fixed single rule controller experiments over 10 000 ticks

with the parameter combination d =5, ¢, = 0.2, and ¢, =03 153
Results of the single fixed rules experiments over 10000 ticks sorted

for the average #kco 153
Varying values of duration and intensity 158
Results of the XCS vs. the best single fixed rules controller established

in parameter studies with varying the simulation time 165

Average number of killed chickens #kc after 10000 simulated ticks
in ascending order using an XCS, which is triggered when predefined
thresholds are exceeded 0oL 167

XIX

List of Figures

3.1 Simplified view of the generic observer/controller architecture

4.1 Generic observer/controller architecture with two-level learning
4.2 Generic observer architecture consisting of a monitor, a pre-processor,
a data analyser, a predictor, and an aggregator
4.3 Example of order perception: Depending on the objective of the
observer the nine balls are perceived as orderly or unorderly (position
on the left hand side vs. colour on the right hand side)
4.4 Fingerprint with different attributes at three specific times ¢, t;, and
to, visualised as a six-dimensional Kiviat graph (one dimension for
cach attribute) oL o
4.5 Entropy values depending on the probability of the colour red
4.6 Generic controller architecture with two-level learning
4.7 Centralised and distributed variants of the generic observer/controller
architecture
4.8 Multi-levelled or hierarchical variant: An observer/controller on each
system element as well as one for the whole technical system
4.9 Structure of an autonomic element, which interacts with other elements
and with human programmers via its autonomic manager, see [KCO03]
4.10 Structure of the operator/controller module, see [HOG04]
4.11 A mobile robot control system is decomposed traditionally into func-
tional modules, see [Bro86| Lo
4.12 Task achieving behaviours as decomposition criterion for mobile robots,
see [Bro86|
4.13 Control is layered in a hierarchy of levels of competence, where higher
layers subsume lower layers in the case of taking control, see [Bro86|:
Partitioning the system is possible at every level, the lower layers form
a complete operational control system
4.14 Three-levelled architecture for self-managed systems, see [KMO7| . . .

14

28

93

62

XXI

List of Figures

5.1
5.2
2.3

5.4
2.5
2.6

6.1
6.2

6.3
6.4

6.5

6.6
6.7
6.8
6.9

6.10

6.11

6.12
6.13
6.14
6.15
6.16

6.17

6.18
6.19
6.20
6.21
6.22
6.23

XXII

The Woods101 example is a non-Markov environment
Schematic overview of an XCS, see [Wil98]
Variants of parallel LCSs as part of the single-agent learning approach:

Parallelism is distinguished on different levels, see [Gia97]
Population structures for parallel multi-agent LCSs
Multi-agent learning approach00
Two-level learning architecture is applied to an XCS

Variants of the predator/prey example, see [SV0O0O]
Snapshots of the chicken simulation: Unwounded chickens are white,
wounded chickens are dark (red), and feeding troughs are represented
by four bigger (yellow) circles.
An Eurovent cage with 60 chickens
Finite state machine of a chicken representing the local behaviour
rules of a single chicken
Operational sequence of the chicken simulation, the contained observ-
ing and controlling steps are shown in Figures 6.7 and 6.12
The generic architecture is applied to the chicken scenario
Steps of the observing process
Method to predict clustering, see [MMS06]
Emergence value of the z-coordinates over time without any control
action
Interpolated emergence value of the x-coordinates over time without
any control action L Lo
Number of killed chickens #kc over time (every peak denotes a killed
chicken) without control action
Steps of the controlling process
Snapshot of the chicken simulation with noise control
Controlling with fixed single rules
Emergence value of the x-coordinates over time with control action
Interpolated emergence value of the z-coordinates over time with
control action
Number of killed chickens #kc over time (every peak denotes a killed
chicken) with control action,
If a predefined threshold exceeds, learning will start using an XCS . .
Learning all possible situations using an XCS
An XCS is equipped with a simulation model on level 2
Simplified chicken scenario
Example with identical entropy and emergence values, respectively . .
An architectural overview of organic traffic control: Level 0 represents
the traffic node, levels 1 and 2 are organic control levels responsible
for the selection and generation of signal programmes, see [RPBT06] .

125

126
126
127
128
130
131

132

List of Figures

6.24

7.1

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10
8.11

8.12

8.13
8.14
8.15

8.16
8.17
8.18

8.19
8.20

8.21

Lifts synchronise, move up and down together, and show the emergent
effect of bunching oo 135
Simplified cause and effect diagram of the chicken simulation 144

Fitness landscape of the chicken simulation depends on three thresholds

of critical emergence values and two parameters of a noise signal . . . 149
Chicken simulation with single fixed rules controller, t, = 0.1, ¢, = 0.3,
i € {0,10,20,...,50}, and t, € {0.1,0.2,...,0.6} 151
Chicken simulation with single fixed rules controller, t, = 0.2, ¢;, = 0.3,
i € {0,10,20,...,50}, and ¢, € {0.1,0.2,...,0.6} 151
Chicken simulation with single fixed rules controller, t, = 0.3, t;, = 0.3,
i €{0,10,20,...,50}, and ¢, € {0.1,0.2,...,0.6} 151
Chicken simulation with single fixed rules controller, t, = 0.4, t;, = 0.3,
i € {0,10,20,...,50}, and ¢, € {0.1,0.2,...,0.6} 152
Chicken simulation with single fixed rules controller, t, = 0.5, t;, = 0.3,
i € {0,10,20,...,50}, and t, € {0.1,0.2,...,0.6} 152
Chicken simulation with single fixed rules controller, t, = 0.6, t;, = 0.3,
i € {0,10,20,...,50}, and t, € {0.1,0.2,...,0.6} 152
Excerpt of a typical XCS’s population 155
Learning condition-action-mappings for all situations 156
Learning condition-action-mappings for critical situations only 157
Learning over time in scenarios with different search spaces, varying
parameters of duration and intensity, as shown in Table 8.5, and
having a population of maximal 2500 classifiers 158
Learning over time in scenarios with different search spaces, varying

parameters of duration and intensity, as shown in Table 8.5, and

having a population of maximal 5000 classifiers 159
Effect of varying the maximal population size 160
Effect of varying the reward function 162
Learning over time using an XCS vs. the best found single fixed rules

controller 166
XCS over threshold with (t,,%,,¢,) = (0.1,0.1,0.3) vs. XCS 168
XCSwvs. 2PXCS . . . o o 170
Learning over time: XCS vs. 2PXCS, averaged values over 20 runs, 15

possible actions, d € {5,...,9} x i€ {0,10,20} 170
3PXCSvs. HXCS 171
Learning over time: XCS vs. 3PXCS, averaged values over 20 runs, 15

possible actions, d € {5,...,9} xi€{0,10,20} 172
Learning over time: XCS vs. HXCS, averaged values over 20 runs, 15

possible actions, d € {5,...,9} xi € {0,10,20} 173

XX

List of Figures

8.22 Learning over time: XCS vs. XCS with level 2, averaged values over

20 runs, 15 possible actions, d € {5,...,9} x i € {0,10,20} 176
8.23 Comparing learning over time, which is based on different metrics on

the observer’s side, averaged values over 20 runs, 15 possible actions,

de{5,...,9} x1€{0,10,20} 178
8.24 Learning over time: All investigated approaches, averaged values over
20 runs, 15 possible actions, d € {5,...,9} x i € {0,10,20} 179

XXIV

#kc
2PXCS
3PXCS

d, d;

€, €y, Ep —

HXCS

oC
SuOC
tzatyath

XCS

List of Abbreviations

The number of killed chickens

Two parallel instances of the extended classifier system
Three parallel instances of the extended classifier system
The duration of a noise signal

The relative emergence indicators

The hierarchical organised extended classifier system
The intensity of a noise signal

A learning classifier system

Learning (or planning) on level 2 of the generic observer/controller archi-
tecture

Organic computing

The system under observation and control

— Predefined thresholds of critical emergence values

The extended classifier system, as introduced in [Wil95]

XXV

Chapter

Introduction

In the Nevada desert, an experiment has gone horribly wrong. A cloud
of nanoparticles — micro-robots — has escaped from the laboratory. This
cloud 1s self-sustaining and self-reproducing. It is intelligent and learns
from experience. For all practical purposes, it is alive. It has been
programmed as a predator. It is evolving swiftly, becoming more deadly
with each passing hour. FEvery attempt to destroy it has failed. And we
are the prey.

As fresh as today’s headlines, Michael Crichton’s most compelling novel
yet tells the story of a mechanical plague and the desperate efforts of a
handful of scientists to stop it. Drawing on up-to-the-minute scientific fact,
Prey takes us into the emerging realms of nanotechnology and artificial
distributed intelligence — in a story of breathtaking suspense. Prey is a
novel you can’t put down. Because time is running out. [Cri02]

These words cited above are written on the hardcover version of the techno-thriller
novel Prey by Michael Crichton. Of course, the book is science fiction and human
beings fighting against a swarm of micro-robots seems to be not realistic so far, but
an interesting story is told that features relatively new advances in computer science,
such as artificial life, swarm intelligence, self-organisation, genetic algorithms, or
multi-agent-based computing. Major themes of the book deal with the threat of
intelligent micro-robots escaping from human control and becoming autonomous,
self-replicating, and, by that, dangerous. Many aspects of the story, such as the
cloud-like nature of the nanoparticles and their nature-inspired process of evolution
closely follow research done by computer scientists in the past (few) years, see
e.g., the fields of evolutionary computation [FOW66, Gol89, Hol75]|, computational
intelligence [Eng02, PMG98|, or artificial life'.

http://www.alife.org

Chapter 1 Introduction

As short-sighted decision-making at the corporate level can lead to a disaster when
the companies involved control dangerous new technology, the book is about the
potential consequences, if suitable controls are not placed on biotechnology, before it
will develop to such an extent that it can threaten the survival of life on earth. Of
course, this is an important discussion and scientists doing research in informatics or
biologically inspired informatics have to cope with it.

Hence, this thesis will focus on the challenge of designing technical systems, which
are inspired by swarm intelligence, multi-agent systems, or self-organisation and
enable controllability of these systems at the same time. The research on these
different domains has intensified. A growing number of conferences?, workshops?,
and journals* supports this trend.

Paradigms of computing are emerging based on modelling and developing compu-
ter-based systems exploiting ideas that are observed in nature. The human body’s
autonomic nervous system inspires the design of self-organising computer systems,
as proposed in IBM’s autonomic computing initiative®. Some evolutionary systems
are modelled in analogy to colonies of ants or other insects. Highly-efficient and
highly-complex distributed systems are developed to perform certain functions or
tasks using the behaviour of insects as inspiration, e. g., swarms of bees, flocks of
birds, schools of fish, or herds of animals.

Self-organising systems are not science fiction any more, but problems with in-
creasing complexity and controllability of technical systems call for new system
architectures, as postulated in the field of organic computing (OC) and explicitly
investigated in this thesis.

1.1 Motivation

As mentioned in [BMMST*06], the impressive progress in computing technology over
the past decades has not only led to an exponential increase in available computing
power, but also to a shrinking of computer chips to a miniature format. While only
twenty years ago, the predominant computing platform was a company mainframe
shared by many users, today, a multitude of embedded computing devices surrounds
us, including PDA, cell phone, digital camera, navigation system, MP3-player, etc. in
everyday life. An additional trend during recent years has been that these devices are
equipped with (often wireless) communication interfaces, allowing them to interact
and exchange information.

2E.g., the International Joint Conference on Autonomous Agents and Multi-agent Systems
(AAMAS) or the Genetic and Evolutionary Computation Conference (GECCO)

3E. g., the International Workshop on Learning and Adaptation in Multi-agent Systems (LAMAS)
or the International Workshop on Learning Classifier Systems (IWLCS)

4E. g., Artificial Life (MIT Press Journals) or ACM Transactions on Autonomous and Adaptive
Systems (TAAS)

Shttp://www.research.ibm.com/autonomic or see Section 4.5.1

1.1 Motivation

Amongst others this outlook towards smaller, more intelligent, and more numer-
ous devices surrounding everybody in his everyday life is given by the paradigm
of wbiquitous computing, which was first introduced by Mark Weiser in [Wei91].
Future information processing will be integrated into a broad range of everyday
and everywhere objects making these objects intelligent. These devices will be
interconnected and they will communicate over various communication channels.
Thus, networks of intelligent systems will grow, and their behaviour will no longer
be predictable with certainty due to interaction effects, see [Sch05a].

In addition, other large technical systems consist of more and more interconnected
electronic devices. For example, in cars, numerous processors and embedded systems
keep the vehicle on the road, control the engine with respect to combustion and
pollution, assist the driver, provide security with air bags and seat belt systems,
provide functions such as air conditioning, navigation, parking assistant, information
services, and entertain the passengers. All these controllers are connected to a
complex communication network. And this development has not stopped yet.

Technical innovations are only a stone’s throw away from scenarios like smart
factory, with flexible robots self-organising to satisfy the needs at hand [Gui08§], or
smart cars that adapt to different drivers and road conditions, communicate with
other cars on special events, or integrate personal devices (PDA, mobile telephone,
or notebook) into their network.

While this development is exciting, the resulting systems become increasingly
complex, up to the point where they can no longer be designed or used easily. Even
today, in the automotive sector, it is estimated that about half of all car break-downs
are caused by electric and electronic components. E. g., in 2005 weak car batteries
head the table of causes for break-downs listed by the ACE Auto Club Europa with
25% [ACEO06], while electronic components are listed on third position (currently)
with 13%, still increasing their percentage.

Thus, the questions arise, how to design such complex distributed and highly
interconnected systems, and how to make them reliable and usable. Clearly, the
designer is not able to foresee all possible system configurations, and to prescribe
proper behaviours for all cases. Additionally, the user is relieved from having control
in detail over all parameters of the system, allowing him or her to influence the
system on a higher level, e. g., by setting goals.

OC has the vision to meet this challenge of coping with increasing complexity by
making technical systems more life-like, and endowing them with properties such
as self-organisation, self-configuration, self-repair, or adaptation [Sch05b|. Future
systems will possess certain degrees of freedom to handle unforeseen situations and
act in a robust, flexible, and independent way. Thus, these systems will exhibit
self-organised behaviour, which makes them able to adapt to a changing surrounding.
That is why, in the field of OC, these systems are called organic. Hence, an OC system
is a system, which dynamically adapts to the current situation of its environment, but
still obeys goals set by humans. In addition to this environmental awareness, systems

Chapter 1 Introduction

providing services for humans will adjust themselves to the users’ requirements (and
not vice versa). Based on these trends, the question, also addressed in this thesis,
is not, whether complexity increases or informatics is confronted with emergent
behaviour, but how new technical systems will be designed that have the possibility
to cope with the emerging global behaviour of self-organising systems by adequate
control actions.

1.2 Objectives and Approach

As outlined before and motivated in Chapter 2, OC has a major research interest in
new system architectures that self-organise and adapt exploiting certain degrees of
freedom. To achieve these ambitious goals of designing and controlling self-organising
systems, adequate methods and system architectures have to be developed, since no
general approach exists to build OC systems. Therefore, OC proposes a regulatory
feedback mechanism, the so-called generic observer/controller architecture |[MS04],
which constitutes one way to achieve controlled self-organisation in technical systems.

Using this control loop, an organic system will adapt over time to its changing
environment. It is obvious that this architecture could benefit from learning capabil-
ities to tackle these challenges. Therefore and as described in detail in Chapter 4,
the controller has been refined by a two-levelled learning approach. At the on-line
level (level 1) the proposed architecture learns about the environment, and about
the performance of its control strategies. Level 2 implements a planning capability
based on a simulated model of the environment. At this level an agent can test and
compare different alternative strategies off-line, and plan its next action without
actually acting in the environment. Thus, the two research questions addressed in
this thesis are defined in the following in more detail.

1. What does it mean to establish and utilise controlled self-organisation in the
context of technical OC scenarios specially focussing on learning classifier
systems (LCSs) as machine learning technique on level 1 of the proposed
two-levelled learning architecture?

2. How is the (on-line) learning process speeded up?

In other words, the observer/controller architecture is refined into a form that
can serve as a generic template containing a range of components, which should be
necessary in a range of OC application scenarios. It enables a regulatory feedback
mechanism and the use of machine learning techniques to improve a single-agent’s or a
multi-agent system’s behaviour in technical domains with the following characteristics.

e There exists a need for on-line decision-making,

e decisions are based on (aggregated) sensor information,

1.2 Objectives and Approach

e decisions are influenced by and based on decisions that have been taken by
other agents, and

e several agents act with a cooperative/competitive, well-defined, and high-level
goal.

Thus, the agents are assumed to have the following characteristics.

e The ability to process, aggregate, and quantify sensor information,

e the ability to use this information to update and control their (local) behaviour,
and

e the ability to cope with limited communication capabilities, e. g., caused by
local neighbourhoods, low bandwidth, power restrictions, etc.

In the following, scenarios are mainly investigated, where a collection of (non-
adaptive) agents is observed and controlled by a centralised observer/controller
architecture. In these scenarios, learning takes place on a higher level of abstraction.

The general approach to answering the thesis questions has been to investigate
selected ideas of the generic observer/controller architecture within different multi-
agent scenarios, which serve as representative OC test scenarios. Since the main
goal of any testbed is to facilitate the trial and evaluation of ideas that show great
promise for real world applications, e.g., smart production cells, smart factories,
logistics, traffic, automotive industry, or information technology, the chosen test
scenarios are assumed to have the following properties.

e To allow for generalisation of the results, each test scenario should exhibit a
different emergent phenomenon, which could be observed and controlled, hence
justifying the utility of the observer/controller architecture.

e On the other hand, the test scenarios should be rather simple to implement
and easy to understand.

Therefore, all of the thesis contributions have originally been developed in simulated
scenarios of the predator/prey domain, which has served as demonstrating and
evaluating scenario for manifold research ideas for a long time.

An initial assumption was that in domains with the above characteristics agents
should map their sensor information to control actions. LCSs could provide such
a mapping. Therefore, their suitability had to be investigated. The use of LCSs is
specially focussed on level 1 of the proposed two-levelled learning architecture and
methods are successfully contributed, which equip such multi-agent scenarios, as
mentioned above, with OC ideas.

Chapter 1 Introduction

While LCSs have drawbacks in learning speed, which seem to be critical in
combination with technical applications, mechanisms have been investigated, which
speed up the learning process of LCSs. These approaches are compared with the
proposed two-levelled learning architecture that learns on-line (level 1) about the
environment and about the performance of its control strategies, while on level 2 a
planning capability is used, based on a simulation model of the environment, where
an agent can test and compare different alternative strategies off-line, and thus plan
its next action without actually acting in the environment.

1.3 Major Contributions

In brief, this thesis makes three main contributions related to the research fields of
OC. First, OC research is summarised that has been done over the last five years
and specially focusses on the design of the generic observer /controller architecture,
which serves as a framework for building OC systems. This architecture allows
for self-organisation, but at the same time enables adequate reactions to control
the — sometimes completely unexpected — emerging global behaviour of these self-
organised technical systems. The proposed architecture can be used in a centralised,
distributed, or multi-levelled and hierarchically structured way to achieve controlled
self-organisation as a new design paradigm. Thus, Chapters 3 and 4 address related
work in the field of architectures for controlled self-organisation. Some contents
have been published in [CMMS*07, SMSC*07, SMS08]. Chapter 4 mainly bases on
[BMMS*06, RMB*06].

Secondly, the idea of a two-level learning approach is introduced as part of the
controller. Since a learning capability is an essential feature of OC systems, the generic
architecture and, in particular, the controller, has to include adequate components
for learning. The work, presented in this thesis, focusses on on-line learning and
specially on the investigation of LCSs as an adequate machine learning technique.

Thirdly, several distributed variants of LCSs are investigated with the objective of
improving learning speed and effectiveness. While conventional LLCSs have drawbacks
in learning speed, this thesis investigates possible modifications by decomposing a
problem into smaller sub-problems and by learning these subtasks independently.
Furthermore, the performance of these variants of on-line LCSs are compared to the
combination of on-line learning and off-line planning capabilities, as suggested by
the observer/controller architecture.

Since the second and the third contributions are inherently domain-specific, the
following chapters provide a general specification as well as an implementation within
multi-agent test scenarios. The used multi-agent test scenarios are selected from the
predator/prey domain and can therefore be generalised to other domains. Also, work,
which has been done in [RRS08], is shortly summarised in Chapter 6. Chapters 5,
6, and 8 present results that have been published in [MRB*07, RM08, RPS08].

1.4 Reader’s Guide to this Thesis

In Chapter 9, an extended review of the empirical results validating the major
contributions of this theses is given.

1.4 Reader's Guide to this Thesis

To enjoy oneself reading this thesis and to identify the most relevant chapters from a
personal point of view, a general description of the contents of each chapter should
guide the reader. The presented work is structured as follows.

Chapter 2 summarises the vision of OC, since this thesis is mainly based on OC
research topics and copes with an interdisciplinary view, unknown in literature
before, which connects different research fields, e. g., control theory, machine
learning, or multi-agent theory.

In Chapter 3 related work concerning the topic of controlled self-organisation
is reviewed. Self-organisation and emergent phenomena have been research
topics in several areas. The most relevant ideas are summed up with regard to
this thesis.

In Chapter 4 the generic observer/controller architecture is introduced, which
serves as a framework to build OC systems. The presented work is focussed
on the centralised variant of this design paradigm and every module of this
architecture is explained in detail. To compare the organic approach to other
regulatory feedback mechanisms, the two-level learning approach as part of the
controller is specially described.

Since the capability to adapt to dynamically changing environments is in the
main focus of OC systems, the aspect of learning is investigated in detail. Thus,
LCSs are presented in Chapter 5. This chapter reviews the state of the art
from LCS’s literature and defines the idea of parallel classifier systems to speed
up the learning process.

Chapter 6 introduces the domains used as test scenarios within the thesis.
A nature-inspired scenario has been implemented and serves as a testbed to
validate the learning cycle of a centralised observer /controller architecture.

General design decisions concerning the implemented learning architectures
with respect to the nature-inspired test scenario are outlined in Chapter 7. The
actual analysis of the results is given in Chapter 8.

Chapter 9 summarises the contributions of this thesis and outlines the most
promising directions for future work. Since several chapters of this thesis
contain their own related work sections describing the research most relevant

Chapter 1 Introduction

to their contents, this chapter is used for a survey about OC from an LCS’s
perspective.

1.5 How this Thesis Was Written

This thesis is the outcome of several years of research with financial support by the
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the
priority programme 1183 OC. Several papers have been published with different
colleagues in a close cooperation between the research group of my doctoral adviser,
Prof. Dr. Hartmut Schmeck, and the group of Prof. Dr.-Ing. Christian Miiller-Schloer
from Leibniz Universitat Hannover and were taken as the basis for the following
chapters. For reasons of presentation, the chronological order, in which the articles
appeared, does not coincide with the presented order within the following chapters.

Chapter

Organic Computing (OC)

It is not the question, whether adaptive and self-organising systems will
emerge, but how they will be designed and controlled. [Sch05b, SMSCt07]

Since the work presented here is mainly based on OC research topics, this chapter
summarises the vision of OC. Motivation and challenges of this young research field
are explained in short, before the contributions of this thesis are described in the
following chapters.

As outlined in Section 1.1, the increasing complexity of technical systems calls
for research into new design principles. It is impossible for a designer to foresee all
possible configurations and to explicitly specify the entire behaviour of a complex
system on a detailed level. In particular, if the system consists of many interacting
components, it may exhibit new, emergent properties that are very difficult to
anticipate. Emergent phenomena are often identified, when the global behaviour
of a system appears more coherent and directed than the behaviour of individual
parts of the system (the whole is more than the sum of its parts). More generally,
such phenomena arise in the study of complex systems, where many parts interact
with each other and where the study of the behaviour of individual parts reveals
little about system-wide behaviour. Especially, in the area of multi-agent systems
emergence and self-organisation have been studied extensively, see [DFH104, DGKO6|
for two recent surveys.

Despite their complexity, living creatures are very robust and have the natural
ability to learn and adapt to an uncertain and dynamic environment. The idea of
OC is therefore to address complexity by making technical systems more life-like
and to develop an alternative to the explicit total a priori specification of a system.
Instead, organic systems should adapt and self-organise with respect to some degrees
of freedom. But, OC systems should be designed with respect to human needs, and
have to be trustworthy, robust, adaptive, and flexible. They will show the so-called
self-x-properties: Self-configuration, self-optimisation, self-healing, self-explanation,

Chapter 2 Organic Computing (OC)

and self-protection. Such systems are expected to learn about their environment
during life time, will survive attacks and other unexpected breakdowns, will adapt to
their users, and will react sensibly, even if they encounter a new situation, for which
they have not been programmed explicitly. In other words, an OC system should
behave more life-like (organic).

This can only be achieved by adding some kind of awareness of their current
situation to the system elements and the ability to provide appropriate responses to
dynamically changing environmental conditions. The principles of OC are strongly
related to the objectives of IBM’s autonomic computing initiative, see Section 4.5.1.
But, while autonomic computing is directed towards maintaining server architectures,
which should be managed without active interaction between man and machine
[KCO03, Ste05], OC’s focus is more general in its approach and addresses large
collections of intelligent devices, providing services to humans, adapted to the
requirements of their execution environment [Sch05b|. Thus, besides showing the
self-x-properties, interaction between man and machine is an essential part of OC
systems.

The term organic computing was formed in 2002 as a result of a workshop aiming at
future technologies in the field of computer engineering. The outlines of the workshop
and the OC vision were first formulated in the joint position paper [ACET03| of
the section of computer engineering (Technische Informatik) of the Gesellschaft fiir
Informatik (German Association for Informatics, GI) and the Informationstechnische
Gesellschaft (German Association for Information Technology). In 2005, the German
Research Foundation (Deutsche Forschungsgemeinschaft, DFG) approved a priority
research programme on OC for six years (2005-2011). This research programme
addresses fundamental challenges in the design of OC systems; its goal is a deeper
understanding of emergent global behaviour in self-organising systems and the
design of specific concepts and tools to construct and control OC systems for
technical applications. Topics, such as adaptivity, reconfigurability, emergence of
new properties, and self-organisation, play a major role. Currently, the research
programme provides funding for 18 research projects with a total volume of around
EUR 2 million per year. The topics of these projects range from traffic control over
robot coordination to chip design. Information on the different projects can be found
via the OC website!.

Self-organising systems bear several advantages compared to classical, centrally
controlled systems. Amongst others, the failure of a single component should not
cause a global malfunction of the whole system. Such a system will be able to adapt
to changing circumstances. As a result, self-organisation could be described as a
method of reducing the complexity of computer systems.

In such self-organising systems the local interaction of the system elements may
result in an emergent global behaviour, which can have positive (desired) as well as

http://www.organic-computing.de/spp

10

negative (undesired) effects. Self-organisation and emergent phenomena also initiate
new problems unknown in the engineering of classical technical systems. A global
emergent behaviour usually is a nonlinear combination of local behaviours. Its design
process with both potential design directions (top-down vs. bottom-up design) turns
out to be a highly non-trivial task: For a top-down approach it is hard to deduce
adequate local rules from a desired global behaviour, and in the bottom-up direction
it quite often remains unclear how local rules go together with global behaviour,
see [KCO3].

In this context and in order to assess the behaviour of the technical system and
— if necessary — for a regulatory feedback to control its dynamics, the so-called
observer/controller architecture has become widespread in the OC community as a
design paradigm to assure the fulfilment of system goals (given by the developer or
user), see Chapter 4. The observer/controller uses a set of sensors and actuators to
measure system variables and to influence the system. Together with the system
under observation and control (SuOC), the observer/controller forms the so-called
organic system. An observer/controller loop enables adequate reactions to control the
— sometimes completely unexpected — undesired emerging global behaviour resulting
from local agents’ behaviour.

However, besides this fascinating outlook, the materialisation of the OC vision
depends on several crucial factors, which are summarised in [Sch05b].

e Designers of OC systems have to guarantee that self-organising systems, based
on OC principles, do not show unwanted (emergent) behaviour. This is
particularly important, when malfunction can have disastrous consequences,
e. g., in safety critical applications. The generic observer/controller architecture,
as described in Chapter 4, seems to be a promising approach in asserting certain
functionality and additionally in keeping the system at an effective state of
operation. OC systems will only become accepted, if users can trust them.
Therefore, trust/reliability could turn out to be the most important prerequisite
for acceptance.

o Closely related is the need for the user to monitor and influence the system: It
has to be guaranteed that it is still the user, who guides the overall system.
Therefore, the system developer has to design user interfaces, which can be used
to control the system — which means that there has to be a possibility to take
corrective actions from outside the system. The generic observer/controller
architecture considers this requirement.

e Developers of OC systems have to determine appropriate rules and patterns
for local behaviour in large networks of smart devices in order to provide some
requested higher functionality. Important topics in the design of self-organising
systems are the utilisation of arising emergent phenomena and controlling the
local level in such a way that the system shows the desired behaviour at global

11

Chapter 2 Organic Computing (OC)

level. Therefore, the task is to derive a set of behavioural and interaction rules
that, if embedded in individual autonomous elements, will induce a certain
global characteristic. The inverse direction of anticipating the global system
behaviour based on known local decision rules is also very important in this
regard.

On interacting with humans an OC system has to show context sensitive
characteristics and has to filter information and services according to the
current situation or user’s needs. In general, an OC system has to be aware of
its environment and should act accordingly.

Building OC systems, one has to think carefully about how to design the
necessary degrees of freedom for the intended adaptive behaviour. Certain
degrees of freedom are needed to enable self-organisation, but it is easily
imaginable that allowing the different parts of a system a broad range of
possible (re-)actions in a specific situation could result in uncontrollable chaos.

The implementation of learning abilities as part of OC systems provides great
chances, but also bears several problems. Learning systems often learn from
mistakes. In fact, they will make mistakes, if no countermeasures are taken.
Additionally, developers can guide the learning process of a learning system
and they can assure that the system does not develop itself in an unwanted
(emergent) manner. This aspect of learning is focussed on in detail in Chapter 5.

This list could be considerably expanded, but it already represents the most

important topics. The following chapter will concentrate on the organic vision of
controlled self-organisation.

12

Chapter

Controlled Self-Organisation

Technological systems become organised by commands from outside, as
when human intentions lead to the building of structures or machines. But,
many natural systems become structured by their own internal processes:
These are self-organising systems, and the emergence of order within them

1s a complexr phenomenon that intrigues scientists from all disciplines.
[YGWY88]

Self-organising systems are well known from nature and have been studied in
domains like physics, chemistry, and biology. In recent years research interest has
succeeded to apply concepts of self-organisation to technical systems. The reason is
a paradigm shift from monolithic systems to large networked systems driven by the
technological change of integrating more information processing into the everyday
life, objects, and activities. The necessity to find new approaches to cope with
upcoming problems of increasing complexity attracts awareness to the principle of
self-organisation.

OC systems should use self-organisation to achieve a certain externally provided goal.
Furthermore, the system has to adapt to changing environmental requirements and to
be capable to deal with (unanticipated) undesired emergent behaviour. Therefore, OC
systems are assumed to support controlled self-organisation. Whenever necessary, this
requires a range of methods for monitoring and analysing the system performance and
for providing appropriate control actions. The generic observer/controller architecture
— this architecture is introduced in detail in Chapter 4 — promises to provide the
necessary components for satisfying all these demands, see Figure 3.1.

Similar to the MAPE cycle (monitor, analyse, plan, and execute) of IBM’s au-
tonomic computing initiative, see Section 4.5.1, a closed control loop is defined to
keep the properties of the self-organising SuOC within preferred boundaries. The
observer observes certain (raw) attributes of the system and aggregates them to
situation parameters, which concisely characterise the observed situation from a

Chapter 3 Controlled Self-Organisation

system status ﬁ\

organic system

(8] : agent/robot/entity

Figure 3.1: Simplified view of the generic observer/controller architecture

global point of view, and passes them to the controller. The controller acts according
to an evaluation of the observation (which might include the prediction of future
behaviour). If the current situation does not satisfy the requirements, it will take
action(s) to direct the system back into its desired range, will observe the effect of
the intervention(s), and will take further actions, if necessary. Using this control loop
an organic system will adapt over time to its changing environment. It is obvious
that the controller could benefit from learning capabilities to tackle these challenges.
Although the observing and controlling process is executed in a continuous loop, and
the SuOC is assumed to run autonomously, even if the observer/controller archi-
tecture is not present — even though in a suboptimal way. Furthermore, emergence
plays a central role in OC systems. Emergent and self-organising behaviour has been
observed in nature, demonstrated in a variety of computer simulated systems in
artificial life research, and it has also occurred in highly complex technical systems,
where it has quite often led to unexpected global functionality [BDT99]. Despite the
importance of a rigorous description of these phenomena, the quantitative analysis
of technical self-organising systems is still a rather unexplored area. Therefore, this
chapter describes the understanding of the basic mechanisms of self-organisation and
emergent behaviour in complex (organic) ensembles, summarises related work, and
provides appropriate (metrics and) tools for utilising controlled self-organisation.
In Section 3.1 research is summarised that has been done in the area of self-or-
ganisation and in Section 3.2 about the related concept of emergence. There may
be instances of self-organisation without emergence and emergence without self-
organisation, and there is evidence in literature that the phenomena are not the same.

14

3.1 Self-Organisation

However, future research is needed to clarify the relation between these two terms.
Finally, in Section 3.3 an architectural-based approach for the design and engineering
of technical systems is proposed that makes use of controlled self-organisation, before
describing the OC approach in Chapter 4.

3.1 Self-Organisation

The dynamics of a system can tend by themselves to increase the inherent order
of a system. This idea has a long history, being first introduced by the French
philosopher René Descartes. In 1947, the term self-organisation was introduced
by the psychiatrist and engineer William Ross Ashby [Ash47|. Cyberneticans, like
Heinz von Foerster, Stafford Beer, Gordon Pask, and Norbert Wiener, took up this
concept and associated it with general systems theory in the 1960ies. In the 1970ies
and 1980ies physicists adopted self-organisation to the field of complex systems and
established the topic in scientific literature. Even if the concept of self-organisation
is very promising to solve complex problems, as explained in [Ger07], the notion of
self-organisation will remain somewhat vague, and discussion has been widespread.
The extensive FAQ-list! is a good link to research that has been done so far.

The term self-organisation is used frequently, but a generally accepted meaning has
not emerged. As the list grows, it becomes increasingly difficult to decide whether
these phenomena are all based on the same process, or whether the same label
has been applied to several different processes. Despite its intuitive simplicity as
a concept, self-organisation has proven notoriously difficult to describe and define
formally or mathematically. Thus, it is entirely possible that any precise definition
might not include all the phenomena, to which the term of self-organisation has been
applied. In the following, it will not be attempted to give a new definition facing
the philosophical problem of defining self, the cybernetic problem of defining system,
or the universal problem of defining organisation. Instead, research is summarised
that has been done so far to characterise the conditions necessary to call a system
self-organising. Answers will be given to the following questions: What is a self-
organising system? What is it not? And what are possible approaches to engineer
self-organising technical systems?

3.1.1 Understanding Self-Organisation from the Viewpoint of Different
Sciences
As pointed out by Carlos Gershenson in [Ger(07|, the term self-organisation has been

used with different meanings, e. g., in computer science [HG03, MMTZ06|, biology
[CDF*03, FCG06], mathematics [Len64|, cybernetics [Ash62, von60], synergetics

http://www.calresco.org/sos/sosfaq.htm

15

Chapter 3 Controlled Self-Organisation

[Hak81|, thermodynamics [NP77|, complexity [Sch03], information theory [Sha01],
and evolution of language [de 99]. Selected ideas, which specially contribute to the
idea of OC, are summarised from the viewpoint of different sciences.

Self-Organisation in Nature

According to [CDF103], self-organisation in biological systems is often described as

a process, in which a pattern at the global level of a system solely
emerges from numerous interactions among the lower level components
of the system. Moreover, the rules specifying interactions among the
system’s components are executed using only local information, without
reference to the global pattern [YGWYS8S].

A self-organising system in nature acts without centralised control and operates
according to local contextual information. Thus, spontaneous behaviour without
external control produces a new organisation reacting to environmental changes/dis-
turbances. Natural systems often show a robust behaviour, they adapt to changes,
and they are able to ensure their own survivability. There are quite a few examples
of natural systems, which are not at all robust (in particular at the individual
level) and which cannot adapt to changes. Robustness often is a property of a
population /swarm, not of an individual. In some cases, self-organisation is linked
to emergent behaviour, as described later in Section 3.2. Individual components
carry out a simple task, and as a whole these components are able to carry out a
complex task emerging in a coherent way through the local interactions of various
components. Typical examples from nature are found in the following.

e Social insects, like ants, termites, or honey bees, where communication oc-
curs through stigmergy by placing chemical substances, pheromones, into the
environment. In 1959 the theory of stigmergy has been defined as the work
excites the workers by [Grab9|. Direct interactions between the individuals
are not necessary to coordinate a group. Indirect communications between
the individuals and the environment are enough to create structures. Thus,
coordination or regulation tasks are achieved without centralised control.

e Flocks of birds or schools of fish, where collective behaviour is defined by simple
rules, like getting close to a similar bird (or fish) — but not too much — and
getting away from dissimilar birds (or fishes) to collectively avoid predators.

e Social behaviours of humans, where emergent complex global societies arise by
working with local information and local direct or indirect interactions.

e The immune system of mammalians, where cells regenerate self-organised.

16

3.1 Self-Organisation

From a very general point of view, the notion of autopoiesis is often associated
with the term of self-organisation. In the 1970ies biological studies established
autopoiesis (meaning self-production) [MV91, Var79|, which describes the process
of a living system as an organisation to produce itself. An autopoietic system is
autonomous and operationally closed, in the sense that every process within it
directly helps maintaining the whole. For example, cells or organisms self-maintain
the system through generating system’s components. The cell is made of various
biochemical components such as nucleic acids and proteins, and is organised into
bounded structures such as the cell nucleus, various organelles, a cell membrane, and
cytoskeleton. These structures, based on an external flow of molecules and energy,
produce the components, which, in turn, continue to maintain the organised bounded
structure that gives rise to these components.

In computing, an analogous concept is called bootstrapping, which refers to tech-
niques that allow a simple system to activate a more complicated system, e.g.,
when starting a computer a small programme, the built in operating system (BIOS),
initialises and tests the hardware (peripherals or memory), loads another programme,
and passes control to this programme (an operating system).

Self-Organisation in Chemistry

Self-organisation is also relevant in chemistry, where it has often been taken as
being synonymous with self-assembly. To name a few, this includes research in
molecular self-assembly, which is the process, by which molecules adopt a defined
arrangement without guidance or management from an outside source [Leh88, Leh90)].
Additionally, self-organisation is used in the context of reaction diffusion systems,
which are mathematical models that describe, how the concentration of one or more
substances is distributed in space changes. This occurs under the influence of two
processes that are local chemical reactions, in which the substances are converted
into each other, and diffusion, which causes the substances to spread out in space
[Fif79]. Other examples are autocatalytic networks, or liquid crystals.

Through thermodynamics studies [GP71] the term self-organisation itself has been
established in the domain of chemistry in the 1970ies. When an external energy
source is applied to an open system, this system decreases its entropy (where order
comes out of disorder, see Section 4.1.5). In other words, a system reaches a new
system state, where entropy is decreased, when external pressure is added. Compared
to the stigmergy concept, mentioned in Section 3.1.1, where self-organisation results
from a behaviour occurring inside the system (from the social insects themselves
placing pheromones in the environment), this is a fundamental difference from the
understanding in chemistry. In the latter case, self-organisation seems to be a result
of an external pressure applied from the outside.

17

Chapter 3 Controlled Self-Organisation

Self-Organisation in Mathematics and Computer Science

Self-organisation has also been observed in mathematical systems such as cellular
automata [TGDO04|. In computer science, some instances of evolutionary computation
and artificial life exhibit features of self-organisation.

Research in artificial systems has been oriented towards introducing self-organi-
sation mechanisms specifically for software applications, see [BDHZ06, BDKNO5,
BHJY07, DKRZ04|. These applications have been inspired by already mentioned
nature-inspired concepts like stigmergy, autopoiesis, or the holon concept introduced
by Artar Kosztler in [K6s90|. The term holon describes systems, which represent
whole systems and parts of larger systems at the same time. Then, holarchies describe
hierarchies of such holons. Typical examples of self-organising artificial systems are
swarm-inspired techniques for routing [BDT99| or load-balancing [MMBO02].

Furthermore in multi-agent systems, (software) agents play the role of self-
organising autonomous entities. Frequently, multi-agent systems are used for simulat-
ing self-organising systems, in order to get a better understanding of the dependencies
in such systems or to establish models of the simulated systems. As mentioned in
[DGKO06|, the tendency of initiatives like OC or autonomic computing is now to
shift the role of agents from simulation to the development of distributed systems.
Components (e. g., software agents) that once deployed self-organise in a predefined
environment and work in a distributed manner towards the realisation of a given
(global) possibly emergent functionality.

3.1.2 Properties of Self-Organisation

In general, the understanding of self-organisation seems to be widespread. According
to [DGKO06| self-organisation essentially refers to a spontaneous and dynamically
produced (re-)organisation. Several, more qualitative, properties/issues should be
extracted from the different viewpoints mentioned above in the following section to
end up in a possible definition in Section 3.1.3.

Properties of Self-Organisation in Nature

According to swarm intelligence [BDT99|, self-organising processes are characterised
by four properties.

1. Multiple interactions among the individuals,

2. retroactive positive feedback (e.g., increase of pheromone, when food is de-
tected),

3. retroactive negative feedback (e.g., pheromone evaporation), and

18

3.1 Self-Organisation

4. increase of behaviour modification (e.g., increase of pheromone, when new
path is found).

From the more biologically-inspired viewpoint of autopoiesis, a self-organising
system could be characterised as an autopoietic machine, which is a machine that is

organised (defined as a unity) as a network of processes of production
(transformation and destruction) of components, which

1. through their interactions and transformations continuously regen-
erate and realise the network of processes (relations) that produced
them; and

2. constitute it (the machine) as a concrete unity in space, in which
they (the components) exist by specifying the topological domain of
its realisation as such a network [MV91].

Properties of Self-Organisation in Chemistry

Under external pressure, self-organising behaviour is characterised by a decrease of
entropy and satisfies the following requirements, as stated in [GP71].

1. Mutual causality: At least two components of the system have a
circular relationship, each influencing the other.

2. Autocatalysis: At least one of the components is causally influenced
by another component, resulting in its own increase.

3. Far from equilibrium condition: The system imports a large amount
of energy from outside the system, uses the energy to help renew its
own structures (autopoiesis), and dissipates rather than accumulates,
the accruing disorder (entropy) back into the environment.

4. Morphogenetic changes: At least one of the components of the system
[has to] be open to external random variations from outside the sys-
tem. A system exhibits morphogenetic change when the components
of the system are changed themselves.

Properties of Self-Organisation in Artificial Systems

In [DGKO4], two definitions of self-organisation in artificial systems have been
established. Self-organisation implies organisation, which in turn implies some
ordered structure as a result of component behaviour. A new distinct organisation is
self-produced, since the process of self-organisation changes the respective structure
and behaviour of a system.

19

Chapter 3 Controlled Self-Organisation

e Strongly self-organising systems are systems that change their or-
ganisation without any explicit, internal or external, central control.

e Weakly self-organising systems are systems where reorganisation
occurs as a result of internal central control or planning.

3.1.3 Definition of Self-Organisation

The previous sections have shown that it is not trivial to give a precise definition of
self-organisation. However, a practical notion, as given in [Ger07], will suffice for the
purposes of this thesis.

A system described as self-organising is one, in which elements interact
in order to dynamucally achieve a global function or behaviour.

Furthermore, this self-organising behaviour is autonomously achieved through
distributed interactions between the system components, which produce feedbacks
that regulate the system. Instead of answering the question, which are the necessary
conditions for a self-organising system, another question can be formulated: When
is it useful to describe a system as self-organising? In [Ger07], it is argued that
self-organising systems (in the sense of distributed systems) will have advantages in
dynamic and unpredictable environments, where problems have to be solved that
are not known beforehand and/or the addressed problem changes constantly. Then,
a solution dynamically arises by local interactions and adaptation to unforeseen
disturbances quickly appears. In theory, a centralised approach is also able to solve
the problem, but in practice such an approach may require too much computation
time to cope with the unpredictable disturbances in the system and its environment,
e.g., when a system or its environment changes in less time than the system requires
to compute a solution.

In [EdO8], another brief sentence has been worked out to explain the main idea
of self-organisation, being similar to the definition given by Carlos Gershenson in
[Ger07].

A self-organising system consists of a set of entities that obtains an
emerging global system behaviour via local interactions without centralised
control.

3.1.4 Summary

The investigation of self-organisation in many different disciplines of science has
advantages and disadvantages at the same time. Many definitions from different
domains have blurred the whole idea, which definitely is a disadvantage in terms
of definition and terminology. On the other hand, the many disciplines keep the

20

3.2 Emergence

potential for many ideas and new approaches for creating (controlled) self-organising
systems. This possibility will be even more attractive, if the research on self-organising
systems converges towards a more standardised nomenclature, probably even forming
a new field of science some day.

Several positive effects from the interdisciplinarity of self-organisation became
apparent when discussing possible ways to design the behaviour of the particular
entities that form a self-organising system. The local behaviour is an integral part
of a self-organising system, since the whole behaviour of the system emerges from
the local interactions of the entities. In [Ed08]|, three basic approaches have been
identified for finding a suitable set of local rules: Nature-inspired design, trial and
error, and learning from an omniscient solution.

In the case of dynamic self-organising systems, with distributed control and local
interactions, emergence appears to be some kind of structure on a higher level. Since
literature investigating self-organisation is also linked to the term of emergence, this
phenomenon is addressed in the next section.

3.2 Emergence

The phenomenon of emergence has been a fascinating topic for scientists such as
John Stuart Mill [Mil43], George Henry Lewes [Lew75|, and Conwy Lloyd Morgan
[L1023| for a long time, and the philosophical discussion of this topic is more than
150 years old. These so-called proto-emergentists consider the emergent process as a
black box, where only the inputs and the outputs at the lowest level can be discerned
without any knowledge about how the inputs are transformed into outputs.

However, in the case of designing technical OC systems more recently characterised
aspects of emergence need to be considered. A different perspective, referred to as
neo-emergentism, summarises approaches of Jochen Fromm [Fro04, Fro05|, John H.
Holland [Hol98], Stuart Kauffman [Kau93|, Ales Kubik [Kub03], and others, where
the root of emergence bases on the dynamics of a system, where investigations
focus on reproducing the process, which leads to emergence, and where emergent
phenomena are less miraculous than in the black box view.

Emergence is the phenomenon occurring when a population of interconnected
relatively simple entities self-organises to form more ordered higher level behaviour
[JohO1]|. Emergence can be referred to as the effect that the whole is greater than the
sum of its parts. Emergent phenomena are defined by

1. the interaction of mostly large numbers of individuals
2. without centralised control with the result of

3. a global system behaviour, which has not explicitly been programmed into the
individuals [Bea03].

21

Chapter 3 Controlled Self-Organisation

The journal Emergence?, a journal of complexity issues in organisation and man-
agement, provides the following characterisation of emergent behaviour.

The idea of emergence is used to indicate the developing of patterns,
structures, or properties that do not adequately seem explained by referring
only to the system’s pre-existing components and their interaction. Emer-
gence becomes of increasing importance, when the system is characterised
by the following features.

o When the organisation of the the system, 1. e., its global order,
appears to be more salient and of a different kind than the components
alone;

e when the components can be replaced without an accompanying
decommissioning of the whole system;

e when the new global patterns or properties are radically novel with
respect to the pre-existing components; thus, the emergent patterns
seem to be unpredictable and non-deducible from the components as
well as irreducible to those components.

Good examples for emergence originate from the observation of ants and other
insects. The social insect metaphor for solving problems has become a diverse
topic during the last years [BDT99|. For example, foraging behaviour in ants is
characterised by the distribution of pheromones, thereby encouraging (but not
forcing) other ants to follow the paths. This behaviour, despite its simplicity and
distributedness, results in a very robust and efficient emergent phenomenon, i.e.,
that ants collectively find the shortest path between nest and food source. This
observation has resulted in powerful metaheuristics for solving complex problems,
called ant colony optimisation.

Another example for emergent behaviour is the (human) brain. Although the exact
function and interrelation of the different brain sub-systems is not really understood,
scientists assume underlying emergent effects, as explained in [Rot05].

Today’s neurobiology is able to investigate those processes in human and
animal brains in detail, which are responsible for the higher level cognitive
functions like object recognition, attention, memorising, thinking, problem
solving, action planning, empathy, and self-reflection, i.e., processes
usually related to consciousness. It shows that these functions can uniquely
be mapped to certain brain regions, and vice versa. This does not mean
a violation of known physical/chemical/physiological laws. Neither are
there any unexplainable gaps. Therefore, it seems necessary to view these
brain functions as emergent states of a physical system. This is not in

’http://www.emergence.org

22

3.3 Architectures for Controlled Self-Organisation

contradiction with the fact that the specific conditions for the occurrence
of consciousness are not yet evactly known.

Emergence and the effects of self-organisation have been looked at in various
sciences, e. g., philosophy, as mentioned above, biology, chemistry [SMR 04|, physics,
or mathematics [Jet89]. But so far, only few research fields, as summarised in
[Mni09], seemed to be interested in using emergence in a systematic (quantitative)
way. This topic is again addressed in Section 4.1, when metrics are described to
quantify emergent behaviour as part of the generic observer/controller architecture.

3.3 Architectures for Controlled Self-Organisation

From the viewpoint of this thesis and OC, respectively, the main question is how to
design single components in such a way that they self-organise to achieve global goals.
The interest and the difficulty lies in having both, self-organisation and emergent
properties, being caused by low level interactions between the components. Defining
global goals and designing local behaviour so that global behaviour emerges is the
gap to bridge, since it seems to be unpredictable, how the local goals match to a
global goal. By definition, emergence is a bottom-up process whereas design and
engineering tasks typically follow top-down constraints. The combination of both
approaches results in the requirement of what is called controlled self-organisation
(which might be a contradiction by itself).

As mentioned in [SMS05], the classical top-down design process is strictly organised
hierarchically consisting of a sequence of modelling steps, since the developer is in
principle able to predict all possible system states. The top-down design process
starts with a high level specification, which is broken down through a number of
refinements to a final model. This is used to control manufacturing machines or
to generate executable code. However, because today’s technical systems become
more and more complex, it seems to be impossible to predict all system states and
designing top-down is no longer feasible.

In comparison, in the bottom-up approach the design starts with specifying
requirements and capabilities of individual components, and the global behaviour
emerges out of interactions among constituent components and between components
and the environment. As described in Section 3.1.1, examples from nature have
shown, e. g., that ants follow the pheromone traits placed by other ants, that it is not
possible to predict the exact positions of these traits between places of food and the
nest. However, from the viewpoint of technical systems, it would be highly desirable
to be able to predict the final outcome more exactly, in other words: The presented
work is interested in describing the relationship between local interactions and global
behaviour. Moreover, it is the question, how this relationship can be designed.

In [CGLO§|, the question is addressed, which design methodology (top-down
vs. bottom-up) is appropriate for a given engineering problem. Furthermore, a

23

Chapter 3 Controlled Self-Organisation

comparative study of the two approaches in engineering a multi-agent system is
analysed with a focus on the limitations and advantages of each approach. Thus,
criteria for the applicability of the two approaches are established.

The bottom-up approach starts with the specification of the individual agent
behaviour through a set of agent capabilities or rules of engagement, which delimit
the set of obtainable group level behaviours. The top-down approach starts with
global requirements as in a centralised control system and translates those into
necessary agent capabilities. But, the last step implicitly assumes that the global
system requirements can be delegated to individual components. In fact, in the case
of complex systems this might not be straightforward.

As in many cases, the solution seems to be somewhere between pure top-down
and pure bottom-up. Since the developers will not capitulate in setting the goals as
known from top-down approaches and it also seems to be not very realistic that a
collection of screws, metal parts, and electronic devices autonomously assemble into
a car, the requirement of controlled self-organisation or controlled emergent behaviour
is in the focus of today’s research, see [BCD106, Ger07, Tri06].

Moreover, when coping with the vision of OC systems and addressing the problem
of increasing complexity, it is necessary to have methods and tools to enable such
systems to produce the wanted emergent phenomena and to prohibit the unwanted
ones. But, so far, there is no systematic analysis on how to achieve controlled
self-organisation. The proposed generic observer/controller paradigm might be a
possibility.

Thus, in the following, a focus on the use of an architectural-based approach is
proposed, because it offers the following potential benefits, as stated in [KMO07].

Generality — To address a wide range of application domains, each associ-
ated with appropriate software/hardware architectures, the
underlying concepts and principles should be defined in a
general way.

Level of abstraction — To describe dynamic changes in a system, such as the use of
components, bindings, and composition, rather than at the
algorithmic level, an architecture can provide an appropriate
level of abstraction.

Scalability — OC focusses on solutions that could be used in the domain
of large-scale and complex applications. Varying the level
of description and the ability to build systems of systems,
architectures generally support both, hierarchical composition
and hiding techniques.

By achieving and demonstrating controlled self-organisation, several architectures
have been investigated in a broad range of research areas — not only limited to

24

3.4 Summary

computer science. Therefore, a short survey is given in the following chapter. All
mentioned architectures are understood as conceptual or reference architectures (like
a framework), which identify the necessary functionality for aspects of controlled
self-organisation. They are not considered to be implementation architectures.

3.4 Summary

Based on the OC vision, this chapter has reviewed related work concerning the
topic of controlled self-organisation. Concepts like self-organisation and emergent
phenomena have been research topics in many sciences for a couple of years until
today. The most relevant ideas have been summarised, as pointed out in Sections 3.1
and 3.2.

Then in Section 3.3, the idea of an architectural-based approach has been out-
lined that enables controlled self-organisation, while the organic approach, which is
proposed in this thesis, is introduced in the following chapter.

25

Chapter

Observer/Controller Architecture

To reduce the complexity of tomorrow’s technical systems, OC systems are endowed
with self-x-properties making them flexible and adaptive. Examples motivating this
goal are frequent in nature. In contrast to natural systems, which seem to have
intrinsic goals, the technical context specifies the system goals explicitly and in many
cases even requires the fulfilment of some constraints. Therefore, reaching the stage
of endowing the system with intrinsic local goals can be seen as a long-term plan.

The design process of such an organic system will be neither a classical top-down
approach, as practised in classical system engineering, nor a bottom-up approach,
as suggested by the notion of self-organisation in general and as observed in nature.
In OC, technical systems are endowed with an observation and control layer called
observer/controller architecture, as proposed in [MS04|. This design paradigm is able
to achieve the objectives given by the user or the developer.

As shown in Figure 4.1, the SuOC accomplishes the productive work of the system
and is endowed with self-x-properties. The SuOC is similar to a multi-agent system
composed of agents communicating with each other to achieve a system-wide goal
based on local rules. The observer/controller layer monitors all components and
aggregates the results to system-wide indicators reflecting the overall situation of
the system (called situation parameters or system fingerprint). This set of situation
parameters is reported to the controller, which has the task to influence the system to
satisfy the objective function as specified by the system developer or user. Therefore,
the controller continuously searches in its rule base for the best mapping of situation
parameters to correspondent actions. Furthermore, it has to adapt to dynamically
changing environments (changes in the SuOC or changing goals). These changes
require learning capabilities, as investigated in detail in Chapter 5.

It is important to note that an organic system will continue to work, if observer
and controller stop working. Thus, the main objective of this proposed architecture
is to achieve controlled self-organised system behaviour. In comparison with classical
system design, OC systems have the ability to adapt and to cope with some emergent

Chapter 4 Observer/Controller Architecture

r===--° r-- .- T TS ST TS T T TS T T T TSI T s T T T T TS 1 1
| Lo fTTTTTTTT T - : i - !
! : 1 ! : ' 1 ! . . : :
i - Lo ‘M aggregator | i | } objective :
1 ! 1 [[1 .

Lo i . (O funcioni: |
P T [A] eod
| ' i1 dataanalyser | | = s P A T
- B f i I . by rule ColE
- (metrics) 1 BEE-NEN simulation _: adaptation | |5 |
1 1 . 1

e i[i predictor 1S 0 model v P N el
‘ b ! IR B) module R
= - B B R S itk :
1 - 1 .]
- S to , - fitness !
PR ' Prm o |
s : " 8’ ! [! 1
! S ! !i pre-processor r A S ¢ ! :
- B y . [R, v _ . rule , '

1] v T L b
= T ¥ | b v performance «+— & |
| v ! [I .]
L ! ;| | | mapping || evaluation @ T
! [' ! — | 1
i i 11 monitor log file P P (rule base) @ =---ommmmoooeee- ' |
A | | ! | |
! A oo ! R - :
| o I observer | i l controller !
--------------- ; R
1 rawdata - action -

Figure 4.1: Generic observer/controller architecture with two-level learning

behaviour, for which they have not been programmed explicitly.

The development, introduction, and implementation of an observer/controller
architecture is one of the main contributions of this thesis. This chapter is based
on [BMMS*06, RMB*06], explains the principles of the centralised generic ob-
server/controller architecture, and introduces the observer in Section 4.1 and the
controller in Section 4.2, respectively. The main advantage of the controller is dis-
cussed in Section 4.3. Section 4.4 presents hierarchical and distributed variants of
the generic observer/controller architecture.

4.1 Observer

It is the observer’s task to measure, quantify, and predict emergent behaviour with
basic metrics. Therefore, the observer collects the raw data coming from the SuOC
and aggregates them to a global system-wide fingerprint. This process includes a
pre-processing of the data (smoothing, extraction of derived attributes like velocity
when observing x- and y-coordinates of agents, etc.), an analysis to determine system-
wide indicators, and a predictor to forecast the next raw data as well as the next

28

4.1 Observer

system wide indicators (by using specified or statistical methods like chart analysis
methods). For this purpose, the observer needs metrics and methods to quantify
(emergent) states of the system. Finally, the aggregator collects all this aggregated
information, the so-called situation parameters, and passes them to the controller,
which appropriately influences the SuOC.

model selection

F======="7 T L 1
H R o [e 1 : : :
H L , 1 ! - 1 |
i 't 1l time space pattern | o | i t i ' ‘
| o _ o aggregator — : -
: 1 I:’ 1 3 Q : 1 I :
- selegt 11 cluster detector | g o i S B IFEE . !
; SN B N bla !
! re [= R - Vo= |
! 3 T IR rmmmmmm e S !
.o I 8 : = B i
1 Q. [- 1 | [} (e 1 1
i @ .1 emergence detector | ! ii clusterprediction o 1135 i1 o
[ttt T, L [
LS seldd i — ‘g 18 S
I [e] > | = [T A '
- e en e [[EEREEREERR SV RRERERe . g* P33 s
- | | =
b0 seledt !) 0" statistics e B RO A N
! S e pre-processor — e, R C R !
. Q [i ey »n I
1 (=3 :: : 1 TTTTTTE S s s s s e Pa____1 1
1 o |1 R —— 1 : : 1
: = :: 1 I :
: e P e T i |
! R I R _—— | : !
= . . . 1 1
| i1 systemdata i1 individualdata i | oghie o : i
| J Seem e e e B | | |
i " observer . ' '
N e A, :
i raw data ! I action |

‘ ‘ ‘ ‘ system‘underobservation and controlgjoc)ﬁ)ﬁ) ‘ ‘ “;
'S @ & &8 &) |

Figure 4.2: Generic observer architecture consisting of a monitor, a pre-processor, a data analyser,
a predictor, and an aggregator

The observation behaviour itself is variable. The model of observation influences
the observation procedure, e. g., by selecting certain detectors or certain attributes of
interest. The feedback from the controller to the observer pays attention to certain
observables of interest in the current context. Based on the aggregate results from
the observer, the controller can benchmark the data with an objective function and
either knows or learns, which actions are best to guide the SuOC in the favoured
direction. The two main tasks of the observer can basically be summarised as in the
following.

1. Identifying and characterising the current system status, and

2. predicting the future status of the system.

29

Chapter 4 Observer/Controller Architecture

Figure 4.2 outlines the generic observer architecture, which is described in more
detail in the following sections. As shown, the observer is guided by a model of
observation, which is responsible for the following tasks.

1. Selection of observable attributes,

2. selection of appropriate analysis tools with regard to the purpose given by the
controller, and

3. selection of appropriate prediction methods.

The whole observation process involves the following listed and explained steps
and components. The data analyser and the predictor are presented in more detail
in Section 4.1.5 and in Section 4.1.6, respectively.

4.1.1 Model of Observation

The model of observation allows to focus on the observation of system parameters
with respect to requirements depending on a situation. It influences the observation
procedure, e. g., by selecting certain detectors or certain attributes of interest. The
feedback from the controller to the observer pays attention to certain observables of
interest in the current context.

In large collections with a centralised observer/controller architecture, it seems to
be impossible to observe the whole SuOC in detail. There are not enough sensors,
the communication bandwidth is not sufficient, the centralised observer is not able
to process so much data, the collection of data consumes too much energy, etc. In
the presence of such constraints, it seems to be necessary to adjust the model of
observation, either in terms of granularity (it only collects high level data rather
than every detail), in terms of scope (it only focusses on some parts of the SuOC),
or w.r.t. the sampling frequency. Therefore, the model of observation provides
mechanisms necessary to dynamically adapt the model of observation to the current
needs of the controller, in order to obtain the most relevant information needed for
controlling the SuOC.

4.1.2 Monitor

The SuOC is considered as a set of elements possessing certain attributes (or agents
in terms of multi-agent systems). The monitor samples the attributes of the SuOC
according to a sampling frequency given by the model of observation. The information
coming from the SuOC constitutes raw data (unprocessed) for the observer, which
can be classified into individual data common to all elements of the system and some
global system attributes reflecting the whole system (behaviour). From a chronological
point of view, monitoring the SuOC is nothing else but the generation of a time

30

4.1 Observer

series, reflecting the current state of the system as well as its history. The sensory
equipment of the SuOC, which may also change dynamically, limits the selection of
observable attributes and the resolution of the measurement.

4.1.3 Log File

All measured data are stored in a log file for every loop of observing and controlling
the SuOC. These stored data can be used within the predictor or within the data
analyser to calculate (emergent) time space patterns.

4.1.4 Pre-Processor

The pre-processor computes some derived attributes from the raw data. E.g., an
attribute velocity can be derived from the attributes x-coordinate and y-coordinate
taking into account the history of these two attributes. The pre-processing of the
raw data also includes a selection of the relevant data, which is required to compute
aggregated system-wide parameters. The pre-processed data are passed to the data
analyser and the predictor components.

4.1.5 Data Analyser

The data analyser applies a set of detectors to the pre-processed data. These detectors
could be a kind of computation of data clustering [Ber06, JMF99|, emergence following
the definition in [MMSO06], or some other mathematical and statistical values. At
the end of this step a system-wide description of the current state is provided that
characterises the global system behaviour.

During operation, the observer ought to measure the current level of emergence
among the SuOC. This raises the question of how to evaluate the amount of emer-
gence. Different measurement approaches deal with this subject and several concepts
addressing this question have been developed. Although, this thesis does not provide
an extensive introduction to this field of science, it cannot ignore it totally, since
controlling and learning to control a system behaviour is based on quantified system
parameters. Without quantitative measurement it seems to be impossible to address
the topics of the presented work in later chapters. Thus, the general thoughts of
measurement theory are outlined to understand the observer/controller framework.
For more information about this domain the interested reader is referred to have a
look at [KLST06, LKST06, SKLT06|, which give an extensive overview of research
that has been done in the past years!. The following statement given by Lord Kelvin
characterises the idea of the essence of measurement as well.

LA more concise outline is given by ftp://ftp.sas.com/pub/neural/measurement.html.

31

Chapter 4 Observer/Controller Architecture

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot express it
in numbers, your knowledge is of a meagre and unsatisfactory kind; it
may be the beginning of knowledge, but you have scarcely in your thoughts
advanced to the state of science (William Thomson, 1. Baron Kelvin of
Largs, (Lord Kelvin)).

The aim of the data analyser is to convert the amount of emergence in a form
of a number. This number is used to compare different system states and the
effectiveness of different control strategies or parameter variations on the controller’s
side. Therefore, designing metrics consists of two steps.

1. Firstly, the requirements on the emergence measure given by the intended use
have to be defined.

2. Secondly, metrics,

which fulfil these requirements, have to be developed.

The requirements on the metric to quantify emergence are the following.

Normalisation -

Limited range -

On-line measurement —

Monotony -

32

The metric to quantify emergence has to be normalised to
be independent of the parameters of the observed system.
Therefore, the metric can be used to evaluate changes in the
system, e. g., to vary the number of agents, with regard to
their effect on the emergent behaviour.

The metric must have a defined range of values to be per-
spicuous and self-explanatory. Therefore, the range is often
set from 0.0 to 1.0, where 0.0 is equivalent to no emergence
and 1.0 to total emergent behaviour. No emergence would
correspond to a perfect system behaviour and total emergent
behaviour would characterise a system showing no optimal
behaviour depending on a specific objective function.

The metric has to give an instantaneous view of the current
situation of emergence. This is essential, as the controller
interventions are also on-line and rely on the information
about the current system state given by the observer.

The metric takes values in such a form that the order of the
numbers reflects an order relation defined on the attribute,
i.e., an emergence value of 0.2 represents less emergence
than a value of 0.4. However, the statement a value of 0.2
represents half of the emergence than a value of 0.4 would
be meaningless when having an order relation. Statements

4.1 Observer

like this are not in the focus, the order relation is sufficient
for the needs of this thesis.

In general, the idea of constructing metrics to quantify emergent behaviour bases
on the comparison of an ideal system behaviour in terms of ideal parameter values
and actual parameter values obtained by an observation. Following this idea, the
deviation of the current system state from the ideal values is calculated. This
deviation is expressed as a number and indicates the current amount of emergence
present in the system.

In the context of a selected system, one has to decide, which parameters could
be utilised in order to evaluate emergence firstly. For this purpose it is necessary to
understand the characteristic traits of emergent phenomena in order to identify the
parameters that constitute these traits.

The investigation of metrics and answering the question how emergence can
be quantified in technical systems are not in the focus of this thesis. Thus, the
discussion is stopped about designing metrics or answering the question how difficult
it is to express emergent behaviour in quantified numbers. A single metric is only
summarised, which is used on the observer’s side later in this thesis and is based on
Claude Elwood Shannon’s information theory [Sha48a, Shad8b|, in particular on the
information theoretical definition of entropy. For more details the interested reader
is referred to [MMS06, Mni09].

How to Quantify Emergence (in a Technical Context)

In the past years various approaches and frameworks have been investigated, which
have tried to understand and characterise emergence and/or self-organisation in a
quantitative way, see Chapter 3. The following is a brief survey of the idea how to
define emergence quantitatively, since this metric has been used within the following
chapters to evaluate the proposed generic observer/controller architecture.

Quantitative Emergence

Defining emergence is a rather controversial issue [MSS06]. In literature, several
definitions from different scientific fields are found. These definitions range from
non-explainability, non-predictability, etc. to those, which try to give a formal
mathematical definition [DGKO06]. In a technical context, it is obvious that a
definition has to dissociate from the former ones and has to search for a formal — and
at the same time — practically usable characterisation of emergence. In the following
an entropy-based definition of emergence is summed up, as presented in [MRB*07].

Entropy is a measure of order and therefore potentially interesting for the purpose
of identifying emergence. Entropy is used in thermodynamics as well as in information
theory. Its definition is based on the probability of the states of a system. The

33

Chapter 4 Observer/Controller Architecture

second fundamental theorem of thermodynamics claims that the entropy in a closed
system will always increase, eventually leading to a uniform distribution. Dissipative
structures, a special form of emergent systems investigated in [PS90], show that in
complex systems far from the thermal equilibrium, order can increase, effectively
decreasing the entropy. There are several papers, which have tried to define entropy
as a metric to characterise self-organisation. In [Pol03], entropy of self-organising
systems based on its information theoretic definition is introduced. In [Ray94], the
information theoretic entropy is also used to determine the diversity of the programme
population in the tierra system |Ray92|. This definition is specific to this scenario
and not generally applicable for the purpose as used in the observer/controller
architecture.

Observations made in nature and in further emergent systems have shown that
certain ingredients seem to be necessary to call an observed phenomenon emergent:
A large population of interacting elements (agents) without (or with a minimum
of) central control leads to a macroscopic pattern, which is perceived as structure
or order. To summarise, emergence can be characterised as self-organised order.
Although the resulting order is a necessary pre-condition for quantitative emergence,
it is not sufficient. Moreover, the definition calls for an order pattern developed
without external intervention, i.e., in a self-organised way.

Figure 4.3: Example of order perception: Depending on the objective of the observer the nine balls
are perceived as orderly or unorderly (position on the left hand side vs. colour on the
right hand side)

The meaning of order as perceived by a human observer is not clear without
ambiguity. The perception of order depends on the selection of certain attributes.
Looking at the position of the nine balls in Figure 4.3, ball formation might be
perceived orderly. However, looking at the colour distribution the formation on the
left obviously is not in order. Because of the similarity of the colour of the balls, the
formation on the right seems to be characterised by a higher degree of order.

A well known metric to quantify order is the definition of entropy used in ther-
modynamics and information theory. Low entropy is equivalent to a higher system
order and the other way around. The following entropy-based method is proposed to

34

4.1 Observer

quantify emergence. This method produces a fingerprint characterising the whole
system as a result of a transformation of the raw data to some higher abstract metrics.
Computing the fingerprint of a system S with N elements s; is done as follows.

1. Identify a common attribute A of the elements of S with discrete, enumerable
values a;.

2. Observe all elements s; and quantify each s; with a value a;.

3. Transform into a probability distribution (by estimating the probability by
means of the relative frequency) over the attribute values a; (i.e., a histogram)
with p; being the probability of occurrence of attribute a; in the ensemble of
elements s;.

4. Compute the entropy H 4 related to each attribute on the basis of Shannon’s
information theoretical definition of the entropy

H='3 g (L) W)

j=0 Pi
in which A represents a given attribute.

If the attribute values are equally distributed (all p; are equal), the maximum
entropy H 4, . will be obtained. Any deviation from the equal distribution will result
in lower entropy values (i. e., higher order). In other words: The more structure there
(unequal distribution), the more order is measured, where the unit of measurement is
bit /attribute. Thus, the entropy value can be interpreted as the information content
necessary to describe the given system S with regard to attribute A. A highly ordered
system requires a simpler description than a chaotic one.

However, entropy is not the same as emergence, entropy decreases with increasing
order and emergence should increase with order. Thus, emergence is defined as the
result of a (self-organising) process with an entropy value Hgy,¢ at the beginning
and a lower entropy value H.,4 at the end. This leads to the following definition of
quantitative emergence, which is the difference between the entropy at the beginning
of this (self-organising) process and at the end Hgyypy — Hepng. Finally, the degree of
emergent order of each attribute is computed according to

Ex=Hy,. —Hy, (4.2)

where Hy, . is the maximal entropy of the attribute A in case of an equal
distribution of attribute values (lowest level of order) and H4 the current entropy.
Instead of the emergence F, a relative emergence e with (0 < e < 1) can also be
computed according to

35

Chapter 4 Observer/Controller Architecture

ey = —Amee T4 (4.3)

The list of all F4 or e4 (A denoting an attribute) values of the SuOC constitutes
a vector, which is called the system fingerprint. This fingerprint characterises the
whole system and evolves over time.

An emergence fingerprint can be visualised as a multi-dimensional Kiviat graph
with one dimension for each attribute. In Figure 4.4 an example is presented where
the attributes x- and y-coordinates, direction, colour, and so on are measured and
plotted at three times ty, t1, and t,.

X
15
10
intention y
\ :
—t0
—t1
12
direction colour
state

Figure 4.4: Fingerprint with different attributes at three specific times tg, t1, and ts, visualised as
a siz-dimensional Kiviat graph (one dimension for each attribute)

Referring to Figure 4.3, the presented metric is summarised computing a concluding
example and focussing again on the the nine coloured balls. The attribute colour
is selected, the relative frequency of the colours red and green is observed, and the
entropy of the selected attribute colour is computed. In the first example on the left
hand side 4 red balls and 5 green balls are observed, so a frequency of % is computed,
respectively g. This is equal to

36

4.1 Observer

j=2-1)
Hcolour = Z b5~ 1d (_>

= 0471+ 0.520
= 0.991.

On the right hand side (where a higher order in the colour attribute can be seen)
an entropy value is computed, which is equal to

j=2-1)
Hcolour = Z by 1d (_>

= 0.151 + 0.352
0.503.

These results can also be described as a curve depending on the probability of
the colour, as presented in Figure 4.5 for the colour red. Obviously, emergence is
defined as the difference between the maximal entropy and the current entropy value.
It is shown that the maximum entropy corresponds to an emergence value of zero
whereas no entropy characterises situations with maximum emergence (all balls are
red or all are green).

Critical Remarks on Quantitative Emergence

In general, controlling a system correctly is based on situation parameters that are
aware of the system behaviour and the real situation. Measuring and analysing the

37

Chapter 4 Observer/Controller Architecture

o 00 [)
o 00 [
® 00 [)
1.00 - N 3
E
I
|
— ¢
I
1}
2
T 0.50 .
0.00)
0.00 0.50 1.00

pcolour

Figure 4.5: Entropy values depending on the probability of the colour red

system behaviour should cause clear control actions/decisions, where aggregated
situation parameters are realised as definite indicators.

Now, by proposing the use of quantitative emergence the assumptions made by
this metric should be discussed. It defines self-organisation as an increase of order,
which in turn can be measured in terms of entropy. But as already mentioned
in |Ger07|, entropy depends on the level of abstraction. When different system
attributes are observed with quantitative emergence, different degrees of order on
entropies may exist focussing on different attributes. In other words, depending on
the aspect/attribute that is focussed on, a self-organising system can be observed
as emergent or not. Furthermore, the same system, described in different aspects
or levels of abstraction can be modelled as self-organising/emergent in the one case,
and as self-disorganising/not emergent in another. Thus, it strictly depends on the
role of the observer, which decides on the granularity and aspects of the system to be
observed, whether a system will be called self-organising/emergent or not. In [Bee66],
this is illustrated by a simple example: When ice cream is taken from a freezer and
put at room temperature, it can be argued that ice cream disorganises, since it loses
its icy consistency. But, from a physical point of view, it becomes more ordered by

38

4.1 Observer

achieving equilibrium with the room, than it had done being in the freezer. Another
drawback of quantitative emergence arises in the context of the selected test scenario
and is mentioned in Section 6.2.5.

Other Metrics

Nevertheless, using an entropy-based metric as part of the data analyser is not the
only approach to quantify emergence. Even if the presented results in Chapter 8
are limited to this view, it should be mentioned for the sake of completeness that
e.g., clustering algorithms or principal component analysis may also be possible
approaches to measure and identify relevant changes in time and space patterns.

Clustering algorithms mimic the human ability to instantaneously recognise visual
patterns in complex ensembles. They organise a set of objects into subsets (clusters)
whose members exhibit a kind of similarity. The objects could be e.g., a set of
measurements or pixels in a video sequence. Clustering algorithms have many
application fields like the grouping of similar access patterns in the internet or the
classification of plants and animals depending on common traits in biology. Although
clustering itself is not a metric, it can serve as a pre-processing step to reveal
similarities between groups of elements of the organic ensemble. Various cluster
metrics have been proposed in the literature: An unambiguously defined similarity
measure is the basic metric of all clustering algorithms, since different similarity
measures may lead to totally different cluster results. In [HTTS02|, a clustering
coefficient to characterise the set of created clusters is proposed. It is defined as the
ratio of the number of element connections to the number of possible connections.
Thus, two elements of the ensemble have a familiarity, when they are similar to each
other.

Further metrics characterising the uniformity of resulting patterns and their
distribution within a certain property space are the distance between two clusters
defined as the distance between their centroids, the cluster compactness specified
as the average distance of all elements of a cluster to its centroid, or the degree of
the cluster defined as the average number of nets being incident to each component
in the cluster. While the cluster compactness is an intra-class metric, the cluster
separation is an inter-class measure. The diversity of elements within a cluster is
given by means of the cluster entropy indicating the homogeneity of the elements
in a cluster, and by the class entropy, providing information how the elements of a
class are represented by the various clusters created [HTTS02|. These cluster metrics
assume that there is a natural classification of objects, to which the output quality
of the studied algorithm can be compared. In [LRBB04], the stability of clusterings
under the influence of input data variations is investigated. Some of these proposed
measures are applicable in the context of the observer/controller architecture, others
are not, since they represent a measure of the quality of the clustering process rather
than that of the cluster patterns themselves.

39

Chapter 4 Observer/Controller Architecture

Like clustering algorithms the principal component analysis involves a mathematical
procedure that transforms a number of possibly correlated variables into a smaller
number of uncorrelated variables called principal components. The first principal
component stands for as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining variability as possible.
Principal component analysis is mostly used as a tool in exploratory data analysis.
Furthermore, it is focussed on for making predictive models. For more information
the reader is referred to [Jol02].

4.1.6 Predictor

The predictor processes the data coming from the pre-processor and results coming
from the data analyser with the goal of giving a prediction of the future system state.
An estimation of future system behaviour is evaluated in addition to the calculation
of current emergent behaviour. It allows the controller to base control decisions not
only on historic data, but also on predicted situations.

The predictor can use its own methods [MMSO06] or some methods of the data
analyser combined with prediction methods taken e.g., from technical analysis.
Prediction involves an analysis of the system history. For this purpose, the predictor
is equipped with a memory to store a given time window. Special interest is based
on the prediction of future behaviour in order to reduce the reaction time of the
controller and — hence — to increase the probability to prevent unwanted behaviour
in due time, or to perceive the success of a controller intervention at an early stage.

In order to perform the estimation, the predictor may contain a (complete) model
of the system. Based on this model the predictor is able to perform a simulation of
future system behaviour. The outcome of this simulation is the knowledge of future
system states and especially shows the desired future emergent behaviour. How such
a simulation is performed and the reasons for realising the prediction this way may
depend on the scenario and the used prediction techniques.

How to Predict (Emergence)
The best way to predict the future is to invent it. (Alan Kay)

In general, a prediction is a statement or claim that a particular event will occur in
the future in more certain terms than a forecast. In a scientific context, a prediction
is a rigorous, (often quantitative), statement forecasting what will happen under
specific conditions, typically expressed in the form of a rule: If A is true, then B
will also be true. The scientific method is built on testing assertions, which are
logical consequences of scientific theories. This is done by repeatable experiments or
observational studies.

Methods of prediction should be better than the simplest method when the actual
measured value is used as predicted value (called no change prediction). Moreover,

40

4.1 Observer

the last trend, which is the difference of the last and the penultimate value, serves
as predicted value (called same change prediction). These simple strategies are often
used to validate the quality of the result of a more complex prediction method.

In general, prediction methods are divided into methods with short, middle, and
long term horizon of prediction. Furthermore, qualitative and quantitative techniques
are distinguished. Qualitative prediction methods are performed by experts and
are based on personal knowledge. Typical methods are linear extrapolation [BZ91],
opinion polls, life cycle analysis, based on market observation and market research,
Delphi method [LT75|, scenario planning [Rin06, Sch96|, relevance tree technique
[Fre83, Twi92|, or historical analogies [Mac00|. Typical fields of application are stock
pricing, technical trends in computer science, or long term forecasts.

More interesting in a technical context like OC are quantitative prediction methods,
which are based on the use of (historical) data and result in measurable values. They
are used for prediction of tax revenue, population development, or election results.
The quality of prediction methods is often quantified by computing a forecasting
error, e.g., mean squared error [Ful87, GHO06|, median absolute deviation [HMT83],
or mean absolute percentage error. Quantitative prediction methods are divided into
one-dimensional and multi-dimensional methods.

e One-dimensional quantitative prediction methods use a large amount of data
and they are vague in the case of long term forecasts. But they can be applied
to different scenarios and their use is easy to understand. Common methods are
exponential smoothing [Sim98|, where predicted values are based on historical
data, trend analysis of a value series into the future, and moving averages.

e Multi-dimensional quantitative prediction methods are based on causation of
predicted values with some other variables, e. g., the consumption of ice cream
or mineral water depends on the number of sunny days per year. Common
methods are regression analysis [DS98|, where a causal relationship between at
least two parameters is analysed, or econometric models [DM93, Gra91, PU99|.

Mathematical or simulated computer models are frequently used to describe both,
the behaviour of something and predict its future behaviour. In microprocessors,
branch prediction [SFKS02| permits to avoid pipeline emptying due to branch
instructions. An important aspect of system engineering deals with predicting failures
and avoiding their negative consequences through component or system redundancy.
Some fields of science are notorious for the difficulty of accurate prediction and
forecasting, such as software reliability, natural disasters, pandemics, demography,
population dynamics, and meteorology. To conclude, all mentioned areas of research
use their own specific methods, which have exemplarily been summarised in short.
The different approaches allow for a general idea how prediction methods could be
used as part of an observer.

41

Chapter 4 Observer/Controller Architecture

4.1.7 Aggregator

The results of data analyser, predictor, and possibly some raw data coming from the
pre-processor are handed on to the aggregator. The aggregator also has a memory, in
which current values as well as their history are stored forming a set of data vectors
(one for each given result). These vectors are needed to perform filtering as e. g., a
smoothing of the results to eliminate the effects of noise. The aggregator delivers
a set of filtered current and previous values to the controller. This constitutes an
abstract description of the current state and the dynamics of the SuOC.

4.1.8 Summary

In Section 4.1 the proposed generic observer architecture has been described. An
observer measures, quantifies, and predicts emergent behaviour with basic metrics
and consists of a monitor, a pre-processor, a data analyser, a predictor, and an
aggregator.

To conclude, it should be emphasised that the architecture has a framework
character and only puts the stress on the main components of designing an organic
system. The observer needs to be customised to different scenarios by adopting
the observation model (selection of observable attributes and tools) and the other
components. Both, data analyser and predictor, can also be regarded as a toolbox of
observation methods. The view is explicitly not limited to the metrics, prediction
methods, or approaches as presented in this thesis.

4.2 Controller

By receiving a system fingerprint, the controller will trigger control actions and
will avoid the formation of emergence states, if they are negative, and will support
their formation, if they are positive (with regard to the given objective function).
Controller actions should effect the system with minimal effort, since OC is interested
in guiding a system showing robust and flexible behaviour and not aborting and
resetting a system with hard interventions.

As depicted in Figure 4.6, the controller is mainly composed of two internal levels:
Level 1 includes a mapping, which maps situation parameters to possible actions,
and a performance evaluation unit that evaluates deployed mappings. This level
is rather statistical, since it does not provide the possibility of adaptation of the
mapping on its own. This is provided by level 2, which includes an adaptation module.
The adaptation module takes the evaluation of the deployed mappings into account,
adapts the fitness values of the mapping, and generates new mappings, e. g., using
genetic operators (like crossover and mutation, see [Mit97]) or an off-line simulation
driven by a given or self-generated simulation model.

42

4.2 Controller

model selection ”

goal/objective i i
| i

1
! Lo
i I
[
i . .
! P! function
I ! ! I====n e e o2
b g : *
L3 BRI | L : 5
o | "o o o simulation) . ' i <
- o l» adaptation module i——itness. o
o b (I [model ;o] N
- o = B S S 1
;o selett g [4
! g_ - 1] i H o I T |
e S (= R 2 e vl i
[S < ! g 1T E.! 9 r 1 I
[T o [} I : 1ot . 727N situation) ! . |
D3 : 2 i - i ! i _mapping - » action: At r E—>: evaluation E
[[S R T A Sy i S I I S e AL s [] |
! ' \ \ r T
- R R e e 1 N R 7!
1 =1 H 1 : |:| (L [I 1 1 1y 1 1 1 < 1
1 H : \ | Cl."_ll" Ai Yoo '2_.:---4' | IZ:---J] :
1 I | I ||._"_|‘__> " \ :' -:(nl | :' -:(h|] -
: [1 [“ 1 L I |8| 1y |g| 1 =
Lo : R YW B £ § 5 :
! Do | .= e < e - |
| . : : 1 . 1 5= Ly by 1
! P! ' i | action selector ! | ¢ I NP '
[1 Vo __. T b I [b N 1
A | e o T controller |
----------- phplplplpbplplyl lplplylylyivin
1 1
' raw data ! i actionA; i

‘ ‘ ‘ ‘ system‘underobservation and controlgjoc)ﬁ)ﬁ) ‘ ‘ “;
& @ & & &) |

Figure 4.6: Generic controller architecture with two-level learning

However, the controller will only interfere when necessary, as for example when
an observed situation parameter is detected to be outside of its destinated range or
exceeds a certain threshold. As explained in [RMB*06], OC explores possibilities
to influence the emergent behaviour of complex systems, assuming that the system
consists of a large number of relatively simple, interacting elements (or agents). Then,
three possible options exists.

1. The controller influences the system in a way that a desired (emergent) be-
haviour appears,

2. it disrupts an undesired (emergent) behaviour as quickly and efficiently as
possible, and

3. it constructs the system so that no undesired (emergent) behaviour can develop.
It is the controller’s task to guide the self-organisation process between the elements.

At least three general types of control can be identified to generate or disrupt emergent
behaviour.

43

Chapter 4 Observer/Controller Architecture

1. Influencing the local decision rules of the simple agents modifies the local
behaviour of the individual.

2. Influencing the system structure assumes that the elements base their actions
on local information, where local is defined by a neighbourhood and an intercon-
necting network. The modification of this network, in particular with respect
to global characteristics, will change the global behaviour of the system. Addi-
tionally, changing the absolute number of elements influences neighbourhoods
and finally the behaviour of the SuOC.

3. Influencing the environment allows indirect control of the SuOC. This will
only work, if system elements have sensors to measure and react to a modified
environment and the controller has actuators to influence the environment. In
this theoretical discussion, it is necessary to mention that the environment
cannot be controlled at all. Moreover, it is not clear, where the environment of
the SuOC starts and ends in fact. One possibility would be to declare some of
the actuators to be part of the controller, not of the SuOC. Then the controller
can actually modify the environment to change the overall behaviour of the

SuOC.

There are certainly more types of control imaginable, but these three represent
the most general ones.

Trying to direct the self-organising process of the SuOC, the controller periodically
decides what action has to be taken regarding to the situation parameters received
from the observer. In the following, a generic architecture of the controller is
presented, which has to be customised to each individual scenario. As depicted in
Figure 4.6, the controller has three interfaces.

1. The aggregated data are obtained from the observer.

2. The objectives are imposed on the controller by the developer using the second
interface. This global objective function defines the goal of the controlled
self-organising process and is also used for the evaluation routine of further
actions.

3. The third interface contains all information needed for interaction and recon-
figuration of the SuOC. Every controlled system provides a number of different
parameters and interfaces for manipulation. This information is predetermined,
depends on the scenario, and is not learned by the controller.

421 Level 1

The decision module called action selector and the mechanisms of machine learning
are the most important components. Three main loops of planning and learning are

44

4.2 Controller

distinguished. The first loop receives the observed data, selects the best weighted
action A; that is the most appropriate for the current situation C; (a mapping
function assigns each rule (Cj, A;) a fitness value F;}), and the action selector forwards
the chosen action to the SuOC. This loop simply applies the best action out of a
given set of actions and does not involve learning. It aims at quick reaction.

The second loop concurrently proceeds to the first one and keeps track of history
data. For every action at time ¢, the situation at ¢t + At is measured by the observer
and written to a memory. These tuples of actions and resulting situation parameters
are used for evaluation and calculation of new fitness values F;, which are updated
in the mapping. In order to avoid overcontrol a fixed time delay At is defined to
assign results to preceding actions.

4272 Level 2

Additionally to an observation based update of the fitness values F; for a known
rule (C;, A;), the controller can also generate completely new rules and actions by
applying mechanisms of machine learning. Adaptation can occur on-line and/or
by a model-based internal learning process, which is introduced by the simulation
model in combination with the adaptation module in a third control loop. Since the
generic architecture does not specify the mechanisms of machine learning in detail,
methods like artificial neural networks, LCSs, reinforcement learning, or evolutionary
algorithms [Mit97| are possible.

E. g., if the observer reports unknown situation parameters, no matching action will
be found by the action selector in the first instance. However, by using a simulation
model, the adaptation module could either evaluate a suitable action for the current
situation from the set of known actions (i.e., create a new control rule) or generate a
completely new action. In any case, if new rules and actions are created, a simulation
model will be used to predict the possible outcome of the modification before actually
applying them to the real system. OC scenarios are mostly real-time systems with
hard time restrictions. Thus, pure off-line planning is often not feasible, but e. g.,
evolutionary algorithms could be used for generating completely new rules, and
for modification of existing rules with genetic operators (mutation and crossover).
Simulation would be needed to predict the success of control actions.

4.2.3 Summary

Below, the different decisions are listed, which have to be taken for every control
loop. The workflow may differ with respect to the scenarios and may depend on
implemented mechanisms of machine learning.

e [s there an action of the controller expected? Is there some kind of unanticipated
behaviour observed? Are there some indicators exceeding their predefined

45

Chapter 4 Observer/Controller Architecture

thresholds? The decisions are based on local reference values for the indicators
and degradation of the objective function.

e In order to avoid repeated action and overshooting control, the system has to
remember recent responses to a situation. Furthermore, it has to wait some
time At for the effect to appear.

e What is the best action for the observed situation parameters? The mapping is
browsed for a best matching tupel consisting of condition (C;) and action (A;).

e If no suitable control rule exists in the mapping, the adaptation module will
generate a new one. If the controller has access to a system model, it will
rate such new control actions in a simulation model before actually applying
them to the real system. If time permits, such a model will allow an internal
response optimisation.

e What is the reward for the action responsible for the present situation(s)? The
corresponding fitness value is changed depending on the success of the rule.

However, the presented controller architecture has a framework character. Practical
implementations do not have to contain all functionalities described above. A
controller only consisting of an action selector and a mapping table is possible, but
very limited in its possibilities to control a system. This type of controller would
not be able to adapt to changing environmental situations on its own. Moreover, it
would not be able to adjust the mapping table to different system goals. Actually, it
could not react to changes of system objectives at all. In Chapter 8 different types
of controllers will be investigated ranging from non adaptive controllers to adaptive
ones that learn both, on-line and off-line.

4.3 On-Line Learning and Off-Line Planning Capabilities

What will happen, if the organic system or only the SuOC suffer from changes in its
requirements specification or changes in use, changes in resource availability, faults in
the environment, or faults in the system itself? The aim of self-adaptation/learning
is that the system is able to reconfigure itself in order to satisfy any situation of
disorder. These dynamic changes tend to imply an off-line/planning process, in which
the system evolves through a number of releases, where each release could make
use of self-configuration. However, dynamic changes, which occur while the system
is operational, are far more demanding and require that the system dynamically
evolves, and that the adaptation occurs at runtime.

As shown before, an observer/controller architecture has been developed to enable
controlled self-organisation in technical applications, which has the capability to adapt
to changes on two levels: At the on-line level (level 1) the proposed architecture learns

46

4.3 On-Line Learning and Off-Line Planning Capabilities

about the environment, and about the performance of its control strategies. Level 2
implements a planning capability based on a simulated model of the environment.
At this level the agent can test and compare different alternative strategies off-line,
and thus plan its next action without actually acting in the environment. Fixed,
basic, and periodical tasks that can be learned outside the real system should be
learned off-line. In fact, off-line planning is necessary for these tasks as agents do
not get enough training evaluations in real situations to learn all tasks on-line.

This off-line planning capability of basic skills is similar to chunking [New94]
something done by human experts in many domains. E.g., human athletes spend a
lot of time acquiring basic skills so that they can automatically execute them during
competition. Human tennis players learn to control and pass a ball over the net for
hours and hours (for many years) of practice outside game situations.

The proposed two-level architecture (theoretically) has several important advan-
tages.

1. The off-line planning allows to find appropriate actions without actually having
to test different alternatives in the real world. The latter could be detrimental,
as testing out potentially bad strategies in the real world can initiate tremendous
costs and cause the system to fail permanently.

2. Level 1 acts as a kind of memory, and allows to react quickly. If a situation
close to a previously encountered situation reappears, the system will respond
immediately.

3. A model-based planning as on level 2 is always limited by the necessary
simplifications made in the model. Thus, the best action with respect to the
model is not necessarily the best action with respect to the real world. In this
architecture, level 1 thus is allowed to slightly fine-tune the solutions from the
planning module.

The proposed architecture has similarities with model predictive control [CB04],
which only uses level 2 planning and an on-line adaptation of the level 2 simulation
model, as mentioned in Section 4.5.5. It also has similarities with pure on-line
learning mechanisms like LCSs or reinforcement learning, which only act on level 1.
And there is the idea of anytime learning, presented in [GR92, RG94, SG94|. An
evolutionary algorithm is equipped with a case-based memory, which can be seen as
a two-level structure. However, no off-line planning takes place.

In model predictive control the model is continuously calibrated using prediction
and comparing it with measurements that are received (on-line) from the process. The
generic observer /controller architecture proposes a planning capability on level 2 of
the two-levelled learning architecture based on a simulated model of the environment.
At this level, different alternative strategies can be tested and compared off-line, and
thus next actions are planned without actually acting in the environment. In other

47

Chapter 4 Observer/Controller Architecture

words, the off-line planning allows to find appropriate actions without the need to test
different alternatives in the real world. This is beneficial, since testing out potentially
bad strategies in the real world can cause the system to fail permanently. But,
model-based planning as on level 2 is always limited by the necessary simplifications
made in the model or by incomplete model calibration due to the fact that the
modelled environment changes dynamically/continuously. Thus, the best action with
respect to the model is not necessarily also the best action with respect to the real
world. In this case, it is argued that level 1 of the observer/controller architecture
is allowed to slightly fine-tune the solutions received from the planning module.
However, if fine-tuning is not sufficient, the simulation model and the reality will
differ too much, then the used simulation model has to be updated.

In general, calibration is the process of establishing the relationship between a
measuring device and the units of measure. This is done by comparing a device or
the output of an instrument to a standard having known measurement characteristics.
For example the length of a stick can be calibrated by comparing it to a standard one
that has a known length. Once the relationship of the stick to the standard one is
known the stick is calibrated and can be used to measure the length of other things.

Model calibration consists of changing values of (simulation) model parameters in
an attempt to match real world conditions within some constraints. This requires
real world conditions to be properly characterised. Lack of proper characterisation
may result in a (simulation) model that is calibrated to a set of conditions, which
are not representative of actual real world conditions.

In [BZLO06], a robot is described that autonomously recovers from unexpected fail-
ures, by continuous self-modelling. This robot uses actuation-sensation relationships
to indirectly infer its own structure, and it uses self-models to generate forward
locomotion, e. g., if a leg is removed or not functioning properly, the robot will adapt
its self-model. This leads to a generation of alternative gaits. Other fault tolerant
robots are described in [GWTS05, MBOG6].

In [Ant07], several modified, nonlinear Kalman filter methodologies [Kal60| are
used (e. g., extended Kalman filter (EKF), iterated EKF, and limiting EKF) for traffic
estimation and prediction (or dynamic traffic assignment) models to contribute to the
reduction of travel time delays. An on-line calibration approach that jointly estimates
all model parameters is presented. The methodology imposes no restrictions on the
models, the parameters or the data that can be handled, and emerging or future data
can easily be incorporated. The modelling approach is applicable to any simulation
model and is not restricted to the application domain of traffic.

Continuous parameter calibration of microscopic traffic models in on-line simula-
tions is also discussed in [LWO05|. An algorithm is described, which uses unscented
Kalman filter. The algorithm is supplied with data of loop detectors and, of course,
with a model. The model parameters are continuously adapted to the incoming data
in order to keep the on-line simulation as realistic as possible.

In most cases of model calibration, the data available for calibration (usually

48

4.4 Architectural Variants of the Observer/Controller Architecture

consisting of labelled data points) are provided externally, and have to be accepted
as they are. More recently, researchers have started to consider cases where the
system can decide, which data points out of a large set of possible data points should
be labelled, i.e., the system can actively influence the data set available for model
calibration. This research field is known as active learning or also optimal learning.
Since the learner chooses the examples, the number of data points needed to calibrate
a model can often be much lower than in normal supervised learning. One of the
first papers on active learning is [CGJ96|. Typical heuristics used are to query data
points close to the decision hyperplane, e.g., [TK01], or to choose data points with
the greatest reduction in estimated generalisation error probability [RMO1].

In summary and with respect to the known literature, the proposed two-level
learning approach as part of the observer/controller architecture is new in the field
of (collaborative) multi-agent systems. The architecture has the advantage of on-line
adaptation and prevents the disadvantage of testing bad solutions in the real world
by using a model of the reality for validation of promising new actions.

4 4 Architectural Variants of the Observer/Controller
Architecture

The generic architecture needs to be customised to different scenarios by adapting
the various components of the observer (including the observation model) and the
controller. As stated in [CMMST07], the architecture may be realised in the following
ways, see Figures 4.7 and 4.8.

The choice of the appropriate observer/controller realisation is a design decision
that has to be made by the developer in the design phase of the technical system.
Many distribution possibilities exist and vary from fully centralised to fully distributed.
In the former case, only one observer and one controller is taken for the whole system,
see Figure 4.7(a), whereas in the latter case one observer and one controller is
established on each agent, see Figure 4.7(b), in the system. The fully centralised and
the fully distributed architectures define the two extreme points in the design space.
Other distribution possibilities like a multi-levelled architecture are sited between
these two extreme points, see Figures 4.8(a) and 4.8(b).

In particular, e. g., in larger and more complex systems (where the objective space
drastically increases) it will be necessary to build multi-levelled and hierarchically
structured OC systems instead of trying to manage the whole system with one
centralised observer /controller.

In the case of multiple observer/controller levels the SuOC at the bottom of
the whole system will consist of simple elements like single software or hardware
modules. However, at higher levels a SuOC will comprise sub-systems, where each
of these sub-systems represents an OC system including an observer/controller on

49

Chapter 4 Observer/Controller Architecture

(a) Centralised: An observer/controller for the (b) Distributed: An observer/controller on each
whole technical system system element

Figure 4.7: Centralised and distributed variants of the generic observer/controller architecture

its own. Goals of the controller become more abstract and general on further steps
up in the hierarchy. As described in [Rib07|, this corresponds to the management
of a company, where high level administration units are not bothered by low level
decisions. In the business world, it is necessary to separate low level from high
level management tasks to handle the complexity of management tasks in the way
mentioned above. This paradigm can be transferred to the field of OC systems:
Regarding to [CMMS™07] the need for multi-levelled observer/controller architectures
is based on complexity in terms of variability. Variability is the number of possible,
by an observer detectable configurations of a SuOC, and will be apparently larger, if
an SuOC contains more elements. Implementing multi-levelled observer/controller
architectures is a mean of greatly reducing variability and by that complexity. E. g.,
the investigation of hierarchical structured observer/controller architectures is in
the focus of [LS06, LTS08, TLS07|, where OC principles are integrated into service-
oriented architectures.

In [CHMS08b, CHMSO08a|, a resource sharing problem [IK98| as a common bench-
mark problem in multi-agent scenarios is implemented, which is used to evaluate
assets and drawbacks between a centralised and a distributed observer /controller
architecture, coping with this problem domain. To provide a more quantitative
comparison of the two selected architectures, four different test scenarios with in-
creasing conflict levels are developed. As comparison criteria the system performance
is measured. The centralised observer/controller architecture should work at least
as well as the distributed one in all scenarios. However, the experimental results
show instead that the system endowed with the distributed observer/controller is

50

4.4 Architectural Variants of the Observer/Controller Architecture

(a) Multi-levelled (b) Hierarchical

Figure 4.8: Multi-levelled or hierarchical variant: An observer/controller on each system element
as well as one for the whole technical system

more efficient than the centralised observer/controller in scenarios with increasing
conflict level in spite of its limited view. Thus, the centralised observer/controller
architecture provides a better system performance than the fully distributed one in
the low-conflict scenario only. Since the optimal strategy can neither be implemented
on the centralised nor on the fully distributed level, the results suggest an adap-
tive architecture. This architecture incorporates both architectures in the system
simultaneously and allows to switch between the centralised and the distributed
architectures. Thus, it benefits from the advantages of both architectures depending
on the current conflict level in the system.

In general, systems with a centralised observer/controller instance, where the
controller influences the behaviour of each component of the SuOC explicitly, cannot
scale with the increasing number of components. If the controller has limited
resources, e. g., a limited central processing unit (CPU) or a limited memory that
cannot be expanded accordingly, these limitations will prevent the controller from
influencing the system as necessary. The overall system could produce unwanted
(emergent) system behaviour. Thus, in such large scale multi-component systems
the behaviour of each component cannot explicitly be determined by a centralised
instance. Therefore, a system developer can either implement a distributed control
mechanism or modify the centralised controller in such a way that it performs its
control functionality on a higher abstraction level determining (or influencing) the
behaviour of groups of components instead of the behaviour of every single component.
Thus, the controller can save resources like CPU or memory and is able to work with
a large number of components.

51

Chapter 4 Observer/Controller Architecture

Moreover, a distributed observer/controller architecture has been adapted to a
scenario of organic traffic control within another research project [PRTT08, TPR108].
Organic traffic control has served both, as a provider of requirements and as an
additional experimentation platform. In particular, the need for a two-levelled
learning architecture is originated in this project. In close cooperation the advances in
the development of a generic observer/controller architecture have been incorporated
into the organic traffic control architecture, and insights gained by adapting the
architecture to traffic control have in return helped to extend the generic architecture.
As a result, both architectures map nicely, a detailed description can be found in
[BMMS*06].

While these are the general design options, it is emphasised that OC systems will
always need some external high level control, possibly by the user. It is not intended
to build fully autonomous systems because the system developer must always be
able to guarantee the ultimate human control, which might be necessary in case of
unanticipated emerging behaviour. Therefore, the centralised observer/controller
architecture is investigated and the other variants are disregarded in the following
chapters.

45 Related Architectures

Since OC is by no means the first domain, where regulatory feedback mechanisms are
introduced to achieve controlled self-organisation, other architectures are summed
up and compared to the organic approach in short.

4.5.1 Autonomic Computing

One of the most famous exponents is IBM’s MAPE (monitor, analyse, plan, and
execute) cycle [KC03, Ste05], designed as an architectural paradigm for the autonomic
computing initiative, where the equipment and software of IT-infrastructures is
endowed with self-managing capabilities. This architecture has also served as a great
source of inspiration for developing the observer/controller architecture. Autonomic
computing aims at facilitating and automating system management tasks currently
performed by humans. An autonomic computing system is supposed to be self-
healing, self-optimising, self-protecting, and self-adapting. It has the ability of
self-configuration and reconfiguration. In this respect, the complexity of the system
is hidden from the user.

Designing local and global architectures in a manner that allows self-organisation
and at the same time robust, controlled, and predictable system behaviour is a key
challenge not only in current OC, but also in autonomic computing research. An
autonomic computing architecture [[BMO06] consists of one or more MAPE closed
loops. This loop is associated to system knowledge, including information about

52

4.5 Related Architectures

autonomic manager

analyse plan

monitore knowledge execute

managed element

Figure 4.9: Structure of an autonomic element, which interacts with other elements and with
human programmers via its autonomic manager, see [KC03]

the system and its policies, and is defined as an autonomic manager, see Figure 4.9.
The autonomic manager has four functional areas. It monitors the managed element
using embedded sensors, followed by analysing the resulting measured data. If
this analysis results in necessary activities, the autonomic manager will plan and
erecute any specific action needed. These functionalities define a control loop,
which is referred to as MAPE. The autonomic manager is guided by business goals
manifested in the form of policies, which describe what needs to be accomplished.
The manageability interfaces between the autonomic manager and the manageable
unit basically consisting of sensors and effectors is called touchpoint. The autonomic
manager will react — if necessary — to the circumstances observed in the system. It is
possible to arrange the autonomic manager in a hierarchical manner, some autonomic
managers manage other autonomic managers, which directly manage resources, and
the upper manager — called orchestrating manager — is guided by high level business
goals, which are translated into goals and objectives for the lower manager(s). Lower
managers pursue the fulfilment of these goals by the managed resource.

53

Chapter 4 Observer/Controller Architecture

While the underlying ideas of autonomic computing show great similarities to OC,
the application field differs. In general, autonomic computing deals with the problem
of IT-systems, which have become more interconnected and diverse. Architects
are less able to anticipate and design interactions among participating components,
leaving such issues to be dealt with at runtime. Systems are too massive and complex
for the most skilled system integrators to install, configure, optimise, maintain, and
merge, as argued in [KC03|.

Thus, autonomic computing aims at solving these problems by computer systems
that can manage themselves in a predefined framework, which allows self-optimising
behaviour with some degree of freedom. Elements of an autonomic system contain
resources and deliver services to humans and autonomic elements. They can manage
their internal behaviour and their interactions to their environments in accordance
with strategies established by humans. So it becomes apparent that autonomic com-
puting focusses on the learning process of technical systems. IBM has implemented
its autonomic architecture in its DB2 universal database |ZE04]. In comparison to
OC, autonomic computing’s focus lies on monitoring and analysing enterprise server
architectures.

But, while autonomic computing is directed towards maintaining server architec-
tures, which should be managed without active interaction between man and machine,
OC’s focus is more general in its approach and addresses large collections of intelligent
devices providing services to users adapted to the requirements of their execution
environment [Sch05b|. In other words, OC’s focus is more on technical applications.
Thus, besides showing the self-x-properties, interaction between man and machine is
an essential part of OC systems. In particular, the two-level adaptation and learning
architecture of the observer/controller is a powerful mechanism to autonomously
adapt system behaviour to a continuously changing environment. Neither the need
for autonomous learning capabilities on every level of the management architecture,
nor a systematic investigation of patterns for collaborative behaviour is emphasised in
autonomic computing. Another important OC aspect is controlled self-organisation,
which is not addressed in autonomic computing.

4.5.2 Operator/Controller Module

The operator /controller module, as depicted in Figure 4.10, has been investigated in
the collaborative research centre 6142 to realise self-optimising systems of mechanical
engineering [BGM™08, HBN0O1, HO03, OHKKO02].

While the information processing unit of a mechatronic system has to perform a
multitude of functions, the number of errors increases accordingly [HOGO04|. E. g,
control code works in a quasi-continuous mode, it controls motions in the plant,
adaptation algorithms adapt the control to altered environmental conditions, error-

’http://www.sfb614.de/eng/index.htm

54

4.5 Related Architectures

>

cognitive operator cognitive information processing

| behaviour-based self-optimisation |

| model-based self-optimisation |

soft real-time

reflective information processing

configuration emergency
control
sequencer| ..

action level | planning level

hard real-time | |

<

controller : . ' motor information

l_ll:l control B—pnc | processing
‘control C

Sy —

Figure 4.10: Structure of the operator/controller module, see [HOGO04/

analysis software monitors the plant in view of occurring malfunctions, or different
systems are interlinked. To cope with these increasing requirements and to allow
safety and self-optimising systems, a new structure of the information processing of
a mechatronic function module has been proposed.

The controller addresses the innermost loop (called motor loop), processes mea-
surements, and produces control signals to directly affect the plant on the lowest level
of the operator/controller module. Software that is processed on this level works
in a quasi-continuous mode. Under hard real-time conditions the controller reads
measured values, processes them, and outputs them continuously. This lowest level
can be made up by one or by several controllers offering the possibility of switching
and fading over in one time step between the different controllers.

The second layer, the reflective operator, complements the first layer. It executes
monitoring and controlling routines, which do not affect the system directly, but
modifies and switches between different configurations of the controller(s) on the low-
est level. The reflective operator operates in an event-orientated manner under hard
real-time constraints. Therefore, it uses quasi-continuous functions and adaptation
algorithms.

The reflective operator is the connection layer between the upper layer, the cognitive
operator, which asynchronously works to real-time requirements in software, and
the controller operating under hard real-time constraints in hardware. It filters the

55

Chapter 4 Observer/Controller Architecture

incoming signals from the cognitive level and passes them through to the subordinate
levels. Of course, the cognitive operator has to respond within a certain time limit.
Otherwise and due to a dynamic changing environment, self-optimisation would
hardly find useful results.

Using a cognitive loop, the cognitive operator gathers information on itself and
its environment by applying various methods, e. g., learning, knowledge-based opti-
misation, and model-based optimisation. These methods are used to improve the
cognitive operator’s behaviour, but other cognitive functions are possible to achieve
self-optimisation. In [HOGO04], model-based and behaviour-based self-optimisation is
divided. Model-based optimisation uses prediction for optimisation and is decoupled
in time from the real system. Behaviour-based optimisation utilises functions for
planning and evaluating the current objectives, see [HO03, OHKKO02].

To conclude, the operator/controller module is divided into two loops. Both
loops affect the system, the first directly operates in hard real-time (operator), the
second does it with respect to soft real-time constraints indirectly (controller). In
[GMM™06], the operator/controller module is compared to an early version of the
organic observer/controller architecture.

A related practical approach, explained in [SMS05], is the observer/con-
troller architecture for OC systems. Similar to the operator/controller
module it is inspired in the brain system as low level structures, which
reacts to sensory inputs and the limbic system as a high level structure,
which observes and manipulates the first one. In contrast to this work, the
operator/controller module also supports higher cognitive behaviour, which
matches the planning layer of the touring machines [Fer92] (autonomous
agents with attitudes) and tries to reach the goal of a general model for
autonomous cognitive agents, as stated in [DF98],...

This statement is misleading, since in [GMM™06|, an early paper of the obser-
ver /controller architecture is used for the comparison of these two architectures.
Comparing the operator/controller module with the generic observer/controller
architecture, the following should be mentioned.

e In general, both architectures address similar goals investigating an adaptive
regulatory feedback mechanism to control complex technical systems.

e Since the operator/controller module is focussed on mechatronic systems with
a strong focus on real-time standards, the organic approach is more general
where methods of quantifying emergent behaviour as part of the observer and
learning as part of the controller have a strong relevance.

e As depicted in Table 4.1, the operator/controller module makes a difference
between adaptation in hardware on level 0 and in software on level 1. The

56

4.5 Related Architectures

Table 4.1: Comparison of the different levels in the observer/controller architecture vs. the opera-
tor/controller module

’ Level H Observer /controller architecture ‘ Operator/controller module ‘

0 SuOC, adaptation with fixed rules | Controller: Adaptation is done in
hardware and follows fixed rules.

1 On-line (reinforcement) learning | Reflective operator: Adaptation is
done in software and follows fixed
rules.

2 Off-line planning using a model Cognitive operator: Model- and be-
haviour-based learning

observer /controller architecture does not propose a separation of hard- and
software. Thus, level 0 and level 1 from the operator/controller module could
be mapped on level 0 of the observer/controller architecture.

e Furthermore, on-line learning, characterised as getting a reinforcement sig-
nal from the real SuOC, as proposed on level 1 of the observer/controller
architecture, seems to be not included in the learning approach of level 2 of
the operator/controller module. But, learning as part of the real system is
important to slightly fine-tune the solutions produced by the planning module.
When acting in changing environments the planning module on level 2 in both
architectures cannot match the reality in all details or needs for customisa-
tion. Thus, the observer/controller approach allows more adaptation on level 1,
thereby being advantageous in comparison with the operator/controller module.

4.5.3 Sense, Plan, and Act (SPA)

The SPA architecture is another approach, which was the predominate control
methodology through 1985 in the area of (mobile) robotics. In SPA, a mobile robot
has to perform complex information processing tasks in real-time and operates in
an environment with rapidly changing boundary conditions. Typically, the problem
has been decomposed into a series of functional units, as described in Figure 4.11.
Firstly, gather all the information from the sensors. Secondly, create the world model
using all the information and plan the next move. Thirdly, act as the plan dictates.
After the acting phase, the sensing phase follows again [Nil86]. The SPA approach
has two significant architectural features: First, the information flow from sensors
to world model to plan to effectors is unidirectional and linear, never in the reverse
direction. Thus, SPA proposes an open control loop, simple to understand. Second,
the execution of an SPA plan is analogous to the execution of a computer programme.
Both are built of primitives composed of partial orderings, conditionals, and loops.
Altogether, SPA has tried an approach as simple as possible.

57

Chapter 4 Observer/Controller Architecture

sensors — —> actuators

uondaoaiad
3uij|Ispow
Sujuueld
uo[NJIAX3 skl
|0J3U02 JOj0W

Figure 4.11: A mobile robot control system is decomposed traditionally into functional modules,
see [Bro86]

However, in the mid of the 1980ies it became clear that the proposed simplicity,
and at the same time SPA, has different drawbacks in planning and world modelling,
which turned out to be very hard problems. In addition to that, executing open-loop
plans turned out to be the wrong technique to cope with environments that are
uncertain and unpredictable. Several approaches have been proposed to solve these
shortcomings. One of these manifold approaches is the so-called subsumption archi-
tecture, as proposed by Rodney A. Brooks in [Bro86|, which is based on the analysis
of the (often limited) computational requirements for mobile robots. Thus in [Bro86],
a decision is provided to use task-achieving behaviours as primary decomposition
criterion of robot’s tasks, as illustrated in Figure 4.12.

reason about behaviour of objects

plan changes to the world

identify objects

monitor changes

v
A

Sensors > actuators

build maps

explore

wander

avoid objects

Figure 4.12: Task achieving behaviours as decomposition criterion for mobile robots, see [Bro86]

58

4.5 Related Architectures

Each slice is explicitly implemented and forms a whole robot control system
together with the other slices. This decomposition strategy is different to the work
done before in terms of behaviours rather than in terms of functional modules and it
is argued that it has plausible advantages concerning robustness, modularity, and
testability. It follows nine dogmatic design decisions, made in [Bro86], e. g., things
should be simple and complex behaviour is not necessarily a product of an extremely
complex control system.

Since SPA decomposes the problem of building a robot into subsets of sensing,
mapping sensor data into a model representation of the real world, planning, task
execution, and motor control, decomposition forms a chain where information flows
through the robot’s logic/cycle. An instance of each subset has to be built in order
to run the robot at all and later changes have to be done with respect to the whole
functionality. Therefore, task-achieving behaviours split the problem on the basis
of desired external manifestations and prefer levels of competence, which are an
informal specification of the desired robotic behaviour. Each level of competence
includes a subset of earlier subsets of level of competence. Furthermore, higher levels
of competence provide additional constraints on the underlying levels. Thus, layers of
a control system can be build that correspond to levels of competence. If a new layer
is added to an existing set of layers, the system will move to the next higher level
of competence. This hierarchically structured subsumption architecture is described
in Figure 4.13. Building the first layer this framework provides a working control
system for a mobile robot at a very early implementation step. Additional layer
could incrementally be added and tested later — without changing the initial working
system.

level 3

A

A 4

level 2

level 1

A

sensors » level O » actuators

Figure 4.13: Control is layered in a hierarchy of levels of competence, where higher layers subsume
lower layers in the case of taking control, see [Bro86]: Partitioning the system is
possible at every level, the lower layers form a complete operational control system

Building each single layer includes decomposition in the traditional SPA manner,
but the difference between SPA and the subsumption architecture might be that
the designer does not need to account for all desired perceptions, processing, and
generated behaviours in a single decomposition. For different sensor- and task-set

59

Chapter 4 Observer/Controller Architecture

pairs the designer can choose different decompositions. Last but not least, the
subsumption architecture has shown some drawbacks in practice, too, as mentioned

in [HP91].

The most important problem we found with the subsumption architecture
is that 1s it not sufficiently modular. The other problems described below
are really side effects of this one. Because upper layers interfere with
the internal functions of lower level behaviours they cannot be designed
independently and become increasingly complex. This also means that
even small changes to low level behaviours or to the vehicle itself cannot
be made without redesigning the whole controller.

Thus, more modern approaches of designing mobile robots combine hybrid re-
active and deliberate behaviour and are inspired by a three-layered architecture
[Fir89, Gat98| that consists of three main components: A reactive feedback control
mechanism (controller), a reactive plan execution mechanism (sequencer), and a
mechanism for performing time consuming deliberate computations (deliberator).

As described in [Gat98|, the controller acts on the lowest layer of the three-layered
architecture and consists of one or more threads of computation that implement one or
more regulatory feedback control loops, respectively, where each loop matches sensors
to actuators. At runtime the controller can change these sensor-actuator-mappings,
the so-called transfer function(s), which are stored in a library of hand-crafted transfer
functions. Getting an external input the controller is determined, which transfer
action is active at any given time and which not. Since the controller works on real
hardware, several constraints have to be considered: First, computing one iteration
of a transfer function should be executable in a constant amount of time and limited
space complexity. This constant amount of time should be small enough to provide
enough bandwidth to afford stable closed loop control for the desired behaviour.
Second, an algorithm as part of the controller should fail recognisable. In other
words: An algorithm should be designed to detect any failure to perform the transfer
function, for which it has been designed. Since it is impossible to design algorithms
on real robot hardware that never fail to detect a failure, the architecture allows
other components of the system (the sequencer and deliberator) to take corrective
actions to recover from a failure.

The sequencer performs its job on top of the controller in real-time. It selects the
transfer function that is executed by the controller at a given time, and it supplies
parameters for the transfer functions. By changing transfer functions at strategic
moments the robot is induced to perform useful tasks. But, the resulting problem is
that the outcome of selecting a particular transfer function in a particular situation
might not be the intended one. In this way a simple linear sequence of transfer
function is unreliable. Thus, the sequencer must be able to conditionally respond to
the current situation, whatever it might be. Furthermore, the sequencer should not

60

4.5 Related Architectures

perform computations that take a long time in relation to the rate of environmental
change at the level of abstraction presented by the controller. Usually, this constraint
implies that the sequencer should not perform any computational intensive tasks,
like search and optimisation tasks.

The deliberator acts on top of the sequencer performing time consuming computa-
tions, e. g., which includes planning and other exponential search-based algorithms.
The key architectural feature of the deliberator is that several transitions of transfer
function(s) can occur between the time a deliberate algorithm is invoked and the time
it produces a result. The deliberator runs in parallel and as one or more separate
threads of control. The architecture proposes no architectural constraints on algo-
rithms in the deliberator, which are invariably written using standard programming
languages. The deliberator can interface to the rest of the system in two different
ways. It can produce plans for the sequencer to execute, or it can respond to specific
queries from the sequencer.

[Gat98] mentions that the three-layered architecture is not derived from funda-
mental theoretical considerations. Instead, empirical observations of the properties
of environments, in which robots are expected to perform, and of the algorithms
that have proven useful in controlling them have led to this framework. Similarities
with the before introduced operator /controller module could be mentioned. Both
architectures provide regulatory feedback on technical systems and focus on real-time
control, where hard- and software layers are distinguished and based on different
constraints.

Table 4.2: Comparison of the different levels in the observer/controller architecture vs. the three-
layered architecture from the area of (mobile) robotics

’ Level H Observer/controller architecture \ Three-layered architecture ‘

0 SuOC, adaptation with fixed rules | Controller: Fixed transfer func-
tions acting in real-time in hard-
ware

1 On-line (reinforcement) learning | Sequencer: Selection and modifica-
tion of transfer functions in real-
time

2 Off-line planning using a model Deliberator: Time consuming com-
putations

Furthermore and summarised in Table 4.2, the three-layered architecture is char-
acterised by a hierarchy of control layers, each responsible for different tasks and
equipped with different methods. This also seems equal to the proposed obser-
ver /controller architecture, even if the organic focus is more general and specially on
the controller’s side on different learning loops (no learning, on-line learning, and
off-line planning). The term learning is still ignored in [Gat98|.

61

Chapter 4 Observer/Controller Architecture

4.5.4 Component Control, Change Management, and Goal Management

As in the area of robotics, similar three-levelled architectures exist in the area
of software engineering to design self-managed systems consisting of component
control, change management, and goal management |[KM07, KM09|, see Figure 4.14.
Other termed approaches are described in [GS02, OGT199]. Self-managed systems
cope with a similar vision as OC systems do. For instance, goals, properties, and
constraints, which a system is expected to achieve or preserve, and furthermore, a set
of software components exist, which implement the required functionality. Then, the
aim of self-managing means that the components should either configure themselves
so that they satisfy the specification or are capable of reporting that they cannot.

.8
]
goal management ,—---L---: ,—---L---:
B 8
T change plalms
I
plan request l
change management Py P,
T change acticl)ns
I
status l
component control ' '
| ¢ | I > |

Figure 4.14: Three-levelled architecture for self-managed systems, see [KMO7]

At the bottom of self-managed systems, component control is established by a set of
interconnected components that provide the system functionality. Including facilities
to report the current status of components to higher layers, this layer supports
component creation, component deletion, or component interconnection. It contains
behaviours to adjust operating parameters of components, e. g., the timeout values in
a component implementing a communication protocol, e. g., the transmission control
protocol. In summary, the bottom layer includes some kind of self-tuning algorithms,
event and status reporting to higher levels, and operations to support modifications.
If a situation is met that the current configuration of components is not designed to
deal with, the component layer will detect this failure and will report it to higher
layers.

62

4.5 Related Architectures

The middle layer, the change management, reacts to changes in the underlying
component layer in response to new reported states or in response to new required
objectives given by the layer above. Given a new situation, this change management
executes a single action or a sequence of actions to handle the new situation. Using
a set of predefined plans, which are activated in response to modifications of the
underlying layer, it introduces new components, reconfigures failed components,
changes component interconnections, or modifies component operating parameters.
Since plans are predefined, response and execution time of change management
quickly adapt to new situations. If no plan exists to cope with a reported situation,
the services of the higher goal management layer will be engaged. The same happens
in the case of new goals involving new plans.

The highest layer is called goal management. In response to requests from the
layer below and in response to the introduction of new high level goals this layer
produces change management plans to achieve these goals using time consuming
computations. Research issues on this level focus on how to represent high level
system goals, how to synthesize change management plans from these goals, and how
general or domain specific this layer should be?

Table 4.3: Comparison of the different levels in the observer/controller architecture vs. the three-
levelled architecture for self-managed software systems

’ Level H Observer/controller architecture \ Three-levelled architecture ‘

0 SuOC, adaptation with fixed rules | Component control: Immediate
feedback actions
1 On-line (reinforcement) learning Change management: Activating

of predefined plans according to
reported and well known situations
2 Off-line planning using a model Goal management: Synthesizing
new plans from high-level goals in
time consuming computations

Summarising this architecture as described in Table 4.3, immediate feedback
actions are located at the lowest level, which has similarities to level 0 of the
observer/controller architecture. Similarities on level 1 are also obvious, even if
the controller’s view on level 1, as described in detail in Section 4.3, needs not be
limited to predefined plans. Since reinforcement learning may be an option that
can be utilised on the controller’s level 1, reinforcement learning methods specially
include the risk of making mistakes in new and unknown situations. In comparison,
change management will report new and unknown situations to level 2, if no plan
exists to cope with this reported situation. Analogously, the longest actions requiring
deliberation and time consuming computations take place on the highest level, which
is the same in both approaches, see Section 4.3. In favour, the controller’s view

63

Chapter 4 Observer/Controller Architecture

on level 2 utilises a simulation model. Moreover, the description, how the goal
management produces change management planned by high level system goals, is
not done precisely.

Thus, the predominant criterion of placing functions on different layers of the
three-levelled architecture for self-managed software systems is specially guided by
a view regarding the time scale. But, in comparison with the proposed organic
architecture, the observer/controller architecture clearly covers a second criterion
while the distinction of different time scales is also included. The observer/controller
architecture explicitly sees differences in observing and controlling. Both tasks utilise
different methods, which are not kept apart in this three-levelled architecture.

4.5.5 Control Theory

As stated in [Bro91], control theory is an interdisciplinary science of engineering and
mathematics. It deals with the behaviour of dynamical systems, where the desired
output of a system is controlled using closed-loop controllers. If one or more output
variables of a system do not satisfy a certain predefined reference value, a controller
will dynamically manipulate the input values of a system to obtain the desired effect
on the output of the system. Every control system has to guarantee the stability of
the closed-loop behaviour. By directly defining the lower and upper boundaries a
closed-loop behaviour is easy to satisfy in the case of linear systems. However, more
complicated in controlling are nonlinear systems, where control normally bases on
specific theories, i.e., in most cases on Aleksandr Lyapunov’s theory [Ele07|. The
possibility to fulfil different specifications varies from the model considered and the
control strategy chosen. E.g., the main control techniques include adaptive control
or model predictive control.

Adaptive Control

In the 1950ies adaptive control [AWOS] was applied for the first time in the aerospace
industry, where it was successfully adopted. By obtaining strong robustness proper-
ties, adaptive control uses on-line identification of the process parameters. It involves
modifying the control law used by the controller to cope with the fact that the
parameters of the controlled system vary in time or are uncertain. For example, as
an aircraft flies, its mass will slowly decrease as a result of fuel consumption. Thus,
a control law is needed that adapts itself to such changing conditions. Adaptive
control is different from robust control in the sense that it does not need a priori
information about the bounds on these uncertain or time varying parameters. Since
robust control guarantees that, if the changes are within given bounds, the control
law will not need to be changed, while adaptive control is precisely concerned with
control law that must change.

64

4.5 Related Architectures

Model Predictive Control

Guaranteeing closed-loop stability two optimal control design methods have widely
been used in industrial applications. These are model predictive control and linear-
quadratic-Gaussian control.

Since the 1980ies model predictive control [CB04, DP04| has been an advanced
method of process control that has been used in the process industries such as
chemical plants and oil refineries. It explicitly takes into account constraints on the
signals in the system, which is an important feature in many industrial processes.
Model predictive controllers rely on dynamic models of the process, most often linear
empirical models obtained by system identification. Model predictive control provides
a multivariable control algorithm that uses an internal dynamic model of the process,
a history of past control moves, and an optimisation cost function over the prediction
horizon to calculate the optimum control moves. The generic observer/controller
architecture has similarities with model predictive control, which only uses level 2
planning and an on-line adaptation of the level 2 simulation model.

Prediction also plays a role in the context of model predictive control. Models are
used to predict the behaviour of dependent variables (i.e., outputs) of a dynamical
system with respect to changes in the process independent variables (i.e., inputs).
The model predictive controller uses the models and current plant measurements
to calculate future moves in the independent variables that will result in operation
that takes concern of all independent and dependent variable constraints. Then,
the model predictive controller sends this set of independent variable moves to the
corresponding regulatory controller setpoints to be implemented in the process.

Despite the fact that most real processes in chemical plants or oil refineries are
approximately linear within only a limited operating window, linear model predictive
control approaches are used in the majority of applications [GPM89, MRRS00|.
When linear models are not sufficiently accurate because of process nonlinearities,
the process can be controlled with nonlinear model predictive control [DBS*02]
utilising a nonlinear model in the control application (e. g., artificial neural networks)
directly. Together with proportional integral derivative controllers, model predictive
control is the most widely used control technique in the area of process control.

4.5.6 Other Related Approaches

Architectures, which are mostly related to the generic observer /controller architecture,
as proposed in this thesis, have been described before. Other related approaches are
only mentioned shortly.

e The organic robot control architecture is developed in another OC project,
which specially focusses the aspect of fault tolerance [ELMO08|. Traditional fault
tolerance relies on explicit fault models, which seem to reach their limits caused

65

Chapter 4 Observer/Controller Architecture

by increasing complexity. However, during their evolution living organisms
have developed effective and efficient mechanisms, like the autonomic nervous
system or the immune system, to adapt and self-organise in case of new
unforeseen situations. These systems unconsciously operate in an emergent way
to make them self-protecting, self-healing, self-optimising, and self-configuring.
Using this nature-inspired principles the organic robot control architecture
continuously monitors the health status of the system by so-called organic
control units, which are closely attached to basic control units implementing
the regular behaviours. Based on techniques like adaptive filters, the organic
control units are able to learn on-line and thus adapt to new unforeseen
(fault-) situations. The organic robot control architecture is evaluated on real,
autonomous, mobile climbing robots.

e Other OC projects develop system on chip architectures |BZST06], which are
inspired by and have similarities to the generic observer/controller architecture.

e As part of (simulated) robotic soccer [RGHT06] or self-organising smart fac-
tories [Par98| agent-based approaches are investigated to realise controlled
self-organisation.

e The wiable system model [Bee72, LTS08| is a recursively defined model of
the organisational structure of any autonomous system and is established in
management cybernetics. This model is inspired by the architecture of the
brain and the nervous system and describes organisations as adaptable systems
to cope with changing environments.

4.6 Summary

The vision of OC systems is based on the urgent necessity to find methodologies for
managing the complexity and controlling the behaviour of large scale distributed
embedded systems. To build such systems, the generic observer/controller design
paradigm has been introduced consisting of two architectural parts, an observer and
a controller. This chapter shows how observer and controller should be designed,
which functions should be implemented, and how the loop consisting of the SuOC,
an observer, and a controller should work together. The observer, as presented
in Section 4.1, measures and analyses the behaviour of the SuOC in terms of well
defined system parameters. The controller has been explained in Section 4.2 and
selects adequate actions to optimise the system behaviour with respect to certain
global objectives. Furthermore in Section 4.3, the two-level learning approach as part
of the controller has been especially explained. Although, this thesis focusses on the
centralised variant of this design paradigm, the other variants have been summarised
in Section 4.4. Finally in Section 4.5, related architectures and frameworks have been

66

4.6 Summary

described that also propose regulatory feedback mechanisms to enable controlled self-
organisation. As mentioned before, the components of the proposed OC architecture
strongly relies on other established scientific areas e.g., data mining, time series
analysis, machine learning, or control theory. Results and methods from these
areas are used to extend the observer/controller toolbox. Based on the experience
made in [MRB"07|, this architectural framework will be evaluated for the control of
multi-agent test scenarios from the predator/prey domain in the following chapters.

67

Chapter

Learning to Control

Imagine that it is the year 2091 and your moon-Jeep is being repaired by
a swarm of microscopic machines to fix some serious moondust damage.
Do you trust them to do the job right? Now, imagine that it is the
year 2061 and the city of New York launches a new surveillance system
consisting of a swarm of autonomic microflyers. Do you feel secure?
Imagine that it is the year 2031 and there is the first android team that
challenges a human soccer team for the ceremonial opening game at the
world soccer championships. Which team do you put your money on?

These future scenarios have one common denominator: They all involve
complex systems consisting of (many) interacting parts that are self-
organising and collectively intelligent. [Sch07]

It does not make any difference whether a swarm of microscopic machines is focussed
on, a swarm of autonomic microflyers, the first android team, or any other futuristic
idea, which is inspired by collective intelligence. Dynamically adaptive systems have
to change their behaviour at runtime to operate in volatile environments. They
alter their behaviour or composition in response to changes in their less predictable
and less stable environment, they monitore, reconfigure, reconstruct, heal, and tune
themselves at runtime. As summarised in Chapter 2, OC is specially interested
in technical systems that fulfil the self-x-properties. Thus, this thesis is based on
the question, how to design and build technical systems with greater autonomy
establishing controlled self-organisation.

For all scenarios in the following sections, the requirement of dynamic adaptation
is considered, which is imposed by the environment, in which the organic system
has to operate. In terms of this thesis, dynamic adaptation is a strategy when
the observer/controller recognises that the behaviour of the SuOC is incomplete,
fails, or shows unwanted (emergent) observations. Situations serve as an indicator,
where the environment is volatile, but understood sufficiently well to allow the

Chapter 5 Learning to Control

observer/controller to anticipate, how it will change. Coping with fully unknown
environments might be at the extreme end of the spectrum of dynamic adaptive
systems.

Here, the environment is characterised as a set of discrete and stable states and
the environment can change between theses states. Environments are typically not
discrete or stable. For simplification, discrete and stable states are assumed. Thus, a
dynamically adaptive/organic system can be understood to comprise a set of target
systems and each target system is designed to operate within one of these states. It
is the job of the observer/controller architecture to specify each target system and
the adaptation behaviour, which defines, when the SuOC adapts from one target
system to another target system.

Adaptation and learning capabilities seem to be key aspects of OC systems in
general and of the generic observer/controller architecture in particular, as already
mentioned in Section 4.2. In OC systems, the monitored agents of the SuOC and
the controller itself could be endowed both with the capability of learning and
adaptation. Agents of the SuOC learn to act in a dynamically changing environment.
Moreover, the controller learns to control and to guide the behaviour of the SuOC.
For this thesis, the learning capability of the controller is considered and discussed,
as constituted in Section 4.3.

This chapter is structured as follows: After some general remarks about learning
with a focus on challenges concerning learning in OC scenarios in Section 5.1, an
introduction into the area of machine learning is given in Section 5.2. Then, LCSs
are introduced as a machine learning technique that is specially investigated. But,
LCSs have drawbacks in learning speed, as described in Section 5.4. The number of
reinforcement learning cycles, an LCS requires for learning, largely depends on the
complexity of the learning task. A straightforward way to reduce this complexity
is to decompose the task into smaller sub-problems and learn the sub-problems
in parallel. This idea of parallel and hierarchical structured classifier systems is
explained in Section 5.5. Finally in Section 5.6, a second approach is introduced,
how to apply the generic two-level learning architecture on an LCS. Therefore, a
new covering mechanism is specified, which has not been used in traditional LCSs’
implementations before.

5.1 General Thoughts on Learning

The research on (distributed) artificial intelligence is intensifying. A growing number
of national and international conferences, workshops, and journals supports this
trend!. Agents use machine learning techniques to adapt to changes in dynamic
environments. They individually act in a coordinated or competitive way to achieve
individual or common goals, as described later in Section 6.1.6.

LA comprehensive list is found on http://www.aaai.org.

70

5.1 General Thoughts on Learning

In general, an agent or a system has the capability to learn, if it can autonomously
improve its response to input values from some set X. That means, given time values
t; and ty > t; such that for any ¢ > 0 the response to an input from the set X at
time t9 4+ t has a higher quality than the response to the same input at time ;.

This learning capability requires some learning mechanism or learning algorithm,
which may modify the behaviour of the system by

e changing the values of some attributes of the system or of its environment, or

e changing the behavioural repertoire of the agent’s/system’s control mechanism
(which corresponds to the observer/controller architecture).

There is a broad range of possible learning mechanisms, reinforcement learning,
neural networks, or meta-heuristics like genetic algorithms, ant colony optimisation
[DS04], or simulated annealing, to name a few. These mechanisms could make use
of learning by experience or trial-and-error.

In the case of the generic controller, see Section 4.3, the advantages of on-line
learning on level 1 (the capability to tackle the real-time requirements of organic
systems) are combined with the advantages of off-line planning on level 2 (that
minimises the possible mistakes that may arise during on-line learning). By that,
the main challenges of learning in OC scenarios may be summarised as follows, well
knowing that the list is not complete and could be extended.

e OC systems act in highly dynamic (and nonlinear) environments and try to
maintain a flexible and robust system behaviour. If components break down
or produce fatal errors, OC systems should demonstrate their full technical
power and intelligence. When components interact with each other, learning
algorithms have to cope with these dynamics.

e Dynamic environments require learning algorithms that support quick decision
making and provide fast response.

e The structure of the SuOC is often characterised by incomplete knowledge.
Thus, learning has to cope with noisy environments and only partially observable
system states.

e Furthermore, to control and to trust the output of a learning algorithm the
learned solutions should be understandable by humans. This seems to be
a more practical constraint, since OC focusses on the design of technical
systems. However, human-readable learning processes (and results) are not in
the focus of all machine learning techniques, e. g., artificial neuronal networks
or evolutionary algorithms. The result of an artificial neuronal network can be
human-readable, e.g., a value f(x) for an input z, but the computed function
f is hidden in the network.

71

Chapter 5 Learning to Control

Since it is a hard task to cope with all challenges simultaneously, the investigations,
as presented here, are limited to level 1 of the proposed two-level learning architecture,
as explained in Section 4.3. Especially, LCSs are in the focus of this thesis and are
investigated as a special machine learning technique, since the idea of rule-based
learning fits well into the observer/controller framework, see Section 5.3.

5.2 Machine Learning

Machine learning explores ways to get a machine agent to discover on
its own, often through repeated trials, how to solve a given task. [HTP* 05/

In general, machine learning [Mit97] is concerned with methods and algorithms
that allow machines/computers to learn (autonomously). From a limited number of
observations or a description of the task and its goal, machine learning algorithms
are able to classify data, learn about relations between entities, or achieve certain
goals with a sequence of actions.

The use of machine learning algorithms is manifold, including handwriting and
speech recognition, fraud detection, object recognition, game playing, natural lan-
guage processing, path planning for robot locomotion, medical diagnosis, and many
more. Machine learning provides no universal method to handle all these tasks and a
large set of different approaches exist, which in the majority of cases are specialised
for particular problem classes. Probably, the most distinct differences within the
manifold machine learning methods are the type of task that they can handle, the
approach that they are designed for, and the assumptions that they are based upon.

E.g., an interesting mechanism for learning by modifying parameters of the
environment is the stigmergic use of pheromones by ant colonies, as shortly mentioned
in Section 3.1.1. This aggregation of individual experiences combined with some
degree of evaporation leads to the extraordinary capability of constructing shortest
path ant roads even in a dynamically changing topography. As described in [DS04],
this has inspired a whole range of new design patterns for optimisation algorithms.

Furthermore, the design of an organic traffic control system may serve as an
example for a second type of learning method, see [RPBT06]: A modified LCS for
selecting parameter settings for a traffic light controller (in the real traffic system)
is combined with off-line planning. The LCS uses on-line learning by associating a
fitness value to classifiers based on the performance of their parameter settings in
real traffic situations. The off-line planning produces new classifiers for inadequately
handled traffic situations by using a genetic algorithm, which generates new classifiers
of some minimum quality level by evaluating their performance in a traffic simulator.
In this way, the learning mechanism manages to improve the system performance on
known traffic situations and it is also capable of generating adequate responses (i.e.,
control actions) to previously unknown traffic situations. This scenario adapts the

72

5.3 Learning Classifier Systems (LCSs)

proposed two-level learning approach, see Section 4.3, and is again focussed on in
Section 6.2.5.

As a very general and powerful paradigm for acquiring knowledge through experi-
ence in an environment, reinforcement learning [SB98| is a widely studied area of
machine learning, which is inspired by different techniques, e. g., temporal difference
learning [Sut88|, Q-learning [Wat89, WD92|, or LCSs [Hol86]. In general, applica-
tions of reinforcement learning range from the design of situated agents (e. g., robotics
or control of complex systems) to problem solving and pattern recognition, where
an agent learns on-line. This means learning goes on forever and no preliminary
training/learning phase exists that produces a generalised agent, which is capable to
act when confronted with similar problems not explicitly learned.

By executing an action and receiving a feedback from the environment, an agent
learns on-line about acting in the unknown environment. Using this feedback the
agent modifies its behaviour and improves its performance over time. This is achieved
by generalising past experiences using inductive methods. The feedback given by the
environment does not specify the desired output, it has no instructive character, but
it evaluates the agent’s behaviour, how appropriate the agent has acted/performed,
computing a scalar signal, called reinforcement. Thus, the agent tries to maximise
the reinforcement improving its performance.

In several cases, the given feedback of the environment is sparse. The reinforcement
is received at the end of long sequences of actions. In the context of LCSs the problem
is addressed by modelling a learning task as a single-step or a multi-step problem,
as explained in Section 5.3.2. Getting a reinforcement for a sequence of actions
considerably increases the complexity of learning. An agent must correctly evaluate
actions that are essential to behave in the right order, but do not receive an immediate
reward.

This thesis focusses on LCSs and specially investigates their usability in the context
of the presented observer/controller architecture. As described in the following, LCSs
are a machine learning technique that combines genetic operators [Hol75| with
reinforcement learning to evolve a set of rules, so called classifiers, which consists
of condition and action parts that determine the behaviour of a learning agent. A
classifier is activated when its condition part matches the sensory input of an agent.

5.3 Learning Classifier Systems (LCSs)

The field of LCSs, introduced in the 1970ies [Hol75, Hol76, HR78|, is one of the most
active and best-developed form of genetic based machine learning [KL00, Kov02,
Lan08]. As mentioned above, much of learning classifier’s theory is inherited from
the reinforcement learning literature. The following section provides a brief overview,
what an LCS is. In Section 5.3.4 a special LCS, the extended classifier system (XCS)
[Wil95], is described, which is widely accepted as one of the most reliable LCSs.

73

Chapter 5 Learning to Control

As explained in Chapter 4, the controller uses some kind of mapping to choose an
appropriate parameter set to configure the action that prevents (negative) emergence
or enhances (positive) emergence, as measured by the observer. To keep the problem
manageable, the input space is partitioned so that situations, which are sufficiently
similar to allow usage of the same parameter set, will be covered by the same
mapping entry. Since it is hard to anticipate, which situation can be handled by
which action, and since a human developer would need tremendous effort to develop
good (hard-wired) control strategies for all situations that can be imagined, the
means for generating mapping entries have to be provided by the controller. To
combine, these tasks are what LCSs are supposed to do: Classify input, find an
appropriate action, and learn by gaining experience [HBC*00].

The architecture of an LCS has been modified over the past decades. Furthermore,
an LCS is simple to study and the knowledge is encoded and stored in so-called
classifiers. These classifiers consist of a condition part, which is matched against the
input from the environment, an action part, and some kind of fitness or strength
value. The rule syntax is very simple and a classifier can represent very fine-grained
knowledge. This simple representation allows the LCS to use genetic operators for
rule discovery.

The strength value is used to decide, which classifier should be chosen, if more
than one classifier matches the current input. The encoding of conditions is done in
such a way that different levels of generality are possible, hence the range of input
values each classifier matches against may vary from a single point to the entire
search space. In a step that is called rule discovery new classifiers are generated using
genetic operators, like crossover and mutation, on existing classifiers, changing both,
condition and action. Furthermore, every time no classifier matching the current
input is available, one or more classifiers with a matching condition and randomly
chosen action are created (this is called covering).

After a classifier has been generated, the system has to determine its strength
value. Every time a classifier’s action is chosen, the strength value of this classifier
is updated using some objective function. Usually, the effect of an executed action
cannot instantaneously be measured, therefore the current value of the objective
function is used to update the value of the classifier that was active during the
previous time step. The simplest way to increase performance would be to try and
find classifiers, which maximise the objective function’s value. This has also been
the dominant approach, before the XCS has been introduced by Stewart W. Wilson,
which uses another approach more suitable for complex problems. An XCS is also
used within this thesis and described in detail in Section 5.3.4.

5.3.1 Pittsburgh vs. Michigan Style

Literature on LCSs falls into two broad categories: Pittsburgh and Michigan style
classifier systems. The Pittsburgh style has been inspired by research done at the

74

5.3 Learning Classifier Systems (LCSs)

University of Pittsburgh and introduced in [de 88, Smi80, Smi83|. This type of LCSs
has a look on learning as an off-line optimisation process rather than an on-line
learning process, as done in [Hol76, HR78]. The on-line learning approach has mainly
been inspired by the University of Michigan.

The Pittsburgh style is characterised by a genetic algorithm, which is applied to a
population of individuals, where each individual represents a complete set of rules.
At each cycle, a reward is assigned to each rule set to obtain a performance measure
that is then used by the genetic algorithm to guide the exploration of the solution
space. Michigan style classifier systems have a different view. The whole population
is a complete set of rules and an individual in evolution is only a single rule.

In [Lan08], it is discussed, which classifier style is the better design decision. But,
no reasonable answer to such a question exists, since Michigan and Pittsburgh
classifier systems are radically different in structure and no literature is known,
which has bridged the two approaches. Furthermore, a fair comparison seems to be
impossible and the competition between Michigan and Pittsburgh is still going on?.
The Michigan style is usually considered as being more general, since it has tackled
a larger variety of domains. Also, Michigan style has attracted most of research.
Pittsburgh models on the other hand were awarded for their human-competitive
results [BSHT07, LRMBO7] and have recently gained more visibility.

5.3.2 Single-Step vs. Multi-Step Problems

Literature about Pittsburgh or Michigan style LCSs is also divided into single-
step and multi-step approaches. This separation is based on, how to solve the
reinforcement learning problem, and addresses a design decision, which has to be
taken, when implementing an LLCS. Some environments predefine this design decision,
e.g., Maze environments, as explained in the following. This design decision refers to
the question, when a reinforcement signal (reward) is achieved from the environment
and how this reward is distributed to the past action(s).

In single-step environments, the external reward is received for every action and
the environmental input for each time step has completely been independent of the
prior time step. When a decision is made, the reinforcement is directly received
and measures the quality of the decision. Single-step environments generally involve
categorisation of data examples. A typical single-step benchmark problem is the
boolean multiplexer problem |BKLWO04, Wil95].

In multi-step environments, the external reward may not necessarily be received
for every action, since the environmental input on a time step depends on at least
the prior input and the system’s last action. Typical multi-step environments are
known as sequential environments or so-called Maze problems, e.g., Wood1 [Wil94|

2A series of international workshops on LCSs (IWLCS 1999 to IWLCS 2009) or several books
[But06, LSW00| support this trend.

75

Chapter 5 Learning to Control

or Wood2 |Wil95|. These examples model the adaptive interaction of an agent with
its environment and have been studied using a variety of methods. Most often, a
Maze is defined as a given number of neighbouring cells in a grid-world. A cell is a
bounded space and is the elementary unit of a Maze. When a cell is not empty, it
can contain an obstacle, food, a so called animat, and eventually a predator of the
animat.

An animat is randomly placed in the Maze environment (which could be some
kind of a labyrinth) and it tries to set its position to a cell containing food, which
is sparsely located in the environment. To perform this task, it possesses a limited
perception of the environment. The animat’s viewpoint is often limited to the eight
cells surrounding the animat’s position and it can also only move to an empty cell
of this set of neighbouring cells. Moving step by step through the Maze in order to
fulfil its goal the animat searches for a strategy (or adopts a policy), which minimises
the effort undertaken to find the food in the selected Maze environment.

Maze environments offer plenty of parameters that allow to evaluate the complexity
of a given environment and also to evaluate the efficiency of a learning method. A
full description of these parameters is available in [BZ05].

More complex Maze environments are investigated in [BGL05| and the question
is addressed, how to get a better learning performance in environments like Maze6
and Woods1/ using XCS in combination with gradient descent methods. But,
characterising the selected environments as more compler here means that the
animat needs more steps to reach the food than it needs in other Mazes, e. g., in
Woods2. The difficulty of searching and observing moving objects, e. g., well known
by the predator/prey domain, as explained in Section 6.1.1, is not focussed.

Moreover, some Maze problems also offer perceptually similar situations that
require different actions to reach the goal/food. This problem is often studied in the
context of non-Markov environments, see |Bel57, How60, Mar54, Put05].

E.g., Woods101 is a non-Markov environment, since it has two distinct positions,
as indicated by the arrows in Figure 5.1, where the agent senses the environment
as identical, but two different actions are required to solve the problem optimally.
When the agent is in one of these two positions, it cannot decide, which is the correct
action exclusively considering its current inputs. In the left aliased position, the
optimal action is go south-east, and in the right aliased position, the agent should go
south-west to achieve an optimal behaviour. The cell, marked with food F, denotes
the animat’s goal.

If the agent could remember, from which part of the grid it entered the aliased
positions, the agent would be able to solve the problem, i.e., entering the aliased
position from the left, the correct action will be go south-east and entering the aliased
position from the right, the optimal action will be go south-west, respectively. Since
it may not possible to enhance the agent’s sensors to fulfil the Markov property in
this environment, the agent needs some kind of memory to cope with the lack of
information provided by its sensors.

76

5.3 Learning Classifier Systems (LCSs)

Figure 5.1: The Woodsl101 example is a non-Markov environment

Woods101 is a typical example of a partially observable Markov decision process
(POMDP), where a single-agent cannot distinguish different situations due to a lack
of global environmental information. Using records of past situations/actions by
adding temporary memory is a widespread approach to cope with such environments,
as investigated in [Lan98, LWO0O].

A second non-Markov property is still embedded in multi-agent environments and
this is related to a change of an agent’s internal state. In scenarios with more than
one learning agent, an agent has to evaluate actions that may be caused by its own
internal state or that are the result of other agent’s actions. It is difficult to recognise
an environmental change, which is caused by the change of another agent’s internal
state, due to a lack of the other agents’ information. Even if an agent stays in the
same location, the agent cannot evaluate the environmental changes. In [TTS01],
this second non-Markov property is defined as the non observable Markov decision
process (NOMDP). Thus, since multi-agent scenarios often include both non-Markov
properties (POMDP and NOMDP), learning in multi-agent environments is more
complex than learning in single-agent environments.

Furthermore, a concluding comparison of Michigan style XCS and an adapted
Pittsburgh style classifier system in different Maze environments containing non-
Markov situations is provided in [EP0S].

5.3.3 Different Implementations

For LCSs a wide variety of different implementations, see [Kov02, MHO06|, has been
proposed, most of them are based on [Wil95]|, which is an LCS implementation that

7

Chapter 5 Learning to Control

maintains separate prediction and fitness values and where the fitness of a classifier
is based on the accuracy of the prediction reward. While in [Wil94, Wil95| a binary
coding of the stimuli for these rather simple LCSs is used, different approaches to
represent real-valued input have been examined [DALO5a, SB03, Wil0Oa]. The rule
representation depends on the problem being solved: Binary or ternary alphabets
{0,1, #} are most common, the # is known as the don’t care symbol, integers, integer
intervals [Wil0Ob|, real intervals, or fuzzy rules [Bon98, Bon00, CFM96| are suitable,
too. Since the investigations, as presented in Chapter 8, mainly bases on the XCS
reference implementation [But00], more details about this special LCS are presented
in the next section.

5.3.4 The eXtended Classifier System (XCS)

The extended classifier system (XCS) has been invented in [Wil95]. It is widely
accepted as one of the most reliable Michigan style LCSs, which is able to handle
both, single- as well as multiple-step tasks. The typical schematic overview of an
XCS is depicted in Figure 5.2, which is described in the following. For a detailed
algorithmic description the reader is referred to [But00, BW00, BW02].

! 0011 environment left '
_______ - JURS S
. detectors | . effectors |

01

reward

action set [A]

4
' #011:01 43 .01 99

c 1 001#:01 27 .24 3
y -
e .’ prediction array PA g g TTtTrTTes
--------------- =1
match set [M] l "00 0110 11 1 ©
Rt EEEETEE N L nil 425001166 ! -
- |
Pet | o#011:01 43 01 99 kbl ‘ "'j""""_,_"\ ,/
PEL) so#si11 14 0552 | \""‘.Z,_'i discount ;
Pe—> i max —— Tt P
'3 1oo1#:01 2724 3 o Mmax; [i
120 HOHL:11 18 .02 92 | (oo Yooy :

{ X K | | geneti
1 previous action set [A] ; ———| i
\ 1 | operators |

Figure 5.2: Schematic overview of an XCS, see [Wil98]
Generally, an LCS is an adaptive system that learns to perform the best action

for a given situation (i.e., a vector of numerical values), where best is meant as
an action that will receive the highest reward or reinforcement from the system’s

78

5.3 Learning Classifier Systems (LCSs)

environment. The best action is chosen from a set of available actions, which depend
on the investigated context. If the system is a mobile robot [WHRLO3]|, the available
actions may be physical and specifying actions like turn the robot left or turn it right.
In a classification context, the available actions may be yes, no, etc. In a decision
context, for instance a financial one, the actions may be buy or sell something. In
a game theoretical context [SWd05|, the actions may guide the players to play a
cooperative or a competitive strategy.

The ability to choose the best action is improved with experience, which is realised
as known from reinforcement learning. The environment provides a reinforcement,
a so-called payoff, which may be 1.0 for a correct classification task and 0.0 for
an incorrect decision. In a robotic context, e.g., the payoff could be a number
representing the change in distance to a destination, which should be reached.
Getting closer to this destination may be represented by larger positive numbers and
the other way around. Receiving a reinforcement for a given action, the LCS is able
to alter the likelihood of taking that action in similar situations again. Thus, the
LCS consists and operates on sets of hundreds of rules, so-called classifiers, where
every classifier represents a single condition-action-mapping.

A Classifier in XCS

Each classifier consists of a condition part and an action part. This mapping is
expanded by some attributes that characterise the mapping and that are needed
inside the XCS algorithm, as described in [But00, BW00, BW02].

e The condition C' specifies the observed situation of the environment, in which
the classifier can be applied.

e The action A € {ay,...,a,} specifies the action the classifier proposes.

e The prediction p estimates the payoff expected, if the classifier matches and its
action is executed in the system. The payoff refers not solely to the expected
reward p, but is a combination of p and the payoff prediction of the best
possible action in the next state.

e The errors made in the predictions are kept in the prediction error e.

e The classifier’s fitness is denoted by F'. It is used to find classifiers suitable as
input for the generation of new classifiers using genetic operators.

e The number of times since its creation a classifier has belonged to an action
set [A] is counted by the experience value exp.

e The time step of the last occurrence of genetic operators in an action set [A],
to which this classifier belonged is stored in ts.

79

Chapter 5 Learning to Control

e The average size of the action sets [A] this classifier belongs to is stored in as.

e n reflects the number of micro classifiers this macro classifier represents. Clas-
sifiers in XCS are always macro classifiers, each classifier represents a number
of micro classifiers having identical conditions and actions. This is done for
practical reasons. Instead of having n identical classifiers (i. e., the condition-
action-mapping is the same) XCS only contains one classifier with numerosity
n.

The Different Sets in XCS

As depicted in Figure 5.2, an LCS operates on different sets of classifiers, which could
be distinguished as follows.

e The population [P] collects all classifiers that belong to a learning problem,
which is solved using an XCS. When XCS is started from scratch, [P] is
initialised. This can be done in two ways and the two methods only slightly
differ in their effect on the learning performance: [P] can be empty or [P]
can be filled with randomly generated classifiers. In Figure 5.2 a population
is shown that consists of six classifiers where each line is one classifier. The
condition C' is composed of four bits that are encoded using a ternary alphabet
{0,1,#}. The action A consists of two bits.

e The match set [M] is a subset of the population and includes all classifiers that
match the measured situation.

e The action set [A] is a subset of the match set and includes all classifiers that
propose the executed action.

e [A]_; denotes the previous action set, which was active in the last execution
cycle.

In the following section, a survey of the main functionality of an XCS is presented.
For more details the reader is referred to the literature [BW02].

Functionality of an XCS

XCS perceives the environment by its sensors and encodes its observations into an
environmental message. Then, the so-called match set [M] of classifiers is formed,
when a particular input occurs. This match set contains all classifiers of the population
[P], which satisfy the particular input value. A classifier’s condition will match an
input vector z, if a truth function #(x) is satisfied ¢(z) = 1 (true). E.g., 25 is a
component of z and the truth function will return true, if b; < xo < by is satisfied
with b; and by being lower and upper boundaries. In general, a classifier’s condition

80

5.3 Learning Classifier Systems (LCSs)

consists of more than one constraint and the truth function will usually refer to
all of them. All classifiers, which join the match set, influence the system’s action
decision. If the population is empty or no classifier(s) of the population match the
observed situation, new classifiers will be generated using the covering mechanism.
The condition is produced by encoding the observed situation and the action is
generated randomly. Another covering operator has been introduced in [BW02], it
inserts a new classifier for every possible action that is not covered by the classifiers
in the match set, see Section 5.6.

For the example in Figure 5.2, the match set [M] is composed of all classifiers
from the population [P] that match the input value 0011 coming from the detectors.

Typically, classifiers being in the match set will differ in their actions. Some will
advocate an action aj, others will advocate as, and so on. (This is also shown in
Figure 5.2. Some classifiers advocate the action 01, others advise 11 as an action.)
Furthermore, each classifier possesses an attribute that contains a prediction value
p of the amount of payoff a classifier thinks it will receive, if the system takes the
advocated action. But, how can the LCS decide, which action to take?

It is convincing that the system should execute the action, which in turn receives
the highest payoff. Thus, XCS introduces a mechanism (the so-called prediction
array) that decides, which prediction is the best, and computes for each action
in the match set an average of the prediction values and chooses the action with
the largest average. Furthermore, the computed prediction average is weighted by
another classifier quantity, its fitness, which will be described later, but is intended
to reflect the reliability of the classifier’s prediction. Thus, 2 Fﬁ? 1 is computed for
every action in the match set, where j are those classifiers havirig the same action.
All classifiers, which advocate the action with the largest prediction average, form
the so-called action set [A]. Referring to the example in Figure 5.2, an average of the
prediction values is only computed for the actions 01 and 11, since no classifiers with
an action 00 and 10 belong to the match set [M]. Thus, action 01 advocates the
highest value in the prediction array and all classifiers of the match set facilitating
this action are taken to the action set.

Then, the selected and best weighted action is executed in the environment and
the LCS receives some amount of payoff P, which is used to alter the predictions of
the classifiers being in the action set. To increase the classifier’s accuracy s, each
classifier’s prediction p is mathematically changed to bring it slightly closer to the
received payoff using a Q-Learning-like algorithm [DB94, Wat89, WD92, She94|,
which is implemented as shown in Figure 5.2 by the combination of taking the
maximum of the prediction array and discounting it by multiplying by a factor.
Moreover, each learning cycle (receiving a payoff) is used to adjust each classifier’s
prediction error € and fitness F'. The prediction error describes the error of the
classifier’s prediction. The fitness value F' is based on the accuracy of the classifier’s
payoff prediction and is arrived at in four steps. First, the classifier’s accuracy

81

Chapter 5 Learning to Control

k is computed. Then, the accuracies of all other classifiers in the action set are
calculated. Third, the relative accuracy is calculated for each classifier in the action
set by dividing its accuracy by the sum of the accuracies of the classifiers in the
action set. Finally, the classifier’s fitness value F' is updated according to the relative
accuracy value. Thus, the fitness value F of a classifier represents the accuracy of the
classifier’s payoff prediction relative to the prediction accuracies of other classifiers
that typically occur in joint action sets. This provides the basis for the selective
pressure in XCS towards more accurate classifiers.

However, an LCS is more than adjusting classifier attributes (p, €, and F') in
reinforcement learning cycles. I.e., classifiers evolve and the population of classifiers
gradually changes over time. Classifiers with high accuracy values are reproduced
more frequently than less accurate classifiers and the offspring are created using
genetic operators. Evolution takes place each time an action set is formed and a
predefined threshold O 4 is reached. Then, two classifiers are selected from the action
set with probabilities proportional to their fitnesses. The two selected classifiers
are copied and with certain probabilities the copies are mutated and recombined
(crossed). Mutation and crossover are always customised with respect to the encoded
information depending on the scenario. Mutation is interpreted as slight change of
a classifier’s condition and action. The crossover operator exchanges parts of the
two selected classifiers and is often restricted on the condition. After mutation and
recombination, the changed classifier copies are inserted into the population, where
they have to compete with their parents. To keep the population size on a constant
level, the maximal population size is always checked when new classifiers are inserted
into the population. To add offspring can imply the deletion of other most inaccurate
classifiers.

The effect of classifier evolution is to modify their conditions so as to increase the
overall prediction accuracy of the population. This occurs because genetic operators
are based on accuracy. In addition, however, the evolution leads to an increase
in what can be called the accurate generality of the population [Wil98|. That is,
classifier conditions evolve to be as general as possible without sacrificing accuracy.
Here, general means maximizing the number of input vectors that the condition
matches. The increase in generality results in the population needing fewer distinct
classifiers to cover all inputs, which means (if identical classifiers are merged) that
populations grow smaller, and also that the knowledge contained in the population
is more visible to humans — which is important in many applications. The specific
mechanism, by which generality increases, is a major, if subtle, side-effect of the
overall evolution.

Concluding Remarks

Summarising, a LCS is an adaptive system that learns from external reinforcement
and by an internal structural evolution derived from that reinforcement. In addition

82

5.4 Drawbacks of LCSs

to adaptively increasing its performance, the LCS develops knowledge in the form of
rules that respond to different aspects of the environment and capture environmental
regularities through the generality of their conditions. Research has shown that XCS
evolves accurate, complete, and minimal representations on different problem domains.
The learning of boolean functions is well explored [Kov97]. Furthermore, XCS has
been investigated on several other problems, as mentioned in Section 5.3.2, but more
research has to be done in complex environments. As mentioned at the beginning,
LCSs are in the focus of many OC projects (e.g., [BFR08, PRTT08, ZBSH08|) and
they fit well into the observer/controller architecture. One of their great advantages
is that classifier systems aim at the autonomous production of potentially human-
readable results (if this condition is met, then this action is applied). This helps
in understanding, how the system is adapting to a specific problem or to a varying
environment.

However, as the experimental results in Chapter 8 will show, LCSs have drawbacks
in learning speed, especially in high-dimensional complex problems. The number
of reinforcement cycles for learning a given task depends on the complexity of the
classifiers (i.e., on the number of encoded condition and action parameters), which in
turn depends on the complexity of the learning task. This problem is explained in the
following section and solutions are also proposed. Furthermore, LCSs have drawbacks
in dynamically changing non-Markov environments as multi-agent scenarios, where
the answer to the problem does not uniquely depend on the actions by the agent
itself, but by all the agents.

5.4 Drawbacks of LCSs

In LCS, learning a set of classifiers with high prediction values and low prediction
errors requires a substantial amount of computation time, this includes even simple
learning tasks. As the complexity of the task — the dimension of the condition-action-
mapping — increases, the demand of computational time to solve a problem becomes
more and more a bottleneck, because theoretically, every possible condition has to be
mapped to each possible action. The mapping has to be applied to the environment.
Moreover, the utility of the mapping has to be tested, rewarded, and evaluated over
time. In other words, the number of learning cycles increases dramatically, when
the complexity of the learning task increases. As a matter of fact, the strength
of a classifier can only be updated by a small amount at each cycle, in order to
preserve the stability of the whole system. Furthermore, the genetic operators
(crossover and mutation) are also used as background operators to avoid drastic
changes in the population, which in turn could affect the stability. Consequently,
the high computational costs required to get to a population of classifiers with high
performance turns out to be a major drawback.

83

Chapter 5 Learning to Control

5.5 Parallelism in LCSs

I am working to improve my methods, and every hour I save is an hour

added to my life. (Ayn Rand)

To speed up the learning process (in terms of the number of learning cycles to
solve a problem) different strategies could be useful. In the following, it is specially
focussed on parallelism, so that LCSs can be applied to more complex learning tasks.
Parallelism is distinguished as follows.

1. Parallelism as part of a centralised single-agent learning approach.

a) Parallelism is based on the implementation onto parallel architectures. An
LCS is decomposed into a set of parallel activities that run on distinct
processing elements of a parallel architecture. Thus, speed up is achieved
by running the problem on parallel hardware. The number of learning
cycles will be equal to the sequential algorithm.

b) Moreover, the learning task of an LCS can be decomposed into a set of
parallel learning subtasks that are solved in parallel. Then, speed up
is achieved by modifying the learning problem, which may decrease the
number of learning cycles.

2. Parallelism as part of a multi-agent learning scenario, where agents periodically
interact and exchange classifiers: The exchange of knowledge that is represented
in classifiers constitutes a kind of cooperation, which can help running the
search towards the fittest elements of the search space — the best condition-
action-mappings. (An agent of this multi-agent learning approach could also be
extended by the aspects of the single-agent approaches, as mentioned above.)

5.5.1 Single-Agent Learning Approach

An LCS is normally implemented as a sequential algorithm. Designing parallel LCSs
is often analysed by thinking of how to parallelise the sequential implementation by
executing it in a parallel architecture to speed up the computation. In general, the
overall behaviour of the algorithm is not modified. Parallel hardware only reduces
the amount of time to learn a problem, but does not affect the process. The amount
of time, which may be saved by a parallel implementation, depends on the number
of independent parallel tasks, the amount of time that is used to synchronise the
independent tasks, and the number of parallel processing units.

As described in |Gia97|, LCSs exhibit some sources of data parallelism. Most
operations, e. g., building match and action sets, or computing a strength update,
can be independently performed on each classifier or can be done in parallel by using
standard parallel algorithms. The genetic operators can be independently applied

84

5.5 Parallelism in LCSs

on distinct classifiers, or on sets of classifiers. Since data parallelism is a natural
programming paradigm for single instruction and multiple data (SIMD) architectures
[Fly72], it can also be applied to multiple instruction and multiple data (MIMD)
machines, which allow many simultaneously active flows of control operating on
different classifier sets. Moreover, control parallelism can be exploited in an LCS by
overlapping distinct activities that can be recognised as independent. This could be
achieved by decomposing an LCS into concurrent processes, which focus on different
data. One process may operate on the classifiers, the other on the detectors, and
the third on the effectors. Since some techniques usually adopted in sequential LCSs
are not totally suitable for parallel implementations, it is sometimes not practical to
parallelise a given sequential algorithm. Thus, a parallel LCS is designed by adopting
new algorithms that are more suitable for a parallel implementation, which may
result in algorithms that are not equivalent to the original sequential algorithm.

Decomposing a Learning Problem

The second single-agent learning approach to design parallel LCSs is based on
the higher level idea of decomposing a problem into several modules/sub-problems,
which can be solved independently. Difficult learning tasks are tackled in a modu-
lar /hierarchical way and the performance is improved by decreasing the number of
learning iterations. Figure 5.3 summarises the different ideas of designing parallel
implemented LCSs. The choice between a monolithic and a modular approach is
orthogonal to the parallel implementations mentioned before. A modular LCS can
also be implemented in parallel.

Related Work Concerning the Single-Agent Learning Approach

Parallelly implemented and hierarchically arranged LCSs have been investigated
to reduce the number of reinforcement cycles, necessary for learning a given task.
However, the problem of increased convergence times, i.e., the increased number
of learning cycles, in the case of big search problems still does not seem to be fully
solved. A survey of work that has been done before 1996 is available in [Bar96|, more
recent work is briefly reviewed here.

Hardware

First parallel hardware implementations on early versions of LCSs have been investi-
gated in [Rob87|, where each process of the parallel implementation on a connection
machine (CM-2) [Hil85| manages a data structure that references a single classifier.
As a result independent operations on distinct classifiers are independently computed.
A similar approach is investigated in [Rio88|. Investigations on LCSs on parallel
hardware are also presented in [Gia97|. A general framework is defined in order
to exploit the computational power of parallel hardware architectures to speed up

85

Chapter 5 Learning to Control

high-level structure

implementation

parallel
machine

parallel
machine

sequential
machine

Figure 5.3: Variants of parallel LCSs as part of the single-agent learning approach: Parallelism is
distinguished on different levels, see [Gia97]

the learning process. The experiments were run on a parallel system, where each
processing node is a complete computer and an interconnection network supports
the exchange of information among the nodes.

Robotics

In [Dor95, DS93|, LCSs are investigated as a tool for building adaptive control systems
for real robots. It has been investigated that it is possible to let the AutonoMouse,
a small real robot, learn to approach a light source under a number of different
noise and lesion conditions. A modular /hierarchical approach is merged by a parallel
implementation of each module. In [Dor95|, this is called high level and low level
parallelism, respectively. On the lower level, each module/LCS is implemented on a
transputer-based MIMD architecture providing both, data and control parallelism.
On the higher level, different LCSs are organised in a hierarchical architecture,
where each LCS is responsible for solving a simpler sub-problem or for coordinating

86

5.5 Parallelism in LCSs

decisions learned by other LCSs. An idea to enhance the learning speed of complex
simulated robot behaviours is also presented in [BST07|. The work seems similar to
that, presented before in [Dor95|. Five hierarchically arranged LCSs are used, where
three LCSs learn basic robot behaviours (chasing, avoidance, and escaping) and two
other LCSs combine these basic behaviours to more complex behaviours.

An interesting example of the modular approach is also proposed in [BFS95], where
a quadrupedal robot is controlled. Distinct LCSs learn the behaviour of one leg of the
robot. The modular approach promotes the formation of behavioural niches in order
to obtain modular and scalable structures to deal with more real world applications.

Data Mining

In [DALO5b]|, an XCS is used in combination with a client/server architecture for
distributed data mining. Each client has its own XCS that learns classifications
based on a local database and reports the learned classification model to the server.
The server aggregates the models to its own XCS and additionally learns all unsolved
problems that could not be locally solved by the clients. This distributed XCS
architecture is compared to a traditional XCS implementation and the performance
evaluation shows that the distributed XCS is competitive to the traditional XCS,
when the disturbance level is small. When the level of noise in the data is increased,
the distributed XCS needs more time to converge.

In [GSO7], a similar idea is proposed. The authors try to improve global XCS
performance by solving smaller sub-problems and combining the solutions. Results
are demonstrated on the binary coded multiplexer problem.

The idea of data parallelism is investigated in [SQNO06]. An LCSs is implemented
as an agent-based system on parallel hardware. The performance of the agent-
based system is compared on grid data mining tasks (like character recognition and
classification) with a monolithic implementation to perform these tasks. Thereby, the
whole population of classifiers is distributed among a number of so-called knowledge
agents. The study compares the execution time of several operations on populations
from 120 up to 20400 classifiers, which are distributed among two up to ten different
knowledge agents, and determines the attained speed ups. A measurement of the
system efficiency is used, which implicitly incorporates the latency times in relation
to the global execution time. The results show that the amplitude of the gains
increases in the direction of a bigger number of classifiers, and a bigger number of
knowledge agents. On the other hand it is visible that for a number of classifiers less
than 2000 the use of parallelism is not computationally advisable in this scenario.
Furthermore, the variation of the global speed up in comparison to the number of
classifiers and the number of knowledge agents points to a linear growth.

87

Chapter 5 Learning to Control

Concluding Remarks on the Single-Agent Learning Approach

To solve a global learning problem and to improve the learning speed, all cited papers
mainly follow the idea of parallelism related to the single-agent learning approach.
Two aspects can be distinguished. Firstly, a learning problem is decomposed into sub-
problems, which are separately learned and afterwards combined into a global result.
However, no work on distributed Michigan style LCSs using the XCS algorithm
[But00] is known that uses decomposition and focusses on real- or integer-valued
inputs instead of binary coded classifiers. This thesis will specially make contributions
to this lack of research. Investigations of task decomposition are done on integer-coded
classifiers.

Secondly, the single-agent learning approach has been examined from a viewpoint
of parallel hardware in literature. While previous work has focussed on learning
in robotic environments or data mining problems with parallelism on hardware
level, the provision of a fast on-line learning mechanism is here investigated that
can be integrated in the general observer/controller architecture. This general
view is independent of hard- and software constraints, since the evaluation of the
observer /controller architecture is done as a start in simple multi-agent scenarios
using simulated environments.

The single- and multi-agent LCSs’ approaches differ in one specific aspect. Agents,
equipped with an LCS, can communicate. Thus, they can cooperatively solve a
learning problem in parallel, e. g., in [FB95|, a multi-agent Pittsburgh style classifier
system as part of a two-tracked vehicle is investigated to find trails (as ants) as part
of the tracker task, where each motor of the robot is controlled using a single LCS.
Each LCS learns actions for one motor moving the robot forward, backward, or doing
anything to stay, where it is. Then, coordinated behaviour of the two motors depends
on the sum of both separated motors and is achieved using communication between
the two LCSs. Rule sets of the left LCS are exchanged with the LCS on the right side
and vice versa. A comparison of the performances between the two-agent approach
and a monolithic LCS that learns the whole problem in a single system significantly
shows that the robot will learn the tracking problem faster, if the problem is learned in
parallel using cooperation between the two rule sets. The reason for these significant
differences is that the fitness landscapes of the communicating classifier systems are
smaller and probably less complex than the global landscape of the equivalent single
system. Thus, progress for the parallel LCSs is less difficult within the defined niches
of left and right. More parallel multi-agent learning approaches are presented in the
following.

5.5.2 Multi-Agent Learning Approach

To improve the sequential models regarding learning speed as well as execution time,
the multi-agent learning approach is based on the idea of several independent LCSs

88

5.5 Parallelism in LCSs

that work in parallel on the same learning problem. Moreover, they cooperate by
sharing their learned knowledge. Then, the system is characterised by a collection of
(homogeneous) agents, where each agent interacts with an instance of the environment
that represents the global task to be learned. No agent will outperform all the other
agents. The principle of this multi-agent learning approach is to cooperatively
combine the output of several agents to find an overall solution that makes use of
the strength of the constituents and compensates the individual weaknesses. Similar
(cooperative) approaches, as introduced here in the case of LCSs, are known from
the research on genetic algorithms, when non-trivial problems have to be solved,
which forces computationally expensive solutions. Parallel implementations of genetic
algorithms come in two flavours.

(a) Coarse grained (b) Fine grained

Figure 5.4: Population structures for parallel multi-agent LCSs

Coarse grained parallel genetic algorithms assume a population on each processor
node and periodical migration/sharing of individuals among these nodes. This
approach is depicted in Figure 5.4(a) and is also well known under the term island
model, e.g., [CHMR87, NG95]. Each node independently evolves a population
of individuals and periodically interacts with other nodes. Then, some selected
individuals are exchanged and introduced into the other population. I.e., focussing a
Michigan style LCS, each node independently evolves its own population of classifiers.
When nodes interact with each other, classifiers are exchanged and introduced into the
population of a neighbouring node. In some coarse grained models a neighbourhood
relationship is imposed among the nodes. Each node may only interact with a fixed
subset of neighbouring nodes. The figure depicts a complete neighbourhood. This is

89

Chapter 5 Learning to Control

similar to a global communication pattern, where each agent can communicate with
each other agent.

Fine grained parallel genetic algorithms assume an individual on each processor
node, which acts with neighbouring individuals for selection and reproduction. Good
solutions diffuse by localised breeding, e.g., [FPS00, MS89|. This is depicted on
a two-dimensional grid with a typical neighbourhood in Figure 5.4(b). I.e., one
classifier is evolved on each node assuming a Michigan style LCS. After some time
the classifiers with high fitness diffuse across the grid. Thus, the population tends to
become homogeneous.

In [CP00], it has been shown that performance improvements can also be obtained
by such parallel approaches, along with reductions in execution time, due to an
increased level of diversity within the global population from the restricted mating
schemes.

As stated in [BSBWO07|, the multi-agent learning approach as a whole will receive
many more reinforcement learning cycles as the traditional single-agent LCS, caused
by multiple learning processes on each agent. But, under a parallel implementation
this increased number of reinforcement learning cycles is not the main concern. With
very large data sets and complex problems, the actual data processing time — the
time that is needed until an LCS converges to a steady result — to build effective
models is the critical factor.

Furthermore, a coarse grained model of parallel (Michigan style) classifier systems
consists of independent LCSs, which run in parallel, which operate on the same
problem, which periodically interact with each other, and which exchange learned
knowledge. Each LCS interacts with an instance of the task environment and the
instances of the environment are identical. I.e., the same chosen action in the
same situation has the same effect. Additionally, an action in an instance of the
environment does not manipulate the other instances. In other words, the multi-agent
learning approach replicates the whole learning agent and is based on cooperation, as
depicted in Figure 5.5. By comparison, the single-agent learning approach decomposes
the learning problem or exploits the parallelism among the internal structure of one
agent.

Each LCS searches for a complete solution of the problem. The multi-agent
learning approach does not include any explicit decomposition of the learning task.
If the problem can be decomposed into sub-problems, an agent will likely find a
partial solution. The cooperation between the agents allows to exchange partial
solutions. Agents can communicate parts of the whole solution and they can focus
on subtasks in parallel. Thus, task decomposition seems to be possible, but is not
statically imposed. The main advantage of this multi-agent learning approach is that
parallelism is potentially unlimited. A problem can be solved with the cooperation
of one up to n agents, where each agent can be implemented in parallel as stated in
Section 5.5.1. A further advantage of this multi-agent learning approach is agent
polymorphism. 1.e., each agent can be internally structured in different ways. Thus,

90

5.5 Parallelism in LCSs

/' cooperation

Figure 5.5: Multi-agent learning approach

several agents can explore a problem in different ways. This will be of advantage,
if little knowledge about the whole learning problem is available and agents start
learning from scratch.

Cooperation Strategies between LCSs

Any learning process is an iterative process that calls for progressive refinements.
Then, the desired global solution may be a piece of a classifier, a whole classifier, or a
set of classifiers. Using the multi-agent learning approach, distinct agents may search
in parallel for partial solutions of the problem. As outlined before, one agent may
discover a classifier or a set of classifiers, which respond to one situation presented
in the environment. Another agent may discover a classifier or a set of classifiers
that covers another situation. Thus, agents focus on partial solutions. Parallel
cooperative agent behaviour is achieved, when already found partial solutions are
exchanged between the agents. In this way, the effort of an agent’s search to find
a complete solution to a problem is lower than that of an isolated single-agent.

91

Chapter 5 Learning to Control

The time that is needed to solve a problem should be significantly decreased. But,
the cooperation mechanism has to be aware of the problem of preserving and
integrating the knowledge coming from other agents. If proper cooperation strategies
are defined, useful knowledge will be shared each time, when agents cooperate,
which increases learning speed. However, knowledge exchange can be hindering, if
exchanged classifiers are not suitable in the context of the new classifier set. Thus,
cooperation between LCSs is characterised by a cooperation strategy among the
incorporated agents. This depends on several constraints. A theoretical survey is
given in the following.

Firstly, the genetic granularity concerns the kind of material that is changed, when
agents cooperate. Pittsburgh and Michigan style LCSs learn on different granularities
and therefore require special cooperation strategies. The Pittsburgh approach evolves
individuals, where each individual is a whole population of classifiers. The Michigan
approach evolves individuals, where each individual is equal to a single classifier. A
fruitful integration depends on the utility of the exchanged material.

Secondly, the cooperation mechanism describes, how the genetic material is ex-
changed between the agents.

e Simple cooperation is achieved, when genetic material is periodically migrated
from one agent to another agent. This approach corresponds to the island
model. This cooperation strategy is also related to other parameters. When
LCSs cooperate by migration, both, the migration rate (number of migrated
individuals) and the migration interval (interaction frequency), determine the
quality of the final solution and the learning speed.

e Complex cooperation describes population merging. Two or more agents
1. merge their populations into a single larger population,
2. e.g., apply a genetic algorithm to the resulting population, and
3. redistribute the offspring among the agents according to some criteria.

The interaction frequency is also important in this case of merging.

Thirdly, the cooperation strategy is based on a communication pattern between
the agents. The interconnection topology might be either complete, i.e., each LCS
can cooperate and communicate with any other LCS. Moreover, the interconnec-
tion structure can be partial, i.e., an LCS can only cooperate with a fixed set of
neighbouring agents, since a spatial distribution may define the structure of the
neighbourhood.

Not depending on genetic granularity, migration or merging, and complete or
partial topologies, the question has to be addressed, which classifiers are selected to
participate in cooperation. In other words, which individuals are good enough to be
exchanged?

92

5.5 Parallelism in LCSs

The choice of the Michigan approach poses different problems. The fitness value
I of a classifier depends on the overall population, a classifier belongs to. Thus, this
value is not an absolute measure of the classifier’s utility. I.e., a good classifier may
not be useful in every population, when it is exchanged. A consequence could be
that a set of classifiers is exchanged and not only a single classifier. If a classifier
belongs to a cooperating subset (a multi-step chain of classifiers) and is migrated
as a single classifier from one population to another one, then it may not find any
cooperating classifiers in the new population. Hence, the migrated classifier will not
be chosen and will be replaced after some time. Moreover, cooperation happens
without effect on convergence and learning speed. In other words, to be effective the
cooperation among LCSs should preserve the cooperation among classifiers (which
are part of one set).

The relationship between cooperation and premature convergence is also worth
mentioning. High interaction frequency or large numbers of migrated classifiers
forces premature convergence. Both effect diversity among the affected populations.
Moreover, the import of a large number of classifiers may result in instability, since
the internal structure of a population is drastically changed.

The discussion highlights the diverse problems, when classifiers are exchanged
among populations. It seems to be the designer’s choice to speed up the learning
process and to preserve the stability of an LCS using a cooperation strategy. Thus,
promising related work on the multi-agent learning approach is summarised in the
following.

Related Work Concerning the Multi-Agent Learning Approach

In [BSBW05, BSBWO07], different classifier migration mechanisms are investigated to
improve learning speed in comparison to equivalent single-agent learning approaches.
Improvements in learning speed are demonstrated on the 20-bit, the 37-bit, and
the 70-bit multiplexer problem using an island model as the basic rule migrating
mechanism. Studies have been conducted on one hand with a simple accuracy-based
derivative of XCS, which is named YCS [Bul05|, and on the other hand with a simple
payoff-based LCS, which seems to be equal to the zeroth-level classifier system (ZCS)
[Wil94].

With some predefined probability, some fraction of the population is chosen, based
on fitness, to be migrated. A recipient LCS is chosen at random from the other
ensemble members. The recipient inserts the new rules into its population. Thus, as
in island model systems, the learning process is augmented by the influx of diverse
classifiers selected based on their good (local) fitness to be used in further search by
a given LCS. This is opposed to purely relying upon the standard stochastic search
operators.

The effects from varying the rate, at which rule migrating occurs, and the amount
of rules then shared have been examined in a scenario of ten agents on the multiplexer

93

Chapter 5 Learning to Control

problem and have shown that rule sharing is beneficial. Furthermore, a niche-based
rule migrating mechanism is investigated, where migration is only applied within
the current action set when the average number of system cycles since the last rule
migrating in the set is larger than a predefined threshold. If this condition is true, a
single rule will be chosen according to the fitness using the standard roulette-wheel
selection, before being inserted into the population of another member of the ensemble
as described above. Again, this only occurs on explore trials. Investigations on the
different multiplexer problems have also shown that time necessary to reach optimal
behaviour is reduced. When task difficulty increases (37-bit and 70-bit multiplexer
problem), it could be shown that an increase in the relative difference in performance
is obtained by the rule migration scheme; the speed up is better than linear here.

In multi-agent scenarios, where the environment is highly dynamic, where infor-
mation is limited, where response is immediately required, where agents cooperate
to reach a common goal, and where agent’s specialisation is necessary, other rule
migration and rule reuse mechanisms may be needed to increase the learning speed
and to keep the agent’s diversity, respectively. Thus, a more complex mechanism is
provided in [LTSK06, TNS02, TTS01].

Agents administrate local /individual learned populations on one hand, and con-
tribute to global/shared rule sets on the other hand. In multi-agent scenarios, this
may be useful, when agents have to cooperate with and contribute to their local
behaviour to a global goal fulfilling different roles. In dynamic environments, agents
have to cope with changes, which require different behaviour. This corresponds to
different roles an agent can take. Global rule sets, which contain the whole knowledge
of all agents, are stored on a centralised node (or with redundancy on every agent). In
[TTSO01]|, the idea of so-called organisational-learning oriented classifiers is presented.
All classifiers of all agents are stored on every agent and are used to administrate
different roles of agent’s behaviours. Thus, classifier sets can be shared and reused be-
tween the different agents. This rule reuse mechanism depends on the local situation
of an agent and specially on the task, which is fulfilled by this agent. In [TNS02|,
the organisational-learning oriented LCS is investigated on a space shuttle crew task
scheduling problem (similar to a job-shop scheduling problem under hard resource
constraints) as a real world application. It demonstrates robustness in finding good
solutions at small computational costs, even after disturbances occur.

In [BNOG|, another cooperative multi-agent learning approach using LCSs is
investigated, where agents aim at learning the same rules as the others and where
agents attract other agents to an unexplored region in the search space. The idea is
that agents learn until a consensus between the agents is reached, which means, e. g.,
that all agents have the same opinion on a classification problem. Since agents attract
each other an action-reaction-effect may appear, which leads to an equilibrium status.
This effect is implemented using direct communication between the agents, on one
hand a result-based cooperation is established and on the other hand a rule exchange
mechanism is used. At each learning cycle a sample from the learning set is given

94

5.5 Parallelism in LCSs

to all agents. Every agent tries to classify this sample and decides, which action to
chose. Each agent sends its chosen action to all other agents. Thus, an agent can
compare the decisions of the other agents with its own decision. If the degree of
agreement between the other agents and itself is greater than a predefined threshold,
agents will have the same knowledge and can stop learning on this sample since
an equilibrium status is reached. The second cooperation mechanism is based on
knowledge sharing. When an agent receives a sample and covering should occur,
since no knowledge exists (no classifier of the population matches the given sample),
an agent asks other agents for help. When another agent receives such a request and
can provide the needed help, it responds with the needed classifier.

A similar rule exchange mechanism is also investigated in |[EE99| and focusses
on distributed elitism. Pittsburgh style LCSs are used to learn the control of nine
junctions in a Manhattan network. Each junction is realised as one (homogeneous)
agent and agents exchange best classifiers using a centralised pool. The pool is filled
with the best individuals of each agent, where best means the global strength of each
agent. Then, the redistribution occurs according to rules. The worst agents take the
best individuals from the pool and the best agents take the worst of the best of the
pool. Experimental results show that distributed elitism provides robust learning in
the case of changing traffic flows.

Since cooperation in multi-agent scenarios is not only limited to rule migration
and rule merging, other approaches using LCSs are introduced in short.

Other Multi-Agent Learning Approaches

Another multi-agent learning approach adopting a Michigan style LCS for each agent
is presented in [SCK95|. The simulation uses a simple ring-game environment with
eight agents, where each agent has two neighbours, one on the left hand side, another
on the right hand side. At each time step all agents are active and all agents are
allowed to observe the actions of their direct neighbours. Depending on a predefined
observation horizon an agent is able to observe the number of played games (as
state representation of a classifier). Furthermore, all agents simultaneously have to
generate an action according to their current decision policy and receive a reward
from the game environment at each time step. Then, two experimental studies are
compared, one with reward shaping among neighbours as local cooperation strategy,
the other one without reward shaping. Reward shaping defines a mechanism that a
reward, which is achieved in response to an action, is passed to the two agents in
the local neighbourhood. The results suggest in the case of this investigated game
with limited interactions (i.e., where states of a game are defined in terms of actions
executed by neighbouring agents) that reward shaping results in better convergence
properties to the global maximum payoff point.

In [HF02b, HF02a|, XCS is investigated for modelling social problems. E.g., the El
Farol bar problem [Art94] is introduced, where agents learn in parallel a cooperative

95

Chapter 5 Learning to Control

behaviour in studies of ten up to hundred individuals. The El Farol bar problem
is based on a bar that weekly offers entertainment. But, the place inside the bar is
small and uncomfortable, if overcrowded, and boring, if not full. Thus, a comfort
threshold is defined, at the number of people, which makes the place an enjoyable
one. Now, the agents have to decide, based on their local strategies, whether or not
to go to the bar each week. If an agent decides to go to the bar and the comfort
threshold is not exceeded, then the agent will be rewarded. Additionally, if an agent
decides to stay at home and the threshold is exceeded, then it will be rewarded, too.
Otherwise an agent is not rewarded. Different global reward functions are compared
that differ in their influence on a cooperative vs. selfish agent behaviour. Thus, this
work proves the feasibility of using XCS in a multi-agent scenario, where agents
learn to adapt to a complex environment. The focus is not on rule exchange or profit
sharing to enhance convergence, but instead global reward functions are investigated.

In [ITS05|, a simplified multi-agent soccer game is investigated, where one or
two XCS agents have to learn to kick a ball against zero or one randomly moving
opponents. The goal is reached, when the ball is kicked over the vertical line of the
right or the left side of the 5 x 9 grid-world. The agents have limited sensors to
observe teammates in the upper, lower, left, and right direction, and also sensors to
observe the ball, respectively. Learning in this cooperative multi-agent scenario is
not improved by rule sharing, but instead by a kind of reward/profit sharing. If a
team consisting of two agents gets a goal, a reward of 1.0 will be given to the agent,
which kicks the ball last, and 0.9 will be given to the other.

Concluding Remarks on the Multi-Agent Learning Approach

LCSs have been investigated on manifold problems. However, their drawback of
learning speed has not often been solved. Specially, research on LCSs in the context
of cooperative multi-agent scenarios seems to be open for more research. Cooperation
has been presented as rule migration and rule merging mechanisms. Moreover,
cooperation has been achieved through local reward shaping or global reward functions.
Accordingly, the capabilities of multi-agent based LCSs have not consistently and
comprehensively been investigated yet. Due to this lack of cumulative processes
of proposed ideas, it has been difficult to determine the applicable ranges of these
manifold approaches. This dilemma prevents industry from employing such ideas
for given problems, which is a serious problem, when research results should be
transferred to real engineering techniques. To overcome this problem step by step,
more research is certainly needed on problems, which do not fulfil the Markov
property. Then, it could hopefully be shown that LLCSs have the following potential:
Generality to show a good performance on more real world problems, scalability to
maintain the same level of performance in large-scale problems, and high performance,
which corresponds to better results than could be achieved with traditional LCSs.

96

5.6 Level 2 and Another Covering Method

5.6 Level 2 and Another Covering Method

Since speeding up the learning behaviour of LCSs is in the focus of this thesis,
another approach is introduced in the following. The proposed idea adopts the
generic observer/controller architecture from the viewpoint of LCSs.

0100 environment left 0100 environment left

R S B U A R

1 \ 1 \ [l] 1

i detectors | i effectors | i detectors | i effectors

_______________ H
opuiston | | [honion | :
: o o emmmmm s :
! I v . ! I v .
i I C ApeF ! i I C ApeF | !
: ' 01 [' 01 '
: #011:01 43 .01 99 : : #011:01 43 .01 99 :
! 11##:00 32 .13 9 reward ! 11##:00 32 .13 9 reward
' '

' N . (CTTTTTTIT P AN (Tt i

: : — | —

1 match set [M] [i H 1 match set [M] [' !
Dy et . T i SREEEEEEE .

‘1w! ! 0100:00 10 .0 0.01 | booitwi {0100:00 3.0001 | ;

11§, 0100:10 10 .0 0.01 ! Vg, 0100:10 1.0 0.01 !

118! 1 0100:01 10.00.01 | ' 1!3! 10100:01 10 .0 001 ; '

P} 10100:11 10 .0 0.01 | ' 1.~ 10100:11 5.0 0.01 !

L N ’ levell: [m—mmmv ’ level1:

i 00, 10,01, 11 T—L experience H

Dol b N :

| f simulation model | |

. : 1 i

: ' of the environment ; ;

[1

1 level 2 !

(a) XCS with covering on level 1 (b) Covering uses an simulation model on level 2

Figure 5.6: Two-level learning architecture is applied to an XCS

As depicted in Figure 5.2, two discovery mechanisms coexist in an LCS. The
genetic operators are inspired by evolution and have been mentioned in Section 5.3.4.
The other mechanism, so-called covering, is not inspired by evolution. Covering
will generally occur, when the minimal number of different actions that must be
present in a match set [M] is not achieved. This mechanism provides classifiers for
every possible action, whose condition matches the detected situation. In general,
the action is randomly chosen. When the parameter, which controls covering, is set
to the available number of different actions, full covering takes place. A classifier
generated by covering can be directly added to the population, since it must differ
from all current classifiers. The default value of the covering operator of the XCS
reference implementation [But00| is equal to the number of available actions, in
other words, full covering takes place. In the example depicted in Figure 5.6(a),
the input value 0100 coming from the detectors is not known to the population.
Thus, full covering generates new classifiers in the case of all possible actions (00,

97

Chapter 5 Learning to Control

10, 01, and 11) and introduces these classifiers to the match set [M]. New covered
classifiers are initialised with default prediction, prediction error, and fitness values.
These default values are often badly initialised and many reinforcement learning
cycles are necessary to adapt these predefined default values. The inherent problem
is that little is known about new classifiers. The LCS randomly covers missing
condition-action-mappings and evaluates this relationship by trial and error on the
real problem.

In Section 4.3 the organic two-level learning architecture has been introduced to
overcome this trial and error behaviour using a simulation model on level 2. Thereby,
it has been argued that an agent can test and compare different actions off-line, and
thus can plan its next actions without actually acting in the environment. This
approach has the advantage that testing potentially bad strategies does not occur
in the real world, which can initiate tremendous costs and cause the system to fail
permanently.

Thus, it seems possible to extend the default covering operator and to add some
kind of off-line planning, as depicted in Figure 5.6(b). When covering occurs, new
classifiers are evaluated through simulation on level 2 and initialised through this
simulated experience instead of worse default initialisations. Since model-based
planning is always limited by the necessary simplifications made in the model,
the best action with respect to the model is not necessarily the best action with
respect to the real world. However, investigations, as presented here, are limited to
simulated scenarios and therefore, the model on level 2 is equal to the real (simulated)
world. This new mechanism is investigated in Section 6.2.4, experimental results are
presented in Section 8.4.

5.7 Summary

This chapter has introduced the idea of learning as part of an organic controller.
Many machine learning techniques coexist that are applicable on the controller’s side
to implement its proposed functionalities. Thus, a limited view on LCSs has been
presented, because they fit well into the observer/controller framework.

Since LCSs have drawbacks in learning speed, the idea of parallel LCSs is explained.
Different approaches of parallelism are discussed that depend on the instance that is
suitable for learning. A single-agent learns on its own and parallelism on a single-
agent is limited to a parallel implementation or task decomposition. A learning
problem is decomposed into sub-problems that are solved in parallel. The multi-agent
learning approach is based on the idea of several independent LCSs that work in
parallel on the same learning problem. Moreover, these independent LCSs cooperate
by sharing their learned knowledge. Experimental results will specially focus on
the single-agent learning approach. Furthermore, the two-level learning architecture
proposes another learning approach to speed up learning, which combines on-line

98

5.7 Summary

learning and off-line planning capabilities. In the following chapter, test scenarios
are introduced that have been used to evaluate and to compare the different learning
approaches.

99

Chapter

Test Scenarios

In order to evaluate the proposed observer/controller architecture as a framework
to build organic systems and specially the learning task as part of the controller,
some simple test scenarios are required for demonstration of the achievements. To
allow for a generalisation of the results, the test scenarios should exhibit a variety of
emergent phenomena. On the other hand, they should be rather simple to implement
and easy to understand.

This chapter starts with a general introduction to the area of multi-agent systems
in Section 6.1 and summarises concepts that have been achieved by other scientists
(concerning the aspect of learning). The (quick) reader’s thought can concentrate
on the nature-inspired chicken scenario in Section 6.2, which is in the focus of
most experiments, as presented in Chapter 8. Other test scenarios, as described
in Section 6.3, only serve as a pool of inspiration. Experimental results of these
scenarios are directly summarised in Section 6.3.

6.1 Multi-Agent Systems

In order to live, man must act; in order to act, he must make choices;
i order to make choices, he must define a code of values; in order to
define a code of values, he must know what he is and where he is — i. e.,
he must know his own nature (including his means of knowledge) and the
nature of the universe, in which he acts... (Ayn Rand)

In general, for less than two decades distributed artificial intelligence has existed as
a sub-field of artificial intelligence and is mainly characterised by systems that consists
of multiple independent entities that interact with each other in a domain. Multi-
agent systems [Woo02| are an emerging research field, which provides principles for
construction of complex systems consisting of multiple agents. In the same way, multi-
agent systems offer mechanisms for cooperation and/or coordination of independent

Chapter 6 Test Scenarios

agents’ behaviour. Thus, it is assumed that an agent acts in an environment and
is considered to be an entity, e.g., a robot, with objectives, personal/individual
actions, and private knowledge — since there is no generally accepted definition of
agent [RNO2]. The way an agent (inter-) acts in the observed environment or with
other agents in the environment respectively is called the agent’s behaviour.

It has several advantages to concentrate on multi-agent systems as a possible
domain of test scenarios for research on OC systems. Reasons for that are shortly
listed in the following.

102

o OC requires multi-agent technologies. In particular, OC systems consists of

a number of (homogeneous or heterogeneous) components with different (or
possible conflicting) objectives. These components interact and communicate
with each other in a self-organised way and form together the SuOC, which
is controlled regarding to some higher objectives. Technical components act
in an environment and this dynamics can be observed by other components.
In addition to the uncertainty of sensing the other components, a technical
component can affect the environment and other components in unpredictable
ways. Multi-agent systems seem to be an adequate approach for the design
and engineering of such dynamically changing OC systems. This relieves
studying the resulting emergent behaviour. Each component could be modelled
as a single-agent, which reflects its own capabilities and priorities. Then, a
multi-agent system is needed to handle the interactions between the different
sub-systems. Furthermore, the collective, collaborative, or emergent behaviour
is studied using multi-agent simulations.

A common objective of OC systems is the capability to maintain a reasonable
system performance by adapting to different situations in case of disturbances
occurring in the environment. The standard notion for this issue is robustness.
The requirement to modify the behaviour because of certain changes in system
objectives would correspond to the notion of flexibility.

Robustness has different meanings depending on the context. Typical definitions
include the ability of a system to maintain its functionality even in the presence
of changes in their internal structure or external environment [CNSWOO|, or the
degree, to which a system is insensitive to effects that have not been explicitly
considered in the design [SL90]. In engineering, robust design generally means
that the design is capable of functioning correctly, (or, at the very minimum,
not failing completely) under a large range of conditions. It is also often related
to manufacturing tolerances, and the corresponding literature is immense,
see [Tag92|. In scheduling, robustness of a plan generally means that it can be
executed and will lead to satisfying results despite changes in the environment
[Sch01], while in computing, robustness is often associated with fault tolerance
[Jal94].

6.1 Multi-Agent Systems

Robustness in multi-agent systems can be achieved by having redundant agents.
If control and responsibilities are sufficiently shared among different agents,
the system will tolerate failures by one or more agents. A single point of failure
may not occur.

e OC systems are no monolithic systems. Since they are compositions of many
components, they can flexibly adapt to new situations and changing environ-
ments. Multi-agent systems are inherently modular. Therefore, it should be
easier to add new agents with different capabilities to an environment than
adding new capabilities to a monolithic system. Thus, being scalable is an
advantage that can be used in OC systems.

e From the viewpoint of a programmer’s perspective the modularity of multi-
agent systems can lead to simpler programming. A programmer can identify
subtasks and can assign these subtasks to different /distributed agents, which
decreases the complexity of the whole task on the one hand and speed up
possibly a system’s operation by providing a method for parallel computation
on the other hand. Several independent tasks could be handled by separate
agents that run in parallel on different machines. Multi-agent systems support
modularity, parallelism, and distribution.

e Finally, multi-agent systems are often used as test scenarios to validate concepts
before engineering real world applications and systems. Therefore, they have
benefits in terms of the work/cost ratio. This cost effectiveness is not a specific
characteristic in the domain of OC systems, but rather a general advantage.

The remainder of this general overview about multi-agent systems follows in its
argumentation the work done in [HTP*05, SV00|, and highlights, how multi-agent
systems are often used to build complex systems.

However, many possible ways exist to divide and characterise research that has been
done in the field of multi-agent systems, see [Dec87, Les95, Par96|. The overview,
as presented in the following, is limited and organised along to main dimensions —
agent heterogeneity and amount of communication among the agents. Thus, it starts
with the simplest multi-agent scenario, homogeneous and non-communicating agents,
followed by a summary of the full range of possible multi-agent systems, through
highly heterogeneous and communicating agents. Thereby, communication is not
described as the aspect of communication protocols that are available to the agents.
It characterises the degree of communication between the agents. E. g., do the agents
directly communicate with each other? Or do they not? Furthermore, communication
may be limited to a local neighbourhood, where agents only communicate with agents
that act in a limited visibility range. Global communication is also possible.

103

Chapter 6 Test Scenarios

6.1.1 The Predator/Prey Example

As an example of a multi-agent approach, the predator/prey domain is an appropriate
example that has successfully been studied in a variety of instantiations. It does
not serve as a complex real world domain, but as a test scenario for demonstrating
and evaluating manifold research ideas. Introduced by [BJD86]|, researchers have
investigated different instantiations of its original formulation in the context of
different application areas. Usually, the predator/prey domain is studied with four
predators and one prey acting in a two-dimensional grid-world. However, different
numbers of predators and preys are possible. Both, predator and prey, can move
typically into four different directions — north, east, south, and west. Additionally,
diagonal instead of horizontal moves are a possible variation. Mostly, predators follow
a capturing strategy as a goal, while the prey randomly moves or stays still with a
certain probability in order to simulate slower movements than the predators. An
active escaping strategy, where the prey adapts and learns its behaviour, may also be
possible. A cell of the two-dimensional grid-world can only be occupied by one agent.
Worlds with other shapes as spaces (e. g., hexagons) or continuous/toroidal worlds
without edges (predators and prey can move off one end of the world and come back
on another end) are possible. The predators try to capture the prey in such a way
that the prey cannot move to an unoccupied position. If the grid world has edges, it
might be possible that fewer than four predators can catch the prey by surrounding
the prey against an edge of obstacles or in a corner of the world. Other parameters
of the predator/prey domain are: Do the agents move simultaneously or successively
— one after the other? Is the local view of an agent limited or does an agent see
the whole environment? And last, but not least, is direct communication between
the agents allowed? While predators and prey(s) have limited actions and follow
well defined objectives, the predator/prey domain is simple to understand, easy to
implement, and flexible enough to demonstrate a range of different scenarios, which
have been emerged over the past decades. The general approach of the predator/prey
example, the possibility to customise and adopt the scenario to manifold applications,
or the widespread experience that is documented, not only in multi-agent literature,
result in the assumption that the predator/prey example can be used as a valid
testbed for OC scenarios.

6.1.2 Homogeneous and Non-Communicating Agents

In homogeneous and non-communicating environments all agents have the same
structure, which consists of same goals, sensors, actions, and domain knowledge.
Agents follow the same objectives. They have the same procedure for selecting the
next action/movement, but they decide on their own. Agents do not communicate
with each other directly. They only differ in their sensory inputs and the actions
they take in their individual situations, respectively. Thus, agents have limited

104

6.1 Multi-Agent Systems

information about each other’s internal state and sensory input. Moreover, they
may not be able to predict each other’s actions. As illustrated in Figure 6.1(a),
the homogeneous and non-communicating version of the predator/prey example is
characterised by one identical agent per predator.

The dominant characteristic of homogeneous and non-communicating environments
is that agents have different sensor input and effector output, since they are identical
in their structure. Based on the position in the environment and the local observation
the agents decide on their own, which actions to take. If all agents act as a unit,
they will essentially show the behaviour of a single-agent. In other words, different
effector output serves as a necessary condition for multi-agent systems. In order
to realise this difference in output, homogeneous agents must have different sensor
input as well. Otherwise they will show an identical behaviour.

6.1.3 Heterogeneous and Non-Communicating Agents

Heterogeneous agents combine the advantage of having a great deal of potential power
being heterogeneous with the drawback of having more complexity (in developing
and controlling heterogeneity in such systems). Agents might be heterogeneous in a
number of different ways. Similar to the homogeneous case, the agents are differently
situated in the environment, which causes them to have different sensory inputs
and necessitates taking different actions. Moreover, they could differ in goals, in
actions, or in domain knowledge. As explained in Section 6.1.6, agents can show a
cooperative or a competitive behaviour. Even if agents follow different goals, they
will cooperatively act to each other’s goals, or they will compete and will actively
try to inhibit each other.

Figure 6.1(b) depicts a heterogeneous and non-communicating predator/prey
scenario, where every predator is controlled by a separate agent. It is shown that
agents differ in goals, actions, and domain knowledge (every agent has a different
colour, which denotes this context) and cannot be subsumed by one identical agent.
Additionally, the prey can be modelled as a single-agent with a different goal compared
to the predators’ goal.

As described in [SV00], numerous issues arise in this scenario and deal with
topics like cooperation vs. competition, static vs. learning agents (problem of credit-
assignment), or modelling of other agent’s goals, actions, and knowledge.

6.1.4 Homogeneous and Communicating Agents

In this third category, multi-agent systems with directly communicating agents
are described. Communication is not interpreted as simply part of an agent’s
interaction repertoire with the environment. Equipped with communication skills,
agents have the ability to coordinate much more effectively than they would act
without communicating with each other, even if communication introduces several

105

Chapter 6 Test Scenarios

challenges. As in the homogeneous and non-communicating case, the predators are
identical agents except that they are differently situated in the environment and that
they can directly communicate with other agents. From a practical point of view,
communication might be realised as broadcast, as posting on a blackboard for all to
interpret, or as point-to-point communication from one agent to another one.

Y
N
é
Y
N

(a) Homogeneous predators using one identical (b) Heterogeneous predators may differ in actions
agent per predator and goals

(c) Homogeneous predators that can also com- (d) Predators are heterogeneous and communi-
municate directly cate with each other

Figure 6.1: Variants of the predator/prey example, see [SV00]

106

6.1 Multi-Agent Systems

As illustrated in Figure 6.1(c), communication creates new possibilities in the
predator /prey scenario. In a scenario having only one prey, the prey cannot profit
from communication. But, the predators can exchange information and more effective
capturing strategies can emerge.

In Section 6.2, a nature-inspired multi-agent scenario is described that belongs to
this category of homogeneous and communicating multi-agent scenarios. Certainly,
OC focusses on the problem of increasing complexity in technical scenarios, and
it is admitted that this nature-inspired chicken scenario has no obvious technical
relevance on its own. But, this scenario can also be seen as an instance of the
predator/prey example with a more technical background, where e. g., robots explore
unknown environments, robots observe and control other robots, or autonomous
swimming robots operate in inner harbours and clean the water from oilslick using
swarming techniques. The resulting problem of clustering, see Section 6.2, where all
agents move and meet at one place of the two-dimensional grid world, is a general
problem from the investigated point of view and does not only depend on the selected
application domain.

6.1.5 Heterogeneous and Communicating Agents

Heterogeneous and communicating agents in the predator/prey example are shown
in Figure 6.1(d). The agents can differ in any number of ways, including the
sensors, the goals, the actions, and the domain knowledge. These heterogeneous and
communicating multi-agent systems can be very complex and powerful. They reflect
the full power of multi-agent systems.

6.1.6 Cooperative and Competitive Multi-Agent Learning

The presented categories above do not cope in detail with the issue of cooperation
and competition in multi-agent learning scenarios. Thus and following the reasoning
of [HTPT05], two major types of cooperative and competitive multi-agent learning
approaches should be added — which may result in a third dimension of categorisation
of multi-agent systems in addition to degrees of heterogeneity and communication.
Main concepts are only summarised, and the link between multi-agent systems
and (evolutionary) game theory [Smi82| is skipped, which is a common standard of
modelling cooperative and competitive multi-agent behaviour.

In cooperative learning systems agents pursue a common goal and the group utility
is maximised. Designers of multi-agent systems are free to design (cooperative) agents.
The algorithm that learns the cooperative agent’s behaviour is fully controlled. Thus,
extensive knowledge of the system can explicitly be built into the agents, which can
always anticipate and expect cooperative behaviour and good intentions from other
agents.

107

Chapter 6 Test Scenarios

In comparison, agents in competitive multi-agent scenarios are solely focused on
maximising their own utility having selfish goals. Competitive settings are often
created by separate designers, where all affected parties try to achieve their own goals.
As a result, cooperation between selfish agents seems to be a more difficult and risky
task. A designer of competitive agents must also expend effort in considering the
types of exploitive behaviour that will be encountered. This increases the range of
strategies the agents can choose and the complexity of programming and controlling
competitive settings.

Cooperative Team Learning

Cooperative team learning summarises approaches, where a single-agent searches
for new behaviours for the entire team of agents. Such approaches are equal to
traditional machine learning techniques and straightforward, but they have unsolved
scalability problems within increasing team sizes. Team learning can be divided into
homogeneous and purely-heterogeneous team learning (the aspect of communication
is skipped). Homogeneous agents develop a single-agent behaviour that is used by
every individual. A single behaviour of every agent drastically reduces the search
space of new rules and is well studied for cellular automata [MCD96]. Purely-
heterogeneous agents (e.g., typical in the case of robotic soccer) learn a unique
behaviour for each agent. This has the advantage of agent specialisation, and the
disadvantage of a larger search space.

Cooperative Concurrent Learning

Reducing the joint search space into n separate spaces, multiple concurrent agents
search for new behaviours, and every agent has its own learning process to modify
its behaviour. This field requires new learning methods, because multiple learning
agents make the environment dynamic, and this is contrary to the assumptions of
most traditional machine learning algorithms (which is also known as the Markov
property, see Section 5.3.2). Concurrent learners adapt their behaviour depending
on other adapting agents, and they have no control on this process of coadaptation.
Even the agents’ own adaptation to the dynamically changing environment can
change the environment itself. This makes learning complex and divides research of
concurrent learning into three research areas: Firstly, the credit assignment problem
(How to divide team reward among the individuals?), secondly, the dynamics of
learning (How to cope with the problem of coadaptation?), and thirdly, modelling of
other agents (How to model other agents to improve collaboration?).

Competitive Learning

Competitive multi-agent learning systems are characterised by agents, which do not
share the goal to work together. The overall utility of all agents is not in the focus

108

6.2 Chicken Simulation

of these systems. The agents compete, they have their own, possibly conflicting
goals, and they search for local optimisation. Competitive agents are often used in
business scenarios, where negotiation and auctioning play a role between competing
companies or autonomous departments within bigger organisations.

Competitive multi-agent scenarios are based on the principles known from the
field of economics, where game theory is broadly used to mathematically analyse
the strategies of competing players. Typically, research has covered scenarios coping
with e-commerce, market-based games, markets and market mechanisms, auctions,
or matrix games.

6.1.7 Concluding Remarks

Multi-agent scenarios have been used widespread and successful in research. Therefore,
the use of multi-agent scenarios is anticipated in order to evaluate the proposed
observer /controller architecture. Especially, this thesis is interested in and focus on
the learning task of the controller.

Evaluating the observer/controller architecture completely, all variants of this
architecture, as proposed in Section 4.4, have to be tested in all mentioned multi-agent
categories starting with a scenario of homogeneous and non-communicating agents,
and tackling then the full range of possible multi-agent systems, through highly
heterogeneous and communicating agents. Since this may be overwhelming, the
investigations are started with the case of applying the centralised observer/controller
architecture to homogeneous and communicating agents.

6.2 Chicken Simulation

The multi-agent system described below and used for the experimental validation of
the observer/controller architecture in Chapter 8 is inspired by nature and shows
clustering from a macroscopic point of view as an emergent behaviour of local
interactions. The simulation reproduces the collective cannibalistic behaviour of
densely housed chickens in cages and tries to explain the unwanted behaviour of
clustering, also known as feather pecking [BA84, JPF06, RKET08, RvB*04|. This
behaviour is frequently observed, when a chicken is wounded. Moreover, it leads to a
major loss of animals (up to 50% of the animals).

If chickens perceive a wounded chicken, they will chase this chicken and pick on it,
until it dies [MRB"07|. Chasing and picking wounded chickens leads to the emergent
building of chicken swarms (or clusters), see Figure 6.2. A swarm disperses, when
the wounded chicken is killed. The emergent behaviour is spatial, but swarms move
over time. This is a case of negative, i.e., undesired, emergence.

While simulating this behaviour, order patterns emerge as expected in form of
chicken swarms. Currently, in agriculture these patterns are interpreted by human

109

Chapter 6 Test Scenarios

[cticen St v T < L Cicken Simulstion. Tore 1000 N ==
L
\ L
Vi /A A A
12 1 12 28 T P
KKK K< < <
N K KK
\ =3\ <3|
<
V) 2 ALK 3| |
7|
L i N =
7|
7|
7|
7]
P!
<
Ll L Ll L
(a) No cluster (a chasing situation) (b) A cluster situation

Figure 6.2: Snapshots of the chicken simulation: Unwounded chickens are white, wounded chickens
are dark (red), and feeding troughs are represented by four bigger (yellow) circles.

experts. But, from the viewpoint of OC it is the goal to observe, classify, and
control (global and macroscopic) system behaviour automatically. To achieve this
goal and to reduce the chicken death rate, the observer/controller paradigm is used,
as introduced in detail in Chapter 4. A quantified context of the underlying system
is reported to the controller, which evaluates the situation and reacts with adequate
control actions to disperse chicken swarms or to prevent their formation.

Referring to Section 6.1.4, the organic approach is evaluated in a homogeneous
and communicating predator/prey example, where healthful chickens (predators)
search and chase wounded chickens (preys). To be a predator or prey depends on
the individual energy level of each chicken, as outlined in Section 6.2.1. It is a
scenario with communicating agents, since chickens know about the internal state of
all chickens in their local neighbourhood. As explained in the following, a chicken
can be a following chicken, which means that it perceives a wounded chicken and
other chickens follow this following chicken.

The scenario has been taken from an interdisciplinary research cooperation between
the Leibniz Universitdt Hannover and the University of Veterinary Medicine Hannover.
In its first implementation without an organic observer/controller architecture the
multi-agent scenario shows that very simple local rules suffice to explain the global
complex behaviour and reproduces the swarming behaviour well known from nature,
see [Ost04, von05]. The simulation followed the goal to assign the nature behaviour to
a technical multi-agent scenario, which is explainable by human beings. A snapshot

110

6.2 Chicken Simulation

of this Eurovent! simulation is presented in Figure 6.3. But, the outlined original
simulation programme does simply simulate a chicken population showing clustering
behaviour without providing any means for the user to intervene in the course of
the simulation. Within the limits of this thesis, the existing simulation programme
has been rebuilt and extended to incorporate additional functionality. The scenario
has been uncoupled from the nature context and OC research questions have been
focussed. The major requested modifications are listed in the following.

lr.‘r - il o - 0

Figure 6.3: An Eurovent cage with 60 chickens

e Controlling and learning to control the unwanted behaviour of the chickens a
control mechanism has been implemented, which bases on the generic obser-
ver/controller architecture. Even if both, an observer and a controller, were
implemented, the focus will be on the controller’s side, specially on the (on-line)
learning task using LCSs.

e The observer should be able to recognise and to quantify clustering. The
quantification is necessary, because it is the prerequisite for the interventions
of the controller. Additionally, the observer is provided with the capability to
predict the near future. This ability presumes either the existence of a system
model within the observer or competence to approximate the future course
of the system. Work on the observer’s side is shortly described and for more
details the interested reader might have a closer look at [Mni09].

e The controller should be able to intervene somehow in the course of the system,
if clustering is detected by the observer. Interventions of the controller or its
control strategies should reduce clustering and as a direct consequence the
number of killed chickens should decrease.

Implementing an observer /controller architecture on top of the chickens creates an
instrument to observe the development of clustering in the system in a quantitative

'http://www.bigdutchman.de

111

Chapter 6 Test Scenarios

way (i.e., to measure clustering). On the other hand, controlling the clustering
behaviour improves the whole system performance. System performance is expressed
in terms of life times and number of killed chickens. The observer and the controller
have to satisfy the general guidelines of OC. Thus, these components are realised
with respect to certain constraints, which are mainly the properties of the generic
observer /controller architecture.

e The controller should never be a centralised authority, as known from classical
and centrally organised control systems. Therefore, the interventions of the
controller have only a guiding nature (the autonomy of the agents is not
compromised). In Section 6.2.4 these interventions are described in detail.

e Ordinary operation of the chickens should be guaranteed, if observer and
controller are turned off. This constraint results from the principle that the
chickens (i.e., the SuOC) do not rely on the actions of the controller. Most
certainly, the number of killed chickens will increase in absence of the controller,
however, the agents are able to fulfil their strategy further on, where they are
explicitly programmed for.

6.2.1 Agent Behaviour

It should be mentioned that the notions of agent or chicken have the same meaning in
the here presented context. The item chicken is used in analogy to the nature-inspired
paradigm and abstract from the animal to presume that the single chicken is an
autonomous technical agent, which shows no life of its own and instead reacts as
specified by its developer.

wounded chicken perceived

or l
following chicken perceived energy == MAX_ENERGY

energy==0
follower idle wounded

no wounded chicken perceived energy =< WOUNDED_ENERGY

and
no following chicken perceived disturbance duration elapsed

noise
disturbed
v no noise
noise .
. noise
frightend

Figure 6.4: Finite state machine of a chicken representing the local behaviour rules of a single
chicken

112

6.2 Chicken Simulation

In the simulation, every chicken can move to eight different directions (north, north-
east, east, south-east, south, south-west, west, and north-west) at the speed of one
movement per simulation tick. A chicken is characterised by the attributes heading,
position (z-, y-coordinates), and energy/vital force. As depicted in Figure 6.4, a
chicken is directed by a predefined fixed finite state machine and it will be influenced
by the behaviour of other chickens in its local neighbourhood or by changes in the
environment, e. g., noise that frightens the chickens, see Section 6.2.4. Chickens are
considered as autonomous agents with simple fixed rules and local goals, they aim to
survive as long as possible, and they are attracted by wounded conspecifics.

Whether a chicken is wounded or not depends on its personal energy level. Five
different internal states of a chicken have been defined — the scenario has been
simplified and the effects of food have been blinded out. Because of this the finite
state machine, as pointed out in Figure 6.4, is quite simple.

Idle — In this state a chicken is not wounded. The chicken moves according
to a simple mobility model, is initially placed at a random position in
the cage, a two-dimensional grid, and randomly chooses a new position
to move to in its direct neighbourhood. Arrived at its destination the
chicken chooses another random destination for the next simulation
step. One simulation step is characterised by a movement from one
field to another one in the direct neighbourhood. Typically, a chicken
can choose its new position from a set of eight possible positions.
Alternatively, it stays, where it is.

Follower — A chicken will move to this state, if a wounded chicken or a following
chicken is perceived (the distance to this chicken is lower than a fixed
perception horizon given as simulation parameter, see Table 6.1). Then
the chicken tries to get as near as possible to the wounded (or the
following) chicken using the Fuclidean distance. If it is immediately
close to the wounded chicken, it will begin to pick on it (and the
wounded chicken will loose energy).

Wounded — A chicken will get to the wounded state, if its energy level passes a
threshold that is lower than a given energy level, which is set by a
simulation parameter, see Table 6.1. In this case, the wounded chicken
tries to escape attacks, it maximises the distance between itself and the
chickens in its direct neighbourhood, and the energy level will increase
with each tick of the simulation, only if it is not picked.

Frightened — A chicken will be frightened, if it is confronted with noise. It moves as

fast as possible (one field per simulation step) outside the fields that
are affected by noise. If the chicken has been in the state of a follower,

113

Chapter 6 Test Scenarios

Table 6.1: Parameters of the chicken simulation

Number of agents

40

Size of the two-dimensional grid

30 x 30 fields

Simulation time

Varied (maximal 1000000 ticks)

Generation of wounded chickens

Every 60 ticks, after a wounded chicken
is killed or healed

Maximal energy level in the case of a
wounded chicken

100 energy units

Energy level of a randomly generated
wounded chicken

70-80 energy units, which are uniformly
distributed

Energy lost per received pick

One energy unit

Healing rate

One energy unit/tick

Radius of the perception horizon of a
chicken

15 fields

Number of moving directions

Eight plus one (stay at position)

Disturbance duration of a chicken after

Five ticks

a controller intervention
Number of feeding troughs

Four

it will try to maximise the distance between the wounded chicken and
itself.

Disturbed — After leaving the noise affected fields a chicken changes to the disturbed
state for a fixed duration, see Table 6.1. A chicken does not react to
wounded chickens and randomly moves as it does when being idle.

The simulation environment is set up with the parameters, as listed in Table 6.1.
A scenario of 40 chickens is observed that randomly move on a two-dimensional grid,
which has a dimension of 30 x 30 fields, see Figure 6.2. The two-dimensional grid is
limited through the borders on the left, on the top, on the right, and on the bottom
side. Thus, the agents cannot move outside the grid or they cannot move out of the
grid on the right side and enter the grid on the left side (like a torus). If a chicken is
set to a border or it reaches an edge of the playground, it will be obvious that five or
three possible movements are not possible for these special situations.

Each cell of the grid can only be occupied by one agent or by one feeding trough.
The feeding troughs have the function of obstacles. To achieve endless simulation
runs, a new chicken is generated and randomly placed in the cage, when another
chicken is killed. Thus, the simulation always runs with a complete chicken population
(of 40 agents).

114

6.2 Chicken Simulation

6.2.2 General Simulation Structure

As mentioned before, the simulation programme is an implementation of an ob-
server /controller architecture following the generic model. The SuOC is formed
by the chickens moving on the grid. The programme itself runs in form of a loop;
during operation, the loop is cycled once every tick. After programme initialisation
the simulation begins iterating trough the loop. At first, (a) the chickens act, i.e.,
move to another position on the grid or pick a wounded chicken, then (b) the task
of observing starts, and (c) the task of controlling is executed. The focus of the
following explanations is on steps (b) and (c).

-

~
-
~
-

1
; \ initialise the ! /
! start — - | end '
" J ; programme ! " ;
_________________ ’/ : : ________________’/
yes
rrpnenennn e
v Do _.--7 final T
'+ controller ' . .
el | —— < tickcountis > no
i 1 Intervenes |
o po -..reached .-~
¥
no
,l\ |
e SS ! !
i e i PR N ! !
' | observer | is | .
P : L ! . :
— | monitors <+—yes—_ controller ot . chickens act —
r P TNl . .7 i i
| 1 the system 1 | ~.._active _-- i :

Figure 6.5: Operational sequence of the chicken simulation, the contained observing and controlling
steps are shown in Figures 6.7 and 6.12

Before starting the simulation the user is able to turn on or off the observer/con-
troller functionality (via a parameter file). Deactivating the controller does also
deactivate the observer as the monitoring process of the observer is a necessary
prerequisite for the controller. (There exists no functionality for deactivating the
controller only.) As postulated before, the simulation will technically run flawless
without an observer/controller. Of course, there will be more clustering without
an observer/controller. Nevertheless, the simulation is runnable without an obser-
ver/controller. The just outlined course of operations is shown in Figure 6.5. In the
following section the actual implementation of the observer/controller architecture is
introduced.

115

Chapter 6 Test Scenarios

model selection ﬁ\
,
1
1
!

r 1 H |
! I i ! H !
! | | e » aggregator I i E i
| Do e __ -1 minimise #ke |
1 1 e e e e e e mm e oo () Pt 1
1 | ! r . | [S Vot ! I
: v — cluster centroid detector &= o |} 1771 ---o-ooo-ooo !
1 —_—
| Do | R .
b3 —T emergence detectorx [g i1 3 1 imulati] o
- | (B 3
1 —
T : —m emergence detectory < | .. 3 : ! i model ! ~
[- B .'r -- L) A © L T |
[! ® 11 g L |
i o ﬂf_'i:“ —r emergence detectorh «— T 111 F 1 ______ v . .
[- oo - B 1 1
I wn | | e ettt hafontai [' 1
[T T R [L { I
[T 1 [] H
i § : : i pre-processor — P18 ! | i
1 e S G [learnin] -
= R v Ry ,:::::::.{':::::::.‘. pTTTT o R lassifi s 2!
1 . 1
| i , x-coordinate 1 i ! ph classiner o
! 1 q | ' =
! T P .1 y-coordinate !l ﬁ|g B o system ! !
L b #ke 1 heading(h) fi i e ! | ' |
H ! : :I :: €a Ing() o P ! ! : H
1 I i I S B (I} ! ! 1
1 P e H il R 1)t 1 1
! b i T observer | T 1--------' controller !
pTTTTTTTmmmmomoooleosomm-m--------g 0 pomommoobeoeoees !
' raw data ' i action A i
1

Figure 6.6: The generic architecture is applied to the chicken scenario

6.2.3 Observing the Chickens

The primary task of the observer is to monitor the system behaviour, to aggregate,
and to generate the system parameters based on the current system state. In the
chicken scenario the relevant system state for the controller is mainly determined by
the present degree of clustering, as the controller has to alleviate it. Therefore, the
observer has to measure clustering and quantify it. In the following, the procedures
taking place within the observer as well as the actual parameters being monitored
by the observer are outlined.

The generic observer/controller architecture is applied to the scenario, as depicted
in Figure 6.6. The observer fulfils its task on-line, i. e., the status of all relevant system
components (the chickens) is checked at every simulation tick within the observing
process. For this purpose, the observing process is made up of five steps: Monitoring,
pre-processing, data analysing, predicting, and aggregating. The whole process is
illustrated in Figure 6.7 and explained step by step in the following. E. g., monitoring
is limited to the number of killed chickens, the z-coordinates, the y-coordinates, and
the heading of all chickens. Data analysing computes three emergence indicators.

116

6.2 Chicken Simulation

monitorin pre- data PFEdICUng aggregatin
& processing analysing (optlonal) ggregaung

number of killed chickens emergence detector x

x-coordinates emergence detectory

y-coordinates emergence detector h
headings (h)

Figure 6.7: Steps of the observing process

Observation Range

In order to develop metrics to quantify the clustering behaviour of the chickens,
all parameters have to be specified, which can actually be observed and that are
relevant for attaining the objective. However, before the observer is able to monitor
or pre-process raw data, the intended data have firstly retrieved. Data retrieval raises
the question, which parameters of the SuOC can actually be seen by the observer,
i.e., how far does the observer’s visibility range reach? The visibility of parameters
is certainly not a serious constraint in the present straightforward test scenario, but
it could be a rather important factor at more comprehensive real world applications.

The visibility of model parameters to the observer seems to be ambiguous. Within
this test scenario all parameters could be made visible to the observer easily. However,
in real world systems of larger scale such a request would be infeasible in many cases.
E.g., in large collections it may be impossible to observe all components of the SuOC
in detail. There may not be enough sensors, the communication bandwidth may
not be sufficient, the used hardware may not be able to process so much data, the
collection of data would consume too much energy, etc. As described in Section 4.1.1,
it may be necessary to adjust the model of observation in the presence of such
constraints in terms of granularity. In the chicken scenario the parameters, as listed
in Table 6.2, may be observable.

Since Table 6.2 potentially shows all observable parameters, the observer’s view
has been limited in the chicken scenario to some special parameters. These could be
measured by observing the cage with a simple camera from a global point of view,
where the camera is installed above the cage. Such a simple camera would be able
to identify the moving agents, but not to view inside a chicken. The camera has no
information about the individual energy level or the local destination of a chicken.
I.e., the energy value is an intrinsic property of the agents, which is not available to
an external observer. Thus, a camera can only decide, if a chicken is wounded, if a
chicken is killed, or if a chicken is completely healed.

Model parameters like the dimension of the grid or the total number of chickens
will definitely remain constant during operation. Other parameters as the number
of wounded chickens or the position of the agents will vary over time, e.g., when a

117

Chapter 6 Test Scenarios

Table 6.2: Observable parameters

’ Agent parameters Model parameters ‘

Position (z- and y-coordinates) Horizontal and vertical dimension of the
grid (number of fields)

Heading Position of feeding troughs

Energy level Number of feeding troughs

Destination Total number of chickens

Number of wounded chickens

Number of killed chickens

Position of clusters

Number of involved chickens in a cluster

noise signal is applied. It is suggested that these constant parameters will not be
observed, but rather known by the observer, if their observation is desired.

Therefore, in the monitoring task data are collected from the system at a fixed
sampling rate (one data set each simulation tick). As depicted in Figures 6.6 and
6.7, this data set consists of a system-wide attribute (the number of killed chickens
in the last sampling period, denoted with #kc) and of individual attributes of each
chicken (z-coordinate, y-coordinate, and heading).

Observation Functionality

During operation, the observer is ought to measure the current level of clustering
among the chickens. In the chicken scenario the focus on the observer’s side has
strongly been set on a validation of the methods of the data analyser, see Figures 6.6
and 6.7,

The functionality of the pre-processor is reduced to passing the individual parame-
ters to the data analyser and the number of killed chickens to the aggregator. The
data analyser determines the emergence fingerprint of the system by computing the
(relative) emergence indicators (e, ey, ep,) of the collected three chicken attributes
at every simulation tick, as described in more detail in [MMS06] and summarised
in Section 4.1.5. Additionally, the data analyser determines the coordinates of the
population centroid (z,¥.). The results of the data analyser (three emergence
indicators and the population centroid) are passed to the aggregator.

Predicting is an optional step, which has not been investigated in detail. Therefore,
prediction is left out of this thesis. Instead, the reader is referred to [MMSO06]|, where
a trajectory-based prediction method of chicken positions is presented, which can
be used to predict and prevent future unwanted clustering. By extrapolating the
trajectories of the chickens, this prediction method measures the positions of every

118

6.2 Chicken Simulation

chicken at two consecutive points in time. Based on these two points and the heading
of each chicken the trajectory of a chicken is computed by extending the line between
them, as illustrated in Figure 6.8. This method results in an early indicator of
clustering and allows to react in time.

v=1/At
A d=vxTt
% At := observation period
A . . .
\ T := prediction period

Figure 6.8: Method to predict clustering, see [MMS06]

The aggregator forwards the situation parameters S; = (e, €y, €p, (Tc, Ye), #kc),
composed of the computed data analyser values and the number of killed chickens,
as a combined vector to the controller. E. g., typical values of the relative emergence
indicator of the x-coordinates can be seen in Figure 6.9.2 The figure shows the trend
for one run of simulation and the recurrence of a cycle is observed that constitutes
of three phases: The formation phase of clustering (the curve increases from values
around 0.25 to 0.6 or higher), a clustering phase (the values oscillate on a high
level), and a dispersion phase (the curve decreases from high level to low level). The
interpolated values show a more exact disjunction of the three phases, as depicted in
Figure 6.10.

During the absence of a wounded chicken, the chickens are uniformly distributed
over the area. When a chicken becomes wounded, a cluster is formed after a short
delay and the emergence indicator increases. After each clustering phase a chicken is
killed, as depicted in Figure 6.11. Then, a short distribution phase follows and a new

2Typical values of the relative emergence indicator of the y-coordinates and the heading are not
presented. However, they show a similar behaviour.

119

Chapter 6 Test Scenarios

réaj Emergence value of the x-coordinates over til

emergence
0.7 _

Figure 6.9: Emergence value of the x-coordinates over time without any control action

cycle begins. E.g., a chicken is killed at time 280. Similarly, a cluster decreasing
phase starts as well as at time 280, see Figures 6.9 and 6.10.

1) [n-!-erpolated emergence value of the x-coordinates over time

emergence
0.

Figure 6.10: Interpolated emergence value of the x-coordinates over time without any control
action

The figures indicate that there is a correlation between the different emergence
indicators, the clustering behaviour of the chickens, and the total number of killed
chickens. Furthermore, the observations suggest that an optimal control intervention
should be triggered, when a certain emergence value is exceeded, as explained in the
following.

120

6.2 Chicken Simulation

|£) Number of killed chickens #kc over time IE@E

Figure 6.11: Number of killed chickens #kc over time (every peak denotes a killed chicken) without
control action

6.2.4 Controlling the Chickens

After the observer has finished evaluating the current system state including the
unwanted clustering behaviour, the controller becomes active. As stated before,
the task of the controller is to maintain a proper system behaviour. The controller
assesses the system’s situation, based on the information given by the observer.
Afterwards the controller intervenes in the course of the SuOC, whether a control
action is considered as necessary or not.

Like the observer, the controller acts at every tick and the process of controlling
directly starts after the observer has submitted its situation parameters to the
controller. The process consists of a receiving and an action selecting step. Between
these two steps on-line learning and off-line planning may take place. The whole
investigated process is depicted in Figure 6.12.

, .. on-line 3 off-line action
receive)) o . :
learning -~~~ planning selection
number of killed chickens noise signal (d, i)

emergence values e,, e, e,
cluster centroid (x,, y.)

Figure 6.12: Steps of the controlling process

Within the receiving step the controller assesses the situation. Based on the
situation parameters, it will decide, if the situation is in accord with the desired

121

Chapter 6 Test Scenarios

course of the system or if it is not. In the present case, the decision is based on
three emergence indicators (e,, ey, €;,), reported by the observer, as the task of the
controller is to prevent the clustering behaviour of the chickens (or to minimise the
number of killed chickens). The situation will be considered as undesirable, if the
number of killed chickens drastically increases or if the clustering behaviour surpasses
a certain predefined threshold. Thus, if the observations reach a critical situation,
the controller will intervene using the cluster centroid (z.,y.). If otherwise, the
process of control will come to an end without further intervention. The controller
checks the clustering behaviour every tick, so it will decided at every tick anew,
if interventions have to be started, ended, continued, or to be omitted further on.
Finally, when no learning steps are implemented the action selector step will follow,
if the controller decides to intervene. Within this step the controller performs its
interventions. The actual form of the interventions depends on the implemented
control actions. Different control actions are possible in this chicken scenario.

1. The controller can change the local decision rules of the agents, which modifies
the local behaviour of the individual. Doing so the controller has to know the
encoded dependencies about the finite state machine that allows the chickens
to move and behave on the grid. In this nature-inspired scenario such an
intervention seems not realistic, the genes of a chicken cannot be modified.
Thus, this way of control has not been addressed in this scenario.

2. The controller can influence the system structure. As assumed in Chapter 4,
the elements of a SuOC base their actions on local information, where local
is defined by a neighbourhood and an interconnection network. Modifying
this network, in particular with respect to global characteristics, will change
the global behaviour of the system. Also, changing the absolute number of
elements influences neighbourhoods and at last the behaviour of the SuOC. In
the chicken scenario this would mean, e. g., that the controller could introduce
new wounded chickens to the population or that chickens, which pick too
much on a wounded chicken, are directly wounded by the controller. Since
the controller should rescue and not kill the chickens, such actions seem not
reasonable. Placing more feeding troughs or some other kind of blinds on the
grid to distract the chickens from a wounded chicken may assumed to be a
better and more realistic strategy of control.

3. At least, the controller can influence the environment, which allows indirect
control of the chickens and will only work, if the agents have sensors to measure
and react to a modified environment.

Thus, it has been decided to control the chickens with some kind of noise signal.
A noise signal with variable intensity ¢ and duration d can be applied at an arbitrary
position in the cage to frighten the chickens and scare them off, which leads to the

122

6.2 Chicken Simulation

dispersion of a possible existent cluster. Moreover, the noise signal also has a negative
effect: If the noise is too loud or occurs too long, then chickens will (eventually) be
killed through noise intervention. Therefore, it is not beneficial to continuously apply
a noise signal to prevent clusters.

A powerful light source or putting food in the cage may have similar consequences
on the group behaviour. The powerful light source may blind the chickens and
scare them off. Food may also attract them and lure them away from a wounded
chicken. More strategies of control may be possible, but this thesis will concentrate
on frightening the chickens with applying a noise signal.

As shown in Figure 6.13, in the course of noise control with duration d some fields
of the playground around the population centroid (z.,y.) and within a radius that
depends on the intensity ¢ are highlighted with a noise flag. A chicken reacts to
this flag and uses this information within its decisions of movement and behaviour
during the duration of noise control. A chicken will change its status to frightened,
if it perceives noise. The personal energy value of the chicken decreases with the
noise level depending on the field of the grid, where the chicken is positioned. A
frightened chicken moves one field per simulation step outside the fields highlighted
with noise. All chickens try to maximise the distance between the wounded chicken
and themselves, move as fast as possible to fields, which are not highlighted with
noise, and change their personal status to disturbed.

| £ Chicken Simulation - Time: 13

Va2
>y

Figure 6.13: Snapshot of the chicken simulation with noise control
The actions taken by the controller have the form A = (d, i, (x.y.)), which

can be simplified to A = (d,i), because the duration d and the intensity i of a
noise intervention only need to be defined, since the centroid (., y.) of the chicken

123

Chapter 6 Test Scenarios

population has already been determined by the observer. The controller will only
interfere, if the observer measures a critical clustering situation. However, what is
a critical situation? Which clustering behaviour seems to be critical? When can
the controller rescue a chicken and when is the controller’s intervention applied
too late? Which level of computed emergence indicators seems to be critical? To
validate the observer/controller architecture, different controller types have been
developed varying from completely static ones using fixed rules to control the
clustering behaviour, see Figure 6.14, to adaptive ones using both, on-line learning
and off-line planning, as depicted in Figures 6.18, 6.19, and 6.20.

minimise chickeg/ﬁ\

I
1
1
:
1
yes :
1
I
1
1
1

Figure 6.14: Controlling with fixed single Tules

Single Fixed Rules Controller

As shown in Figure 6.14, using a freely applicable noise emitter with interim fixed
duration and intensity, the chickens are frightened and the cluster will disperse, if a
predefined threshold is exceeded that indicates critical clustering behaviour.

In comparison with Figure 6.9, the emergence values with noise intervention show
no possible separation into three phases any more, see Figure 6.15. The interpolated
curve in Figure 6.16 shows this effect in detail. The values are characterised by
continuous increasing and decreasing phases. The cluster phase is skipped.

Comparing Figure 6.11 with Figure. 6.17, a significantly lower number of killed
chickens is observed. Thus, the total number of killed chickens has decreased due
to the control interventions. However, not all interventions have been successful,
and for some cases many control interventions have been necessary to deal with the
emergent situation. Whether a controller decision is successful or not depends on the

124

6.2 Chicken Simulation

& Ernergeﬁce value of the x-coordinates over ti

emergence
06 _

Figure 6.15: Emergence value of the x-coordinates over time with control action

energy status of the wounded chicken. The odds that a chicken will heal during the
duration of a controller intervention depend on how many other chickens randomly
run away in the same direction as the wounded chicken does, so that they can attack
it again after getting out of the intervention area and after the disturbance time has
elapsed. Furthermore, the relationship between critical values of emergent clustering
indicators and applied noise interventions has been investigated in parameter studies,
as described in Section 8.1.2.

emergence
05 _

Figure 6.16: Interpolated emergence value of the x-coordinates over time with control action

Adaptive Controllers

With respect to the proposed generic observer/controller architecture and especially
having a focus on the two-levelled learning aspect of the controller, different adaptive

125

Chapter 6 Test Scenarios

|£) Number of killed chickens #kc over time [F=TE)

Figure 6.17: Number of killed chickens #kc over time (every peak denotes a killed chicken) with
control action

variants are investigated, corresponding to different implementations. As depicted
in Figure 6.18, the investigations have been started with a limited on-line learning
controller and left out the second level, which focusses on off-line planning capabilities
and is based on a simulation model. This controller uses an XCS, which will only
be triggered, if predefined critical emergence values are exceeded. In other words,
learning only takes place in situations, which are recognised as critical and where
the information of being critical has been hard-wired into the control loop by the
designer.

minimise chickepﬁ\
l death rate

f] R, 1

1
1
i observer
1
1

observes

Figure 6.18: If a predefined threshold exceeds, learning will start using an XCS

126

6.2 Chicken Simulation

Secondly and as described in Figure 6.19, the adaptive controller has been modified,
and the barrier of surpassing a predefined threshold has been removed. Thus, the
XCS will learn on its own, if a noise intervention is needed or not. If an action is
triggered on the chickens, then the XCS will learn, which parameters of this noise
signal (duration and intensity) should be selected referring the measured emergence
indicators. The idea behind this approach has been that the same noise signal would
not lead to the same effect on the clustering behaviour in different situations. The
XCS should be able to support different kinds of clustering with different parametrised
noise signals. Investigations on this second adaptive controller type are described in
Section 8.2.6.

minimise chickegfﬁ\
l death rate

e PV 1

i observer :L—><CS>—> no
: ! "o action

observes

d,i |

Figure 6.19: Learning all possible situations using an XCS

A special implementation detail refers to the encoding of applying a noise signal
and applying no noise signal as part of the XCS. As already described, the noise
signal is set up of two parameters duration and intensity. These two parameters
are limited to values taken from sets with upper and lower boundaries, which could
be defined, before a simulation run is started. The duration is limited to values of
d e {1,2,...,15}. Intensity is taken from a set with ¢ € {0, 10,20,...,50}. Every
combination of these two parameters characterises a single noise signal. All noise
signals having an intensity of zero (i = 0) are defined as an action, which is translated
into an intervention, where no noise is applied. Using this workaround, the XCS is
able to distinguish and respectively learn situations, where controlling using noise is
needed or is not needed.

Thirdly, Figure 6.20 shows an adaptive controller type, which learns on-line and off-
line the best noise signal with respect to the proposed two-level learning architecture,

127

Chapter 6 Test Scenarios

see Section 4.3. If situations occur, which are not known to the XCS on level 1, the
XCS will trigger level 2, where the impact of different noise signals is evaluated using
an off-line simulation model. The results are introduced on level 1 and support the
decisions taken by the XCS. This third learning approach is simplified as much as
possible: Level 2 is realised through cloning the real simulation. Thus, the effect of
unknown noise signals in special situations can be verified on-line. On level 1 all
working processes are paused until level 2 is acting.

minimise chickeg/ﬁ\
l death rate

Gttt P Y - 1

]
| »
| , !
| 1
observer - L2

i 1 no
i Al 5
————— o action

(O]

- |

0 . controller

— - O | _______LTTTTTlCTTTTT T C

! (@]

Figure 6.20: An XCS is equipped with a simulation model on level 2

Furthermore, a more complicated instance of this two-level learning approach is in
the focus of organic traffic control [BMMS*06|, which has also been mentioned in
Section 4.4 and where the observer/controller architecture is used to control an urban
traffic network. There, level 2 uses evolutionary algorithms and runs in parallel to
level 1. This approach is again discussed in Section 6.2.5. All implementations have
been investigated with respect to different parameter combinations, as presented and
discussed in Chapter 8.

6.2.5 Discussion of Special Aspects

Depending on special characteristics of the implemented chicken scenario, some
important aspects are shortly discussed in the following.

Grid Structure

Using a two-dimensional grid structure is a very simple and widespread way to design
and implement multi-agent scenarios. In the case of special clustering situations,

128

6.2 Chicken Simulation

all agents are positioned very near by each other on a small part of the whole grid,
particularly, when simulating a population of 40 agents on a grid of 30 x 30 fields.
When a noise signal is applied to such a situation, the chickens that are only located
at the border of the cluster have the chance to quickly run away. The chickens, which
are located in the centre of a cluster, have to wait until the positions around them
are not occupied any longer by other agents. This behaviour could be mitigated a
little bit using other grid structures, like hexagons, where the local neighbourhood
allows more positions for escaping possibilities.

Short- and Long-Term Benchmark Criteria

To rate the mapping of situations and actions, it is often useful to differ between
short- and long-term criteria. In the case of this simple chicken scenario, one single
criterion has only been identified to evaluate the controller actions — the number
of killed chickens #kc (or counting the number of interventions that are needed to
achieve and to maintain a special level of killed chickens, respectively). Referring to
Chapter 8, this criterion seems to be limited in its statement about the improvement
of learning to control local behaviour tackling a global goal. In most cases, the
number of killed chickens is zero or it often counts one or two killed chickens, after
a noise intervention has taken place. The range of this fitness criterion is normally
characterised by zero, one, or two killed chickens. No gradual values between these
values exist. Thus, in other scenarios it may be easier to define a reward function
with more gradual differences coping the problem of quantifying the fitness of control
actions in different situations.

Simple Feedback Mechanism

The chicken scenario seems to be a scenario, where a very simple feedback mechanism
might be sufficient to control the clustering. If critical emergence values occur, a lot
of noise will be made to frighten all chickens. Then, no chicken will pick on other
chickens any more, and chickens will only be killed through a noise signal, which is
applied too loud. Then, if the number of killed chickens increases, the controller will
stop or will reduce interfering with noise, until the chickens start again their picking
activities.

This argumentation is true, but every control action could also correlate with costs
(e.g., chickens cannot eat food and cannot quickly grow until they are frightened) and
the application of any control actions should be minimised. The controller should
learn to achieve its goals with a minimum number of control actions. In situations,
which are not quantified as critical, no control actions should be applied. In critical
situations, the controller should interfere with an action that is best parametrised in
this special situation.

129

Chapter 6 Test Scenarios

Uniqueness of Quantitative Emergence

Always interfering with the best noise signal specially depends on the utilised metric
that characterise the emergent clustering behaviour. Even if quantitative emergence
has been used with respect to the fruitful research cooperation between the involved
project partners from Hannover and Karlsruhe, some critical remarks concerning
this design decision should be discussed.

1/5 3/5 1/5

1/5

)
() @)
O

1/5

Figure 6.21: Simplified chicken scenario

Quantitative emergence seems to be a very general approach to quantify emergent
behaviour, but this metric may not be the best answer to quantify clustering behaviour
in the case of the chicken scenario. As depicted in Figure 6.21, this critic is clarified
using an example, where the emergence indicators e, and e, are measured in a
simplified scenario of 5 chickens on a grid with 3 x 3 fields. The emergence values
are computed, as proposed in Section 4.1.5,

ey = €

_ 1.585—1.37
- 1.585
= 0.136.

By comparing the situations that are presented in Figure 6.21 and in Figure 6.22,
the conclusion is drawn that many different situations have a similar emergence
value of 0.136. An observed emergence value is not explicitly correlated with a
single situation. Quantitative emergence is not unique in its characterisation of

130

6.2 Chicken Simulation

self-organising behaviour. Moreover, it will be impossible to theoretically distinguish
critical and non critical situations, if the only use of quantitative emergence is aimed
as a metric on the observer’s side to observe clustering in the chicken scenario.

But in practice, quantitative emergence shows acceptable results, as it is shown in
Chapter 8. Many theoretical and possible situations do not occur during simulation,
since the chickens behave as they have been programmed for. Chickens are always
attracted by wounded chickens. This gravity/attraction leads to the effect that
chickens would never occupy widespread positions, as it is admitted in the theoretical
discussion before and shown in Figure 6.22. To conclude, the controller can trust the
emergence indicators. If an emergent behaviour is observed, the emergence values
have really identified a critical clustering situation.

Nevertheless to compare the fitness of quantitative emergence, another very simple
metric has been implemented, which strictly depends on the investigated scenario
and instead shows unique results of quantifying clustering. If a grid of 30 x 30 fields is
observed, this whole grid will be separated into nine equal smaller grids with 10 x 10
fields. The metric computes the density of chickens in each smaller grid and passes
the information about the grid with the highest density to the controller. Then, the
noise intervention takes place in the centroid of the chicken cluster that relies on
the most densely packed (smaller) grid. Experimental results are also presented in
Section 8.5.

OO @

QOO
Qo @
Qo @
@O0

QOO

Figure 6.22: Example with identical entropy and emergence values, respectively

0 010©®

() (d)

—~
&
~—
—~
=
~

Parallels and Differences to Organic Traffic Control

As mentioned above, organic traffic control is a more complicated instantiation of the
observer /controller architecture, as described in detail in [BMMST06]. It focusses
on an approach based on principles of self-organisation, where every junction of a
traffic network is controlled using the two-level learning architecture. Fast reaction to
changing traffic conditions is a vital prerequisite to reach good performance in such a
scenario. However, since the junction controllers should be kept as generic as possible,
they have to adapt to the environment they are placed in, i.e., they have to learn.

131

Chapter 6 Test Scenarios

The capability of learning always includes making mistakes, which is detrimental to
performance. To cope with this challenge, the necessary functionality of a junction
controller has been realised as an organic system, as depicted in Figure 6.23.

A

LCS

detector
information

Figure 6.23: An architectural overview of organic traffic control: Level 0 represents the traffic
node, levels 1 and 2 are organic control levels responsible for the selection and
generation of signal programmes, see [RPBT 06/

The SuOC in this traffic scenario consists of a signalled junction equipped with
detectors, traffic lights, and a parametrisable traffic light controller. This traffic
light controller can instantly act on small changes in the traffic situation by slightly
varying its phase timings within predefined boundaries and in a predefined way. Its
behaviour is defined by a set of parameters that have to be adapted, whenever the
traffic situation significantly changes. While the observer is responsible for analysing
the traffic situation, the controller decides, when and how to change the parameter

132

6.2 Chicken Simulation

set for the traffic light controller. Therefore, the controller maps traffic situations to
parameter sets and keeps track of how well each parameter set performs. Alternative
parameter sets are generated on level 2 of the controller using an evolutionary
algorithm and a simulation of the traffic network, adjusted to the traffic situation in
question. This way, trial-and-error search in the real traffic network can be avoided.

The task of the observer in this traffic scenario is to analyse the traffic situation
and generate macro level situation parameters. Generally, the collected data are
used to calculate the traffic flows (measured in vehicles per time unit) for all signal
groups installed at the junction.

As said before, the controller uses some kind of mapping to choose an appropriate
parameter set to configure the traffic light controller for each traffic situation presented
as input by the observer. To keep the problem manageable, the input space in terms
of different traffic situations has to be partitioned. Situations, which are sufficiently
similar to allow usage of the same parameter set, will be covered by the same mapping
entry. Since it is hard to anticipate all traffic situations that might occur at the
controlled junction and since it would need a tremendous effort of a traffic engineer
to develop good control strategies for all situations that can be imagined, the means
for generating mapping entries have to be provided by the controller. These tasks
combined are realised using a modified LCS on level 1.

Obviously, the mechanism used for the generation of knowledge is of crucial
importance. As it is not a viable approach to let a system learn using a real traffic
network as testbed, a modified classifier system similar to XCS is used, but with
its functionality divided between two components: A basic classifier system and a
separate component for rule discovery. This separate component utilises a model
of the real traffic network running on a simulator to search for optimal traffic light
controller parameter sets. Such a parameter set together with the encoded situation
forms a classifier that is then fed into the population of the LCS. Classifiers from
this population are applied by the LCS in the real network and their valuation is
further improved based on feedback from reality. Both components (basic LCS and
rule discovery) use the same objective function to update the value of a classifier or
to find the optimal parameter set, respectively. Evaluation criteria incorporated into
the objective function might be the average waiting time or the average number of
stops.

Since the explorative behaviour of the system is moved to an external component,
the task of the basic system is to find the best action among those available. This
will be simple, if classifiers exist that match the current input: The classifier is
chosen, whose prediction is best. If no classifier matches, a new matching one will
be generated. The proposed approach is to choose the classifier, whose condition is
closest to the current input, copy it, widen its condition just enough to match and
discount its value slightly. This way a quick response is possible (waiting for a new
solution to be generated using the simulator would take too long) and the probability
that the chosen action will show an acceptable behaviour is greater than randomly

133

Chapter 6 Test Scenarios

choosing an action. If this widening exceeds a certain threshold, the current situation
will simultaneously be passed to the rule discovery component so that, when a similar
situation is encountered again, a specifically optimised classifier is available.

Within the rule discovery component, an evolutionary algorithm is responsible for
producing new classifiers. It generates populations of traffic light controller parameter
sets and evaluates their applicability for the current situation using a simulation
model. The parameter sets are used to configure a simulated traffic light controller
that controls the simulated junction for a defined period of time. After a warm-up
period allowing the traffic to build up, a number of quality measures (like the average
waiting time or the average number of stops) are recorded. These results are used
by the evolutionary algorithm by means of the objective function to evaluate the
different parameter sets in the same way as action values are updated after execution
in real traffic. At the end of this process, a new classifier is created that maps the
simulated situation to the best parameter set found by the evolutionary algorithm.
The classifier’s value is initialised based on the simulation results.

By using a simulation model to generate new classifiers, not useful traffic light con-
troller parameter sets can be identified without negative consequences for the SuOC.
Furthermore, the employment of a simulation software allows the fast evaluation
of many parameter sets, which should result in an improved learning speed of the
architecture.

Comparing organic traffic control to the chicken scenario and having a focus on
the realisation of the two-levelled learning, organic traffic control is driven by the
motivation of defining a solution towards a real world application. Learning suitable
traffic light controllers cannot only be done on-line and with getting feedback from the
experience of testing new traffic light controllers in the real world. Thus, level 2 with
its simulation model and its evolutionary algorithm has a very important function in
this scenario. The simulation model serves as testbed to validate new traffic light
controllers and the evolutionary algorithm actively searches for new solutions testing
them by simulation. The XCS on level 1 is reduced in its functionality, since covering
and genetic operators have been moved to level 2.

Thus, it seems obvious that the chicken scenario only has a testbed character,
which allows for more degrees of freedom in the design and the technical realisation
of learning, respectively. The covering mechanism of the XCS (searching for new
actions) is here supported by level 2, but not fully removed from level 1 to level 2,
as done in organic traffic control. Furthermore, the impact of new noise signals is
completely learned on-line and just supported by level 2. In other words, simulating
new actions in a cloned simulation model on level 2 (which shows the same situation,
as observed in the main simulation) and counting the killed chickens after the action
has been applied, helps to initialise new classifiers that occur by covering on level 1.

However, as already discussed in Section 4.3, model-based planning as part of
organic traffic control’s level 2 is always limited by the necessary simplifications
made in the model or by incomplete model calibration due to the fact that the

134

6.3 Other Multi-Agent Scenarios

modelled environment changes continuously. Thus, the best action with respect
to the model is not necessarily also the best action with respect to the real world.
In the chicken scenario, level 1 and level 2 are designed and implemented as two
completely identical simulations (because the designer can freely decide and has full
control about everything), which seems to be an unrealistic constraint in real world
scenarios like organic traffic control.

6.3 Other Multi-Agent Scenarios

The main research, which has been done in this thesis, is based on results from
the presented chicken scenario. However, during this work, several instances of the
predator/prey scenario have been developed and investigated to validate special
research topics and to generalise the preliminary results achieved with the chicken
scenario. E.g., this has predominantly been done in the context of a diploma or
bachelor’s thesis. To give an overview of these even more technical scenarios, the
following section shortly summarises the achievements.

6.3.1 Lift Simulation

A more technical scenario is the emergent (clustering) behaviour of a group of lifts,
as depicted in Figure 6.24. Thus, lift group control has served as another testbed to
develop and evaluate the specified generic architecture for OC systems.

]
l

(i

R

N
N

000000
NN Y N YN
NN ¥ N ¥ %
TN N N NN
mmm?mm
MR
NN ¥ N ¥ %
NN N N NN

n

,\
]
—

]

Figure 6.24: Lifts synchronise, move up and down together, and show the emergent effect of
bunching

135

Chapter 6 Test Scenarios

Lift group control is a familiar problem to everyone, who has used a lift system
in high office buildings or skyscrapers. After pressing a button, the passengers
wait for a lift to arrive travelling in the right direction. Passengers may have to
wait a long time, if there are too many passengers or not enough lifts, which could
handle the needed capacity. How long passengers wait, depends on the dispatching
strategy, the lifts use to decide, where to go. For example, if passengers on several
floors have requested to be picked up, which should be served first? If there are no
requests to be picked up, how should the lifts distribute themselves to await the
next request? Lift dispatching is a good example of a stochastic optimal control
problem of economic importance that is too large to solve by classical techniques.
Its conceptual simplicity hides significant difficulties. Operating in continuous state
spaces, non-stationary behaviours of lifts and passengers, or changing passenger
arrival rates are just some indicators that should be mentioned. In the last decades,
lift group control has been studied as a well known example within different research
domains [BB05, CB98, HU97, MKKBBO06, Sii93, Sii97a, Sii97b, SSE03], but an
optimal and globally valid policy for group control is not known and depends on
many determining factors.

For a single lift in a building, a good heuristic is to follow the oldest known
principle of collective control [Bar03, HR05, Str67, Str98]: A cabin always stops at
the nearest hall call in its current running direction. A lift only changes its direction,
when there are no more requests to be satisfied in the current direction, and stops at
every floor with an issued request. However, if there are several lifts in a building, all
working with that simple rule, they will tend to synchronise in the sense that they
move up and down as a parallel wave, which is an undesired emergent behaviour and
known from literature as the so-called bunching effect. This bunching effect leads
to an increase in the average waiting time of the passengers and is quite inefficient
[Pic06]. Lifts, the participants of the bunching effect, could be substituted with one
huge single lift with a capacity equal to the sum of the individual synchronised cabins.
This super cabin looses the advantage of flexibility and the possibility to serve hall
calls on different floors at the same time. In summary, this technically motivated
example depicts emergent behaviour that can only be observed as a pattern over
time.

In the testbed implementation using the recursive porous agent simulation toolkit
(Repast 3) [INCV06, SM06|, a decentralised scenario has been assumed, where every
lift is responsible for its own behaviour. A lift does not know, what the other lifts
are doing. It just reacts to the hall calls, which are driven by passenger arrivals.
A lift moves up and down, while the remaining capacity is positive and passengers
have entered the cabin and follows a simple moving strategy like collective control.
The performance is evaluated with respect to the global average waiting time of
passengers. Different arrival patterns during the day need different strategies, but
initially investigations have been concentrated on inter-floor traffic. (Up-peak traffic
in the morning rush hour of a typical office building, where every lift is filled up in

136

6.3 Other Multi-Agent Scenarios

the lobby with passengers and stops at many different upper floors, or down-peak
traffic, which shows a reversed situation, many arrival floors and one destination, are
ignored.)

From the viewpoint of OC the bunching effect represents an interesting emergent
behaviour in a technical scenario. The SuOC operates with a larger degree of order,
but inefficiently, the average waiting time increases, and the system performance
decreases. A lift group, which uses collective control and does not have any interaction
between the cabins (e. g., the lifts could have information about the direction or the
position of the neighbouring lifts), produces bunching. In [Pic06], several dispatching
strategies for lifts have been compared by intensive simulations. The results of
this study indicate that different dispatching strategies have different effects on
the behaviour and the capability of the lift group. However, with an increasing
intensity of passengers, the chosen strategy is irrelevant and has no further impact
on the continuously increasing average waiting time. The studies demonstrate a
correlation between the capability of the lift group and bunching effects on the one
hand. Moreover, bunching and the average waiting time are directly related on the
other hand.

In [Rib07, RRS08|, the potential of applying concepts of OC are investigated to
control this group of self-organising lifts, showing a macroscopic behaviour that only
depends on local rules. Providing feedback and decision capabilities to this group of
lifts, it is shown that bunching can be observed and autonomously prevented with
respect to a global objective function. A metric is used, which is based on ideas of
[AS93, AS96, ASB92a, ASB9I2b, Pow95| to detect bunching effects. For controlling
the lifts, two simple methods have been implemented that modify the perception
of the environment and thus affect the local behaviour of the lifts. The basic idea
behind both implemented strategies is to accelerate delayed lifts. By passing a hall
call, a lift is accelerated. Thus, this lift saves time compared to the other lifts, since
the blinded lift will stop less frequently and finally speeds up. The experimental
results validate the idea of using the observer/controller architecture to modify the
environmental parameters of the SuOC without modifying the local rules of the lift
cabins directly. This led to significant improvements in the performance of the lift
group system.

Open issues in this scenario, which have not investigated yet, are learning and
prediction capabilities. First, endowing the controller with adaptation capabilities, as
designated in the generic architecture, the controller should be able to recognise and
react to different traffic patterns. The investigations have only focused on inter-floor
traffic, but it seems to be interesting whether bunching is the correct measurement
to characterise the effectiveness of the group behaviour during up-peak or down-peak
phases (this may require an extended observation model). Second, [Rib07] has done
investigations of integrating a prediction module into the observer that computes
the bunching value with respect to history data. Better performance of observer and
controller functionalities are expected, but this could not be verified so far.

137

Chapter 6 Test Scenarios

Referring to Section 6.1.2, the lift simulation can also be viewed as a cooperative,
homogeneous, and (non-) communicating® agent scenario. Comparing it with the
predator/prey example, the lifts can be seen as predators, which chase the travelling
passengers from their arrival floor to their destination. This analogy may be am-
biguous, but the generality of the predator/prey domain is demonstrated one more
time.

6.3.2 Cleaning Robots

Based on the experiences with LCSs in the chicken scenario [RMO08, RPS08| and
presented in detail in Chapter 8, the power of other machine learning techniques has
been investigated in another homogeneous and (indirectly) communicating multi-
agent scenario in [Pat08]. A group of learning and self-organising cleaning robots
follow a local strategy to search in their local neighbourhood for dirty places, clean
these places, and evolve a better cooperative group behaviour over time. As machine
learning technique evolutionary modified artificial neural networks are investigated,
which are similar to the research project NERO* by the University of Texas at
Austin.

As explained in Section 6.1.6, the cleaning robots perform a cooperative concurrent
learning task. A group of cleaning robots searches in parallel for new cleaning
strategies. Every agent has its own learning process to modify its behaviour and
the environment, respectively. Following the common global goal of maximising the
cleaning performance the robots indirectly communicate with each other by placing
pheromones® on fields of the two-dimensional grid, where they have performed
their cleaning task before. Since the group of learning agents make the scenario
dynamic, the already mentioned Markov property is violated. Concurrent robots
adapt their behaviour depending on other adapting robots, but they have no control
on this process of coadaptation. Even the robots’ own adaptation to the dynamically
changing environment can change the environment itself. This makes learning
complex in this scenario and results have shown that the investigated machine
learning technique is not able to satisfactorily cope with the dynamics of the cleaning
scenario. In ongoing work [Fri09], the results of the evolutionary modified artificial
neural networks algorithm are compared with an approach based on LCSs.

3Collective control is a non-communicating strategy. However in [Pic06], other dispatching
strategies have been investigated, which are based on simple communication patterns between
the lifts. Lifts change status reports between neighbouring lifts, which contain information
about travelling directions, next lift calls, etc.

‘http://www.nerogame.org

5Communication through stigmergy has shortly been summarised in Section 3.1.1.

138

6.4 Summary

6.3.3 Multi-Rover Scenario

A similar approach of concurrent learners has been investigated in [Lod09], where the
credit assignment problem (How to divide team reward among the individuals?) is
specially addressed. Moreover, the investigated approach is focussed on the dynamics
of learning (How to cope with the problem of coadaptation?) in a multi-rover
scenario as an instance of the homogeneous and (non-) communicating predator/prey
example.

Following the global task to observe one or up to n (randomly) moving targets
(preys), a number of rovers (predators) has to achieve a common goal with local
and distributed behaviour, e. g., maximising the global observation time or catching
moving target(s). The scenario shows technical relevance to OC scenarios and it
seems to be very flexible in its parameterisation, as explained in Section 6.1.1.

Thus, the challenge of concurrent learning agents is addressed in [Lod09|, where
all agents are equipped with a single XCS. It has been ascertained that neither the
single-step nor the multi-step approach of XCS, see Section 5.3.2, could be used to
learn this dynamic observation task. Thus, a promising modified XCS approach has
been investigated to overcome the drawbacks of the classical XCS algorithm. The
proposed idea is mainly based on a local cooperative reward function and some kind
of temporary memory, which stores past actions sets. Thus, local payoffs can be
delayed and the reward function reflects in a better way the local agent behaviour.
Cooperation (incorporated in the reward function) is more or less achieved through
rejection and attraction. Predators reject each other, the prey attracts the predators.
Thus, agents try to uniformly distribute on the grid and observation time of the prey
seems to be maximised.

6.4 Summary

This chapter has presented an overview of multi-agent test scenarios, which have
been investigated from a learning perspective. In Section 6.1 the field of multi-agent
systems has been introduced as a series of four increasingly complex and powerful cat-
egories. The simplest systems are those with homogeneous and non-communicating
agents. The second category involves heterogeneous and non-communicating agents.
The third deals with homogeneous and communicating agents. Finally, the general
multi-agent systems involve communicating agents with any degree of heterogeneity.
The aspect of cooperation vs. competition has been added as a third axis of organi-
sation of multi-agent research in Section 6.1.6. To summarise, multi-agent scenarios
are an active field with many open issues that have shown their usefulness as OC
test scenarios validating the generic observer /controller architecture.

A nature-inspired chicken scenario has been presented in Section 6.2. This scenario
serves as dominant testbed to investigate the learning approaches in the following

139

Chapter 6 Test Scenarios

chapters. To generalise the achievements made within the chicken scenario and to
focus on special topics, other investigated multi-agent scenarios (i. e., lift simulation,
cleaning robots, or multi-rover scenario) have been summarised in Section 6.3. The
parallels between the different scenarios and the generic predator/prey example have
always been mentioned.

140

Chapter

Experimental Design

As stated in Section 6.2, an observer/controller architecture has been developed on
top of a chicken simulation to evaluate the concepts and methods, as described in
Chapter 4. In order to demonstrate that these components fulfil their intended task
and to examine the impact of the observer/controller architecture experimental tests
have been performed. A special focus has been set on different learning approaches
using LCSs. Within this chapter, general design decisions concerning the experiments
are outlined. The actual analysis of the results is given in Chapter 8. Overall design
guidelines are presented in Section 7.1. General thoughts in designing the experiments
like defining the exact aim of the experiments are presented in Section 7.2. Finally,
the used experimental design is introduced in Section 7.3.

7.1 Design Guidelines

In order to avoid that a whole experiment becomes meaningless before performing
experimental studies, special attention has to be drawn to planning and developing
an experimental design. The presented work follows the guidelines given by [Mon05].

1. Recognition and statement of the problems
2. Selection of the response variables

3. Choice of factors, levels, and ranges

4. Choice of experimental designs

5. Performing the experiments

6. Statistical analysis of the data

7. Conclusions and recommendations

Chapter 7 Experimental Design

However, this thesis will not go into the details of experimental design, but will
shortly outline the approach and some essential underlying concepts. The tasks (1),
(2), and (3) are performed in Section 7.2. Task (4) is described in Section 7.3. And
tasks (5), (6), and (7) are covered in Chapter 8.

7.2 Pre-Experimental Planning

The first step is to define the objectives for the experiments. As mentioned before,
the concepts and methods of the proposed observer/controller architecture should
be evaluated in the context of the nature-inspired chicken scenario: Can the total
number of killed chickens be decreased leading to an increase of the global system
performance?

The component exerting influence on the system behaviour, and hence producing
measurable effects, is the controller. Therefore, tests will be performed, if the
controller does actually alleviate clustering within the chicken population, and will
thus reduce the total number of killed chickens. While doing this, the influence of
the controller will be examined as well as selected system parameters, as for example
the choice of different duration and intensity parameters of the noise signal. In
addition, the correlation of the number of killed chickens and the number of triggered
actions/interventions is checked, which might be an indicator of the quality of the
reward function and the learning performance of the XCS. Thus, the goals of the
implemented experiments can be summarised, as explained in the following.

1. Gain insights of the influence of the controller on system performance

2. Gain insights of the influence of system parameters on system performance
3. Gain insights of different learning approaches on system performance

4. Gain insights of different metrics on system performance

5. Check the correlation between clustering and total number of killed chickens

7.2.1 Selection of the Response Variables

The second step is to define response variables, i.e., variables that provide information
about the process under study. The goals (1) to (4) deal with the influence on system
performance, which is measured in terms of the number of killed chickens #kc
or the number of control interventions needed to control the clustering behaviour.
An optimal system performance is equal to a minimum number of killed chickens,
or a minimum of control interventions decreasing the number of killed chickens,
respectively. Therefore, varying parameters, which influence the whole system
performance, will also change the number of killed chickens. In other words, the

142

7.2 Pre-Experimental Planning

number of killed chickens is a measure of the effects of parameter variations on the
system performance. Additionally, changing parameters in a way that the number of
killed chickens is affected, the clustering behaviour will also change, if the correlation
assumption does hold. As stated before, it is considered that clustering is the main
effect degrading the system performance in the present simulation and thus assumes
the existence of this correlation. To verify goal (5), a regression model may be
performed, which shows that the number of killed chickens corresponds to clustering.
Such a calculation is explicitly not presented in this thesis, but Figures 6.9, 6.10,
6.11, 6.15, 6.16, and 6.17 admit that these two values are correlated — the death rate
depends on the emergence values, which serves as indicator of clustering. However,
it should be mentioned that the noise signal also has a negative effect on the chicken
death rate.

7.2.2 Choice of Factors, Levels, and Ranges

The third step is to consider the factors, which may influence the performance of the
system. These are nuisance factors and potential design factors, which split up into
design factors, held constant factors, and allowed to vary factors, see [Mon05].

Factors

In the chicken scenario, the nuisance factor only present in the system is the random
seed for the random numbers generator. This value is responsible for the starting
positions of the chickens and is used within the XCS, as outlined in [But00, BW02].
Design factors are factors, which are actually selected for study in the experiment.
I. e., the influence of these design factors on the system should be examined. Held
constant factors are factors, which are not varied within the experiment. Additionally,
they may exert some influence on the system performance. However, for the purpose
of the experiment they are not of interest.

Moreover, held constant factors could be allowed to vary factors. These factors are
mostly very difficult to vary and have only negligible effects on the system. If those
factors exist, they will often be balanced out by repeatedly performed experiments.
However, these factors may particularly exist in the case of an adaptive controller
using an XCS, see the work done in [BW00, BW02|, where all parameters are listed,
which are used to control the learning process. A (simplified) list of factors affecting
the system is investigated in the following and depicted in Figure 7.1.

As stated before, not all of those factors are varied, since not all of them will affect
the system in such a manner that justifies the necessary effort. Held constant factors
are the chicken number, the number and the starting place of feeding troughs, width
and height of the grid, most parameters of the XCS (without the maximal number
of classifiers), and some other factors, which are also mentioned in Table 6.1.

143

Chapter 7 Experimental Design

(]
]
>
=
=
S
o
=

controller on/off
\

controller type
\

thresholds of critical emergence values

\
lower and upper boundaries of duration and intensity

\

XCS parameters
\

type of reward function

N

7 7 |

grid siz/e (maxX, maxy) typ of metric
/
rar/1dom seed prediction on/off
number of chickens
/

number of feeding troughs

--Y__
H*
=~
o

Figure 7.1: Simplified cause and effect diagram of the chicken simulation

All remaining factors will be varied. However, there are some peculiarities. The
initial seed of the random numbers generator is considered as a nuisance factor that
has to be averaged out by replication, i.e., by repeated runs of the experiment under
the same conditions. If it is explicit unless otherwise noted, all runs will be preformed
with 20 different seed values to sufficiently gain low variances and standard errors.

The selected covering mechanism, the maximal number of classifiers in a population,
the reward function, and the observer type are normally held constant at all. However,
some experiments are performed to investigate the effect of varying theses parameters,
see Section 8.2. Therefore, these parameters are considered as design factors.

Among other parameters there are some dependencies that one has to be aware
of. On the one hand, the type of the chosen reward function, the predefined XCS
parameters, lower and upper boundaries of duration and intensity, and the thresholds
of critical emergence values depend on the chosen controller type. Moreover, the
controller type depends on the parameter, which activates and deactivates the
controller. On the other hand, the variable, which turns the predictor on or off, is
not explicitly considered for analysis. The effects of prediction are not investigated.

144

7.3 Choice of Experimental Designs

Levels and Ranges

At last, the levels and ranges of the design parameters have to be chosen. The
parameter, to turn the controller on and off, takes two discrete values. The same
is applied to the type of the chosen metric on the observer’s side. Quantitative
emergence is normally used, but a second metric has been developed, as outlined in
Section 6.2.5. The parameter, which corresponds to the controller types, can take
four different values. It distinguishes the so-called single fixed rules controller and
the three different adaptive controllers, as explained in Section 6.2.4.

Depending on the controller type the thresholds of critical emergence values, lower
and upper boundaries of duration and intensity, an the XCS parameters have to be
set. The three critical emergence thresholds ,,%,,%, are limited to values from 0.0
to 1.0, since the relative emergence values have been defined as e, e,, e, € [0.0, 1.0},
see Section 4.1.5. The values of duration and intensity are normally taken from
predefined sets, as explained in Section 6.2.4. Furthermore, XCS parameters are
generally not varied. Experiments have been implemented using initialisation values,
as proposed by the XCS reference implementation [But00|. The parameter, which
controls the covering mechanism, allows different modes. If the XCS uses full covering,
this parameter will be set to the possible number of control actions in the scenario.
Moreover, a minimal covering mechanism or covering using level 2 learning is possible.

The maximal number of classifiers in a population has been varied to investigate
its effect on the learning process having small and huge populations. The maximal
number of classifiers should be chosen in relation to the dimension of the searched
condition-action-mapping. It also depends on the predefined values of lower and
upper boundaries of possible duration and intensity values. These dependencies are
investigated in detail in Section 8.2.

As shown in Section 8.2.4, some investigations of learning have been done with
different reward functions to evaluate the influence of varying this function. However,
similar to the parameter, which controls the chosen type of metric, the reward
function is defined as a design factor, but most experiments have been taken with
the same reward function.

7.3 Choice of Experimental Designs

The choice of the experimental design depends on the initial situation and on the
desired goals of the experiment. No previous knowledge existed to anticipate the
influence of the parameters on the system. Furthermore, this observer/controller
architecture has been built from scratch.

In fact, the effects of parameters on the outcome and the dependencies among
the parameters should be discovered: How much does the response variable (the
number of killed chickens) change, when each factor is varied, and does it make any

145

Chapter 7 Experimental Design

difference to vary factors simultaneously instead of one at a time. In literature, this
request is called parameter screening and forms the basis for further investigations,
see [Mon05|. Under the given constraints, the usage of a factorial experimental design
is suggested, which is a very efficient approach to investigate the parameter influence
with respect to parameter interactions. This is not considered in detail here and
interested readers are referred to the viable introduction given in [Mon05|, where
some other experimental designs are presented. Based on results taken from factorial
design steps, further studies have been performed depending on the outcome of
parameter screenings.

At factorial design, all possible subsets of the design parameters are varied with the
other parameters held constant. Since parameters are varied together, interactions of
the parameters can be revealed. Within experiments aiming at parameter screening,
it is general practice to perform so-called 2% factorial experiments to keep the
experimental effort within certain bounds. Within such an experiment, each of k
parameters are tested at two levels. These levels are most apparent at a relatively
high and a relatively low value of a parameter and can be quantitative as well as
qualitative (for example a functionality is turned on or off). Therefore, such a design
only requires 2 X 2 x - - - x 2 = 2% observations. It is the most efficient way to analyse
both, the influence of single parameters as well as their interactions on a given
parameter set. Analysis of only two levels for each factor requires an approximately
linear response over the range of the chosen factor levels.

The assumption for every factor needs to be verified in preliminary examinations
utilising several factor levels. The chosen levels for the factors are obtained by prior
investigations. The levels are chosen in a manner that they produce a significantly
different response in one factor at a time experiments. Performing such experiments
one factor is varied apart from the others in every run of the experiment and no
insights of parameter interactions can be attained.

Since the analysis of such a highly parametrisable scenario can never be complete
and it has been a tremendous effort to perform all preliminary factorial experiments,
the (theoretical) discussion about the choice of experimental design stops here. Some
selected results are presented in the following chapter.

146

—

Chapter

Results

An inventor is a man, who asks why of the universe and lets nothing
stand between the answer and his mind. (Ayn Rand)

Based on the general thoughts given at the end of Chapter 7, several experiments
have been performed. At the beginning extensive preliminary investigations have
been carried out to find reasonable levels for the parameters. These investigations
are not presented in detail and the results are only mentioned. Some preliminary
experiments can be found in Section 8.1. Subsequently, several experiments have been
carried out to gain further insights based on those preliminary observations. These
are described in Section 8.2. Finally, the investigations are examined that have been
taken to speed up the learning process. Section 8.3 describes the experiments, which
are based on parallelism and decomposing a learning problem into sub-problems.
Section 8.4 summarises the results, which have been achieved by combining on-line
learning and off-line planning capabilities. Furthermore, all experiments are based
on using quantitative emergence. To show the influence on the number of killed
chickens reflecting another metric, a comparison between quantitative emergence and
a metric, which simply measures the density of the chickens based on assumptions
made in this scenario, is presented in Section 8.5.

8.1 Preliminary Experiments

Several preliminary experiments have been performed. To get a feeling of the
implemented multi-agent scenario, results without control interventions are presented
in Section 8.1.1. Section 8.1.2 describes preliminary experiments, which investigate
the clustering behaviour, when the chickens are controlled with static noise signals.

Chapter 8 Results

8.1.1 Chicken Simulation without Control

As shown in Table 8.1, without controlling the global chicken behaviour approximately
336 chickens are killed during a simulation with 10000 ticks. Simulations are done
up to 1000000 ticks. The number of killed chickens ##kc linearly increases. Thus,
approximately 32.65 chickens are killed per 1000 ticks. This average is used as
benchmark to evaluate the different approaches in controlling the chickens in the
following.

Table 8.1: Chicken simulation without control

| Ticks [1000 ... [10000 | ... | 100000 | ... [750000 [1000000 |
Average #kc 31 | ... 336 | ... | 3323 |... | 24506 32692
Per 1000 ticks || 31.00 | ... | 33.60 | ... | 33.23 |... | 3267 | 32.69

8.1.2 Parameter Studies Using Single Fixed Rules Controller

Applying a static noise signal with fixed intensity and fixed duration around the
computed cluster centroid to frighten the chickens and disperse the cluster works
well and decreases the number of killed chickens ##kc, see [MRBT07] or Section 6.2.4.

Essentially, the number of killed chickens is a function that depends on the mapping
of a situation to an action, where a situation is described by three (critical) emergence
values. Moreover, an action is characterised by the noise signal, which is divided into
duration and intensity. The fitness landscape is depicted in Figure 8.1.

However, a static control loop, as introduced in Figure 6.14, does not satisfy the
idea of adaptation in changing environments, but investigations with the fixed single
rules controller will help to search the search space step by step to find an existing
global minimum — if any global minimum does exist. Since the fitness landscape
is completely unknown, these investigations are helpful as preliminary results to
understand the multi-agent behaviour and the dependencies of the programmed
logics. Furthermore, the results can be used to benchmark the adaptive controllers.

Different simulation runs have been performed by varying the characterisation of
a critical situation (the if-part of a rule) and the corresponding action. The if-part
of a rule is characterised by a boolean combination (i.e., AND, OR, XOR, etc.)
of three conditions, where each condition is related to one of the three emergence
values e, e, , e, € [0.0,1.0]. To reduce the computing time resulting from this
immense search space, it is assumed that the best possible if-part would have the
form ((e, > t;) AND (e, > t,)) OR (e, > t5) with t = (t,,t,,ts) being the
critical emergence thresholds. The two conditions, which are related to the x- and
y-coordinates, are connected using an AN D-operator, since the x- and y-emergence
values are correlated due to the topology of the simulation. If a cluster emerges, the

148

8.1 Preliminary Experiments

number of killed chickens

Figure 8.1: Fitness landscape of the chicken simulation depends on three thresholds of critical
emergence values and two parameters of a noise signal

z- and y-emergence values will jointly increase. The condition, which reflects the
aggregated heading, is assumed as a separate condition.

Furthermore, it is supposed that ¢, = 0.3 is a reasonable threshold for the critical
heading emergence, see [MMS06]|. To simplify the investigations for presentation, the
real-valued search space is searched step by step in discrete distances. The other two
threshold values t, and t, are restricted to values as shown in Table 8.2. Moreover, it
should be mentioned that other different boolean combinations of these three critical
emergence values are possible, but they have not been investigated here.

Each line of Table 8.2 corresponds to a parameter set of a group of 36 tests,
which should be read as follows: Taking the first line in the table, it corresponds
to tests with fixed single rules controllers with a noise signal (d,i) = (5,4), which
will act, if the critical emergence values match the observed situation with the
constraint ((e, > t,) AND (e, > 0.1)) OR (e, > 0.3) varying t,, € {0.1,...,0.6} and
i € {0,10,20,...,50}.

In total, 648 parameter combinations (#t, X #t, X #tp X #dX#i = 6xX6x1x3x6 =
648) were tested. These parameter combinations have been varied, each combination
has been simulated for 10000 ticks with 20 different seed values (to get a statistically
valid result), and the average number of killed chickens #kc has been computed for

149

Chapter 8 Results

Table 8.2: Combinations of fized single rules controller parameters

ty |ty | tn |
0.1,02,...,06]0.1]0.3
0.1,0.2,...,0.6[0.2]0.3
0.1,0.2,...,0.6 | 0.3]0.3
0.1,02,...,0.6 |04 0.3
0.1,02,...,0.6|0.5/0.3
0.1,02,...,06|06|03]| 5
0.1,02,...,0.6[0.1]0.3]10
0.1,0.2,...,0.6 0203110
0.1,0.2,...,0.60.3]0.3]10
0.1,0.2,...,0.6 |04]0.3]10
0.1,02,...,0.6 (050310
0.1,02,...,0.6|0.6|0.3] 10
0.1,02,...,06[01]03]15
0.1,02,...,0.6(02|03]15
0.1,02,...,0.6 (03|03 15
0.1,0.2,...,0.6 040315
0.1,0.2,...,06 | 05]0.3]15
0.1,02,...,0.6 (06|03 15

‘ 1 H Figure ‘
10, 20, ..., 50 || 8.2(a)
10, 20, ..., 50 || 8.3(a
10, 20, ..., 50 | 8.4(a
10, 20, ..., 50 | 8.5(a
10, 20, ..., 50 | 8.6(a
10, 20, ..., 50 || 8.7(a
10, 20, ..., 50 || 8.2(
10, 20, ..., 50 || 8.3(
10, 20, ..., 50 || 8.4(
10, 20, ..., 50 || 8.5(
(
(
(
(
(
(
(
(

Tt Ot Ot Ot Ot

10, 20, ..., 50 || 8.6
10, 20, ..., 50 || 8.7
10, 20, ..., 50 || 8.2
10, 20, ..., 50 || 8.3
10, 20, ..., 50 || 8.4
10, 20, ..., 50 | 8.5(c
10, 20, ..., 50 | 8.6(c
10, 20, ..., 50 | 8.7(c

=leleleleaellelelealelalleeiieieipeiie

each parameter combination. An excerpt of these experiments is shown in Figures 8.2,
8.3, 8.4, 8.5, 8.6, and 8.7. Every figure corresponds to one line of Table 8.2. E.g., the
group of 36 experiments, denoted in line 2, corresponds to the values of Figure 8.3(a).
The absolute values of killed chickens, as shown in Figure 8.3(a), are also given in
Table 8.3.

In other words, Figures 8.2, 8.3, 8.4, 8.5, 8.6, and 8.7 provide a special (but limited)
view on the whole search space. To find a global optimum of these fixed single rules
controllers, every figure has to be searched for a minimum. The minimum of all
numbers of killed chickens indicates the best found parameter combination.

Alternatively, ranking the results of the reduced and simplified search space from
the best to the lowest average number of killed chickens #kc shows that the best
solution (approximately 91 killed chickens) is found for one specific mapping of
critical thresholds t,,t,, ¢, and corresponding values of duration d and intensity 7.
Finally, this ranking is shown in Table 8.4 (only an extract of the results is presented
here). The best found single fixed rules controller corresponds to the rule: If the
condition ((e; > 0.2) AND (e, > 0.2)) OR (e, > 0.3) is true, then the controller will
intervene with noise having the parameters d = 5 and ¢ = 50.

In the following sections, this single fixed rules controller is used to evaluate the
quality of the learning process of the investigated adaptive controllers. Furthermore,

150

8.1 Preliminary Experiments

Figure 8.2: Chicken simulation with single fized rules controller, t, = 0.1, t), = 0.3, @i €
{0,10,20,...,50}, and t, € {0.1,0.2,...,0.6}

(a) d=5 (b) d =10 (¢) d =15

Figure 8.3: Chicken simulation with single fized rules controller, t, = 0.2, t,, = 0.3, i €
{0,10,20,...,50}, and t, € {0.1,0.2,...,0.6}

(a) d=5 (b) d =10 (c) d=15

Figure 8.4: Chicken simulation with single fized rules controller, t, = 0.3, t), = 0.3, @ €
{0,10,20,...,50}, and t, € {0.1,0.2,...,0.6}

151

Chapter 8 Results

o
B

2
]

iy

SN

44444444

(¢c) d=15

(b) d =10

04, t, = 03, i €

Figure 8.5: Chicken simulation with single fized rules controller, t,

0.6}

.50}, and t, € {0.1,0.2, ...,

.10, 20, ..

{0

(c) d=15

(b) d = 10

0.5, t, = 0.3, i €

Figure 8.6: Chicken simulation with single fized rules controller, t,

0.6}

.,50}, and t, € {0.1,0.2,...,

.10, 20, ..

{0

w
e
)
(en]

0 I

—

[<
= £

Nej
—~ Q
(&) (e]

S~—

I
b=
+~
-
8]
L
S
~
-~
s
S
NS
~
3 ©
= O

o m.a

— .
=N .

I S

hS s 5

— -

0 xS~

@ W
5
33
N
S 3
S -
~
=)
MFO
£
@
o

0 MQa
I S=

hS < o

~— 02

= Q
=~
'Y

8]

~

S
B
Ry

152

8.1 Preliminary Experiments

Table 8.3: Results of the fized single rule controller experiments over 10 000 ticks with the parameter
combination d =5, t, = 0.2, and t, = 0.3

7

0 [10 | 20 [30 [40 [50

0.1 [336.00 | 265.65 | 179.30 | 173.35 | 108.40 | 113.80
0.2 | 336.00 | 263.65 | 176.65 | 168.70 | 116.65 | 91.00
0.3 | 336.00 | 266.60 | 169.30 | 228.90 | 240.20 | 214.95
0.4 | 336.00 | 299.45 | 223.25 | 315.80 | 332.95 | 311.50
0.5 | 336.00 | 309.90 | 240.95 | 353.80 | 351.85 | 340.75
0.6 | 336.00 | 309.90 | 240.95 | 346.30 | 355.35 | 351.30

ta

it concretises the challenge an XCS has to learn. This single fixed rules controller
will help to evaluate, if an XCS is able to find (at least) similar solutions within
the same simulation time (10000 ticks) or if other (better) values are found. Not
all possible values of t,,t,,t, and combinations of these three critical emergence
thresholds (i.e., AND, OR, XOR, etc.) have been investigated, when the real-valued
search space is searched step by step in discrete distances. The best found single
fixed rules controller provides an optimum in the case of the investigated parameter
studies, but it does not claim to be the best solution of this chicken scenario.

Table 8.4: Results of the single fized rules experiments over 10000 ticks sorted for the average
#kc

] tos by, th \ d,i \ Average #kc \ Standard deviation \ Standard error ‘

0.2,0.2, 0.3 | 5, 50 91.00 11.03 2.47
0.1,02,03 5,40 | 108.40 10.52 2.35
0.1,02, 035,50 113.80 15.01 3.36
0.2,0.1,03]5,40 | 115.65 15.60 3.49
0.2,02,03]5 40| 116.65 11.83 2.65
0.1,0.1,03 5,40 | 119.05 12.29 2.75
0.2,0.1,03 |5 50| 138.20 11.89 2.66
0.2,03,03 |5, 20| 166.40 0.99 0.22
02,02, 035, 30| 168.70 9.10 2.03
0.3,02,03]5,20| 169.30 121 0.94

To summarise, these parameter studies provide an overview of the programmed
simulation. They produce experience about the behaviour of the chicken simulation
at all and give answers to questions like: How do the chickens react to a special noise
signal? Which is a good combination of critical emergence values and corresponding
noise parameters that shows a minimal number of killed chickens? Which are the

153

Chapter 8 Results

critical parameters with the highest impact on the results? With respect to the
constraint of searching the real-valued search space in discrete distances, these
parameter studies find an optimal solution. However, this found single fixed rules
controller will not stringently be an optimal solution, as shown in Section 8.2.6. The
single fixed rules controller similarly acts as an LCS, which only uses one single
classifier matching all possible situations and intervening with one specific noise
signal. But, using different classifiers with respect to different situations and noise
signals will obtain a better control strategy.

Furthermore, the experiments argue for the general need of adaptive and continu-
ously learning approaches. OC systems are faced with real world problems, which
continuously act in dynamically changing environments, where time is a crucial factor
and no time exists to perform a priori time consuming parameter studies. Decisions
have to be taken on-line — as soon as possible, as optimal as possible. Thus, learning
is a major capability of OC systems, which is specially focussed on in the following
sections.

8.2 Learning to Control

Parameter studies using fixed single rules controller have been presented in the last
section. Fixed control has been defined such that in predefined critical emergent
situations the chickens are always frightened with a fixed noise signal. This noise
signal is static, duration and intensity are predefined, before the simulation is started.
For each parameter combination a set of simulations has been performed and the
average number of killed chickens #kc has been computed for each combination. The
goal of these studies has been to search the search space step by step for a possibly
existent global optimum. The results are used to compare the quality of the XCS
investigations.

In this section, on-line learning is investigated using an XCS: As shown in Chapter 5,
the idea of XCS fits well to the organic observer/controller architecture. The
XCSJaval.0 reference implementation [But00] is adopted to the chicken scenario,
as described in Section 6.2. An XCS should learn to minimise the chicken death
rate. Thus, the following investigations focus on level 1 of the two-level learning
architecture. The full two-level approach, as mentioned in Section 4.3, is a possible
combination of searching on-line the condition-action-mapping by using off-line
generated knowledge. It is investigated in Section 8.4.

In general, learning the best action for changing situations in the context of the
chicken scenario means the following: At every simulation tick the global behaviour
of the 40 agents characterised by three emergence values, e, for the x-coordinates,
e, for the y-coordinates, and ej;, for the heading of all chicken, is evaluated. Based
on this system fingerprint, an XCS will be used to learn, if and which noise signal
(in terms of duration d and intensity i) is applied to the chicken cage.

154

8.2 Learning to Control

’ € ey e ‘ d 1 ‘ P e F ‘
(44, 54) (30, 40) (58,68) | 07 10|40 4.80 0.34
(44, 54) (30, 40) (58,68) | 08 00|40 7.50 0.17
(25, 35) (48,58) (10,20) | 09 10|40 15.00 0.25
(28, 38) (37,47) (89,99) | 05 00|40 10.00 0.15
(28,38) (28,38) (77,87) |05 00|40 197 0.70
(28, 38) (28,38) (77,87) |05 20|40 3.07 0.79
(28, 38) (28,38) (77,87) |07 20|40 3.07 0.20
(28, 38) (28,38) (77,87) |08 20|40 15.00 0.17
(44, 54) (06, 16) (31, 41) | 08 00 | 40 15.00 0.17
(09, 19) (44, 54) (09,19) |08 00|40 3.07 0.17

Figure 8.8: Excerpt of a typical XCS’s population

The XCS reference implementation works with binary encoded classifiers. This
encoding has been changed to work with real-valued and accordingly integer-valued
condition values. The three emergence values coming from the observer are real-
values limited to [0.0,1.0]. Each emergence value is mapped to an encoded interval
using lower and upper boundaries. Thus, a classifier’s condition consists of six values,
where the first two values characterise the interval for the e,-emergence value, the
third and fourth value match the e,-value, and the fifth and sixth value cover the
ep-value. In a first implementation the six condition values have been implemented
and stored as double-coded values. To simplify the XCS’ internal structure (i.e.,
functionalities as subsumption, etc.) this encoding has been changed. Now, the six
condition values are integer values limited to [0,99]. Thus, each emergence value
is multiplied with hundred and all decimal places are deleted. Figure 8.8 shows a
typical excerpt from a population. Moreover, the encoded action consists of two
integer-encoded parameters, duration and intensity, respectively.

Controlling the chicken scenario has been implemented as a single-step learning
problem, since the scenario allows for an immediate reward calculation. The XCS
does not have to wait, until the impact of the action becomes visible or a special
event is reached. If a chicken is killed, the chosen action will be punished. If no
chicken is killed, the chosen action will positively be rewarded, respectively, because
the selected noise signal has correctly been applied to the observed situation.

Thus, two implementations of a single-step learning cycle have been investigated,
which correspond to the two adaptive controllers, as introduced in Figures 6.18
and 6.19. To adopt the single-step XCS implementation, two main questions must
be addressed: What is learned and how is the reward computed and subsequently
distributed among the involved classifiers?

In Figure 8.9 a learning cycle is depicted, which works without predefining critical
thresholds. I.e., this XCS autonomously learns classifiers for all possible situations.

155

Chapter 8 Results

A

A
v
v

A 4

|

o o S— f—

(dyi) (dsiia) (djy3/ijs3)
t, t, ot ty t, t; t,
reward, reward,,; reward,,, reward;,;

Figure 8.9: Learning condition-action-mappings for all situations

Therefore, this XCS has to learn whether noise is applied or the situation is not
characterised as critical and thus, no noise should be applied. As introduced in
Section 6.2.4, this decision is encoded into the noise parameter intensity. Actions
with an intensity value of zero are defined as special control actions of making no
noise. All other values define different noise signals.

Furthermore, if no other action is active, a new XCS learning cycle will be triggered
and a new action will be applied. No pauses between two following actions exist.
Additionally, when a new action is applied, an old action is evaluated. E.g., as
depicted in Figure 8.9, at time ¢, the reward; is computed to evaluate the action
A; = (dj,i;). Moreover, a decision is made, which action A;;; is applied until
t. is reached. The impact of possible payoff functions on learning is discussed in
Section 8.2.4.

In Figure 8.10 another approach is depicted, which only learns condition-action-
mappings in the case of situations that have been predefined as critical. Thus,
the designer has to define a rule consisting of critical thresholds for all emergence
indicators. The designer can use a priori knowledge of the learning problem to delegate
the XCS to a reduced search space, which only contains critical situations. If this rule
is satisfied, the XCS learning cycle will be triggered to search in its population for
those classifiers, which match the current situation. The best classifiers are selected
according to the XCS algorithm and the best action is applied. If the rule is not
satisfied, no learning cycle will be started.

As depicted in Figure 8.10, a special reward function — to compute the classifier’s
fitness — is defined, which measures the time At = t; — (¢, + d;) between two sequent

156

8.2 Learning to Control

((e,>=1t,) AND (e, >=t,)) ((e,>=1t,) AND (e, >=1t))
OR (e, >=1t,) OR (e, >=1t,)

T T
. Ta "

I IA a

I

| |

(dj+1lij+1)

At=ty—(t, +d

| : 't
| |

| |

I (di) I

| |

t

ty

a

reward = At — #kc x discount factor

Figure 8.10: Learning condition-action-mappings for critical situations only

actions A; = (d;,4;) and A1 = (dj41,%j41). This period of time will be used to
evaluate, if the mapping of situation S; = (e, ei, efl) and action A; has successfully
been applied. Additionally, the number of killed chickens #kc is observed, which
counts chickens that have been killed during and after an action A, takes place
and before the next action A;;; occurs (which again will depend on the decision, if
predefined critical situations are satisfied or not). This number of killed chickens
#kc discounts the period of time with At — #kC x discount factor'. Therefore, the
XCS maximises the period of time and minimises the number of killed chickens at
the same time. Results of this XCS, which only learns actions for critical situations,

are presented in Section 8.2.7.

8.2.1 Effect of Varying the Search Space

First investigations with an XCS, which learns condition-action-mappings for all
possible situations, have been made with an action space spanned by the duration
d e {1,2,...,15} and an intensity ¢ € {0, 10,20, ...,50} (which results in #d x #i =
15 x 6 = 90 possible actions). However, using the standard XCS configuration,
see [BW00, BW02|, the XCS did not converge in the given time. Figures 8.11(a) and
8.12(a) show these investigations of varying the search space with respect to two
population sizes with maximal 2500 and 5000 classifiers. Moreover, Table 8.5 lists
the investigated search spaces concerning subsets of duration and intensity.

IThis discount factor is predefined and has been set to 5.

157

Chapter 8 Results

Table 8.5: Varying values of duration and intensity

| #dx #i | d B
15 5,6,7,8,9 0, 10, 20
18 4,5,6,7,8,9 0, 10, 20
21 4,5,6,7,8,9,10 0, 10, 20
24 3,4,5,6,7,8,9, 10 0, 10, 20
27 3,4,5,6,7, 8,9, 10, 11 0, 10, 20
30 2,3,4,5,6,7,8,9, 10, 11 0, 10, 20
33 2,3,4,5,6,7,8,9, 10, 11, 12 0, 10, 20
36 1,2,3,4,5,6,7,8,9, 10, 11, 12 0, 10, 20
39 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13 0, 10, 20
45 3,4,5,6,7,8,9, 10, 11 0, 10, 20, 30, 40
50 2.3,4,5,6,7,8,9, 10, 11 0, 10, 20, 30, 40
55 2,3,4,5,6,7,8,9, 10, 11, 12 0, 10, 20, 30, 40
60 1,2,3,4,5,6,7,8,9, 10, 11, 12 0, 10, 20, 30, 40
90 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15 | 0, 10, 20, 30, 40, 50
2 |
2 X —a g

20 a‘ 'F.—;ntr—‘{;}?—” S aa— = T
18

16 Tom

14 4
12

10

average #kc per 1000 ticks

average #interventions per 1000 ticks

1 10 100 1000 1 10 100 1000

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.11: Learning over time in scenarios with different search spaces, varying parameters of
duration and intensity, as shown in Table 8.5, and having a population of mazximal
2500 classifiers

Thus, experiments have been performed with 15 up to 90 different noise signals.
The results show that scenarios with up to 39 different noise signals provide decreasing
average numbers of killed chickens #kc over time. Scenarios with greater search
spaces do not converge in the investigated maximal time of 1000000 ticks. As
depicted in Figures 8.11(a) and 8.12(a), scenarios with more than 39 different noise
signals only provide constant average numbers of killed chickens #kc per 1000 ticks.

158

8.2 Learning to Control

Furthermore, some curves show an increasing behaviour over time. This is a strong
indicator that the investigated search space cannot be learned with respect to a
population size of maximal 2500 and 5000 classifiers, respectively.

To make the XCS converge, the following experiments have been limited to 15
different noise signals (A; = (d;,4;) with d; € {5,...,9} and ¢; € {0, 10,20}), which
have provided the best learning results, as shown in Figures 8.11(a) and 8.12(a). In
this scenario of 15 different noise signals, the average number of killed chickens #kc
per 1000 ticks has been decreased from 23 killed chickens at the beginning to 12 at
the end after simulating 1 000000 ticks. This is an reduction around 50% per 1000
ticks in the given time.

=15 =l 18 == 2] === 24 == 27 =@ 30 ==+=33 =15 =il 18 == 2] === 24 = 27 =@ 30 ==+=33
36 39 =4=—45 —@—50 55 60 90 36 39 =4—45 ——50 55 60 90

average #kc per 1000 ticks

average #interventions per 1000 ticks

1 10 100 1000 1 10 100 1000

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.12: Learning over time in scenarios with different search spaces, varying parameters of
duration and intensity, as shown in Table 8.5, and having a population of mazimal

5000 classifiers

8.2.2 Effect of Simulation Time

As shown in Figures 8.11(a) and 8.12(a), simulation time has a positive impact on
the achieved simulation results. If the simulation runs longer, more evaluations
will be learned and the average number of killed chickens #kc per 1000 ticks will
continuously decrease. Simulation runs of the scenario with 15 different noise signals,
which stop after 1000000 ticks, have generally performed 142 857 learning cycles,
since the average duration of a noise signal is seven ticks. Keep in mind that the
parameter duration has been limited to values from the set {5,6,7,8,9}.
Additionally, the number of interventions per 1000 ticks decreases. This correlation
is depicted in Figures 8.11(b) and 8.12(b). In a scenario of 15 different noise signals,
the average number of interventions per 1000 ticks has been decreased from 158
interventions at the beginning to 140 at the end after 1000000 ticks. However, the

159

Chapter 8 Results

performed experiments have been very time consuming. Several runs needed more
than a day to determine using JoSchKa [Bon08]?. Thus, no general experiments
have been done with a simulation time greater than 1000000 ticks.

8.2.3 Effect of Varying Maximal Population Sizes

Additionally, varying the search space (i. e., varying ranges of duration d and intensity
i) also means that the value of the maximal population size (the maximal number of
classifiers) has to be changed. If the value is too small, covering will not sensibly occur,
since classifiers are always deleted to integrate new classifiers into the population,
see [BWO02|. Starting from an empty population, the population size should be large
enough so that covering only occurs at the beginning of the learning process. Thus,
experiments have been performed, which investigate the effect of varying the maximal
population size on the ability to converge.

=#=500 1.000 1.500 2.000 =#=500 1.000 1.500 2.000
=¢=—2.500 =#=5.000 ==#=7.500 ==>¢=10.000 =¢—=2.500 =#=5.000 ==#=7.500 ==¢=10.000

170

average #kc per 1000 ticks

10

average #interventions per 1000 ticks

1 10 100 1000 1 10 100 1000

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.13: Effect of varying the mazimal population size in a scenario with 15 different actions

A theoretical consideration shows that in the case of a scenario with 15 different
noise signals 10 x 10 x 10 x 15 = 15000 classifiers are needed to cover the whole search
space into a non-overlapping condition-action-mapping. This discussion is based
on an assumption, which excludes (important) XCS’ mechanisms like subsumption
or don’t care symbols. Every possible situation is only covered by one classifier.
Conditions of different classifiers do not overlap. If the three emergence values
ez, €y, ey are limited to values of {0.0,1.0} or {0,99} respectively, then 10 equally
spaced and non-overlapping intervals similar to [0, 9], [10, 19], [20, 29], [30, 39], [40, 49],

2 A typical computer, which has been used for job scheduling, is characterised by an Intel Core TM2
Duo E2180 CPU (2.0GHz/1MB level cache), it has 2GB DDR II RAM (800Mhz, 3 000MB/s),
and it has an SATA storage with a capacity of 250GB.

160

8.2 Learning to Control

[50, 59], [60,69], [70,79], [80,89], and [90,99] will be needed to cover all possible
situations. Certainly, more fine-granular or coarsely structured intervals are possible,
but the investigated XCS works as follows: If a new situation is observed, which
is unknown to the classifiers that have been learned so far, a new classifier will be
generated using covering. Each emergence indicator is represented by an interval.
Lower and upper boundaries lie around the observed emergence indicator having a
predefined distance and taking the emergence value in the middle. This distance
value has been set to 0.5 or five in all experiments.

In Figure 8.13, experiments are depicted with different values of the maximal
population size. All other values are constant and have not been varied in these
experiments. The results show that 2500 classifiers are sufficient. Thus, in further
experiments of this scenario the population size has been set to maximal 2500
classifiers.

8.2.4 Effect of Reward Functions

Different parametrised reward functions have been evaluated. Since the observation
range of the observer is limited, as explained in Section 6.2.3, only few parameters
can be used as input variables for a reward function. Thus, experiments have been
performed with several functions, which are always maximised by the XCS algorithm.
Some selected reward functions are given and explained in the following. Some more
functions have been evaluated, but the best results have been found with these four
mentioned functions.

e Reward function 3:

0.0 : #ke>0

Ae, + Aey, : F#kec=10 (8.1)

reward = {

I.e., if a chicken has been killed during an intervention, the reward, which is
given to the applied classifiers, will be zero. If no chicken is killed, the sum of
Ae, + Ae, will be computed, where Ae, and Ae, are the differences between
the emergence indicators before and after the intervention takes place.

e Reward function 4:
reward = max(0.0, (#c — #kc x 10)) (8.2)
I. e., the reward is always equal to the total number of chickens #c, which is
degraded by every killed chicken. When simulations are performed with a total

number of 40 chickens and 4 chickens are killed during an intervention, then
the given reward will be zero, since every killed chicken is multiplied by ten.

161

Chapter 8 Results

e Reward function 5:
reward = max(0.0, (d — #kc x d/2)) (8.3)

I.e., the given reward is equal to the duration d of an intervention. It is argued
that an intervention, which takes place for a longer duration, has a higher risk
that a chicken is killed during this control action is active. The payoff will be
better rewarded, if no chicken is killed. Thus, every killed chicken decreases
the duration by the half of the duration. If more than two chickens are killed,
the given reward will be zero.

e Reward function 6:

0.0 : #kc>0

d : #kc=0 (8-4)

reward = {

L. e., if no chicken is killed, the payoff will be equal to the duration d of the
intervention. The payoff will be zero, if a chicken has been killed.

—+—RF3 —@—RF4 RF5 =>=RF6 —¢—RF3 —@—RF4 RF5 =>=RF6

190

180
7 e
160 N

—
150

130

120

| 110 T |
1 10 100 1000 1 10 100 1000

average #kc per 1000 ticks
=
v
%
average #interventions per 1000 ticks

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.14: Effect of varying the reward function in a scenario with 15 different actions

Results of varying the reward function are presented in Figure 8.14. The differences
seem to be small. Moreover, the investigated functions explicitly differ at the
beginning in the case of the average number of killed chickens #kc per 1000 ticks, as
depicted in Figure 8.14(a). These differences specially depend on the badly selected
default initialisation of a new classifier’s prediction value with p; = 10.0, taken
from the reference implementation [BW00]. In general, an initial prediction value of
classifiers, which have not been applied in any action set [A], should be parametrised
defensively. E.g., reward function 5 has a maximal payoff of nine in a scenario

162

8.2 Learning to Control

with possible durations d € {5,6,7,8,9}. It is obvious that a default initialisation
with p; = 10.0 suggests faulty predictions in the case of reward function 5, which
particularly manipulate the experimental results at the beginning and are eliminated
during simulation time. However, to compare the impact of the different reward
functions on the learning process, it has been argued that the default initialisation
of the prediction value should be equal in all experiments.

However, in scenarios with greater search spaces (not presented here to keep clarity
of the discussed experiments) the reward function 4 performs best. Thus, reward
function 4 has been used as the default reward function in the following experiments.

8.2.5 Effect of Other Parameters as Known from Literature

The XCS is a learning heuristic with many parameters that could be varied and
customised concerning the special learning scenario, see [BW00, BW02, But06|. The
impact on the learning behaviour varying

1. the search space,
2. the simulation time,
3. the maximal population size, or

4. the reward function

have been introduced before. Several other parameters are note presented here in
detail. Thus, these aspects are only summarised in short, as known from literature.

e A population of classifiers could be initialised with predefined classifiers. These
could be randomly initialised or set up with learned knowledge from previous
runs. The presented experiments are always starting from scratch and leave
the population empty. Populations are not initialised with randomly covered
classifiers or with learned knowledge from previous experiments. To start with
an empty population or a randomly initialised population seems to have no
deeper impact on the learning behaviour, as explained in [BW02|. Initialising
with a priori knowledge may speed up the learning process.

e New classifiers arise through covering or evolution using genetic operators.
Evolution can be turned on and off. The presented results are all performed
with genetic operators, which have been customised to fit into the selected
scenario. A two-point crossover is used instead of a one-point crossover. Similar
to the one-point crossover, the two-point crossover only affects the conditions.
Mutation takes place in both, the condition and the action. A mutation in the
condition modifies the encoded boundaries. Mutation in the action changes
the values of duration and intensity to other values of duration and intensity.

163

Chapter 8 Results

Mutation is similarly applied as done in the XCS reference implementation.
However, the final sub-procedure, which runs the genetic operators, has not
been changed: Firstly, the action set [A] will be checked to see, if the genetic
operators should be applied at all. In order to apply genetic operators the
average time period since the last application of genetic operators in the set
must be greater than the predefined threshold ©44. Secondly, two classifiers are
selected as parents by roulette wheel selection based on the classifier’s fitness
and the offspring are created. The offspring are possibly crossed and mutated.
If the offspring are crossed, their prediction, prediction error, and fitness values
are set to the average of the parents’ values. Finally, the offspring are inserted
in the population. If the maximal population size is reached, deletion of other
classifiers will follow. Further investigations on these mechanisms could perform
better learning results, but are not part of this thesis. Modifications concerning
covering are introduced in Section 8.4.

The standard single-step XCS implementation continuously switches between
exploitation and exploration phases, which addresses the question, use what you
know or learn something new? Ezploitation of acquired knowledge means that
those classifiers with highest fitness values in the prediction array are always
used. This provides a deterministic behaviour, evaluation of (few) classifiers
becomes more reliable, and no improvements of knowledge occur. Ezploration
of new possibilities means that new classifiers are generated using evolution,
and classifiers are randomly chosen in the prediction array. Thus, the goal is to
enhance knowledge about the problem. The learning performance is decreased
for the benefit of finding an optimum. This mechanism of continuous changing
between exploitation and exploration phases over the whole simulation time
has not been changed within this work. Further investigations may be useful.

8.2.6 Pure On-Line Learning

Summarising the achieved experience, as presented in the last sections, experiments
with an pure on-line controller have been performed, which bases on the XCSJaval.0
reference implementation [But00| that has been modified to work with real- and
integer-valued input. In general, the main experiments have been performed with
parameter values, as characterised in the following.

164

e The search space of possible noise signals has been limited to d € {5,6,7,8,9} x

i € {0,10,20}.

e The population size is set to a maximum of 2500 classifiers.

e The XCS starts with an empty population. Decreasing the number of killed

chickens #Fkc is learned from scratch.

8.2 Learning to Control

Full covering takes place.
Genetic operators are turned on.

Reward function 4 is used.

over the whole simulation time.

The simulation is performed over 1000000 ticks.

The XCS continuously changes between exploitation and exploration phases

Simulation runs are repeated with 20 different seed values. Presented results
are always averaged over these repeated runs.

Table 8.6 shows the averaged number of killed chickens #kc of simulation runs
with overall 1000000 ticks. The attained average of 160.05 after 10000 ticks is very
close to the best result of the parameter study (approximately 166.40), which is
a very promising result. Since the XCS only uses noise signals, which have been
limited to d € {5,6,7,8,9} x i € {0, 10,20}, the comparison between the XCS and
the best founded single fixed rules controller is limited to those controllers, which
correspond to the restricted search space. Thus, the best single fixed rules controller
is found in line eight of Table 8.4.

Table 8.6: Results of the XCS wvs. the best single fized rules controller with (ty,ty,th,d, i) =
(0.2,0.3,0.3,5,20) established in parameter studies with varying the simulation time

XCS Best single fixed

rules controller
Simulated ticks | Average #kc \ Standard error || Average #kc \ Standard error
1000 23.00 0.00 17.00 0.00
2500 46.90 0.35 40.20 0.20
5000 85.50 0.98 83.25 0.25
7500 122.20 1.33 128.20 0.20
10000 160.05 2.02 166.40 0.22
25000 367.30 6.46 425.35 1.54
50000 708.80 9.22 867.00 2.79
75000 1036.50 11.19 1311.45 2.97
100000 1347.55 14.84 1754.70 2.97
250000 3133.20 26.77 4411.35 7.92
500000 6189.40 26.69 8831.00 12.02
750 000 9187.35 32.71 13256.25 12.13
1000000 12210.15 44.02 17676.20 15.43

165

Chapter 8 Results

Furthermore, Table 8.6 verifies that an XCS converges with more simulation time
to a better optimum. The same results are also shown in Figure 8.15. The XCS is
able to converge to a steady result.

—4—XCS =fli=best single fixed rules controller —4—XCS =fli=best single fixed rules controller

25

180

20 ‘\
W
15 *N\‘_._._‘

160

140 *——o

120

10 100

80

60T\—./I—.--T--—I=I=I:I-rﬂ=l=l
40 —+ T T 1

|
1 10 100 1000 1 10 100 1000

average #kc per 1000 ticks

5

average #interventions per 1000 ticks

0

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks, see Table 8.6 ticks

Figure 8.15: Learning over time using an XCS vs. the best found single fized rules controller

Figure 8.15 depicts the learning behaviour over time of the XCS in comparison to
the best single fixed rule controller found through the parameter studies. It plots the
average number of killed chickens #kc per 1000 ticks with increasing simulation time
and each plotted value is the average over 20 runs. As expected, the best found single
fixed rules controller shows a constant progression. In comparison the XCS controller
begins with a greater number of lost chickens, which decreases in the course of time
until becoming constant.

Furthermore as shown in Figure 8.15(b), the average number of interventions per
1000 ticks is decreased from 158 at the beginning to 140 interventions at the end.
This is a reduction of 11.39%. However, compared to the best found single fixed
rules controller the XCS needs more than twice as much interventions.

8.2.7 Learning over Thresholds

As illustrated in Figures 8.9 and 8.10, the single-step implementation causes two
slightly different approaches. In this section, the results of the adaptive controller
are presented, where the XCS is only triggered, when predefined critical thresholds
of emergence values are exceeded. This corresponds to the rule, as introduced
in Section 8.1.2. If the condition ((e, > t,) AND (e, > t,)) OR (ep > t3) with
t = (ts, 1y, t5) being the critical emergence thresholds is true, then the observed
emergence values will be given to the XCS, which hereupon decides, which parameters
of noise will be chosen.

166

8.2 Learning to Control

Table 8.7: Average number of killed chickens #kc after 10000 simulated ticks in ascending order
using an XCS, which is triggered when predefined thresholds are exceeded

’ €y €y, ER ‘ Average #kc ‘ Standard deviation ‘ Standard error ‘

0.1,0.1,0.3 80.80 9.32 2.08
0.1,0.2,0.3 93.55 13.57 3.04
0.2,0.1,0.3 103.40 10.32 231
0.2,0.2,0.3 100.55 9.00 2.01
0.3,0.2,0.3 131.45 5.93 1.33
0.1,0.3,0.3 132.85 5.83 1.30
0.3,0.1,0.3 133.25 7.50 1.63
0.2,0.3,0.3 135.15 7.50 1.63
0.3,0.3,0.3 139.60 3.95 0.88
0.2,0.4,0.3 167.55 3.76 0.84

Thus, the XCS just learns the best mapping of situations and actions in cases
that have been classified as critical by the developer. This XCS implementation uses
knowledge that is given by the user to optimise the learning behaviour. As shown
in Table 8.7, the results of these modifications are remarkable. Using predefined
thresholds improves searching the condition-action-mappings and drastically decreases
the average number of killed chickens #kc. The presented results are an excerpt of
the obtained results. The values of ¢, and ¢, are varied from {0.1,0.2,...,0.6} and
t, = 0.3 has been constant. The implemented reward function maximises the time
between two periods of time, as depicted in Figure 8.10. It should be mentioned that
this is a special reward function, which bases on the constraints made within this
implementation. This reward function cannot be used within the XCS, as presented
in the section before, where the XCS is used to learn the condition-action-mappings
for the whole search space.

Figure 8.16 presents results, which compare learning over time between the best
XCS using predefined critical thresholds (¢,,t,,t,) = (0.1,0.1,0.3) and the XCS,
which learns condition-action-mappings for all situations. The results draw the
conclusion that better results in terms of the average number of killed chickens #kc
are obtained when the process of controlling is not completely learned by an XCS and
the controller is equipped with a priori knowledge. Thus, the correlation between
an increasing learning performance and a priori knowledge seems obvious.

8.2.8 Summary

In OC scenarios, there is often no time for time consuming parameter studies and «a
priori knowledge is also unknown. Therefore, on-line learning techniques are needed

167

Chapter 8 Results

—o—XCS ——XCS over threshold —o—XCS ——XCS over threshold
25 " 190
1 2
\ ‘180
£ 20 8
k-] \\ S 170
g 5
8 15 o 160 3
o <
5 W\’_‘—H S 150 -
£ g
10 o
?n M g 1
©
& E 130
> 5 £
© o
Ep 120
]
0 s 2 110 s
1 10 100 1000 1 10 100 1000
thousand thousand
simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.16: XCS over threshold with (t;,t,,t,) = (0.1,0.1,0.3) vs. XCS

that adapt as soon as possible to changing environments. However, observing and
controlling technical systems means that decisions have to be taken with respect
to hard time constraints and systems cannot only learn through making (bad)
experiences in the real world. Thus, learning techniques, which combine off-line
generated knowledge, e.g., by time consuming and thus low efficient parameter
studies, and on-line adaptation capabilities, seem to be an adequate approach. This
idea is investigated in more detail in Section 8.4.

The results have shown that an XCS is able to learn the best parameters of making
noise in the chicken scenario, and thus to decrease the number of killed chickens.
But, the XCS needs a lot of time to converge to steady results. Furthermore, when
the search space of possible actions increases, the XCS does not converge — in the
course of the simulated period of time as investigated here.

To make use of LCSs as a fast on-line learning mechanism that can be integrated
into the general observer/controller architecture, improvements are necessary. An
LCS architecture is needed that

1. needs less reinforcement learning loops to learn while

2. exhibiting the same or better learning results compared to existing LCSs.
Solutions to this challenge might include the following mechanisms.

e Parallel or distributed learning architectures: By dividing the problem into
sub-problems and allowing various L.CSs to work together and run in parallel,
the complete learning task is decomposed and improvements in learning speed
should be possible.

168

8.3 Parallel XCS Architectures

e Algorithmic advancements: Covering techniques and genetic operators like
crossover and mutation could be varied and improved.

e More training phases before acting on real world problems: In the case of
OC systems that should continuously adapt in dynamic environments more
training phases do not seem to be an adequate strategy (in all scenarios),
because changes occur on-line and adaptation has to cope with these changes.

The following results will firstly concentrate on improvements through parallelism
and distribution in the next section. Then, the two-levelled learning approach is
investigated in Section 8.4.

8.3 Parallel XCS Architectures

A promising way to deal with complex problems should be to divide them into
sub-problems and assign each sub-problem to a single LCS instance — if possible. Not
every learning task can be decomposed. In this way, each single LCS learns to solve
a specific subtask and the subtask results can be combined resulting in a parallel
learning system that performs as well as or hopefully better than a single LCS.

The design approach of task decomposition (as presented in the following) is not
provided in an automated way. Depending on the problem, a decomposition might
be difficult or even impossible due to strong interdependencies of the subtasks. The
system designer needs to identify independent and basic subtasks that could be
assigned to different LCS instances.

8.3.1 2PXCS

As depicted in Figure 8.17(b), the single XCS, see Figure 8.17(a), is replaced by two
completely separated parallel learning loops — one responsible for mapping the three
emergence values to the duration d of the noise intervention, the other one responsible
for finding the best intensity ¢ of the intervention. Thus, decomposition takes place
along the two parameters of the action space. This approach will investigate, if the
two parameters duration d and intensity ¢, which characterise the noise signal, are
independent and can be learned in parallel.

The two parallel LCSs use the same standard parameters, as given in [But00|, get
the same reward, as mentioned in Section 8.2.6, and both have a four-dimensional
search space. This scenario is called 2PXCS for two XCSs, which learn in parallel.
Referring to Figure 8.17(b), XCS; maps the emergence values e,, e,, and ey to
the duration d, XCS, does the same with the intensity ¢. The experiments are
again performed in a scenario with 15 different noise signals (d € {5,6,...,9} x i €
{0,10,20}). Figure 8.18 compares the obtained results of 2PXCS with the results of
the corresponding single XCS.

169

Chapter 8 Results

- = = = -

[
| . XCS ;

S —— -

(a) A single XCS learns the best mapping of three (b) Decomposition into two sub-problems, two
integer-valued condition values (e, ey, ep) separated XCS instances learn to solve each
and two action parameters (d,) sub-problem

Figure 8.17: XCS vs. 2PXCS

Figure 8.18(a) depicts the average number of killed chickens #kc per 1000 simula-
tion ticks over 20 runs. Figure 8.18(b) depicts the average number of interventions
per 1000 simulation ticks over 20 runs. It is shown that both, the single XCS and
the 2PXCS implementation, improve their condition-action-mappings over time and
finally converge to a steady result. Comparing XCS and 2PXCS, it is noted that
the XCS specially outperforms the 2PXCS at the beginning. At the end both curves
converge to the same values.

=4—XCS ——2PXCS =—4—XCS ——2PXCS
25 190

180
170 hﬁ\k“
160

150

20

15 +

10

140

130

average #kc per 1000 ticks

120

average #interventions per 1000 ticks

T | 110 T |
1 10 100 1000 1 10 100 1000

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.18: Learning over time: XCS vs. 2PXCS, averaged values over 20 runs, 15 possible
actions, d € {5,...,9} x i € {0,10,20}

In the 2PXCS variant, XC'S; and XCS, have to learn a four-dimensional condi-
tion-action-mapping, i.e., that is their condition-action-mapping is reduced by one
dimension compared to the single XCS implementation. Moreover, the reduction
of one dimension (from a five-dimensional to a four-dimensional condition-action-
mapping) seems not sufficient to speed up the learning process, as from theoretically

170

8.3 Parallel XCS Architectures

considerations expected. However, the results show that the parameters duration d
and intensity ¢ are not sufficiently independent to be learned by two separated XCS
instances. Thus, another — more reasonable — parallel learning architecture has been
tried, as described in the following.

8.3.2 3PXCS

As depicted in Figure 8.19(a), the single XCS, see Figure 8.17(a), is decomposed
into three separated parallel learning loops — every LCS is responsible for mapping
one of the three emergence values to the duration d and the intensity ¢ of the
noise intervention, i.e., every XCS has to learn a three-dimensional condition-action-
mapping. This approach takes the results of 2PXCS into account that duration d
and intensity ¢ cannot independently learned in parallel LCSs. This scenario is called
3PXCS because of the three parallel XCS instances.

. — — — — — — — ————— ——————— —————— o — — — — — —— ——————————— — ——————

I/ { _____________ \I \\ I/ {’ _____________ \I \\
. (2d)/3and Ll XCS,y |
1 ! ! 1 ool :
| F (Z'j)/3 ; L F (a1, 3 a3 >d,i) |
N A IS U A N I RN S R l
H S Y oo il I Vi
! 1 1 1 1 1 ! 1 1 1 (]
OXCS, 1D XCS, 11 oXCS; i XCSy, il XCS,, i XCSy,
V(e >dyiy) 1] (e, 2dy0;) .\(ehéd3,|3),.l. o (e2ay) 1| (ey> @) 1 (e ay) ¥
e At S et i ek e o
____..Mmult-agentsystem i i _____multi-agentsystem
(a) Decomposition into three sub-problems and (b) Decomposition into three sub-problems on

three separated instances learn to solve each level A with a; € {0,1} and j € {1,2,3}

sub-problem and one XCS learns the aggregated results

on level B

Figure 8.19: 3PXCS vs. HXCS

The LCSs again use the same standard parameters, as proposed in [But00]|, and
get the same reward as mentioned in Section 8.2.6. Every XCS; with j € {1,2,3}
determines in every reinforcement learning loop one spe(nﬁc noise signal (d;,;),

based on which the average proposed duration d with d = 1 Z d; and the average
intensity i with 1 = % 2321 i; are computed. The trlggered noise signal is the
average (d, i) of all three decisions and the reward every X C'S; receives is the reward
received under the control action (d, 7).

Figure 8.20(a) depicts the average number of killed chickens #kc per 1000 simula-
tion ticks over 20 runs. Figure 8.20(b) depicts the average number of interventions

per 1000 simulation ticks over 20 runs. It is shown that the 3PXCS implementation

171

Chapter 8 Results

——XCS ——3PXCS ——XCS ——3PXCS
25 190

4\
20

ﬁ%

10

180

170

160
1WE=*=*‘t_,‘iat:3f;*_

140

130

average #kc per 1000 ticks

5

120

average #interventions per 1000 ticks

0 110

1 10 100 1000 1 10 100 1000
thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.20: Learning over time: XCS vs. 8PXCS, averaged values over 20 runs, 15 possible
actions, d € {5,...,9} x i € {0,10,20}

improves the condition-action-mappings over time and finally converges to a steady
result. Comparing XCS and 2PXCS in the case of the average number of killed
chickens #kc per 1000 ticks, it is noted that 3PXCS outperforms the single XCS
variant from the beginning. At the end both curves nearly converge to the same
values. Taking the average number of interventions per 1000 ticks into account, it is
shown that the number also decreases in the case of the 3PXCS, but not as explicit
as in the case of the single XCS. Moreover, 3PXCS achieves better results than the
single XCS — with nearly the same amount of control.

Thus, the new design decision to learn both parameters of a noise signal in one
single LCS and to simplify the condition part of a classifier seems to be the better
design decision in the case of controlling the chickens. The results outperform the
results achieved with 2PXCS and with the single XCS, respectively.

8.3.3 HXCS

Based on the results, which have been obtained for 2PXCS and 3PXCS, a third
implementation has been tested, which decomposes the learning problem within
hierarchically organised LCSs, as depicted in Figure 8.19(b). This type of architecture
is called HXCS for the hierarchically organised XCS instances.

On level A three LCSs are implemented that work in parallel on different sub-
problems. XCSj4 will only map the emergence value e, to the decision/action
a; € {0,1}, if a noise intervention is preferred or not. XCSy4 and XCS;4 do
the same with e, and ey, respectively. The three LCSs on level A have to learn a
binary coded decision, where zero means no noise signal should be applied and one
represents a noise intervention.

172

8.3 Parallel XCS Architectures

—4—XCS —M—HXCS —4#—XCS —M—HXCS
25 190

20 ‘\
15 -\-\\\
m

180

170

160

150
10

140

130

average #kc per 1000 ticks

5

120

average #interventions per 1000 ticks

0 110

1 10 100 1000 1 10 100 1000

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.21: Learning over time: XCS vs. HXCS, averaged values over 20 runs, 15 possible
actions, d € {5,...,9} x i € {0,10,20}

A fourth LCS, XCS,p, collects the decisions of XCS;4, XCSa4, and XCS34 and
maps this input data to a noise signal that is again characterised by a duration d
and an intensity ¢ — while an action (d, i) with d € {5,...,9} and i = 0 is explicitly
possible on level B. As mentioned before, this special type of actions is equal to the
effect of intervening the chickens without any noise.

XCS14, XCSs4, and XS54 have to solve a sub-problem with a two-dimensional
condition-action-mapping, X C'S,p has to solve a five-dimensional problem where the
situation is characterised as a three bit binary vector — an thus, the new condition is
very simplified in comparison to the real- or integer-coded condition of the single
XCS implementation, see Section 8.2.6.

As done before, the hierarchically organised HXCS implementation is compared to
the single XCS in the case of a scenario with 15 different noise signals. The results
are presented in Figure 8.21. The HXCS implementation improves its condition-
action-mappings over time and finally converges to a steady result. However, HXCS
demonstrates significant advantages of this new LCS arrangement. HXCS shows
improvements in learning speed and quality of the results. Even if the condensed
situation information available to X C'Syp is heavily simplified, HXCS is able to learn
the best condition-action-mappings.

8.3.4 Limitations of the Single-Agent Learning Approach

Aiming at enhancing the learning speed of LCSs, Section 8.3 has especially focused on
the XCS implementation provided in [But00], which has been modified to work with
real- and integer-valued parameters. Caused by drawbacks LCSs have in learning
speed, the provided experimental results validate the idea of distributed LCSs that

173

Chapter 8 Results

solve smaller sub-problems of a larger problem in parallel. Significant improvements
in the performance and learning speed could specially be shown for the 3PXCS and
HXCS implementation. The 2PXCS architecture started with a promising idea, but
exhibited no convincing results in the investigated scenario.

To conclude, improvements in learning speed could be achieved by dividing a
problem into sub-problems that are solved in parallel. Identifying appropriate
sub-problems is a difficult task that (depending on the problem) might even be
impossible. The developer of a learning mechanism needs a lot of information about
the investigated problem to divide the learning task into separately solvable sub-
problems. The design decision, how to decompose a problem, should be plausible. In
some cases, parameters are correlated and cannot separately learned with different
XCS instances, see Section 8.3.1.

Thus, the investigated single-agent learning approach has also limitations. In
general, the decomposition of a learning task into simpler subtasks and allocating
it to distinct LCSs has four limitations, as proposed by the single-agent learning
approach, see Section 5.5.1.

1. Parallelism is limited by the size of the problem. Generally, decomposing a
general task into a number of subtasks is limited by the dependencies of the
involved parameters of the learning problem.

2. The task of decomposing a task into subtasks is static and predefined. How
to decompose the task and into how many subtasks a task is decomposed is
decided a priori. These decisions are connected to the relative difficulties of
subtasks, which are not known in advance.

3. Furthermore, it will often be not known, if the new decomposed learning
problem is equal to the old learning problem. As explained and shown in
Section 8.3.1, parameters, which are correlated, could not be learned in parallel
and have to be learned together in one learning instance.

4. Any single-agent solution presents a bottleneck, which is caused by the inter-
action with the environment. Even though its internal structure is parallel,
the agent has to interact with the environment in a serial way. When different
subtasks faced by distinct LCSs regard unrelated actions, distinct LCSs of the
agent may interface distinct effectors, which is investigated in [BFS95|, where
four different legs of a robot are controlled by four different modules. However,
the number of actions an agent is simultaneously allowed to perform cannot
be very large. Furthermore, the global experience of the complete agent is
still sequential. Thus, a multi-agent learning approach has theoretically been
introduced in Section 5.5.2 to overcome the limitations of the single-agent
learning approach.

174

8.4 Using Level 2 Learning

However, the decomposition of complex learning tasks is a promising approach
for learning difficult problems. Some techniques have recently been proposed, some
others are addressed in this thesis.

8.4 Using Level 2 Learning

As depicted in Figure 6.20, a further controller type has been investigated, which
learns on-line using an XCS that simulates possible new classifier on level 2 using a
simulation model. Therefore, the covering operator of the original XCS implementa-
tion has been modified.

The minimal number of different actions that must be present in a match set
[M] is specified by O,,,,. If there are less than ©,,,, classifiers in a match set [M],
covering will occur. To cause covering to provide classifiers for every possible action,
the standard XCS implementation sets ©,,,, equal to the number of available actions.
In the investigated scenario with duration d € {5,6,7,8,9} and ¢ € {0, 10,20} the
parameter 0,,,, is set to #d x #1 =5 x 3 = 15. Thus, if a new situation is observed,
which is unknown to the existing condition-action-mapping, 15 new classifiers will
be generated using covering.

The single XCS implementation, as investigated in Section 8.2.6, initialises these
15 new classifiers with predefined values p;, €;, and F;, which denote the initial
prediction, prediction error, and fitness values and which are initialised with very
small values. As described in [But00], the default values in the experiments have
equally been chosen and set to (pr, €7, F7) = (10.0,0.0,0.01).

In the case of unknown situations, the modified covering mechanism starts for every
possible action a single simulation run on level 2, where the action is applied to a
situation that is equal to the one observed in the real system. Since in this simulated
chicken environment every design decision seems possible, the real simulation used on
level 1 is completely cloned to be used on level 2. Thus, level 2 is no abstracted copy of
the real world and no simplifications are done according to the used simulation model
on level 2. Certainly, this may be artificial assumptions, which are not reasonable in
real world scenarios, but it is tried to investigate, what is possible in the best case
using this two-level learning approach.

Furthermore, the controller of this level 2 simulation counts the number of killed
chickens during the time the selected action is applied to the simulated model on
level 2. Subsequently, level 2 reports the information of killed chickens to level 1.
There, this information is used to initialise the new classifier with another — hopefully
better — prediction value p;. Depending on the used reward function (see reward
function 4 in Section 8.2.4), the prediction value will be set to the given reward. In
other words, the initialisation of the prediction value is always equal to the total
number of chickens #c, which is degraded by every killed chicken on level 2. When
simulations on level 2 are performed with a total number of 40 chickens and four

175

Chapter 8 Results

chickens are killed during an intervention, then the given prediction value will be zero,
since every Kkilled chicken is multiplied by ten. Results, which have been achieved
with a controller that combines on-line learning with off-line planning capabilities on
level 2, as proposed in Section 4.3, are presented in Figure 8.22.

—+—XCS —m—XCS with L2 —+—XCS —m—XCS with L2
25 190
k 2 180
20 -
170

10

160

150

140

130

average #kc per 1000 ticks

5

120

average #interventions per 1000 ticks

0 110

1 10 100 1000 1 10 100 1000

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.22: Learning over time: XCS vs. XCS with level 2, averaged values over 20 runs, 15
possible actions, d € {5,...,9} x i € {0,10,20}

The achieved results are surprising, since the difference between the original and
the modified covering mechanism are marginal in the case of the average number
of killed chickens #kc per 1000 ticks, as depicted in Figure 8.22(a). Interpreting
the results positively, modified covering outperforms the original variant a little
bit at the beginning and at the end, but the difference between the two depicted
curves totally belongs to one or two killed chickens per 1000 ticks. Furthermore, the
average number of interventions per 1000 ticks, as shown in Figure 8.22(b), clearly
demonstrates that the two-level learning approach cannot outperform the original
mechanism, if the number of interventions is solely used as benchmark criterion. In
other words, the two-level learning approach does not perform as well as expected
— with respect to this investigated variant of implementation and this selected test
scenario.

The question, which automatically arises, is why this two-level learning approach
does not work as expected? One single simulation run of each unknown condition-
action-mapping on level 2 seems to be not sufficient. The results obtained by level 2
may serve as a good initialisation (since they are based on experience), but their
prediction and information content are limited caused by several reasons.

1. In this investigated scenario, the classifier’s condition encodes a set of possible
emergence situations, which are merged into a single situation, see Section 8.2.
The three emergence indicators e,, e,, e, are aggregated values and serve as a

176

8.5 Using Another Metric on the Observer's Side

clustering indicator. From the controller’s viewpoint, they hide the different
energy values of the chickens. Thus, the effectiveness of a possible control
intervention could not be shown and evaluated in a single simulation run on
level 2. E.g., in a first case, the three emergence values indicate a clustering
situation, where all chickens are very healthy. In another situation, the same
emergence values will indicate a similar clustering situation, but all chickens are
wounded a little bit. The same noise signal will have a different impact on the
chickens. This problem is not only limited to this two-level learning approach.
The same problem also appears without having planning capabilities on level 2.
However, it clarifies that a single evaluation of a new condition-action-mapping
cannot be sufficient with respect to this scenario.

. Furthermore, LCSs learn over time using reinforcement learning. It is in the
nature of things that the initialisation of the prediction value is a vanish
value. Combining on-line learning and off-line planning may outperform an
LCS, which only learns on-line on level 1, at the beginning, but it cannot
continuously outperform it. The impact of the initialisation value on the whole
learning process is low.

. Another reason is the detrimental correlation between using a full covering
mechanism and the investigated reward function (see reward function 4 in
Section 8.2.4). Here, when an observed situation is unknown, 15 new classifiers
are tested on level 2. Possible results of these simulation runs on level 2 will
initialise the prediction value with p; € {0, 10,20, 30,40}. If 15 classifiers force
15 different initialisations, it will be easier to decide, which classifier should be
chosen. But, if 15 classifiers are rewarded with more or less similar results on
level 2, the experience of level 2 will not support the decision, which has to be
taken on level 1. Since no sufficient experience is provided, it becomes — taken
the worst case — a random decision, which classifier of the match set will form
an action set.

To conclude, combining on-line learning and planning capabilities theoretically
seems to be a powerful mechanism to overcome drawbacks of pure on-line learning.
However, this hypothesis could not be verified in the investigated chicken scenario.

Further investigations in scenarios, where pure on-line learning is not applicable, are
necessary, see [PRTT08, TPR*08|.

8.5 Using Another Metric on the Observer's Side

As argued in Section 6.2.5, a controller’s decision is mainly based on the intelligence
and logic of the observer. If the used metrics on the observer’s side do not give a

177

Chapter 8 Results

precise characterisation of the system behaviour, the controller will not correctly act.
Moreover, learning cannot optimally be performed.

The investigated chicken scenario is observed and characterised by three emergence
indicators, which are computed according to an entropy-based metric, as summarised
in Section 4.1.5. Furthermore, critical remarks have been made on this metric and
its proposed general significance to quantify emergent behaviour. To investigate,
that this selected metric performs a well defined job in the chicken scenario, another
metric has been developed, which is specially based on this scenario, as outlined in
Section 6.2.5.

—4—XCS-QE —fl=best single fixed rules controller XCS-DM —4—XCS-QE —fl=best single fixed rules controller XCS-DM
25 -
0\ g 180
-]
£ 20 8 160
K _ =1 ——— .
2 \(.\q< = i S b —— .
o e < = ——— "3 =
8 — \ g 10 =
- 15 3)
5 e g 120
Q o
£ g
= 10 g 100
)]
5 £ 80
& 5 g
% 60
e
]
0 2 404 : s
1 10 100 1 10 100
thousand thousand
simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.23: Comparing learning over time, which is based on different metrics on the observer’s
side, averaged values over 20 runs, 15 possible actions, d € {5,...,9} x1i € {0,10,20}

This density metric computes the density of chickens in each smaller grid of the
two-dimensional grid and passes the information about the grid with the highest
density to the controller. Then, the noise intervention takes place in the centroid of
the chicken cluster that relies on the most densely packed (smaller) grid.

Again as successfully elaborated on quantitative emergence, parameter studies
with this special density metric have been performed, an XCS is compared to the
best found single fixed rules controller, and then the results are compared to the
results obtained with an XCS using quantitative emergence on the observer’s side.
Figure 8.23 summarises the results obtained with these experiments. It is shown
that the controller, which is based on the density metric (XCS-DM), will converge to
results as found in the parameter studies, if the view is limited to the average number
of killed chickens #kc per 1000 ticks. In comparison to the controller, which is based
on quantitative emergence (XCS-QE), it is shown that XCS-QE achieves in summary
better results than XCS-DM. This might not be true at the beginning of learning,
but until the end this is obvious. Comparing the number of interventions, both
approaches will show similar performances, even if the low number of interventions

178

8.6 Concluding Remarks on the Experiments

per 1000 ticks of the best found single fixed rules controller seems unreachable. The
static controller is very efficient in controlling the clustering behaviour.

Thus, the critical remarks on quantitative emergence may only be justifiable from
a theoretical point of view. However, the investigations achieved so far do not claim
that another metric is needed to measure clustering in the chicken scenario. These
conclusions are mainly based on the specific behaviour of the chickens. They do not
behave as shown in the particular cases, mentioned in Section 6.2.5.

8.6 Concluding Remarks on the Experiments

Within this chapter, several experiments have been performed and gained cognisance
of the influencing factors on the effectiveness of the observer/controller architecture.
In the following, a concise outline of the main insights is given.

—4—XCS —f—best single fixed rules controller —4—XCS —f—best single fixed rules controller
==k=XCS over threshold =é=2PXCS ==k=XCS over threshold =é=2PXCS
==i=3PXCS =®—HXCS =i=3PXCS =®—HXCS

XCS with L2 XCS with L2

|
180

160 i&w\ —
140 S

120

100

80

GOT\—./I—.-I——.—I—I:I:I:FI:I
40 + T T

| |
1 10 100 1000 1 10 100 1000

average #kc per 1000 ticks
]
Y
1 i
3
average #interventions per 1000 ticks

thousand thousand

simulation time (logarithmic) simulation time (logarithmic)

(a) Average number of killed chickens #kc per (b) Average number of interventions per 1000
1000 ticks ticks

Figure 8.24: Learning over time: All investigated approaches, averaged values over 20 runs, 15
possible actions, d € {5,...,9} x i € {0,10,20}

Based on three emergence indicators different types of control strategies ranging
from static to adaptive ones have been investigated in the context of a nature-inspired
chicken scenario. The results, as summarised in Figure 8.24, have shown that the
controller, which uses an XCS to learn the whole condition-action-mapping, is able
to converge to the results, which have been found in preliminary parameter studies.
Moreover, the controller type, which only starts learning in the case of critical
situations, outperforms the results achieved with the XCS, which learns condition-
action-mappings for all possible situations. This result is not surprising, since using
a priori knowledge to distinguish between critical and non-critical situations should

179

Chapter 8 Results

always provide a better learning performance than starting from scratch. However,
searching for a priori knowledge is a time consuming and exhausting process, as
explained in Section 8.1.2. Such preliminary investigations are often not suitable —
specially in the case of OC scenarios. Thus, comparing the controller type, which
only starts learning in the case of critical situations, to the controller, which learns
the mapping of all possible situations, seems not fair and realistic. Finally, all
investigations have suggested that LCSs need many reinforcement cycles to converge
to steady results and to learn an optimal condition-action-mapping. Thus, techniques
have been investigated that speed up this learning process.

Especially, parallel implementations have been investigated to decrease the number
of learning cycles. These investigations have shown that the learning process is
significantly speeded up at the beginning in the case of 3PXCS and HXCS. It could
be shown that decomposition of a learning problem into several sub-problems, which
could be solved in parallel, provides a successful technique. Furthermore, the two-level
learning approach has been applied and the covering mechanism has been modified.
However, the results of these modifications are not satisfying (with respect to the
assumptions of the investigated scenario) and further investigations on this approach
are necessary, as outlined in Section 9.3.

180

Chapter

Conclusion and Outlook

People do not like to think. If one thinks, one must reach a conclusion.
Conclusions are not always pleasant. (Helen Keller)

Motivated by the challenges of OC, the goal of this thesis has been to design,
develop, and investigate an observer/controller architecture, which establishes con-
trolled self-organisation in technical, real-time, noisy, collaborative, and competitive
environments. This chapter summarises the main contributions. Section 9.1 describes
the results achieved within this thesis. In Section 9.2, some conclusions are outlined
in the light of the objectives made in Section 1.2. Furthermore, Section 9.3 discusses
and outlines possible challenges to extend this work. Final remarks complete this
thesis in Section 9.4.

9.1 Summary

To get closer to the overarching vision of OC has just started. OC systems will
involve an evolution of innovation in systems and software engineering as well as
collaboration with many other diverse scientific fields. Since OC focusses on the
challenge of increasing complexity in technical systems, this thesis introduces a
regulatory feedback mechanism, the generic observer/controller architecture, to
establish controlled self-organisation.

To cope with unwanted (emerging) global behaviour as a result of bestowing
upon the systems some life-like characteristics, the idea of an observer/controller
architecture has been introduced and refined. This architecture allows organising
several aspects of the system behaviour in an autonomous way, independent from an
explicit external interference that keeps a system alive and running. Thus, the SuOC
adapts to changes in its environment and is controlled by an observer/controller
in order to acquire robustness and the ability to overcome breakdowns. It has
been shown, how observer and controller are designed, which functions should be

Chapter 9 Conclusion and Outlook

implemented, and how the main loop consisting of the SuOC, an observer (observing
the behaviour of the SuOC in terms of well defined system parameters), and a
controller (selecting adequate actions to optimise system behaviour with respect to
certain global objectives) may work together.

The defined components of the OC architecture strongly rely on other established
scientific areas like data mining, time series analysis, machine learning, or control
theory. Results and methods from these areas have been used to extend the proposed
toolbox and to test the developed metrics and adaptive control strategies with
different test scenarios. In doing so, the focus has been set on the controller — and
specially on learning capabilities using LCSs.

The proposed concepts have been tested with respect to some multi-agent scenarios
(e.g., a group of self-organising lifts, different simulated environments from the area
of mobile robotics, or a nature-inspired scenario of a collection of freely moving
simple agents (chickens) showing some undesired emerging effects). All scenarios
could be seen as instances of the generic predator/prey example, which is frequently
used in the multi-agent community and which has successfully been studied in a wide
variety of instantiations. Moreover, the predator/prey example has demonstrated its
generality to many real world applications, and thus, it has served as well as test
scenario for OC research to evaluate the ideas proposed in this thesis.

Especially, the generic approach of the centralised observer/controller architecture
has been applied to a nature-inspired predator/prey scenario of a swarm of chickens.
Each chicken has been implemented as a simple agent, which presents in cooperation
with the other agents a macroscopic behaviour that only depends on local rules. The
investigated chicken simulation shows clustering from a global point of view as an
unwanted (emergent) behaviour of local interaction.

If chickens perceive a wounded chicken, they chase and pick on it. This leads to
the emergent building of chicken swarms (or clusters). A swarm disperses, when
the wounded chicken is killed or the chickens are frightened by noise. The emergent
behaviour in this scenario is spatial, but swarms move over time. To summarise the
idea of this scenario, clustering is characterised as a case of negative, i.e., unwanted
(emergent) behaviour, since the global goal should be to reduce chicken death rate.

In other words: Providing feedback and decision capabilities to this nature-inspired
scenario, it has been shown that the unwanted (emergent) behaviour, clustering of
agents around wounded agents, can automatically be observed and prevented with
respect to a global objective function.

The observer reports a quantified context of the underlying system to the controller.
The controller evaluates the situation and reacts with adequate control actions to
disperse swarms or to prevent their formation.

An entropy-based measurement method has been used to observe the described
order pattern. For controlling the robots, different methods have been implemented
ranging from static to adaptive controllers, which learn on-line and off-line the best
condition-action mapping, i.e., the best mapping between clustering behaviour and

182

9.1 Summary

noise. All investigated controllers change the environment, and thus, indirectly affect
the local behaviour of the agents.

The presented simulation results validate the idea of the proposed generic obser-
ver /controller architecture and have shown advantages and potentials of controlled
self-organisation in technical scenarios. Without control actions the chickens will
show clustering behaviour, hinder or attack each other, and the system might break
down. The controller extends the life of the chickens and keeps on running the whole
system.

Furthermore, endowing the controller with adaptation capabilities has shown
that the controller is able to evaluate the success of its interventions and to adapt
the fitness and the parameters of the used rules depending on the global objective
function. This suggests the ability of (on-line) learning. Moreover, the controller
is also able to generate new rules with adequate parameters. Adaptation over
time optimises the controller’s behaviour and guides the process of controlled self-
organisation. Therefore, a two-level learning architecture as part of the controller
has been defined, which combines on-line learning and off-line planning capabilities.
It combines the advantage of on-line adaptation and prevents the disadvantage of
testing bad solutions in the real world by using a reality model for validation of
promising new rules.

As a machine learning technique, LCSs have specially been investigated, because
they fit well to the observer/controller framework and are in the focus of other OC
projects. LCSs aim at the autonomous production of potentially human-readable
results, which seem to be beneficial in the context of designing self-organising technical
systems. If a system designer can understand, what a system has autonomously
learnt, this will provide trust to OC systems and their reliable performance.

In the investigated chicken scenario, an LCS is used to learn the best control
intervention on-line on level 1 of the two-level learning controller. The experimental
results have been compared with results drawn from fixed rules parameter studies.
On-line learning leads to significant improvements in the performance of the global
system behaviour. However, since LCSs are a reinforcement learning technique,
which require a substantial amount of computation time to even improve in simple
learning tasks, several ideas have been investigated to speed up this learning process.
The presented work has focussed on parallelism and decomposing a problem into a
set of sub-problems, which could be solved in parallel.

Furthermore, the two-level learning approach is adopted to an XCS, which learns on-
line about the real system and which covers new classifiers testing and evaluating their
condition-action-mapping off-line by a simulation model. Although first experiments
of this new architecture are promising, further investigations are needed to show the
(complete) advances of level 2 in combination with level 1.

183

Chapter 9 Conclusion and Outlook

9.2 Conclusion

To conclude, interesting insights depending on the chicken scenario allow several
implications. Summarising the main contributions of this thesis a number of questions
is emphasized, this thesis has tried to answer.

e Are LCSs a viable approach to learn condition-action-mappings on-line on
level 1 of the observer/controller architecture?

e Are parallel/distributed LCSs a viable approach to improve learning? In other
words, do they outperform the sequential /monolithic XCS in terms of learning
cycles required to solve a problem?

e How do design choices affect the learning speed up?

e Is the organic approach of combining on-line learning and off-line planning
capabilities a viable approach?

e [t is possible to generalise the results presented in this thesis?

9.2.1 LCSs as Part of the On-Line Learning Level

LCSs have been investigated in manifold domains. In [BLG02|, the two most
current versions of the LCS formalism (GALE [Llo02] and XCS [Wil95|) have been
investigated on data mining tasks and have been compared to a number of other
machine learning techniques. The results have shown that LCSs are extremely
competitive and, in particular, XCS has demonstrated excellent performance, since
XCS builds a complete map of the given problem surface. This corresponds to the
characteristic that XCS has the ability to create maximally general rules that map
the search space in the production system format using the most efficient rule set
possible.

An XCS has been investigated to learn condition-action-mappings in a nature-
inspired chicken scenario. Results have shown that a monolithic XCS implementation
is able to find solutions that are equal to solutions, which have been found in parameter
studies. The investigated scenario has also demonstrated that an LCS is a complex
heuristic consisting of many parameters, which needs expensive parametrisation
according to a scenario. Moreover, learning accurate classifiers is a (very) time
consuming process and when the search space increases, this learning process increases
accordingly. In addition, parameter combinations have been covered, which could
not be solved in the investigated limit of simulation time.

Thus, the conclusion is drawn based on experimental results that LCSs do not seem
applicable to OC systems in their original form, since OC systems should quickly
adapt to dynamically changing environments. Furthermore, several modifications
have been introduced and investigated to speed up the learning process.

184

9.2 Conclusion

9.2.2 Speeding up the Learning Process by Parallelism

The learning process is time consuming, a major drawback of applying LCSs to real
world scenarios. As the complexity of the task — the dimension of the condition-
action-mapping — increases, the demand of computational time to solve a problem
becomes critical. Theoretically, every possible condition is mapped to each possible
action. The mapping is applied to the environment. The utility of the mapping is
tested, rewarded, and evaluated in the course of time. In other words, the number of
learning cycles increases dramatically, when the learning task increases.

A single-agent learning approach has been proposed to design parallel LCSs, which
is based on the higher level idea of decomposing a problem into several modules/sub-
problems, which can be solved independently. Difficult learning tasks are tackled in
a modular or hierarchical way and the performance is speeded up by decreasing the
number of learning iterations.

Significant improvements in the performance and learning speed could specially be
shown in the case of two implementations (3PXCS and HXCS). The third investigated
architecture (2PXCS) started with a promising idea, but exhibited no convincing
results in the investigated scenario.

However, the developer of a learning mechanism needs a lot of information about the
learning task so that he can adequately divide it into separate solvable sub-problems.
How to decompose a problem into sub-problems, is based on a plausible design
decision. In some cases, parameters depend on each other and cannot separately be
learned in different XCS instances.

Thus, applying the single-agent learning approach has led to the conclusion that it
generally speeds up the learning process and an XCS converges in less reinforcement
cycles. However, the single-agent learning approach is based on predefined design
decisions, which also provide limitations, as discussed in Section 8.3.4.

9.2.3 Combining On-Line Learning and Off-Line Planning

Since speeding up the learning behaviour of LCSs has been in the focus of this thesis,
another approach has been introduced, which is based on the two-level learning
architecture as part of the generic controller.

Two discovery mechanisms coexist in an LCS to explore new classifiers. The
genetic operators are inspired by evolution. Covering is the second mechanism,
which is not inspired by evolution. This mechanism provides classifiers for every
possible action, whose condition matches the detected situation and the action is
chosen randomly. Newly covered classifiers are often badly initialised and many
reinforcement learning cycles have to be taken to adapt these predefined default
values. The inherent problem is that nothing is known about new classifiers. The
original LCS randomly covers missing condition-action-mappings and evaluates this
relationship by trial and error on the real problem.

185

Chapter 9 Conclusion and Outlook

Thus, the default covering operator has been extended and some kind of off-line
planning capability has been added to the covering mechanism. Always, when covering
occurs, new classifiers are evaluated by simulation on level 2. Then, new classifiers
are initialised by this simulated experience instead of worse default initialisations.

Even if this approach seems (very) plausible from the viewpoint of designing and
engineering OC systems, the performed experiments provide no convincing results.
The tendency to converge is similar to the learning behaviour without learning on
level 2. The parallel approach considerably outperforms the organic two-level learning
approach — in the investigated chicken scenario. Possible explanations have been
discussed in Section 8.4.

9.2.4 Generality of the Experimental Results

The chicken simulation has no obvious technical motivation by its own. However,
it can be used to study general multi-agent systems bearing obvious similarities
to technical systems. In the simulation, a chicken is directed by predefined rules,
and will be influenced by the behaviour of other chickens in its local neighbourhood
or by the environment, e. g., by noise that frightens it. Therefore, chickens can be
considered as autonomous robots or agents with simple rules and local goals. There
are many analogous technical scenarios with a similar structure such as cleaning
robots, weeding robots, collaborating agent swarms, and others.

Moreover, it has been argued that the chicken simulation could be seen as an
instance of the homogeneous and communicating predator/prey scenario. Results
achieved within this scenario should be assignable to other instances of this category
of predator/prey examples.

Furthermore, methods have been investigated to cope with unwanted (emergent)
behaviour. A generic observer/controller framework has been refined to establish
controlled self-organisation and to design OC systems. This generic architecture is
applicable to other scenarios. Similarly, the ideas of speeding up learning are generic
approaches, which do not depend on this single (chicken) scenario.

9.3 Outlook

According to the OC vision, an organic computer system should be aware of its own
capabilities, the requirements of the environment, and it should be equipped with a
number of so-called self-x-properties. These self-x-properties provide the anticipated
adaptiveness and allow to reduce the complexity of system management. To name
a few characteristics, organic systems can self-organise, self-adapt, self-configure,
self-optimise, self-heal, self-protect, or self-explain. To achieve these ambitious goals
of designing and controlling complex systems, adequate methods, techniques, and

186

9.3 Outlook

system architectures have to be developed, while no general approach exists to build
complex systems.

Adaptation and learning capabilities play a major role in the context of OC sys-
tems. As outlined in this thesis, it is complicated to endow systems with appropriate
learning capabilities and to customise well known machine learning techniques to
show great performance in investigated scenarios. Moreover, the presented results
propose cognisance that LCSs fit well to the observer/controller paradigm, although
disadvantages in terms of learning time are obvious. Even if approaches are success-
fully applied to overcome these drawbacks, the question is still unanswered, whether
LCSs are the best known technique for learning as stated in the context of OC
systems. Further investigations on other learning techniques are needed that could
be applied to the two-level learning approach, as partially investigated in [Pat08].

The power of learning is based on the expectation that technical systems behave in
a more robust and flexible way in situations, which they have not been programmed
for explicitly. In the case of the investigated chicken scenario this would mean that
the observer/controller architecture always learns robust condition-action-mappings,
even if the applied noise emitter has broken down, e. g., the controller thinks that
a noise signal with (d;,i;) = (7,20) is applied, but in fact the emitter makes noise
equal to (dj,i;) = (2,10). If the controller is able to overcome such disturbances,
learning will provide robust and flexible system behaviour.

Furthermore, a short summary of other topics is given that provide great research
questions for future work.

9.3.1 Outlook from the Viewpoint of the Investigated Scenario

The aspect of food is left out in the chicken scenario. Agents run over the two-
dimensional grid, search for wounded chickens, get wounded by picking, are frightened
by noise, and heal over time. To make the scenario or the agent’s behaviour more
complex, chickens could be extended with an ability of searching food. Moreover,
the investigated chicken behaves according to predefined static rules. Applying some
more degrees of freedom, a chicken could be equipped with its own LCS to learn
its single behaviour, as outlined in [Lod09]. To make the scenario more complex
and to enhance the task of the observer/controller architecture, the integration of
distributed and collective (collaborative) learning seems to be interesting for future
work. Agents with local adaptation will show a more complex — and thus challenging
— system behaviour.

Furthermore, the chicken simulation could be endowed with other control possi-
bilities. Currently, the controller only has the possibility to control the agents with
noise. However, other control actions are possible, e. g., the controller can spread
some food around the cluster to attract the chickens into another direction. Further
control strategies have already been discussed in Section 6.2.4.

187

Chapter 9 Conclusion and Outlook

9.3.2 QOutlook from the Viewpoint of the OC Community

An observer/controller architecture has been introduced to design OC systems.
However, this architecture has not completely been investigated within the presented
thesis, since learning has been in the focus. The impact of changing the model of
observation or using prediction methods on the controlling behaviour has not been
addressed.

Secondly, the two-level learning architecture uses a simulation model on level 2.
This off-line planning instance allows to find appropriate actions without the need
to test different alternatives in the real world. This is beneficial, since testing
potentially bad strategies in the real world can cause the system’s permanent failure.
But, model-based planning, as provided on level 2, is always limited by the necessary
simplifications made in the model or by incomplete model calibration due to the fact
that the modelled environment changes dynamically/continuously. Thus, the best
action with respect to the model is not necessarily the best action with respect to the
real world. If the simulation model and the reality differ too much, the used simulation
model will need modifications. The aspect of (autonomous) model calibration
has currently been excluded from OC research and the generic observer/controller
architecture, but asks for further investigations.

The centralised observer/controller framework has intensively been investigated in
the context of the nature-inspired chicken scenario. This chicken scenario could be
seen as an instance of the homogeneous and communicating predator/prey example.
However, multi-agent scenarios could be divided into several categories ranging
from homogeneous and non-communicating up to heterogeneous and communicating
scenarios with collaborative and competitve goals on the agent’s level. Furthermore,
several variants of the generic observer/controller architecture have been discussed
in Section 4.4. To achieve deeper and more generic results about this regulatory
feedback mechanism, further investigations are needed, which apply the manifold
variants of the observer/controller architecture to different multi-agent scenarios.
Investigations could start with a scenario of homogeneous and non-communicating
agents, then tackling the full range of possible multi-agent systems, up to highly
heterogeneous and communicating agents.

9.3.3 Qutlook from the Viewpoint of the LCSs Community

LCSs are widespread in research and have not only been investigated in the OC
community. In this thesis, the aspect of speeding up the learning process of LCSs
has especially been investigated, when learning starts from scratch. OC proposes the
idea of two-level learning as a more intelligent covering mechanism. The presented
work has also focussed on parallelism and problem decomposition to achieve better
learning performance. Moreover, a LLCS is a complex learning heuristic, which requires
intelligent customising to the investigated scenarios. Further work could also focus

188

9.4 Final Remarks

on intelligent covering mechanisms or better genetic operators to make evolution a
more powerful mechanism, which speeds up the learning process accordingly.

Since OC systems are composed of many components, which interact with each
other, a multi-agent learning approach has theoretically been discussed in Sec-
tion 5.5.2. But, this idea has not practically been investigated within the presented
results. The idea of multi-agent learning arises further challenges, since the Markov
property is not fulfilled. To overcome this problem step by step, more research is
needed on problems that do not fulfil the Markov property. Then, it might be shown
that LCSs have the following potential: Generality to show a good performance on
more real world problems, scalability to maintain the same level of performance in
large-scale problems, and high performance, which corresponds to better results than
could be achieved with single-agent learning approaches.

9.4 Final Remarks

Within the limits of this thesis several questions could be answered and many new
ones have arisen worthwhile to be addressed by further research. The bottom line
has been a successful application of the observer/controller architecture within the
nature-inspired predator/prey scenario. Controlled self-organisation using LCSs has
shown to be a promising concept although limited by the basic implementation of
the current scenario.

It is believed that the observer/controller framework will be applied to technical
scenarios more and more frequently in the near future. Hopefully, the contributions
of this thesis will prove useful in addressing the problems that arise in these domains.
Ultimately, the understanding is improved of what it is needed to design and build
complete, organic systems.

189

[ACE*03]

[ACE06]

[Ant07]

[Art94]

[AS93]

|AS96)|

[ASB92a)

[ASB92b]

References

R. Allrutz, C. Cap, S. Eilers, D. Fey, H. Haase, C. Hochberger, W. Karl,
B. Kolpatzik, J. Krebs, F. Langhammer, P. Lukowicz, E. Maehle,
J. Maas, C. Miiller-Schloer, R. Riedl, B. Schallenberger, V. Schanz,
H. Schmeck, D. Schmid, W. Schroder-Preikschat, T. Ungerer, H.-O.
Veiser, and L. Wolf. VDE/ITG /GI-Positionspapier Organic Computing:
Computer- und Systemarchitektur im Jahr 2010, 2003.

ACE Auto Club Europa. Schwache Batterie Pannenursache Num-
mer 1. http://www.ace-online.de/cps/rde/xchg/ace_internet_
new/hs.xsl/21_1640_DEU_xHTML.htm, April 2006.

C. Antoniou. On-line calibration for dynamic traffic assignment models:
Theory, methods, and application. Vdm Verlag Dr. Miiller, 2007.

W. Arthur. Complexity in economic theory: Inductive reasoning and
bounded rationality. The American Economic Review, 84(2):406-411,
May 1994.

L. R. Al-Sharif. Bunching in lift systems. In Proceedings of the Interna-
tional Conference on Elevator Technology (ELEVCON 1993), November
1993.

L. R. Al-Sharif. Bunching in lifts.... Why does bunching in lifts increase
waiting time? FElevator World, 11:75-77, 1996.

L. R. Al-Sharif and G. C. Barney. Bunching factors in lift systems (1).
Control Systems Centre Report 749, University of Manchester Institute
of Science and Technology (UMIST), Manchester, United Kingdom,
February 1992.

L. R. Al-Sharif and G. C. Barney. Bunching factors in lift systems (2).
Control Systems Centre Report 754, University of Manchester Institute

References

[Ash47]

[Ash62]

[AW08]

IBAS4|

[Bar96]

[Bar03]

[BBO5]

[BCD+06]

[BDHZ06]

[BDKNO5]

[BDT99]

192

of Science and Technology (UMIST), Manchester, United Kingdom,
June 1992.

W. R. Ashby. Principles of the self-organising dynamic system. Journal
of General Psychology, 37:125-128, 1947.

W. R. Ashby. Principles of the self-organising system. In H. von
Foerster and G. W. Zopf, Jr., editors, Principles of Self-Organisation:
Transactions of the University of Illinois Symposium, pages 255-278.
Pergamon Press, 1962.

K. J. Astrém and B. Wittenmark. Adaptive control. Dover Publications
Incorporation, 2nd edition, 2008.

H. J. Blokhuis and J. G. Arkes. Some observations on the development
of feather-pecking in poultry. Applied Animal Behaviour Science, 12(1-
2):145-157, March 1984.

A. Barry. Hierarchy formation within classifier systems: A review.
In Proceedings of the 1st International Conference on Evolutionary
Algorithms an their Applications (EVCA 1996), pages 195-211, 1996.

G. C. Barney. Elevator traffic handbook: Theory and practice. Spon
Press, 2003.

T. Bartz-Beielstein. New experimentalism applied to evolutionary com-
putation. PhD thesis, Universitdt Dortmund, Fachbereich Informatik,
Dortmund, Germany, 2005.

0. Babaoglu, G. Canright, A. Deutsch, G. A. Di Caro, F. Ducatelle,
L. M. Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Mon-
tresor, and T. Urnes. Design patterns from biology for distributed
computing. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), 1(1):26-66, September 2006.

S. A. Brueckner, G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,
editors. FEngineering self-organising systems, volume 3910 of LNAL
Springer, 2006.

S. A. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, and R. Nag-
pal, editors. FEngineering self-organising systems: Methodologies and
applications, volume 3464 of LNAI Springer, 2005.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: From
natural to artificial systems. Oxford University Press, 1999.

References

[Bea03]

[Bee66|

[BeeT2|
[Bel57]

[Ber06]

[BFROS]

[BFS95]

[BGLO5]

[BGM*08]|

[BHJY07]

[BJDSG|

P. Beart. Emergent behaviour. http://www.beart.org.uk/emergent,
2003.

S. Beer. Decision and control: The meaning of operational research and
management cybernetics. John Wiley & Sons, 1966.

S. Beer. Brain of the firm. Allen Lane, 1972.

R. E. Bellman. A Markovian decision process. Journal of Mathematics
and Mechanics, 6:679-684, 1957.

P. Berkhin. A survey of clustering data mining techniques. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping multi-dimensional data:
Recent advanes in clustering, pages 25-71. Springer, 2006.

A. Bernauer, D. Fritz, and W. Rosenstiel. Evaluation of the learning
classifier system XCS for system on chip runtime control. In H.-G.
Hegering, A. Lehmann, H. J. Ohlbach, and C. Scheideler, editors,
INFORMATIK 2008, Beherrschbare Systeme — dank Informatik, volume
134 of LNI, pages 763-770. GI, 2008.

L. Bull, T. C. Fogarty, and M. Snaith. Evolution in multi-agent systems:
Evolving communicating classifier systems for gait in a quadrupedal
robot. In L. J. Eshelman, editor, Proceedings of the 6th International
Conference on Genetic Algorithms and Their Applications (GECCO
1995), pages 382-388. Morgan Kaufmann, 1995.

M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Gradient descent methods
in learning classifier systems: Improving XCS performance in multi-step
problems. IEEE Transactions on Evolutionary Computation, 9(5):452—
473, October 2005.

S. Burmester, H. Giese, E. Miinch, O. Oberschelp, F. Klein, and
P. Scheideler. Tool support for the design of self-optimising mecha-
tronic multi-agent systems. International Journal on Software Tools
for Technology Transfer, 10(3):207-222, June 2008.

S. A. Brueckner, S. Hassas, M. Jelasity, and D. Yamins, editors. En-
gineering self-organising systems, volume 4335 of LNAI Springer,
2007.

M. Benda, V. Jagannathan, and R. Dodhiawala. An optimal cooperation
of knowledge sources: An empirical investigation. Technical Report BCS-
G2010-28, Boeing Advanced Technology Center, Boeing Computing
Services, Seattle, United States of America, July 1986.

193

References

[BKLWO4]

[BLG02]

[BMMS*06]

[BNOG]

[Bon9g)

[Bon00]

[Bon08]

[Bro86|

[Bro9i]

[BSBWO5]

194

M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. Toward a
theory of generalisation and learning in XCS. IEEE Transactions on
FEvolutionary Computation, 8(1):28-46, February 2004.

E. Bernado, X. Llora, and J. M. Garrell. XCS and GALE: A compara-
tive study of two learning classifier systems on data mining. In P. L.
Lanzi, W. Stolzmann, and S. W. Wilson, editors, Proceedings of the 4th
International Workshop on Learning Classifier Systems (IWLCS 2001),
volume 2321 of LNAI pages 115-132. Springer, 2002.

J. Branke, M. Mnif, C. Miiller-Schloer, H. Prothmann, U. Richter,
F. Rochner, and H. Schmeck. Organic computing: Addressing com-
plexity by controlled self-organisation. In T. Margaria, A. Philippou,
and B. Steffen, editors, Post-Conference Proceedings of the 2nd Inter-
national Symposium on Leveraging Applications of Formal Methods,
Verification, and Validation (ISoLA 2006), IEEE-ISoLA, pages 185-191.
IEEE, November 2006.

T. Benouhiba and J.-M. Nigro. An evidential cooperative multi-agent
system. Expert Systems with Applications, 30(2):255-264, February
2006.

A. Bonarini. Reinforcement distribution for fuzzy classifiers: A method-
ology to extend crisp algorithms. In Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation (CEC 1998),
pages 699-704. IEEE, 1998.

A. Bonarini. An introduction to learning fuzzy classifier systems. In P. L.
Lanzi, W. Stolzmann, and S. W. Wilson, editors, Learning classifier
systems: From foundations to applications, volume 1813 of LNAI pages
83-104. Springer, 2000.

M. Bonn. JoSchKa: Jobverteilung in heterogenen und unzuverldissigen
Umgebungen. PhD thesis, Institut fiir Angewandte Informatik und For-
male Beschreibungsverfahren, Universitat Karlsruhe (TH), Karlsruhe,
Germany, 2008.

R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14-23, March 1986.

W. L. Brogan. Modern control theory. Prentice Hall, 3rd edition, 1991.

L. Bull, M. Studley, A. Bagnall, and I. Whittley. On the use of
rule-sharing in learning classifier system ensembles. In Proceedings of

References

[BSBWO7]

[BSH*07]

[BSTO7]

[Bul05]

[But00]

[But06]

[BWO00)

[BW02

IBZ91]

the 2005 IEEE Congress on Evolutionary Computation (CEC 2005),
volume 1, pages 612-617, September 2005.

L. Bull, M. Studley, A. Bagnall, and I. Whittley. Learning classifier
system ensembles with rule-sharing. IEEE Transactions on Evolutionary
Computation, 11(4):496-502, August 2007.

J. Bacardit, M. Stout, J. D. Hirst, K. Sastry, X. Llora, and N. Krasnogor.
Automated alphabet reduction method with evolutionary algorithms for
protein structure prediction. In D. Thierens, H.-G. Beyer, M. Birattari,
J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon, K. Deb,
B. Doerr, T. Kovacs, S. Kumar, J. F. Miller, J. Moore, F. Neumann,
M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stiitzle, R. A. Watson,
and [. Wegener, editors, Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO 2007), pages 346-353.
ACM, 2007.

S. M. Baneamoon, R. A. Salam, and A. Z. H. Talib. Learning process
enhancement for robot behaviours. International Journal of Intelligent
Technology, 2(3):172-177, 2007.

L. Bull. Two simple learning classifier systems. In L. Bull and T. Kovagcs,
editors, Foundations of Learning Classifier Systems, volume 183 of
Studies in Fuzziness and Soft Computing, pages 63-89. Springer, 2005.

M. V. Butz. XCSJava 1.0: An implementation of the XCS classifier
system in Java. Technical Report 2000027, Illinois Genetic Algorithms
Laboratory, Urbana, United States of America, 2000.

M. V. Butz. Rule-based evolutionary online learning systems: A prin-
cipled approach to LCS analysis and design. Studies in Fuzziness and
Soft Computing. Springer, 2006.

M. V. Butz and S. W. Wilson. An algorithmic description of XCS. In
P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Proceedings of
the International Workshop on Learning Classifier Systems (IWLCS
2000), volume 1996 of LNAI, pages 253-272, 2000.

M. V. Butz and S. W. Wilson. An algorithmic description of XCS. Soft
Computing, 6(3-4):144-153, June 2002.

C. Brezinski and M. R. Zaglia. FExtrapolation methods: Theory and
practice. North-Holland Publishing Co, 1991.

195

References

[BZ05]

[BZLO6]

[BZST06]

[CBYS]

[CBO4]

|CDF+03)

[CFM96]

[CGI96]

[CGLOS]

[CHMRS7]

[CHMS08a]

196

A.J. Bagnall and Z. V. Zatuchna. On the classification of Maze problems.
In L. Bull and T. Kovacs, editors, Foundations of Learning Classifier
Systems, volume 183 of Studies in Fuzziness and Soft Computing, pages
305-316. Springer, 2005.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through
continuous self-modelling. Science, 314(5802):1118-1121, November
2006.

A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer,
O. Bringmann, and W. Rosenstiel. Organic computing at the system
on chip level. In 2006 IFIP International Conference on Very Large
Scale Integration, pages 338-341, October 2006.

R. H. Crites and A. G. Barto. Elevator group control using multiple
reinforcement learning agents. Machine Learning, 33:235-262, 1998.

E. F. Camacho and C. Bordons. Model predictive control. Springer,
2004.

S. Camazine, J.-L.. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau. Self-organisation in biological systems. Princeton
Studies in Complexity. Princeton University Press, 2003.

B. Carse, T. C. Fogarty, and A. Munro. Evolving fuzzy rule-based
controllers using genetic algorithms. Fuzzy Sets and Systems, 80(3):273—
293, June 1996.

D. A. Cohn, Z. Ghahramani, and M. 1. Jordan. Active learning with
statistical models. Journal of Artificial Intelligence Research, 4:129-145,
1996.

V. Crespi, A. Galstyan, and K. Lerman. Top-down vs. bottom-up
methodologies in multi-agent system design. Autonomous Robots,
24(3):303-313, April 2008.

J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. S. Richards. Punc-
tuated equilibria: A parallel genetic algorithm. In J. J. Grefenstette,
editor, Proceedings of the 2nd International Conference on Genetic Al-
gorithms and their Application, pages 148-154. L. Erlbaum Associates
Incorporation, 1987.

E. Qakar, J. Hihner, and C. Miiller-Schloer. Creating collaboration
patterns in multi-agent systems with generic observer/controller ar-
chitectures. In Proceedings of the 2nd International ACM Conference

References

[CHMSO08b)]

[CMMS+07]

[CNSWOO]

|CPOO]

[Cri02]

[DALO5a]

[DALO5D|

IDBY4]

on Autonomic Computing and Communication Systems (Autonomics
2008). ICST (Institute for Computer Sciences, Social-Informatics, and
Telecommunications Engineering), 2008.

E. Cakar, J. Hihner, and C. Miiller-Schloer. Investigation of generic
observer /controller architectures in a traffic scenario. In H.-G. Hegering,
A. Lehmann, H. J. Ohlbach, and C. Scheideler, editors, INFORMATIK
2008, Beherrschbare Systeme — dank Informatik, volume 134 of LNI,
pages 733-738. GI, 2008.

E. Cakar, M. Mnif, C. Miiller-Schloer, U. Richter, and H. Schmeck.
Towards a quantitative notion of self-organisation. In Proceedings of
the 2007 IEEE Congress on Evolutionary Computation (CEC 2007),
pages 4222-4229. TEEE, 2007.

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Net-
work robustness and fragility: Percolation on random graphs. Physical
Review Letters, 85(25):5468-5471, 2000.

E. Cantu-Paz. Efficient and accurate parallel genetic algorithms. Kluwer
Academic Publishers, 2000.

M. Crichton. Prey. HarperCollins Publishers Incorporation, 1st edition,
2002.

H. H. Dam, H. A. Abbass, and C. Lokan. Be reall XCS with continuous-
valued inputs. In F. Rothlauf, M. Blowers, J. Branke, S. Cagnoni, I. I.
Garibay, O. Garibay, J. Grahl, G. Hornby, E. D. de Jong, T. Kovacs,
S. Kumar, C. F. Lima, X. Llora, F. Lobo, L. D. Merkle, J. Miller, J. H.
Moore, M. O’Neill, M. Pelikan, T. P. Riopka, M. D. Ritchie, K. Sastry,
S. L. Smith, H. Stringer, K. Takadama, M. Toussaint, S. C. Upton, and
A. H. Wright., editors, Proceedings of the Genetic and Fvolutionary
Computation Conference (GECCO 2005), pages 85-87. ACM, 2005.

H. H. Dam, H. A. Abbass, and C. Lokan. DXCS: An XCS system for
distributed data mining. In H.-G. Beyer, U.-M. O'Reilly, D. V. Arnold,
W. Banzhaf, C. Blum, E. W. Bonabeau, E. Cantu-Paz, D. Dasgupta,
K. Deb, J. A. Foster, E. D. de Jong, H. Lipson, X. Llora, S. Man-
coridis, M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P. Watson,
and E. Zitzler, editors, Proceedings of the Genetic and Fvolutionary
Computation Conference (GECCO 2005), pages 1883-1890. ACM, 2005.

M. Dorigo and H. Bersini. A comparison of Q-learning and classifier
systems. In Proceedings of the 3rd International Conference on Simu-

197

References

[DBS*02]

[de 88]

[de 99]

[Dec87|

[DF98]

[DFH*04]

[DGKO04|

[DGKO06]

[DKRZ04]

198

lation of Adaptive Behaviour: From Animals to Animats (SAB 1994),
pages 248-255. MIT Press, 1994.

M. Diehl, H. G. Bock, J. P. Schléder, R. Findeisen, Z. Nagy, and
F. Allgower. Real-time optimisation and nonlinear model predictive
control of processes governed by differential-algebraic equations. Journal

of Process Control, 12(4):577-585, June 2002.

K. A. de Jong. Learning with genetic algorithms: An overview. Machine
Learning, 3(2-3):121-138, October 1988.

B. de Boer. Self-organisation in vowel systems. PhD thesis, Facul-
teit Wetenschappen, Laboratorium voor Artificiéle Intelligentie, Vrije
Universiteit Brussel, Brussels, Belgium, 1999.

K. S. Decker. Distributed problem solving: A survey. IEEE Transactions
on Systems, Man, and Cybernetics, 17(5):729-740, 1987.

V. Decugis and J. Ferber. Action selection in an autonomous agent
with a hierarchical distributed reactive planning architecture. In K. P.
Sycara and M. Wooldridge, editors, Proceedings of the 2nd International
Conference on Autonomous Agents (AGENTS 1998), pages 354-361.
ACM, 1998.

G. Di Marzo Serugendo, N. Foukia, S. Hassas, A. Karageorgos,
S. Kouadri Mostéfaoui, O. F. Rana, M. Ulieru, P. Valckenaers, and
C. Van Aart. Self-organisation: Paradigms and applications. In G. Di
Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli,
editors, Engineering self-organising systems, volume 2977 of LNAI,
pages 1-19. Springer, 2004.

G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. Agentlink
first technical forum group self-organisation in multi-agent systems.
http://www.agentlink.org/newsletter/16/AL-16h.pdf, December
2004.

G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. Self-
organisation and emergence in multi-agent systems: An overview. In-
formatica, 30(1):45-54, 2006.

G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli,
editors. Engineering self-organising systems: Nature-inspired approaches
to software engineering, volume 2977 of LNAI Springer, 2004.

References

[DM93]

[Dor95]

IDPO4|

[DS93]

(DS9S]

[DS04]
[Ed08]

[EE99)]

[Ele07]

[ELMOS|

[Eng02]

[EPOS]

R. Davidson and J. G. MacKinnon. Estimation and inference in econo-
metrics. Oxford University Press, 1993.

M. Dorigo. ALECSYS and the AutonoMouse: Learning to control a real
robot by distributed classifier systems. Machine Learning, 19(3):209—
240, June 1995.

R. Dittmar and B.-M. Pfeiffer. Modellbasierte pridiktive Regelung: Eine
Einfiihrung fiir Ingenieure. Oldenbourg, 2004.

M. Dorigo and U. Schnepf. Genetics-based machine learning and
behaviour-based robotics: A new synthesis. IEFE Transactions on
Systems, Man, and Cybernetics, 23(1):141-154, 1993.

N. R. Draper and H. Smith. Applied regression analysis. John Wiley &
Sons, 1998.

M. Dorigo and T. Stiitzle. Ant colony optimisation. MIT Press, 2004.

W. Elmenreich and H. de Meer. Self-organising networked systems for
technical applications: A discussion on open issues. In K. A. Hummel
and J. P. G. Sterbenz, editors, Proceedings of the 3rd International
Workshop on Self-Organising Systems (IWSOS 2008), volume 5343 of
LNCS, pages 1-9. Springer, December 2008.

G. Enée and C. Escazut. Classifier systems: Evolving multi-agent
system with distributed elitism. In Proceedings of the 1999 Congress
on Evolutionary Computation (CEC 1999), volume 3, pages 1740-1746.
[EEE, 1999.

G. Elert. The chaos hypertextbook: Mathematics in the age of the
computer. http://hypertextbook.com/chaos, 2007.

A. El Sayed Auf, M. Litza, and E. Maehle. Distributed fault-tolerant
robot control architecture based on organic computing principles. In
Biologically-Inspired Collaborative Computing, volume 268 of IFIP Inter-
national Federation for Information Processing, pages 115-124. Springer,

2008.

A. P. Engelbrecht. Computational intelligence: An introduction. John
Wiley & Sons, 2002.

G. Enée and M. Peroumalnaik. Adapted Pittsburgh classifier system:
Building accurate strategies in non-Markovian environments. In M. Kei-
jzer, G. Antoniol, C. B. Congdon, K. Deb, B. Doerr, N. Hansen, J. H.

199

References

[FB95)

[FCGO6)

[Fer92|

[Fif79]

[Fir89]

[Fly72]

[FOW66]|

[FPS00|

[Fre83|

[Fri09)]

[Fro04]

200

Holmes, G. S. Hornby, D. Howard, J. Kennedy, S. Kumar, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stan-
ley, A. Stoica, E.-G. Talbi, and I. Wegener, editors, Proceedings of

the Conference Companion on Genetic and Evolutionary Computation
(GECCO 2008), pages 2001-2008. ACM, 2008.

T. C. Fogarty and L. Bull. Optimising individual control rules and
multiple communicating rule-based control systems with parallel dis-
tributed genetic algorithms. IEE Proceedings of Control Theory and
Applications, 142(3):211-215, May 1995.

B. Feltz, M. Crommelinck, and P. Goujon, editors. Self-organisation and
emergence in life sciences, volume 331 of Synthese Library. Springer,
2006.

I. A. Ferguson. Touringmachines: Autonomous agents with attitudes.
IEEE Computer, 25(5):51-55, 1992.

P. C. Fife. Mathematical aspects of reacting and diffusing systems,
volume 28 of LNB. Springer, 1979.

R. J. Firby. Adaptive execution in complex dynamic worlds. PhD thesis,
Yale University, New Haven, United States of America, 1989.

M. J. Flynn. Some computer organisations and their effectiveness. I[EEE
Transactions on Computers, 21(9):948-960, September 1972.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through
simulated evolution. John Wiley & Sons, 1966.

G. Folino, C. Pizzuti, and G. Spezzano. Genetic programming and
simulated annealing: A hybrid method to evolve decision trees. In
R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and
T. C. Fogarty, editors, Proceedings of the 3dr European Conference on
Genetic Programming (EuroGP 2000), volume 1802 of LNCS, pages
294-303. Springer, 2000.

J. M. Freeman. Relevance trees by empirical method. UMIST, Depart-
ment of Management Sciences, 1983.

A. Fritz. Using XCS for self-organising cleaning robots. Bachelor’s
thesis, Institute of Applied Informatics and Formal Description Methods,
Universitat Karlsruhe (TH), 2009.

J. Fromm. The emergence of complexity. Kassel University Press, 2004.

References

[Fro05]

[Fulg?]

[Gat98]

[Ger07]

[GHOG]

[Gia97]

[GMM™*06]

[Gol89]

[GPT1]

[GPMS9]

[GR92

[Grab9]

[Gra91]

J. Fromm. Ten questions about emergence. http://arxiv.org/abs/
nlin/0509049v1, September 2005.

W. A. Fuller. Measurement error models. John Wiley & Sons, 1987.

E. Gat. On three-layer architectures. In D. Kortenkamp, R. P. Bonnasso,
and R. Murphy, editors, Artificial Intelligence and Mobile Robots, pages
195-210. AAAT Press, 1998.

C. Gershenson. Design and control of self-organising systems. PhD the-
sis, Faculteit Wetenschappen, Center Leo Apostel for Interdisciplinary
Studies, Vrije Universiteit Brussel, Brussels, Belgium, March 2007.

P. I. Good and J. W. Hardin. Common errors in statistics (and how to
avoid them). Wiley & Sons, 2006.

A. Giani. Parallel cooperative classifier systems: A proposal for a
unifying framework, January 1997.

H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, and B. Schulz. Acute
stress response for self-optimising mechatronic systems. In Y. Pan, F. J.
Rammig, H. Schmeck, and M. Solar, editors, Proceedings of the 1st
IFIP Conference on Biologically Inspired Cooperative Computing (BICC
2006), volume 216 of IFIP International Federation for Information
Processing, pages 157-167. Springer, August 2006.

D. E. Goldberg. Genetic algorithms in search, optimisation, and ma-
chine learning. Addison-Wesley Longman, 1989.

P. Glansdorff and I. Prigogine. Thermodynamic study of structure,
stability, and fluctuations. John Wiley & Sons, 1971.

C. E. Garciaa, D. M. Prett, and M. Morari. Model predictive control:
Theory and practice — A survey. Automatica, 25(3):335-348, May 1989.

J. J. Grefenstette and C. L. Ramsey. An approach to anytime learning.
In Proceedings of the 9th International Workshop on Machine Learning,
pages 189-195. Morgan Kaufmann, 1992.

P.-P. Grassé. La reconstruction du nid et les interactions inter-
individuelles chez les bellicositermes natalenis et cubitermes sp. la
théorie de la stigmergie: Essai d’interprétation des termites construc-
teurs. Insectes Sociauz, 6:41-83, 1959.

C. Granger. Modelling economic series: Readings in econometric
methodology. Oxford University Press, 1991.

201

References

[GS02]

1GS07]

[Gui08]

[GWTS05]

[Hak81]

[HBC*00]

[HBNO]|

[HF02a]

[HFO2b)|

[HGO3]

202

D. Garlan and B. Schmerl. Model-based adaptation for self-healing
systems. In Proceedings of the 1st Workshop on Self-healing Systems
(WOSS 2002), pages 27-32. ACM, 2002.

M. Gershoff and S. Schulenburg. Collective behaviour based hierarchical
XCS. In Proceedings of the 2007 Genetic And Evolutionary Computation
Conference (GECCO 2007), pages 2695-2700. ACM, July 2007.

E. Guizzo. Three engineers, hundreds of robots, one warehouse. http:
//spectrum.ieee.org/jul08/6380, July 2008.

A. Gloye, F. Wiesel, O. Tenchio, and M. Simon. Reinforcing the driving
quality of soccer playing robots by anticipation. it — Information
Technology, 47(5):250-257, 2005.

H. Haken. Synergetics and the problem of self-organisation. In G. Roth
and H. Schwegler, editors, Self-Organising Systems: An Interdisciplinary
Approach, pages 9-13. Campus Verlag, 1981.

J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Goldberg,
S. Forrest, R. L. Riolo, R. E. Smith, P. L. Lanzi, W. Stolzmann, and
S. W. Wilson. What is a learning classifier system? In P. L. Lanzi,
W. Stolzmann, and S. W. Wilson, editors, Learning classifier systems:
From foundations to applications, volume 1813 of LNAI, pages 3-32.
Springer, 2000.

T. Hestermeyer, M. Becker, and N. Neuendorf. Nichtlineare ABC-
Regelungen mit Operator-Controller-Struktur, abgestimmt auf Fithrung
und Storung der Strafse. Technical report, Haus der Technik, Driveabil-
ity, Essen, Germany, 2001.

L. M. Hercog and T. C. Fogarty. Co-evolutionary classifier systems
for multi-agent simulation. In Proceedings of the 2002 Congress on
Evolutionary Computation (CEC 2002), volume 2, pages 1798-1803.
IEEE, 2002.

L. M. Hercog and T. C. Fogarty. Social simulation using a multi-
agent model based on classifier systems: The emergence of vacillating
behaviour in “el farol” bar problem. In P. L. Lanzi, W. Stolzmann, and
S. W. Wilson, editors, Proceedings of the jth International Workshop
on Learning Classifier Systems (IWLCS 2001), volume 2321 of LNAI
pages 88-111. Springer, 2002.

F. Heylighen and C. Gershenson. The meaning of self-organisation in
computing. [EEE Intelligent Systems, 18(4):72-75, July/August 2003.

References

[Hil85]

[HMTS3]

[HOO3]

[HOGO4]

[Hol75]

[Hol76]

[Hol86]

[Hol9s]|

[How60]

[HPY1]

[HR78)

[HRO5]

W. Hillis. The connection machine. Series in Artificial Intelligence.
MIT Press, 1985.

D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Understanding robust
and exploratory data analysis. John Wiley & Sons, 1983.

T. Hestermeyer and O. Oberschelp. Selbstoptimierende Fahrzeug-
regelung — Verhaltensbasierte Adaption. In Proceedings of the 1st
Paderborner Workshop on Intelligent Mechatronic Systems. HNI, 2003.

T. Hestermeyer, O. Oberschelp, and H. Giese. Structured informa-
tion processing for self-optimising mechatronic systems. In H. Aratjo,
A. Vieira, J. Braz, B. Encarnacao, and M. Carvalho, editors, Proceedings

of the 1st International Conference on Informatics in Control, Automa-
tion, and Robotics (ICINCO 2004), pages 230-237. IEEE, August 2004.

J. H. Holland. Adaptation in natural and artificial systems. University
of Michigan Press, 1975.

J. H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors,
Progress in Theoretical Biology, volume 4, pages 263-293. Academic
Press, 1976.

J. H. Holland. Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine learn-
ing: An artificial intelligence approach, volume 2, pages 593-623. Mor-
gan Kaufmann, 1986.

J. H. Holland. Emergence from chaos to order. Oxford University Press,
1998.

R. A. Howard. Dynamic programming and Markov processes. MIT
Press, 1960.

R. Hartley and F. Pipitone. Experiments with the subsumption archi-
tecture. In Proceedings of the 1991 IEEE Intemational Conference on
Robotics and Automatian, pages 1652-1658. IEEE, 1991.

J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive
algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern-
Directed Inference Systems, pages 313-329. Academic Press, 1978.

H. Henri and L. Risto. Calculation of elevator round-trip time for
the collective control algorithm in general traffic situations. TUCS

203

References

[HTP05]

[HTTS02]

[HU97]

[IBMOG]

[TK98]

[ITS05]

[Jal94]
[Jet89]

[JMF99)

[JohO1]

[Jol02]

204

Technical Report 671, Turku Centre for Computer Science, Turku,
Finland, March 2005.

P. J. Hoen, K. Tuyls, L. Panait, S. Luke, and J. A. L. Poutré. An
overview of cooperative and competitive multi-agent learning. In Pro-
ceedings of the 1st International Workshop on Learning and Adaption
in Multi-Agent Systems (LAMAS 2005), volume 3898 of LNAI, pages
1-46. Springer, 2005.

J. He, A.-H. Tan, C.-L. Tan, and S.-Y. Sung. On quantitative evaluation
of clustering systems. In W. Wu and H. Xiong, editors, Information
Retrieval and Clustering. Kluwer Academic Publishers, 2002.

T. Hikihara and S. Ueshima. Emergent synchronisation in multi-elevator
system and dispatching-control. IFICE Transactions on Fundamentals
of Electronics, Communications, and Computer Sciences, 80(9):1548~
1553, September 1997.

IBM Corporation. An architectural blueprint for autonomic comput-
ing. http://www-01.ibm.com/software/tivoli/autonomic/pdfs/
AC_Blueprint_White_Paper_4th.pdf, June 2006.

T. Ibaraki and N. Katoh. Resource allocation problems: Algorithmic
approaches. MIT Press, 1998.

H. Inoue, K. Takadama, and K. Shimohara. Exploring XCS in multi-
agent environments. In Proceedings of the 2005 Workshops on Genetic
and Evolutionary Computation Conference (GECCO 2005), pages 109
111. ACM, 2005.

P. Jalote. Fault tolerance in distributed systems. Prentice Hall, 1994.

G. Jetschke. Mathematik der Selbstorganisation — Qualitative Theorie
nichtlinearer dynamischer Systeme und gleichgewichtsferner Strukturen

in Physik, Chemie und Biologie. Deutscher Verlag der Wissenschaften,
1989.

A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264-323, 1999.

S. Johnson. Emergence: The connected lives of ants, brains, cities, and
software. Scribner Book Company, 2001.

I. T. Jolliffe. Principal component analysis. SSS. Springer, 2nd edition,
2002.

References

[JPF06]

[K4160]

[Kau93]

[KCO03]

[KLOO]

[KLSTO06]

[KMO7]

[KMO9]

[K5s90)]

[Kov97|

[Kov02]

[Kub03]

A. B. Jensen, R. Palme, and B. Forkman. Effect of brooders on feather
pecking and cannibalism in domestic fowl (Gallus gallus domesticus).
Applied Animal Behaviour Science, 99(3-4):287-300, September 2006.

R. E. Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35-45, 1960.

S. Kauffman. The origins of order: Self-organisation and selection in
evolution. Oxford University Press, 1993.

J. O. Kephart and D. M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41-50, January 2003.

T. Kovacs and P. L. Lanzi. A bigger learning classifier systems bib-
liography. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors,
Proceedings of the International Workshop on Learning Classifier Sys-
tems (IWLCS 2000), volume 1996 of LNAI, pages 213-249. Springer,
2000.

D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky. Foundations
of measurement: Additive and polynomial representations, volume 1.
Dover Pubn Incorporation, 2006.

J. Kramer and J. Magee. Self-managed systems: An architectural
challenge. In Proceedings of the International Conference the Future of
Software Engineering (FOSE 2007), pages 259-268. IEEE, 2007.

J. Kramer and J. Magee. A rigorous architectural approach to adaptive

software engineering. Journal of Computer Science and Technology,
24(2):183-188, March 2009.

A. Kosztler. The ghost in the machine. Penguin Group, 1990.

T. Kovacs. XCS classifier system reliably evolves accurate, complete,
and minimal representations for boolean functions. In P. K. Chawdhry,
R. Roy, and R. K. Pant, editors, Soft Computing in Engineering Design
and Manufacturing, pages 59—68. Springer, August 1997.

T. Kovacs. Learning classifier systems resources. Soft Computing,
6(3-4):240-243, June 2002.

A. Kubik. Toward a formalisation of emergence. Artificial Life, 9(1):41-
65, 2003.

205

References

[Lan98|

[Lan08§]

[Leh83]

[Leh90]

[Len64]

[Les95]

[LewT75|

[LKSTO06]

[Llo23]

[L1002]

[Lod09)

[LRBB04|

206

P. L. Lanzi. Adding memory to XCS. In Proceedings of the IEEE
International Conference on Evolutionary Computation (CEC 1998),
pages 609-614. IEEE, 1998.

P. L. Lanzi. Learning classifier systems: Then and now. Fvolutionary
Intelligence, 1(1):63-82, March 2008.

J.-M. Lehn. Supramolecular chemistry — Scope and perspectives
molecules, supermolecules, and molecular devices (Nobel lecture). Ange-
wandte Chemie International Edition in English, 27(1):89-112, 1988.

J.-M. Lehn. Perspectives in supramolecular chemistry — From molec-
ular recognition towards molecular information processing and self-
organisation. Angewandte Chemie International Edition in English,
29(11):1304 1319, 1990.

G. G. Lendaris. On the definition of self-organising systems. Proceedings
of the IEEE, 52(3):324-325, March 1964.

V. R. Lesser. Multi-agent systems: An emerging subdiscipline of
artificial intelligence. ACM Computing Surveys, 27(3):340-342, 1995.

G. H. Lewes. Problems of life and mind, volume 2. Kegan Paul, Trench,
Turbner & Co, 1875.

R. D. Luce, D. H. Krantz, P. Suppes, and A. Tversky. Foundations
of measurement: Representation, axiomatisation, and invariance, vol-
ume 3. Dover Pubn Incorporation, 2006.

C. Lloyd Morgan. Emergent evolution. In Williams and N. Ltd., editors,
The Gifford Lectures. Delivered in the University of St. Andrews in the
Year 1922, 1923.

X. Llora. Genetic based machine learning using fine-grained parallelism
for data mining. PhD thesis, Enginyeria i Arquitectura La Salle, Ramon
Llull University, Barcelona, Spain, February 2002.

C. Lode. XCS in dynamischen Multiagenten-Uberwachungsszenarien.
Diploma thesis, Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren, Universitédt Karlsruhe (TH), March 2009.

T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann. Stability-based
validation of clustering solutions. Neural Computation, 16(6):1299-1323,
2004.

References

[LRMBO7]

[LS06]

[LSWOO]

[LT75]

[LTS08]

[LTSKO6]

[LW00]

[LWO05]

[Mac00]

[Marb4]

X. Llora, R. Reddy, B. Matesic, and R. Bhargava. Towards better
than human capability in diagnosing prostate cancer using infrared
spectroscopic imaging. In D. Thierens, H.-G. Beyer, M. Birattari,
J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon, K. Deb,
B. Doerr, T. Kovacs, S. Kumar, J. F. Miller, J. Moore, F. Neumann,
M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stiitzle, R. A. Watson,
and I. Wegener, editors, Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO 2007), pages 2098
2105. ACM, 2007.

L. Liu and H. Schmeck. A roadmap towards autonomic service-oriented
architectures. International Transactions on Systems Science and Ap-
plications, 2(3):245-255, 2006.

P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors. Learning
classifier systems: From foundations to applications, volume 1813 of
LNAI Springer, 2000.

H. A. Linstone and M. Turoff. Delphi method: Techniques and applica-
tions. Addison-Wesley Educational Publishers Incorporation, 1975.

L. Liu, S. Thanheiser, and H. Schmeck. A reference architecture for self-
organising service-oriented computing. In U. Brinkschulte, T. Ungerer,
C. Hochberger, and R. G. Spallek, editors, Proceedings of the 21th
International Conference on Architecture of Computing Systems (ARCS
2008), volume 4934 of LNCS, pages 205-219. Springer, February 2008.

Y. I. Leon Suematsu, K. Takadama, K. Shimohara, and O. Katai.
Towards collective learning for MAS. http://www.ai.soc.i.kyoto-u.
ac.jp/iswa2006/Yutaka%201I.%20Leon?%20Suematsu.pdf, May 2006.

P. L. Lanzi and S. W. Wilson. Toward optimal classifier system per-
formance in non-Markov environments. FEvolutionary Computation,

8(4):393-418, December 2000.

S. Lorkowski and P. Wagner. Parameter calibration of traffic models in

microscopic on-line simulations. In Proceedings of the 84th Transporta-
tion Research Board Annual Meeting (TRB 2005), 2005.

S. MacDonald. Rolling the iron dice: Historical analogies and decisions
to use military force in regional contingencies. Greenwood Press, 2000.

A. A. Markov. Theory of algorithms. Academy of Sciences of the USSR,
1954.

207

References

[MBO6]

[MCD96]

[MHO6]|

[Mil43]

[Mit97]

S. H. Mahdavi and P. J. Bentley. Innately adaptive robotics through
embodied evolution. Autonomous Robots, 20(2):149-163, 2006.

M. Mitchell, J. P. Crutchfield, , and R. Das. Evolving cellular automata
with genetic algorithms: A review of recent work. In Proceedings of the
First International Conference on Fvolutionary Computation and its
Applications (EvCA 1996), pages 1-14, 1996.

M. Meyer and K. Hufschlag. A generic approach to an object-oriented
learning classifier system library. Journal of Artificial Societies and
Social Simulation (JASSS), 9(3), June 2006.

J. S. Mill. A system of logic: Ratiocinative and inductive, volume VII
and VIII. University of Toronto Press, Routledge and Kegan Paul, 1974
edition, 1843.

T. M. Mitchell. Machine learning. WCB/McGraw-Hill, 1997.

[MKKBBO06| S. Markon, H. Kita, H. Kise, and T. Bartz-Beielstein. Control of traffic

[MMBO02]

[MMS06]

[MMTZ06]

[Mni09]

[Mon05]

[MRB+07]

208

systems in buildings. Advances in Industrial Control. Springer, 2006.

A. Montresor, H. Meling, and O. Babaoglu. Messor: Load-balancing
through a swarm of autonomous agents. In G. Moro and M. Koubarakis,
editors, Proceedings of the 1st International Workshop on Agents and
P2P Computing (AP2PC 2002), volume 2530 of LNAI pages 125-137.
Springer, 2002.

M. Mnif and C. Miiller-Schloer. Quantitative emergence. In Proceed-
ings of the 2006 IEEE Mountain Workshop on Adaptive and Learning
Systems (IEEE SMCals 2006), pages 78-84. IEEE, July 2006.

M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli. Case studies
for self-organisation in computer science. Journal of Systems Architec-
ture, 52(8-9):443-460, August—September 2006.

M. Mnif. Quantitative Emergenz: Eine Quantifizierungsmethodik fiir
die Entstehung von Ordnung in selbstorganisierenden technischen Syste-
men. PhD thesis, Institut fiir Systems Engineering, Leibniz Universitét
Hannover, Hannover, Germany, 2009. To be published.

D. C. Montgomery. Design and analysis of experiments. John Wiley &
Sons, 6th edition, 2005.

M. Mnif, U. Richter, J. Branke, H. Schmeck, and C. Miiller-Schloer.
Measurement and control of self-organised behaviour in robot swarms.

References

[MRRS00]

[MS89)

[MS04

[MSS06]

[MVO1]

[NCVO6]

[New94]

NG5

[Nil86]

In P. Lukowicz, L. Thiele, and G. Tréster, editors, Proceedings of the
20th International Conference on Architecture of Computing Systems
(ARCS 2007), volume 4415 of LNCS, pages 209-223. Springer, March
2007.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36(6):789-814, June 2000.

B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms.
In J. Schaffer, editor, Proceedings of the 3rd International Conference
on Genetic Algorithms, pages 428-433. Morgan Kaufmann, 1989.

C. Miiller-Schloer. Organic computing: On the feasibility of con-
trolled emergence. In Proceedings of the 2nd IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System
Synthesis (CODES + ISSS 2004), pages 2-5. ACM, 2004.

C. Miiller-Schloer and B. Sick. Emergence in organic computing systems:
Discussion of a controversial concept. In L. T.Yang, H. Jin, J. Ma, and
T. Ungerer, editors, Proceedings of the 3rd International Conference on
Autonomic and Trusted Computing (ATC 2006), volume 4158 of LNCS,
pages 1-16. Springer, 2006.

H. Maturana and F. J. Varela. Autopoiesis and cognition: The realisa-
tion of the living (Boston studies in the philosophy of science). Springer,
1991.

M. J. North, N. T. Collier, and J. R. Vos. Experiences creating three
implementations of the repast agent modelling toolkit. ACM Transac-
tions on Modelling and Computer Simulation (TOMACS), 16(1):1-25,
2006.

A. Newell. Unified theories of cognition. Harvard University Press, 1st
edition, 1994.

F. Neri and A. Giordana. A parallel genetic algorithm for concept
learning. In L. J. Eshelman, editor, Proceedings of the 6th International
Conference on Genetic Algorithms, pages 436-443. Morgan Kaufmann,
1995.

N. J. Nilsson. Principles of artificial intelligence. Morgan Kaufmann,
1986.

209

References

[NP77]

[OGT+99]

[OHKKO2]

[Ost04]

[Par96|

[Par9g]

[Pat0g]

[Pic06]

[PMGOS]|

[Pol03]

210

G. Nicolis and I. Prigogine. Self-organisation in nonequilibrium system:
From dissipative structures to order through fluctuations. John Wiley

& Sons, 1977.

P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An

architecture-based approach to self-adaptive software. IEEFE Intelligent
Systems, 14(3):54-62, 1999.

O. Oberschelp, T. Hestermeyer, B. Kleinjohann, and L. Kleinjohann.
Design of self-optimising agent-based controllers. In C. Urban, edi-
tor, Proceedings of the 3rd International Workshop on Agent Based
Stmulation. SCS European Publishing House, April 2002.

M. Ostrowski. Simulation von Gruppenverhalten bei Hiihnern. Research
paper, Institute of Systems Engineering, Leibniz Universitdt Hannover,
July 2004.

H. V. D. Parunak. Applications of distributed artificial intelligence
in industry. In Foundations of distributed artificial intelligence, pages
139-164. John Wiley & Sons, 1996.

H. V. D. Parunak. What can agents do in industry, and why? An
overview of industrially-oriented R&D at CEC. In Proceedings of the 2nd
International Workshop on Cooperative Information Agents II, Learning,

Mobility, and Electronic Commerce for Information Discovery on the
Internet (CIA 1998), pages 1-18. Springer, 1998.

D. Pathmaperuma. Lernende und selbstorganisierende Putzroboter.
Diploma thesis, Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren, Universitat Karlsruhe (TH), April 2008.

C. Pickardt. Implementierung unterschiedlicher Steuerungsstrategien
fiir eine Fahrstuhlgruppe zur Untersuchung des Zusammenhangs von
Bunching-Effekt und Leistungsfahigkeit. Research paper, Institut fiir
Angewandte Informatik und Formale Beschreibungsverfahren, Univer-
sitdt Karlsruhe (TH), September 2006.

D. Poole, A. Mackworth, and R. Goebel. Computational intelligence:
A logical approach. Oxford University Press, 1998.

D. Polani. Measuring self-organisation via observers. In W. Banzhaf,
T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Proceedings
of the Tth European Conference on Advances in Artificial Life (ECAL
2003), volume 2801 of LNCS, pages 667—-675. Springer, September 2003.

References

[Pow95]

[PRT*08]

[PS90]

[PU99]

[Put05]

[Ray92]

[Ray94]

IRGO4]

[RGH*06]

[Rib07]

[Rin06]

[Rio8s]

B. A. Powell. Measurement and reduction of bunching in elevator dis-
patching with multiple term objection function (usp 5447212), Septem-
ber 1995.

H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Miiller-Schloer,
and H. Schmeck. Organic control of traffic lights. In C. Rong, M. G.
Jaatun, F. E. Sandnes, L. T. Yang, and J. Ma, editors, Proceedings of

the 5th International Conference on Autonomic and Trusted Computing
(ATC 2008), volume 5060 of LNCS, pages 219-233. Springer, 2008.

I. Prigogine and 1. Stengers. Dialog mit der Natur: Neue Wege natur-
wissenschaftlichen Denkens. Piper, 6th edition, 1990.

A. Pagan and A. Ullah. Nonparametric econometrics. Cambridge
University Press, 1999.

M. L. Puterman. Markov decision processes: Discrete stochastic dy-
namic programming. Wiley Series in Probability and Statistics. John
Wiley & Sons, 2nd edition, 2005.

T. S. Ray. An approach to the synthesis of life. In C. G. Langton,
C. Taylor, D. J. Farmer, and S. Rasmussen, editors, Proceedings of
Artificial Life 11, pages 371-408. Addison Wesley, 1992.

T. S. Ray. Evolution, complexity, entropy, and artificial reality. Physica
D, 75(1-3):239-263, August 1994.

C. L. Ramsey and J. J. Grefenstette. Case-based anytime learning. In
Case-Based Reasoning: Papers from the 1994 Workshop, 1994.

M. A. Riedmiller, T. Gabel, R. Hafner, S. Lange, and M. Lauer. Die
Brainstormers: Entwurfsprinzipien lernfdhiger autonomer Roboter. In-
formatik Spektrum, 29(3):175-190, June 2006.

O. Ribock. Using organic computing to control bunching effects.
Diploma thesis, Institute of Applied Informatics and Formal Description
Methods, Universitiat Karlsruhe (TH), October 2007.

G. Ringland. Scenario planning: Managing for the future. John Wiley
& Sons, 2006.

R. L. Riolo. Empirical studies of default hierarchies and sequences of
rules in learning classifier systems. PhD thesis, University of Michigan,
Ann Arbor, United States of America, 1988.

211

References

[RKE*08]

[RMO1]

[RMOS]

[RMB™06]

[RN02]

[Rob&7|

[Rot05]

[RPB*06]

[RPS08]

212

T. Rodenburg, H. Komen, E. D. Ellen, K. A. Uitdehaag, and J. A. M.
van Arendonk. Selection method and early-life history affect behavioural
development, feather pecking, and cannibalism in laying hens: A review.
Applied Animal Behaviour Science, 110(3-4):217-228, April 2008.

N. Roy and A. McCallum. Towards optimal active learning through
sampling estimation of error reduction. In C. E. Brodley and A. P.
Danyluk, editors, Proceedings of the 18th International Conference on
Machine Learning (ICML 2001), pages 441-448. Morgan Kaufmann,
2001.

U. Richter and M. Mnif. Learning to control the emergent behaviour
of a multi-agent system. In F. Kliigl, K. Tuyls, and S. Sen, editors,
Proceedings of the 2008 Workshop on Adaptive Learning Agents and
Multi-Agent Systems at AAMAS 2008 (ALAMAS+ALAg 2008), pages
33-40, May 2008.

U. Richter, M. Mnif, J. Branke, C. Miiller-Schloer, and H. Schmeck.
Towards a generic observer/controller architecture for organic comput-
ing. In C. Hochberger and R. Liskowsky, editors, INFORMATIK 2006 —
Informatik fiir Menschen!, volume P-93 of LNI, pages 112-119. Bonner
Kollen Verlag, October 2006.

S. J. Russell and P. Norvig. Artificial intelligence: A modern approach.
Prentice Hall, 2002.

G. G. Robertson. Parallel implementation of genetic algorithms in a
classifier system. In J. J. Grefenstette, editor, Proceedings of the 2nd
International Conference on Genetic Algorithms (ICGA 1987), pages
140-147. Lawrence Erlbaum Associates Incorporation, 1987.

G. Roth. Selbstorganisationseffekte und Prinzipien der Informationsver-
arbeitung im Gehirn. Information Technology, 47(4):182-187, 2005.

F. Rochner, H. Prothmann, J. Branke, C. Miiller-Schloer, and
H. Schmeck. An organic architecture for traffic light controllers. In
C. Hochberger and R. Liskowsky, editors, INFORMATIK 2006 — In-
formatik fiir Menschen!, volume P-93 of LNI, pages 120-127. Kollen
Verlag, October 2006.

U. Richter, H. Prothmann, and H. Schmeck. Improving XCS per-
formance by distribution. In X. Li, M. Kirley, M. Zhang, D. Green,
V. Ciesielski, H. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K. C.
Tan, J. Branke, and Y. Shi, editors, Proceedings of the 7th International

References

[RRSO0S]

[RvBT04]

SBOS]

[SBO3]

[Sch96]

[SchO1]

[SchO3]

[Sch05a]
[SchO5b)|

[Sch07]

[SCK95]

Conference on Simulated Evolution And Learning (SEAL 2008), volume
5361 of LNCS, pages 111-120. Springer, 2008.

O. Ribock, U. Richter, and H. Schmeck. Using organic computing to
control bunching effects. In U. Brinkschulte, T. Ungerer, C. Hochberger,
and R. G. Spallek, editors, Proceedings of the 21th International Con-
ference on Architecture of Computing Systems (ARCS 2008), volume
4934 of LNCS, pages 232-244. Springer, February 2008.

T. Rodenburg, Y. M. van Hierden, A. J. Buitenhuis, B. Riedstra,
P. Koene, S. M. Korte, J. J. van der Poel, T. G. G. Groothuis, and H. J.
Blokhuis. Feather pecking in laying hens: New insights and directions
for research? Applied Animal Behaviour Science, 86(3-4):291-298, June
2004.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT Press, 1998.

C. Stone and L. Bull. For real! XCS with continuous-valued inputs.
FEvolutionary Computation, 11(3):299-336, 2003.

P. Schwartz. Art of the long view: Planning for the future in an
uncertain world. Bantam Dell, 1996.

A. Scholl. Robuste Planung und Optimierung — Grundlagen, Konzepte
und Methoden, Ezxperimentelle Untersuchungen. Physica-Verlag, 2001.

F. Schweitzer, editor. Self-organisation of complex structures: From
mdividual to collective dynamics. Gordon and Breach Science Publishers,
2003.

H. Schmeck. Organic Computing. Kiinstliche Intelligenz, 3:68-69, 2005.

H. Schmeck. Organic computing: A new vision for distributed embedded
systems. In Proceedings of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2005), pages
201-203. IEEE, May 2005.

M. C. Schut. Scientific handbook for simulation of collective intelligence.
http://sci.collectivae.net, February 2007.

F. Seredynski, P. Cichosz, and G. P. Klebus. Learning classifier systems
in multi-agent environments. In Proceedings of the 1st International
Conference on Genetic Algorithms in Engineering Systems: Innovations
and Applications (GALESIA 1995), pages 287-292, September 1995.

213

References

[SFKS02)

[SGo4]

[Sha48al

[Sha4sb]

[Sha01|

[She94]

[Sii93]

[Sii97al

[Sii97h]

[Sim98|

[SKLT06]

ISL90]

214

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design tradeoffs
for the alpha EVS8 conditional branch predictor. In Proceedings of the

29th Annual International Symposium on Computer Architecture, pages
295-306. IEEE, 2002.

A. C. Schultz and J. J. Grefenstette. Evolving robot behaviours. Tech-
nical report, Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory, Washington, United States of America,
1994.

C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423, July 1948.

C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:623—656, October 1948.

C. R. Shalizi. Causal architecture, complexity and self-organisation in
time series and cellular automata. PhD thesis, University of Wisconsin,
Madison, Physics Department, Madison, United States of America,
2001.

W.-M. Shen. Autonomous learning from the environment. W. H.
Freeman & Co., March 1994.

M.-L. Siikonen. Elevator traffic simulation. Simulation, 61(4):257-267,
October 1993.

M.-L. Siikonen. Elevator group control with artificial intelligence. Tech-
nical report, Helsinki Universtity of Technology, Systems Analysis
Laboratory, Helsinki, Finland, 1997.

M.-L. Siikonen. Planning and control models for elevators in high-rise
buildings. PhD thesis, Helsinki Universtity of Technology, Systems
Analysis Laboratory, Helsinki, Finland, October 1997.

J. S. Simonoff. Smoothing methods in statistics. Springer, 1998.

P. Suppes, D. H. Krantz, R. D. Luce, and A. Tversky. Foundations of
measurement: Geometrical, threshold, and probabilistic representations,
volume 2. Dover Pubn Incorporation, 2006.

J.-J. E. Slotine and W. Li. Applied nonlinear control. Prentice Hall,
1990.

References

[SMO6]

[Smi80]

[Smig2)

[Smi83]

[SMR*04]

[SMS05]

[SMS08]

[SMSC+07]

[SQNOG]

D. A. Samuelson and C. M. Macal. Agent-based simulation comes of
age: Software opens up many new areas of application. OR/MS Today,
33(4):34-38, August 2006.

S. F. Smith. A learning system based on genetic adaptive algorithms.
Phd thesis, University of Pittsburgh, Pittsburgh, United States of
America, 1980.

J. M. Smith. Evolution and the theory of games. Cambridge University
Press, 1982.

S. F. Smith. Flexible learning of problem solving heuristics through
adaptive search. In Proceedings of the 8th International Joint Conference
on Artificial Intelligence, 1983.

C. Safarowsky, L. Merz, A. Rang, P. Broekmann, B. A. Hermann,
and C. A. Schalley. Template zweiter Ordnung: Geordnete Schichten
aus supramolekularen Quadraten auf einer Chlorid-bedeckten Cu(100)-
Oberflache. Angewandte Chemie, 116(10):1311-1314, February 2004.

T. Schéler and C. Miiller-Schloer. An observer /controller architecture
for adaptive reconfigurable stacks. In M. Beigl and P. Lukowicz, editors,
Proceedings of the 18th International Conference on Architecture of
Computing Systems (ARCS 2005), volume 3432 of LNCS, pages 139-153.
Springer, March 2005.

H. Schmeck and C. Miiller-Schloer. A characterisation of key prop-
erties of environment-mediated multi-agent systems. In D. Weyns,
S. A. Brueckner, and Y. Demazeau, editors, Proceedings of the In-
ternational Workshop Engineering Environment-Mediated Multi-Agent
Systems (EEMMAS 2007), volume 5049 of LNAI pages 17-38. Springer,
2008.

H. Schmeck, C. Miiller-Schloer, E. Cakar, M. Mnif, and U. Richter.
Adaptivity and self-organisation in organic computing systems. Sub-
mitted to ACM Transactions on Autonomous and Adaptive Systems
(TAAS), June 2007.

M. F. Santos, H. Quintela, and J. Neves. Agent-based learning classifier
systems for grid data mining. In Proceedings of the International
Workshop on Learning Classifier Systems (IWLCS 2006) at Genetic
and Evolutionary Computation Conference (GECCO 2006). ACM, 2006.

215

References

[SSE03]

[Ste05|

[Str67]

[Strosg]

[Sut88|

[SVO00|

[SWdo5]

[Tag92]

[TGD04]

[TKO1|

[TLS07]

[TNS02]

216

J. Sorsa, M.-L. Siikonen, and H. Ehtamo. Optimal control of double-
deck elevator group using genetic algorithm. International Transactions
in Operational Research, 10(2):103-114, 2003.

R. Sterritt. Autonomic computing. Innovations in systems and software
engineering, 1(1):79-88, March 2005.

G. R. Strakosch. Vertical transportation: FElevators and escalators. John
Wiley & Sons, 1967.

G. R. Strakosch, editor. The vertical transportation handbook. John
Wiley & Sons, 3rd edition, 1998.

R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9-44, August 1988.

P. Stone and M. Veloso. Multi-agent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345-383, June 2000.

N. P. Sood, A. G. Williams, and K. A. de Jong. Evaluating the
XCS learning classifier system in competitive simultaneous learning
environments. In Proceedings of the 2005 Workshops on Genetic and
Evolutionary Computation Conference (GECCO 2005), pages 112—-118.
ACM, 2005.

G. Taguchi. Taguchi on robust technology development: Bringing quality
engineering upstream. ASME Press, 1992.

M. Tomassini, M. Giacobini, and C. Darabos. Evolution of small-world
networks of automata for computation. In XinYao, E. Burke, J. A.
Lozano, J. Smith, J. J. Merelo-Guervoés, J. A. Bullinaria, J. Rowe,
P. Tino, A. Kaban, and H.-P. Schwefel, editors, Proceedings of the
Sth International Conference on Parallel Problem Solving from Nature
(PPSN VIII), volume 3242 of LNCS, pages 672-681. Springer, 2004.

S. Tong and D. Koller. Support vector machine active learning with ap-

plications to text classification. Journal of Machine Learning Research,
2:45-66, 2001.

S. Thanheiser, L. Liu, and H. Schmeck. Towards collaborative coping
with I'T complexity by combining SOA and organic computing. System
and Information Sciences Notes, 2(1):82-87, 2007.

K. Takadama, S. Nakasuka, and K. Shimohara. Robustness in
organisational-learning oriented classifier system. Soft Computing, 6(3—
4):229-239, June 2002.

References

[TPRT08|

[Tri06]

[TTS01]

[Twi92]

[Var79|

[von60]

[von05]

[Wat89]

[WD92]

[Weid1]

[WHRLO3]|

S. Tomforde, H. Prothmann, F. Rochner, J. Branke, J. Hé&hner,
C. Miiller-Schloer, and H. Schmeck. Decentralised progressive sig-
nal systems for organic traffic control. In S. Brueckner, P. Robertson,
and U. Bellur, editors, Proceedings of the 2nd IEEE International Con-
ference on Self-Adaption and Self-Organisation (SASO 2008), pages
413-422. IEEE, 2008.

V. Trianni. On the evolution of self-organising behaviours in a swarm
of autonomous robots. PhD thesis, Faculty of Applied Sciences of the
Université Libre de Bruxelles, Brussels, Belgium, 2006.

K. Takadama, T. Terano, and K. Shimohara. Learning classifier systems
meet multi-agent environments. In P. L. Lanzi, W. Stolzmann, and
S. W. Wilson, editors, Advances in Learning Classifier Systems, volume
1996 of LNAI pages 192-212. Springer, 2001.

B. C. Twiss. Forecasting for technologists and engineers: A practical
guide for better decisions. Institution of Engineering and Technology,
1992.

F. J. Varela. Principles of biological autonomy. North Holland, 1979.

H. von Foerster. On self-organising systems and their environments. In
M. C. Yovitts and S. Cameron, editors, Self-Organising Systems, pages
31-50. Pergamon Press, 1960.

I. von Richthofen. Simulation von adaptivem Verhalten bei Hithnern
in Kéfighaltung. Bachelor’s thesis, Institute of Systems Engineering,
Leibniz Universitat Hannover, September 2005.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge, Cambridge, United Kingdom, May 1989.

C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning. Machine
Learning, 8(3-4):279-292, May 1992.

M. Weiser. The computer for the twenty-first century. Scientific
American, 265(3):94-104, 1991.

A. Webb, E. Hart, P. Ross, and A. Lawson. Controlling a simulated
Khepera with an XCS classifier system with memory. In W. Banzhaf,
T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Proceedings
of the 7th European Conference on Artificial Life (ECAL 2003), volume
2801 of LNAI, pages 885-892. Springer, September 2003.

217

References

[Wil94]

[Wil95]

[Wilog]|

[Wil00al

[Wil00b)

[Wo002]

[YGWYS8S]

[ZBSHOS)

[ZE04]

218

S. W. Wilson. ZCS: A zeroth level classifier system. Fvolutionary
Computation, 2(1):1-18, 1994.

S. W. Wilson. Classifier fitness based on accuracy. Fvolutionary
Computation, 3(2):149-175, 1995.

S. W. Wilson. Generalisation in the XCS classifier system. In J. R.
Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel,
M. H.Garzon, D. E. Goldberg, and a. R. R. Hitoshi Iba, editors, Pro-
ceedings of the 3rd Annual Conference on Genetic Programming, pages
665-674. Morgan Kaufmann, 1998.

S. W. Wilson. Get real! XCS with continuous-valued inputs. In P. L.
Lanzi, W. Stolzmann, and S. W. Wilson, editors, Learning classifier
systems: From foundations to applications, volume 1813 of LNAI, pages
209-219. Springer, 2000.

S. W. Wilson. Mining oblique data with XCS. In P. L. Lanzi, W. Stolz-
mann, and S. W. Wilson, editors, Proceedings of the 3rd International
Workshop on Advances in Learning Classifier Systems (IWLCS 2000),
volume 1996 of LNCS, pages 158-174. Springer, 2000.

M. J. Wooldridge. An introduction to multi-agent systems. John Wiley
& Sons, 1st edition, 2002.

F. E. Yates, A. Garfinkel, D. O. Walter, and G. B. Yates. Self-organising
systems: The emergence of order. Springer, 1988.

J. Zeppenfeld, A. Bouajila, W. Stechele, and A. Herkersdorf. Learning
classifier tables for autonomic systems on chip. In H.-G. Hegering,
A. Lehmann, H. J. Ohlbach, and C. Scheideler, editors, INFORMATIK
2008, Beherrschbare Systeme — dank Informatik, volume 134 of LNI,
pages 771-778. GI, 2008.

P. Zikopoulos and J. Escott. DB2 UDB Version 8.2 and autonomic com-
puting. http://www-106.1ibm.com/developerworks/db2/library/
techarticle/dm-0406zikopoulos/index.html, June 2004.

The complexity of technical systems continuously increases, break-
downs and fatal errors occur quite often. Therefore, the mission of
organic computing 1s to tame these challenges by providing appro-
priate degrees of freedom for self-organised behaviour. Technical
systems should adapt to changing requirements of their execution
environment, in particular with respect to human needs. To achieve
these ambitious goals, adequate methods and techniques have to be
developed. The proposed generic observer/controller architecture
constitutes one way to achieve controlled self-organisation in tech-
nical systems.

To improve the design of organic computing systems, the observ-
er/controller architecture 1s applied to multi-agent scenarios from
the predator/prey domain, which serve as testbeds for evaluation.
Thereby, the aspect of on-line learning using learning classifier
systems 1s specially addressed.

ISBN 978-3-86644-431-

7
170 >

ISBN 978-3-86644-431-7 oll7g3866la443

	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Approach
	1.3 Major Contributions
	1.4 Reader's Guide to this Thesis
	1.5 How this Thesis Was Written

	2 Organic Computing (OC)
	3 Controlled Self-Organisation
	3.1 Self-Organisation
	3.1.1 Understanding Self-Organisation from the Viewpoint of Different Sciences
	3.1.2 Properties of Self-Organisation
	3.1.3 Definition of Self-Organisation
	3.1.4 Summary

	3.2 Emergence
	3.3 Architectures for Controlled Self-Organisation
	3.4 Summary

	4 Observer/Controller Architecture
	4.1 Observer
	4.1.1 Model of Observation
	4.1.2 Monitor
	4.1.3 Log File
	4.1.4 Pre-Processor
	4.1.5 Data Analyser
	4.1.6 Predictor
	4.1.7 Aggregator
	4.1.8 Summary

	4.2 Controller
	4.2.1 Level 1
	4.2.2 Level 2
	4.2.3 Summary

	4.3 On-Line Learning and Off-Line Planning Capabilities
	4.4 Architectural Variants of the Observer/Controller Architecture
	4.5 Related Architectures
	4.5.1 Autonomic Computing
	4.5.2 Operator/Controller Module
	4.5.3 Sense, Plan, and Act (SPA)
	4.5.4 Component Control, Change Management, and Goal Management
	4.5.5 Control Theory
	4.5.6 Other Related Approaches

	4.6 Summary

	5 Learning to Control
	5.1 General Thoughts on Learning
	5.2 Machine Learning
	5.3 Learning Classifier Systems (LCSs)
	5.3.1 Pittsburgh vs. Michigan Style
	5.3.2 Single-Step vs. Multi-Step Problems
	5.3.3 Different Implementations
	5.3.4 The eXtended Classifier System (XCS)

	5.4 Drawbacks of LCSs
	5.5 Parallelism in LCSs
	5.5.1 Single-Agent Learning Approach
	5.5.2 Multi-Agent Learning Approach

	5.6 Level 2 and Another Covering Method
	5.7 Summary

	6 Test Scenarios
	6.1 Multi-Agent Systems
	6.1.1 The Predator/Prey Example
	6.1.2 Homogeneous and Non-Communicating Agents
	6.1.3 Heterogeneous and Non-Communicating Agents
	6.1.4 Homogeneous and Communicating Agents
	6.1.5 Heterogeneous and Communicating Agents
	6.1.6 Cooperative and Competitive Multi-Agent Learning
	6.1.7 Concluding Remarks

	6.2 Chicken Simulation
	6.2.1 Agent Behaviour
	6.2.2 General Simulation Structure
	6.2.3 Observing the Chickens
	6.2.4 Controlling the Chickens
	6.2.5 Discussion of Special Aspects

	6.3 Other Multi-Agent Scenarios
	6.3.1 Lift Simulation
	6.3.2 Cleaning Robots
	6.3.3 Multi-Rover Scenario

	6.4 Summary

	7 Experimental Design
	7.1 Design Guidelines
	7.2 Pre-Experimental Planning
	7.2.1 Selection of the Response Variables
	7.2.2 Choice of Factors, Levels, and Ranges

	7.3 Choice of Experimental Designs

	8 Results
	8.1 Preliminary Experiments
	8.1.1 Chicken Simulation without Control
	8.1.2 Parameter Studies Using Single Fixed Rules Controller

	8.2 Learning to Control
	8.2.1 Effect of Varying the Search Space
	8.2.2 Effect of Simulation Time
	8.2.3 Effect of Varying Maximal Population Sizes
	8.2.4 Effect of Reward Functions
	8.2.5 Effect of Other Parameters as Known from Literature
	8.2.6 Pure On-Line Learning
	8.2.7 Learning over Thresholds
	8.2.8 Summary

	8.3 Parallel XCS Architectures
	8.3.1 2PXCS
	8.3.2 3PXCS
	8.3.3 HXCS
	8.3.4 Limitations of the Single-Agent Learning Approach

	8.4 Using Level 2 Learning
	8.5 Using Another Metric on the Observer's Side
	8.6 Concluding Remarks on the Experiments

	9 Conclusion and Outlook
	9.1 Summary
	9.2 Conclusion
	9.2.1 LCSs as Part of the On-Line Learning Level
	9.2.2 Speeding up the Learning Process by Parallelism
	9.2.3 Combining On-Line Learning and Off-Line Planning
	9.2.4 Generality of the Experimental Results

	9.3 Outlook
	9.3.1 Outlook from the Viewpoint of the Investigated Scenario
	9.3.2 Outlook from the Viewpoint of the OC Community
	9.3.3 Outlook from the Viewpoint of the LCSs Community

	9.4 Final Remarks

	References

