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Chapter 1

Introduction

When the size of a nanocontact approaches the atomic scale, its physical properties are sig-
nificantly altered [1]. As an example, the conductance of any macroscopic metallic contact
is described by Ohm’s law, which states that the conductance of the contact is propor-
tional to its cross-section and inversely proportional to its length. But when the size of the
contact reaches the atomic scale, Ohm’s law breaks down. The parallel advance of theory
and of micro-fabrication techniques made it possible to obtain a thorough understanding
of this regime, both theoretically and experimentally.

On the theory side, the limits of Ohm’s law for thin diffusive contacts were already
discussed by Maxwell [2]. Later Sharvin derived an expression of the conductance for a
ballistic contact, by comparing the electrical current passing the contact with the flow
of a dilute ideal gas through an orifice [3]. Although based on semi-classical arguments,
Sharvin’s expression for the conductance describes thick ballistic nanocontacts well.

However, due to the limitations of the semi-classical approach, the Sharvin conductance
does not account for purely quantum effects which dominate when the size of the contact
becomes so small that the wave nature of an electron can no longer be ignored. Landauer
pointed out [4, 5] that in this case, the conductance G for the sample is described by its
quantum mechanical transmission. This description was later expanded by Büttiker [6, 7]
to the case of several transmission channels with transmission τj and the presence of a
magnetic field. The Landauer-Büttiker formula of the conductance marks the basis of the
present understanding of the conductance properties of mesoscopic samples and it reads
for spin-degenerate systems:

G =
2e2

h

∑
j

τj , (1.1)

where e is the electron charge and h Planck’s constant. The constant of proportionality
G0 = 2e2/h is called the quantum of conductance. The Landauer-Büttiker expression for
a linear chain of atoms with one orbital per site was first derived by Caroli and coworkers
[8]. Later it was generalized to arbitrary contacts by Ferrer et al. [9]. In this form, the
conduction properties can be derived once the system’s electronic Hamiltonian is known.

On the experimental side, the invention of the scanning tunneling microscope (STM) by
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2 Introduction

Binnig and Rohrer [10, 11] stimulated the development of a variety of related instruments
that are able to measure a variety of physical properties of a surface with atomic resolution.
Very appealing examples of the possibilities to manipulate atoms on surfaces in a controlled
manner were given by Eigler and coworkers [12, 13].

Gimzewski and Möller have been the first to employ an STM to study the conductance
of an atomic contact [14]. Later it was used by Agräıt and coworkers to characterize the
mechanical properties [15] as well as the elastic [16] and inelastic [17] conduction properties
of contacts consisting of atomic chains of gold.

In spite of the great versatility of the STM technique, it mainly suffers from mechan-
ical instability due to long, unsupported parts in the construction. As a remedy, in 1992
Muller and coworkers [18] introduced the so-called Mechanically Controllable Break Junc-
tion (MCBJ) technique, dedicated to the study of atomic-sized junctions. With minimiza-
tion of the unsupported parts it is possible to mechanically stabilize the contacts during the
breaking process with a precision of some picometers. This technique was intensively used
to study the conduction properties of various atomic metal contacts. Using the nonlinear
subgap structure of the superconducting I-V -curves of atomic contacts – elaborated inde-
pendently by Cuevas and Averin (and coworkers) [19, 20] – Scheer et al. [21] could measure
the conductance channels of atomic contacts of example metals. They find that the num-
ber of conductance channels of a one-atom contact is limited by the number of available
valence orbitals. For an overview of the experimental results on conduction properties of
atomic metal contacts we refer to the PhD thesis of Yanson [22].

Parallel to the experimental progress also the theoretical understanding of the prop-
erties of nanoscale wires advanced. Molecular Dynamics (MD) simulations were used to
describe the mechanical deformation of an atomic wire during stretching [23]. The conduc-
tion properties of metallic atomic contacts were investigated with different approaches to
describe the electronic structure of the contacts, such as a semi-empirical potential [24], a
tight-binding Hamiltonian [25, 26], and later ab initio Density Functional Theory (DFT)
calculations [27].

Until recently, the discussion of transport in atomic contacts was limited to metals
with partially occupied valence bands only. In the case of atoms of divalent elements like
magnesium and zinc the outermost s orbitals are filled. As a consequence, small atomic
clusters of these materials show an insulating behavior with an important gap between
Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital
(LUMO) [28, 29]. However in the bulk limit the s and p orbitals hybridize and lead to
metallic properties. For the intermediate case of atomic contacts however it is a priori not
obvious whether metallic or insulating behavior is retained. The aim of the first part of
this thesis is to extend the analysis of transport properties of atomic contacts to the case
of the divalent metals magnesium and zinc.

In non-magnetic atomic metal contacts the electronic spin is degenerate. The second
part of the thesis is dedicated to the analysis of ferromagnetic atomic contacts, in which
this degeneracy is lifted. The non-zero spin as additional degree of freedom opens a new
field of applications beyond the charge-controlled electronics, the “Spintronics” [30].

The most remarkable spin-related effect appears in multilayer systems, where ferromag-
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netic layers are separated by nonmagnetic spacers. When the magnetization direction in
one of the ferromagnetic layers is rotated with respect to the other, the resistance changes
drastically (up to 80%). This so-called Giant Magnetoresistance is a purely spin-related
effect and it was discovered independently by the groups of Grünberg and Fert in 1988
[31, 32].

In the limit of atomic contacts, also the magnetic properties differ considerably from
bulk [33] and therefore may give rise to interesting effects in this regime. Indeed Garcia and
coworkers reported a strongly enhanced Magnetoresistance of 200% in nanowires of Ni [34].
Although the origin of these findings is under debate [35] and the high Magnetoresistance is
supposed to be rather due to magnetostriction than of electronic nature, these experiments
stimulated the research in ferromagnetic atomic contacts in the following years.

A lot of attention has been devoted to the experimental [22, 36–55] and theoretical [56–
68] analysis of atomic contacts of the 3d ferromagnetic materials. In particular the analysis
of conductance histograms of those contacts has produced contradictory results. On one
hand, several groups have reported conductance histograms that resemble those of noble
metals like Au, with peaks at half-integer multiples of G0 [42–47]. Similar to the case of Au,
these findings were attributed to conductance quantization in those contacts [45]. On the
other hand, Untiedt et al. [48] reported the absence of conductance quantization in atomic
contacts of the 3d ferromagnetic materials. Instead they find conductance histograms of
those contacts that are typical for transition metals like Pt.

Furthermore it was reported that the Anisotropic Magnetoresistance (AMR) in atomic
contacts of the 3d ferromagnetic materials shows an increased amplitude and deviates
strongly from the bulk behavior (see Fig. refFig:amr-exp(b),(c) and [54, 55]).

The theoretical works dedicated to the study of atomic contacts of the 3d ferromagnetic
materials are either limited to idealized systems like linear chains [57–59, 61–63, 69, 70] or
focus on particular issues of one material only [64–68]. The aim of the second part of this
thesis is to study general conduction properties of the atomic contacts of the 3d ferromag-
netic materials iron, cobalt, and nickel. In particular we will analyze the contribution of
the 3d orbitals to the conductance and discuss the consequences that arise in the tunneling
regime. Furthermore we will study in detail the peculiar change of the AMR properties
when going from bulk to the atomic contact limit.



4 Introduction

Outline of the thesis:
The main interest of this thesis consists in the analysis of the conduction properties

of metallic atomic contacts. In Chapter 2 we will introduce the models used to describe
the electronic structure of such systems, with special emphasis on a tight-binding model.
Furthermore we will derive the expressions for the equilibrium properties [mainly the local
density of states (LDOS)] and the elastic current there.

In Chapter 3 we first discuss a simplified linear chain model. Then we use the tight-
binding model to discuss the elastic transport properties for non-magnetic atomic contacts
of some example metals.1 In the case of Al we can directly compare to ab initio calculations
by means of density functional theory [72]. We will expand the discussion to the bivalent
metals Mg and Zn [73–75], which were not analyzed until now. We can compare our
theoretical results to experiments that were simultaneously carried out in the groups of
Prof. Scheer at Universität Konstanz and Prof. van Ruitenbeek at Leiden University.

In Chapter 4 we extend the model to the study of ferromagnetic atomic contacts of Fe,
Co, and Ni [76]. We first focus on ideal contact geometries of the 3d ferromagnets and
discuss their general conduction properties. In particular we will analyze the current in
the tunneling regime. By combining the electronic structure calculation with a separate
Molecular Dynamics simulation we can analyze at the same time the evolution of an atomic
contact of Ni and derive its conduction properties, including a conductance histogram [77].

Chapter 5 is devoted to the anisotropy properties of the ferromagnetic atomic contacts,
induced by the spin-orbit coupling [78]. We first analyze a minimal model of a linear
chain similar to Chapter 3 and derive the most striking features. Next we discuss the
anisotropy properties of the conduction for ideal contact geometries of those materials and
under perturbation of the geometries. Then we analyze the anisotropy properties of the
contact geometries obtained from Molecular Dynamics simulations and discuss the small
orbital momentum induced by the spin-orbit coupling. Finally we study the influence of
impurities in the leads on the anisotropy and conclude on the temperature dependence of
the observed anisotropies.

A summary of this thesis is presented in Chapter 6.

1An extension to inelastic transport due to electron-phonon interaction (not considered here) can be
found in Ref. [71].



Chapter 2

Theoretical framework

In this Section we want to discuss the model we use to describe the current through an
atomic constriction. We start with the description of the electronic structure mainly in
terms of a tight-binding (TB) model and derive the expression for the current from that.

2.1 Electronic structure

We show in this Section how we describe the electronic structure of an atomic contact.
As in this work we concentrate on metallic atomic contacts, we will mainly apply the
TB approach, which proofs to be an efficient and sufficiently accurate way to describe
the electronic structure of those systems. Thus the focus in the following will lie on this
approach. However we will compare for some exemplary cases with more advanced and
justified ab initio density functional theory (DFT) calculations. For this reason we also
give a brief introduction to the DFT approach at the end of this Section.

The TB approach originates from applications in solid-state physics and is reviewed
in most textbooks (see for example [79, 80]). In the next Sections we follow closely an
overview given in [81].

2.1.1 Tight-binding approach

Let us start with defining the meaning of “tight-binding”model: The problem we are inter-
ested in is how to determine the electronic structure of a system composed of a collection
of atoms that are located in different positions that we denote by Ri. The corresponding
Hamiltonian H of this system can always be written in a local basis, i.e. in a basis formed
by single-particle wave functions that are localized around the different atomic positions.
This is the spirit of the method known as linear combination of atomic orbitals (LCAO),
which is widely used in theoretical chemistry. The first approximation in the tight-binding
approach is to assume that the Hamiltonian written in second quantization adopts the
following form:

Ĥ =
∑

ij,αβ,σ

[H]iα,jβ,σ ĉ
†
iα,σ ĉjβ,σ , (2.1)

5



6 Theoretical framework

where ĉ†iα,σ creates the state |iασ〉 that corresponds to the localized orbital α with spin σ
that is centered around Ri, i.e. 〈r|iασ〉 = φiασ (r) = φασ (r−Ri). This generic form for the
Hamiltonian implies that either the many-body interactions – such as the electron-electron
interaction – are neglected or that they are taken into account in a mean field manner by
an appropriate choice of the matrix elements. In the case of the preceding Hamiltonian,
the matrix elements are rigorously defined as

[H]iα,jβ,σ =

∫
d3r φ∗

ασ (r−Ri)

[
− ~2

2m
∇2 + V (r)

]
φβσ (r−Rj) , (2.2)

where V (r) is the potential that describes the Coulomb interaction between the electrons
and ions. Note that, in the absence of spin-orbit coupling, the Hamiltonian is diagonal in
spin space. Finally, in the TB approach, as it is used here, the matrix elements are not
determined from first principles, i.e. from a direct evaluation of the integral in Eq. 2.2, but
they are used merely as parameters that may be derived approximately or may be fitted
to experiment or other theory.1 So, by TB model we mean here a model, in which the
system is described in terms of a single-particle Hamiltonian written in a local basis, the
elements of which are determined in a empirical or semi-empirical way. The various TB
models differ in the way in which these parameters are obtained. In a later Section 2.1.4
we will describe in detail, how these parameters are determined in practice.

Generally, there are two situations where the wave function associated with a TB model
can be easily determined. The first one corresponds to the case of a small finite system
such as a cluster of atoms or a molecule and the second one corresponds to the case of an
infinite periodic system. In the first case, the Hamiltonian can be diagonalized by writing
first the wave function as a combination of localized orbitals:

Φσ (r) =
∑
jβ

ajβφjβσ (r) , (2.3)

Together with the Schrödinger equation this leads immediately to the following set of
equations for the coefficients: ∑

jβ

[H− εS]iα,jβ,σ ajβ = 0 , (2.4)

where ε is the energy and

[S]iα,jβ,σ =

∫
d3r φ∗

ασ (r−Ri)φβσ (r−Rj) (2.5)

is the overlap between the states |iασ〉 and |jβσ〉. Here, we have taken into account
the possibility that the localized orbitals centered on different atoms usually are non-
orthogonal. These equations have non-trivial solutions if

det (H− εS) = 0 , (2.6)

1In this sense the orbital index α should rather be considered as a projection of the Hamiltonian elements
on the orbital symmetries α than being due to an atomic orbital α.



2.1 Electronic structure 7

where the symbol “det” denotes the determinant of the matrix appearing inside the brack-
ets. The roots of this secular equation yield the eigenenergies or energy levels of the finite
problem and the eigenfunctions are the corresponding waves functions (or molecular or-
bitals) of the system. The dimension of the matrices in Eq. (2.6) is simply the total number
of localized orbitals in the problem. Therefore, the solution of the generalized eigenvalue
problem of Eq. (2.6) typically requires resorting to numerics.

In the case of an infinite periodic system, typical in solid state physics, one can diago-
nalize the Hamiltonian making use of Bloch’s theorem (see for instance Ref. [79]). The idea
goes as follows: Consider a periodically replicated unit cell, where the lattice vectors are
denoted as Rm, with a set of atoms i located at positions bi in each unit cell. Associated
with each atom is a set of atomic-like orbitals φiασ, where α denotes both the orbital and
angular quantum number of the atomic state. The Hamiltonian can be easily diagonalized
in reciprocal space as follows. We first construct the wave functions (Bloch sums)

Φkiασ (r) =
1√
N

∑
n

exp (ik ·Rn)φασ (r−Rn−bi) , (2.7)

where k is the Bloch wave vector, which is restricted to the Brillouin zone, and N is the
number of unit cells in the sum. The solution of Schrödinger’s equation for wave vector k
requires the diagonalization of the Hamiltonian matrix using the basis functions of Eq. (2.7).
Since the Hamiltonian has the periodicity of the lattice, this basis will block-diagonalize
the Hamiltonian, with each block having a single value of k. Within one of these blocks,
the matrix elements can be written in the form

[H]iα,jβ,σ (k) =
∑

n

exp (ik ·Rn)

∫
d3r φ∗

ασ (r−Rn−bi)

[
−~2∇2

2m
+ V (r)

]
φβσ (r− bj) ,

(2.8)
where we have used the translation symmetry of the lattice to remove one of the sums over
the lattice vector Rm. In the same way, one can also define the overlap matrix in reciprocal
space where the different elements adopt the form:

[S]iα,jβ,σ (k) =
∑

n

exp (ik ·Rn)

∫
d3r φ∗

ασ (r−Rn−bi)φβσ (r− bj) . (2.9)

This time the corresponding secular equation reads

det [H (k)− εS (k)] = 0 . (2.10)

The solution of this generalized eigenvalue problem yields the different energy bands, εµ (k)
of the solid and the eigenvector matrix [Q (k)]ℵ,µ. Here ℵ collects the indices of the atom i
of the unit cell, orbital α, and spin σ, and µ counts the energy bands. Notice that the total
number of energy bands, i.e. the number of solutions of Eq. (2.10), equals the number of
atoms in the unit cell times the number of orbitals per atom and spin.

An important quantity for many purposes is the density of states (DOS) per unit energy
ε (and per unit volume in extended matter). The DOS projected onto a given atom, orbital
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and spin of the unit cell (fixed by the index ℵ) is defined in terms of the energy bands
εµ (k) as follows:

ρℵ (ε) =
1

N

∑
k,µ

∣∣∣[Q (k)]ℵ,µ

∣∣∣2 δ (εµ (k)− ε) =
Ωcell

(2π)d

∑
µ

∫
BZ

ddk
∣∣∣[Q (k)]ℵ,µ

∣∣∣2 δ (εµ (k)− ε) ,

(2.11)
where BZ denotes the Brillouin zone, Ωcell is the volume of the unit cell, and d is the
dimensionality of the system.

In the case of infinite, non-periodic systems, like the atomic-scale junctions we are
interested in, the determination of the wave function is literally impossible. However,
the use of the Green’s functions techniques described below allows to extract most of the
relevant information about the electronic structure from a tight-binding model.

2.1.2 Matrix elements

In the context of solid state physics most applications are based on the seminal paper
of Slater and Koster (SK) [82], in which a modified LCAO method to interpolate the
results of first-principles electronic structure calculations was proposed. As Slater and
Koster noted, at that time (1954) it was computationally impossible to directly evaluate
the large number of integrals occurring in the LCAO method. However, since this approach
shows all the correct symmetry properties of the energy bands and provides solutions of
the single-particle Schrödinger’s equation at arbitrary points in the Brillouin zone, they
suggested that these integrals could be considered as adjustable constants determined from
the results of other, more detailed, calculations. In order to understand the basis of the
simplified LCAO/TB method proposed by SK, we first need to discuss in certain detail the
nature of the matrix elements that appear in the tight-binding approach. This will be done
in the rest of this Section, whereas the explanation of the SK-method will be postponed to
a next Section (2.1.4).

The symmetries of the basis orbitals and the crystal or molecule are considered in the
tight-binding approach. The atom-like functions φnlm can be written as radial functions
multiplied by spherical harmonics,

φnlm (r) = φnl (r)Ylm (r̂) , (2.12)

where r = |r|, r̂ = r/r, and n indicates different functions with the same angular mo-
mentum. The imaginary part of the spherical harmonics is controlled by the magnetic
quantum number m: Y ∗

lm = Yl,−m. Typically, we use real basis functions that can be de-
fined similarly in terms of real angular functions as S+

lm = (Ylm + Yl,−m) /
√

2 and S−
lm =

(Ylm − Yl,−m) /i
√

2. The examples of real s (l = 0), p (l = 1), and d (l = 2) orbitals are
given in Fig. 2.1. Analytical expressions of the angular dependence of these real orbitals
can be found in many textbooks, see e.g. Refs. [80, Chapter 1] or [83]. These atomic-like
orbitals then serve as basis function on each site of the physical system.

The key problem in a TB model is to determine the matrix elements (or integrals) that
appear both in Eq. (2.8) and in Eq. (2.9). Those matrix elements can be divided into one-,
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m = 0

m = 0 m =   1 m =   2

m =   1

+−+−

+−

Figure 2.1: A sketch of the contours of the s-orbital and the d-orbitals with different
magnetic quantum number m. The px- and py-orbitals, as well as the dyz- and dzx-orbitals
(dxy- and dx2−y2-orbitals) transform into each other with a rotation by±π/2 (±π/4) around
the z-axis.

two-, and three-center integrals. The simplest is the overlap matrix in Eq. (2.9), which
involves only one center if the two orbitals are on the same site and two centers otherwise.
The Hamiltonian matrix elements appearing in Eq. (2.8) consist of kinetic and potential
terms

H = − ~2

2m
∇2 +

∑
nk

V (r−Rn−bk), (2.13)

where the first term is the usual kinetic energy and the second is the potential decomposed
into a sum of spherical terms centered on each site k in the unit cell. The kinetic part of
the Hamiltonian matrix element always involves one or two centers. However, the potential
terms may depend upon the positions of other atoms; they can be divided into:

• One-center, where both orbitals and the potential are centered on the same site.
These terms have the same symmetry as an atom in free space.

• Two-center, where the orbitals are centered on different sites and the potential is on
one of the two. These terms have the same symmetry as other two-center terms.

• Three-center, where the orbitals and the potential are all centered on different sites.
These terms can also be classified into various symmetries based upon the fact that
three sites define a triangle.

• A special class of two-center terms with both orbitals on the same site and the
potential centered on a different site. These terms add to the one-center terms above,
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but depend upon the crystal symmetry.

Figure 2.2: The 10 irreducible SK-parameters for the s, p and d orbitals, which are classified
by the angular momentum about the axis with the notation σ (m = 0), π (m = 1), and δ
(m = 2). The orbitals shown are real combinations of the angular momentum eigenstates.
Positive and negative lobes are denoted by solid and dashed lines, respectively.

Two-center matrix elements play a special role in most practical TB approaches and
are considered in more detail here. The analysis applies to all overlap terms and to any
Hamiltonian matrix element that involves only orbitals and potential on two sites. For these
integral the problem is similar to that of a diatomic molecule in free space with cylindrical
symmetry. The orbitals can be classified in terms of the azimuthal angular momentum
about the line between the centers, i.e. the value of m with the axis chosen along the line.
The only non-zero matrix elements are between orbitals with the same m. Let Klm,l′m′

denote an overlap or two-center Hamiltonian matrix element for states lm and l′m′. In
the standard form with orbitals quantized about the axis between the pair of atoms, the
matrix elements are then diagonal in m′m and can be written as Klm,l′m′ = Kll′,mδm′m. The
quantities Kll′,m are independent matrix elements that are irreducible, i. e. they cannot be
further reduced by symmetry. By convention the states are labeled with l or l′ denoted by
s, p, d, ..., and m = 0,±1,±2, ... , denoted by σ, π, δ, ..., leading to the notation Kssσ,
Kspσ, Kppπ, ....

In Fig. 2.2 we show the orbitals of the non-zero σ, π, and δ matrix elements for s,
p, and d orbitals. The orbitals shown are actually the real basis functions S±

lm defined as
combinations of the ±m angular momentum eigenstates. These are oriented along the axes
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defined by the line between the neighbours and two perpendicular axes. All states except
the s state have positive and negative lobes. Note that states with odd l are odd under
inversion. Their sign must be fixed by convention (typically one chooses the positive lobe
along the positive axis). The direction of the displacement vector is defined to lie between
the site denoted by the first index and that denoted by the second index. For example, in
Fig. 2.2, the Kspσ matrix element in the top center has the negative lobe of the p function
oriented toward the s function. Interchange of the indices leads to Kpsσ = −Kspσ or, more
generally, to Kl′lm = (−1)l′+lKl′lm.

An actual set of basis functions is constructed with the quantization axis fixed in space,
so that the functions must be transformed to utilize the standard irreducible form of the
matrix elements. Examples of two-center matrix elements for s and pi = px, py, pz orbitals
for atoms separated by displacement vector R are shown in Fig. 2.3. Each of the orbitals
on the left-hand side can be expressed as a linear combination of orbitals in the standard
form, oriented along the rotated axes, as shown on the right. An s orbital is invariant and
a p orbital is transformed to a linear combination of p orbitals. The only non-zero matrix
elements are the σ and π matrix elements, as shown. The top row of the figure illustrates
the transformation of the px orbital needed to write the matrix element Ks,px in terms of
Kspσ. The bottom row illustrates the relation of Kpx,pz to Kppσ and Kppπ. Specific relations
for all s, p, and d matrix elements are given in Table A.1 and in Refs. [80, 82].

2.1.3 Slater-Koster two-center approximation

Now we are in the position to describe the Slater and Koster approach [82]. The authors
proposed that the Hamiltonian matrix elements can be approximated with the two-center
terms. Subsequently these parametrized matrix elements can be fitted to theoretical cal-
culations (or empirical data) as a simplified way of describing and extending calculations
of electronic bands. Within this approach, all matrix elements have the same symmetry
as two atoms in free space [see Fig. 2.3 and Table 2.1]. This is a great simplification that
leads to an extremely useful approach to understand electrons in materials.

Slater and Koster gave the extensive tables for matrix elements, including the s, p, and
d matrix elements, which are reproduced in Table A.1 of Appendix A. In addition, they
presented analytical formulae for bands in several crystal structures. However, the primary
use of the SK approach in electronic structure has become the description of complicated
systems, including band structures, total energies, and forces for relaxation of structures
and molecular dynamics. The variety of applications have very distinct requirements that
often lead to different choices of SK parameters.

For the bands, the parameters are usually designed to fit selected eigenvalues for a
particular crystal structure and lattice constant. For example, the extensive tables derived
by Papaconstantopoulos [84] are very useful to interpolate of results of more expensive
methods. It has been pointed out by Stiles [85], that for a fixed ionic configuration, effects
of multi-center integrals can be included in two-center terms that can be generated by an
automatic procedure. This makes it possible to describe any band structure accurately
with a sufficient number of matrix elements in SK form. However, the two-center matrix
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Element Expression

Ks,s ssσ
Ks,px x spσ
Kpx,px x2 ppσ + (1− x2) ppσ
Kpx,py xy (ppσ − ppπ)

Table 2.1: Table of two-center matrix elements for either the overlap or the Hamiltonian,
with real orbitals s and px, py, pz. The vector R between sites, as shown in Fig. 2.3, defines

the direction components R̂ = R/ |R| = (x, y, z) The matrix elements are then expressed
in terms of these components and the four irreducible matrix elements: ssσ, spσ, ppσ, and
ssσ. Other matrix elements can be found by permuting elements. For a full list of two-
center matrix elements for the s, p, and d orbitals, see Table A.1 of Appendix A.

elements are not transferable to different structures.

On the other hand, any calculation of total energies, forces, etc., requires knowledge of
the parameters as function of the atomic positions. Thus, the choices are usually compro-
mises that attempt to fit a large range of data. Such models are fit to structural data and,
in general, are only qualitatively correct for the bands. Since the total energy depends only
upon the occupied states, these model usually describe the conduction bands with a poor
precision. Of particular note, Harrison [80] has introduced a table that provides parameters
for any element or compound. The forms are chosen for simplicity, generality, and ability
to describe many properties in a way that it is instructive and useful. The basis is assumed
to be orthonormal, i. e. Smm′ = δmm′ . For each atom, the diagonal Hamiltonian matrix el-
ements are given in a table. Any Hamiltonian matrix element for orbitals on neighbouring
atoms separated by a distance R is given by a factor times 1/Rl+l′+1 [84, 86, 87]. Many
other SK parametrization have been proposed, each tailored to particular elements and
compounds.

2.1.4 The NRL tight-binding method

There is a basic difficulty in generating TB models that can describe very different struc-
tures. In models that have only two-center matrix elements, the values of the matrix
elements must take into account effects of three-center terms. These effects change drasti-
cally between structures. There are two primary approaches towards tight-binding models
that are transferable between different structures. One is to define environment depen-
dent matrix elements, the values of which depend upon the presence of other neighbours.
The other approach involves non-orthogonal TB, and is therefore more transferable than



2.1 Electronic structure 13

Figure 2.3: Schematic representation of two examples of two-center matrix elements of
s and p orbitals for atoms separated by a displacement vector R. Matrix elements are
related to σ and π integrals by the transformation to a combination of orbitals that are
aligned along R and perpendicular to R. The upper figure illustrates the transformation
to write a real matrix element Ks,px in terms of spσ: the s orbital is unchanged and the px

orbital is written as a function of the σ orbital, which is shown, and the π orbitals, which
are not shown because there is no spπ matrix element. The lower figure illustrates the
transformation needed to write Kpx,pz in terms of ppσ and ppπ. The coefficients for the
transformation of the s and p matrix elements are given in Table 2.1. The corresponding
full set for the s, p, and d orbitals can be found in Table A.1 of Appendix A.

orthogonal forms.
The goal of this Section is to describe in certain detail a sophisticated TB parametriza-

tion in the spirit of the SK approach that meets the two requirements discussed in the
previous paragraph. Moreover, this parametrization, developed by Cohen, Mehl, and Pa-
paconstantopoulos [88, 89], also allows for the computation of total energies and related
quantities. This method has been be widely used, in particular to analyze transport proper-
ties of metallic atomic-sized contacts, as we will show in later Chapters. This parametriza-
tion is referred to as NRL,2 and it has been extensively described in several review articles
by their authors [90, 91].

Up to this point we have mainly discussed tight-binding parametrization of the band
structure alone3. Typically total-energy information is not given by these calculations,

2NRL stands for “Naval Research Laboratory”. For more practical information about this parametriza-
tion, visit the web page: http://cstwww.nrl.navy.mil/bind/.

3The only exception was the method put forward by Harrison that was briefly mentioned in the previous
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although a band energy can be readily determined from the sum of the eigenvalues over
occupied states. However, in single-particle band theory, this sum is only a partial con-
tribution to the total energy. In the Kohn-Sham single particle density functional theory
(DFT) ansatz, which will shortly be introduced in the next Section, the total energy ε is
given by

ε =

∫
d3k

(2π)3

∑
n

εn(k) + F [n(r)], (2.14)

where the integral is over the first Brillouin zone, the sum is over occupied states, and
F [n(r)] is a functional of the density which includes the repulsion of the ionic cores, cor-
relation effects, and part of the Coulomb interaction. Note that the value of the integral
depends upon the choice of zero for the Kohn-Sham (KS) potential vKS(r) which generates
the eigenvalue spectrum:

−∇2ψn(r) + vKS(r)ψn(r) = εnψn(r). (2.15)

This choice is arbitrary. In the method developed at NRL [88, 89], the potential vKS in
the previous equation is shifted by an amount

V0 = F [n(r)]/Ne, (2.16)

where Ne is the number of electrons in the unit cell. The total energy of the system is

ε =

∫
d3k

(2π)3

∑
n

εn(k) + F [n(r)] =,

∫
d3k

(2π)3

∑
n

εn(k) +NeV0 =

=
d3k

(2π)3

∑
n

[εn(k) + V0] (2.17)

Note that V0 depends upon the structure of the crystal, as well as the original method for
determining the energy zero. Notice also that the ε′(k) are in some sense “universal”. That
is, if any two band structure methods are sufficiently well converged, they will give the
same total energy, and the eigenvalues derived from the two methods will only differ by a
constant. The definition of V0 for each method will be such that the shifted eigenvalues
ε′(k) are identical.

In the NRL method, the authors proceed as follows: First, they construct a first-
principles4 database of eigenvalues εi(k) and total energies ε for several crystal structures
at several volumes. Next they find V0 for each system, and shift the eigenvalues. Finally,
they attempt to find a set of parameters which will generate non-orthogonal, two-center
SK Hamiltonians which will reproduce the energies and eigenvalues in the database.

Let us now describe how the TB parameters for elemental systems are constructed.
One assumes that the on-site terms are diagonal and sensitive to the environment. For

Section.
4The first-principle methods used by the authors are typically the augmented plane wave method

(APW) or the linearized augmented plane wave method (LAPW).
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single-element systems one assigns atom i in the crystal and for each spin σ an embedded-
atom-like “density”

ρiσ =
∑

j

exp
(
−λ2

σRij

)
F (Rij) , (2.18)

where the sum is over all the atoms j within a range RC of atom i; λσ is the first fitting pa-
rameter, squared to ensure that the contributions are greater from the nearest neighbours;
and F (R) is a cut-off function, F (R) = θ(RC −R)/{1 + exp[(R−RC)/l+ 5]} , where θ(z)
is the step function. Typically one takes RC between 10.5 and 16.5 Bohr and l between
0.25 and 0.5 Bohr. One then defines the angular-momentum-dependent on-site terms by

Hilσ = alσ + blσρ
2/3
iσ + clσρ

4/3
iσ + dlσρ

2
iσ, (2.19)

where l = s, p, or d. These (a, b, c, d)lσ form the next 12 fitting parameters per spin.
In the spirit of the two-center approximation, one assumes that the hopping integrals

depend only upon the angular momentum of the orbitals and the distance between the
atoms. As we showed before, all the two-center (spd) hopping integrals can then be con-
structed from ten independent parameters per spin, the SK parameters, Hσ

ll′m, where

(ll′m) = ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, ddδ (2.20)

Then the following polynomial × exponential form for these parameters is assumed :

Hσ
ll′m(R) = (ell′mσ + fll′mσR + gll′mσR

2) exp(−h2
ll′mσR)F (R), (2.21)

where R is the separation between these atoms and F (R) is the cut-off function defined
above. The parameters (e, f, g, h)ll′mσ constitute the next 40 fitting parameters per spin.
Since this is a non-orthogonal calculation, one must also define a set of SK overlap functions.
They represent the overlap between two orbitals separated by a distance R, and have the
same angular momentum behavior as the hopping parameters5:

Sσ
ll′m(R) = (pll′mσ + qll′mσR + rll′mσR

2) exp(−s2
ll′mσR)F (R). (2.22)

The parameters (p, q, r, s)ll′mσ make up the final 40 fitting parameters per spin for a
monatomic system, yielding a total of 93 fitting parameters that are chosen to reproduce
the contents of the first-principles database, as noted above.

So in summary, this parametrization uses an analytical set of two-center integrals, non-
orthogonal parameters, and on-site parameters that depend on the local environment. The
method not only reproduces the band structure, but also the total energy of the system. It
has been demonstrated that this method also yields to a good precision structural energy
differences, elastic constants, phonon frequencies, vacancy formation energies, and surface
energies for both transition metal and noble metals.

5Note that in the case of Nb [92] additionally a slight variation of the form of the parametrization of
the overlap parameters is applied: Sσ

ll′m(R) = (δll′ + pll′mσR + qll′mσR2 + rll′mσR3) exp(−s2
ll′mσR)F (R).
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As an application of this parametrization, we have computed the bulk density of states
of four different metals that play an important role in molecular electronics. The results
can be seen in Fig. 3.3. Notice that in the case of Ag and Au, like in any other noble metal,
the Fermi energy lies in the region where the DOS is dominated by the s band. In the case
of Al and Pb, the s and p bands dominate the DOS around the Fermi energy. The main
difference between these two metals is that Pb has 4 valence electrons and therefore, the
Fermi energy lies well inside the p band. Finally, Nb and Pt are examples of transition
metals, where the d band dominates the DOS at the Fermi energy and for this reason, the
d orbitals play a fundamental in the transport properties of these metals.

2.1.5 Density Functional Theory

In this Section we give a brief overview on the ab initio density functional theory (DFT)
approach to the electronic structure. We restrict ourselves to describing the general ideas.
For a thorough introduction to calculations based on DFT we refer to [93].

Let us start with the Schrödinger equation for a stationary system consisting of M
atoms with N electrons:

ĤΨµ(x1, ...,xN ,R1, ...,RM) = εµΨµ(x1, ...,xN ,R1, ...,RM) . (2.23)

Here Ri refers to the spatial coordinates of the i-th nucleus and xj = {rj, σj} is the
combined variable of the j-th electron’s position and spin. In atomic units, the Hamiltonian
Ĥ reads:

Ĥ = −1

2

N∑
i=1

∇2
i −

M∑
A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

+
M∑

A=1

M∑
B>A

ZAZB

RAB

, (2.24)

where ZA and MA are the A-th nucleus’ charge and its mass relative to the electron’s mass,
rij = |ri − rj| (RAB = |RA −RB|) is the distance between electrons i and j (nuclei A and
B), and riA = |ri −RA| the distance between electron i and nucleus A. The first two
terms in this expression describe the kinetic energy of electrons and nuclei. The remaining
three terms define the potential part of the Hamiltonian. They represent the attractive
electrostatic interaction between nuclei and electrons and the repulsive potential due to
electron-electron and nucleus-nucleus interaction, respectively. εµ is the energy of the
states, described by the wave function Ψµ

Due to the relatively high mass of the nuclei compared to the electrons they move
much slower. Thus, in the Born-Oppenheimer approximation applied in the following,
their movement is completely neglected. As a consequence, the nuclear kinetic energy is
zero and their potential energy a constant. The electrons can be considered as moving in
the field created by the fixed nuclei. The reduced electronic Hamiltonian then reads:

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

= T̂ + V̂Ne + V̂ee , (2.25)
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and the corresponding Schrödinger equation:

ĤelecΨµ,elec(x1, ...,xN ;R1, ...,RM) = Eµ,elecΨµ,elec(x1, ...,xN ;R1, ...,RM) . (2.26)

The total energy of the system then consists of the electronic term and the constant nuclear
repulsion term εtot = εelec +

∑N
A=1

∑N
B>A ZAZB/RAB.

The variational principle states that the energy εtrial for a normalized trial wave function
Ψtrial is an upper bound to the true ground-state energy ε0 with the true ground state wave
function Ψ0: 〈

Ψtrial

∣∣∣Ĥ∣∣∣Ψtrial

〉
= ε [Ψtrial] ≥ ε [Ψ0] =

〈
Ψ0

∣∣∣Ĥ∣∣∣Ψ0

〉
, (2.27)

where equality holds if and only if Ψtrial = Ψ0. The problem of finding the true ground
state wave function can thus be traced back to minimization of ε [Ψtrial] with respect to all
allowed N -electrons wave functions Ψtrial:

ε0 = min
Ψtrial→N

ε [Ψtrial] = min
Ψtrial→N

〈
Ψtrial

∣∣∣T̂ + V̂Ne + V̂ee

∣∣∣Ψtrial

〉
. (2.28)

Thus, for a given electron number N and nuclear potential V̂Ne (depending on ZA and RA),
the variational principle provides a procedure to determine the ground state Ψ0 and the

ground state energy, which is a functional of N and V̂Ne: ε0

[
N, V̂Ne

]
. Symbolically we can

write this in the following way:{
N, V̂Ne

}
→ Ĥ → Ψ0 → ε0 = ε[N, V̂ext] . (2.29)

This means that the ground state energy ε0 is uniquely defined by N and V̂ext.
Up to here it is still necessary to perform a costly minimization over the wave function

for N electrons (i. e. a function of 4N variables: 3 spatial coordinates plus one spin per
electron). A remedy is put forward by considering the electron density ρ(r) instead. It is
defined as the integral of the wave function over the spin coordinates of all electrons and
over all but one of the spatial coordinates:

ρ(r1) = N

∫ ∫
· · ·

∫
ds1dx2 · · · dxN |Ψ ({xi})|2 . (2.30)

It describes the probability to find any of the N electrons with arbitrary spin within the
volume element dr1, while the other N − 1 electrons have arbitrary positions and spins.
So the basic idea of DFT is to express the ground state as a function of the electron
density, which depends on three spatial coordinates only. This simplifies considerably the
minimization process. The Hohenberg-Kohn theorems [94] then assure that this approach
is equivalent to the minimization with respect to the full wave functions.

The first Hohenberg-Kohn theorem proofs that the Hamilton operator is indeed a unique
functional of the electron density ρ. Then the second theorem shows that the energy
functional of the lowest energy ε0 [ρ] is minimal exactly for the true ground state density
ρ0.
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Up to here we know that the ground state energy and wave function are uniquely defined
by minimizing a functional of the electron density. We moved the problem towards finding
a functional that correctly describes the total energy in terms of this density. In fact, if
this functional was known we would have solved the Schrödinger equation (2.26) exactly.
Thus the main task is to construct a functional that yields a reasonable approximation to
the total energy.

Historically the Thomas-Fermi model [95, 96] was probably the first example of a DFT.
Both, Thomas and Fermi, approximated the kinetic energy T [ρ] with that of a free electron
gas:

TTF [ρ] =
3

10
(3π)2/3

∫
[ρ (r)]5/3 d3r . (2.31)

The electron-electron and nuclear-electron interactions were taken into account with the
classical terms

VTF,ee[ρ] + VTF,Ne[ρ] =
1

2

∫∫
ρ (r1) ρ (r2)

r12

d3r1d
3r2 −

M∑
A=1

ZA

∫
ρ (r1)

r1A

d3r1A . (2.32)

The ground state is then found by minimizing the total energy under the constraint∫
ρ(r) d3r = N . The accuracy of the Thomas-Fermi description is rather poor, mainly

due to the manner the kinetic energy is determined. The Hartree-Fock method usually
performs much better as it takes into account orbital-based wave functions via Slater de-
terminants. This led Kohn and Sham [97] to introduce the following approach.

First they collect as much terms as possible that can be computed exactly. These are
– besides the electron-nuclei interaction VNe [ρ] – the classical Coulomb interaction J [ρ]:

J [ρ] =
1

2

∫∫
ρ (r1) ρ (r2)

r12

d3r1d
3r2 . (2.33)

Next they introduce as reference a non-interacting system with an effective local potential
VS(r):

ĤS = −1

2

N∑
i=1

∇2
i +

N∑
i=1

V̂S(ri) . (2.34)

In analogy to the Hartree-Fock method they construct the wave functions of the reference
system as Slater-determinants from Kohn-Sham orbitals ϕi, which fulfill:

f̂KSϕi =

[
−1

2
∇2 + V̂S(r)

]
ϕi = εiϕi . (2.35)

The reference system is related to the full system by choosing V̂S such that the density of
the non-interacting reference system exactly equals the ground state density of the target
system of interacting electrons:

ρS(r) =
N∑

i=1

∑
σ

|ϕi(r, σ)|2 = ρ0(r) . (2.36)
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In this way the functional F [ρ] is brought into the form

F [ρ] = TS[ρ] + J [ρ] + εXC [ρ] , (2.37)

where

TS = −1

2

N∑
i=1

∑
σ

〈ϕi|∇2 |ϕi〉 . (2.38)

In this form εXC , the so called exchange-correlation energy, collects all the deviation from
the easily accessible information. It is defined as

εXC [ρ] = (T [ρ]− TS[ρ]) + (εee[ρ]− J [ρ]) = TC [ρ] + εncl[ρ] . (2.39)

The residual part TC of the true kinetic energy, which is not recovered by TS, is just added
to the non-classical electrostatic contributions. In this way the exchange correlation energy
εXC is the functional, which contains everything that is unknown so far.

Collecting all contributions including the electron-nuclei interaction, the total energy
of the interacting system reads:

ε[ρ] = TS[ρ] + J [ρ] + εXC [ρ] + εNe[ρ] . (2.40)

Now we can come back to the somehow artificially introduced effective local potential VS

of the non-interacting system of Eq. (2.34). It can be expressed as:

VS(r1) =

∫
ρ(r2)

r12

d3r2 + VXC(r1)−
M∑

A=1

ZA

r1A

, (2.41)

where the exchange-correlation potential VXC = δεXC/δρ is the functional derivative of
εXC . Up to this point the KS approach is exact. Unfortunately the explicit form of εXC

and thus VXC is unknown and the approximations enter, when we decide on an explicit form
for them. The central goal of research in DFT is to find better and better approximations
to εXC and VXC .

With a choice for the basis of the KS orbitals ϕi and an expression for εXC the min-
imization of the total energy is a rather technical issue. In practice, powerful program
packages like TURBOMOLE c© perform this task. For a detailed insight into the technical
subtleties of the DFT approach and its application to molecular electronic devices we rec-
ommend the PhD thesis of Fabian Pauly [93]. At the end of the day one receives an matrix
expression of the Hamiltonian and the overlaps in the chosen basis, which can be treated
similar to the ones obtained in the TB model of the preceding Section.

2.2 Local density of states and elastic current

In this Section we focus on the calculation of equilibrium- and transport properties of
atomic contact geometries. We start with the Hamiltonian H and overlap matrices S
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L RC

Figure 2.4: Sketch of a central region connected to left and right leads.

which are obtained from TB or DFT calculations as described in the previous Sections.
From these we derive the expressions for the contact’s local density of states (LDOS) and
the stationary elastic current through the contact.

We express the Hamiltonian in a non-orthogonal orbital basis |iασ〉, where i refers
to the site, α to the orbital, and σ to the spin index. The real-space wave functions
φiασ(r) = 〈r|iασ〉 are taken to be real. The elements 〈iασ|jβσ′〉 of the overlap matrix S
are real, symmetric, and diagonal in spin space:

[S]iα,jβ;σ = [S]jβ,iα;σ . (2.42)

In this basis, the creation and annihilation operators satisfy:

{ĉiασ, ĉ
†
jβσ′} = δσσ′ [S−1]iα,jβ;σ . (2.43)

The matrix representation of a Hamiltonian like (2.25) is then also real, symmetric and
diagonal in spin space. However, here we want to keep the expressions general and allow
for complex intra-atomic entries, because they are needed to describe finite orbital angular
momenta or intra-atomic spin-orbit coupling (SOC) contributions. So the Hamiltonian
matrix elements are chosen to obey:

[H]iασ,jβσ′ =

{
[H]∗iβσ′,iασ if i = j

[H]jβσ,iασ δσ′σ if i 6= j.
(2.44)

The system we have in mind is depicted in Fig. 2.4 and consists of a finite central region
attached to ideal leads. The Hamiltonian- and overlap matrices of such a system are block
tridiagonal and have the following form:

H =

 HLL HLC 0
HCL HCC HCR

0 HRC HRR

 , S =

 SLL SLC 0
SCL SCC SCR

0 SRC SRR

 . (2.45)

There is no direct coupling between left and right leads and ST
ΩC = SCΩ, HT

ΩC = HCΩ,6

with Ω ∈ {L,R}.
6Note that the hoppings to the leads are off diagonal and we restricted the possible complex contribu-

tions to intra-atomic terms only.
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2.2.1 Equilibrium properties: Bulk and local density of states

In this Section we want to consider equilibrium properties only.
By definition of the advanced/retarded equilibrium Green’s function G

r
a [98]:(

ε±S−H
)
G

r
a (ε) = 1, (2.46)

with ε± = ε±i0+. From the definition and the hermicity of H (symmetry of S respectively)
it follows Gr = (Ga)†.

For a periodic system like a bulk lattice, we can similar to Eq. (2.11) write the Green’s
functions G(k, ε) = [εS(k)−H(k)]−1 in k−space. Then we can express the bulk density
of states (DOS) projected on an orbital α and spin σ of the atom j of the unit cell with
the Mulliken population analysis:

ρjασ(ε) = ∓ 1

π

∑
k

Im
[
G

r
a(k, ε)S(k)

]
jασ

. (2.47)

With the following notation for elements of the inverse total Green’s function:

tXY (ε) = εSXY −HXY , X, Y ∈ {L,C,R} , (2.48)

the unperturbed Green’s functions read:

g
r
a (ε) =

 g
r
a
LL (ε) 0 0

0 g
r
a
CC (ε) 0

0 0 g
r
a
RR (ε)

 =

 tLL (ε±) 0 0
0 tCC (ε±) 0
0 0 tRR (ε±)

−1

. (2.49)

Furthermore we introduce the couplings to the leads as perturbation:

V (ε) =

 0 tLC (ε) 0
tCL (ε) 0 tCR (ε)

0 tRC (ε) 0

 . (2.50)

Then the total equilibrium Green’s function fulfills the Dyson equation:

G
r
a (ε) = g

r
a (ε) + g

r
a (ε)V (ε)G

r
a (ε) (2.51)

The block structure of the Hamiltonian leads to the expression for the the central part of
the full Green’s function:

G
r
a
CC (ε) =

[
ε±SCC −HCC −Σ

r
a
L (ε)−Σ

r
a
R (ε)

]−1

, (2.52)

with the lead self energies Σ
r
a
X (ε) = tCX (ε)g

r
a
XX (ε) tXC (ε), and again X ∈ {L,R}.

The Mulliken population analysis [99] yields the expression for the LDOS of the ith
atom projected on orbital α and spin σ:

ρiασ (ε) = ∓ 1

π
Im

{
SG

r
a (ε)

}
iασ,iασ

. (2.53)
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In particular for an atom i in the center:

ρiασ (ε) = ∓ 1
π

Im
{[

SG
r
a (ε)

]
CC

}
iασ,iασ

= ∓ 1
π

Im
{[

SCC +
∑

Ω=L,R SCΩg
r
a
ΩΩ (ε) tΩC (ε)

] [
G

r
a (ε)

]
CC

}
iασ,iασ

, (2.54)

where we applied the Dyson equation to the second part in order to determine the non-
diagonal element of the total Green’s function G

r
a
ΩC = g

r
a
ΩΩtΩCG

r
a
CC . Note that the so-

defined ρ fulfills the properties of a density of states:

ρiασ (ε) ≥ 0 and

∫ ∞

−∞
dε ρiασ (ε) = 1. (2.55)

We can then define the occupation of the atom i in the central part as:

Ni =

∫ ∞

−∞
dε f (ε)

∑
ασ

ρiασ (ε) , (2.56)

where f (ε, T ) = {exp [(ε− µ) /kBT ] + 1}−1 is the Fermi function at temperature T and
chemical potential µ with the Boltzmann factor kB.

Deep in the leads, Ni is constant and equals the occupation N0 of the neutral bulk
atom. In the finite central part, many atoms lie at the surface or close to it and therefore
have dangling bonds or reduced coordination. By construction, the NRL TB parametriza-
tion applied to such geometries only rudimentarily takes this effect into account via the
embedded-atom-like “density” (2.18). As a consequence, the occupation (2.56) of those
atoms in the finite contact geometries differs from the occupation N0 of the neutral bulk
atom and creates a local charge imbalance. On the other hand, in metals local charges are
efficiently screened within ≈ 1Å [79]. In the metallic atomic contacts we are interested in,
we therefore assume local charge neutrality (CN) in each atom.

Following [100], we accomplish that by introducing for each atom i in the contact a
local shift φi to the onsite elements:

[H]iασ,jβσ → [H]iασ,jβσ +
φi + φj

2
[S]iα,jβ;σ . (2.57)

Subsequently, we vary the φi’s self-consistently until local charge neutrality is reached in all
atoms of the center: Ni ≡ N0 ∀i ∈ C. In this way we correct for the intrinsic imperfection
of the TB model applied on atomic contacts, which is not present in ab initio methods.

From the LDOS we have access to several other equilibrium properties, like the total
energy for each atom (via the integration of LDOS up to εF ), the local magnetic moment
(as difference between the partial occupation of the two spin directions), elastic constants,
etc.

2.2.2 Out of equilibrium: Elastic current

So far we considered an equilibrium situation. In order to drive a current through the
central part, we need to apply a potential difference ±eV/2. We assume the leads to be
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sufficiently big, so that they remain in equilibrium upon application of the small voltage.
The potential is then completely absorbed by a shift of the chemical potential µ→ µ±eV/2
in the leads, where e = − |e| is the electron charge. Thus the potential completely drops
over the central region and creates an electric field E there, which drives the system out of
equilibrium.

In general, we therefore need to apply the full apparatus of Keldysh’s non-equilibrium
Green’s functions (NEGF) to determine the current at finite voltages.7 In the limit of
low bias and at low temperatures finally, the conductance should reduce to the Landauer-
Büttiker form for a two terminal device. Thus, it should be proportional to the sum of
transmission channels, with transmissions between zero and one. In this limit the con-
ductance should be entirely expressible in terms of the equilibrium properties discussed
above.

In the following, we will evaluate the current through the left interface of the system
depicted in Fig. 2.4. We divide the system into two parts: The index L denotes the left lead
as in Fig. 2.4. The central part and the right lead we condense in the index W = C + R.
The Hamilton- and number operators then read [in the basis of (2.42)]:

Ĥ =
(
ĉ†Lĉ

†
W

) (
HLL HLW

HWL HWW

)(
ĉL
ĉW

)
, N̂ =

(
ĉ†Lĉ

†
W

) (
SLL SLW

SWL SWW

)(
ĉL
ĉW

)
,

(2.58)
again with HT

LW = HWL and ST
LW = SWL. Furthermore we may define the partial number

operators of the subsystems L,W as

N̂L = ĉ†LSLLĉL , N̂W = ĉ†WSWW ĉW . (2.59)

For the ĉj’s, the equation of motion8 (EOM) i~ ˙̂cj = [ĉj, Ĥ] leads to:

i~
(

SLL SLW

SWL SWW

)(
˙̂cL
˙̂cW

)
=

(
HLL HLW

HWL HWW

)(
ĉL
ĉW

)
, (2.60)

and a similar expression exists for the Hermitian conjugate ĉ†.

The total number of electrons is conserved,
˙̂
N = 0, which leads to:

0 =
˙̂
N = ˙̂c†LSLLĉL +

[
˙̂c†LSLW + ˙̂c†WSWW

]
ĉW + ˙̂c†WSWLĉL + (2.61)

ĉ†LSLL
˙̂cL + ĉ†W

[
SWL

˙̂cL + SWW
˙̂cW

]
+ ĉ†LSLW

˙̂cW

=
˙̂
NL −

1

i~

{
ĉ†L

[
HLW − i~SLW

∂

∂t

]
ĉW − ĉ†W

[
HWL + i~SWL

←−
∂

∂t

]
ĉL

}
.

7At finite voltage, a nonuniform voltage profile may be present in the contact region. It can in general
be calculated self-consistently, but we will neglect it here. Instead we will assume that the voltage drops
at the interfaces.

8Here, [·, ·] indicates the commutator, and a superimposed dot signifies differentiation with respect to
time.
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In the last line we used the EOMs to replace the expressions in brackets (whereupon the

terms in WW cancel), and identified the underlined terms with
˙̂
NL. From its definition we

can now identify the non-equilibrium Green’s function:[
G+−]

jk
(t, t′) = i

〈
ĉ†k(t

′)ĉj(t)
〉
, (2.62)

where 〈·〉 signifies statistical average. We arrive at the following expression for the average
of the electron current from left through the interface:

IL (t) = e
〈

˙̂
NL(t)

〉
= (2.63)

− e

~
TrW

{
G+−

WL(t′, t)

[
HLW − i~SLW

←−
∂

∂t

]
−

[
HWL + i~SWL

∂

∂t

]
G+−

LW (t, t′)

}∣∣∣∣∣
t′→t

.

Again, e = − |e| is the electron charge.
We are only interested in the stationary case. Then the Green’s function depends solely

on the time difference t− t′ and a Fourier transformation is possible:

[
G+−]

jk
(t, t′) =

[
G+−]

jk
(t− t′) =

∫ ∞

−∞

dε

2π
e−iε(t−t′)/~ [

G+−]
jk

(ε) . (2.64)

Finally we arrive at

IL(t) = − e
h

∫ ∞

−∞
dε TrW

[
G+−

WL(ε)tLW (ε)− tWL(ε)G+−
LW (ε)

]
, (2.65)

where we performed the time derivative and identified the hopping matrices tXY from
Eq. (2.48). Note that a similar expression holds for the current from the right IW (t) =

e
〈

˙̂
NW (t)

〉
with L and W interchanged in Eq. (2.65), and in the stationary case IL(t) =

−IW (t), as it should be.
In this form, the current expression would be suitable to study systems that are con-

veniently separable into two parts, like in the case of tunneling current between a STM
tip and a surface. However, in systems like the one depicted in Fig. 2.4, the focus lies on
the central part that is then connected to the leads. Due to the absence of direct coupling
between left and right leads [HLR ≡ 0 etc. in Eq. (2.45)], the generalization to systems
with a central part is straightforward. For the current from the left evaluated at the left
interface, the indices W in (2.65) are to be replaced by C.9

In expression (2.65) for the current, we shifted the problem to the calculation of the non-
equilibrium Green’s functions G+−(ε). As we indicated at the beginning of this Section,
in the zero bias limit, the conductance should be fully expressible in terms of equilibrium

9For the current from the right evaluated at the right interface, IR, one only needs to replace the indices
(L, W ) by (R, C) in Eq. (2.65). However, the demonstration for current conservation, i.e. IL(t) = −IR(t),
is i.g. not straightforward.
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properties. Therefore, we aim to write the current in a form, that in equilibrium reduces
to an expression containing the equilibrium Gr/a of the preceding Section only.

First the “Langreth rules” [101] for G+−
LC (ε) yield:

G+−
LC (ε) = g+−

LL (ε) tLC (ε)Ga
CC (ε) + gr

LL (ε) tLC (ε)G+−
CC (ε)

G+−
CL (ε) = G+−

CC (ε) tCL (ε)ga
LL (ε) + Gr

CC (ε) tCL (ε)g+−
LL (ε) .

We define the selfenergies

Σx
Ω (ε) = tCΩ (ε)gx

ΩΩ (ε) tΩC (ε) , x ∈ {+−,−+, r, a} , Ω ∈ {L,R} . (2.66)

Then, with the relations

Σ+− −Σ−+ = Σa −Σr , G+− −G−+ = Ga −Gr (2.67)

for the selfenergies and Green’s functions, we can rewrite the current from Eq. 2.65:

IL(t) =
e

h

∫ ∞

−∞
dε TrC

[
G+−

CC(ε)Σ−+
L (ε)−Σ+−

L (ε)G−+
CC(ε)

]
. (2.68)

For the central part Green’s functions the following relation holds:

G±∓
CC (ε) = Gr

CC (ε)
(
Σ±∓

L (ε) + Σ±∓
R (ε)

)
Ga

CC (ε) . (2.69)

With the definition of the positive definite transition rate matrices Γ:

ΓΩ = i (Σr
Ω −Σa

Ω) , Ω ∈ {L,R} . (2.70)

the selfenergies can be written:

Σ+−
Ω (ε) = iΓΩ(ε)fΩ(ε, T ) (2.71)

Σ−+
Ω (ε) = iΓΩ(ε) [fΩ(ε, T )− 1] , (2.72)

where in the left and right Fermi functions fΩ the potential shift ±eV/2 was incorporated
in the chemical potential.

Plugged in the current expression, we arrive at:

IL =
e

h

∫ ∞

−∞
dε TrC {Gr

CC(ε)ΓL(ε)Ga
CC(ε)ΓR(ε)} [fL(ε, T )− fR(ε, T )] . (2.73)

Making use of the positive definiteness of the scattering matrix we can symmetrize the
expression under the trace and introduce the transmission matrix

t(ε, V ) = Γ
1/2
R (ε)Gr

CC(ε, V )Γ
1/2
L (ε) . (2.74)

Finally we arrive at the expression for the elastic current:

I(T, V ) =
e

h

∫
dε τ(ε, V ) [fL(ε, T )− fR(ε, T )] , (2.75)
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where τ(ε, V ) = TrC

[
t
†(ε, V )t(ε, V )

]
is the transmission function.

At zero temperature, Eq. (2.75) reduces to an integration of τ(ε, V ) over a finite energy
interval of ±eV/2 around the Fermi energy. Then the linear conductance is given by the
Landauer formula:

G =
e2

h
τ(εF , 0) =

e2

h
TrC

[
t
†(εF , 0)t(εF , 0)

]
=
e2

h

∑
i

τi(εF ) . (2.76)

Here the τi(εF ) are the eigenvalues of t†t, the eigenchannel transmission probabilities. In
the case of spin degeneracy, the trace over spin yields a factor two and it is convenient to
define G0 = 2e2/h = 1/(12.9 kΩ) as the quantum of conductance.

Let us summarize at this stage: From the Hamiltonian of the system (2.45) we can
derive the central part’s Green’s function and subsequently the LDOS of the atomic contact
and the current through it. In the following we will use this formalism to determine the
conduction properties of metallic atomic contacts.



Chapter 3

Conduction properties of
non-magnetic metallic atomic
contacts

In this Chapter we concentrate on the transport properties of non-magnetic metallic atomic
contacts. We first discuss in some detail how we calculate the transmission following the
concepts of Chapter 2. This is accomplished in Section 3.1 using a minimal model system
consisting of linear chains of atoms. Then we apply the full description to atomic contacts
of metals with partially filled shells, namely atomic contacts made of noble, p-valent, and
transition metals. We end the Section 3.2 with comparing the results of the tight-binding
model calculations with reliable ab initio results.

The following Sections 3.3 and 3.4 then focus on the limiting case of the bivalent metals
Zn and Mg, where the outermost shell of s-orbitals is full. We can directly compare our
theoretical results presented there with jointly done experiments and find good agreement.
We finish this part with a conclusion.

3.1 Linear chain model

In the preceding Chapter we showed how we determine the electronic structure of atomic
contacts and calculate the current through it. Before applying the full machinery to atomic
contacts of different metals, we want to start in this Section with a minimal model. We
consider a contact formed by two linear, semi-infinite, z-directional chains of identical
atoms, joined in a central region consisting of the two tip atoms (see scheme in Fig. 3.1).
We will take into account coupling between nearest neighbour (NN) atoms only and the
hopping integrals are assumed to be equal between all lead atoms but may differ between
the two central atoms. This linear chain model is similar to what was studied in the 1960s
by P. W. Anderson and D. M. Newns [102, 103].

27
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l tl
tc

tl tlt
z

C
Figure 3.1: Sketch of two semi-infinite linear monatomic chains in ~ez-direction with nearest
neighbour coupling and joined in the tip atoms.

The Hamiltonian H corresponding to the linear chain shown in Fig. 3.1 has the form:

H =



. . . . . . 0 0 0 0

. . . H0 tl 0 0 0

0 t†l H0 tc 0 0
0 0 t†c H0 tl 0

0 0 0 t†l H0
. . .

0 0 0 0
. . . . . .


. (3.1)

The diagonal blocks H0 (with dimension number of orbitals times spin) are the onsite
elements of the orbitals of the atoms under consideration and tl, tc contain the hopping
integrals from Table A.1. We assume an orthogonal basis and thus the overlap matrix is
unity: S = 1.

With the expression of Eq. (2.52) we can directly evaluate the central part’s Green’s
function:1

GCC(ε) =

[
ε+
1−HCC −

(
ΣL(ε) 0

0 ΣR(ε)

)]−1

. (3.2)

Here ΣL,R(ε) are the self-energy matrices arising from the coupling of the left/right C atom
to the semi-infinite, homogeneous chains. They are of the form

ΣL(ε) = t†lgLL(ε)tl ; ΣR(ε) = tlgRR(ε)t†l , (3.3)

where the Green’s functions of the left and right “surfaces” satisfy:

gLL(ε) = [ε−H0 − tlgLL(ε)t†l ]
−1 ; gRR(ε) = [ε−H0 − t†lgRR(ε)tl]

−1. (3.4)

1Here and in the rest of the Chapter we will consider retarded Green’s functions only.



3.1 Linear chain model 29

From GCC we obtain directly the LDOS projected onto orbital ασ of the atom i in the
center:

ρiασ(ε) = − 1

π
Im [GCC ]iασ,iασ . (3.5)

The Hamiltonian of the system under consideration is real and symmetric and therefore
the Green’s functions are symmetric. Then the scattering matrices have the form

ΓL/R = 2 Im
[
ΣL/R

]
. (3.6)

The zero-bias conductance then follows directly with Eq. 2.76. In the following we will
consider two exemplary cases: Noble or alkali metals and s-p-metals.

We first aim to model alkali- or noble metals, with valent s-orbitals. In this case the
orbital basis consists of one (spin-degenerate) s-orbital with onsite energy εs and hopping
integral tl,c = ssσl,c between lead (l) and the center atoms (c) according to Table A.1.
The matrices reduce thus to scalars and the resulting “surface” Green’s function can easily
be calculated analytically. Then the self-energies are of the form ΣL,R(ε) = tle

iΦ, with
cos Φ = (ε− εs)/2tl.

In this case the LDOS of one tip atom has the simple analytical form:

ρ(ε) = − 1

π
Im

{
ε− εs − ΣL(ε)− ΣR(ε)

t2c − [ε− εs − ΣL(ε)− ΣR(ε)]2

}
. (3.7)

Analogously the transmission τ(ε) reads:

τ(ε) =
t2cΓL(ε)ΓR(ε)∣∣t2c − [ε− εs − ΣL(ε)− ΣR(ε)]2

∣∣2 . (3.8)

In figure Fig. 3.2(a) we plot the transmission and LDOS as function of the energy ε of
such a system with a single orbital per atom.2 In order to get a reasonable figure, we take
the hopping integral ssσl as the first NN term of the orthogonal two-center parametrization
of Na from Ref. [84].

The center hopping tc term was reduced to model a constriction with a NN distance d
increased by 10%. Following [84], the corresponding hopping scales like (d0/d)

l+l′+1 with
d0 being the equilibrium NN distance and l, l′ the orbital quantum number of the orbitals
involved (see discussion in Section 2.1.3).

As a consequence of the reduced hopping in the center, the transmission over energy
is not quantized but given by Eq. (3.8). Depending on the value of the central hopping,
the LDOS of Eq. (3.7) somehow interpolates between the two extreme cases of a perfect
infinite chain with van Hove singularities ∝ 1/

√
ε at the band edges and the semi-infinite

chain with a elliptical LDOS in the tip atoms, as stated above. The value of the hopping
integral ssσ ≈ −0.64eV gives rise to a bandwidth of the linear chain of 2.56eV, as shown
in Fig. 3.2(a).

2We assume that one s orbital is a reasonable approximation to describe the properties of alkali metals.
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Figure 3.2: LDOS and transmission for monatomic chains of Fig. 3.1 with (a) one s
orbital per site modelling alkali metals like Na and (b) four orbitals per site (one s- and
three p-orbital) modelling s-p metals like Al.

The prototype of the case of more than one orbital per atom is Al with one s and three
p orbitals present around the Fermi energy. For the linear chain along ~ez, the orbitals
oriented perpendicular to the chain axis, px and py, only couple to their own species. The
corresponding hopping integral is ppπl (see Fig. 2.1, and Tables 2.1 or A.1). On the other
hand, the remaining two s and pz orbitals have couplings amongst themselves (hopping
integrals ssσl and ppσl) as well as amongst each other (spσ). In the (s, px, py, pz)-basis,
the resulting Hamiltonian has the form3:

H0 =


εs 0 0 0
0 εp 0 0
0 0 εp 0
0 0 0 εp

 , tl =


ssσl 0 0 −spσl

0 ppπl 0 0
0 0 ppπl 0

spσl 0 0 ppσl

 . (3.9)

Note that now the hoppings in the leads contain non-diagonal elements and thus there
is no simple analytical solution for the Green’s functions of the uncoupled leads anymore.
However, with a recursion method introduced by Guinea and coworkers [104], it is possible
to evaluate the “surface” Green’s function numerically. This technical issue is discussed in
detail in Appendix D of F. Pauly’s PhD thesis [93].

Again we take as a qualitative orientation the hopping integrals for Al from the or-
thogonal two-center parametrization [84] and reduce the central hopping according to the

3Note the sign convention of positive lobe in positive z-direction.
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scaling law. The result is shown in Fig. 3.2(b). First, as the px- and py-orbitals are orthog-
onal to the rest, they separate and show a LDOS and transmission properties like chains
of single orbitals [Eqs. (3.7) and (3.8)]. According to [84] their hopping integrals are small
(ppπ ≈ −0.14eV) and as a consequence their LDOS very narrow and peaked. As we need
to distribute 3 electrons, the Fermi energy lies at the lower edge of the peak of the px and
py orbitals. On the other hand the s and pz with large hopping integrals (ssσ ≈ −0.8eV
and ppσ ≈ 2.3eV) are extended and the orbitals hybridize due to the strong inter-orbital
hopping element spσ ≈ −1.3eV. The onsite elements εs, εp of s and p orbitals are separated
by εp − εs ≈ 7.72eV.

Over the whole energy range, the transmission is mainly carried by one channel arising
from a symmetric combination of s-pz orbitals. Only around the Fermi energy, where
the px, py orbitals are present, a degenerate 2nd and 3rd channel from the px, py orbitals
contribute. Again the transmission properties basically follow the LDOS. Note that a
possible second channel (fourth channel around εF ) is completely closed. This can be
traced back to the fact, that to a good approximation the hopping integrals ssσ, ppσ, and
spσ fulfill:

ssσ · ppσ ≈ −spσ2 . (3.10)

Under this condition, in the two-dimensional subspace of the s and pz orbital, the deter-
minant of the transition rate matrix vanishes [105]. Then at least one eigenvalue of t†t
(i.e. one transmission channel) must be zero. In the simple case of an Al-like single atom
chain, Eq. (3.10) holds to a good approximation and in consequence the fourth channel is
absent in the transmission of Fig. 3.2(b). But more generally most metals fulfill Eq. (3.10)
and in most single atom contacts of metals, a possible fourth channel is absent in regions
where s and p orbitals dominate.

In conclusion, the linear chain model yields a basic understanding of the relevant ingre-
dients needed to calculate transport properties of metallic atomic contacts. It may serve
to elucidate the findings from more sophisticated calculations.

However it is by construction much too simple to capture the essential differences
between materials and geometries and suffers from pathologies intrinsic to one-dimensional
systems like the van Hove singularities at the band edges. In the following Chapter we will
therefore consider more advanced models to describe the atomic contacts.

3.2 Atomic contacts of noble, p-valent, and transition

metals

The aim of this Section is to summarize general features of atomic contacts for archetypical
non-magnetic metals: noble-, s-p-, and transition metals. We consider as examples two
metals in each case, namely Ag and Au as representative for the noble metals, Al and Pb
for the s-p metals, and Nb and Pt for the transition metals.

Here we consider more realistic description of the materials’ electronic structure and
the crystal structure. First we discuss the bulk DOS then we concentrate on transport
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Element
Bulk lattice,
Lattice constant

Reference parametrization
http://cst-www.nrl.navy.mil/bind/

Parameter files

Ag fcc, 4.09 Å [89], ag.html ag par

Al fcc, 4.05 Å [106], al.html al par

Au fcc, 4.08 Å [89], au.html

{
au par
au par 99

Co hcp, 2.51 Å [107], co.html co ferro par

Fe bcc, 2.86 Å [107, 108], fe.html fe ferro par

Mg hcp, 3.21 Å [109], mg.html mg par

Nb bcc, 3.25 Å [89, 92], nb.html

{
nb par
nb par 125

Ni fcc, 3.52 Å [107, 110], ni.html ni ferro par

Pb fcc, 4.95 Å [111], pb.html pb par

Pt fcc, 3.92 Å [89], pt.html pt par

Zn hcp, 2.66 Å [84], p. 123: orthogonal parameters.

Table 3.1: Parametrization of the tight-binding Hamiltonian used in this work.

through atomic contacts of the corresponding material. In particular we will show how to
get the formalism of Chapter 2 to work.

3.2.1 Bulk density of states

In the previous Section we discussed how some simple estimates of the hopping integrals
involved in the Hamiltonian of a minimal model allow for gaining insight in the mechanisms
that for instance control the transport properties of an atomic contact.

We will apply the non-orthogonal NRL parametrization4 introduced in Section 2.1.4 to
various materials in the following. Table 3.1 resumes the different parameters used in this
work.

The NRL parametrization is described to fit bulk band structure. In particular, it is
designed to correctly reproduce the bulk DOS. Here we apply the NRL parametrization
to describe the bulk DOS for six exemplary metals. Five out of those metals possess a fcc
equilibrium lattice structure but Nb crystallizes in bcc. For these different materials and
crystal structures we calculate the bulk DOS.

In Fig. 3.3 are shown the bulk DOS projected on the orbitals that are relevant around
the Fermi energy,5 which is indicated with a vertical dotted line.

First consider the noble metals Ag and Au. In this case the Fermi energy lies some

4Only in the case of Zn (discussed in Section 3.3) we will - in lack of NRL parameters - resort to the
orthogonal two-center parametrization of [84].

5Note that when we project onto “orbital α” in fact what we do - as discussed in the previous Chapter
- is to project on the fit basis that has the same symmetry as orbital α.
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Figure 3.3: Bulk DOS as a function of energy for the noble metals Ag and Au, the p-
valent metals Al and Pb, and the transition metals Nb and Pt, computed with the NRL
TB parametrization. The DOS is projected on the s, p, and d bands that are relevant
around the Fermi energy, which is set to zero and indicated with a dotted line.

2.5eV / 1.5eV above the d-bands, which are nearly filled. At εF the s- (5s/6s) and p-bands
(5p/6p) dominate. It results a close to free-electron behaviour with high Fermi velocities.

Next s-p-metals: In the case of Al the coupling to second next NNs and the higher
coordination in bulk as compared with the linear chain close the gap between s and pbands.
At the Fermi energy s and p-bands dominate. For Pb, the s-band is located some 8eV below
εF and is nearly full. With a total occupation of 4 electrons, the Fermi energy lies in the
p-band and fills it partially.
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Transition metals Nb and Pt show strong hybridization between the d bands and the s,
p bands. The d bands are present around the Fermi energy, which for Pt (with electronic
configuration [Xe]5d86s2) lies in the vicinity of the upper edge of the d band. For Nb, with
five valence electrons less, the Fermi energy lies much deeper in the d bands.

The information obtained from the bulk DOS, which is most interesting here, consists of
the value of the Fermi energy and the orbitals that are relevant around it. This information
then also determines the transport properties atomic contacts discussed in the next Section.

hcp [0001]bcc [001]fcc [111]
(a) (b) (c)

Figure 3.4: Set of ideal single atom contact geometries most commonly used in this work.
(a) Contact of a fcc lattice grown in [111]-direction. (b) Contact of a bcc lattice grown in
[001]-direction. (c) Contact of a hcp lattice grown in [0001]-direction.

3.2.2 Transmission properties of ideal single-atom contacts

We want to determine conduction properties of metallic atomic contacts. First we construct
ideal contact geometries. The materials we are interested in crystallize in different lattices.
We take the equilibrium lattice at room temperature and construct ideal atomic geometries
out of it. We start with the central atom of the later contact and collect the NN atoms in
the next layer along desired direction. For fcc in [111] direction and hcp in [0001] direction
there are three NN atoms in the first layer next to the central atom (and four NN atoms
for bcc in [001] direction). Next we continue to add NN atoms of the neighbouring layers
along the transport direction, until the desired contact size is reached. Finally we connect
the contact geometry to the ideal surfaces.

Examples of such contact geometries are depicted in Fig. 3.4. Atoms belonging to the
contact region are marked in yellow and those of the coupled surface in blue. Transport
direction is ~ez, which corresponds to a threefold rotation axis for the fcc contact geometry
(in [111] direction) and a fourfold for the bcc contact geometry in [001] direction. Those two
geometries additionally have an inversion center, in contrast to the hcp contact geometry
in [0001] direction, which only possesses a mirror in the xz-plane.

Note that for the contact geometries in fcc [111]-direction and hcp [0001]-direction the
apex angles are the same for the first layer next to the central atom. This is because both
geometries are in close-packed structures and in the two cases the contacts are grown in
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directions of close-packed planes. In contrast, the bcc contact geometry in [001]-direction
shows a much larger apex angle. As a consequence, in the bcc contact the planes next to
the central atom are much closer to each other. Then the coupling between those planes
left and right of the central atom is enhanced.

Once the contact geometries are constructed, we obtain the electronic Hamiltonian and
overlap matrix for the system from the NRL parametrization described in Section 2.1.4.6

The Hamiltonian consists of onsite and hopping elements for the atoms of the central part
of the geometry (marked in yellow in Fig. 3.4) and of hopping elements between atoms of
the centre and those of the leads. Hamiltonian and overlap matrices then have the block
tridiagonal form of Eq. (2.45).

The finite contact geometry is coupled to the atoms of ideal lead surfaces painted blue
in Fig. 3.4. We calculate the Hamiltonian of the uncoupled lead’s surface by applying
a decimation technique [104] subsequent to lateral Fourier transformation. The surface
Green’s function then follow by inversion of the Hamiltonian. The technical aspects related
to the determination of the surface Green’s functions are discussed to some in detail in
Appendix D of [93]. From the lead Green’s function, together with the hoppings to the
leads, we obtain the lead selfenergies.

At this stage we know the full center Green’s function Gr
CC (ε). Next we correct for

charge neutrality in the central part: From Eq. (2.55) we obtain ρiασ and by integrating
up to εF the occupation Ni of each central atom i. Then we add an onsite shift φi on each
atom according to Eq. (2.57) and recalculate Ni until convergence to N0 is reached in each
central atom.

With the corrected Hamiltonian and the selfenergies, we can calculate the LDOS in the
central atom and the transmission of the contact following Eq. (2.76). As examples we
calculated the transmission of the ideal contact geometries of Fig. 3.4 for the six exemplary
non-magnetic materials.

Let us first consider in Fig. 3.5 the case of the noble metal Ag. Its equilibrium crystal
lattice is fcc and we consider the ideal contact geometry of Fig. 3.4(a). The LDOS as
function of the energy, projected on the orbitals of the central atom of this geometry is
shown in the uppermost panel. We can identify the region where the d orbitals dominate,
some 5eV below εF (which is set to zero and indicated with a dotted vertical line). The s
orbitals are relevant around the Fermi energy and the p orbitals gain weight above εF . The
LDOS of the orbitals is narrower than the bulk bands due to the reduced coupling of the
central atom in the contact geometry as compared to bulk. The px, py (the dxy, dx2−y2 and
the dyz, dzx) orbitals are degenerate as it is expected from the orbital structure in Fig. 2.1
and the contact geometry. It is interesting to examine how this translates to transmission.

Below the LDOS in Fig. 3.5 we show the spin-degenerate transmission channels τi(ε)
for Ag and the same contact geometry. According to Eq. (2.76), the zero-bias conductance
corresponds to G0 = 2e2/h times the transmission at the Fermi energy (again set to zero
and indicated with a dotted vertical line). We can identify three distinct energy regions:
A first region, some 4eV below εF , where up to five partially open transmission channels

6We fix the NN distance in the ideal contact geometry to its bulk value.
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Figure 3.5: Top panel: LDOS projected on the orbitals of the central atom for the single
atom contact of Ag. Lower panels: Transmission channels as a function of energy for single
atom contacts of Ag, Au, Al, Pb, Nb, and Pt computed with the NRL TB parametrization.
All geometries are ideal pyramids grown in fcc [111]-direction, with exception of Nb, which
is grown bcc [001]-direction. The Fermi energy is set to zero and indicated with a dotted
line.
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contribute. In the second interval around and below one channel dominates and finally
above εF a degenerate second and third channel gains weight. These regions are correlated
with the LDOS, where the d, s, and s− p orbitals dominate.7

A similar analysis holds for the other exemplary metals. Depending on the position
of the Fermi energy with respect to the orbitals, the zero bias conductance of the single
atom contacts typically consists of one, three or up to five channels. It is thus mainly
determined by the valence of the material under consideration [21]. As a consequence, the
zero bias conductance of Au single atom contacts is also dominated by one channel (and
a degenerate second/third channels arises due to the geometry). Furthermore, Al and Pb
show three channels: one single channel arising from a symmetric combination of the s, pz

orbitals and a degenerate channel arising from the px, py orbitals. In Pt as a transition
metal, the zero bias conductance consist of up to five partially open channels. Note the
particularity of the other transition metal Nb: It is the only metal out of the six considered
here that crystallizes in the bcc crystal structure. As described before, the corresponding
ideal single atom contact has a large apex angle and therefore the coupling between second
next layers around the central atom gives rise to additional channels. Again, many partially
open channels and strong variation of the transmission with energy around εF mark the
contribution of the d orbitals to the zero bias conductance in Nb.

So far we considered only ideal single atom contacts with one central atom. Molecular
dynamics (MD) simulations of the breaking of an atomic contact [23, 77, 112] show a
dimer configuration in the last steps before breaking. In order to simulate this behaviour,
we replace the central atom in the contact geometries of Fig. 3.4 with a dimer, where we
fix the distance between the dimer atoms to bulk NN distance. As a consequence, the two
pyramids forming the contact geometry are separated and the coupling between second
next layers around the central atoms is reduced.

In Fig. 3.6 are shown the resulting transmissions for the same materials as in Fig. 3.5.
Note that the channels that arise from the s orbitals (symmetric combination of s, pz

orbitals, respectively) are hardly changed as compared to Fig. 3.5. On the other hand
channels arising from the px, py, and d orbitals are strongly altered. This can be understood
with the anisotropy of the p and d orbitals and in consequence a strong dependence of the
orbital decomposition of the transport eigenchannels on the contact geometry. On the
other hand, the s orbital is isotropic (and in combination with the pz orbital oriented along
the transport direction). Therefore the corresponding transport eigenchannels are much
more robust against small changes in the geometry. As a consequence, in conductance
histograms, where the conductance is recorded during the last stages of breaking of an
atomic contact, alkali and noble metals (as Na, Ag, Au) show a strong peak at 1G0 carried
by one channel [22, 112]. The s − p and p metals (Al, Pb) give rise to a more broadened
peak at 1G0 (Al) and 1.7G0 (Pb), typically carried by three channels, and transition metals
(Nb, Pt) show ample peaks well above 1G0 (around 2.3G0 for Nb and around 1.7G0 for
Pt) consisting of up to five channels [22, 77].

7Note that in the region of s-p orbitals, a possible fourth channel is absent as discussed in the previous
Section 3.1.
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Figure 3.6: Transmission channels as a function of energy for dimer contacts of Ag, Au,
Al, Pb, Nb, and Pt computed with the NRL TB parametrization. All geometries are ideal
pyramids grown in fcc [111] direction, with exception of Nb, which is grown bcc [001]
direction. The Fermi energy is set to zero and indicated with a dotted line.

In conclusion we can observe overall features for different elements and geometrical
structures of the contact geometries. Common to all is the fact that around the Fermi
energy, the transmission of the atomic contacts is simply determined by the valence orbitals
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of the element [21].

3.2.3 Comparison tight-binding results vs. ab initio results

So far we only described the atomic contact within the NRL TB parametrization. This
method contains the most important information (orbital symmetry of the electronic
Hamiltonian, relevant bands around εF etc.) of the atomic constriction. However, strictly
speaking, the parametrization is valid for bulk structures only. In this Section we will
briefly discuss the transmission of an exemplary system using an ab initio DFT method
and compare the result to that obtained with the TB NRL approach.
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Figure 3.7: Total transmission and transmission channels as a function of energy for an
ideal single atom contact of Al in [111]-direction, as depicted in Fig. 3.4. (a) NRL TB
calculation (corresponds to Fig. 3.5). (b) Full DFT calculation from [72]. The Fermi
energy is indicated with a vertical dotted line.

As an example system we consider a single atom contact of Al like in Fig. 3.4(a). The
transmission calculation with the NRL approach for this Al contact was already discussed
in Fig. 3.5, and we reproduce that result in Fig. 3.7(a). On the other hand, within the
DFT approach, we follow [72, 93], and reproduce the result in Fig. 3.7(b).

In both cases, a tail of the transmission reaches around 8eV below the Fermi energy
and is composed of a single transmission channel which grows to unity and dominates
the transmission at εF . Around 3eV below εF a second, degenerate channel emerges and
continuously raises but does not cross the first channel within the energy window under
consideration. Further channel appear above εF . We conclude that there is no obvious
discrepancy between the two approaches for this system under consideration.

For thick atomic contacts - when approaching bulk limit - the NRL method is expected
to become even more accurate. In this limiting case, ab initio methods rapidly face size
problems. It is therefore interesting to explore the NRL approach for such contacts. We
will briefly discuss this in Section 3.4.5 for Mg contacts and in the context of bulk ARM.
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In the opposite limit, for systems low coordination (like atomic contacts with a central
dimer, chains of atoms, etc.), the NRL approach has to be treated with care.8 However,
in the tunneling limit, the conductance should not depend on contact details but decay
exponentially with the tip distance, where the exponent is related to the work function of
the metal under consideration.
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Figure 3.8: (a) TB-conductance of a dimer contact in fcc [111]-direction of Al as a function
of the separation D between the tip atoms. The positions of the atoms are fixed to lattice
sites. Three-point bending mechanism. (b) DFT-conductance of a similar geometry as in
(a) (taken from [113]). Note that in (b) the positions of the four tip atoms are relaxed
resulting in a apparently larger tip separation and an increased contribution of the next
layers to the conductance.

In order to evaluate the performance of the NRL approach, we compared the conduc-
tance of an Al dimer contact like in Fig. 3.6 during separation of the tip atoms. We start
with the dimer in NN distance (2.86 Å for Al) and calculate the conductance as a function
of the tip distance, while we keep the geometry of the two pyramids. This can again be
compared to a similar calculation using the DFT approach [113]. Note that in the DFT cal-
culation the four tip atoms in each pyramid of the contact was relaxed. As a consequence,
the tip Al atom relaxed towards the frustum of the pyramid and the distance between
the tip atoms appears larger than the distance between atoms of the frustum would be.
Furthermore, in the relaxed position, the closer by atoms of the next to tip layers give a
contribution to the conductance resulting in additional channels. This explains the main
differences between the Fig.3.8(a) and (b). But more importantly, the uniform exponential
decay ∝ exp(−βD) is roughly the same in both approaches with β ≈ 2 Å−1 . This leads
to an estimate for the work function of 4.5 eV in reasonable agreement with experimental
value of 4.26 eV for the (111) surface of Al [114].

In conclusion we showed here the overall agreement of the NRL TB method with results

8Even in this case, the NRL method can be used to analyze conductance during the last steps of breaking
of an atomic contact [77, 112]. It reproduces the most important features of the conductance histogram
of atomic contacts of the different metals, like structure of the peaks at low conductances, transmission
channels,...
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from an ab initio DFT approach in the case of a metallic ideal single atom contact. We
continue now to apply this method to limiting material that have not been analyzed so far,
namely the bivalent metals Zn and Mg on one hand, and – in the next Chapter – the 3d
ferromagnetic materials Fe, Co, and Ni.

3.3 Bivalent metals: zinc

In this Section we want to study the conduction properties of atomic contacts of the
bivalent metal Zn. In particular we shall investigate the conductance channels for single
atom contacts of Zn and shed some light on how the geometry of thicker contacts is reflected
in their conduction properties. In this section we will compare the theoretical observations
directly compared with experiments. The experimental results were obtained by the group
of Prof. Elke Scheer at the Universität Konstanz.

As we showed above for some example metal contacts with partially filled valence or-
bitals (noble, p-valent, and transition metals), the number of conductance channels in
such contacts is mainly determined by the chemical valence and the local atomic environ-
ment [21, 25, 26]. Thus, for instance, a one-contact of a monovalent metal such as Au
sustains a single channel. For p-valent metals such as Al or Pb one finds three channels
due to the contribution of the p orbitals. Finally, in a transition metal such as Nb the
contribution of the d orbitals leads to five channels. Using the non-linearity of supercon-
ducting current-voltage (I-V ) characteristics, it is possible to determine the transmission
coefficients of those contacts [115]. Up to now, these attractive ideas have only been tested
in four materials (Au, Al, Pb, and Nb) due to the need of superconductivity for the channel
analysis.

In this sense, it would be highly desirable to investigate other groups of metals. An
interesting possibility is the analysis of the bivalent metals of the IIB group of the periodic
table such as Zn. The electronic structure of a Zn atom is [Ar]3d104s2, i.e. the outermost
s orbital is full with two electrons. In its solid state, due to the overlap between the 4s
and the 4p bands,a Zn is a conductor. Therefore, for one-atom contacts one expects Zn to
be an intermediate case between the noble metals and Al. The goal of this Section is to
elucidate what determines the conductance channels of one-atom Zn contacts.

This section is organized as follows: First we consider the case of one-atom contacts
of Zn. We can directly compare our theoretical analysis of the conduction properties of
those contacts with experimental results for the analysis of the conductance channels.
In a second part in 3.3.2 we will extend the analysis to thicker contacts. By comparing
experimental conductance traces to theoretical predictions for different contact orientations
we can conclude on a correlation between conductance traces and atomic configuration of
Zn atomic contacts. We end this section with a summary of the results for atomic contacts
of Zn.
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3.3.1 Conductance channels of one-atom zinc contacts

Let us first limit ourselves to the case of single atom contacts. Here we will briefly de-
scribe how the conductance channels of single-atom contacts of Zn could be derived ex-
perimentally. Then we compare the experimental results to calculations of the conduction
properties in such contacts.

Figure 3.9: (a) Three-point bending mechanism. The pushing rod bends the elastic
substrate. The optical micrograph shows a whisker MCBJ after measurement. Right
inset: blow up of a typical Zn whisker with a diameter of 1.7 µm. (b) Electron micrograph
of a lithographically fabricated Zn sample after measurement; the poly-crystalline structure
of the Zn is clearly visible. Lower inset: Magnification of the central part of the sample.
A remaining spacing of the bridge arms of several nm and a nanowire between them is
observed.

3.3.1.1 Conductance channels of Zn whiskers

Experimentally the atomic contacts were obtained using the mechanically controllable
break junction (MCBJ) technique [18, 116], which is shown schematically in Fig. 3.9(a).
For this technique, a pre-fabricated wire is fixed on a flexible substrate which is then bent
in a three point configuration by pushing the central piston against the fixed endpoints.
Due to the advantageous ratio between the advancement of the pushing rod and the move-
ment at the level of the contact, the nanocontact can be broken with a precision down to
the pm range.

In the experimental work described below, such a MCBJ technique was used in differ-
ent variations: On one hand a notched wire or a whisker was glued on the substrate and
contacted with electrodes as shown in the inset of Fig. 3.9(a). On the other hand litho-
graphically fabricated break junctions were used as shown in Fig. 3.9(b). However, due
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to the characteristics of Zn at surfaces, the lithographically fabricated break junctions ex-
hibited strong granularity in the mesoscopic scale. Together with the gap anisotropy [117]
this prevented from obtaining neat I-V s in the superconducting regime for such contacts.
In order to circumvent these problems it was necessary to develop a variation of the MCBJ
technique which comprises a Zn whisker as central part. This new technique allows for
fabrication of reproducible one-atom Zn contacts with well-characterized lattice properties
of the electrodes. In the following we will concentrate on those whisker MCBJs and come
back to the case of the lithographically fabricated MCBJs in the next Section.

Using the superconducting I-V characteristics [115] the transmission coefficients have
been reliably extracted for the whisker MCBJs. We find that in the last plateau, where
the conductance is around 0.8 G0 (Refs. [22, 118]), the transport is largely dominated by
a single channel. In order to understand these findings we have performed tight-binding
calculations of the conductance of one-atom Zn contacts. Our theoretical results show
that the transport takes place through the 4s and 4p bands of Zn. In agreement with the
experiment, we obtain for the one-atom case a conductance between 0.8 and 1.0 G0, and it
is dominated by a single channel which is a combination of the s orbital and the p orbital
along the transport direction of the central atom.

Figure 3.10: (a) Current-voltage characteristics of several one-atom contacts of Zn ar-
ranged with a whisker MCBJ at T = 0.27 K (symbols) and best fits to MAR theory [19, 20].
The value of ∆ = 160 µeV was used to fit all the curves. The transmission coefficients
obtained from the fit are indicated in the figure. Inset: typical opening curve recorded at
T = 1.5 K. (b) Experimental histogram of the channel transmissions τi obtained in the last
conductance plateau of a Zn-whisker MCBJ. We count all those contacts as belonging to
the last plateau that have been recorded when the conductance once dropped to or below
G0. The channels are labeled as 1st, 2nd, ... according to their τ ′is.

The first attempts to investigate Zn contacts were carried out with both “notched-wire”
break junctions [18] and thin-film break junctions [116]. However, the granular structure
of the evaporated films and the intrinsic gap anisotropy of Zn hampered the observation
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of neat superconducting I-V s, which are necessary to obtain the channel transmissions.
To solve these problems MCBJs consisting of Zn whiskers glued on top of a pre-patterned
flexible substrate were prepared [see Fig. 3.9(a)]. Whiskers are thin single-crystalline nee-
dles, which in the case of Zn are grown by the so-called pressure method [119]. Following
Ref. [119] whiskers of diameter ranging from 0.5 to 2 µm and length of the order of 0.5 to
1 mm were grown [see inset of Fig. 3.9(a)], which takes approximately 3 to 6 months. They
are preferably oriented along the a-axis ([112̄0] direction) with a probability of 67%. To
contact the whiskers bronze substrates of size 3×18 mm2 were prepared, covered with an
insulating layer of polyimide and 70 nm thick gold electrodes separated by 100 µm. Then,
individual whiskers are deposited onto the substrate and mechanically contacted by two
small dots of epoxy resin. The electrical contact between the whiskers and the electrodes
is obtained by gluing two small pieces of In onto the whiskers and the gold pads. With
this method whisker break junctions with resistances of 10 to 100 Ω at room temperature
were obtained. Finally, they are mounted onto a three point bending mechanism [18] [see
Fig. 3.9(a)] thermally anchored to the base temperature pot (≈ 260 mK) of a 3He cryostat.

Breaking the contact, the conductance evolves as usual in a step-like manner. An
example of an opening curve is shown in the inset of Fig. 3.10(a), where one sees the typical
behavior for Zn atomic-sized contacts with a conductance in the last plateau of the order of
0.8G0. The stability of the setup allows for halting at any point along the breaking to record
the I-V s. In particular, to determine the superconducting gap the whisker of Fig. 3.9(a)
was broken to form a tunnel contact. In this limit a well-pronounced gap is visible in
the I-V s, and a value of ∆ = 160 µeV was deduced. This value is slightly larger than the
expected value for the x-direction in real space, corresponding to the crystallographic [112̄0]
direction, the direction with the largest gap.9 In Fig. 3.10(a) are shown the superconducting
I-V s obtained at 0.27 K for seven different contacts. Together with the data points the best
fit is shown, which was obtained with the multiple Andreev reflection (MAR) theory [19, 20]
at zero temperature. The details of the fit procedure are explained in detail in Refs. [105,
115]. The excellent agreement with the MAR theory allows for the determination of the
whole set of transmission coefficients {τi} with a precision of a few percent (depending on
the value of τi) for up to 4 channels. To investigate the conductance channels of the smallest
contacts (presumably one-atom contacts), the transmission coefficients obtained in the last
plateau of 33 contact realizations were collected. The results are shown in the histogram
of Fig. 3.10(b). From this plot we draw two important conclusions: (i) the conductance
in the last plateau is largely dominated by a single channel with a high transparency, and
(ii) depending on the contact geometry a second and third channels with low transmissions
can also contribute to the transport.

9In Ref. [117] gap values of ∆ = 108 µeV for the c axis and of ∆ = 137 µeV for the x direction were
reported. These values should be taken with care, since they depend on the purity and dimensionality of
the sample. The estimated critical temperature of the whiskers used here is 0.80 K, while the typical bulk
values are between 0.84 K and 0.88 K.
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3.3.1.2 Transmission properties of Zn single-atom contacts

In order to understand the experimental findings we have performed conductance calcula-
tions following the method described in Refs. [25, 26] and Chapter 2. In contrast to the
NRL method we used before in Chapter 3.2 to describe transport, we will use here for Zn
the orthogonal two center SK parametrization of Ref. [84], which is fitted to band struc-
ture of bulk materials. Here the on-site energies and hopping parameters do not explicitly
depend on the local environment and are fixed to first, second, and third nearest neighbour
positions in bulk. Our basis is formed by 9 atomic orbitals: 3d, 4s, 4p, which give rise to
the main bands around the Fermi energy. We have imposed local charge neutrality in all
the atoms of the constriction by means of a self-consistent variation of the on-site energies
to partially compensate for surface effects. The leads are described with bulk atoms. The
transmission of the contacts is calculated as described above using the NEGF, which allow
us to express the set of transmission coefficients {τi} in terms of the microscopic parameters
of the atomic contacts.

It is instructive to first discuss the bulk density of states (DOS) of Zn in its hcp structure,
which is shown in Fig. 3.11(a). Notice that the d band is rather narrow, it lies ≈ 9 eV
below the Fermi energy and it is practically full. It is then obvious that the s and p bands
will play the main role in the conduction. Since there is an uncertainty in the growth
direction of the whiskers, we have studied the conductance of geometries with different
crystallographic orientations. In the inset of Fig. 3.11(b) we show an example of an one-
atom contact along the [0001] direction (c-axis). The geometry is constructed starting with
a single atom and choosing the nearest-neighbours in the next layers. For this geometry,
in Fig. 3.11(b-c) the local DOS at the central atom and the transmission of the individual
channels τi as a function of energy are shown. In the local DOS we see that the pz level
(z is the transport direction) is shifted to lower energies. This is due to its better coupling
to the leads as compared with px and py, which remain degenerate in this ideal geometry.
This fact implies that the orbital pz plays a more important role in the transport. In the
relevant energy range the d band has a very tiny local DOS and it has therefore not been
depicted. In Fig. 3.11(c) we see that at the Fermi energy the total transmission is 0.86
and it is dominated by a single channel with τ1 = 0.81. The second and third channel are
degenerate and their transmission at the Fermi energy is τ2 = τ3 = 0.025, while the fourth
gives a negligible contribution τ4 = 0.001. To understand the origin of these conductance
channels we have analyzed the character of the eigenfunctions of the transmission matrix by
looking at their weights in the different orbitals of the central atom. This analysis reveals
that the dominant channel is basically a symmetric combination of the s and pz orbitals of
the central atom. The second nd third channels are mainly due to the contribution of the
px and py orbitals. The degeneracy of these two channels is a consequence of the symmetry
of this ideal geometry and reflects the degeneracy of the local DOS, see Fig. 3.11(b). Their
transmission is rather low because the transport takes place through the tails of the px

and py bands. The antisymmetric combination of s and pz forms a channel of negligible
transmission due to the fact that this combination is orthogonal to the states of the leads.
So in short, the nature of the channels in this one-atom Zn contact is similar to the Al



46 Conduction properties of non-magnetic metallic atomic contacts

case [25]. The main difference is that Zn has one valence electron less than Al. Thus, the
Fermi energy is lower and consequently lies further away from the center of the p bands,
resulting in a lower transmission of the px-py channels.
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Figure 3.11: (a) Bulk density of states of Zn hcp projected onto the s, p and d orbitals as a
function of energy. The labels indicate the value of the on-site energies. Inset of panel (b):
contact along the [0001] direction, with a single central atom and containing 45 atoms.
The distance between the different atoms is the bulk distance. (b-c) Local DOS at the
central atom projected onto the s and p orbitals and channel transmissions as a function
of energy for the contact of the inset of panel (b). Notice that the channel px-py is two-fold
degenerate. Inset of panel (d): the same contact as in panel (b), but with a dimer in
the narrowest part. The distance between the central atoms is the bulk nearest-neighbour
distance. (d-e) The same as in panels (b-c) for the dimer geometry. The Fermi energy is
set to zero and indicated with vertical lines.

As explained above, the second and third channels have a low transmission due to
the fact that the transport takes place through the tails of the px and py bands. This
suggests that a reduction of the coupling to these orbitals could result in a negligible
contribution of these channels. To test this idea we have analyzed one-atom contacts
with a dimer in the narrowest part of the contact, see inset of Fig. 3.11(d). This type
of geometry has been frequently observed in molecular dynamics simulations of atomic
contacts of Al (Ref. [120]) and Au (Ref. [112]). In Fig. 3.11(d-e) the local DOS in one of
the central atoms and the transmission through this dimer contact are shown. The total
transmission at the Fermi energy is 0.97, and as suspected, it is completely dominated by
a single channel (τ2 = 4× 10−4), while the character of the channels is the same as in the
case analyzed above. Thus, by changing the contact geometry from a short contact with a
single atom in the constriction to a long contact in a dimer configuration the conductance
may increase by about 0.1 G0. Opening traces that support this prediction are reported
in the literature [22, 118] and have also been found in the present experiment [see inset of
Fig.3.10(a)].
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Figure 3.12: (a) Channel transmissions as a function of energy for the contact of the inset,
which is grown along the [112̄0] direction, has a dimer in the middle and contains 60 atoms.
The Fermi energy is set to zero. (b) Histograms of the transmission coefficients for 3000
disorder realizations (see text) of the one-atom contact of the inset of Fig. 3.11(b).

Let us now discuss the results for contacts along the [112̄0] direction (a-axis). An
example of a contact geometry with a dimer configuration and its corresponding transmis-
sion is shown in Fig. 3.12. As in the case of the [0001] direction, the total transmission
(τtot = 0.77) is clearly dominated by a single channel (τ1 = 0.75), which is formed by a
symmetric combination of the s and px orbitals of the central atoms (x is now the transport
direction). The second channel is on the border of what is measurable (τ2 = 0.01), while
the transmission of the third one is τ3 = 0.004. Notice that in this case these two channels
are not degenerate. We find that the transmission for contacts along the [112̄0] direction
is slightly lower than for the [0001] one, which we attribute to the larger apex angle in
the first direction, which produces less adiabatic contacts. These findings are in agreement
with the observation of Ref. [118] where a splitting of the first peak of the histogram into
two sub-peaks with 0.7 and 0.9 G0 was reported.

For all the geometries analyzed in this work we have checked that the results do not
change qualitatively with the number of atoms in the constriction region. We have also
studied the influence of disorder, which we simulate by changing randomly the positions of
the atoms in the contact region with a very large maximum amplitude of 20% of the nearest-
neighbour distance. The hoppings - initially fixed to bulk values - are then computed using
the scaling laws proposed in Ref. [84, 86, 87] and explained above. In Fig. 3.12(b) we
show a histogram of the individual transmissions for 3000 realizations of contacts along
the [0001] direction with a single central atom. As it can be seen, the transmission is still
dominated by a single channel, and depending on the local environment of the central atom
a second and even a third channel can have a measurable contribution, in agreement with
the experimental results [see Fig. 3.10(b)]. Similar histograms for the dimer geometries
show that τ2 and τ3 typically lie below the measurement threshold.

In summary, we have analyzed experimentally and theoretically the conductance chan-
nels in Zn single-atom junctions. We have shown that, although Zn is a bivalent metal,
the conductance of one-atom contacts is dominated by a single well-transmitting channel,
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which we have traced back to the symmetry of the valence orbitals (s and p) of the central
atom. Our results illustrate that the number of channels in an one-atom contact is not
simply determined by the chemical valence, but by the number of valence orbitals together
with their symmetry.

So far we only considered experimental results for whisker break junctions as we needed
superconducting I-V curves to determine the transmission values of the conductance chan-
nels. The price we had to pay was the poor statistics due to the complex and time-
consuming fabrication method of Zn whiskers. In what follows we will consider different,
cheaper fabrication methods which allows us to study a full conduction histogram of Zn
contacts and conclude on some correlations between the contact geometries and the con-
ductance.

3.3.2 Correlation between conductance and atomic configuration
of atomic contacts of zinc

Experiments on a large ensemble of metallic contacts have demonstrated the statistical
tendency of atomic-size contacts to adopt element-specific preferred values of conductance.
The actual preferred values depend not only on the metal under investigation but also on
the experimental conditions. However, for many metals, and in particular ’simple’ ones (like
Na, Au...) which represent good ’free-electron’ systems in the bulk, the smallest contacts
have a conductance G close to G0 (Ref. [1]). Statistical examinations of Al point contacts
at low temperatures yield preferred values of conductance at G = 0.8 G0, 1.9 G0, 3.2 G0 and
4.5 G0 (Ref. [121]), indicating that single-atom contacts of Al have a typical conductance
slightly below the conductance quantum. However, it has been shown by the analysis of
current-voltage characteristics in the superconducting state that Al single-atom contacts
accommodate in general three transport channels, the transmissions of which add up to a
value 0.8 . τ . 1 (Ref. [115]). These findings are in agreement with measurements of shot
noise [122, 123], conductance fluctuations [124], thermopower [125] and supercurrent [126]
in such contacts. In particular, the experiments on Al have shown the following behaviour:
for a given contact geometry the transmission coefficients of the individual channels almost
continuously change upon further deformation of the contact and no preferred transmission
values can be found [115]. A quantum-chemical model [21], which links the τi to the
chemical valence and the atomic arrangement of the region around the central atom of
the constriction, gives a prediction about the number of transport channels, but the {τi}
depend on the precise atomic arrangement of the contacts.

So far Al appears to be the only metal to show peaks in the histogram close to multi-
ples of G0, although this does not correspond to quantized transmission values. However,
since no information about the atomic arrangement of the contacts can be deduced from
the experiments, a direct correlation between transport channels and configuration is still
lacking. Therefore it is worth studying a class of elements that are likely to possess sim-
ilar transport behavior as Al, but which simultaneously offer the possibility to correlate
the transport properties to the crystal structure. So far, only for the monovalent metal
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Au signatures of different growing directions of nanowires could be found in the conduc-
tance traces. In this case a combination of those measurements with transmission electron
microscopy [127, 128] was needed. However, in those experiments, no direct information
about the conductance channels was available.

As pointed out above bivalent elements such as the alkaline-earth elements or the IIB
subgroup elements Cd, Zn and Hg should be insulating, since they have a completely
filled outer s-shell. This apparent discrepancy to the experimental findings indicates that
additional orbitals besides the s-orbitals contribute to the electronic conductance. Detailed
calculations reveal that in the case of Zn the 4p orbitals are the most relevant ones for a
correct description of the bulk band structure [84]. With these considerations, single-atom
contacts of Zn are expected to have very similar transport properties as Al single-atom
contacts. However, the distribution of the transmission coefficients may deviate, since it
depends on the exact atomic configuration as we showed in the previous Section 3.3.1. Since
Zn crystallizes in a hexagonal, slightly distorted hcp structure while Al is a fcc crystal, the
actual atomic arrangement of the point contacts might be different. Moreover the closed
s-shell in the limit of isolated Zn atoms may lead to new features in the conductance
histogram of Zn atomic contacts.

We will show that the conductance histogram of Zn shows several peaks, a fact that is
unusual for multivalent metals. The first peak, which corresponds to the single-atom con-
tact - is located slightly below one conductance quantum and is split-up into two subpeaks.
This evidences the existence of two or more preferred configurations of the single-atom con-
tact. We will demonstrate that indications for preferred atomic arrangements can be found
in individual opening and closing traces of the junctions both measured in the normal as
well as in the superconducting state. With the help of a tight-binding model for the trans-
port channels we establish a correlation between the preferred conductance values deduced
from the histograms and preferred channel transmissions which we use for linking the peaks
in the histogram to preferred atomic configurations.

3.3.2.1 Lithographic break junctions of Zn

Let us first discuss briefly the fabrication and low-temperature electronic transport prop-
erties of lithographic MCBJs of Zn which are used for measuring the conductance his-
togram. The samples are fabricated using electron beam lithography along the lines of
Ref. [116]. These samples are 2 µm long, 200 nm thick suspended Zn nanobridges, with a
200×100 nm2 constriction in the center [cf. Fig. 3.9(b)]. The metal structure is deposited
onto a polyimide layer which is partially etched away for suspending the nanobridge. If Zn
is evaporated at room temperature, it grows in islands of micron-size with the hexagonal
axis preferably perpendicular to the substrate plane. Since this structure is not suitable for
the formation of atomic-size contacts, special care is taken to reduce the grain size. The
parameters could be chosen empirically such that the grain size of the Zn layer does not
exceed ≈ 200 nm. Finally, the bridge is underetched so that at the narrow constriction the
nanobridge is now unsupported. The resistance of the nanobridge does not increase during
the etching process, indicating that reaction between the oxygen ions and Zn is weak.
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The bridge is then mounted on a three-point bending mechanism and cooled down to
1.5 K. A µm screw moves the pushing rod that bends the substrate such that the relative
motion of the anchor points of the bridge can be controlled with a precision of around
1 pm. This was verified using the exponential dependence of the conductance on the
inter-electrode distance in the tunnel regime. The resistance of the sample is recorded
by a 4-point resistance bridge with a measuring current of 1 nA. Due to the texture of
the evaporated film shown in the micrograph of Fig. 3.9(b) and its consequences to the
mechanical deformation of the bridge during the breaking process, only few of the bridges
can be closed again (5 out of 20 samples). In these cases the formation of a nanowire
was often observed in the electron micrograph [see lower panel of Fig. 3.9(b)]. During the
systematic measurements the opening speeds of the bridge-anchor points were typically
around 35 pm/s, much slower than typical opening speeds of nanocontacts fabricated with
the help of a STM or the ”notched-wire” break junction technique [1]. This limitation
in opening speed also limits the number of opening traces that can be recorded within a
reasonable time. The output of the resistance bridge is recorded by an oscilloscope and
then transferred to a computer for calculating the histogram.

When elongating the bridge, its conductance G decreases in steps of the order of one
G0, their exact sequence changing from opening to opening (see right panels of Fig. 3.13).
Since the mechanical deformation is different for opening and closing, we construct separate
histograms for both experiments. Fig. 3.13a displays the conductance histograms calculated
from ≈ 600 subsequent opening and closing sequences recorded during two weeks on the
sample shown in Fig. 3.9(b), which has been kept at low temperatures. Similar histograms
were achieved with a lower motion speed of the bridge arms of 17 pm/s.

Figure 3.13: (a-c) Conductance histograms for opening (a,c) and closing (a,c) the contacts,
recorded on two samples like the one shown in Fig. 3.9(b) at T = 1.5 K. The histograms
have been calculated from ≈ 600 individual opening and closing curves, respectively. (d-g)
Opening (panels d,e) and closing (f,g) traces of the sample in Fig. 3.9(b) recorded at 1.4 K.
Panels d and f (e and g) show examples without (with) the plateau at 1.4 G0.
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Several peaks appear for both motion directions at similar positions of 0.8 G0, 1.4 G0

and ≈2.5 G0. The first peak is split into two substructures at ≈0.7 G0 and 0.9 G0, a
feature which has not been observed for other materials. This splitting has been observed
in several independent measurements carried out with four different samples. Although
the splitting is observed in all the measurements, the absolute values of the peak positions
and the relative peak heights vary slightly from experiment to experiment (see Fig. 3.13b
and c). A possible explanation of the splitting could be two different configurations of the
last contact. This will be discussed in detail below.

The second peak appears already at 1.4 G0 for both closing and opening traces. This
spacing of neighbouring peaks is unusually small for metals. The third peak appears to be
shifted to slightly lower values (2.2 G0) in the opening traces as compared to the closing
traces (2.5 G0). In similar experiments by Yanson et al. [22] on ”classical” break junctions
made of notched Zn wires, no splitting of the first peak is found, but a shoulder that is
compatible with our findings. The peaks at higher conductance values are in reasonable
agreement with our findings as well. It is well known that details of the histograms do
depend on the experimental conditions (see for example the different experimental results
for the most extensively studied metal gold). In the experiment with Zn described in
Ref. [22] higher voltages have been applied, a slightly higher temperature and faster opening
speeds have been used, and only opening traces were recorded. In the experiment presented
here, the main difference between opening and closing consists in the peak heights; the low-
conductance peaks are less pronounced when closing.

When analyzing the individual opening and closing traces further, we observe the fol-
lowing correlation: When opening the contact, we either observe jumps from a conductance
of around 2.2 G0 via 0.9 G0 to almost 0 G0 or a plateau series 2.5 G0, 1.4 G0, 0.7 G0 (see
Fig. 3.13 d and e). Only very rarely plateaus at 2 G0 and 1.4 G0 exist in the same trace;
jumps from 1.4 G0 to 0.9 G0 do not occur at all. We also observe direct jumps from val-
ues around 2.2 G0 or slightly above to tunnel regime, but we never observe conductance
changes from 1.4 G0 directly to zero. The plateaus at 2.2 G0 are usually rather short,
while those at 1.4 G0, 0.9 G0 or 0.7 G0 are well pronounced. In particular on the 0.9 G0

plateau we often observe oscillations to much smaller values ≤ 0.4 G0. About 38% of all
opening curves show the series 2.5 G0, 0.9 G0 and about the same ratio belongs to the
group 1.4 G0, 0.7 G0. In the closing traces (see Fig. 3.13 f and g) we often observe the
series 0, 0.9 G0, 2.5 G0 or the series 0 G0, 0.7 G0, 1.4 G0, 2.5 G0, but jumps directly to
the 1.4 G0 or 2.5 G0 - plateaus are possible. We attribute the latter observation to the
formation of contacts larger than a single-atom contact since the apex atoms from the
previous opening sequence might have relaxed back to positions deeper in the tip. Also
in the closing curves, an oscillating behavior is more pronounced for the 0.9 G0-plateau
than for the 0.7 G0-plateau. Among all recorded closing traces, 48% show the 0.9 - 2.5
G0-plateau series and 28 % the 0.7 - 1.4 G0-series. We note that the difference between
the opening and the closing histogram is rather small compared to other metals (see e.g.
Ref. [129] for Au).

In summary, two different opening or closing paths seem to be preferred. One includes
geometries giving rise to conductances of 0.9 and 2.2 G0, while the other gives conduc-
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tances of 0.7, 1.4 and 2.5 G0, respectively. This interpretation is further supported by
the following analysis of the step heights: The data of the individual conductance traces
during elongation is collected, the conductance difference between neigboured elongation
steps is calculated (at constant elongation speed) and displayed in a histogram over step
height (not shown). If there was no preferred step height, the histogram should decrease
monotonously with increasing step height. However, the histogram of the collected data
shows a clear peak at 0.7 to 1.0 G0 but no structure at smaller values. This indicates that
during rearrangement jumps with a minimum step height of 0.7 to 1.0 G0 are preferred. In
particular this statistical analysis suggests that the neighboured peaks in the conductance
histogram at 1.4 G0 and 0.9 G0 and at 0.9 G0 and 0.7 G0 respectively do not arise from
the same conductance traces with plateaus at the corresponding conductance values. This
was already inferred by the individual conductance traces of Fig. 3.13(d-g). In total, this
analysis demonstrates that the conductance histogram is a superposition of two or more
histograms with different sets of preferred values.

3.3.2.2 Whisker break junctions of Zn

In this Section, the question about the origin of these two distinct sub-histograms is treated.
In order to clarify this issue we use the conductance channel analysis in Zn whisker MCBJs
as described in the previous Section. We can then compare the channel-resolved conduc-
tance traces with those obtained with lithographic MCBJs of Fig. 3.13(d-g). At least
two sub-groups leading to the two subpeaks are distinguishable. Finally by comparing
those results to the conduction properties of the simplest atomic geometries, a link of the
sub-groups to different crystallographic directions is suggested.

Conductance histograms of multivalent metals in general do not show well pronounced
multiple peaks [22, 37, 130]. As already discussed above in Section 3.3.2, the only exception
of this general observation was so far Al. The histogram of Zn shows similarities to that of
Al: Several peaks occur with an average spacing between the peaks of about 0.7 G0. Now
we want to verify whether this similarity is mirrored in the quantum transport properties,
i.e. the conductance channels. Therefore it is again necessary to switch to whisker break
junctions, as in the case of lithographic break junctions beyond single atom contacts (more
than two open channels), where the superconducting DOS deviates markedly from the
BCS shape [131]. The sample preparation of the whisker MCBJs is as described above.
It should be pointed out that in the lithographic break junctions the [0001] direction is
preferably oriented perpendicularly to the film plane whereas Zn whiskers mainly grow
in [112̄0] direction. However during the breaking process the emerging nanowire may be
oriented along any of those directions.

The I-V s with a dominating single channel are routinely observed at the end of a
last plateau after an abrupt change of the I-V . This often includes an increase of the
conductance, and thus a re-arrangement of the atomic-size contact. Once such a contact
has been established, it remains stable for an elongation of the bridge of 2-3 Å. This length
compares with the equilibrium nearest neighbour distance of 2.6 Å of Zn atoms in the
bulk. For Al samples, contacts with a dominating channel and one or two smaller channels
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Figure 3.14: (a) Current-voltage characteristics of two atomic-size contacts of Zn arranged
with a whisker MCBJ at T = 0.27 K (symbols) and best fits according to the theory of
MAR [19, 20] (lines) with a superconducting gap value ∆ = 165 µeV. The transmission
coefficients are for the lower curve (triangles): τ1 = 0.82, τ2 = 0.25, τ3 = 0.19, τ4 = 0.09;
and for the upper curve (circles) τ1 = 0.96, τ2 = 0.47, τ3 = 0.08. The lower (upper) curve
has been measured at position 0.35 nm (1.37 nm) of panel (b). (b) Opening traces with
decomposition into individual channels for a whisker break junction showing plateaus at
1.4 G0, 0.5 G0, 1.5 G0, and 0.6 G0. Transport direction presumably close to [0001]. (c)
Opening traces with decomposition into individual channels for a whisker break junction
showing plateaus at 2.5 and 1 G0. Transport direction presumably close to [112̄0]. The
origins of the electrode distance axes are at arbitrary values.

could be observed as well [115, 126]. However, for Al these contacts evolved continuously
from a situation with three channels, occurred only very rarely [129], and were immediately
destroyed when further pulling the electrodes apart.

In order to go beyond the case of single atom contacts studied in the previous Section,
we combine the lithographic and the whisker MCBJ techniques and aim to establish a
correlation between the atomic configuration and the transport properties. This procedure
is justified by the following facts. First, the comparison of individual opening traces shows
the same preferred plateau sequences for both types of samples. Second, the transmission
coefficients inferred from the lithographic break junctions with up to two channels (not
shown) are in accordance with those found for the whisker break junctions. Now, we have
extended our investigation to larger contacts and the analysis of opening traces.

In Fig. 3.14(a) we show two examples of I-V s measured on a whisker break junction
at T = 0.27 K and their fits according to the theory of MAR [19, 20] with three and four
channels, respectively. The details of the fitting procedure are described in Ref. [115]. The
I-V s are examples recorded on the opening trace shown in Fig. 3.14(b) at the positions
indicated in the caption. Although the total conductance of the two contacts is similar
(1.37 G0 and 1.51 G0, respectively), the I-V s differ markedly due to the different distribu-
tion of transmission coefficients. This example visualizes the possibility to deduce the set
of transmission coefficients from the I-V s. In the following we will use this knowledge for
correlating the structure to the transport behavior.
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Figures 3.14(b,c) show examples of opening traces recorded on two different whisker
MCBJs. In the upper panels the total transmission deduced from the conductance is
shown, while in the lower panels the decomposition into individual channels is plotted.
The example in Fig. 3.14(b) shows an opening trace with the typical plateaus at 1.4 G0

(with 4 channels) and 0.5 G0 (with 2 channels), a re-closure of the contact to 1.5 G0 (with
3 channels) and a last plateau at 0.6 G0 (again with 2 channels). Although the overall
conductance of the starting configuration and the part with three channels is very similar,
the channel analysis clearly shows that another atomic configuration is adopted.

Figure 3.14(c) depicts an example for the other preferred opening sequence with the
plateaus at 2.5 G0 (5 channels) and 1 G0 (3 channels), with an abrupt rearrangement of
channels and reduction from three to one (or two) channels within the last plateau. The
opening curve displayed in Fig. 3.14(c) starts with a conductance of 2.5 G0 distributed
among five channels. The conductance drops then to about 1 G0 accommodated by three
channels. The change of the channel configuration to one dominating channel is hardly seen
in the total conductance which remains close to 1 G0 upon further stretching. However,
the I-V s changes markedly, signalling a distinct atomic rearrangement of the narrowest
region. Around the electrode distances 2.9 nm and 3.15 nm no stable I-V s could be
recorded because of frequent rearrangements of the contact. For an example of those
rearrangements see Ref. [131].
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Figure 3.15: (a) A contact grown along the [112̄0] direction with a single central atom and
channel transmissions {τi} as a function of the energy for this contact. The Fermi energy
is set to zero and is indicated with a vertical line. The total conductance is 3.6 G0 and it
is dominated by 5 conductance channels. (b) The same as for (a) for a contact grown in
the [0001] direction with a minimum cross section of 3 atoms. The total conductance is
2.1 G0 with the contribution of 4 channels. Notice that the second and third channels are
degenerate at the Fermi energy.

3.3.2.3 Transmission properties of thicker Zn atomic contacts

In order to provide further insight into the origin of the sequence of plateaus described
above, we have extended the conductance calculations presented in the previous Section
to contacts of a larger cross section. The calculations are performed exactly as described
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above. The problem that one encounters in the analysis of contacts larger than the single-
atom contact is that the number of possible configurations increases rapidly. We therefore
restrict ourselves to only two growing directions and perfectly ordered geometries. For a
contact grown in [112̄0] direction the dimer configuration discussed in Fig. 3.12(a) is the
only possibility to have a single-channel contact. This is due to the fact that already for the
single-atom contact shown in Fig. 3.15(a) next-nearest neighbour-contributions of 4 atoms
give rise to 5 transport channels with non-negligible transmission and a total conductance
of 3.6 G0 (see Fig. 3.15(a)). The transmissions of those channels vary between 0.5 and 1.
The next larger highly symmetrical contact (not shown here) has 4 atoms in the smallest
cross-section with 8 channels. Due to the rather large apex angle the number of relevant
atoms and channels increases very fast. A change of the separation of the electrodes (for the
perfectly ordered geometries used for the calculations) of 0.2 nm changes the conductance
by as much as 2 G0. Thus, the prediction for this growing direction would be conductance
traces with both a rapidly increasing number of channels and rapidly increasing total
conductance.

In contrast, for the [0001] direction, starting again with the dimer configuration with
a single channel and transmission τ = 0.94, the last but one contact has again one atom
in the center of the constriction with one channel and transmission 0.85, as described
in Fig. 3.11(b,c). Upon increasing the disorder the contributions of a second and third
channel increase. The smallest highly symmetrical contact in this direction with more
than one atom in the smallest cross-section is shown in Fig. 3.15(b). It consists of three
atoms with 4 to 5 channels and total conductance of 2.1 G0. From the dimer configuration
to this configuration a distance change of more than 0.5 nm changes the conductance by
approximately 1 G0. Since the absolute values of the transmission coefficients depend
crucially on the exact atomic configuration, it is again hard to draw conclusions from the
analysis of individual opening traces. Nevertheless, when comparing the results of 8 opening
traces recorded on 2 whisker MCBJs we find the following trends: The 1.4 G0 - 0.7 G0

series gives rise to larger average transmission values than the 2.5 G0 - 0.9 G0 series. This
sounds contradictory at first sight, but reflects the fact that the larger average conductance
in the 2.5 G0 - 0.9 G0 series are achieved by more conductance channels. As can be seen
in the lower panel of Fig. 3.14, most of the plateau close to 0.9 G0 is carried by three
channels. In particular contacts with a dominating single channel are more often observed
in the 1.4 G0 - 0.7 G0 series, in agreement with the calculations for the [0001] direction of
Fig. 3.11(b,c). From these considerations we assume the plateau series 2.5 G0 - 0.9 G0 to
correspond to the [112̄0] direction while for the 1.4 G0 - 0.7 G0 the [0001] direction seems
to be applicable. The exact values of the transmission coefficients however differ from the
calculated one, presumably because of disorder in the experimental contacts.

3.3.3 Summary

In conclusion, a single-atom or dimer contact of Zn is likely to have a conductance of ≈ 0.7
to 0.9 G0, depending on its geometry. The histograms for both closing and opening the
contacts indicate the importance of different contact geometries. By analyzing individ-
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ual opening and closing traces we identify two preferred plateau sequences. The analysis
of the current-voltage characteristics in the superconducting state suggests different pre-
ferred transmissions for those typical plateau sequences. By comparing the experimental
findings to our tight-binding calculations for idealized atomic configurations we propose a
correlation between the structure and the transport properties of individual contacts.

At the level of atomic contacts, Zn presents conductance properties in-between Al and
Au, with one highly transmissive channel and eventually a second and third additional
channel. However, unlike Au – which is extremely ductile – Zn shows a high degree of
mechanical stability, which is amongst others reflected by a similar opening- and closing
traces and histograms. Furthermore, Zn is a superconductor and in general allows for
channel analysis of atomic contacts. These feature make Zn an interesting option for an
electrode material.

3.4 Bivalent metals: magnesium

In this Section we will present an theoretical and experimental study of the conductance
of atomic-sized contacts of magnesium. The experiments we consider here were performed
by the group of Prof. Jan van Ruitenbeek at Leiden University.

Using Mechanically Controllable Break Junctions (MCBJ), it was observed that at
room temperature the conductance histogram exhibits a series of peaks, which suggests
the existence of shell effects. Its periodicity, however, cannot be simply explained in terms
of either an atomic or electronic shell effect. It was also found that at room temperature,
contacts of the diameter of a single atom are absent. A possible explanation could be the
occurrence of a metal-to-insulator transition (MIT) as the contact radius is reduced, in
analogy with what it is known in the context of Mg clusters. However, our first principle
calculations show that while an infinite linear chain can be insulating, Mg wires with larger
atomic coordinations, as in realistic atomic contacts, are always metallic. Finally, at liquid
helium temperature our measurements show that the conductance histogram is dominated
by a pronounced peak at 1G0. This is in good agreement with our calculations based on
a tight-binding model that indicate that the conductance of a Mg one-atom contact is
dominated by a single fully open conductance channel.

3.4.1 From bulk to atomic clusters

The situation for Mg is at first sight comparable to that of Zn studied in the previous
Section: It is a divalent metal with a closed outermost s shell and the electronic configura-
tion [Kr]3s2. Small N -atom clusters of Mg are insulators (just as Zn), with an important
gap between HOMO and LUMO and van der Waals type binding for N ≤ 3 [28]. With
increasing cluster size the gap rapidly vanishes for clusters containing more than 18 atoms
[29], and bulk Mg shows a strong hybridization of the 3s and 3p orbitals, again comparable
to Zn discussed in Section 3.3.

This is shown in Fig. 3.16, where the DOS of bulk Mg projected on the relevant orbitals
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Figure 3.16: Bulk density of states of hcp Mg projected on the s, p, and d orbitals as a
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around the Fermi energy is presented. Note that the total DOS shows a
√
E-dependence as

expected for free electrons in 3 dimensions. As a consequence of the strong hybridization,
bulk Mg is a metal at room temperature with a conductivity of 9µΩcm [114].

In point contacts however, there is – similar to clusters – a reduction of the coordination
of the atoms and, with it, the hybridization. The first question we want to address here,
is whether this reduction is strong enough to induce a MIT for small Mg contacts.

Besides the cross-over from insulating to metallic behavior, cluster experiments also
demonstrated a shell structure [132]. One speaks of a shell structure if the mass spectrum
shows a periodicity as a function of the radius [133]. The first observation of a shell
structure in magnesium clusters was found to be due to the closing of facets and the
crystalline arrangement [134]. The hexagonally close pack lattice leads to the periodic
occurrence of highly stable icosahedrons. Later experiments performed with magnesium in
super-cold helium droplets showed shell structure due to the delocalized electrons showing
electronic level bunching [135].

Analogies to cluster shell structures were already found in quantum point contacts of
alkali metals [136] and subsequent work showed that these are not limited to this chemical
group [137, 138]. For metallic contacts to demonstrate shell structures the atoms require
sufficient thermal energy in order to find the local minima in energy. For sodium the
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necessary temperature for observing the shell effects was found to be around 80 K [139].
Since magnesium has a much higher melting temperature (922 K versus 371 K for Na), one
expects the necessary temperature in this case to be of order 200 K. The second question
we want to address, therefore, is whether magnesium point contacts demonstrate shell
structures at room temperature. The fact that small clusters are insulating, while small
contacts have their electronic structure influenced by the leads, makes the comparison
between the two manifestations of the shell structures all the more interesting.

In order to investigate Mg contacts experimentally, notched wire MCBJs as introduced
in Section 3.3.1.1 were used at both room and liquid helium temperature. Starting with a
magnesium wire (purity better than 99.9 %) of 125 µm diameter and about 15 mm length,
a small incision is introduced in the middle. Great care is taken to reduce the possible
contamination, which is important due to the strong chemical affinity of magnesium to
hydrogen [140]. This is achieved by maintaining ultra high vacuum (UHV) of < 10−5 mbar
and 5 × 10−10 mbar at low and room temperatures respectively. Using a mechanical axis
for the coarse movement, the wire is broken at the incision. In this way the two electrodes
are formed by freshly exposed surfaces, which is critical for the study of reactive materials
such as magnesium.

3.4.2 Experimental results at room temperature

The evolution of conductance when breaking the wire at room temperature has a char-
acteristic that can be seen in the example of figure 3.17 (left panel). An intermittently
sudden lowering of the conductance towards zero with stretching of the wire can be ob-
served. Relatively stable intervals or plateaus occur when the mechanical tension on the
contact gradually builds up. When this tension is released by a mechanical reconfiguration
of the contact, its diameter and conductance are reduced stepwise [16]. The plateaus in
conductance appear flat and the jumps during the mechanical reconfigurations are large.
This is an indication that some values of conductance are stabilized when they are related
to structures with a local minimum in the energy.

In order to verify that these plateaus occur at reproducible values a statistic description
by means of a conductance histogram [141] is used. This histogram is constructed by divid-
ing the conductance interval of interest in equal sub-intervals or bins. For each measured
data point the corresponding bin is determined, resulting in a probability distribution for
the conductance during breaking. An example of such a distribution or histogram for Mg
is given in figure 3.17 (right panel).

The result in figure 3.17 indeed shows a series of peaks at higher conductance values.
These could indicate the presence of a shell structure, but in order to investigate whether
the peaks in figure 3.17 are indeed periodic in the radius one needs to plot the histogram as
a function of radius, R. Since the range of conductances in this graph corresponds to the
ballistic conduction regime the radius R can be obtained from G via the corrected Sharvin
formula

G ≈ G0

[(
kFR

2

)2

− kFR

2
+

1

6
+ . . .

]
(3.11)
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Figure 3.17: The left panel shows the conductance evolution during the stretching of a
magnesium contact at room temperature in UHV. The conductance was measured at a
bias voltage of 20 mV, but had no significant effect on the shape of the trace. The right
panel shows a conductance histogram resulting from 1.2×104 of these traces. The resolution
of this histogram was set to 10 bins per G0.

where kF represents the Fermi wave vector [142, 143].

More than 90% of the measured histograms for all six samples at room temperature
show a periodicity in kFR, but the period varies between recordings. This makes it likely
that its appearance is related to multiple properties of the metal. The most common and
pronounced frequency is 1.7 (kFR)−1. To compare this value to the periodicity expected
for shell structure due to atomic packing, one starts from a simple packing model for a
close packed hexagonal lattice and increases the contact diameter facet by facet. One then
obtains a periodicity of 2.3 (kFR)−1, which is only slightly influenced when considering
other crystal structures such as face (body) centered cubic.

Possible electronic shell structures have been studied for metallic point contacts as well.
Both, calculations using jellium models [144] and nanoscale free-electron models [145] ap-
plied to aluminum point contacts [138] give frequencies up to 1 (kFR)−1. As the frequencies
for magnesium are suggested to be the same [145], the shell effect seen in the present exper-
iments is still without satisfactory explanation. A remaining possibility is that the contact
is simultaneously governed by competing effects of the atomic packing and the electronic
free energy. Similar mixed structures were also found for Mg clusters [146].

Another feature of the histogram in figure 3.17, that is even more remarkable, is the
absence of plateaus below 5 G0. This minimal value is much higher than for all other
metals studies with this technique [137, 138, 147]. Below this threshold value only a
smooth exponential decrease in conductance was found, typical for tunneling behavior.
This is a clear indication that smaller contacts are not stable, leading the contact to
break. This behavior can be indicative of a MIT. While reducing the contact radius, the
hybridization of the electron states will decrease. The overlap between s and p will therefore
decrease, driving the contact towards a metal-insulator transition. When this transition is
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reached, the metallic bonds are reduced to van der Waals bonds, weakening the contact
considerably [146], and producing an early loss of contact.

3.4.3 Theory: infinite wires and one-atom contacts

The numerous results on Mg clusters cannot be simply extrapolated to our problem. In-
stead we have studied the stability and electronic structure of a series of Mg infinite wires
with small coordination numbers, in order to investigate whether low-dimensional Mg struc-
tures could be insulating. To this purpose, we have carried out density functional theory
(DFT) calculations of wires ranging from the smallest possible coordination, two in the case
of a chain, up to 6. In the insets of Fig. 3.18 we show two examples of the configurations of
the studied wires. In the upper panel one can see a linear chain, while the lower one shows
an infinite wire with a cross section of 3 atoms (coordination number equal 6) grown along
the c-axis of a hcp bulk structure ([0001] direction) and keeping the bulk relative positions.

Figure 3.18: Density of states (DOS) of Mg wires calculated with CASTEP [148] for: (a)
a linear chain with an optimal inter-atomic distance of 3.125Å; and (b) an infinite wire
with a 3 atoms section. The wire is built up along the c-axis keeping the bulk symmetry
as shown in the inset. The inter-atomic distance that minimizes the total energy is 3.1Å.

For these ab initio calculations we have used a standard implementation of DFT [94, 97]
with a plane waves basis set and ultrasoft pseudopotentials [149]. The Perdew-Burke-
Ernzerhof approach (PBE) [150] has been chosen for the exchange-correlation contribu-
tion. The calculations were performed with the CASTEP v4.2 code [148]. The plane wave
cutoff used (375 eV) in all our calculations assures well-converged structural and electronic
properties. Convergence criteria for the atomic relaxations involved in the different calcu-
lations are: 0.01 eV/Å for the mean value of the forces, 0.001Å for the atomic positions
and 10−6 eV for the total energy. Minimizing the system energy, we have optimized the
inter-atomic distances of the wires keeping the original symmetry with a Monkhorst-Pack
(MP) ~k-sampling mesh of 1×1×64 [151]. The density of states (DOS) has been calculated
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with a mesh of 1× 1× 1024.
Turning to the results, in the two systems shown in Fig. 3.18, we have found inter-atomic

distances of 3.1Å, slightly smaller than the bulk value of 3.2Å. This is in accordance with
calculations of Mg clusters [146]. In Fig. 3.18a we show the DOS of the linear chain for the
optimized inter-atomic distance.10 A small gap of 0.3 eV is observed; consequently the
linear chain does not show metallic behavior. However, even for this wire with the lowest
coordination number, the broadening due to the 3s-3p hybridization has nearly closed the
gap. Indeed, we have found that all the wires with larger coordination than the linear chain
are metallic. The DOS of a wire with a cross-section of 3 atoms is shown in Fig. 3.18(b) and
does not exhibit any gap. In fact, up to 5 different bands cross the Fermi level. We have
investigated whether the application of some additional stress could modify these results,
but we have found that even increasing the inter-atomic distances by 10%, the wires remain
metallic. So, in short, from this analysis we do not expect the formation of insulating Mg
wires in the last stages of the breaking of Mg contacts.

The results above show that low-coordinated Mg structures are energetically stable,
which suggests that the formation of few-atom contacts might be possible – at least at low
temperatures. Since these structures are moreover metallic, the following question arises
naturally: What is the expectation for the linear conductance of the smallest imaginable
Mg contacts? In order to answer this question we have computed the conductance of Mg
one-atom contacts within the Landauer formalism. For this purpose, we have combined
the tight-binding parametrization of Ref. [109] with non-equilibrium Green’s functions
techniques as described in Chapter 2 and applied in the preceding Sections.

We now turn to the analysis of the results for the linear conductance of some ideal, and
yet plausible, one-atom geometries. They have been chosen to simulate the behaviour at the
last conductance plateau before the rupture of the nanowires. In the inset of Fig. 3.19(a)
we show an example of an one-atom contact grown along the [0001] direction (c-axis)
which contains a dimer in its central part. Different molecular dynamics simulations of
atomic contacts of various metals have suggested that this type of geometry is realized
very frequently at the last plateau [77, 112, 120]. This particular geometry is constructed
starting with the dimer and choosing the nearest-neighbours in the next layers. Finally,
the leads are modeled as infinite surfaces grown along the same direction [yellow atoms in
the inset of Fig. 3.19(a)]. In this ideal case, all inter-atomic distances are fixed to their bulk
values, which is justified by the ab initio calculation of Mg clusters [146] and our results
for infinite wires presented above. The total transmission and the individual transmission
coefficients, τi, for this contact are shown in Fig. 3.19(a) as a function of energy. First it can
be noted that the system is metallic, in accordance with our expectations based on the DFT
results described above. Furthermore, the conductance, i.e. the transmission at εF , is very
close to 1G0 and completely dominated by a single fully open channel. The second and third

10We have studied the stability of the linear chain allowing the 4 atoms of the supercell to relax starting
form a zig-zag configuration. For cell lengths larger than 10.5Å the final configuration is a lineal chain
slightly distorted, with a energy minimum corresponding to an inter-atomic distance of 3.125Å and a zig-
zag angle of 177o. The stable solution for smaller supercell lengths is a compressed zig-zag chain where
the atoms have 4 nearest-neighbours with an inter-atomic distance of 3.1Å.
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channels, which are degenerate due to the symmetry of the contact, have transmissions
below 10−3. One can get a deeper insight into these results and, in particular, into the
nature of the conductance channels, by analyzing the local density of states projected onto
the different orbitals of the two central atoms (not shown here). Such analysis indicates
that the dominant channel is formed by a symmetric (bonding) combination of the s and
pz orbitals of the central atoms (z is the transport direction), while the px and py orbitals
are responsible for the second and third channels. A fourth channel, which in this case has
a transmission below 10−5, is formed by the antisymmetric combination of the s and pz

orbitals. Such anti-bonding combination is basically orthogonal to incoming states (from
the leads) and therefore does not contribute significantly to the transport. In short, these
results resemble very much the behaviour of Zn one-atom contacts discussed in Section
3.3.1, and also the case of the final stages of the last plateau of Al contacts [25, 115]. This
is, after all, quite reasonable since in all these cases the electronic structure at the Fermi
energy is governed by s and p orbitals.

Since the growth direction of the Mg atomic contacts is not exactly known, we have
studied the conductance of geometries with different crystallographic orientations. In
Fig. 3.19(c) we show another example of a dimer contact, but this time grown along the
[112̄0] direction (a-axis). Notice that the total conductance and the transmission coeffi-
cients are similar to those of the [0001] case, the main difference being the larger values
for the second and third channels and the lifting of their degeneracy. While the lack of
degeneracy reflects the lower symmetry of the contacts in [112̄0] direction, the larger trans-
mission values can be attributed to the larger apex angle of those contact geometries and
in consequence a stronger coupling of the dimer atoms and next layers.

In principle, the contact geometries should be determined from molecular dynamic
simulations, but computationally this is very demanding. Instead, and in order to test the
robustness of our results, we have studied the role of disorder in the atomic positions. For
this purpose, starting from the ideal geometries of Fig. 3.19(a) and (c), we have changed
randomly the positions of the atoms in the constriction region (those highlighted in brown
in Fig. 3.19(b) and (d)) with a maximum amplitude of ±5% of the nearest-neighbour
distance. Then, we have computed the total transmission and the transmission coefficients
of the disorder geometries. The results are shown in form of histograms in Fig. 3.19(b) and
(d). As one can see, in both cases the conductance is still dominated by a single channel
that is almost fully open. Therefore, these results confirm our basic conclusion, namely the
fact that a Mg one-atom contact is expected to have a conductance close to 1G0 dominated
by a single channel.

3.4.4 Experimental results at low temperature

In order to verify the theoretical prediction for the conductance of atomic contacts experi-
mentally, we repeated the experiments of Section 3.4.2 at low temperatures. Here we broke
the contact by ramping the piezo element continuously with a speed of 1.8×103 V/s (corre-
sponding to 1.0× 102 nm/s electrode separation, a factor 3 faster then for the experiments
on Zn in Chapter 3.3.2). This resulted in traces as the one shown in figure 3.20 (left panel).
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Figure 3.19: (a) Total transmission and transmission coefficients as a function of energy
for the contact shown in the inset. This geometry is grown along the [0001] direction (c
axis), it contains a dimer in its central part and the inter-atomic distances are fixed to the
bulk values. The yellow atoms correspond to atoms in the semi-infinite surfaces that are
used to model the leads. The transmission coefficients at the Fermi energy (set to zero and
indicated with a dotted vertical line) are τ1 = 0.993, τ2 = τ3 = 0.76 × 10−3 and the total
conductance is ∼ 0.995G0. (b) Histograms of the transmission coefficients for 2000 disorder
realizations (see text) of the one-atom contact shown in the inset of panel (a). The brown
atoms are those which have been randomly displaced. The vertical dotted lines indicate
the values of the transmission coefficients for the ideal geometry. The transmission values
of the second and third channels remain below 2 × 10−3. (c) The same as in panel (a),
but for the contact grown along the [112̄0] direction (a-axis) shown in the inset. The total
conductance is ∼ 1.01G0 with τ1 = 0.9640, τ2 = 0.024, τ3 = 0.021 and τ4 = 0.3× 10−3. (d)
The same as in panel (b) for the contact in the inset of panel (c).

The plateaus in conductance appear more structured and the jumps during the mechanical
reconfigurations are smaller than those measured at room temperature. In the histogram,
presented in figure 3.20, this results in a flat distribution at higher conductance values.
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The shell structures found at room temperature are thus absent at low temperatures, as
expected.

When focusing on the trace at low conductance values, the staircase of plateaus indeed
continues down to values below 5 G0. The histogram, the shape of which was reproduced
over a set of ten different samples, shows its lowest conductance peak close to 1 G0. For
a minority of the histograms a shoulder down to values as low as 0.8 G0 is seen. In rare
cases this shoulder even grows to form the primary peak. Although the conductance does
not reveal information on the individual values τi of transmission of the electron states, the
strong asymmetry and the closeness of the peak to 1 G0 do suggest that its conductance is
given by only one, almost fully opened, channel. For multiple channels the value of 1 G0

would not form a fundamental limit.

Figure 3.20: Figure comparable to figure 3.17, but for a measurement performed at liquid
helium temperature. The left panel shows the conductance evolution measured at a bias
voltage of 100 mV. The right panel shows a conductance histogram resulting from 3× 103

of these traces. The resolution of this histogram was set to 115 bins per G0.

This result agrees with our calculations, where single-atom contacts of Mg are connected
to bulk-like electrodes. Therefore the properties of Mg at low temperatures are very close
to the results for Zn discussed in Section 3.3.1. The most noticeable differences are the
absence of data points between 0.5 G0 and tunneling and the higher relative intensity of
the peak close to 1 G0 in the case of Mg. The presence of this peak indicates that the
instability of small point contacts at room temperature is not related to a metal to insulator
transition.

In conclusion, magnesium contacts at room temperature demonstrate shell effects at
multiple frequencies. The most frequent and intense frequency of 1.7 (kFR)−1 did not
match with either the expected frequency for atomic packing or the previously calculated
frequencies for electronic shell structures. This value therefore remains without satisfactory
explanation. A possibility is that both effects play an important role at the same time.

The histograms at low temperatures exhibit a first peak close to 1 G0. The strong
asymmetric shape of the peak, with a minimum weight above 1 G0 suggests this conduc-
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tance to be dominated by a single channel. Our calculations confirm this and identify this
channel to be a symmetric combination of the s and pz orbital of the central Mg atom. This
behavior is similar to the results obtained for Zn in Section 3.3.1, although the tendency
for the channel to be fully open is stronger.

At room temperature contacts with a diameter corresponding to a single atom are
absent. The instability of these smaller contacts is not caused by a metal to insulator
transition at lower coordination. From the appearance of the peak at 1 G0 at low temper-
atures, we can conclude that the metal-insulator transition is absent even in the smallest
of contacts. Although our calculations indicate that a one-dimensional infinite chain for
Mg should be an insulator, the coordination of the atoms in a realistic contact at low
temperatures are too high for observation of a MIT.

3.4.5 Limit of thick contacts

So far we only considered thin infinite wires or atomic contacts of Mg. However, the
total DOS of Mg shown in Fig. 3.16 indicates a free electron behaviour with an energy
dependence of the DOS like

√
E. On the other hand the semi-classical Sharvin formula

3.11 is based on free electrons passing a circular orifice. Here we are interested in how the
conductance behaves for contacts with increasing radius R and whether we can approach
the regime where Sharvin formula is valid.

21

31
36

42

50
55

61 69

85
92

111

7.5 10 12.5 15 17.5
R (Å)

-0.04

-0.038

-0.036

-0.034

-0.032

-0.03

E
to

t (
R

y/
at

om
)

atoms per layer

14

21

31
36

42

50
55

61
69

14

21

31
36

42

50
55

61
69

0 2.5 5 7.5 10 12.5 15
R (Å)

0

10

20

30

40

50

60

70

C
on

du
ct

an
ce

 (
2e

2 /h
)

y=(0.591783*x-0.5)^2+1/6 (7 layers)
y=(0.606826*x-0.5)^2+1/6  (5 layers, shifted +10)

(b)(a)

Figure 3.21: (a) Total energy calculated within the NRL approach for regular wires with
atoms on lattice sites and increasing number of atoms per layer as a function of the wire
radius. (b) Conductance of pieces of the wires considered in (a) containing 5 and 7 layers
between ideal surface. Fit: Sharvin formula for ideal wires of free electrons as a function
of wire radius (assuming Fermi momentum kF fixed).

The electronic structure of atomic contacts and wires depends crucially on details of
the geometry. In order to obtain – out of the innumerable possible configurations – a series
of comparable wires and contacts, we fix the allowed atom positions to the hcp lattice sites
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that bulk Mg exhibit. Then we construct a series of wires along the [0001] direction with
increasing radius R, with all the atoms of the wire lying within R around the [0001] axis
through the origin. In this way we can classify the different wires according to their radius.
The second simplest geometry (after a zig-zag wire) corresponds to the one discussed in
Fig. 3.18(b) with three atoms per layer.

For this set of infinite wires – with the nearest neighbour distance fixed to the bulk
value – we calculate the total energy per atom of the layer using the TB parametrization of
[109] as above. According to the construction of the TB parametrization, the total energy
is related to the coordination of the atoms in the layer. Thus, for instance, a wire geometry
in which many atoms of the layer have dangling bonds will show a higher total energy per
atom than a geometry where all atoms are highly coordinated. In this sense we can identify
the highly coordinated geometries as the one with a relative minimum in the total energy
per atom.

This curve is shown in Fig. 3.21(a) for the full set of infinite wires. We marked with a
diamond the geometries that we identified to show a local energy minimum. In a second
step we determine the conductance of thick contacts constructed out of that set of selected
wires. For each of the wires from the selection we take a finite number of layers, place
them between ideal surfaces, and calculate the linear conductance of the so-constructed
with Eq. (2.76). In Fig. 3.21(b) is plotted the conductance as a function of the contact
radius for the series of thick contacts containing five or seven layers of the selected wire
geometries.11 In a näıve picture we would expect the Sharvin formula Eq. (3.11) to hold
in the limit of thick contacts. Therefore we fitted in Fig. 3.21(b) the conductance with
it and observe an approximate R2 dependence of the conductance. Generally the thicker
contacts fit better. From the fit assuming a fixed Fermi momentum kF for all the contacts,
we extract the value kF ≈ 0.6Å−1.

For ballistic but thick atomic contacts (G ≈ 40G0) we find that the Sharvin formula
yields a good approximation for the conductance and derive a Fermi wavelength of kF ≈
0.6Å−1.

3.5 Conclusion

In this Chapter we discussed the conduction properties of non-magnetic atomic metal
contacts. We applied the NRL TB parametrization consistently for all studied materials.
For atomic contacts of example metals we can reproduce the established close connection
between chemical valency and the conduction properties of the corresponding single atom
contacts. Furthermore we compared the example case of Al atomic contacts with an ab
initio DFT calculation and find good overall agreement.

Applied to the limiting case of the bivalent elements Mg and Zn, we find metallic
conduction properties at the limit of atomic contacts, in agreement with experimental
findings at low temperature.

11The conductance of the contacts with five layers was shifted upwards by 10G0 for clarity.



3.5 Conclusion 67

In particular, for Zn we can compare directly to experiments that determine the conduc-
tance channels. In agreement with them we find that at the level of single atom contacts,
the s and p bands already hybridize and give rise to one dominating channel at εF , with a
second and third contributing eventually. These conduction properties lie in-between what
is typically observed in single atom contacts of Au and Al. For thicker atomic contacts
we can predict conductance sequences for evolution of contacts along preferred crystallo-
graphic directions and thus associate typical steps in the experimental conductance traces
with crystallographic directions. Finally, due to the mechanical stiffness at the atomic
scale and the superconducting properties at low temperatures, Zn may be an interesting
electrode material.

For Mg, insulating behaviour with a small gap at εF is only found for the ideal single-
atom chain. Therefore it seems improbable that a MIT accounts for the abrupt truncation
of room temperature conductance traces at high conductance values. For single-atom
contacts at low temperature however we predicted metallic behaviour with one nearly
open conductance channel for both investigated contact directions. This is confirmed by
conductance traces recorded at 4.2 K, which typically show a conductance plateau at 1G0

before breaking and yield a pronounced peak at 1G0 in the conductance histogram.
We conclude that for nonmagnetic atomic metal contacts the NRL TB description is a

reasonable approximation. In the following we will expand this description to ferromagnetic
metals, where the spin degeneracy is lifted by the exchange field.
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Chapter 4

Conduction properties of
ferromagnetic metallic atomic
contacts

In this Chapter we analyze the conduction properties of atomic contacts of the ferromag-
netic 3d materials Fe, Co, and Ni. We employ the spin-polarized version of the TB model
discussed in Sec. 2.1.4 and we first focus in the analysis of ideal contact geometries. In
agreement with the previous theoretical results for transition metals, the 3d bands of these
metals play the key role in the electrical conduction of atomic contacts. As a consequence,
in the contact regime there are partially open conductance channels and the conductance
of the last plateau is typically above the quantum of conductance G0 = 2e2/h. Further-
more, in this regime there is no complete spin polarization of the current (i.e. both spin
bands contribute to transport) and the amplitude of the conductance as well as its spin
polarization are very sensitive to disorder in the contact geometry. Finally, we find that in
the tunneling regime a high spin polarization of the current can be achieved.

In the second part of this Chapter we will analyze the conduction properties of Ni
atomic contacts more statistically. For this purpose we combine the TB model for the
electronic structure with a molecular dynamics (MD) simulation of the evolution of the
contact geometry during elongation. In this way we have at the same time access to
the electrical and mechanical properties of the contact during the evolution. From this
information we derive histograms of the conductance [and also the minimal cross Section
(MCS)], which can directly be compared to experimental findings.

This Chapter is organized as follows: In the first part, Sec. 4.1, we consider ideal
contact geometries (and perturbations on them). In Sec. 4.1.1 we first analyze the results
of the conductance of representative one-atom thick contacts of Fe, Co, and Ni. Then, in
Sec. 4.1.2 we focus on the conductance in the tunneling regime. Finally, in Sec. 4.1.3 we
discuss the influence of atomic disorder on the conductance of single-atom contacts. In the
second part, Sec. 4.2 we combine the NRL TB calculation of the electronic structure with
a molecular dynamics (MD) simulation of the evolution of an atomic contact of Ni during
elongation. In particular we discuss the conduction properties during the evolution of an

69
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example contact in Sec. 4.2.2 and in Sec. 4.2.3 we derive a conductance histogram from a
collection of different contact evolutions. We end this Chapter with a short conclusion.

4.1 Conduction properties of ideal atomic contacts of

ferromagnetic metals

In the last years a lot of attention has been devoted to the experimental [22, 34, 36–55, 152–
154] and theoretical [56–68, 155–159] analysis of contacts of the 3d ferromagnetic materials.
In particular, several experimental groups have analyzed conductance histograms of these
materials. Basically, two contradictory results have been reported. On the one hand, sev-
eral groups have observed peaks in the conductance histogram at half-integer multiples
of G0 [42–47]. This has been interpreted as a manifestation of half-integer conductance
quantization [45], implying that only fully open channels contribute to the conductance. In
this sense, a peak at 0.5G0 would then additionally mean the existence of a full spin polar-
ization of the current. Furthermore, some authors have reported conductance histograms
that are very sensitive to an external magnetic field [40].

(a) (b)

Figure 4.1: (a,b) Experimental conductance histograms for Co and Ni measured under
cryogenic vacuum conditions. The histograms with thick lines were obtained when an
external magnetic field of 5 T was applied, the thin lines refer to the case with no external
field. The graphs are taken from [48].

On the other hand, Untiedt et al. [48] have measured the conductance for atomic
contacts of the 3d ferromagnetic metals (Fe, Co, and Ni) using break junctions under
cryogenic vacuum conditions (see Fig. 4.1). Contrary to the experiments mentioned above,
they have reported the absence of fractional conductance quantization, even when a high
external magnetic field was applied. Instead, they observe conductance histograms that
show broad peaks above 1G0, with only little weight below it, which is generally expected
for transition metals [22, 160].

In order to resolve the contradiction of the experimental results about the existence
of half-integer conductance quantization, several authors have already investigated theo-
retically the electronic structure and conductance of nanocontacts of the 3d ferromagnetic
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metals. Most of the work has been focused on the accurate ab initio description of the
electronic structure of ideal systems [57, 58, 61, 62, 64–66, 68, 157, 159]. In the case of
monatomic wires, different aspects such as the influence of a domain wall on the electronic
structure [57], the effect of electronic correlations [61] or the magnetic properties [63] have
been discussed. The conduction properties of ideal atomic-contact geometries have also
been investigated both with ab initio methods [62, 64–66, 68, 157, 159] and TB models for
the case of Fe atomic contacts and wires [67, 161]. Based on these studies, one would not
expect either conductance quantization or full spin polarization in ferromagnetic atomic
contacts.

Here we focus on the conduction properties of ideal atomic contacts of the 3d ferromag-
netic materials (Fe, Co, and Ni). Our goal is to provide further insight into basic issues
such as the orbitals relevant for the electron transport, the role of atomic disorder, the
dependence of the spin polarization of the current on the contact geometry, and the main
differences between these three materials. For this purpose, we have analyzed ideal geome-
tries of few-atom contacts, assuming them to form a single magnetic domain. To describe
the electronic structure, we use the spin-polarized TB model discussed in Sec. 2.1.4. The
conductance can then be calculated as described in Sec. 2.2.2.

In contrast to the non-magnetic materials discussed in the previous Chapters we now
need to take into account spin σ explicitly (where σ =↑ / ↓ refers to the majority/minority
spin). We consider a ferromagnetic contact within a single domain, where all spins are
aligned. In this case the spin degeneracy is lifted, but the Hamiltonian remains diagonal
in spin space [cf. Eq. (2.1)]:

Ĥ =
∑

ij,αβ,σ

[H]iα,jβ,σ ĉ
†
iα,σ ĉjβ,σ . (4.1)

Then the zero-bias conductance is given by:

G = G↑ +G↓ =
e2

h
[τ↑(εF , 0) + τ↓(εF , 0)] , (4.2)

where Gσ for the electrons with spin σ =↑, ↓ are the partial conductances. The total
transmission per spin τσ is the sum of the transmission channels as in the non-magnetic
case: τσ =

∑
n τn,σ. We can measure the polarization of the current with:

P =
G↑ −G↓

G↑ +G↓
× 100% , (4.3)

which generally differs from zero for ferromagnets.
By combining the TB model with independent structural simulations, we can address

important issues presently out of the scope of ab initio approaches, such as the interplay
between mechanical and electronic properties in conductance histograms. This will be
discussed in the second part of this Chapter. Here we focus on general conduction properties
of the ferromagnetic atomic contacts and we will mainly consider ideal contact geometries.
However we test the robustness of our conclusions by studying the influence of variations
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in the atomic positions on the conductance. These are modeled with random disorder in
the ideal geometries.

The results of our calculations for the three materials can be summarized as follows:
Due to the partially open conductance channels of the minority spin electrons there is in
general no conductance quantization and the conductance of the last plateau has a value
typically above G0 = 2e2/h. In the contact regime both spin species contribute to the
transport and the current is never fully spin polarized. Furthermore, the value of the
conductance and the current polarization are very sensitive to the contact geometry and
disorder. The origin of all these findings can be traced back to the fact that the d bands of
these transition metals play an important role in the electrical conduction. Finally, we find
that in the tunneling regime, which is reached when the contacts are broken, the nature of
the conduction changes qualitatively. In this case almost fully spin-polarized currents are
indeed possible.
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Figure 4.2: Bulk density of states (DOS) of Fe, Co, and Ni, resolved with respect to the
individual contributions of 3d, 4s, and 4p orbitals, as indicated in the legend. Furthermore,
the upper panels show the DOS for the majority spins and the lower ones the DOS for
minority spins. The Fermi energy is set to zero and it is indicated by the vertical dashed
line.

4.1.1 Conductance of ideal single-atom contacts of Fe, Co, and
Ni

The goal of this Section is the analysis of the conductance of ideal, yet plausible one-atom
contact geometries for the three ferromagnetic metals (Fe, Co, and Ni) considered in this
work. In order to understand the results described below, it is instructive to first discuss the
bulk density of states (DOS). The spin- and orbital-resolved bulk DOS of these materials
around εF , as calculated from our TB model, is shown in Fig. 4.2. The common feature
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Figure 4.3: Transmission as a function of energy for the three single-atom contacts of
(a) Fe, (b) Co, and (c) Ni, which are shown in the upper panels. We present the total
transmission (black solid line) for both majority spins and minority spins as well as the
transmission of individual conductance channels that give the most important contribution
at Fermi energy, which is indicated by a vertical dotted line. The blue, brown, and violet
dash-dotted lines of τ2, τ4, and τ6 (even channels) refer to twofold degenerate conductance
channels. The legends in the upper graphs indicate, in which direction the contacts are
grown. These contacts contain in the central region 59 atoms for Fe, 45 for Co, and 39 for
Ni. The blue atoms represent a part of the atoms of the leads (semi-infinite surfaces) that
are coupled to the central atoms in our model.

for the three ferromagnets is that the Fermi energy for the minority spins lies inside the d
bands. This fact immediately suggests [21, 25] that the d orbitals may play an important
role in the transport. Occupation of the s and p orbitals for both spins is around 0.25 and
0.4 electrons, respectively. For the majority spins the Fermi energy lies close to the edge
of the d band. The main difference between the materials is that for Fe there is still an
important contribution of the d orbitals, while for Ni the Fermi level is in a region where
the s and p bands become more important. The calculated values of the magnetic moment
per atom (in units of the Bohr magneton) of 2.15 for Fe, 1.3 for Co, and 0.45 for Ni are
reasonably close to literature values [114].

We now proceed to analyze in detail the conductance of some ideal one-atom geometries,
which are chosen to simulate what happens in the last conductance plateau before the
breaking of the nanowires. First, we consider the one-atom contacts shown in the upper
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panels of Fig. 4.3. These geometries are constructed starting with a single atom and
choosing the nearest neighbours (NN) in the next layers of the ideal lattice along the
direction indicated with an arrow, similar to the geometries used for the discussion of ideal
non-magnetic contacts in Fig. 3.4. In the case of Fig. 4.3, for Fe (bcc lattice with a lattice
constant of 2.86 Å) the contact is grown along the [001] direction, for Co (hcp lattice,
lattice constant 2.51 Å) along the [0001] direction (parallel to “c axis”) and for Ni (fcc
lattice and lattice constant 3.52 Å) along the [111] direction. The number of atoms in the
central region has been chosen large enough, such that the transmission does not depend
anymore on the number of layers included. Moreover, as explained in the previous Section,
the central region is coupled seamlessly to ideal surfaces grown along the same direction.

Let us start describing the results for the Fe one-atom contact of Fig. 4.3(a). There
we present the total transmission for majority spins and minority spins as a function of
energy as well as the individual transmissions. We find for this particular geometry the
spin-resolved conductances G↑ = 3.70e2/h (↑ for majority spins) and G↓ = 3.75e2/h (↓ for
minority spins), which results in a total conductance of 3.7G0. The conductance G↑ for the
majority spins is the result of up to 8 open channels (with a transmission higher than 0.01),
while for the minority spins there are 11 channels giving a significant contribution to G↓.
The large number of channels and consequently the high conductance, are partially due
to the large apex angle of 71◦ of the pyramids. As a consequence of this, the layers next
to the central atom couple to each other and give rise to a significant tunneling current
that proceeds directly without traversing the central atom. On the other hand, the larger
number of channels for the minority spins is due to the key contribution of the d orbitals
that dominate the transport through this spin species, while for the majority spins the s
and p orbitals are the more relevant ones. This fact, which is supported by the analysis
of the local density of states (not shown here), is a simple consequence of the position of
the Fermi energy and the magnitude of the spin splitting (see discussion of the bulk DOS
above).

With the definition 4.3 of the spin polarization P of the current we find a value of
P = −0.7% for the Fe one-atom contact of Fig. 4.3(a). In order to compare to the
polarization of bulk we have calculated the transmission at the Fermi energy for a series of
contact geometries where a bar of constant diameter bridges the two lead surfaces. When
the diameter of the bar (or central region of the contact) is increased, the polarization grows
continuously and saturates at a value of P = +40% for a contact containing 219 atoms
in 7 layers. This is in good agreement with a simple estimate from the ratio of the bulk
DOS for σ =↑, ↓ at εF and the experimental value for P obtained using normal-metal-
superconductor point contacts [162]. Notice that P can be quite different in an atomic
contact as compared to bulk. This is because the conductance is not simply controlled
by the DOS at the Fermi energy, but the precise coupling between the orbitals in the
constriction plays a crucial role.

For the Co contact depicted in Fig. 4.3(b) the transmission is lower than for Fe, partly
due to the smaller apex angle of the hcp pyramids. In this case we find G↑ = 1.57e2/h for
majority spins and G↓ = 1.21e2/h for minority spins, summing up to a total conductance
of 1.4G0. There are 3 channels contributing to G↑ and 8 channels to G↓. As in the case
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of Fe, the larger number of channels for the minority spins is due to the position of the
Fermi level and the resulting contribution of the d orbitals for this spin. We also find that
there is a small but non-negligible contribution of channels that proceed directly without
crossing the central atom. This explains, in particular, why one has 8 channels for the
minority spins, although at most 6 bands (s and d) have a significant DOS at this energy.
Turning to the current polarization, we find a value of P = +13% for the Co one-atom
contact. We also calculate the polarization for a series of Co bars with increasing diameter
in hcp [0001] direction. As the diameter increases, the polarization decreases to a value of
P = −41% for a contact containing five layers of 37 atoms each, again in good agreement
with the experiment [162] and the estimate from the bulk DOS. Notice again that not only
the magnitude of P for a one-atom contact can be quite different from bulk, but also its
sign can be the opposite.

Finally, the Ni contact shown in Fig. 4.3(c) exhibits conductances of G↑ = 0.85e2/h for
majority and G↓ = 1.80e2/h for minority spins, adding up to a total conductance of 1.3G0.
The G↑ consists of 3 channels, due to the contribution of the s and p orbitals, and G↓
contains 6 channels, which originate from the contribution of the d orbitals. In this case
we find a value for the polarization of P = −34%. Once more we have investigated the
polarization of bulk Ni in a series of large Ni bars in fcc [111] direction. Interestingly, the
polarization decreases from P = +3% for a contact of 28 atoms in four layers to P = −41%
for a contact consisting of 244 atoms in four layers.
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Figure 4.4: The same as in Fig. 4.3 but for the geometries shown in the upper graphs,
which contain a dimer in the central part of the contact. The two dimer atoms are at the
bulk nearest neighbour distance from each other.
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Now we turn to the analysis of the geometries shown in the upper panels of Fig. 4.4.
The difference with respect to the geometries of Fig. 4.3 is the presence of a dimer in
the central part of the contacts. This type of geometry has frequently been observed in
molecular dynamics simulations of atomic contacts of Al (Ref. [120]) and Au (Ref. [112])
and we also find them in our simulations of Ni contacts in the last stages of the breaking
process (see [77] and Section 4.2).

Inserting a dimer with an atom separation equal to the bulk NN distance in the ge-
ometries of Fig. 4.3 results in a larger separation of the pyramids to the left and right of
the central atom and therefore in a weaker coupling between the layers next to the dimer.
This is particularly important in the case of Fe. The resulting transmission for the Fe
contact with a central dimer is shown in Fig. 4.4(a), where one can see that only 3 chan-
nels remain for the majority spins, yielding G↑ = 1.24e2/h, while for the minority spins 3
channels contribute to G↓ = 0.70e2/h. The total conductance is 1.0G0 and the polarization
P = +28%. For Co the contact of Fig. 4.4(b) with a central dimer exhibits G↑ = 0.90e2/h
and G↓ = 2.23e2/h, summing up to a total conductance of 1.6G0. The transmission is
formed by 3 channels for the majority spins (with one clearly dominant) and 6 channels
for minority spins and polarization is P = −42%. Finally, for the Ni contact in Fig. 4.4(c)
with a central dimer, a single channel contributes to G↑ = 0.86e2/h and 4 channels add
up to G↓ = 2.66e2/h. This means that one has a total conductance of 1.8G0, while the
current polarization adopts a value of P = −51%.

Beyond the precise numerical values detailed in the previous paragraph, we would
like to stress the following conclusions from the analysis of Fig. 4.4. First, the transport
contribution of the minority spins is dominated by the d orbitals, which give rise to several
channels (from 3 to 5 depending on the material). Second, for the majority spins there
is a smaller number of channels ranging from 3 for Fe to 1 for Ni. This contribution is
dominated by the d and s orbitals for Fe and only by the s orbitals for Co and Ni. The
relative contribution and number of channels of the two spin species is a simple consequence
of the position of the Fermi level and the magnitude of the spin splitting. In particular,
notice that as we move from Fe to Ni, the Fermi energy lies more and more outside of the d
band for the majority spins, which implies that the number of channels is reduced for this
spin species. In particular, for Ni a single majority spin channel dominates. On the other
hand, notice that the conductance values for the different contacts lie typically above G0,
which is precisely what is observed experimentally [48].

4.1.2 Tunneling conductance of Fe, Co, and Ni contacts

So far, we have analyzed geometries for the so-called contact regime where the nanowires
are formed. As shown above, in this case the contribution of the d bands makes it difficult
to obtain large values of the current polarization. In this sense, one may wonder what
happens in the tunneling regime when the contact is broken. In order to address this issue,
we have simulated the breaking of the contacts by progressively separating the electrodes of
the dimer geometries of Fig. 4.4. In this way, we have computed the conductance and the
current polarization as a function of the tip separation D (measured between the centers



4.1 Conduction properties of ideal atomic contacts of ferromagnetic metals 77

3 3.5 4 4.5 5 5.5

0.001

0.01

0.1

1

G
↑ , 

G
↓ 

 (
e2 /h

)

3 4 5
D (Å)

-60

-40

-20

0

20

40

60

80

100

G↑

G↓

P

3 3.5 4 4.5 5 5.5 6

0.001

0.01

0.1

1

3 3.5 4 4.5 5 5.5 6
D (Å)

-60

-40

-20

0

20

40

60

80

100

G↑

G↓

P

D

3 3.5 4 4.5 5 5.5 6

0.0001

0.001

0.01

0.1

1

3 3.5 4 4.5 5 5.5 6
D (Å)

-60

-40

-20

0

20

40

60

80

100

Po
la

ri
za

tio
n 

P 
(%

)P

G↑

G↓
DD

(a) Fe (c) Ni(b) Co

Figure 4.5: Conductance over tip separation D of similar geometries as in Fig. 4.4. The
conductance of majority spin (G↑, dashed lines and left scales) and minority spin (G↓,
dash-dotted lines and left scales) is shown, together with the resulting current polarization
(solid lines and right scales).

of the tip atoms) and the results for the three materials are summarized in Fig. 4.5. With
increasing D one enters the tunneling regime, which is characterized by an exponential
decay of the conductance. In the regime shown in the graphs, Fe does not yet exhibit
an exponential decay. In contrast, the conductances for Co and Ni are well fitted by an
exponential exp(−βD) with β = 2.3 Å−1 and β = 1.9 Å−1, respectively. These values are
in reasonable agreement with the WKB approximation [163], which yields β = 2.2 Å−1

using a work function of 5 eV [114]. Notice that deep in the tunneling regime for the three
materials, the conductance for the majority spins largely exceeds the value of the minority
spin conductance. This results in positive values of the current polarization P and, in
particular, for Co and Ni it reaches values very close to 100%.

The origin of these huge values of current polarization in the tunneling regime is the
following. In this regime the current is, roughly speaking, a convolution of the local densities
of states on the tips weighted with the squared hoppings of the relevant orbitals of both
electrodes. From Fe over Co to Ni the s orbitals gain weight at the Fermi energy (with
respect to the d orbitals) for the majority spins, while for the minority spins the d orbitals
dominate at εF for all three materials. But the hoppings between 3d orbitals decay faster
with the separation of the tips than the corresponding hoppings of the 4s orbitals. As a
consequence, from Fe over Co to Ni, with increasing tip separation the conductance is more
and more dominated by the majority spins. This property only depends on the relative
weight of the s and d orbitals at εF for the two spin species and their decay with tip
separation. It follows that the spin polarization of the current is positive and tends to
100% for Ni atomic contacts in the tunneling regime. This striking general feature will be
analyzed in more detail below for realistic contact geometries of Ni.

4.1.3 Role of atomic disorder

2The transmission properties of Au are given in Figs. 3.5 and 3.6. Note that there we use the
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Figure 4.6: Histograms of transmission channels at Fermi energy, τn,σ(εF ), for 3000 per-
turbed realizations of ideal contact geometries of Fe, Co, and Ni. Panels (a)-(d) show
histograms for contacts with a single central atom as in Fig. 4.3 and panels (e)-(h) for
contacts with a central dimer as in Fig. 4.4. In panels (a)-(c) and (e)-(g) results for fer-
romagnetic contacts are presented: the upper parts of the panels refer to majority spin
channels and the lower parts to minority spin channels. Only channels that contribute
more than 0.01 to transmission are displayed, and the histograms for smaller transmission
values are in the front. The insets for the ferromagnetic materials show corresponding
histograms for the current polarization P , where on the x axis P is given in %. Finally,
panels (d) and (h) show comparison histograms for fcc-Au calculated with a similar set of
geometries as for Ni.2
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In the previous Sections we have seen that the 3d orbitals play an important role in trans-
port. These orbitals are rather localized on the atoms and the energy bands that they
give rise to have relatively flat dispersion relations. Therefore, one would expect the con-
tribution of these orbitals to the transport to be very sensitive to the contact geometry.
Indeed, in the previous Section we have seen examples in which, by changing the structure
of the central part of the contacts, one can even change the sign of the current polariza-
tion. Motivated by these results, we study in this Section in a more systematic manner
how disorder in the atomic positions influences the conductance of one-atom contacts.

In order to simulate the role of disorder we have studied the conductance of contacts
in which the atomic positions in the central cluster have been changed randomly using the
geometries of Figs. 4.3 and 4.4 as starting points. In Fig. 4.6 we present an example of
such a study, where we show histograms of the channel-resolved transmissions at the Fermi
energy τn,σ(εF ) for both spins σ constructed from around 3000 realizations of disorder for
each contact. The amplitude of the random displacement in each direction was in this
case 0.05 times the lattice constant. Similar results for contacts of the noble metal Au
are also shown for comparison. Moreover, for the ferromagnetic materials the insets show
corresponding histograms of the spin polarization P of the current.

Let us now discuss the main features of the transmission histograms. First, they show
that the number of channels obtained for the ideal geometries in the previous Section is
robust with respect to disorder, although the transmission coefficients depend crucially
on the precise atomic positions. Second, for the minority spins one has a non-negligible
contribution of at least 5 channels, which originate mainly from the d bands. For the
majority spins the number of channels is clearly smaller and is progressively reduced as we
go from Fe to Ni. This is particularly obvious in the panels of the dimer structures, where
one can see that for Fe there are three sizable channels and the contribution of the smallest
two decreases for Co and Ni. As explained in the previous Section, this is a consequence
of the relative position of the Fermi energy in these three metals. For the latter case of
Ni, one channel clearly dominates the majority spin conductance, but second and third
channels are still present. Thus, unlike in the case of noble metals such as Au, which only
have a single channel (see Fig. 4.6), for ferromagnetic materials conductance quantization
is not expected. Third, the peaks in the histograms for the ferromagnetic metals are much
broader (especially for the minority spins) than for Au. This is due to the higher sensitivity
of the d bands to the atomic positions, as compared to the s orbitals that dominate the
transport in the case of Au. This higher sensitivity is a result of the anisotropic spatial
dependence of the d orbitals.

In addition, we have calculated the values of the current polarization P for each re-
alization of disorder in the contacts. The resulting histograms can be found as insets in
the panels of Fig. 4.6. The peaks in each histogram are centered around the polarization
values of the corresponding ideal geometries of Sec. 4.1.1.

To end this Section we would like to make the following comment. In this work we
have analyzed the conductance of some ideal one-atom geometries and the influence of

parametrization with a larger cutoff (”au par“ from Table 3.1) than here (”au par 99“ from Table 3.1).
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disorder. These types of calculations are very valuable to elucidate the nature of the
electrical conduction in atomic wires. However, one has to be cautious in establishing a
direct comparison between such theoretical results and the experiments because of the lack
of knowledge of the exact geometries realized experimentally. Ideally, the theory should aim
at describing the conductance histograms, which contain the full experimental information
without any selection of the data. This is precisely what we will analyze for Ni contacts in
the next Section.

4.2 Conductance of contacts obtained from molecular

dynamics simulation

Here we combine the electronic structure calculations by means of the NRL TB method
with a classical molecular dynamics (MD) simulation for the determination of the evolution
of the structure (and the mechanical properties) of the nanowires during elongation. In
this way we have simultaneously access to the electrical and mechanical properties of the
nanowire.

4.2.1 Geometric structure calculations with molecular dynamics
simulation

The breaking of metallic nanocontacts is simulated with a classical MD simulation. The
forces and energies are calculated using semi-empirical potentials derived from effective-
medium theory (EMT) [164, 165]. The evolution of the contacts is then obtained from
the integration of the classical Newtonian equations of motion. The temperature is kept
fix (usually at 4.2 K here) by means of a Nosé-Hoover thermostat [166]. This model has
successfully been used to simulate the breaking of nanowires [15, 23, 24, 167, 168].

The starting configuration consists of 112 atoms (14 layers with 8 atoms each) on fcc
lattice sites in [001] direction. Attached to the central contact are two slabs, each contain-
ing 288 atoms on fcc lattice sites, at both ends of the central contact. After equilibration,
the stretching process is simulated by separating both slabs symmetrically by a fixed dis-
tance in every time step. Randomized starting velocities of the 112 wire atoms guarantee
different time evolutions of the nanocontacts for each simulation. During the evolution,
the minimum cross section (MCS) perpendicular to the stretching direction is computed
following [169]. For technical details on the calculation of the geometric structure we refer
to [77, 112] and the references therein. The MD simulations were performed by Markus
Dreher in the group of Peter Nielaba at the Universität Konstanz.

With the MD simulation we have access to the mechanical properties of the contact
during the elongation and can calculate at the same time the conductance of the contact
using the NRL method as described previously.
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4.2.2 Evolution of individual nickel contacts

In Fig. 4.7 we apply this method to determine the evolution of a Ni contact. In the last
stage of the breaking process a dimer structure is formed, which is the most common
structure in this stage.

In the panels of Fig. 4.7 we show the evolution of the conductance projected on the
↑, ↓ spins and its channel decomposition.3 The number of contributing channels is given
for each regime of the evolution. Some representative geometries during the evolution are
depicted. In addition we have plotted the MCS radius, strain force, spin polarization of the
current, and contact configurations. The spin polarization of the current P , shown in the
inset of the lower panel, is defined as above [see Eq. (4.3)], where Gσ is the conductance
of the spin component σ. Notice that in the last stages of the stretching the conductance
is dominated by a single channel for the majority spin, while for the minority spin there
are still up to four open channels. In the final stages (see regions with three or one open
channel(s) for G↑) the conductance for the majority spin lies below 1.2e2/h, while for the
minority spin it is close to 2e2/h, adding up to a conductance of around 1.2–1.6 G0.

With respect to the evolution of the spin polarization of the current, in the beginning
of the stretching process it takes a value of around −40%, i.e., the conductance of the
minority-spin component outweighs that of the majority-spin component. This is expected
from the bulk DOS of Ni (see Fig. 4.2). For this transition metal the Fermi level lies right
in the d band for the minority spin, while for the majority spin one is at the edge of the
d band and the s and p bands contribute comparatively more strongly to the DOS. For
this reason, there is a larger number of conductance channels for minority-spin component.
The value of P is indeed quite close to the value of the spin polarization of the bulk DOS
at the Fermi energy, which in our model is equal to −40.5%. As the contact geometry
starts changing, the spin polarization of the current begins to fluctuate. It increases even
to values above 0%, but keeps a tendency towards negative values, until it starts increasing
to over +80% in the tunneling regime, when the contact is broken.

Let us now try to gain further insight into these findings. We show in Fig. 4.8 the
transmission as a function of the energy together with the LDOS for an atom in the
narrowest part of the constriction portrayed in the upper part of the figure.

It can be observed that the Fermi energy, as in bulk, is located just at the edge of the
d states for the majority-spin component, while it is inside the d states for the minority-
spin component.4 The majority-spin component therefore exhibits a single transmission
channel, behaving similar to a noble metal (see the results for Au and Ag in Sec. 3.2 or
the discussions in [77, 112]), while there are several open channels for the minority-spin
component as in the case of a transition metal (see the results for Pt in Sec. 3.2 or the
discussion in [77]).

Concerning the spin polarization of the current, the large DOS at εF for the minority-
spin component usually gives rise to a higher number of open channels for the minority-spin
component than for the majority-spin component, which in turn leads to a negative spin

3Here again, spin up (σ =↑) means majority spins and spin down (σ =↓) minority spins.
4Similar to the case of ideal.dimer contacts in [111] direction in Fig.4.4(c).
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Figure 4.7: Formation of a dimer
configuration for Ni (4.2 K, [001] di-
rection). The upper panel shows the
strain force as a function of the elon-
gation of the contact. In the lower
two panels the conductance Gσ, the
MCS radius, and the channel trans-
missions are displayed for the re-
spective spin component σ. Verti-
cal lines separate regions with differ-
ent numbers of open channels rang-
ing from 7 to 1 and 18 to 4, respec-
tively. An inset shows the evolution
of the spin polarization. Above and
below these graphs snapshots of the
stretching process are shown.

polarization of the current. However, this argument is just qualitative, because the actual
transmission of the channels cannot simply be predicted from the LDOS. The conductance
depends also on the overlap of the relevant orbitals and on non-local properties like the
disorder in the contact region. As a counter example, Fig. 4.7 shows that also intervals
of positive P can be found, although the DOS of the minority-spin component is usually
higher than for the majority-spin component. This is particularly dramatic in the tunneling
regime at the end of the breaking process, where, for instance, in Fig. 4.7 we see that a
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Figure 4.8: Ni contact of Fig. 4.7 at
an elongation of 0.83 nm. The trans-
mission is plotted as a function of
the energy together with the contri-
butions from the different transmis-
sion channels Tn,σ for the respective
spin component σ. Additionally the
LDOS is given for each spin com-
ponent for an atom in the narrow-
est part of the contact, where the
different orbital contributions have
been itemized. Above the figure the
narrowest part of the Ni contact is
displayed in a magnified fashion and
the atom is indicated, for which the
LDOS is shown.

value of P = +80% is reached. Such a reversal of the spin polarization is due to the fact
that the couplings between the d orbitals of the two Ni tips decrease faster with distance
than the corresponding s orbitals. As will be discuss further below, the result is typically
a reduction of the minority-spin conductance and therefore a positive value of P .

We would like to point out that the contribution of the minority-spin component to the
conductance is very sensitive to changes in the configuration. As is evident from Fig. 4.7,
the minority spin shows stronger fluctuations than the majority spin as a function of the
elongation. Again, this is a consequence of the fact that the minority-spin contribution
is dominated by the d orbitals, which are anisotropic and therefore more susceptible to
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Figure 4.9: MCS histogram (left panel) and conductance histogram (right panel) for Ni (4.2
K, [001] direction, 50 contacts). In the MCS histogram different regions of frequently occur-
ring radii have been marked with different pattern styles. The patterns in the conductance
histogram indicate the number of counts for conductances belonging to the corresponding
region of the MCS histogram. In the inset of the lower panel the conductance histogram
is displayed in the relevant region in a smoothed version by averaging over six NN points.

disorder than the s states responsible for the conductance of the majority spins. The
sensitivity to atomic configurations is in agreement with the findings for Ag and Pt as
discussed above, where stronger fluctuations of the conductance are seen for the transition
metal Pt, as compared with the noble metal Ag (see also [77]).

4.2.3 Statistical analysis of nickel contacts

For the Ni contacts we did not observe the formation of any chain in the 50 simulated
stretching processes. As a consequence, only a small first peak is visible in the MCS
histogram (see Fig. 4.9).

This peak originates from the dimer configurations, which usually form before the
contacts break. In the conductance histogram there is a shoulder at around 1.3G0. Part
of this first peak is buried under the adjacent conductance peak with its maximum at
2.5G0. This second very broad peak is mainly influenced by the starting configuration,
which means that the small size of our contacts might hide part of the peak structure in
the conductance histogram. According to the MCS regions contributing to the shoulder in
the Ni conductance histogram, the first peak is mainly composed of thick contacts (with
MCS radii of around 2 Å). This also explains the large broadening of the histogram peak,
since for thick contacts, there is more configurational variability.

Concerning the comparison with measurements, the shoulder at 1.3G0 in our results
is in agreement with the experimental conductance histogram, where a particularly broad
peak between 1.1G0 and 1.6G0 is observed (see Fig. 4.1(b) and [48]). Our calculations
indicate that this peak contains contributions from high MCS regions. The remarkable
width of the first peak in the experimental conductance histogram is then explained by
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the configurational variability of thick contacts in conjunction with the contribution of
configurationally sensitive d states to the conductance of the minority-spin component.
However, this interpretation requires further discussion. Usually the first peak in the
experimental conductance histograms is believed to arise from single-atom contacts and
dimers [21]. With respect to the problems encountered for Al (see [77]), it may be that
the employed EMT potential for Ni underestimates the stability of single-atom and dimer
configurations in a similar manner. In contrast to our MCS histogram, Garćıa-Mochales et
al. [170] obtain a decreasing peak height for higher MCS radii.5 Although their results are
obtained with a slightly different approach and for thicker contacts, their findings support
the conjecture of a possible underestimation of the stability of single-atom contacts and
dimers in our calculations. As a consequence the contribution of such configurations to the
first peak in the conductance histogram may be too low. In addition, as mentioned above,
this first peak in the conductance histogram is not well separated from contributions with
a high MCS, which are influenced by our starting configuration. Simulations of thicker
contacts and more sophisticated calculations of the contact geometry may be needed to
clarify the robustness of our findings.

With regard to the mean channel transmission of the spin-components as a function of
the conductance, the minority-spin component exhibits more transmission channels than
the majority-spin component (see Fig. 4.10). This further illustrates our previous argument,
where we explained that the majority-spin component possesses an Ag-like character, while
the minority-spin component behaves more Pt-like. Note also that the first channel for the
majority-spin component opens up remarkably slowly compared with Ag or Au in [77].

Now we want to address the question of how the spin polarization of the current is
influenced by configurational changes. For this purpose, we show in Fig. 4.11 the spin
polarization P as a function of the conductance for all the 50 simulated breaking events.6

As already observed in the simulation of a single breaking event (see Fig. 4.7), the spin
polarization of all the contacts starts at a value of −40%, when the contact is close to
its starting configuration. As explained above, this value for the spin polarization of the
current coincides rather well with the polarization of the bulk DOS at the Fermi energy
(see Fig. 4.2). As the contact is stretched, also the diversity of geometrical configurations
increases and the spin polarization values are widely spread, ranging from around −60
to 20%. There is a tendency towards negative spin polarizations, as can be observed
in the inset of Fig. 4.11. The average spin polarization varies between −30 and −10%
for conductances above 0.6G0. As described in the previous subsection, these variations
arise from the high sensitivity of the minority-spin conductance to atomic positions, as
compared to the less sensitive majority-spin conductance. The trend towards negative P

5Note that in Fig. 4 of Ref. [170] the MCS histograms are plotted with counts vs. area and not counts
vs. MCS radius as in our case. For a circular area A = πr2 this means that according to dA = 2πrdr for
a constant dA the MCS radius sampling dr needs to decrease for growing r. However, in our calculations
dr is fixed, to that the MCS histogram of Ref. [170] is not directly comparable to ours in Fig. 4.9.

6Note that bins (where a bin-width of 0.04G0 has been used) containing only a single data point are
discarded in the inset of Fig. 4.11. The reason is that the calculation of the standard deviation σ̃ requires
at least two data points.
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Figure 4.10: Mean value of the transmission coefficient 〈τn,σ〉 for the respective spin com-
ponent σ as a function of the conductance for Ni (4.2 K, [001] direction, 50 contacts). The
error bars indicate the standard deviation σ̃.

values can be explained by the higher number of states present at the Fermi energy for the
minority-spin component as opposed to the majority-spin component.

In the region of conductances below 0.6G0 the number of points is comparatively lower,
which explains the partly bigger error bars. Nevertheless, the number of realizations is still
enough to see the spreading of P values over an even wider interval than in the contact
regime, together with an average tendency towards positive values. We attribute this
trend of reversed spin polarizations to the faster radial decay of the hoppings between the
d orbitals that dominate the minority-spin contribution to the conductance, as compared
with the s orbitals that dominate the majority-spin contribution. The faster decay with
distance overcomes in the tunneling regime the effect of the higher DOS of the d states
versus the s states as explained above in Sec. 4.1.2.

4.3 Conclusion

In this Chapter we have presented a theoretical analysis of the conductance of one-atom
thick contacts of the ferromagnetic 3d metals Fe, Co, and Ni. Our calculations are based
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Figure 4.11: Spin polarization of the
current P as a function of the con-
ductance. All the data points for the
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graph, while in the inset their arith-
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on a self-consistent tight-binding model that has previously been successful in describing
the electrical conduction in non-magnetic atomic-sized contacts. Our results indicate that
the d orbitals of these transition metals play a fundamental role in the transport, especially
for the minority-spin species. In the case of one-atom contacts, these orbitals combine to
provide several partially open conductance channels, which has the following important
consequences. First, there is no conductance quantization, neither integer nor half-integer.
Second, the current in these junctions is, in general, not fully spin-polarized. Third, the
conductance of the last plateau is typically aboveG0. Finally, both the conductance and the
spin polarization of the current are very sensitive to the contact geometry. The ensemble
of these theoretical findings supports the recent observations of Untiedt et al. [48], while
it is in clear contradiction with the observations of half-integer conductance quantization
[42–47]. Of course, the appearance of the quantization in those experiments still remains
to be understood. A possible explanation has been put forward by Untiedt et al. [48], who
suggested that it could be explained by the presence of contaminants like foreign molecules
at the surfaces of the studied samples.

It is interesting to mention that in the tunneling regime, when the contacts are actually
broken, the nature of the conduction changes radically. We have shown that in this case
the transport is mainly dominated by the s orbitals and the spin polarization of the current
can reach values close to +100%.

We want to stress that in all our calculations we have assumed that the atomic contacts
were formed by single magnetic domains. In this sense, it would be interesting to see
how the conductance in these calculations is modified by the presence of domain walls in
the contact region. The first theoretical studies [57, 59, 64, 66] along these lines show
that the presence of a domain wall cannot conclusively explain the appearance of huge
magnetoresistance values reported in the literature [34].

In a statistical analysis of Ni contacts obtained by means of MD simulations, we con-
firmed the basic conclusions drawn from the analysis of ideal contact geometries. In par-
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ticular, we have shown that the conduction properties of the contacts behave, roughly
speaking, like a mixture of a noble metal (such as Au, Ag, for the majority spins) and a
transition metal (such as Pt, for the minority spins). In the conductance histogram we
obtain a shoulder at 1.3G0, whose large width can again be attributed to the extreme
sensitivity of the d orbitals (from the minority spins) to atomic configurations. On the
other hand, we find that the spin polarization of the current in the Ni contacts is generally
negative, increasing and fluctuating as the contacts narrow down and become disordered.
In particular, large positive values are possible in the tunneling regime, right after the
rupture of the wires. Once more, this behavior can be traced back to the fact that the d
orbitals play a key role in the conductance of the minority-spin component.



Chapter 5

Anisotropic Magnetoresistance in
ferromagnetic atomic contacts

So far we focussed on general conductance properties of ferromagnetic atomic contacts
and assumed the Hamiltonian to be diagonal in spin space. We found that the minority
spin d orbitals dominate the transport properties. Here, we will additionally include in
our model the spin-orbit coupling (SOC) present in those orbitals. As a consequence,
the anisotropic magnetoresistance (AMR) arises when the magnetization throughout the
ferromagnetic device is rotated uniformly by a certain angle θ with respect to the current
direction. In polycrystalline bulk samples such rotation induces a relative change in the
conductance ∆G/G that varies as cos 2θ with an amplitude on the order of 1% [171].
Recently Bolotin et al. [54] found that the AMR of Permalloy atomic-sized contacts can
be considerably enhanced as compared with bulk samples and that it exhibits an angular
dependence clearly deviating from the cos 2θ law [see Fig. 5.1(b,c)]. Additionally, they
found a significant voltage dependence on the scale of millivolts, which led them to interpret
the effect as a consequence of conductance fluctuations due to quantum interference [172].
Independently, Viret and coworkers [55] reported similar results in Ni contacts, but also
the occurrence of conductance jumps upon rotation of the magnetization. Similar stepwise
variations of the conductance have been found in Co nanocontacts [173].

The jumps have been interpreted as a manifestation of the so-called ballistic AMR
(BAMR) [174]. According to this theoretical concept the rotation of the magnetization in
a ballistic contact could result in an additional band crossing the Fermi energy, leading to an
abrupt change in the conductance on the order of e2/h. This has been theoretically shown
to occur in ideal infinite chains of Ni and Fe [174] as a result of the 1D periodic structure.
However, realistic ferromagnetic contacts made of transition metals are not expected to
be ballistic [48] and so the interpretation of the conductance jumps in terms of BAMR is
at least questionable. Indeed, Shi and Ralph [175] have suggested that these jumps might
originate from two-level fluctuations due to changes in atomic configurations [176]. Thus,
there remain important open questions about AMR in atomic contacts, concerning the
origin of the enhanced amplitude, the anomalous angular dependence, the occurrence of
conductance jumps, and the voltage dependence.

89
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Figure 5.1: (a) Scanning electron micrograph of an electromigrated junction of Permalloy.
(b) Zero-bias differential resistance vs. angle of applied magnetic field for such junctions.
Evolution of the AMR from bulk behaviour (for junction with large cross-section, i.e. small
resistance R0 = 57 Ω) to atomic contact regime (higher resistance R0 = 1129 Ω ≈ 1/11G0).
(c) AMR magnitude as a function of R0 for 12 different devices. (d) Differential resistance
dV/dI at finite bias for a junction with R0 = 2.6 kΩ and for several directions of the
magnetic field. The resistance curves in the left plot correspond to the horizontal dotted
lines in the color coded map. All graphs are taken from [54].

Here we address these questions using a combination of a tight-binding (TB) model,
molecular dynamics (MD) simulations, and a simple toy model. Our calculations suggest
that the enhancement of the AMR amplitude and the deviations from the cos 2θ law in
atomic contacts stem from spin-orbit coupling (SOC) together with a reduced symmetry
of the contact geometry. We do not find signs of BAMR in realistic contact geometries.
Finally, we find that the conductance of pure atomic contacts has no voltage dependence
on the the scale of millivolts, but that the addition of impurities can lead to a significant
voltage dependence of the AMR signal.

This Chapter is organized as follows: First we describe in Section 5.1 how we introduce
the SOC in the Hamiltonian. Next, in Section 5.2 we apply this Hamiltonian to the minimal
model of a linear chain and discuss its anisotropy properties. In Section 5.3 we then focus
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on the conductance anisotropy of ideal contacts of the 3d ferromagnets. Then in Section
5.4 the development of the conductance anisotropy during the evolution of a Ni wire from
bulk to the atomic contact regime is studied in a more statistical manner. We also examine
the properties of SOC induced orbital momentum there. Finally, we discuss the interplay
between distant impurities and the AMR properties in Section 5.5 and end this Chapter
with a brief conclusion.

5.1 Tight-binding Hamiltonian with spin-orbit cou-

pling

In order to describe the AMR in ferromagnetic atomic contacts of the 3d metals (Ni, Co,
and Fe), we add a SOC term to the ferromagnetic Hamiltonian:

Ĥ =
∑

ijαβσσ′

(
[H]

(0)
iα,jβ;σδσσ′ + [H]

(SO)
i;ασ,βσ′δij

)
ĉ†iασ ĉjβσ′ . (5.1)

Here the first term H(0) refers to the Hamiltonian of Eq. (4.1) without SOC. Again the

spin-polarized parameters [H]
(0)
iα,jβ;σ and the spin-independent overlaps [S]iα,jβ are taken

from the parametrization of Refs. [89, 107] and are modified according to Eq. (2.57) to
satisfy charge neutrality. In absence of SOC the results of the preceding Chapter 4 are
reproduced.

The additional intra-atomic spin-orbit term H(SO) couples the direction of the spin to
the geometry. These matrix elements depend on the spin quantization axis (with polar an-
gle θ and azimuthal angle φ), which we rotate uniformly to simulate the AMR experiments
with saturated magnetization:

[H]
(SO)
i;ασ,βσ′(θ, φ) = ξi〈iασ|~l ·~s|iβσ′〉 =

ξi
2

∑
µ,ν

Rµν(θ, φ)l
(µ)
αβ τ

(ν)
σσ′ . (5.2)

Here ξi is the SOC constant on site i, l(µ) are the orbital momentum matrices, and the
Pauli matrices τ (ν) are given by

τ (1) =

(
0 1
1 0

)
, τ (2) =

(
0 −i
i 0

)
, τ (3) =

(
1 0
0 −1

)
. (5.3)

Furthermore R(θ, φ) = Rz(φ) Ry(θ) is a relative rotation between the spin and orbital
quantization axes, where θ and φ are the polar and azimuthal angle. In this way the
Hamiltonian has the form of Eq. (2.44) and we can use the expressions derived in Secs. 2.2.1
and 2.2.2 to calculate the conductance.

The H(SO) matrix has time reversal symmetry:
(
H(SO)

)T
(θ, φ) = H(SO)(π−θ, π+φ) =

τ (2)H(SO)(θ, φ)τ (2). We only consider SOC on d orbitals, for which the matrix elements of
Eq. (5.2) can be found in Ref. [177].
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We use the SOC constant ξi = 70 meV, which is the experimental value for Ni. Although
this type of model is not expected to be as accurate as ab initio counterparts, it captures the
essential (orbital) symmetries and has the advantage that it allows us to analyze phenomena
like BAMR in realistic contact geometries, which is difficult with ab initio methods [178].

Note that in the ferromagnetic Hamiltonian H(0) we neglected electron-electron corre-
lation effects which in an isolated atom lead to a finite orbital momentum according to
Hund’s rules. For finite isolated clusters of Ni these were studied by Guirado-López et al.
[179], and for infinite systems with low coordination (like ideal single-atom chains) of Fe
by Desjonquères et al. [180]. They show that for bigger cluster sizes (N ≥ 10) correlation
effects become less important due to strong coupling of the atoms and the orbital momen-
tum is reduced. In the bulk limit (N ≥ 150), the orbital momentum is quenched to a good
approximation, as we assume here.

Additionally the SOC introduces a small but finite orbital momentum. For the case
of isolated monolayers of the 3d ferromagnets this was studied by Bruno [181, 182]. In a
perturbative approach he found, that the SOC-induced orbital moment follows the spin
direction and its length varies like the anisotropy energy. We will discuss the SOC-induced
orbital momentum in more detail in Section 5.4.4.

But let us start with a simple minimal model similar to the Anderson-Newns model, as
it was discussed in Sec. 3.1.

5.2 A minimal chain model

t
t

t t ttl

c

l l l t ls

1 N

t

N+1

l

z

Figure 5.2: Model system: linear chain of d orbitals (chain axis in z direction) eventually
coupled to a distant impurity N sites away from the constriction.

In this Section we consider the minimal model of a linear chain. We first introduce the
model and then review the case without SOC similar to what we discussed in the preceding
Chapter. Finally we discuss the AMR using the example of a chain with SOC. We also
prepare for an additional impurity in the lead.
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5.2.1 Definition of the model

Here we study the effect of SOC in ferromagnetic atomic contacts of the 3d ferromagnets for
an idealized model that captures the most essential aspects of the problem. We consider a
contact formed by two linear, semi-infinite, z-directional chains of identical atoms joined in
a central region consisting of the two tip atoms (see scheme in Fig. 5.2). We first consider
the leads as ideal semi-infinite chains. The case of a possible distant impurity as depicted
in Fig. 5.2 will be discussed below in Section 5.5.

To describe the electronic structure we consider a tight-binding model taking into ac-
count the E2 subset of the d orbitals with mz = ±2 containing the dxy and dx2−y2 orbitals.
The onsite elements for the two spin orientations are assumed to be spin-split by ∆ due
to ferromagnetic order. The inter-atomic hopping integrals are restricted to nearest neigh-
bours. In terms of Table A.1, the only contributing hopping integral is of the ddπ type.

Quantity Symbol Value

Onsite energy (no splitting) ε0 0.0 eV
Spin-splitting ∆ 0.5 eV
Lead hopping ddπ πl 1 eV
Center hopping ddπ πc 0.4 eV
Impurity hopping ddπ πs 0.8 eV
Spin-orbit coupling ξ 0.2 eV

Table 5.1: Parameters for the dE2 orbitals chain with SOC in the central atoms.

The hoppings are assumed to be equal on all lead atoms but may differ between the two
central atoms. Furthermore SOC with a finite coupling constant ξ is taken into account
for the central atoms. The used parameters are listed in Tab. 5.1. We want to stress that
the conclusions driven here do not depend on the particular choice of parameters.

In the absence of impurities, the term H(0) in the Hamiltonian has the form

H(0) =



. . . . . . 0 0 0 0

. . . H0 tl 0 0 0
0 tl H0 tc 0 0
0 0 tc H0 tl 0

0 0 0 tl H0
. . .

0 0 0 0
. . . . . .


. (5.4)

The E2 basis functions α = 1, 2 are taken in the order dxy, dx2−y2 . Then the diagonal
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blocks H0 = diag({εασ}) are of the form

H0 =


ε0 + ∆/2 0 0 0

0 ε0 −∆/2 0 0
0 0 ε0 + ∆/2 0
0 0 0 ε0 −∆/2

 (5.5)

and the off-diagonal blocks are tc = πc1 and tl = πl1. Note that as the atoms lie on a
straight line, there are no hopping elements coupling different types of orbitals. In the
absence of SOC, this model thus represents four uncoupled linear chains.

Including SOC couples the chains. Equation (5.2) yields the SOC blocks H
(SO)
i,i =

(ξi/2)
∑

µν Rµν(θ, φ)l(µ) ⊗ τ (ν), where the Pauli matrices τ ν are given in Eq. (5.3) and the

orbital angular momentum matrices l(µ) reduced to the minimal set of dE2 orbitals are zero
except for l(3) = 2τ (2). Here ξi is taken to be finite only on the atoms i belonging to C.

In order to calculate the current I and the nonlinear conductance G(V ) = dI/dV at
finite bias voltages, we modify the onsite energies of the C part of H(0). Thus the current
is obtained from Eq. (2.75) where

GCC(ε, V ) =

[
1ε+ − τ (3) eV

2
−

(
Σ(ε− eV

2
) 0

0 Σ̃(ε+ eV
2

)

)
− H

(0)
CC(V = 0)−H

(SO)
CC

]−1

.

Here Σ(ε) = diag({Σασ(ε)}) is a diagonal self-energy matrix arising from the coupling to
the left C atom to the four independent, semi-infinite, homogeneous chains [102, 103]. It
is of the form

Σ(ε) = tlg0(ε)tl (5.6)

where the Green’s function of the“surface”satisfies g0(ε) = [ε−H0−tlg0(ε)tl]
−1. Due to the

decoupling the resulting self-energy components are all of the form Σασ(ε) = πle
iΦασ , with

cos Φασ = (ε− εασ)/2πl, where πl is the hopping integral. In the absence of the impurity,
the self energy Σ̃(ε) for the right-hand C atom is equal to Σ(ε). The modifications due to
the introduction of the impurity are discussed in more detail in Section 5.5.

5.2.2 Transmission in absence of spin-orbit coupling

Let us first discuss the results in the absence of SOC, in which case there are four indepen-
dent linear chains. The local density of states (LDOS) ρασ(ε) projected onto the orbital
ασ of one of the tip atoms is the same as for two half-infinite chains linked by a weaker
hopping [see Section 3.1, Eq. (3.5)]:

ρασ(ε) = − 1

π
Im

{
ε− εασ − Σασ(ε)

π2
c − [ε− εασ − Σασ(ε)]2

}
, (5.7)

Here, the spin-dependent onsite energies are εασ = ε0±∆/2 for majority/minority spin, and
the center hopping elements πc are the corresponding two center integrals. The resulting
LDOS projected on one of the tip atoms for the different orbitals is shown in Fig. 5.3.
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Figure 5.3: Linear chain of dE2 orbitals in absence of SOC: (a) LDOS of the tip atoms
projected on the orbitals and (b) total transmission and its channel decomposition. The
position of εF is indicated with a dotted line.

In the real 3d materials εF lies close to the edge of the d bands. In this one-dimensional
model we choose εF = 0.42 eV to be well within the bands to avoid the singularities at the
band edges, which are particular to one-dimensional ideal chains (see Fig. 5.3).

Next, let us have a look at the transmission function for the system of four independent
chains. The transmission τασ for the chain of orbital ασ reads (within the band):

τασ(ε) =
[Γασ(ε)]2 π2

c∣∣π2
c − [ε− εασ − Σασ(ε)]2

∣∣2 , (5.8)

where we introduced Γασ(ε) = −2 Im [Σασ(ε)]. These transmission functions are plotted
in Fig. 5.3. In absence of impurities in the leads, the transmission curves as a function of
energy are structureless. At the Fermi energy the transmission of the two-fold degenerate
channels is 0.474 (0.446) for majority (minority) spins.

5.2.3 Conductance anisotropy in presence of spin-orbit coupling

Now we want to explore the anisotropy properties in presence of SOC. In order to keep
things simple, we restrict the SOC to the two central atoms in the Hamiltonian Eq. (5.4).
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Figure 5.4: Linear chains of dE2 orbitals with SOC in the tip atoms: (a) LDOS at the
Fermi energy projected on the orbitals of one of the tip atoms, (b) total conductance and
(c) channel decomposition.

Written in the same basis as in Eq. (5.5), the SOC Hamiltonian of Eq. (5.2) reads for each
of the two tip atoms:

[
H(SO)

]
j
= i2ξ


0 0 − cos θ sin θ
0 0 sin θ cos θ

cos θ − sin θ 0 0
− sin θ − cos θ 0 0

 . (5.9)

Now the different orbitals are coupled depending on the direction of the spin quantization
axis, which is fixed by the polar angle θ and the azimuthal angle φ.

Due to the rotational symmetry of the linear chain around ~ez and the choice of the
subset of the dE2 orbitals, the SOC Hamiltonian (5.9) and thus the anisotropy properties
do not depend on the azimuthal φ and the LDOS projected on the dxy, dx2−y2 orbitals are
degenerate for each spin. In Fig. 5.4(a) we show the the LDOS at εF projected on the dxy,
dx2−y2 orbitals of one of the tip atoms as a function of θ. The anisotropy of the orbitals
with different spin have opposite sign but do not cancel, which leads to a finite anisotropy
of the total LDOS.

The resulting anisotropy of the total conductance is shown in Fig. 5.4(b). Due to the
time reversal symmetry and the invariance with respect to φ the total conductance fulfills
G (θ) = G (π − θ). This means that only even harmonics cos 2mθ contribute to the total
conductance anisotropy. With the parameters from Table 5.1 the conductance varies like
a0 + a1 cos 2θ with a small relative amplitude a1/a0 ≈ 0.3%.

On the other hand, the conductance channels in Fig. 5.4(c) show a much bigger absolute
amplitude of variation and a behavior like cos(2m+ 1)θ. In the sum they cancel to a high
degree. In particular at θ = π/2, the conductance channels are twofold degenerate. This
can be understood from the SOC Hamiltonian of Eq. (5.9), where at θ = π/2 is only the
orbitals of equal spin are coupled and lead to a degenerate conductance. If the full set of
d orbitals is considered, the degeneracy at θ = π/2 is then lifted by the non-zero orbital
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momentum matrices l(1), l(2) in the SOC Hamiltonian. This behavior is similar to the
properties of ideal contacts geometries of Fe and Co in Fig. 5.6 and of Ni in Fig. 5.5.
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Figure 5.5: (a) Ideal Ni one-atom contact in fcc [111] direction with atoms on lattice
positions. Green atoms are those in the atomic constriction, yellow ones are part of the
surfaces used to model the leads. (b,c) Channel decomposition and the total linear con-
ductance as a function of θ for different angles φ. The relative conductance is defined as
Grel = [G(θ, φ)− 〈G(θ, φ)〉θ] /〈G(θ, φ)〉θ, where the conductance average over θ is defined
as 〈G(θ, φ)〉θ =

∫ π

0
dθ
π
G(θ, φ). (c) Channel decomposition of (b). (d)-(f) Same as (a)-(c),

but with the contact distorted by randomly shifting the red atoms by up to 5% of the
nearest-neighbour distance.
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5.3 Ideal Contacts

Until now we discussed a minimal model for the AMR in ferromagnetic contacts, which still
can be solved analytically. In the following Sections we add the SOC to the NRL approach
and apply it to the ideal contact geometries of Fe, Co, and Ni to discuss the AMR there.

5.3.1 Ideal contact of Ni

Here we focus on the AMR in atomic contacts of Ni. In order to limit the calculation effort,
we assume the SOC constant to be finite in the central region only and zero in the leads.
We state here that this simplification does not alter the general result. In Section 5.4.2 we
will explicitly compare the results for the conductance with and without SOC in the leads.

Due to the small SOC constant, the addition of SOC to the ferromagnetic Hamiltonian
only changes slightly the overall conductance. However the petiteness of the SOC constant
introduces some technical difficulties. As an example, in absence of SOC, the typical
energy scales are of the order of the orbital energies, i.e. several electronvolts (see results
discussed in Chapter 4), and the numerical calculation needs to be converged with respect
to this scale. In presence of SOC however, the relevant energy scale is given by the SOC
constant, fixed to 70 meV in this work, which demands correspondingly higher accuracy of
the calculation. We typically obtain converged results for a lead broadening η = 1 mRy =
13.6 meV and 1002 k-points for the lateral Fourier transformation.1

We now calculate the conduction properties of Ni atomic contacts in presence of SOC.
First we consider an ideal geometry as in Fig. 4.3 with the atoms kept fixed on fcc lattice
positions with a single central atom. The geometry is again depicted in Fig. 5.5(a). In
Figs. 5.5(b,c) the conductance and its channel decomposition as function of θ for several
values of φ are shown. Surprisingly, the conductance of this one-atom contact exhibits the
bulk-like AMR with a cos 2θ dependence (minimum at θ = 0), an amplitude of 0.5% and
practically no dependence on φ. In fact, as for the minimal model, the individual channels
show a more complicated dependence on θ, and the amplitude of variation for one channel
can be bigger than that of the total conductance, but in the latter these features cancel
and the cos 2θ dependence is recovered.

In the minimal model and for the ideal atomic contact geometry the contributions
of the individual conductance channels cancel to a high degree. This suggests that the
cancellation is related to the high symmetry of the ideal geometry.

To test this idea we have distorted the contact by shifting randomly the atomic positions
by up to 5% of the nearest-neighbour distance [Fig. 5.5(d)]. As seen in Fig. 5.5(e), the
individual channels now show roughly the same amplitude of variation with θ as in the
ideal contact, but due to the disorder they exhibit a more complex θ dependence, and a
strong dependence on φ. As a consequence, the contributions of the channels no longer
cancel out and the AMR can have a different amplitude, with the conductance extrema
shifted in θ and with a strong dependence on φ [Fig. 5.5(f)].

1In absence of SOC calculations are usually converged for η = 500 meV and 322 k-points.
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This example illustrates that the origin of the anomalous angular dependence and
amplitude of the AMR in atomic contacts can be simply the reduced symmetry of these
junctions together with the fact that the conductance is mainly determined by a few atoms
in the narrowest part of the constrictions.

5.3.2 Ideal contacts of Fe and Co
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Figure 5.6: (a) The upper left panel shows a Fe dimer contact grown along the bcc [001]
direction and with the atoms sitting on lattice positions. The green atoms are those in the
atomic constriction, while the yellow ones are part of the surfaces used to model the leads.
The lower left panel shows the total and relative conductance of this contact as a function
of θ and for different azimuthal angles φ, while the right panel shows the corresponding
channel decomposition. (b) The same as in (a), but for the geometry shown in the upper
left panel, where the ideal contact of (a) has been distorted by changing randomly the atoms
marked in the red by a maximum amplitude of 5% of the nearest-neighbour distance. (c,d)
The same as in (a,b), but for a Co one-atom contact grown along the hcp [0001] direction.

Similar to the results in Fig. 5.5 for Ni, we also analyzed ideal contacts of Fe and Co.
We use the SOC constant ξi = 70 meV also for these materials.

In the case of Fe, the ideal contact is formed in the bcc [001] direction with atoms on
bcc lattice sites [Fig. 5.6(a)]. Due to the large apex angle of the two pyramids forming the
contact, the atom layers behind the central atoms give an important contribution to the
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conductance. This is why in this case we chose a dimer configuration as ideal geometry,
in order to reduce this contribution. Note that again, although the absolute anisotropy
amplitude of an individual channel exceeds 0.05e2/h, the anisotropy amplitude of the total
conductance remains more than one order of magnitude smaller, below 0.004e2/h (i.e.
≤ 0.08% in relative conductance variation). Under a perturbation of the contact geometry
[Fig. 5.6(b)], the conductance changes remarkably, due to the sensitivity of the d orbitals
to the geometry. More strikingly, the absolute anisotropy amplitude of the conductance
increases by roughly one order of magnitude to 0.05e2/h, a relative conductance variation
of more than 2%. Again this follows from the notable robustness of the amplitude of the
channel anisotropy against disorder and the fact that the individual channel contributions
do not cancel entirely anymore.

Likewise we analyzed atomic contacts of Co. An example for a contact formed by two
pyramids with one central atom grown in the hcp [0001] direction is shown in Fig. 5.6(c).
Here the total conductance shows a relative anisotropy amplitude of around 0.1%, this time
with a maximum at θ = 0 and quasi isotropic in φ. Again, the anisotropy amplitude of
individual channels exceeds that of the total conductance by more than an order of magni-
tude. Under perturbation [Fig. 5.6(d)], the individual channel anisotropy amplitudes once
again remain on the same order of magnitude but the different channel contributions do not
cancel out anymore, leading to a relative anisotropy amplitude of 1% in the conductance.
These findings support the general conclusions drawn based on the Ni contacts.

Note that recently Autès and coworkers [183] reported calculations for AMR in chains
of Fe atoms between ideal surfaces. The main features of their results are in agreement
with ours.

5.4 Anisotropy in contacts obtained from molecular

dynamics simulation

So far we only considered ideal and somehow artificially disturbed contacts. Since the
geometry plays such a prominent role in the AMR, it is important to analyze it for ge-
ometries that can be realized in an actual experiment. For this purpose, we have studied
the AMR in the geometries obtained by classical MD simulations of the formation of Ni
atomic contacts, as in Section 4.2. Again, the MD simulations were carried out by Markus
Dreher of the group of Prof. Peter Nielaba at the Universität Konstanz.

5.4.1 Average conductance during contact evolution

An example of a contact evolution similar to the one discussed in the previous Chapter
is shown in Fig. 5.7(a) Again, we start with an ideal Ni bar containing 112 atoms on
lattice sites in fcc [001] direction and separate the attached rigid surfaces in a stepwise
manner. In Fig. 5.7(b) we show the evolution of the spin-projected and total conductance
during elongation in the absence of SOC. Adding SOC introduces only a small change in
the averaged total conductance. As usual, the sudden atomic rearrangements are reflected
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Figure 5.7: (a) Contact evolution of a Ni junction grown in the fcc [001] direction as
obtained from the simulations of discussed in Section 4.2. (b) Spin-projected, G↑,↓, and
total conductance in the absence of SOC and 〈G(θ, φ)〉θ,φ =

∫
dΩ
4π
G(θ, φ), the total conduc-

tance averaged over θ, φ in the presence of SOC. Vertical lines correspond to the contact
geometries in (a).

as steps in the conductance [1]. The vertical lines refer to the geometries of Fig. 5.7(a)
obtained during the elongation.

5.4.2 Conductance anisotropy of representative geometries
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Figure 5.8: (a)-(d) Comparison of the total conductance anisotropy for geometries 1-4 of
Fig. 5.7 for φ = π/4 with and without SOC in the leads.

In the preceding Section we set the SOC constant ξ = 0 in the leads. We shall first
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ensure that neglecting SOC in the leads does not alter the general results. In order to
analyze the influence of a finite SOC constant in the leads we analyzed the change in the
conduction properties for the four geometries presented in Fig. 5.7(a). The result is shown
in Fig. 5.8 for the total conductance as a function of θ and for φ = π/4, with and without
SOC in the leads. Neglecting the SOC in the leads introduces an additional potential
barrier at the interface, which changes the contact resistance by a few percent However the
anisotropy properties which we are interested in here remain basically unchanged.
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Figure 5.9: (a) Contact geometries as in Fig. 5.7(a) during evolution of the Ni junction.
(b) Conductance vs. θ for the geometries in (a) and with φ in steps of π/6. (c) Rela-
tive AMR [G(θ, φ)− 〈G(θ, φ)〉θ,φ] /〈G(θ, φ)〉θ,φ in % projected on a “Bloch sphere”, where
〈G(θ, φ)〉θ,φ =

∫
dΩ
4π
G(θ, φ) is the conductance averaged over all angles θ, φ.

For the indicated contact geometries we have computed the dependence of the con-
ductance on θ and φ, and the results are shown in Fig. 5.9(b). For contact 1, which is
just an elastic deformation of the ideal contact, the conductance has two types of behavior
depending on φ: one is cos 2θ-like, while the other is clearly more complex. In order to
visualize the overall angular dependence, we show the relative AMR on a “Bloch sphere”
[Fig. 5.9(c)]. The contact 1 and hence its AMR have an approximate four-fold symmetry.
When deformations emerge in the contact, the angular dependence becomes irregular and
strongly dependent on φ. For example, for contact 2 there is a strong variation of AMR
with φ, and depending on its value, the AMR amplitude can be almost one order of mag-
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nitude larger than in the bulk limit or cancel almost entirely. As the contact evolution
proceeds, the AMR has an amplitude of around 2%. In almost all cases, the conductance
is not only shifted in θ, but it also has a more complicated behavior than just cos 2θ.
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57.2
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−0.3%
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Figure 5.10: (a) Thick ideal contact geometry with 324 atoms in the center to model the
bulk limit. (b,c) Conductance vs. θ (for several φ) for the geometry in (a) and relative
AMR projected on a “Bloch sphere” as in Fig. 5.9(c). Note the scale change by a factor 10.

We can exploit the flexibility of the NRL approach to explore the conduction properties
also in the opposite limit of thick contacts, which approach the bulk limit, similar to what
we discussed in Section 3.4.5. We construct regular thick contact geometries with atoms
on lattice positions coupled to ideal surfaces. An example of such a contact in is shown in
Fig. 5.10(a). It contains 324 atoms in eight layers and has a fourfold symmetry around the
transport axis ~ez.

The resulting conductance anisotropy as a function of θ is presented in Fig. 5.10(b) for
different values of φ. It is basically isotropic in φ and approaches the bulk comportment
with a variation like cos 2θ and an amplitude of 0.5%. However there are still important
deviations from the pure cos 2θ angular dependency. In fact, when we fit the conductance
anisotropy with a cos (2mθ + αm) series, terms up to m = 4 give a significant contribu-
tion, which corresponds to λ8 in the perturbation series of Section B. Again, the relative
conductance anisotropy is projected on a Bloch sphere in Fig. 5.10(c).

5.4.3 Statistical analysis of the conductance anisotropy ampli-
tude

In the preceding Sections we described the AMR from bulk to the atomic contact regime
just before breaking of the contact. We can collect the data and conclude on some general
tendencies that mark the difference between bulk and atomic contacts.

In Fig. 5.11 we present such a statistical analysis. Each contact geometry of the evolu-
tion of the Ni junction considered above is identified with its average conductance. Then
for each geometry, the conductance anisotropy amplitudes are calculated as a function of
the azimuthal φ. The statistical analysis of all contact geometries shows an increase of
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Figure 5.11: Statistical analysis of the conductance anisotropy amplitude as a function of
the average resistance. For each contact geometry, characterized by an average conductance
amplitude 〈G(θ, φ)〉θ,φ =

∫
dΩ
4π

G(θ, φ), the anisotropy amplitude is calculated for twelve
values of φ (in steps of π/12). Here the anisotropy amplitude is defined as ∆G/〈G〉θ, where
∆G(φ) = maxθ [G(θ, φ)]−minθ [G(θ, φ)] and 〈G(θ, φ)〉θ =

∫ π

0
dθ
π
G(θ, φ). In the graph the

values of the anisotropy amplitude for the twelve φ values are represented with diamonds
and are plotted as a function of the average resistance. If the φ dependency is weak, the
diamonds for different φ lie close to each other (as in the case of the big contacts).

AMR to 2% on average in the last steps before breaking. This confirms that the lack of
symmetry in atomic contacts gives rise to the enhancement of the AMR signal.

Approaching the tunneling regime (G < 0.1e2/h, not shown in Fig. 5.11), we do not
observe a further increase of the AMR amplitude, contrary to experiments (Fig. 5.1(c) and
[54]). One reason may be that the isolated tip atoms in tunneling regime exhibit a finite
orbital moment [180] (not considered here), which may lead to a local deviation of the
spin-quantization axis from the field direction and an additional increase in resistance.

5.4.4 Spin-orbit coupling induced orbital momentum

In an isolated atom the Coulomb interaction leads to a finite orbital angular momentum
according to Hund’s third rule. For the case of Ni with electronic configuration [Ar]3d84s2,
the ground state of an isolated atom is 3F4 with total orbital magnetic moment µL = 3µB

and total spin magnetic moment µS = ge/2µB. Here µB = e~
2me

is the Bohr magneton and
ge ≈ 2.002 the electron gyromagnetic ratio. In a bulk metal, due to the strong coupling
with neighbouring atoms, the intra-atomic Coulomb interaction can be neglected, and the
orbital momentum is practically quenched (experimentally, one finds µL ≈ 0.05µB per
atom for bulk Ni [184]). The experimental spin magnetic moment per atom is [114] in Ni
and can be compared to the value derived from the bulk DOS in Section 4.1.1.

For the intermediate case of a surface or a nanowire, neglecting the SOC, Desjonquères
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Figure 5.12: SOC induced orbital (and spin) magnetic momentum. (a) Geometry of the
MD simulation series in the tunneling regime just after breaking of the contact. (b) Spin
magnetic moment in the presence of SOC. The direction of the external field is indicated
by the red arrow, whose length correspond to one Bohr magneton µB = e~

2me
. The spin

magnetic moments do not differ much from the quantization axis and are roughly 0.5−1.1µB

in magnitude, larger than the spin magnetic moment of bulk atoms of Ni [114]. SOC
induced orbital magnetic moments (c) in the same scale as and (d) magnified by a factor
of 10 compared to the spin magnetic moments from (b). They measure roughly 0.07µB

and tend to be bigger in atoms of the surface than for the higher coordinated atoms. The
orbital magnetic moments of the surface atoms cease to be parallel to the spin quantization
axis and tend to follow the surface of the geometry.



106 Anisotropic Magnetoresistance in ferromagnetic atomic contacts

et al. [180] treated the intra-atomic electronic interaction in a Hartree-Fock scheme. They
find for Fe, that when the coordination is reduced the orbital magnetic momentum per atom
increases from µL ≈ 0.05µB in bulk Fe to µL ≈ 0.2µB on surfaces and finally µL ≈ 1µB for
a monatomic wire.

In the case of the atomic contact in the tunneling limit, due to the reduced coordination
of the tip atoms, such a finite orbital momentum may appear in those atoms and in
consequence an additional increase in the AMR as discussed in the preceding Section 5.4.3.

However including Coulomb interaction is beyond the scope of this work and instead
we will focus on changes in spin and magnetic orbital momenta when SOC is taken into
account in an atomic contact. Such a SOC induced orbital momentum and its relation to
the energy anisotropy was investigated by Bruno for monolayers of Co [181, 182].

Similar to what was discussed in Chapter 2, we can express the quantum-mechanical

expectation value of an operator
〈
Â

〉
written in second quantization in terms of the non-

equilibrium Green’s function. In the basis of the creation operator ĉjασ of orbital α and

spin σ at site j, an intra-atomic operator Â reads Â =
∑

j;ασ,βσ′ [A]jασ,jβσ′ ĉ†jασ ĉjβσ′ and at
temperature zero its expectation value projected on the site j takes the form〈

Â(t)
〉

j
=

∑
ασ,βσ′

[A]jασ,jβσ′

〈
ĉ†jασ(t)ĉjβσ′(t′)

〉∣∣∣
t′→t

(5.10)

=
1

i
Trασ

{
AG+−(t, t′)

}
j

∣∣∣
t′→t

=

∫ εF

−∞

dε

2π
Trασ {A [Gr(ε)−Ga(ε)]}j .

Applied to the spin magnetic momentum:

~µS,j =
e

2me

ge
~
2
~sj = µB

ge

2
(〈τ̂x〉j, 〈τ̂y〉j, 〈τ̂z〉j)t , (5.11)

where ge ≈ 2.002 is the electron gyromagnetic ratio. Similarly the Orbital magnetic mo-
ment reads:

~µL,j =
e

2me

~
2
~lj = µB

(
〈l̂x〉j, 〈l̂y〉j, 〈l̂z〉j

)t

, (5.12)

where the l̂µ (and before τ̂µ) can be expressed in terms of the orbital angular momentum
matrices l(µ) (Pauli matrices τ (µ)) as in Eq. (5.2).

We can now calculate the spin- and orbital magnetic moment of an arbitrary structure.
As an example we take the geometry of the MD simulation just after breaking of the
contact. This geometry is shown in Fig. 5.12(a) and in simplified form of unconnected
atoms in Fig. 5.12(b-d). The two tips are sufficiently separated such that the tip atoms
have only low coordination.

We orient the spin quantization along the transport direction as indicated with the red
arrow, which has a length of one µB. The resulting spin magnetic moments in each atom as
calculated from Eq. (5.11) are shown in Fig. 5.12(b). The arrows indicate the the direction
and magnitude of the spin magnetic moment on each atom (as compared to the red arrow
pointing in the direction of the spin quantization axis with a length of one µB). They show
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only small deviation from the spin quantization axis and measure 0.5− 1.1µB. Notice that
for higher coordinated atoms the spin magnetic moment tends to be smaller.

On the other hand, we can evaluate the orbital magnetic moment with Eq. 5.12. Note
that in the orbital basis the orbital momentum matrices are imaginary and therefore an-
tisymmetric. On the other hand, in absence of SOC, the Hamiltonian (5.1) is real and
symmetric and thus the Green’s functions then are symmetric, too. So, without SOC,
the expression of the orbital magnetic moment consists of the trace over the product of
a symmetric and an antisymmetric matrix, which is zero. Thus the orbital momentum
vanishes.

In presence of SOC, the Green’s functions are no longer symmetric, which causes a
finite orbital momentum. This orbital magnetic moment is depicted for each atom in
Fig.5.12(c,d): in (c) the length of the arrows is plotted in the same scale as for the spin
magnetic moments in (b), and in (d) they are magnified by a factor 10 for visibility. The
size of the orbital magnetic moments varies from ≈ 0.02µB and ≈ 0.15µB, roughly one
order of magnitude smaller than the spin magnetic moments. The small orbital magnetic
moments exclusively appear in highly coordinated atoms and the highest value is found
for the tip atom with lowest coordination. The direction of the orbital magnetic moments
is roughly oriented along the spin quantization axis and follows more the When we rotate
the direction spin quantization axis ~ez′ , spin and orbital momenta follow roughly ~ez′ with
stronger deviations for the orbital momenta (not shown here).

The fact that the SOC introduces a finite orbital momentum suggest to apply a per-
turbative treatment of the orbital magnetic moment in terms of the SOC Hamiltonian, as
it was done by Bruno in the case of monolayers of Co [181]. This treatment is beyond the
scope of this Section and can be found in Appendix B. Let us mention here that the mo-
menta in second order perturbation theory are already reasonably close to the full results
discussed in this Section.

We can conclude that the SOC induced orbital magnetic moments in Ni atomic contacts
typically are smaller than the spin magnetic moments by a factor of 10 and are roughly
parallel to the spin quantization axis. Thus if a orbital magnetic moment is at the origin
of the strong increase of the AMR in the tunneling regime (as proposed by Autès et al.
[183]), it must stem from another mechanism than SOC, like the intra-atomic Coulomb
interactions discussed at the beginning of this Section.

5.5 Role of impurities in the leads

In none of the calculations have we found indications of tip resonances, which are present
in ideal one-dimensional geometries [69, 70] and which were suggested as the origin of the
experimental findings [69]. For example, the transmission for the contact of Fig. 5.5(a) has
almost no structure around εF on the scale of millielectronvolts, as shown in Fig. 5.13(a).
We thus believe that the voltage and temperature dependences reported in Refs. [54, 176]
and shown in Fig. 5.1(d) are indeed associated with impurities close to the constriction, as
reported earlier for non-magnetic junctions [124, 185].
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Figure 5.13: (a) Transmission τ(ε, V = 0) for the contact depicted in the upper panel
[similar to Fig. 5.5(a)] with θ = 0,π/2. (b) Total transmission for θ = 0,π/2 of the chain
model shown in the upper panel.

Following Ref. [185], one may estimate that the reported (Fig. 5.1(d) and [54]) voltage
period of a few millivolts can stem from impurities located hundreds of nanometers away
from the contact. Such length scales cannot be modeled realistically. However the minimal
model that we discussed in Section 5.2 proofed to reproduce the main anisotropy features
of ideal contacts. As an example, in Fig. 5.13(b) we show the transmission around εF for
the minimal model, which does not show any structure on the scale of meVs in resemblance
which the result for the ideal contact. In the minimal model it is then straightforward to
introduce distant impurities in the leads.

In order to describe the conductance oscillations due to quantum interference, we may
place an impurity in one of the leads, far away from the center. We choose to place it in
the right lead, and model it by a modified hopping ts between the N th and the (N + 1)
th atom in this lead as indicated in the sketch of Fig. 5.14(a).

The lead self energy modified by the impurity is of the form Σ̃(ε) reads

Σ̃(ε) = tlg̃0(ε)tl (5.13)

where g̃0(ε) = g̃1,1(ε) is the “surface” component of the impurity-modified lead Green’s
function g̃(ε). Placing now the impurity N sites away from the tip atom as indicated in
Fig. 5.14(a), we find

g̃1,1(ε) = g1,1(ε) + g1,N(ε)ts

(
g−1

0 (ε)− tsgN,N(ε)ts

)−1
tsgN,1(ε). (5.14)

Here ts = πs1 is the modified hopping modelling the impurity (with a reduced hopping
integral πs), g0(ε) is as in Eq. 5.6, and the Green’s functions g1,N(ε), gN,1(ε), g1,1(ε),
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Figure 5.14: (a) Sketch of the chain model with an impurity in the right lead. (b)
Corresponding transmission τ(ε, V = 0) for θ = 0,π/2 with an impurity N = 751
sites from the scattering region. (c) Relative nonlinear conductance Grel(θ, V ) =
[G(θ, V )− 〈G(θ, V )〉θ] /〈G(θ, V )〉θ.

and gN,N(ε) are those of the uncoupled N atom chain located between the center and the
impurity. They are diagonal in the indices (ασ) and may be calculated analytically, with
the results

{g1,1}ασ,ασ = {gN,N}ασ,ασ =
sinNΦασ

πl sin(N + 1)Φασ

,

{g1,N}ασ,ασ = {gN,1}ασ,ασ =
sin Φασ

πl sin(N + 1)Φασ

(5.15)

where Φασ is again defined through cos Φασ = (ε − εασ)/2πl. The resulting self energies
remain diagonal in (ασ) and are in general oscillating functions of ε with an oscillation
period proportional to the distance of the impurity from the center. By placing the impurity
– a slightly reduced hopping πs = 0.8 eV – N = 751 sites from the constriction, the results
presented in Fig. 5.14(b,c) are obtained.

When an impurity is introduced in one of the chains the transmission changes dras-
tically. We model it by using slightly reduced hoppings πs = 0.8 eV between two atoms
N = 751 sites away from the constriction in the right lead. The resulting transmission func-
tions for θ = 0, π/2 are shown in Figure 5.14(b). In addition to the expected oscillations in
energy, there appears a modulation depending on θ that stems from the interference with
the impurity.

When a finite voltage V is applied over the tip atoms, the nonlinear conductance
G(V ) = dI/dV exhibits oscillations as a function of both voltage and the angle θ. The
relative variations shown in Fig. 5.14(c) bear a striking resemblance to the experimental
results of Ref. [54] [see example depicted in Fig.5.1(d)].
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Figure 5.15: (a) Relative linear conductance vs. θ for indicated temperatures. (b) Voltage
dependence of nonlinear conductance at θ = π/2 and several temperatures. Results at 0
K correspond to the dashed lines in Fig. 5.14(c).

Finally, we show in Figs. 5.15(a,b) the temperature dependence of both the linear and
non-linear conductance. The effect of temperature is to smooth the 0 K characteristics,
again compatible with the experimental observations [176].

5.6 Conclusion

In conclusion we have shown that the anomalous magnitude and angular dependence of
the AMR in ferromagnetic atomic-sized contacts can be explained naturally in terms of the
reduced symmetry of the atomic junction geometries. We predict a strong anisotropy of
the conductance channels, but have not found any signature of BAMR. We showed that the
SOC induced orbital moment is an order of magnitude smaller than its spin counterpart.
And finally we have presented a simple model which illustrates that the pronounced voltage
and temperature dependence found in some experiments may originate from the presence
of impurities close to the constriction.



Chapter 6

Summary

In this thesis we described the conduction properties of atomic-sized metallic contacts. It
is divided into two parts:

In a first part – after an introduction to the theoretical framework in Chapter 2 –
we described in Chapter 3 the conduction properties of nonmagnetic atomic-sized metal
contacts within the NRL tight binding approach. First we reproduced well-established
results of the conductance properties of one-atom contacts of metals with partially filled
valence orbitals. We compared the results for Al with accurate ab initio calculations and
find good overall agreement. Then we applied the NRL approach to the limiting case
of the divalent metals Zn and Mg. In the case of small clusters these elements possess
insulator properties due to filled s orbitals, whereas in the bulk limit they are metallic
as a result of strong hybridization of the s and p orbitals. We found metallic transport
properties for the intermediate case of atomic contacts for both materials. In atomic
contacts of Zn a dominating conductance channel typically is accompanied by second and
third less transmissive channels. These results were confirmed by simultaneously performed
experiments of the group of Prof. Elke Scheer. Together with the mechanical stability of
Zn atomic contacts and the fact that Zn is a superconductor, it may be an interesting
electrode material for molecular electronics. For Mg we found insulating behaviour only in
the case of the single-atom chain and metallic behaviour in all other atomic-sized contacts.
In the single-atom contacts we always observed one close to fully open channel, which is
confirmed by experimental conductance traces recorded at 4.2 K, which typically show a
conductance plateau at 1G0 before breaking and yield a pronounced peak at 1G0 in the
conductance histogram.

In a second part the NRL approach was extended to the investigation of atomic contacts
of the 3d ferromagnets Fe, Co, and Ni. First, in Chapter 4, we analyzed the general
transport properties of these systems and discussed in particular the contribution of the
d orbitals to transport. In addition we could point to important predictions like the high
degree of spin polarization of the current in the tunneling limit of atomic contacts of Ni.
By combining the conductance calculation with a MD simulation of the stretching of a Ni
contact (performed by Dr. Markus Dreher at the Universität Konstanz) we could analyze
the mechanical properties and the conductance traces during the breaking of a Ni nanowire.
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On this basis we could calculate a conductance histogram that can directly be compared
with experimental results.

Finally in Chapter 5 we analyzed the Anisotropic Magnetoresistance (AMR) in ferro-
magnetic atomic contacts. In the case of macroscopic systems, the AMR is widely applied
in sensor technology. For atomic-sized contacts a significant increase of the AMR am-
plitude was observed experimentally. We could confirm these observations theoretically.
Furthermore we could predict a particularly strong anisotropy amplitude of the conduc-
tance channels. In a statistical analysis we could uniformly describe the evolution of the
conductance anisotropy from bulky systems to the atomic contact limit. We could trace
back the particular AMR properties of the atomic contacts to reduced symmetry in those
contacts. At last we analyzed the interplay between the AMR in an atomic contact and
a possible distant impurity in the leads. Our findings may serve to explain the abnormal
conductance fluctuations observed in some experiments.

The present work may be as a basis for further investigation of ferromagnetic atomic
contacts like the magnetoresistance or the electron-magnon interaction in those contacts.



Appendix A

Slater Koster two-center matrix
elements

In the Table A.1 we give the full list of of the two-center Hamiltonian or overlap matrix
elements of the s, p, and d orbitals as discussed in Sec. 2.1.3. They are expressed in terms
of the 10 irreducible matrix elements ssσ, spσ, sdσ, ppσ, ppπ, pdσ, pdπ, ddσ, ddπ, and
ddδ, which are functions of the distance between the two atoms under consideration.

Elements that do not appear explicitly in the list can be obtained by appropriate
permutation of the indices:

In the particular case of a linear chain in ~ez direction (see Secs. 3.1 and 5.2), the
direction cosines in ~ex and ~ey direction vanish (l = 0 = m) and the form of the Hamiltonian
as indicated in the Sections follows.
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Kis,js = ssσ

Kis,jx = l spσ

Kix,jx = l2 ppσ +
`

1 − l2
´

ppπ

Kix,jy = lm (ppσ − ppπ)

Kis,jxy =
√

3lm sdσ

Kis,jx2−y2 = 1
2

√
3

`

l2 − m2
´

sdσ

Kis,j3z2−r2 =
`

n2 − 1
2

`

l2 + m2
´´

sdσ

Kix,jxy =
√

3l2m pdσ + m
`

1 − 2l2
´

pdπ

Kix,jyz =
√

3lmn pdσ − 2lmn pdπ

Kix,jzx =
√

3l2n pdσ + n
`

1 − 2l2
´

pdπ

Kix,jx2−y2 = 1
2

√
3l

`

l2 − m2
´

pdσ + l
`

1 − l2 + m2
´

pdπ

Kiy,jx2−y2 = 1
2

√
3m

`

l2 − m2
´

pdσ − l
`

1 + l2 − m2
´

pdπ

Kiz,jx2−y2 = 1
2

√
3n

`

l2 − m2
´

pdσ − n
`

l2 − m2
´

pdπ

Kix,j3z2−r2 = l
ˆ

n2 − 1
2

`

l2 + m2
´˜

pdσ −
√

3ln2 pdπ

Kiy,j3z2−r2 = m
ˆ

n2 − 1
2

`

l2 + m2
´˜

pdσ −
√

3mn2 pdπ

Kiz,j3z2−r2 = n
ˆ

n2 − 1
2

`

l2 + m2
´˜

pdσ +
√

3n
`

l2 + m2
´

pdπ

Kixy,jxy = 3l2m2 ddσ +
`

l2 + m2 − 4l2m2
´

ddπ +
`

n2 + l2m2
´

ddδ

Kixy,jyz = 3lm2n ddσ + ln
`

1 − 4m2
´

ddπ + lm
`

n2 − 1
´

ddδ

Kixy,jzx = 3l2mn ddσ + mn
`

1 − 4l2
´

ddπ + mn
`

l2 − 1
´

ddδ

Kixy,jx2−y2 = 3
2
lm

`

l2 − m2
´

ddσ + 2lm
`

m2 − l2
´

ddπ + 1
2
lm

`

l2 − m2
´

ddδ

Kiyz,jx2−y2 = 3
2
mn

`

l2 − m2
´

ddσ − mn
ˆ

1 + 2
`

l2 − m2
´˜

ddπ + mn
ˆ

1 + 1
2

`

l2 − m2
´˜

ddδ

Kizx,jx2−y2 = 3
2
nl

`

l2 − m2
´

ddσ + nl
ˆ

1 − 2
`

l2 − m2
´˜

ddπ − nl
ˆ

1 − 1
2

`

l2 − m2
´˜

ddδ

Kixy,j3z2−r2 =
√

3lm
ˆ

n2 − 1
2

`

l2 + m2
´˜

ddσ − 2
√

3lmn2 ddπ + 1
2

√
3lm

`

1 + n2
´

ddδ

Kiyz,j3z2−r2 =
√

3mn
ˆ

n2 − 1
2

`

l2 + m2
´˜

ddσ +
√

3mn
`

l2 + m2 − n2
´

ddπ −
√

3
2

mn
`

l2 + m2
´

ddδ

Kizx,j3z2−r2 =
√

3ln
ˆ

n2 − 1
2

`

l2 + m2
´˜

ddσ +
√

3ln
`

l2 + m2 − n2
´

ddπ −
√

3
2

ln
`

l2 + m2
´

ddδ

Kix2−y2,jx2−y2 = 3
4

`

l2 − m2
´2

ddσ +
h

l2 + m2 −
`

l2 − m2
´2

i

ddπ +
h

n2 + 1
4

`

l2 − m2
´2

i

ddδ

Kix2−y2,j3z2−r2 =
√

3
2

`

l2 − m2
´ ˆ

n2 − 1
2

`

l2 + m2
´˜

ddσ +
√

3n2
`

m2 − l2
´

ddπ +
√

3
4

`

1 + n2
´ `

l2 − m2
´

ddδ

Ki3z2−r2,j3z2−r2 =
ˆ

n2 − 1
2

`

l2 + m2
´˜2

ddσ +
√

3n2
`

l2 + m2
´

ddπ + 3
4

`

l2 + m2
´2

ddδ

Table A.1: Hamiltonian or overlap matrix elements between two s, p, and d orbitals
located on atom i and j, respectively as discussed for the s, p orbitals in Sec. 2.1.3. The
positions of atoms i and j being ri = (ri,x, ri,y, ri,z) and rj = (rj,x, rj,y, rj,z) the Hamilton
(or overlap) matrix elements are obtained from the irreducible matrix elements with help
of the direction cosines l = (rj,x − ri,x) /rij, m = (rj,y − ri,y) /rij, and n = (rj,z − ri,z) /rij,
where rij = |rj − ri| is the distance between the two atoms (see Ref. [82]).



Appendix B

Expectation values of observables in
presence of spin-orbit coupling

In this chapter we will express equilibrium expectation values in terms of equilibrium
Green’s functions in the presence of spin-orbit coupling (SOC). First we will revisit the
expression of the SOC Hamiltonian and write out explicitlely its spin components, which
allows for a simple perturbation expansion. Next we will write out the expectation values
with full Green’s functions. Then we will treat the SOC Hamiltonian as a perturbation
and evaluate the same expectation values in the first orders of perturbation theory. Finally
we will analyze the angular dependence of the total conductance in more detail.

Spin components of the spin-orbit Hamiltonian

x

y

θ

ϕ

z

x’

y’

ζ

ϕ

ϕ

θ

Figure B.1: Rotation of the coordination system {x, y, z} fixed to the geometry to the
coordination system {x′, y′, ζ} of the spin quantization axis in direction (θ, φ).

The SOC Hamiltonian couples the orbital momentum ~l, fixed to the coordinate axis

115
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{x, y, z} of the geometry to the spin ~s pointing in direction ~eζ of the spin quantization
axis. The coordinate system {x′, y′, ζ} fixed to the spin quantization axis is obtained from
{x, y, z} by a rotation by θ around y−axis followed by a rotation by φ around z as indicated
in Fig. B.1. We can explicitly write out the axis transformations:

(~ex′|~ey′|~eζ) = Rz(φ)Ry(θ) (~ex|~ey|~ez) = (B.1)

=

 cosφcosθ −sinφ cosφsinθ
sinφcosθ cosφ sinφsinθ
−sinθ 0 cosθ

 (~ex|~ey|~ez) =: R (~ex|~ey|~ez) . (B.2)

Then the components of the vector of angular momentum matrices ~l = li~ei = l′i′~ei′ in the
two coordinate systems transform as:

l′x′ = liRi1

l′y′ = liRi2

l′ζ = liRi3

|
lx = R1il

′
i′

ly = R2il
′
i′

lz = R3il
′
i′

. (B.3)

With this, we can express the components of ~l in the coordinate system of the spin quan-
tization axis:

l± = l′x′ ± il′y′ = li(Ri1 ± iRi2) =: { b
∗
i li
bili

, bi = Ri1 − iRi2, (B.4)

l′ζ = liRi3 =: aili, ai = Ri3 (B.5)

Again with the definition of the Pauli matrices as in (5.3):

τ (1) =

(
0 1
1 0

)
, τ (2) =

(
0 −i
i 0

)
, τ (3) =

(
1 0
0 −1

)
. (B.6)

and τ± = τ1 ± iτ2, the SOC Hamiltonian can be written as:

H(SO) = ξ(l′ζτ3 + l+τ− + l−τ+) = ξ

(
ai bi
b∗i −ai

)
li, (B.7)

where ξ is the spin-orbit coupling constant. Note that as for the vector of spin matrices
~s = ~

2
~τ , the factor 1

2
might already be included in the spin-orbit coupling constant ξ.

Two important relations between the ai and bi follow directly from their definitions:

bib
∗
j = −aiaj + δij + iεijkak, (B.8)

aibj − ajbi = −iεijkbk. (B.9)
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Expectation values of equilibrium properties

For a single-electron operator Â(t) = [A]lk ĉ
†
k(t)ĉl(t) the expectation value

〈
Â(t)

〉
can be

expressed with the help of Keldysh-Green’s functions as: [G+−]kl (t, t
+) = i

〈
ĉ†k(t

+)ĉl(t)
〉

(with t+ = t+0+ infinitesimally after t). Here atom, orbital and spin indices were condensed

in one index. This leads to
〈
Â(t)

〉
= 1

i
[A]lk [G+−]kl (t, t

+). Fourier-transform at time

t = 0:〈
Â(0)

〉
= [A]lk

∫
dω

2πi

[
G+−(ω)

]
kl

= [A]lk

∫
dω

2πi
[Ga(ω)−Gr(ω)]kl f(ω) (B.10)

Finally, at temperature T = 0:〈
Â(0)

〉
= [A]lk

∫ εF

−∞

dω

2πi

[
(Gr)†(ω)−Gr(ω)

]
kl
. (B.11)

Expectation values with full Green’s function

Now we use the definition of the expectation values (B.11) to calculate them the full Green’s

function including SOC. Occupation n, total energy εtot, orbital angular moment ~l, and
spin moment ~s refer to atoms and therefore the trace is understood as summation over
orbital- (and if necessary also spin-) indices of the atom under consideration. With the full
retarded Green’s function divided into its spin-components:

Gr(ω) =

(
G↑↑(ω) G↑↓(ω)
G↓↑(ω) G↓↓(ω)

)
, (B.12)

the expressions for occupation n and total energy εtot of a site j read:

〈n〉j = − 1

π

∫ εF

−∞
dω Im

{
Tr

[
G↑↑(ω) + G↓↓(ω)

]}
j

(B.13)

〈Etot〉j = − 1

π

∫ εF

−∞
ωdω Im

{
Tr

[
G↑↑(ω) + G↓↓(ω)

]}
j
, (B.14)

where the trace is understood to run over the remaining orbital indices.
The orbital momentum components in the coordinate system of the spin quantization

axis are
〈
~l′
〉
, where we used l′i′ = ci′jlj with the definition ci′j = {Re [bj] , Im [bj] , aj} for

the components of ~l′ on the axis {x′, y′, ζ}. Then the expectation corresponding value read:

〈l′i′〉 =
~

2πi
ci′j

∫ εF

−∞
dω Tr

{
lj

[(
G↑↑)† +

(
G↓↓)† −G↑↑ −G↓↓

]}
. (B.15)

The Pauli matrices τj from above fix the components of the spin 〈~s〉 projected onto the
coordinate axis of {x′, y′, ζ}:

〈si′〉 =
~

4πi

∫ εF

−∞
dω Tr

{
τi

[
(Gr)† (ω)−Gr(ω)

]}
. (B.16)
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This reads for the components:

〈sx′〉 =
~

4πi

∫ εF

−∞
dω Tr

[
(G↑↓)† + (G↓↑)† −G↓↑ −G↑↓]

= − ~
2π

∫ εF

−∞
dω Im

{
Tr

[
G↓↑ + G↑↓]} (B.17)

〈sy′〉 =
~
4π

∫ εF

−∞
dω Tr

[
−(G↑↓)† + (G↓↑)† + G↓↑ −G↑↓]

=
~
2π

∫ εF

−∞
dω Im

{
Tr

[
G↓↑ −G↑↓]} (B.18)

〈sζ′〉 =
~
4π

∫ εF

−∞
dω Tr

[
(G↑↑)† − (G↓↓)† −G↑↑ + G↓↓]

= − ~
2π

∫ εF

−∞
dω Im

{
Tr

[
G↑↑ −G↓↓]} (B.19)

Finally the zero-bias conductance:

T (εF ) =
e2

h
Tr

[
ΓL(εF ) (Gr)† (εF )ΓR(εF )Gr(εF )

]
(B.20)

where now the Trace runs over the orbital and spin indices of the central atoms coupled to
left lead. As the scattering matrices are positive definite, using the commutation properties
of the trace, the conductance can be symmetrized as:

T (εF ) =
e2

h
Tr

[
t
†(εF )t(εF )

]
, (B.21)

with t(E) = [ΓR(E)]1/2 Gr(E) [ΓL(E)]1/2. In this form it is possible to decompose the total
transmission τ into transmission-channels, whose transmissions τn are the eigenvalues of
t
†(E)t(E).

Green’s function from a perturbation series in the spin-orbit cou-
pling

The full Green’s function G(ω) = [(ω + i0+)1−H0 − λH1]
−1

corresponding to the Hamil-
tonian H = H0 + λH1 can be written in terms of the unperturbed Green’s function
G0(ω) = [(ω + i0+)1−H0]

−1
corresponding to H0 by means of a perturbation series in

powers of λ with λH1 as perturbation:

G =
∞∑

n=0

λn(G0H1)
nG0 = G0 + λG0H1G0 + λ2G0H1G0H1G0 · · · (B.22)

In particular, if we use the ferromagnetic Hamiltonian of (4.1) for the unperturbed part,
G0 will be symmetric and diagonal in spin-space:

Gt
0(ω) = G0(ω) , G0(ω) =

(
G↑(ω) 0
0 G↓(ω)

)
. (B.23)
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Using the SOC Hamiltonian of (B.7) as perturbation (and λ as dimensionless counting
term set to unity at the end), we can write the total Green’s function as:

G(ω) =
∞∑

n=0

λn(G0(ω)H(SO))nG0(ω) (B.24)

=

(
G↑(ω) 0
0 G↓(ω)

) ∞∑
n=0

λn

[
Πn

i=1

(
ai bi
b∗i −ai

)
li

(
G↑(ω) 0
0 G↓(ω)

)]
.

For a given expectation value we can then for each order of λ separate the angular dependent
part of the rest by tracing out the spin indices.

Expectation values with perturbation series

We are now in the position to plug in the perturbation series of the total Green’s function
in the expression of the expectation values. We apply the perturbation series to the total
Green’s function Gr and express the expectation values in powers of λ.

We will use the symmetry of the unperturbed Green’s functionG0 (as in (B.23) Gt
0 = G0

and therefore G†
0 = G∗

0) and the fact that they are diagonal in spin-space to trace out the
corresponding entries in the expression of the expectation values. Furthermore in this real
basis (that is the orbital functions, superpositions of complex spherical harmonics, are real),
the orbital momenta matrices lj are imaginary lj = i Im [lj] and therefore antisymmetric
ltj = −lj.

In the perturbation expressions we can then separate the angular dependence from the
rest.

Occupation and total energy in perturbation series

Consider occupation n only. Expressions for total energy Etot follow from n by replacing
the integration infinitesimal dω with ωdω.

0th order in λ:

〈n〉0 = − 1

π

∫ εF

−∞
dω Im

{
Tr

[
G↑ + G↓]} = n(0) (B.25)

1st order in λ:

〈n〉1 =
ξai

2πi

∫ εF

−∞
dωTr

[
(G↑)∗li(G

↑)∗ −G↑liG
↑ − (G↓)∗li(G

↓)∗ + G↓liG
↓] (B.26)

But as (G0liG0)
t = −G0liG0, the trace vanishes Tr[G0liG0] = 0 and also 〈n〉1 = 0.

2nd order in λ:

〈n〉2 =
ξ2

2πi

∫ εF

−∞
dωTr

[
G∗

0H
(SO)G∗

0H
(SO)G∗

0 −G0H
(SO)G0H

(SO)G0

]
(B.27)
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Using the definition (B.7) of H(SO) and (B.8):

Tr
[
G0H

(SO)G0H
(SO)G0

]
= (B.28)

Tr
[
aiaj

(
G↑liG

↑ljG
↑ + G↓liG

↓ljG
↓) + bib

∗
j

(
G↑liG

↓ljG
↑ + G↓liG

↑ljG
↓)] =

Tr
{
aiaj

[
G↑li

(
G↑ −G↓) ljG

↑ −G↓li
(
G↑ −G↓) ljG

↓)
+ (δij + iεijkak)

(
G↑liG

↓ljG
↑ + G↓liG

↑ljG
↓)} .

But as

[εijk(G
↑liG

↓ljG
↑)]t = εijk(G

↑ljG
↓liG

↑) = −εijk(G↑liG
↓ljG

↑) (B.29)

the trace over the εijk term vanishes. Then in (B.27) the remaining terms can be combined
as:

〈n〉2 = −aiaj
ξ2

π

∫ εF

−∞
dω Im

{
Tr

[
G↑li(G

↑ −G↓)ljG
↑ −G↓li(G

↑ −G↓)ljG
↓]}

−δij
ξ2

π

∫ εF

−∞
dω Im

{
Tr

[
G↑liG

↓ljG
↑ + G↓liG

↑ljG
↓]} (B.30)

= aiaj n
(2,1)
ij + δijn

(2,2)
ij

Up to second order in λ the occupation reads:

〈n〉 = n(0) + aiaj n
(2,1)
ij + δijn

(2,2)
ij +O(λ3). (B.31)

This term is now the generalization of Bruno [181, 182]. A similar expression holds for εtot.

Orbital momentum in perturbation series

0th order in λ:

〈l′i′〉0 =
~

2πi
ci′j

∫ εF

−∞
dω Tr

{
lj

[
(G↑)∗ −G↑ + (G↓)∗ −G↓]} , (B.32)

but with (ljG0)
t = −G0lj is Tr[ljG0] = 0, therefore 〈l′i′〉0 = 0.

1st order in λ:

〈l′i′〉1 =
~ξ
2πi

ci′jak

∫ εF

−∞
dω Tr

{
lj

[
(G↑)∗lk(G

↑)∗ −G↑lkG
↑ − (G↓)∗lk(G

↓)∗ + G↓lkG
↓]} .
(B.33)

As lj is imaginary, lj(G
∗
0lkG

∗
0 −G0lkG0) = −2i Im[ljG0lkG0] so that:

〈l′i′〉1 =
−~ξ
π

ci′jak

∫ εF

−∞
dω Im

{
Tr

[
lj(G

↑lkG
↑ −G↓lkG

↓)
]}

(B.34)

= ci′jak l
(1)
jk . (B.35)
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As pointed out by Bruno [181], the angular dependence of lζ (with cζj = aj) is the same as
for εtot. However in an general geometry without translational symmetry (as for surfaces

or monolayers), also lx′ and ly′ contribute and the angular dependence of ~l is in general
different from that of εtot.

Up to first order in λ, angular momentum reads:

〈l′i′〉 = ci′jak l
(1)
jk +O(λ2) (B.36)

Spin momentum in perturbation series

0th order in λ:

〈sk〉0 =
~

4πi

∫ εF

−∞
dωTr [τk(G

∗
0 −G0] . (B.37)

The second factor in the trace is diagonal in spin space and so only sζ is non-zero in 0th
order: 〈sx′〉0 = 0 = 〈sy′〉0. The remaining:

〈sζ〉0 = − ~
2π

∫ εF

−∞
dω Im

{
Tr

[
(G↑ −G↓]} = s

(0)
ζ . (B.38)

1st order in λ:

〈sk〉1 =
~ξ
4πi

∫ εF

−∞
dωTr

[
τk(G

∗
0H

(SO)G∗
0 −G0H

(SO)G0)
]
. (B.39)

Again, using the definition (B.7) of H(SO) and (B.8) it follows for the sζ−component:

〈sζ〉1 =
ξ~aj

4πi

∫ εF

−∞
dωTr

[
(G↑)∗lj(G

↑)∗ −G↑ljG
↑ − (G↓)∗lj(G

↓)∗ + G↓ljG
↓] = 0, (B.40)

as (G0ljG0)
t = −G0ljG0 and the trace vanishes. So only s′x and s′y contribute to first

order in λ.

〈sx′〉1 =
ξ~
4πi

∫ εF

−∞
dωTr

[
b∗j

(
(G↓)∗lj(G

↑)∗ −G↓ljG
↑) + bj

(
(G↑)∗lj(G

↓)∗ −G↑ljG
↓)]

= Im{bj}
−ξ~
π

∫ εF

−∞
dωRe{Tr

[
G↑ljG

↓]} = Im{bj} s(1)
j , (B.41)

where in the second step we used:

bj α± b∗j β = Re{bj} (α± β) + i Im{bj} (α∓ β) (B.42)

with
α = ((G↑)∗lj(G

↓)∗ −G↑ljG
↓), β = ((G↓)∗lj(G

↑)∗ −G↓ljG
↑). (B.43)

Again, using (G↑ljG
↓)t = −G↓ljG

↑, the trace over the sum (α± β) yields:

Tr [α± β] =

{
0, ’+’
2Tr

[
(G↑)∗lj(G

↓)∗ −G↑ljG
↓] = −4<

{
Tr

[
G↑ljG

↓]}, ’−’,
(B.44)
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where we used that lj is imaginary. It follows the expression for sx′ in (B.41). With a
similar argumentation we obtain for sy′ :

〈sy′〉1 =
ξ~
4π

∫ εF

−∞
dωTr

{
−b∗j

[
(G↓)∗lj(G

↑)∗ −G↓ljG
↑] + bj

[
(G↑)∗lj(G

↓)∗ −G↑ljG
↓)]

= <{bj}
−ξ~
π

∫ εF

−∞
dωRe

{
Tr

[
G↑ljG

↓]} = <{bj} s(1)
j . (B.45)

2nd order in λ:

〈sx′〉2 = Re{bj}ak
−~ξ2

π

∫ εF

−∞
dω Im

{
Tr

[
G↓ljG

↑lkG
↑ −G↑ljG

↓lkG
↓]}

= Re{bj}ak s
(2,1)
jk (B.46)

〈sy′〉2 = Im{bj}ak
~ξ2

π

∫ εF

−∞
dω Im

{
Tr

[
G↓ljG

↑lkG
↑ + G↑ljG

↓lkG
↓]}

= Im{bj}ak s
(2,2)
jk (B.47)

〈sζ〉2 = ajak
−~ξ2

2π

∫ εF

−∞
dω Im

{
Tr

[
G↑lj

(
G↑ −G↓) lkG

↑ + G↓lj
(
G↑ −G↓) lkG

↓]}
+ δjk

−~ξ2

2π

∫ εF

−∞
dω Im

{
Tr

[
G↑ljG

↓lkG
↑ −G↓ljG

↑lkG
↓]}

= ajak s
(2,3)
jk + δjks

(2,4)
jk (B.48)

In total, up to second order in λ:

〈sx′〉 = Im{bj} s(1)
j + Re{bj}ak s

(2,1)
jk +O(λ3) (B.49)

〈sy′〉 = Re{bj} s(1)
j + Im{bj}ak s

(2,2)
jk +O(λ3) (B.50)

〈sζ〉 = s
(0)
ζ + ajak s

(2,3)
jk + δjks

(2,4)
jk +O(λ3) (B.51)

Transmission in perturbation series

Different to the quantities above, which like the occupation are properties integrated over
the entire energy spectrum, the zero bias conductance just depends on the Fermi energy.
Furthermore it is not a local property of a single atom site but depends on the entire
interface that is transversed by the current. So the trace extends over all atoms (plus
orbital-, spin-indices) coupled to the interface. Nevertheless the angular dependencies are
similar to the quantities regarded above.

Let us remember the structure of the Hamiltonian of the central part coupled to the
leads:

H0 =

 HL HLC 0

H†
LC HC HCR

0 H†
CR HR

 . (B.52)



123

The SOC Hamiltonian shall be limited to the central part only:

H(SO) =

 0 0 0

0 H
(SO)
C 0

0 0 0

 . (B.53)

With this structure of the Hamiltonian the resulting expression for the central part’s

Green’s function yields GC(ω) =
[
(ω + i0+)−HC −H

(SO)
C −ΣL(ω)−ΣR(ω)

]−1

with the

selfenergies ΣL,R(ω) (diagonal in spin space and symmetric) due to the coupling to the

leads. The scattering matrix is ΓL = i
(
Σ†

L −ΣL

)
and similar expression for the right.

An important relation between Green’s function and scattering matrix:

ΓL + ΓR = i
(
Σ†

L + Σ†
R −ΣL −ΣR

)
= i

[
(G†

C)−1 −G−1
C

]
. (B.54)

The central part’s Green’s function can be expressed in a perturbation series with the help

of the unperturbed Green’s function
[
G

(0)
C (ω)

]−1

= (ω + i0+)1−HC −ΣL −ΣR:

GC =
∞∑

n=0

λn
(
G

(0)
C H

(SO)
C

)n

G
(0)
C (B.55)

Finally, the transmission reads:

T (ω) = Tr
[
ΓL(ω) [GC(ω)]† ΓR(ω)GC(ω)

]
. (B.56)

Expand the central part’s Green’s function in H(SO) like in (B.55) leads to:

T (ω) =
∞∑

n=0

λnT (n) , (B.57)

where the T (n) for different orders n of λ if n even:

T (n) =

n/2−1∑
m=0

2 Re

{
Tr

[
G

(0)
C

(
H(SO)G

(0)
C

)n−m

ΓR

(
G

(0)
C

)∗ [
H(SO)

(
G

(0)
C

)∗]m

ΓL

]}
+ Tr

[
G

(0)
C

(
H(SO)G

(0)
C
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and if n odd

T (n) =

(n−1)/2∑
m=0

2 Re

{
Tr

[
G

(0)
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(
H(SO)G

(0)
C

)m
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(
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(0)
C

)∗ [
H(SO)

(
G

(0)
C

)∗]n−m

ΓL

]}
(B.59)
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0th order, as G and Γ are diagonal in spin-space:

T (0) = Tr
[
Γ↑

L

(
G↑)∗ Γ↑

RG↑ + Γ↓
L

(
G↓)∗ Γ↓

RG↓
]

(B.60)

1st order:

T (1) = 2 Re
{

Tr
[
H(SO)G

(0)
C ΓR

(
G

(0)
C

)∗
ΓLG

(0)
C

]}
=

2aj Re
{

Tr
[
lj

[
(GΓRG∗ΓLG)↑ − (GΓRG∗ΓLG)↓

]]}
. (B.61)

But as lj is antisymmetric (ltj = −lj), the trace of the symmetric part of GΓRG∗ΓLG
vanishes and it remains an expression of the kind:

Re
{
Tr

[
ljG

[
ΓRG∗ΓL − (ΓRG∗ΓL)t]G0

]}
(B.62)

adding in the trace terms proportional to ±ljGΓRG∗ΓRG and ±ljGΓLG
∗ΓLG leads to:

Re [Tr {ljG [(ΓR + ΓL)G∗ΓL + ΓRG∗ (ΓR + ΓL) (B.63)

− (ΓR + ΓL)G∗ΓR − ΓLG
∗ (ΓR + ΓL)]G}] .

Using the identity (B.54) this can be written as:

Re {Tr [lji {(G−G∗)ΓL + ΓR (G−G∗)− (G−G∗)ΓR − ΓL (G−G∗)}]} (B.64)

but the expression below the Trace is imaginary, its real part zero and therefore T (1) ≡ 0.
For a non-orthogonal basis with a finite overlap matrix S, the central part Green’s function

reads G(ω) =
[
(ω + iη)S−H0 −H(SO) −ΣL −ΣR

]−1
, where η → 0+. In this case T (1) →

0 as η → 0.

θ-dependence of the total conductance anisotropy

In the previous section we showed, that in the total transmission the first order term T (1)

of the SOC perturbation vanishes. On the other hand, in the case of the minimal model
in section 5.2.3 and the ideal contacts of section 5.3 we observed that only even harmonics
of cos(2mθ + αm) contributed to the total conductance anisotropy. Here we will evaluate
this observation numerically.

First we observe that the real part of the SOC Hamiltonian (B.7)

H(SO)
sy (φ) = iξ

(
0 Im bj
− Im bj 0

)
lj (B.65)

only depends on cosφ, sinφ and all the θ-dependence is in the imaginary part of the SOC
Hamiltonian.1 In the following we will treat the imaginary part of the SOC Hamiltonian
as a perturbation.

1Indeed all entries of the imaginary part of the SOC Hamiltonian are proportional to cos θ or sin θ.
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Figure B.2: (a) Disturbed contact geometry similar to Fig. 5.5(d) with the atoms marked
in red randomly shifted from their lattice positions. (b) Anisotropy of the total linear
conductance as a function of θ for one value of φ. (c) Lowest contributing orders of the
perturbation series of the total conductance as discussed in the text.

Similar to (B.22) we write the unperturbed Green’s function

[
G

(1)
C (ω, φ)

]−1

= (ω + i0+)1−HC −H(SO)
sy (φ)−ΣL −ΣR (B.66)

and the perturbation

H(SO)
asy (θ, φ) = ξ

(
aj Re bj
Re bj −aj

)
lj . (B.67)

Then the perturbation series for the total Green’s function reads:

GC =
∞∑

n=0

λn
(
G

(1)
C H(SO)

asy

)n

G
(1)
C (B.68)

Similar to (B.58) and (B.59) we can write the total conductance G(n) for even orders n of
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λ :
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and for odd orders n

G(n) =

(n−1)/2∑
m=0

2 Re

{
Tr

[
G

(1)
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H(SO)

asy G
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C

)m
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(B.70)

As all the terms in H
(SO)
asy are proportional to cos θ or sin θ, each summand of the traces in

(B.69) and (B.70) in order λn is proportional to

cosl θ sin2m−l θ =
m∑

k=0

ãk cos (2kθ + α̃k) , if n = 2m is even,

cosl θ sin2m+1−l θ =
m∑

k=0

b̃k cos
[
(2k + 1) θ + β̃k

]
, if n = 2m+ 1 is odd,

where 0 ≤ l ≤ n. Then the traces corresponding to order λn contain either only even or
only odd harmonics if n is even or odd.

In Fig. B.2(c) we show the resulting perturbation analysis of the total conductance of a
disturbed contact geometry of Ni depicted in Fig. B.2(a) as a function of θ and for a fixed
value of φ. We observe that only even orders of λ contribute, while odd orders of λ (not
shown here) are zero within numerical precision. As a consequence we can conclude that to
the total conductance anisotropy shown in Fig. B.2(b) only even harmonics cos(2mθ+αm)
contribute.
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[34] N. Garćıa, M. Muñoz, and Y.-W. Zhao, Magnetoresistance in excess of 200% in
Ballistic Ni Nanocontacts at Room Temperature and 100 Oe, Phys. Rev. Lett. 82,
2923–2926 (1999).

[35] J. W. F. Egelhoff, L. Gan, H. Ettedgui, Y. Kadmon, C. J. Powell, P. J. Chen,
A. J. Shapiro, R. D. McMichael, J. J. Mallett, T. P. Moffat, M. D. Stiles, and
E. B. Svedberg. Artifacts in ballistic magnetoresistance measurements (invited) (AIP,
2004), volume 95, pp. 7554–7559.

[36] C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, Con-
ductance step for a single-atom contact in the scanning tunneling microscope: Noble
and transition metals, Phys. Rev. B 53, 16086–16090 (1996).

[37] J. L. Costa-Krämer, Conductance quantization at room temperature in magnetic and
nonmagnetic metallic nanowires, Phys. Rev. B 55, R4875–R4878 (1997).

[38] H. Oshima and K. Miyano, Spin-dependent conductance quantization in nickel point
contacts, Applied Physics Letters 73, 2203–2205 (1998).

[39] F. Komori and K. Nakatsuji, Quantized Conductance through Atomic-sized Iron Con-
tacts at 4.2K, Journal of the Physical Society of Japan 68, 3786–3789 (1999).

[40] T. Ono, Y. Ooka, H. Miyajima, and Y. Otani, 2e2/h to e2/h switching of quantum
conductance associated with a change in nanoscale ferromagnetic domain structure,
Applied Physics Letters 75, 1622–1624 (1999).



130 BIBLIOGRAPHY

[41] M. Viret, S. Berger, M. Gabureac, F. Ott, D. Olligs, I. Petej, J. F. Gregg, C. Fermon,
G. Francinet, and G. L. Goff, Magnetoresistance through a single nickel atom, Phys.
Rev. B 66, 220401 (2002).
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BCS Bardeen Cooper Schrieffer model of superconductivity

bcc Body Centered Cubic crystal structure

CN Charge Neutrality

DOS Density of States

εF Fermi energy

EOM Equation of Motion

fcc Face Centered Cubic crystal structure

hcp Hexagonal Closed Package crystal structure

HOMO Highest Occupied Molecular Orbital

I-V Current-voltage

LCAO Linear Combination of Atomic Orbitals

LDOS Local Density of States

LUMO Lowest Unoccupied Molecular Orbital

MAR Multiple Andreev reflections

MCBJ Mechanically Controllable Break Junction

MD Molecular Dynamics

MIT Metal to Insulator Transition

NEGF Nonequilibrium Green’s Function

NN Nearest Neighbour

NRL Naval Research Laboratory

SK Slater-Koster

SOC Spin-orbit coupling

STM Scanning Tunneling Microscope

TB Tight-Binding

UHV Ultra High Vacuum
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