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Preface

Take finitely many complex unit squares, glue the right edge of every square
to the left edge of any square, and every upper edge to a lower edge, such
that an orientable compact Riemann surface arises. For example we can use
the following four squares

and glue edges with equal marks together. We call such a surface an origami:.

By mapping each square to the complex unit square glued with itself we get
a natural covering of a torus. This covering is ramified only at the vertices
of the squares, which are all mapped to the same point on the torus, hence
we have a covering with only one branch point. On the other hand given a
covering of the torus C/(Z + iZ) by a Riemann surface X which is ramified
at most over 0 we can lift the unit square to X and hence get a description
of X by glued squares.

If we glue parallelograms instead of squares we get a family of Riemann
surfaces for any given glueing rule. In the moduli space M, of Riemann
surfaces of genus ¢ this family forms a one-dimensional subset, on which
there is an action of SLy(RR) corresponding to the stretching and shearing of
the parallelograms. The interesting point about origamis is that this subset
always is an algebraic curve (|Loc|, Prop. 3.2 ii)). We call such a curve in
moduli space the corresponding origami-curve.

Origamis are a special case of translation surfaces, which are Riemann sur-
faces with an atlas where (almost) every coordinate change map is a trans-
lation. As above there is an SLy(R) action on those translation surfaces,
defined by stretching and shearing the coordinate charts. The orbits lead
to isometric embeddings of the upper half plane H = SLy(R)/ SO2(R) into
Teichmiiller space, whose image is called Teichmailler disk. 1f the projection
of this disk in the moduli space M, is an algebraic curve (as is the case for
origamis), then the translation surface is called a Veech surface. These sur-
faces and especially origamis were first studied by Veech |Vee| and Thurston
| Thu].

Since origamis (also known as square-tiled surfaces) are dense in M, (|JHS3],
§1.5.2) they offer a good opportunity to study the moduli space M,. We
are going to give an overview on origamis and origami-curves in the first
two chapters. They have been studied recently for example by Lochak |Loc|,
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Zorich [Zor|, Schmithiisen [Sch2| and Herrlich [HS1]. We will also present
an algorithm to find a set of origamis representing every origami-curve with
given degree or Galois group.

In the third chapter we will study some invariants which can be used to
distinguish different origami-curves. Recent papers on this topic include
|HL| and [Mc2|. In Appendix A.2 we calculate some of these invariants for
all origami-curves of origamis made up of up to eight squares.

By GAGA there is a one-to-one correspondence between Riemann surfaces
and complex nonsingular projective curves. Thus an origami is a covering of
a nonsingular projective curve over an elliptic curve which may be ramified
only over 0. This definition can be generalized to other ground fields, such
as the p-adic field C,. In the complex world we get every Riemann surface
as a quotient of an open subset Q of P}(C) by a discrete subgroup G of
PSLy(C). In the p-adic world the analogues of Riemann surfaces, which admit
a similar uniformization Q2 /G, are called Mumford curves. But contrary to the
complex world not every nonsingular projective curve over C, is a Mumford
curve. Mumford curves have been thoroughly studied; two textbooks giving
a comprehensive introduction are [GP] and [FP].

As Mumford curves are the p-adic analogues of Riemann surfaces we define p-
adic origamis to be coverings of Mumford curves with only one branch point,
where the bottom curve has genus one. In the fourth chapter we will classify
all normal non-trivial p-adic origamis. This is done using the description of
the bottom curve as an orbifold Q/G, where Q C P*(C,) and G is a group
acting discontinuously on 2. These groups and the corresponding orbifolds
can be studied by looking at the action of G on the Bruhat-Tits-Tree of a
suitable subfield of C, and the resulting quotient graph of groups. This has
been done by Herrlich [Her|, and more recently by Kato [Kat2] and Bradley
|Bra2|.

In Section 4.3 we will see that all normal p-adic origamis with a given GGalois
group H are of the type Q/I' — Q/G with the following possible choices for
the groups I' and G: The quotient graph of GG can be contracted to

A

for a p-adic triangle group A (where the single vertex represents a subtree
with fundamental group A), which means that G is isomorphic to the fun-
damental group of this graph, i.e.

G = (A, v; yag = agy) with a; € A of order a.

I" is the kernel of a morphism ¢ : G — H which is injective when restricted
to the vertex groups of the quotient graph of G. The ramification index of
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the p-adic origami is then b. We have a similar result (Theorem 4.18) for the
automorphism group of the p-adic origami.

Given a p-adic origami which is defined over @ we can change the ground field
to C and know that there our origami can be described as a surface glued
from squares. Actually doing this is usually hard, because we would have
to work out equations for the Mumford curves and for the complex curves
corresponding to the Riemann surfaces. Nevertheless we can often find out
which complex origami-curve belongs to our p-adic origami, as mostly the
curve is already uniquely defined by fixing the Galois group. In the last
chapter we prove that this is true for the Galois groups D,, X Z/mZ and
Ay X Z/mZ (with n,m € N and n odd).

We will also discuss some cases where this does not work, i.e. where there are
several origami-curves of origamis with the same Galois group. In Appendix
A.3 we see that for groups of order less than or equal to 250 this happens only
for 30 groups. To construct examples we can take an origami-curve which is
not fixed by an element o of the absolute Galois group Gal(Q/Q). As the
action of Gal(Q/Q) on origami-curves is faithful by [M&l], Th. 5.4 we can
find such a curve for any given . In this case of course both the curve and
its image contain origamis with the same Galois group, and we suspect that
all other known invariants of origami-curves are equal as well.
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Chapter 1
Origamis

In this first chapter we want to introduce origamis from a variety of view-
points. Origamis are compact Riemann surfaces which are obtained by glue-
ing several unit squares. Pierre Lochak coined the term origami in |Loc|,
while Anton Zorich uses the term square-tiled surfaces |Zor|. But there are
several other ways to define origamis: Origamis can also be defined as cov-
erings of an elliptic curve with a single branch point, which is a concept one
can generalize to algebraic curves over other fields than C. In [Schl| Gabriela
Schmithiisen often identifies origamis with conjugacy classes of finite index
subgroups of F;. If one wants to use a computer for the calculation of some
properties of origamis, it is more practical to define origamis as homomor-
phisms Fy — Sy, or (in the case of normal origamis with Galois group G)
as epimorphisms F, — G. But if one thinks of origamis as special kinds
of translation surfaces it may be more natural to think of an origami as a
Riemann surface with a holomorphic 1-form which has integer values when
integrated along elements of the fundamental group.

We will now explain all those definitions, prove that they are equivalent, and
investigate how the natural action of SLy(Z) on the set of all origamis can
be described in each case.

1.1 Definitions

Definition 1.1. An origam: of degree d € IN is a closed surface X which
is obtained from d euclidean unit squares by glueing (via translations) each
right edge to a left one and each upper edge to a lower one.

By labeling the squares of an origami with the numbers 1,... d we can
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describe an origami by two permutations o, and o, in Sy, where o, describes
the horizontal glueing and o, describes the vertical glueing.

Example: This origami is described by o, = (234) and o, = (12).

Each origami X defines a covering of the torus F := R?/Z? by mapping
each square to the unit square. This covering p : X — FE is ramified only at
the vertices of the squares. Removing these ramification points leads to an
unramified restriction p : X* := X \ p71(0) — E* := E'\ {0} of degree d.
Conversely, given a connected surface X and a covering p : X — E of degree
d which may be ramified only over 0 € E, we can lift the unit square defining
E to X. This yields a decomposition of X into d copies of the unit square
glued as described above.

The monodromy of such a covering is by definition the action! of the fun-
damental group m;(E*, P) on the fiber p~'(P) over any basepoint P € E*,
and without loss of generality we can choose both coordinates of P to be
non-zero in R/Z. The fundamental group m(E*, P) is isomorphic to the
free group generated by x and y, where x is the closed path starting at P in
horizontal direction, and y is the closed path starting at P in vertical direc-
tion. Let P; be the preimage of P in the square with the number 7. Then
we see that the monodromy of the origami is given by the homomorphism
f:Fy— Sym({P,...,Py}) = S; which maps z to o, and y to oy,

P I I o
Py P Py g o
............................ o
p e T S P
Py PR 6

On the other hand a homomorphism f : Fy — S,; describes an origami iff
its image is a transitive subgroup of Sy (otherwise the surface obtained by
glueing the squares 1,...,d according to the permutations f(z) and f(y)
would not be connected). We denote by Hom'(Fy, S;) the set of such homo-
morphisms.

'Note that if we want to consider elements «, 3 € 71 (E*, P) as permutations of the
fiber p~1(P), we need af3 to be the path first along 3 and afterwards along «. This may
not be an intuitive way to define multiplication in 7, (E*, P), but otherwise the group
would not act on the fiber from the left.
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The unramified covering p : X* — E* also induces an inclusion ¢ of the
fundamental groups m (X*, P;) — m (E*, P) = Fy. Let H denote the image
of this inclusion in F,. The left cosets of H correspond to the d different
squares, which make up X*, thus the index of H in F5 is d. The group
H can also be obtained from the monodromy f: as H is just the group
of all words in F, which describe a path from P; back to P, we can write
H= f‘l(StabSd(l)).

Conversely, given a subgroup H C F; of finite index d, we can define an
origami in the following way: We label d squares with the left cosets of H.
For every square labelled aH we glue its right edge to the left edge of xaH,
and its upper edge to the lower edge of yaH.

Altogether we can deduce

Proposition 1.2. An origami of degree d can be defined equivalently as

i) a finite covering p : X — E of the torus E by a connected surface X,
ramified only over 0 € E; up to a homeomorphism X' — X over E,

ii) an element of Inn(Sy)\ Hom'(Fy, Sy),

iii) the conjugacy class of a subgroup H of Fy of indez d.

Proof. We already described above how coverings p : X — E of degree d,
homomorphisms f : F5 — Sy and subgroups H C F; of index d are connected
to our definition of an origami. Now we just have to factor out the choices
we made:

i) For another connected surface X’ let h: X’ — X be a homeomorphism
and consider the finite covering p’ := p o h. As h is unramified the
monodromies of p and p’ coincide if we set P/ := h™'(P).

ii) When we label the squares with the numbers 1, ..., d any other number-
ing leads to the same origami. This means, that two monodromy maps
f and f’ describe the same origami, iff there is a renumbering 7 € Sy
with f(z) = 7f/(z)7~" and f(y) = 7f'(y)7~. This means f = k, o f’,
where k., € Inn(Sy) is the conjugation with 7.

iii) For the definition of the subgroup H we only choose the basepoint Py of
the fundamental group 7 (X*) out of the d elements in the fiber p~'(P).
If we choose another basepoint P; instead, then we have to conjugate
each element in H with the image of the path from P; to P; in m(E*).

O
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Figure 1.1: The image of an origami under the action of SLy(7Z)

We remark (to part ii) of the previous proposition) that Inn(Sy;) = Aut(S,)
for d # 6 (see [JR| Theorem 7.4), but there exist automorphisms of Sg which
are not inner (see [Rot| Theorem 3).

1.2 Deformation of origamis

We identify the torus £ = R?/Z? with C/Z][i], thus an origami p : X — F
becomes a Riemann surface using the coordinate charts induced by p. In
fact, we get a lot of Riemann surfaces: for every A € SLy(R) we can define
the lattice Ay = A - 7Z? and the homeomorphism c, : R?/Z? — R?/A, =:
E 4,z v+ A-x. The identification of R? with C then leads to new coordinate
charts induced by ps := cq 0o p. We get again a complex structure on the
surface X which we denote by X 4.

P

ETA>EA: C/AA

If the torus E4 is isomorphic to our torus £ = E; as a Riemann surface,
then py : X — F4 = E defines another origami. By

EA:EﬁAA:A@AESLQ(Z)

we see that we get an action of SLy(Z) on the set of all origamis.

By [LS], 1.4.5 we have GLy(Z) = Out(Fy) := Aut(Fy)/ Inn(Fy). Let Out™ (Fy)
be the subgroup corresponding to SLy(Z) and Aut™(Fy) be its preimage in
Aut(F,). This enables us to formulate the action of SLy(Z) on origamis also
for homomorphisms F, — Sy and for finite-index subgroups H of F5:
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Proposition 1.3. A € SLy(Z) = Out(Fy) = Aut(Fy)/Inn(F,) acts on
origamis in the following way (where p € Aut(Fy) is a preimage of A):

i) pr> pa = caop for a finite coveringp: X — E,
ii) [f] = [f o~!] for [f] € Inn(Sy)\ Hom'(Fy, Sa),

iii) [H] — [@(H)] for the conjugacy class of a subgroup H of Fs.

Proof. We have to investigate how the action described above, leading to
statement i), induces the actions stated in ii) and iii). Recall from Prop. 1.2
that both alternative definitions of origamis which we use for ii) and iii) were
obtained via the fundamental group m(E*, P). By the theorem of Dehn-
Nielsen the automorphism ¢ of 7 (E*, P) comes from a unique homotopy
class of homeomorphisms ¢ of £*. The isomorphism

Homeo(E*)/ Homeo (E*) 22 SLy(Z) = Out™ (1)

is in fact the map ¢ — [¢], so we have ¢ = [c4]. The induced maps on the
fundamental groups and the monodromy maps are shown in the following
diagram:

71-1(—‘)(*7P1>

l pou
L

1 (E*, P) —>m(E", P)

f
l fop™t
Sq

Thus the monodromy f transforms to f o¢~!, and the subgroup H = Im(:)
to Im(p o) = p(H). O

1.3 Normal origamis

Proposition 1.4. The following statements are equivalent:

i) p: X — FE is a normal covering,
ii) H is a normal subgroup of Fy,

iii) H = ker(f).
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Proof. The covering p is normal if and only if 7 (X*, P;) < m(E*, P). This
shows the equivalence i) < ii). The kernel of f is always a normal subgroup
of Fy, hence iii) = ii).

It remains to show ii) = iii): Starting from a finite index subgroup H we
have constructed the corresponding surface X in Section 1.1 by labeling d
squares with the left cosets of H. If H < F, the monodromy is given by the
canonical morphism f: Fy, — Fy/H. O

Definition 1.5. An origami which satisfies one of the conditions of Propo-
sition 1.4 is called normal. The group Fo/H = Im(f) is called its Galois

group.

Proposition 1.6. A normal origami with Galois group G can equivalently
be defined as an element of Aut(G)\ Epi(Fy, G). The action of Out(Fy) on
such origamis is given by o] - [f] = [f o ¢71].

Proof. For a given epimorphism f : Fy, — G we use H := ker(f) as a finite
index subgroup of F, to define an origami. This kernel is invariant under
automorphisms of G.

On the other hand let H be a finite index normal subgroup of F». We have
seen in the proof of Prop. 1.4 that the monodromy map of the corresponding
origami can be written as a surjective homomorphism f : Fy — Fy/H = G
(which is of course unique only up to the chosen isomorphism Fy/H = G). If
we start with another representative of the conjugacy class of H, this changes
our map only by an inner automorphism of G. Note that indeed H = ker(f),
therefore this construction is inverse to the one described above.

If we use the interpretation of f € Epi(F,, G) as the monodromy map of our
origami, then Prop. 1.3 ii) describes the action of Out(Fy). O

1.4 Abelian Differentials

Origamis are special cases of translation surfaces and as such closely related
to Abelian differentials. We give here a short introduction along the lines of
|Zor|, Sections 2 and 4:

Definition 1.7. A translation surface is a Riemann surface X together with
a finite set S :={Py,..., P,} C X of singularities and an atlas such that

i) On X*:= X \ S all coordinate-change maps are translations.



1.4. ABELIAN DIFFERENTIALS 7

ii) For each P € S there is a chart f : U — C with f(P) = 0 such that
every coordinate-change map f(U) — C is of the form z +— 2z* for a
k € IN.q, called the multiplicity of the singularity P.

On a translation surface X two charts z and 2z’ on X* differ only by a constant.
Therefore the locally defined 1-form dz equals dz’. For the additional charts
with coordinate-change maps z +— 2z as above we can use dz’ = kzF~ldz
(which has a zero z = f(P) = 0 of order £ — 1) to extend our 1-form
holomorphically to neighborhoods of S. Therefore by setting dz = 0 on S
we can extend dz to a globally defined holomorphic 1-form w € H%(X, Qy).
Such a 1-form is also called Abelian differential.

This works in the other direction as well: Given an Abelian differential on a
surface X with zeroes Py, ..., P,, we can reconstruct the translation structure
on X*:= X\{P,...,P,} using locally the charts U — C;x — f;’; w for any
simply connected U C X* with arbitrary xq € U (different charts differ only
by a constant).

Proposition 1.8. An Abelian differential w on a Riemann surface X defines
an origami if and only if fyw € Z +iZ for every v € m(X™) and for every
path v connecting two zeroes of w.

In this case the zeroes of w of order k — 1 are the ramification points of the
origami X — E with ramification index k.

Proof. Let p: X — E be an origami. As a Riemann surface glued from unit
squares by translations X is a translation surface with singularities at the
vertices of the squares, i.e. the ramification points of p. At a ramification
point of order k& we have coordinate-change maps z — 2*, therefore w has a
zero of order k — 1 at this point.

We can calculate the given integrals on E:

/w:/dz
v poy

where p o~ is a closed path on £ = C/(Z + iZ). Let 7 be a lift of po~ in
C. Its endpoints are equal modulo Z + iZ. Therefore f7 dz € 7.+ 7.

On the other hand, given an Abelian differential with the stated properties
for any zp € X* the map

p: X — C/(Z+iZ); z»—>/w

20
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is well-defined and ramified only at the zeroes of w, which are preimages of
0e L. O

In |Zor| the statement of Proposition 1.8 occurs in the context of period
coordinates of Abelian differentials, which we will introduce as in [EO], §1.2:

For an origami p : X — FE we will usually denote the set of (possible) ra-
mification points p~'(0) by R = {Ry,..., R,} (instead of S = {P,..., P.}),
and the ramification index at the point R; by e; (instead of k). There may
be R; € p~1(0) where p is not ramified, hence ¢; = 1 is also possible?. Setting
r; = e; — 1 for each ramification point we note that the divisor K of w equals
> riP; with Y r; = 2g — 2 (using Riemann-Hurwitz).

Let 57 denote the moduli space of Abelian differentials with zeroes of order
€1,...,6e, at points Py, ... P, on a surface X of genus g =1+ % > (e; —1).
Consider the relative homology group Hq(X,{P,...,P,},Z) and choose a
standard basis {7} (i.e. a symplectic basis 1, ..., 72, of m1(X*) and paths
Yog+i—1 from Pj to P, for i =2,...,n). Now the map

S. 7 —-C" w— /w,..., /w

71 Y2g+n—1

is called the period map. This map defines a local coordinate system on 7,
the coordinates of w € 7 are called its period coordinates. Proposition 1.8
states that all period coordinates of w are integer if and only if the translation
surface defined by w is an origami. Therefore we can think of origamis as the
integer points in J7.

2Note that this means that there are always several different origamis corresponding to
a given Abelian differential w, because subdividing the squares of an origami into smaller
squares means adding points with e; = 1 without changing w.



Chapter 2

Origami-curves

The moduli space M, , is the set of isomorphism classes of Riemann surfaces
of genus ¢g with n punctures, endowed with the structure of an algebraic
variety. An origami defines a curve in this moduli space via the deformation
mentioned in section 1.2. In this chapter we will explain this construction,
and then investigate under which conditions two origamis define the same
curve in moduli space. We omit some details which can be found for instance
in [HS2|, Ch. 1 and 2. For those unfamiliar with the concept of Teichmiiller
spaces and moduli spaces we recommend |[Nag| as an introduction.

2.1 From Teichmiiller space to moduli space

We want to study the moduli space
Mgy, = {compact Riemann surfaces X of genus g with n puncturesl} /N

with X; ~ X, if there is a biholomorphic map h : X; — Xo.

This space has a structure of a complex algebraic variety of dimension 3g —
3 +n (we will consider only the case where this number is positive). But in
general this variety has singularities wherever the group of automorphisms
of the corresponding Riemann surface is non-trivial. This problem can be
resolved by looking instead at the set of Riemann surfaces endowed with a
so-called marking (which changes if an automorphism is applied, thus re-
sulting in a different object in the classifying space). As marking we use
f € Diffeo™ (X,er, X), an orientation preserving diffeomorphism X, — X

'A puncture of X is a marked point. A biholomorphic map h : X; — X5 has to map
punctures of X; to punctures of Xs.



10 CHAPTER 2. ORIGAMI-CURVES

from a fixed Riemann surface X, of genus g with n punctures to our Rie-
mann surface X, and thus arrive at the Teichmiiller space

Tyn = {(X, f) : X as above, f € Diffeo™ (Xer, X)} /~

where (X1, f1) ~ (Xa, fo) if the map fo o f;i': X; — X, is homotopic to a
biholomorphic map h : X; — Xs.

We can map 7, to M,, by forgetting the marking f. A marking f of a
Riemann surface X can be transformed into any other marking of X by con-
catenating f with an orientation preserving diffeomorphism of X, If the
diffeomorphism is homotopic to the identity then of course the equivalence
class of (X, f) in 7,,, will not change. We denote the set of those diffeomor-
phisms by Diffeo”(X,). This leads to the definition of the mapping class

qgroup
[y := Diffeo (X,er) / Diffeo®( X ,er)

I'yn acts properly discontinuously on 7, and the orbit space 7, /T, is
M, . One can define a metric (the so-called Teichmiiller-metric, see |Nag],
§2.1.7) and a complex structure on Teichmiiller space, which turns 7, into a
complex manifold of dimension 3g —3 +n (by the Theorem in |Nag|, §2.5.5).

Now let O be an origami defined by p : X — E. Let g be the genus of X
and n := [p~1(0)| the number of its punctures. For A € SLy(R) we use the
identity-map id : X; — X4 to define a marking of X 4. With this marking
X 4 defines an element [X 4] in the Teichmiiller space 7, ,. Therefore we have
a map

L SLQ(R) — 7;77“ A [XA]

Let Ap be the image of this map, and ¢(O) the image of Ay in M, ,,.
Note that for A € SO5(R) we have (X,id) ~ (X4,id) because the map X —

X4 is locally defined by ¢4 : E — E 4, which is biholomorphic. Therefore ¢
is constant on each SO9(R) orbit and we get a map

¢ H = S05(R)\ SL:(R) — 7.,

and in fact we can choose the isomorphism H 2= SO5(R)\ SLy(R) in such
a way that ¢« : H — 7, is a holomorphic isometric embedding (see [HS2|,
Definition 2.7). This fits into a more general context: In general the image of
such a map is called a Teichmiiller disk. If its image in M, ,, is an algebraic
curve, then this curve is called a Teichmiiller curve. For origamis this is
always the case:

Proposition 2.1. For an origami O the set ¢(O) is an algebraic curve.
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This is proven in [Loc|, Prop. 3.2 ii). We call such a curve ¢(O) an origami-
curve. Furthermore Lochak proves there that ¢(O) is defined over a number
field. We will sketch a proof for this in Remark 2.5.

2.2 Counting origami-curves

Given two origamis O and O’ we would like to check whether both origamis
define the same origami-curve or not. It is helpful to know

Proposition 2.2. ¢(O) = ¢(0') if and only if O and O’ are in the same
SLy(Z) orbit,

which is proven in [HS1|, Prop. 5 b) for the definition of the SLy(Z) action
of Prop. 1.3 iii).

We would now like to know how many origami-curves exist for a given degree
d of the origamis. By Proposition 1.2 ii) an origami can be represented by a
transitive homomorphism f : Fy — Sy, which is defined by o, := f(z) and
o, = f(y) in S4. Proposition 1.3 ii) tells us that the SLy(Z) action in this
case corresponds to the action of Out(F,) by concatenation. Thus we want
to calculate the cardinality of the set

Inn(S,)\ Hom'(Fy, Sq)/ Out(F)

To do this we first omit the condition ‘transitive’ and calculate coset repre-
sentatives. Afterwards we count only those representatives which define a
transitive homomorphism.

For the calculation of the coset representatives we choose a set Gen(Out(F3))
of lifts of generators of Out(F3) in Aut(F:) and a set Gen(Inn(S,)) of gen-
erators of Inn(Sy). Then we define the graph G = (V, E) with vertex set
V = Hom(Fy, Sy) (which can be represented by Sy x Sy) and edge set

E={f,fop}:peGen(Out(Fy))} U{{f, ¥ o f}:¢ € Gen(Inn(S54))}

Two vertices in this graph are connected if and only if they correspond to
origamis in the same SLy(Z) orbit. Thus we get our coset representatives by
picking one vertex out of every connected component of the graph G.

As generating set of Out(Fy) we use {[ps], [¢r]} with

ps(r) =y, ws(y) =27, pr(x) =, pr(y) = 2y
which corresponds to the generating set {S, 7'} of SLy(Z) given by

0 -1 11
s (0 D) - (1 ).
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As generating set of Inn(Sy) we use {r(1 4 :i € {1,...,d}} where r ;) is the
conjugation with the transposition (114) € Sy.

An implementation of this algorithm can be found in appendix A.1. We can
use it to calculate the number of origami-curves in the moduli spaces M,,,.

degree d | genus g | n punctures | number of curves
1 1 1 1
2 1 2 1
3 1 3 1
2 1 1
4 1 4 2
2 2 3
5 1 5 1
2 3 3
3 1 4
6 1 6 1
2 4 8
3 2 19
7 1 7 1
2 ) 4
3 3 22
4 1 14

A more detailed examination of properties of these origami-curves follows in
Appendix A.2. Note that we have to compute the connected components of
a graph with (d!)? vertices, for d = 7 these are already more than 25 million.
Thus the memory usage grows exponentially in d, therefore for large d it
won’t be possible to use this algorithm.

If we consider only normal origamis, then we can modify the algorithm such
that it works for large origamis as well: If we fix a Galois group G, then each
origami is represented by an epimorphism F, — G. The set of origami-curves
containing normal origamis with Galois group G therefore corresponds to

Aut(G)\ Epi(Fy, G)/ Out(F)

We can thus replace Sy in our algorithm by G, the transitivity of the image
of f by its surjectivity and Gen(Inn(S,;)) by a generating set of Aut(G). An
implementation can also be found in appendix A.1. Note that for the graph
we use now the vertex-set G x GG, and the cardinality of G is the degree d of
our origami. Therefore the memory usage grows only quadratically in d.



2.3. THE VEECH GROUP 13

Example 2.3. We use this algorithm to calculate for example the number
of origami-curves containing normal origamis with Galois group PSL(2,9):

degree d | genus g | n punctures | number of curves
660 166 330 1
221 220 1
265 132 4
276 110 2
301 60 1

2.3 The Veech group

Let X be a translation surface. An automorphism f of X is called affine, if it
is (at least on the punctured surface X*) locally defined by maps z — A-z+b
with b € C and A € GLy(R) acting on z € C by Moebius transformation. Let
AffT(X) denote the group of orientation preserving affine diffeomorphisms
of X. As X is a translation surface the coordinate change maps of X* are
translations. Therefore A is independent of the chosen coordinate charts and
thus also independent of the chosen neighborhood. We call this matrix A the
derivative der(f) of the affine diffecomorphism f. Note that on a closed surface
f has to be area preserving, thus (together with orientation preserving) we
get der(f) € SLy(R). The image der(Aff* (X)) C SLy(R) of the derivative
map is called the Veech group I'(X) of X (introduced by Veech in [Vee]).

For origamis we also have another more accessible characterization of the
Veech group:

Proposition 2.4. The Veech group of an origami is the stabilizer in SLy(7Z.)
under the action defined in Proposition 1.3.

This was shown in |Sch2|, Prop. 1 for the definition stated in Prop. 1.2 iii).
It implies that for an origami O there is a one-to-one correspondence of the
left cosets of the Veech group I'(O) in SLy(Z) and the orbit of O under the
SLy(Z) action, and by Prop. 2.2 this corresponds to the set of origamis O’
which describe the same curve ¢(O’) = ¢(O) in moduli space.

Note that the set of origamis of degree d is a finite set (as quotient of the
finite set Hom'(Fy, Sg)). Therefore the Veech group (as the stabilizer under
this action) is a subgroup of finite index in SLy(Z). Gutkin and Judge have
proven in |GJ|, Theorem 5.5 that having a Veech group commensurable to
SLy(Z) is a property which characterizes origamis.
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Remark 2.5. Let O be an origami and T(O) the image of T'(O) in PSLy(Z).
Then I'(O)\H is an algebraic curve, and the map

T'(O)\H — PSLy(Z)\H = P*(C)

s ramified at most over three points, therefore by Belyi’s theorem the curve
is defined over a number field (a fact we remarked already after Prop. 2.1).
If we replace T(O) by its conjugate with the map z — —Z, then the resulting
curve s actually the normalization of the origami-curve ¢(O) in M, (see
[HS2], Cor. 2.21, or for a detailed proof [Mc1], Cor. 3.3)

The Veech group also leads to a simple algorithm for listing all origamis which
describe the same curve: Given an origami O defined by f € Hom!(F, S,)
first calculate a set of left coset representatives R of the Veech group I' of
O. Now every element g € SLy(Z) can be written as g = ry with r € R
and v € I'. As v stabilizes O the image gO equals rO. Therefore the set
{rO :r € R} equals the orbit of O under the action of SLy(Z) and thus
contains all origamis describing the same origami-curve as O.

Constructing a set R of coset representatives is the most time-consuming
part: We start with R = {id}. Then for every element z € R we check for
every generator g of SLy(Z) (and for every inverse) whether the coset of gx
is represented by an element in R (i.e. whether gzI' = yI" for some y € R,
which is equivalent to y~'gx € T'). If not then we have found a new coset and
add it to the set R, then start all over again. As there are only finitely many
cosets this algorithm terminates. Then a representative of every x € SLy(7Z)
is contained in R which we can prove by writing x as a product of the chosen
generators and using induction over the word length.

This algorithm (based on the Reidemeister-Schreier method outlined in LS|,
I1.4) was already proposed by Schmithiisen in [Sch2| for the calculation of
coset representatives (and generators) of the Veech group of origamis. Her
algorithm calculates right coset representatives of the projective Veech group
T, which differs only marginally from the one presented here.

As generators of SLy(Z) we use the elements S and T already mentioned
in Section 2.2. Note that we get the set of coset representatives as words
in the generators S and T, therefore we can easily write down a set of lifts
{¢1,...,om} of those coset representatives in Aut(F,) by replacing S by ¢g
and T by ¢r (with ¢g and 7 as defined on page 11). The homomorphisms
fo gpi_l then define all origamis with the same origami-curve ¢(O).

For checking whether two origamis O and O’ describe the same curve we just
have to check for each ¢; whether [f'] = [f o ;'] in Inn(Sy)\ Hom'(F3, S,),
i.e. whether there is a ¢ € Sy such that f o goi_l = ky 0 [ where K, is the
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conjugation with o. If there is no ¢; for which we can find such a o, then
the curves ¢(O) and ¢(O’) cannot be equal.

Example 2.6. We illustrate this algorithm for the origami O defined by
o, = (12) and 0, = (13). We use the generators ¢g and ¢r of Out(F3) and
we are going to need their inverses:

1 1

es' (@) =y w5t () =, pri(x) =2, or'(y) =2y

We then can calculate the images of our origami under the action of SLy(Z):

r={t R={id}
for=fogst={i2i000" =renos ST
fri=fogrt ={zr w02 R:={id, T}
fsr = fropg' = {2:;;8;2;;;23) R:={id,T, ST}
froi=frogpt = {IT 00D = T’ T
fsor = fsropg' = {;:g;g;z :12(;?) =kagyofr TSTeT
z— for(z) = (123)

frsr = fsropp' = {yH Ferla—ty) = (23) = F(132) © fsr (ST)'TST €T

Thus the curve ¢(O) contains exactly the three origamis defined by f, fs and
fsr. This is illustrated in the following diagram:
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Chapter 3

Invariants

In the previous chapter we have seen algorithms which decide whether two
given origamis describe the same origami-curve in moduli space, i.e. whether
the defining homomorphisms F, — S; are equal in

Inn(Sy)\ Hom'(Fy, Sy)/ Out(Fy).

Now we want to study data which are invariant for all origamis describing a
common curve. Such invariants can be used to distinguish different curves.
Of course the obvious invariant would be simply the full SLy(Z) orbit of the
origami, or equivalently listing the full coset in Hom®(F,,S;). But this is
based on the description of an origami glued from (complex) unit squares
(or equivalently the monodromy homomorphism). In the following chapters
we also want to consider origamis defined over other fields than C where we
are not able to rely on this complex analytic characterization of origamis.
Instead we will focus on invariants which represent properties of the covering
map X — FE and properties of the origami-curve itself.

3.1 Ramification indices

In this chapter O will always be an origami of degree d and genus ¢ defined
by the covering p : X — E. Let R := p~!(0) = {Ry,...,R,} be the set
of (possible) ramification points and let e; denote the ramification index of
pat R; fori=1,...,n. Let P € E* = E'\ {0} be an arbitrary point and
{Py,...,P;} = p~'(P) be the fiber over P. Other notations from the first
two chapters will also always refer to this fixed origami O if nothing else is
indicated.

17
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Proposition 3.1. The degree d, the number of punctures n, the genus g and
the ramification indices (e;) of an origami are invariant under the action of

SLy(Z).

Proof. For A € SLy(Z) the map c4 (defined in Section 1.2) is an unramified
covering of degree 1, which fixes the point 0 € E. Therefore composing p
with c4 neither changes the degree of the covering, nor the preimages of 0,
nor the ramification index at any point of X. Of course the genus of X also
remains unchanged. O

The tuple (e;) is (up to changing the order of its entries) an invariant of the
origami-curve. The numbers d,n and ¢ are already coded in this invariant:
For an origami with n ramification indices (e;) we have d = > e; and g =
1+ %(d — n), which follows from Riemann-Hurwitz or by calculating the
Euler-characteristic.

Proposition 3.2. For an origami with monodromy f € Hom'(F,, Sy) set
k= f(zyx~ty™1). Then the ramification indices (e;) equal the cycle-lengths
of k.

Proof. Let R € p~'(0) be a ramification point with ramification index e;,
and ¢ be the number of a square with upper left vertex R. Let v be the
simple closed counterclockwise path in X* around R starting at P;. Up to
homotopy we can choose v to include P; for every square j which contains a
part of 7, thus it is made up of lifts of y=!, 271 y and x (in this order). Its
projection to m (E*, P) therefore is a power of zyz~ly~!.

The path v thus starts with a path from P; to P, then it continues to
P2y and so on. After e; times it gets back to P; for the first time because
the path xyz~ly~! in 7 (E*, P) is a simple closed path going once around
the puncture of £* and e; is the ramification index of R. Therefore ¢; is the
minimal non-trivial number with % (i) = ¢ and is hence the cycle-length of
the cycle of k containing i. U

Corollary 3.3. For a normal origami with monodromy f : Fy, — Sy all
ramification indices are equal to ord(k). This holds also if f is replaced by
f: Fy — G as described in Proposition 1.6.

Proof. For a normal origami we have f~!(Stabg,(1)) = ker(f) thus x stabi-
lizes one point if and only if it stabilizes all. Thus all cycle lengths equal

ord(f(k)). The second characterization comes from identifying the image of
f with the Galois group G = F,/ ker(f). O
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Proposition 3.4. The sum > (e; — 1) is always even.

Conversely foreq, ..., e, € N satisfying this condition there exists an origami
with ramification indices (e;).

Proof. The first part follows directly from the Theorem of Riemann-Hurwitz,
or alternatively from the fact that the commutator x in Prop. 3.2 is always
an even permutation.

For the second part we construct an origami by concatenating horizontally
the following components:

which creates a new puncture with ramification index e = 1,

O DN A D

ii)

which increases the last ramification index by 2,

Gttty o

i) |
O DAy N A S

which increases the last ramification index by 1 and creates a new punc-

ture with ramification index e = 2.
O

3.2 Properties of the origami-curve

By Remark 2.5 we know that the normalization of the origami-curve in M, is
a “mirror image” of T\IH. For simplicity of notation we will study geometric
properties of f\]H and keep in mind that these properties coincide with the
properties of our origami-curve.

Let d be the index! of T in PSLy(Z). We get the Riemann surface T\H by
glueing d copies of a fundamental domain of PSLy(Z) in H. For this we use
the standard fundamental triangle A shown in Figure 3.1, bounded by the
unit circle and the lines Re(z) = +5 with the point coi excluded (we call
this point the cusp of A). Let {Fgl, e ,ng} be the right cosets of I'. Then

'the usual notation would be d, as it is the degree of the map T'\IH — PSLy(Z)\H, but
we don’t want to confuse this with the degree of the origami covering p : X — E. Likewise
we will use g instead of g and n instead of n when we are talking about the origami-curve.
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the union of all g;(A) is a fundamental domain for T' (if it is connected, i.e.
if every g; is obtained from another one by multiplying S, T or their inverses
from the right?). We identify the edges of this fundamental domain using
the action of I' on H.

Example 3.5. In Example 2.6 we calculated the set {id, T, ST} of left coset
representatives of the Veech group of an origami. Its right cosets are therefore
{0, 0-T717-T71871}. As S = S~ in PSLy(Z) and in our case T? € T
we have the right cosets {T,F-T,f . TS}. The constructed fundamental
domain of the origami-curve is shown in Figure 3.1.

v=4

e==6

f:
=g=0

Compactification
ﬁ

Figure 3.1: Fundamental domain of an origami-curve with two cusps (e)

Around the image of a cusp in T'\H the copies of A correspond to cosets
Tg,TgT...,TgT* ! of T for a g € I. Thus each of those cusps corresponds
to a parabolic generator g7 ¢~ of the projective Veech group I'. We call w
the width of the cusp and g € T’ a corresponding Strebel element.

Now let m be the number of cusps of the fundamental domain and wy, ..., w,
the widths of the cusps. Then we have d = Y w;. We can compactify®
the origami-curve by adding a point at each cusp. Then our constructed
fundamental domain is a partition of the origami-curve into d triangles. We
would like to use this to calculate the genus g of the origami-curve, but there
may be edges which are identified with itself (like for example in Figure 3.1),
and then this partition would not be a triangulation. This problem can be
solved by subdividing these triangles by adding an additional edge through
the center of those edges. Then we can count the vertices, edges and faces
of this triangulation to calculate the Euler characteristic and thus also the
genus of the origami-curve.

2to simplify notation we will often make no difference between elements in SLy(Z) and
their projections to PSLy(Z)
#The compactification of the moduli space M, ,, will be the topic of section 3.3
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Proposition 3.6. The Veech groups of origamis which describe the same
curve are conjugated. The genus g and the number of cusps n of the origami-
curve, the index d of the Veech group T', the property —1 € I' and the cusp
widths (w;) of an origami are all invariant under the action of SLy(Z).

Proof. The numbers g and n represent properties of the origami-curve and
hence are obviously invariant.

Let O be an origami with Veech group I' and h € SLy(Z). Then the Veech
group of hO is hI'h™! because (hTh™')hO = hI'O = hO. Therefore the
Veech groups of O and hO are conjugated and hence have the same index in
SLy(Z). As —1 is in the center of SLy(Z) we have —1 € ' & —1 € h['h ™.

If {fgi} is the system of right cosets of ', then {(hfh_l)hgi} is the system
of right cosets of h’h~!. Thus the constructed fundamental domain for hO
will be the image of the fundamental domain for O under h. A parabolic

generator g7 g~ ! then transforms to hgT®g 'h~! leading to the same cusp
width w. U

3.3 The boundary of moduli space

In the last section we have mentioned that we can compactify an origami-
curve by adding a point at each cusp. While the origami-curve is a subset
of the moduli space Mg, the cusps do not correspond to points in this
moduli space. But we can compactify M,, using the Deligne-Mumford-
compactification M, ,,. Then the cusps of the origami-curve correspond to
points in the boundary oM, ,, := ﬂgm \ M.

The Deligne-Mumford-compactification M,,, is the moduli space of stable
Riemann surfaces of genus g with n punctures® (c.f. [DM]). A stable Rie-
mann surface is a one-dimensional compact complex space X whose only
singularities are ordinary double points (i.e. points with a neighborhood
isomorphic to a double cone). Additionally it is required that on each ir-
reducible component of X of genus 0 there are at least three special points
(where a point is special if it is a puncture or singular).

To each stable curve we associate the intersection graph of its irreducible
components. This graph has a vertex for every irreducible component and
an edge for every singularity, whose endpoints are the vertices corresponding
to the components containing the singular point. We mark each vertex with
a pair (g,n), where g denotes the genus of the irreducible component, and n
the number of marked points contained therein.

4For g = 0 we require n > 3, for g = 1 we need n # 0.
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Each cusp of an origami-curve corresponds to a point in M, ,, which is a
stable curve with at least one singularity. The idea for the construction of
this stable curve is the following: Let O be an origami defined by the covering
p: X — E. The Teichmiiller disk Ay then consists of the Riemann surfaces
X4 with A € SLy(R) together with the identity as marking X — X 4. Now
the ray

t
0,00) = 7., defined by ¢ — (X, id) with A(t) = (3 ;L)

is contained in this Teichmiiller disk, and as ¢ tends to oo every path on the
origami in horizontal direction becomes arbitrarily small. If we think of our
origami as a surface glued from squares this corresponds to contracting a
horizontal line in the center of each square to a point. The thus constructed
singular surface is the stable curve corresponding to the cusp of the origami-
curve belonging to the triangle A, i.e. to the cusp with Strebel element
id.

For the construction of other boundary points of the origami-curve we would
have to contract closed paths in other directions. The directions in which
the paths are closed are given by s - (}) for a Strebel element s and are
called Strebel directions. But instead we can also look at the origami s~1O,
where the desired Strebel direction is transformed to the horizontal one. We
therefore get

Proposition 3.7. Let O be an origami and s a Strebel element for a cusp
of its origami-curve. Then one obtains the stable curve corresponding to this
cusp by contracting horizontal lines in the center of each square of the origams

s710.
A formal proof can be found in [HS2|, Theorem 4.1.

Example 3.8. We see in Figure 3.1 that the origami from Example 2.6 has
two cusps: one with Strebel element s; = id and width w; = 2, and another
one with Strebel element sy = T'S and width wy = 1. The resulting Strebel
directions and the intersection graphs of the resulting stable curves are shown
in Figure 3.2.

We now present an algorithm for the computation of the intersection graph.
As a first step we number all closed horizontal lines which we want to con-
tract. This is done by marking an arbitrary square of the origami with the
number 1, then marking its right neighbor with the same number and so
on, until we get back to the square we started with. Then we pick a new
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R N (0,1)

SR T ,_)X_) »
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i Ly~ I 1
T T TT

Figure 3.2: Intersection graphs of boundary points of an origami-curve

yet unmarked square and start all over for the next horizontal line with the
number 2, and so on.

As second step we number the irreducible components: these are the con-
nected areas bounded above and below by the closed horizontal lines. We
mark the top half of an arbitrary square with the first number 1, then we
continue marking all adjacent half squares with the same number, and con-
tinue with their neighbors. When there are no more unmarked adjacent
half squares we pick a new unmarked square and start all over for the next
irreducible component.

Now we can define our intersection graph: every irreducible component cor-
responds to a vertex in this graph, and every horizontal line to an edge. The
endpoints of an edge are defined by the numbers of the components adjacent
to the horizontal line.

We still have to calculate the genus g and the number n of marked points for
each component. Let C' be the set of bottom half squares in the component
and e; the ramification index of the marked point at the bottom left vertex
of the bottom half square 7. We can calculate the number of marked points

by
1
n=2_

because for every marked point R; the e; corresponding to R; are equal to
the ramification index e of R; and will be counted exactly e times, thus for
every marked point the sum ) 1/e is 1.

For the calculation of the genus we use the triangulation of our component
which we get by contracting the horizontal lines. This triangulation has n+d
vertices, where d is the number of adjacent horizontal lines (i.e. the degree
of the vertex in the intersection graph). The number of faces is 2 |C| (for
every bottom half square there is also a top half square). Therefore the Euler
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characteristic of the component is
x=n+d—-3|C|+2|C|=n+d—|C|

and we get the genus g =1 — X.

3.4 Automorphisms and their fixed points

The group Aut(X) of automorphisms of X is not invariant along the curve
in moduli space. This is already obvious for the trivial origami £ — FE.
Therefore we would like to define the automorphism group of an origami to
be the intersection of all the different automorphism groups occurring along
this curve:

Definition 3.9. We call a bijective map o : X — X an automorphism of
the origami O, if it induces for every A € SLy(R) via X — E — E4 a well-
defined automorphism on E4. The group Aut(O) of all such automorphisms
is called the automorphism group of O.

The group Aut(O) is a subgroup of the group Aut(X) of automorphisms of X
as a Riemann surface. Contrary to Aut(X') the subgroup Aut(O) is invariant
for all complex structures, i.e. for all origamis on ¢(O). The calculation of
this group is simple: Every automorphism o induces on E either the identity
or the elliptic involution (as these are the only automorphisms of F which
induce automorphisms on every F,4). Therefore the square containing Py
has to be mapped bijectively to the square containing o(P;) (either by a
translation, or by a 180° rotation), and the monodromy map determines the
images of the other squares.

Given an automorphism o, the calculation of its fixed points is also simple:
Let x be a fixed point of o. If ¢ # id induces the identity on F, then no
point in X* is fixed by o, and therefore z € X\ X* = p71(0) = {Ry,..., R, }.
If o induces the elliptic involution p(x) has to be fixed by this involution,

therefore z € p~*(0) or z € p~({(0,3),(5,0),(5,3)}) = {Ai,..., Az}
Thus there are at most 4d possible fixed points.

Every automorphism permutes the ramification points R; and the points A;.
Proposition 3.10. The homomorphism
Aut(O) — S3q x S,

induced by the permutations of the points in Ay, ... Asq and Ry, ..., R, is (up
to renumbering the points) invariant on the origami-curve.
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Proof. The deformation along the origami-curve is continuous, but the points
A; and R; are discrete in X (because their images in F are discrete). O

Example 3.11. Looking at the origami

we see that there is no non-trivial automorphism which descends to the iden-
tity on E, because square 1 is horizontally adjacent to itself, but this holds
for no other square, so there is no possible image for a translation of square 1
except itself. But we can rotate square 1 by 180°. Then square 2 is mapped
to itself and squares 3 and 4 are exchanged:

tele| vt Tt

The action of ¢ on the points A; and R; is shown in the following pictures:

A \
L] .k/\ o
P2l

I
=

%r) Voo

D s

The first picture shows the two punctures R; and Ry of the origami, which
are both fixed. The second one shows the other four fixed points of ¢, and
in the third picture we see what happens to the other eight points A;.

If an origami O is normal we can determine the group Aut(O) quite explicitly:

Proposition 3.12. An origami O of degree d is normal if and only if it has
d translations. In this case the group of translations is isomorphic to the

Galois group G of O.

Proof. 1f the origami is normal, then we can think of the squares labelled by
the group elements, and for every group element right-multiplication defines
a translation.

On the other hand if there are d translations this means that there are two
translations o, 7 which map square number 1 to its right respectively upper
neighbor. As the origami is connected they generate a group of d elements.
The origami is then identical to the normal one defined by f : Fy — (o, T)
with f(x) = o and f(y) = 7 (in the sense of Proposition 1.6). O
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Proposition 3.13. Let O be a normal origami with Galois group G defined
by X — E and f : F5 - G. Set 0 := f(z) and 7 := f(y) and let E —
PY(C) =: P be the quotient map induced by the elliptic involution z — —z.
Then the following are equivalent:

i) Aut(O) % G,
ii) =1 € I'(0),
iii) there exists some ¥ € Aut(O) of order 2 not inducing the identity on E,

iv) the composed map X — E — P is normal.

v) there exists some ¢ € Aut(G) with p(o) =0t and (1) =771,

In this case we have
Aut(0) = Gal(X/P) = (G,¢) = Cy xe G
where ® : Cy — Aut(G) maps the generator of the cyclic group Cy to .

Proof. i) < ii) is clear since automorphisms which are not translations induce
the elliptic involution on £ and hence have derivative -1.

i) < iii) is also clear since if there is an automorphism of O which induces the
elliptic involution on E we can concatenate a translation to find a non-trivial
automorphism v which maps the square labelled with 1 € G to itself. This
is an automorphism of order 2.

The quotient X/ (G,) is isomorphic to P = P(C) and factors through
X/@G, thus iv) follows. On the other hand if X — P is normal then G C
Gal(X/P) C Aut(O), thus iv) = i)

The automorphism 7 maps the square ¢ to o' and 7 to 77!. Thus the
origami defined by f': Fy — G with f'(z) = ¢! and f'(y) = 77! is equal
to the one defined by f in Aut(G)\ Epi(F3, G), hence f' = ¢ o f for an
automorphism ¢ € Aut(G). This means ¢(o) = o' and ¢(1) = 771,
therefore i) = v). The reverse argumentation shows v) = 1i).

The group of translations is isomorphic to G and contained in Aut(O) with
index 2, hence normal. Thus we have a split exact sequence

0—G—Awt(0) —Cy, —0
~—

@
Therefore Aut(O) = G xg Cs. O
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3.5 Holomorphic differentials

An origami is naturally associated to an Abelian differential w. Its stratum in
the moduli space of Abelian differentials is determined by the multiplicities
of zeroes of w. A continuous deformation of the complex structure of an
origami leads also to a continuous deformation of the Abelian differential
w. Therefore the connected component of w in the moduli space of Abelian
differentials 7 is invariant on the Teichmiiller disk defined by the origami.

Kontsevich an Zorich have shown in [KZ] that each stratum contains up to 3
connected components. The connected component of w in .77 is determined
by two properties (see |KZ| 2.3, Theorem 1):

1. The property ‘hyperelliptic’.

If a hyperelliptic involution® o on X exists, then w is called hyperelliptic if it
has only one zero, or if it has two zeroes which are exchanged by o.

2. The parity of the canonical spin structure.

A spin structure on X is a divisor D on X with 2D = > (e; —1)R; in Pic(X).
If all e; are odd, then there is a canonical spin structure D =" eglRi. The
parity of the spin structure D is the parity of /(D) —1 = dim H°(X, £L(D)) —
1 (where £(D) is the associated invertible sheaf to D), which equals® the

dimension the complete linear system |D].

We compute both properties in Appendix A.2 for all origamis with up to
eight squares. For the hyperellipticity of w we will use the following charac-
terization:

Proposition 3.14. An automorphism o of a Riemann surface X is a hy-
perelliptic involution if it has order 2 and 29 + 2 fixed points.

This can be proven easily using Riemann-Hurwitz. In section 3.4 we have
already computed the automorphism group of an origami X (in the case
where the underlying elliptic curve has only trivial automorphisms). We also
have computed the fixed points of those automorphisms. This is sufficient to
identify the hyperelliptic involution (if it exists) by Prop. 3.14. We can then
easily determine whether w is hyperelliptic.

For the parity of the canonical spin structure [KZ|, 3.2 offers another char-
acterization, which is more accessible for a direct computation:

SA hyperelliptic involution of X is an automorphism o of X of order 2 such that the
quotient X /(o) has genus 0.

5For the definition of the complete linear system and the proof of the mentioned equality
we refer to [Har], I1.7.7 and the following definition.
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Proposition 3.15. Choose oriented smooth closed paths (o, 5;) on X* rep-
resenting a symplectic basis of Hi(X,Z). Then the parity of the canonical
spin structure of w (if it exists) is equal to the parity of

g

(@) = (indy, +1)(inds, +1)

i=1
where ind., is the winding number’ of a closed curve 7.

An origami of genus g is topologically a sphere with g handles. The algorithm
for surface normalization from [Sti], 1.3 can be used to transform our origami
into this normalized form. A symplectic basis of H;(X,Z) is given there
by the standard generators of the fundamental group of such a normalized
surface: we get two generators for each handle, which intersect each other
only once, and do not intersect any other generators. The normalized surface
(together with those 2g generators of its fundamental group) can now be
transformed back to the original origami. Thus we get the paths «; and j;
needed for the application of the proposition.

Example 3.16. In Example 3.11 we calculated an automorphism o of an
origami of order two with six fixed points. The origami has degree d = 4 and
n = 2 punctures, thus its genus is ¢ = 2 and o is a hyperelliptic involution
by Prop. 3.14. There is only one zero of w because one of the punctures has
ramification index 1 and is hence not a zero of w. Therefore the corresponding
Abelian differential is contained in the hyperelliptic component.

For the calculation of the parity of the canonical spin structure we first
calculate a symplectic basis of H;(X,Z) using the algorithm for surface nor-
malization. The results are the paths

ar=y% fi=w, a=a 'y dlyryx, Bo=y a7ty ey

which are shown® in Figure 3.3, where one can check easily that they form
indeed a symplectic basis.

For the calculation of the winding number of a path v € m(X*, P) we first
replace v by a cyclically reduced representative of its conjugacy class (this
corresponds to selecting another basepoint P for m1(X*, P)). Then at each
point in the same fiber as P over E* the path either turns 90° left or 90° right
or it continues in its previous direction. We can thus compute the winding

"Note that the winding numbers depend on the translation structure on X given by w.
8Recall that we write elements of the fundamental group from right to left, as stated
in the footnote on page 2
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Figure 3.3: Representatives of a symplectic basis of H;(X,Z).

number ind,, easily by counting all the left-turns, subtracting the right-turns,
and dividing the result by 4.

For our example we get
ind,, = indg, =ind,, =0, indg, =3(5-1)=1

Therefore the parity of the canonical spin structure in this case is the parity
of 1-1+1-2=3, which is odd.

3.6 The Galois group

Let O and O be two origamis defined by p : X — Fandp : X — F
respectively. We say that O is a covering of O if there is a covering h : X — X
such that p = poh. Such a covering induces an inclusion of the corresponding
fundamental groups:

H=m(X,P)—m(X*,P)=H

Conversely, if we have two finite index subgroups H and H of F, with H C H,
then the origami defined by H covers the one defined by H.

Proposition 3.17. Every origami O has a minimal normal covering O', i.e.
a covering O" — O such that O' is a normal origami and every other covering
of a normal origami O over O also covers O'.

Proof. Let H be the fundamental group of O as above and H the fundamen-
tal group of a normal covering of O. Then H is a normal subgroup of F,
contained in H. Hence

HCN := ﬂ S

YEF>
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where NV is a normal subgroup of F,. Hence the origami O’ defined by N is a
normal covering of O, and the stated inclusion proves that O covers O'. O

Proposition 3.18. Let O be an origami with monodromy f : Fy — Syq. Then
the Galois group G of the minimal normal covering of O is isomorphic to the
image of f and this isomorphy type is invariant under the action of SLy(7Z.).
We call this group the Galois group of O.

Proof. With the notation as in Prop. 3.17 we use H = f~!(Stabg, (1)) to get
the equation

= () 7/ (Stabs, (D))= () v 'Hy =N

yEF> yEF>

Therefore we have f(Fy) = I,/ ker(f) = F»/N = G.

Obviously f(Fz) = (f o ¢)(Fy) for every ¢ € Aut(Fy), hence the invariance
under the action of SLy(Z). O

Example 3.19. Let O be the origami defined by o, = (123)(456) and
o, = (24)(35). The monodromy map f : Fy — Sg maps z to o, and y to
oy, therefore the image of f is the subgroup of Sg generated by o, and o,.
This group is isomorphic to A;. Thus A, is the Galois group of O. The
corresponding normal covering is shown in Figure 3.4.

2 3 @ 2» 3 6
6 4| 5|6 p € 45 |6 | S
2 3 6 2 3 6 16 415 |6 p
4 4 6
1 5 1 5 3 1 ) 3 h
Y 3 Y
3123t 12 3] T 1 3
4 5 T 4 5

Figure 3.4: Minimal normal covering of an origami



Chapter 4

The non-archimedean world

Up to now we have only considered origamis as compact Riemann surfaces,
i.e. projective nonsingular curves defined over C. In this chapter we want to
make an analogous definition for curves defined over the completed algebraic
closure C, of the field of p-adic numbers. As a p-adic analogue of Riemann
surfaces we use Mumford curves. Mumford showed in [Mum]| that these
curves can be uniformized as Q/G where G C PGLy(C,) acts' properly
discontinuously on Q C P'. We are going to use this property as a definition.
Contrary to the complex setting not every projective nonsingular curve is a
Mumford curve. For more details about Mumford curves we refer to [GP].

We will define a p-adic origami as a covering X — FE of Mumford curves
defined over C, with at most one branch point, where g(E£) =1 (i.e. E is
a Tate curve). These p-adic origamis also form curves in the moduli space
of curves over C,, which are connected to corresponding origami curves over
C. This connection between origamis over C, and over C will be the topic of
Chapter 5.

In the present chapter we will propose methods for the calculation of some
of the invariants introduced in Chapter 3. We restrict our considerations to
normal origamis with non-trivial ramification (i.e. non-abelian Galois group).
Those origamis will be classified in Section 4.3. It is already known that every
finite group occurs as a Galois group of a covering of a Mumford curve over an
elliptic curve, which was proven in [PV], Theorem 1.2. Hence the interesting
part will be to control the number of branch points of such coverings. To do
this we will use some results of Kato and Bradley on Mumford orbifolds.

'For better readability we will continue to write this quotient space as /G even though
the action of G is a left action.

31
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4.1 Discontinuous groups

After defining Mumford curves we will construct in this section the Bruhat-
Tits-Tree B for an extension of @, using a quite concrete definition from
[Her]. A Mumford curve is closely related to the quotient graph of an action
of G on a subtree of B. Often one defines a suitable subtree such that the
quotient becomes a finite graph, but instead we will follow Kato |Kat2|,
who uses a slightly larger quotient graph, which can be used to control the
ramification behavior of coverings of Mumford curves.

Definition 4.1. Let k be a field which is complete with respect to a non-
archimedean valuation and G a subgroup of PGLy(k). A point x € P'(k) is
called a limit point of G, if there exist pairwise different 7, € G (n € IN) and
a point y € P(k) satisfying lim v, (y) = x. The set of limit points is denoted
by L(G).

G is a discontinuous group, if Q(G) := PY(k) \ L(G) is nonempty and for
each z € P!(k) the closure G of its orbit is compact. A discontinuous group
G is called a Schottky group if it is finitely generated and has no non-trivial
elements of finite order. Every Schottky group is free (|GP|, Theorem 1.3.1).

A discontinuous group G acts properly discontinuously on (G). For a Schot-
tky group G we know from [GP], Theorem II1.2.2. that the quotient Q(G)/G
is the analytification of an algebraic curve. Such a curve is called a Mumford
curve.

If an arbitrary group G C PGLs(k) contains a discontinuous group G’ of
finite index, then £(G) = £(G’) and G is also discontinuous. We know from
|GP], Ch. I, Theorem 3.1 that every finitely generated discontinuous group
contains a Schottky group as a subgroup of finite index.

Let k C C, be a finitely generated extension of Q,. Then the set of absolute
values |k*| := {|z| : € k*} isa discrete set in R*. Forr € |k*| and z € k let
B(z,r) :={y €k :|r—y| <r} be the “closed” ball? around z. Construct a
graph with vertices B(z,r) and insert edges connecting B(z,r) and B(2', ")
with B(z,r) C B(a/,r") and [r,7’| N |k*| = {r,7’'}. This graph is a simplicial
tree, called the Bruhat-Tits-Tree B(k). The ends® of this graph correspond
bijectively to the points in ]Pl(l%), where k denotes the completion of k. The
action of PGLy(k) on P1(k) can be continued to an action on B(k), and we
can modify B(k) by adding vertices such that this action is without inversion.

?Note that as |k*| is discrete the ball B(z,r) is both open and closed for the topology
induced by the p-adic norm.
3An end of a graph is an infinite ray up to finitely many edges.
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Let v € PGLy(k) be hyperbolic or elliptic with two fixed points in P!(k). In
this case we define the azis A(7) to be the infinite path connecting the two
ends of B(k) corresponding to the fixed points of . A hyperbolic element v €
PGL; acts on A(7y) by shifting the whole axis towards the end corresponding
to the attracting fixpoint of . An elliptic element fixes A(y) pointwise. It
has additional fixed points in B(k) if and only if ord(v) is a power of p (this
is made more precise in [Her|, Lemma 3).

Let G be a finitely generated discontinuous subgroup of PGLy(C,) and let
F(v) be the set of the two fixed points of v € G in P*(C,). Now let k
be the extension of Q, generated by the coefficients of the generators of G
and the fixed points of representatives of every conjugacy class of elliptic
elements in GG. There are only finitely many such conjugacy classes, hence k
is a finitely generated field extension of @), and we can therefore construct
the Bruhat-Tits-Tree B(k) as described above. Note that by construction
G C PGLy(k) and F(vy) C PY(k) for all elliptic elements v € G. Moreover
we have F(y) C P'(k) for every hyperbolic element 7 € G because the
endpoints of A(7) correspond to the fixed points of 7.

As G is discontinuous, G contains only hyperbolic and elliptic elements
(|Kat2|, Lemma 4.2). The set of all fixed points of G

F(G) =] F()

veG

is a G-invariant subset of P!(k), therefore G also acts on the subtree 7%(G)
of B(k) generated by the ends corresponding to F/(G). We can now construct
the quotient graph G*(G) := 7*(G)/G. Each axis of a hyperbolic element
will be mapped to a circle in G*(G), while each end of 7*(G) corresponding
to a fixed point of an elliptic element but not to a fixed point of a hyperbolic
element will be mapped to an end of G*(G). We now turn G*(G) into a graph
of groups® by labeling the image of a vertex resp. edge x € 7*(G) with the
conjugacy class of the stabilizing group G, of x.

The graph G*(G) contains a lot of useful information about the Mumford
curve Q(G)/G. The ramification points of the covering Q(G) — Q(G)/G are
the fixed points of elliptic elements of G which are not fixed points of hyper-
bolic elements (|[Kat2|, Prop. 5.6.2). Therefore the branch points correspond
bijectively to the ends of G*(G). The stabilizing group of such an end is a
cyclic group whose order equals the corresponding ramification index. And
by studying the action of the hyperbolic elements, we find that the genus® of

4In this chapter a graph will always mean a graph of groups to shorten notation. For
the definition of a graph of groups we refer to [Ser|, 1.4.4.
5By the genus of a graph we mean its first Betti number.



34 CHAPTER 4. THE NON-ARCHIMEDEAN WORLD

G*(G) equals the genus of Q(G)/G ([Kat2], §5.6.0).

Definition 4.2. We define a p-adic origami to be a covering of Mumford
curves X — FE ramified above at most one point with g(£) = 1.

Starting from a Mumford curve X = Q/T" for a Schottky group I we will later
consider the quotient map to F = /G for an extension G of I'. As I is free
the map Q — Q/I" is unramified, therefore the branch points of X — FE are
equal to those of Q — Q/G. Thus both necessary informations for X — FE
to be a p-adic origami (the genus of E and the number of branch points) are
coded in the quotient graph G*(G) (as its genus and the number of its ends).
We will now give two examples of how we can use this to construct p-adic
origamis.

Example 4.3. Let p > 5 and n € N be odd, ¢ € C, be a primitive n-th root
of unity, ¢ € C, with |¢| < |1 — (] and set

(¢ 0\ 0 1 (14q 1—¢
5‘(0 1)’ <1 0) 7_(1—(; 1+q)

Thus ¢ is elliptic of order n with fixed points 0 and oo, the involution o
exchanges the fixed points of § and has fixed points 1 and —1, and 7 is
hyperbolic with the same fixed points as ¢. Then we have

e yo=o0vand o =of !
e A :=(0,0) is the dihedral group D,, and fixes a single vertex A(5) N.A(0).
o I':=(§y5":i€{0,...,n— 1}) is a Schottky group on n free generators.

e ['is a normal subgroup of G := (0, 0,7) of index 2n, hence Q(G) = Q(I)

Q). Tt is the kernel of the map ¢ : G — A defined by ¢|a = id and p(v) = 1.

The quotient graph G* of /G is

where we use the arrow to indicate an end of this graph.

Since G* has genus 1 and one end the map Q/T" — /G is a normal p-adic
origami with Galois group G/I" = D,,.

A more detailed investigation of this origami can be found in [Kre|, Be-
merkung 4.3.
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Example 4.4. Let p > 5 and ¢ € C, be a third root of unity, ¢ € C, with
lg| small enough® and set

qg O

0 1

C(COy (.
=)= ()

Thus ¢ is elliptic of order 3 with fixed points 0 and oo, and +y is hyperbolic with
the same fixed points. The fixed points of the involution o are —%(1 + \/3),
those of ¢do are 0(0) =1 and o(c0) = —1. Then we have

e v0 = v and (60)® =id
e A := (0,0) is the tetrahedral group A, and fixes a single vertex A(0)NA(c).
o I':=(aya™t:a € T)is a Schottky group on 4 free generators.

e ['is a normal subgroup of G := (d, 0, v) of index 12, hence Q(G) = Q(I)

Q). Tt is the kernel of the map ¢ : G — A defined by p|ax = id and () 1

The quotient graph G* of Q/G is

Since G* has genus 1 and one end the map Q(T")/T" — Q(G)/G is a normal
p-adic origami with Galois group G/T" & Ay.

A more detailed investigation of this origami can be found in |Kre|, Be-
merkung 4.4.

We will see in Section 4.3 that the quotient graphs G* of all non-trivial normal
p-adic origamis look similar. We will then use this to investigate how the
groups G and I" have to be chosen such that the map Q/I' — Q/G becomes
a p-adic origami. But first we have to study the quotient graph G* more
closely.

4.2 Properties of the quotient graph

A graph of groups G* is called p-realizable”, if there exists a finitely generated
discontinuous group G C PGLy(C,) with G* = G*(G). Let G™ resp. G" be
the subgraph of G* containing only vertices and edges with non-trivial resp.
non-cyclic groups.

6This is made more precise in [Kre|, Bemerkung 4.4.
"In this section we will often just write realizable if the statements hold for arbitrary p.
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Theorem 4.5. The number of ends of a realizable graph G* is
n=x(G") +2x(G")

where x(G) is the Euler-characteristic® of a graph G (for infinite G we take
the limit of x for all finite subgraphs of G).

Proof. Let D resp. d be the the number of vertices resp. edges in G"°. Then
Xx(G") = D — d. Analogously let C resp. ¢ be the number of vertices resp.
edges in G\ G™. Thus x(G™) = (C' 4+ D) — (¢ + d). Then we have to show

n=D—-d+2((C+D)—(c+d)=2(C—-c)+3(D—d)
Thus our statement is just a reformulation of [Bra2|, Theorem 1. O

Lemma 4.6. Let G be a finitely generated discontinuous group and let N
be a subgraph of G*(G). Then there exists a subgroup N of G with quotient
graph N* := G*(N) D N, such that the difference between the two graphs N
and N* is contractible®, except for the ends of N'*.

Proof. Choose a spanning tree of N by deleting edges {ey, ..., e,} and let N
be a preimage of this spanning tree in 7*(G). For each edge e; connecting
vertices v; and w; let é; be the lift of e; with v; € N and é. the lift with
w; € N. The other endpoints @; and 0 of é; resp. €, cannot be contained in
N because otherwise N would contain a circle. Let N be the subgroup of G
generated by all stabilizers of vertices in N and for each edge e; a hyperbolic
element 7; mapping an 0; to 0.

Thus N is isomorphic to the fundamental group!® of the graph of groups
N by [Ser|, 1.5.4, Theorem 13. The stabilizers in A/ do not change if we
restrict the action from G to N, neither do the identifications of vertices via
the v;, hence the quotient graph 7*(G)/N contains A. Both graphs have
the common fundamental group N, thus their difference cannot change their
fundamental group, and therefore has to be contractible.

The tree 7*(N) is contained in 7*(G), hence G*(N) = 7*(N)/N is contained
in T7*(G)/N. Again both graphs have the common fundamental group N and
hence their difference is contractible. O

8Recall that the Euler-characteristic (number of vertices minus number of edges) equals
the difference of the first two Betti-numbers (number of connected components minus
genus).

9An edge in a graph of groups may be contracted if it is not a loop and the inclusion of
the edge group into one of its vertex groups is an isomorphism. After the contraction only
the other vertex remains. Such a contraction does not change the fundamental group'®of
the graph.

0For the definition of the fundamental group of a graph of groups we refer to |Ser],
L5.1.
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Proposition 4.7. Let G* be a realizable graph, and let C be a connected
component of G*°. Then there exists a realizable graph N* with N = C (up
to contractions) and g(N™) = g(N™*).

Proof. Let G be a finitely generated discontinuous group with G*(G) = G*.
Subdivide all edges emanating from C (which all have cyclic stabilizers), and
let O(C) be the set of all resulting edges in G* \ C which still have a common
vertex with C. For the graph C U 9(C) Lemma 4.6 yields a graph N'* with
N* D C. As N* and C differ up to contraction only by ends, and ends
are stabilized by cyclic groups, we get A" = C (up to contractions) and

gN™) = g(C) = g(N). =

Proposition 4.8. Let G be a connected graph of noncyclic groups with g(G) >
0. Then there exists no realizable graph G* with G* = G (up to contractions)

and g(G™) = g(G").

Proof. Assume there is a finitely generated discontinuous group G such that
G* := G*(G) has the stated properties. G™ is connected, because if o and
7 are elements of stabilizers of two different connected components of G",
then o7 is hyperbolic and its axis contains the path p between the axes of
o and 7. The image of A(o7) in G* is a circle which contains p and hence
an edge with trivial stabilizer. This would imply ¢g(G*) > ¢(G"°) contrary to
the assumption.

Thus we have g(G™) = ¢(G™) and both G™ and G"° are connected, hence
X(G™) = x(G™). Then Theorem 4.5 states x(G™) > 0. But we have x(G™) <
1 because G™ is connected and has positive genus. We thus get x(G™) =
X(G™) = 0 and therefore g(G™) = ¢(G™) = 1. Hence by Theorem 4.5 the
graph G* has no ends.

GG contains a normal subgroup I' of finite index which is a Schottky group.
As G* has no ends, the covering Q(G)/T" — Q(G)/G is unramified. As
9(Q(G)/G) = 1, we conclude g(2(G)/T") = 1 by Riemann-Hurwitz. There-
fore I' is generated by a single hyperbolic element . All the elements in
G have the same axis as 7 (because otherwise there would be ramification
points). Therefore every finite subgroup of G is cyclic, which contradicts the
assumption. [

Proposition 4.9. Let G* be a realizable graph. Then g(G™) = 0.

Proof. For every connected component of G"° this follows from Propositions
4.7 and 4.8. U
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Definition 4.10. Let G C PGL2(C,) be a discontinuous group, g(2(G)/G) =
0 and Q(G) — Q(G)/G ramified over exactly three points with ramifica-
tion indices my,m9,n3. Then we call G a (p-adic) triangle group of type
A(nl,ng,ng).

The graph G*(A(ny,ng,n3)) is a tree with exactly three ends, corresponding
to the three branch points. Conversely if G is a discontinuous group, G"™ is
a tree, and G is connected, then x(G™) = x(G™) = 1, and G is a triangle
group by Theorem 4.5.

Theorem 4.11. Let G* be a realizable graph and C be a connected component
of G". Then the fundamental group of C is a triangle group A. This means
that C can be replaced by a single vertex with vertex group A without changing
the fundamental group of G*.

Proof. Let N'* be the realizable graph associated to C by Proposition 4.7.
By Proposition 4.9 this graph has genus zero, so by Theorem 4.5 it has three
ends. Therefore the discontinuous group A with quotient graph N* is a
triangle group. O

Now we know that a p-realizable graph G with G*® # () can be made up of
vertices with p-adic triangle groups connected by edges with cyclic groups,
it becomes vitally important to find all triangle groups which can occur.
Fortunately for p > 5 those triangle groups are well-known:

Theorem 4.12. For every p there exist the classical spherical triangle groups
(i.e. those with nil + n% + nis > 1): the dihedral group D,, = A(2,2,n), and
the symmetry groups of the platonic solids Ay = A(2,3,3), Sy = A(2,3,4)
and As = A(2,3,5). For p > 5 there are no other p-adic triangle groups.

Proof. Let A be one of the given groups. It is a finite subgroup of PGLy(C,)
and hence discontinuous. Its quotient graph G*(A) consists up to contraction
of only one vertex (otherwise A would be a non-trivial amalgam or HNN-
extension of smaller groups, hence would not be finite). This vertex has to
be fixed by the whole group, which is non-cyclic, hence x(G"¢) = x(G™) = 1.
Therefore A is a triangle group by Theorem 4.5.

Now let A be a triangle group for p > 5. We have g(G*(A)) = 0, hence
x(G™) > 1 and x(G™) > 1. By Theorem 4.5 we have then x(G"°) = x(G™) =
1, hence both graphs are connected. One can show that for p > 5 all edges
of a realizable tree of groups can be contracted, which leaves a single vertex.
The stabilizer of a vertex always is a finite subgroup of PGL4(C,) and hence
either cyclic or isomorphic to one of the groups stated (for a proof we refer
to |Kre|, Satz 2.7). O
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For p < 5 there are additional non-spherical triangle groups. Bradley, Kato
and Voskuil are currently working on their classification |BKV|. A prelimi-
nary version and an idea of the proofs can be found in |Katl|.

Example 4.13. For p = 5 an elliptic element § of order 5 fixes not only its
axis, but also all vertices contained in a small tube around this axis. Thus
if we start with a vertex v € B on the axis of § fixed by a dihedral group Ds
generated by an element o of order 2 and 9, then § fixes also other vertices
on the axis of 0. These vertices have the stabilizer (o,d) = Dj and we can
find two elements 7 and 7’ of order 3, each with an axis through one of those
vertices but not through v, such that the stabilizers of these two vertices
under the action of G := (0,0, 7,7') are (0,d,7) = As and (0,6,7') = A;
respectively. If we do all this carefully we can get a discontinuous group
whose quotient graph looks like this:

Cs3 . Ds . Ds Cs3

As Ds As
Cs

The generated group is thus a p-adic triangle group of type A(3,3,5). It is
the fundamental group of the graph shown above, which is A; *p, A5, where
*p, 1S the amalgamated product over the common subgroup Ds. Details
about amalgams as fundamental groups of trees of groups can be found in
[Ser|, [.4.5.

One can generalize this example by starting with the dihedral group Ds, for
n € IN. Then 6™ has order 5 and can be used to construct two stabilizers
isomorphic to As. This results in a discontinuous group As *p, D5, *p, As,
which is a p-adic triangle group of type A(3,3,5n).

4.3 Normal p-adic origamis

After the preliminaries in the last two sections we are now ready to formulate
our main result. We will restrict ourselves to ramified p-adic origamis, i.e.
the case g(X) > 1. We are particularly interested in normal origamis, which
we will now classify:

Theorem 4.14. Let X — E be a normal p-adic origami with g(X) > 1.

Then there a is discontinuous group G and a Schottky group I' < G of finite
index such that X = Q/I' and E = Q/G with Q := Q(I') = Q(G).
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The group G is isomorphic to the fundamental group of the graph of groups

C
A

where A is a p-adic triangle group of type A(a,a,b). This means that G is
isomorphic to the fundamental group of this graph.

Thus we get
G = (A, v; you = ay) with a; € A of order a.
The Galois group of the origami is G/I.

Proof. X is a Mumford curve, hence there is a Schottky group I' € PGLy(C,)
such that X = Q(T")/T". The automorphism group Aut X is isomorphic to
N/I', where N is the normalizer of I' in PGLy(C,) (this is a theorem from
|GP], VII.2). The Galois group of the covering X — E is a finite subgroup
of Aut X and therefore takes the form G/T", where I" is a normal subgroup
in G C N of finite index. In this case G is discontinuous and Q(G) = Q(T").

The genus of G* := G*(G) equals the genus of E, which is 1. The number
of ends of G* equals the number of branch points of the map Q@ — Q/G. As
the map Q — Q/I" is unramified, this number equals the number of branch
points of X = Q/I' — E = Q/G, which is also 1. Thus G* is a realizable
graph of genus one with one end. The stabilizer of this end is a cyclic group
whose order equals the ramification index above the branch point.

We now prove that G™ can be replaced by a vertex whose vertex group is
a triangle group of the form A(a,a,b) (a,b € IN): We know ¢(G™) < 1,
hence x(G™) > 0, and the same holds for G*. Theorem 4.5 states x(G") +
2x(G™) = 1, therefore x(G™°) = 1 and x(G™) = 0. As g(G™) < 1 we conclude
g(G™) =1 and G™ is connected. Prop. 4.9 states g(G™) = 0, therefore G™ is
connected as well. By Theorem 4.11 we can replace G"® by a single vertex v
whose vertex group is a triangle group A. If we contract the rest of the graph
as much as possible, we get an edge from v to v with a cyclic stabilizer. This
stabilizer occurs therefore on two ends of G*(A) (this was N* in Theorem
411). O

Note we have seen in Theorem 4.12 that the spherical triangle groups of type
Ala,a,b) are D, = A(2,2,n) and Ay = A(2,3,3), and for p > 5 there exist
no other ones. For p < 5 there are additional possible triangle groups, for
p =5 we have seen the type A(3,3,5n) in Example 4.13.

We now know that normal p-adic origamis are always of the form Q/T" —
/G, and we know quite well which groups G can occur. It remains to
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investigate what groups I' are possible. The only restriction we have for I' is
that it has to be a Schottky group of finite index and normal in G: As the
covering Q2 — /I" is always unramified the ramification of Q/I' — Q/G is
equal to the ramification of 2 — Q/G and hence only depends on G. The
genus of /G also does not depend on the choice of T'.

Theorem 4.15. Let G C PGLy(C,) be a finitely generated discontinuous
group and I' be a normal subgroup of G of finite index. Then the following
statements are equivalent:

i) I is a Schottky group
ii) T NGy = {1} for every vertex group G; in G*(G).

Proof. i) = ii) is easy: The vertex groups are finite, therefore every g € G;
has finite order. I" does not contain elements of finite order. Thus I' N G; is
trivial. For ii) = i) we proceed with three steps:

Step 1: Every element of I' has infinite order: G is the fundamental group
of G*(G), hence an HNN-extension of an amalgamated product of the G;. If
g € G has finite order n > 1, then g is conjugated to a ¢’ € G; (see |LS|,
IV.2.4 and IV.2.7) with ord(¢') = ord(g) > 1. But by assumption ¢’ ¢ I" and
hence g € I" as I is normal in G.

Step 2: I' is free by Thara’s theorem (|Ser|, I.1.5, Theorem 4): G acts on the
tree 7*(G) with quotient graph G*(G). Foran z € T*(G) let g € Stabg(x) be
non-trivial. Then g has finite order, and with step 1 we see g & I'. Therefore
the action on 7*(@G) restricted to I' is free, thus I' is a free group by [Ser],
§3.3.

Step 3: I' is a Schottky group: I' is by definition a finite index normal
subgroup of G. It is discontinuous because G is and it contains no elements
of finite order. It is finitely generated because G is (by Reidemeister-Schreier,
|LS|, Prop. 11.4.2). Thus we know that I" is a Schottky group. We can even
find a finite set of free generators of I' by looking at its action on 7*(G): this
action has a finite fundamental domain and this domain therefore has only
finitely many neighboring translates. The set of these neighboring translates
corresponds to a finite set of free generators for I'. O

We are especially interested in the resulting Galois group H := G/I". Thus
we now answer the question what choices of I' are possible if we fix this Galois
group:

Corollary 4.16. Let H be a finite group and G C PGLy(C,) be a finitely

generated discontinuous group. Further let I' be the kernel of a homomor-
phism ¢ : G — H. Then the following statements are equivalent:
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?

i) T is a Schottky group

i) ¢|g, is injective for every vertex group G; in G*(Q).

Proof. Follows with ker(y|g,) = I' N G; from the Theorem. 0O

Example 4.17. a) Set G,, := (D,,v; yo = 07) as in Example 4.3 (with n

odd and ord(c) = 2). We extend this example: Choose m € IN and
define ¢ : G,, — D, x Cp, by ¢|p, = (id, 1) and ¢(v) = (1,¢) where ¢
is a generator of C,. Then Corollary 4.16 states that [ := ker(y) is a
Schottky group and the Galois group of the p-adic origami Q/I" — Q/G
is D,, x Cp,. Note that I" C I' := ker(G,, — D,) for every m, thus we
have a covering of origamis Q/I" — Q/I' — Q/G. We will investigate
such coverings in Section 4.5.

Set G := (Ay4,7; 76 = ) as in Example 4.4 (with ord(J) = 3). We extend
this example as in a): Choose m € IN and define ¢ : G,, — Ay x C,, by
©ola, = (id,1) and ¢(y) = (1,¢) where ¢ is a generator of C,,. Then
Corollary 4.16 states that IV := ker(y) is a Schottky group and the Galois
group of the p-adic origami Q/I" — Q/G is Ay x C,,. Note that IV C
I':= ker(G,, — A,) for every m, thus we have again a covering of origamis

Q/I" - Q/I' - Q/G.

In Example 4.13 we have constructed the 5-adic triangle group A(3,3,5) =
As xp, As. The group G := (A5 xp, As,7y; 701 = d2y), where the 6; of or-
der 3 are chosen out of the two different As-components, can be embedded
into PGLy(Q5) (to show this one can use [Kat2|, Theorem II). Then we
can define ¢ : G — Aj as the identity on both As-components of the
amalgamated product, and ¢(y) = 1. This leads to a 5-adic origami with
Galois group As.

Take the group Gj from part a) and consider the homomorphism ¢ :
G5 — PSLy(Fy;) defined by

=D w0 =)

We can calculate that this is indeed a homomorphism by checking the
relations of G5 for the given images of . We can also check that ¢ is
surjective and that ¢|p, is injective. Hence ker(y) is a Schottky group
and the corresponding origami has Galois group PSLo(IF1).
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4.4 Automorphisms of p-adic origamis

The Galois group of the covering X — FE is a subgroup of the automorphism
group Aut X. For normal complex origamis we know from Proposition 3.12
that the Galois group consists precisely of all possible translations. In Propo-
sition 3.13 we have seen that if the automorphism group is strictly larger than
the Galois group, then there have to be automorphisms which are not trans-
lations, i.e. there is an automorphism which does not induce the identity but
an involution on E. We now investigate the implications if this happens in
the p-adic setting.

Theorem 4.18. In the situation of Theorem 4.14 let Aut(X) contain an
element o of order 2 which induces a non-trivial automorphism & of E fixing
the branch point of X — E. Then there is a discontinuous group H contain-
ing G as normal subgroup of index 2, which is isomorphic to the fundamental
group of the graph of groups

where Ay is the p-adic triangle group of type A(2,2,a), i.e. Ay = D,, and
Ay is a p-adic triangle group of type A(2,a,2b) containing A of index 2.

Proof. Let L be the subgroup of Aut X generated by o and the Galois group
Gal(X/E). Every ¢ € L\ Gal(X/FE) induces 7 on E, thus foo € Gal(X/FE).
Hence L contains Gal(X/E) with index 2, and therefore as a normal sub-
group. As in the proof of Theorem 4.14 we have L = H/T" and for a discon-
tinuous group H and Gal(X/FE) = G/T" for normal subgroup G of index 2 in
H with Q(H) = Q(G) = Q(I"). Now Q/H 2 E/ (o) =: P.

The branch point of X — F is a fixed point of @ and therefore a ramification
point of £ — P. By Riemann-Hurwitz this means that g(P) = 0 and there
are four ramification points of £ — P. As the degree of the map £ — P
is 2, and this is also the ramification index of the four ramification points,
we know that there are also exactly four branch points. The composition
X — P of the maps thus has four branch points. Over three of them the
map X — F is unramified, therefore the corresponding ramification indices
of X — P are 2. Over the fourth branch point the map X — FE is ramified
with ramification index b, thus the total ramification index is 2b.
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Now let H* be the quotient graph corresponding to H. Since Q/H = P the
graph H* is a realizable graph of genus zero with four ends. The stabilizer of
one end is a cyclic group of order 2b, the stabilizers of the other three ends
are cyclic groups of order 2.

We have g(H*) = 0, thus this also holds for all subgraphs of H*. Therefore
any Euler characteristic equals the number of connected components and we
have x(H™) > 1 and y(H™) > 1. As x(H") + 2x(H™) = 4 by Theorem
4.5, we conclude x(H") = 2 and x(H™) = 1. Thus H"® has two connected
components, which we can by Theorem 4.11 both replace by single vertices
whose vertex groups are triangle groups A; and A,. Furthermore H™ has to
be connected, therefore those two triangle groups have to be connected by
a path with a nontrivial cyclic stabilizer. This path can be contracted to a
single edge.

It remains to find the connection between the stabilizing groups of G* and
H*. We get the graph H* as the quotient of G* by o (if we ignore the ends
of both graphs). The single edge from G* has to be mapped to itself and
inverted (because otherwise there would still be a closed edge in H*). Thus
we have to insert a vertex on this edge and for constructing the quotient G*
we have to take one of the half edges. Therefore the stabilizer of this edge
(as it is not fixed by o) is the same as before (namely C,) and the original
vertex is fixed by A and o. O

Example 4.19. Let ¢ be a primitive 10-th root of unity and choose ¢, o and
7 as in Example 4.3. Then the group G := (§2,0,7) corresponds to the case
n = 5 of this example. But if we work out the quotient graph of H := (§, 7, )
we note that while there still is a vertex with stabilizer (o, d) = Djy now the
element 5 is elliptic of order 2, but does not fix this vertex. Instead there
is now another vertex fixed by 6% on the axis of o, its stabilizer is therefore
(0,70%) = Dy. This means that v does not create a circle in the graph any
more, but the quotient graph becomes

Now we define a homomorphism ¢ : H — PSLy(Fy1) x Z/2Z by

wo=((35) o) =[G w)) 0= E)0)
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As in Example 4.17 d) we can check that this is indeed a homomorphism and
is injective when restricted to the vertex groups. Note that p(62) = ((29),0),
thus ¢|g is exactly the homomorphism considered in Example 4.17 d), and
we have ker(p) = ker(p|g) = I'. Thus the p-adic origami Q/I' — Q/G can
be extended to Q/I" — Q/H with Galois group H/T' = PSLy(FFy1) X Z/27Z.
This means that the automorphism group of this origami contains the group
PSLy(IFq1) x Z/27.

4.5 Coverings of p-adic origamis

Definition 4.20. We call a p-adic origami Q/I" — Q/G simple if it covers

one of the origamis from Examples 4.3 and 4.4. This means we have Q /I —
Q/I' = Q/G where

G =(A=D,,v;y0 =0v) withn € N odd and ¢ € D,, of order 2 or
G = (A = Ay,v;7v0 = dv) with 6 € Ay of order 3.

I and I are free normal subgroups of finite index in G, and G/T" = A.

Theorem 4.21. Let G, A and « be given as in the definition above, ¢ : A —
Aut(K) an action of A on a finite group K and 5 € K an element which is
fized by all 6 € A which commute with v in G.

Define ¢ : G — A xy, K by 6 — (0,1) for all 6 € A and v — (1,7%) and
set I" = ker(y)). Then Q/I" — Q/G is a simple p-adic origami with Galois
group Tm(2)).

FEvery simple p-adic origami is of this type.

Proof. “=": Let K, ¢ and 7 be given. We have homomorphisms
G- AN, K- A

where p is the projection to the first component. As 1| is injective IV is
a Schottky group by Corollary 4.16. We see I' = ker(p o ¢), thus IV C T,
therefore we have homomorphisms Q/T" — Q/T' — Q/G. The Galois group
of the composed covering is G/T" = G/ ker(¢) = Im(2)).

“<” Let Q/I" — Q/G be a simple p-adic origami. We have homomorphisms
(A7) =G = G 5 (G/T') (/1) = G/T = A

where foq is an isomorphism on A and maps v to 1. Therefore 5(a(v)) =1,
thus a(y) € ker(3) =: K. Moreover 3|4(a) is an isomorphism. We get a split
exact sequence



46 CHAPTER 4. THE NON-ARCHIMEDEAN WORLD
0—K—G/I'—A—0
<~

Thus there is an isomorphism from G/I" to a semidirect product A x, K
where ¢ : A — Aut(K) is the homomorphism induced by the split exact
sequence, i.e. conjugation by «(A). The restriction of this isomorphism to
A is given by the inclusion § — (9,1). The image of «y is in the kernel of p,
hence of the form (1,7) for a7y € K.

Now let 6 € A be given with v6 = 7. In A x, K this means

(0,7) = (L,7)(0,1) = (6, 1)(1,7) = (4, %(3)(7))
Therefore ¢(0) fixes 7. O

Corollary 4.22. Let Q/T" — Q/T be a simple p-adic origami with 6y = 4§
in G/T" for all 6 € A. Then the action in the last theorem is trivial on 7,
thus the Galois group of this origami is A x Z./mZ. for an m € .

Example 4.23. Set G = (A = D,,,v;y0 = o7) with n € N odd and ¢ € D,
of order 2. A acts on the set {1,...,n}. As n is odd o has a fixed point k.
Now choose m € N, set K := (Z/mZ)", let 7 := e, € K be the k-th unit
vector and define ¢ : A — K by 0 — ((x;) — (xs4;))). By the theorem this
defines a simple p-adic origami /I — Q/G.

As G — A x,, K is surjective, the Galois group of this origami is A x, K.
The same works for G = (A = Ay, v;76 = dv) with § € Ay of order 3: A acts
on {1,2,3,4} and 0 has a fixed point. Thus we can define a simple p-adic
origami with Galois group A x, (Z/mZ)*.



Chapter 5

Connecting both worlds

In the first three Chapters we have investigated origamis over C, while in
Chapter 4 we defined origamis also over C,. Now we want to connect both
worlds: An origami-curve in M, ¢ is always defined over Q, and thus defines
also a curve in M @, and this curve can in turn be interpreted as a curve in
Mg.c,- Now we ask the question: Does this curve intersect the subspace of
M, ¢, containing Mumford curves?

The resulting points in M, ¢, are still curves which cover an elliptic curve
with only one branch point. Thus those curves are Mumford curves if and
only if they occur as p-adic origamis. We have introduced several invari-
ants of origami-curves in the last chapters, some of which turn up in both
worlds: The ramification indices, the Galois group of a normal origami and
its automorphism group. By the Lefschetz principle (|Lef], Appendix) these
algebraic properties of the origamis coincide over C and over C,. In some
cases this is enough information to identify the complex origami-curve which
belongs to a given p-adic origami.

5.1 Base change of schemes

Let X¢ — E¢ be an origami over C. We can write E¢ = E¢, = C/(Z+TZ)
with 7 € H, where 0 is the only branch point of X¢ — Eg. We have the
Weierstrass-covering o : E¢, — P!(C). For any ramification point z # 0 we
have ¢ (x)? = 4¢°(x) — g2p(x) — g3 = 0, s0 if g5, 95 € Q we get p(z) € Q.
As p(0) = oo Belyi’s theorem would then imply that both X¢ and Eg are
defined over Q. Therefore we then have Xg and Eg over Q with the following
diagram of base changes:

47
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XQ XQ C= X@ XQ X@p = XQ XQ Cp
E@XQC:E@ E@ ECPZEQXQCIJ

By varying 7 € H we get a curve in the moduli-space M ¢, which leads
to a curve in M, g, which itself can be considered as a subset of a curve in
Mg.c,. This curve may or may not intersect the subset of Mumford curves

in Mg@p.

Example 5.1. Consider the origami from Example 3.19:

2 3 6
o 4|56
g1 123"
1 4 5

Kappes has proven in |Kap|, Theorem IV.3.7 that the origami-curve in M, ¢
of this origami contains all the curves birationally equivalent to

v = = ) - ) (2~ (29)7)

for A € C\ {O,:tl,—%,—2}. If we now restrict the choice of A to @, we
get a curve in M g. We can now change the base of this curve to C, for
an arbitrary prime p. This will result in a curve in M, ¢,. Does this curve
intersect the subspace of M, ¢, containing Mumford curves?

Fortunately [Bra3|, Theorem 4.3 offers a criterion for a hyperelliptic curve
X to be a Mumford curve: This is the case if and only if the branch points
of X — P! (in our case +1, £\ and :i:/\%rl) can be matched into pairs (a;, b;)
such that P! can be covered by annuli U; each containing exactly one of those
pairs. In our case we consider only p > 2, set A := ¢ — 1 for any g € C; with

lg| < 1 and match the points as follows:

a; =1, by =-A=1—¢q =lap —bi| =g <1
az = —1, by=A=¢q—1 =lag — by = |q| < 1
a=2r=1g-1), b=-tg-1)  =lal=|b =]} >1

Thus we can choose U; = B(1,1) \ B(—1,|q|), U, = B(1,1) \ B(1,|q|) and
Us =P'\ B(1,1) to get the desired covering’.

!The balls B(xz,r) were defined in Section 4.1.
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In general it is almost impossible to find the equation of a given origami.
Therefore we would like a simpler approach, and we will do this the other
way round: We have already constructed p-adic origamis, now we try to
match them to the corresponding complex origami-curve. We will do this by
matching some of the invariants we have calculated for both of them in the
previous chapters.

5.2 Galois groups with a unique curve

Some Galois groups occur only for a single origami-curve over C. We will now
prove that this is the case for the Galois groups D,, X Z/mZ and Ay X Z/mZ.,
which occurred as Galois groups of p-adic origamis in Example 4.17 a) and

b).

Lemma 5.2. Let f : Fy — Z/mZ be surjective. Then up to an automor-
phism of Fy we can assume f(z) =1 and f(y) = 0.

Proof. Let ¢, ¢, € N with ¢, = f(z) and ¢, = f(y) in Z/mZ.

We prove first that we can choose the representatives c, and ¢, coprime: Let
p; be the prime factors of ¢, and set

c, ::cy+m-Hpi

pifey

Assume that there is a p; which is a factor of ¢. If p; | ¢, then p; would also
have to be a factor of the right-hand summand, and as it is not contained
in the product we would then have p; | m. But this contradicts (c,,c,) =
Z/mZ. If on the other hand p; { ¢,, then p; would be a factor of the right-hand
summand but not of the left one, which would contradict the assumption.

Therefore no p; is a factor of ¢, thus ged(c,, ¢,) = 1. We can replace ¢, by
c; as both are equivalent modulo m.
Now ged(cs, ¢y) = 1, thus there exist a,b € Z with ac, + bc, = 1. Set

A= (Z ‘Cy) € SLy(Z)
and let ¢ € Aut(F3) be a lift of A. As Z/mZ is abelian we get a commutative
diagram

' z/mZ
N

Z2

N A

N

Z2

7
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where P is the multiplication with A. Thus

top0 =Tow) (o)) =7((5)) =aee + 00 =1
tonw =Tow (1)) =7((7)) = e+ -0

Proposition 5.3. Let n,m € IN and n be odd. Up to an automorphism of
F; there exists only one origami with Galois group D,, X Z./mZ..

O

Proof. Choose o, € D,, with (o, 7) = D,, and ord(c) = ord(7) = 2, and set
0=oT.

Let f : F5 — D, x Z/mZ be the monodromy of a normal origami. By
Lemma 5.2 we can apply an automorphism of Fy to get f(z) = (o, 1) and
fly) = (8,0) for some a,3 € D,. As f has to be surjective we know
(ar, B) = D,,. Up to an automorphism of D,, we have three cases:

i) ord(a) = 2,ord(8) =2, wlo.g. (a,3) = (1,0)
ii) ord(a) = n,ord(8) = 2, w.lo.g. (o, 3) = (8,0)
iii) ord(a) = 2,0rd(8) =n, wlo.g. (a,8) = (1,0
We can apply ¢ € Aut(F;) with  — yx and y — y to get from i) to ii):

(fow)(@) = flyz) = (07,0 + 1) = (6,1) and
(few)y) = f(y) = (0,0)

For odd m we can apply ¢ € Aut(F,) with x — z and y — ya™ to get from
i) to iii):

(fop)(z) = f(x) = (7,1) and
(fop)y) = flyz™) = (o7™,0+m) = (4,0)

For even m case iii) is not possible, as f would not be surjective: Assume
there is a preimage z € f~!(id, 1). We know that f(zy) = f(y~'x) (because
this holds in both components). Thus we can choose z of the form x%°, its
image is (7%6°,a). Now for f(z); = id we need a even, but for f(z); = 1 we
need a = 1 in Z/mZ. For even m this is impossible. Therefore there is no
preimage of (id, 1) in this case. O
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Proposition 5.4. Up to an automorphism of Fy there exists, for anym € IN,
only one origami with Galois group Ay X Z./mZ.

Proof. Let f : Fy — Ay X Z/mZ be the monodromy of a normal origami.
By Lemma 5.2 we can apply an automorphism of F, to get f(z) = (a,1)
and f(y) = (3,0). As f has to be surjective we know («, ) = A4. Up to an
isomorphism of A, we have four cases:

i) ord(a) = 2,0rd(8) = 3, w.lo.g. (a,8) = ((12)(34),(234))
i) ord(a) = 3,0rd(8) = 2, w.lo.g. (a,8) = ((123), (12)(34))
i) ord(a) = ord(8) = 3, ord(af) = 2, w.lo.g. (a, ) = ((123),(234))
iv) ord(a) = ord(3) = 3, ord(a3) = 3, w.lo.g. (a,3) = ((124),(234))

We can apply ¢ € Aut(F;y) with x — zy and y — y to get from iii) to i):

flry) = ((123)(234),1) = ((12)(34),1) and
fly) = ((234),0)

1

We can apply ¢ € Aut(Fy) with z +— xy~" and y — y to get from iii) to iv):

flzy™) =((123)(243),1) = ((124),1) and

(fo@)(x) (
fly) = ((234),0)

(fop)(y)

If m is not divisible by 3 choose k£ € IN such that km =1 mod 3. We can
then apply ¢ € Aut(F3) with x — z and y — 2™y to get from iii) to ii):

(fow)(z)
(fow)(y)

f(x)=((123),1) and
fz"™y) = ((123)(234),0+ km) = ((12)(34),0)

If m is divisible by 3, case ii) is not possible, as f would not be surjective:
Assume there is a preimage z € f~!(id, 1). As the first component of f(z)
is id € A, the presentation of A, tells us that the element z is contained in
the normal subgroup generated by 4%, 23 and (yz)?, and hence is a product
of conjugates of those elements. But f(y?) = (id, 0) and f(2?) = f((yx)?) =
(id, 3). Therefore the second component of f(z) is divisible by 3. As m is
also divisible by 3 this contradicts f(z) = (id, 1). O
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Example 5.5. In Example 5.1 we have shown that the origami O defined

by ]

6 |a

2
6 4

3
5
1
6
3311231t
1T 4 5

occurs as a p-adic origami. Now we have an alternative way of showing this:
Let O’ be the minimal normal cover of O studied in Example 3.19. We have
seen there that the Galois group of O is A4. Proposition 5.4 tells us that
the origami-curve of O’ is the only curve with this Galois group.

In Example 4.4 we constructed a p-adic origami with Galois group Ay; in fact
one for every suitably chosen ¢ € P'(C,). If one of those origamis X’ is (as
an algebraic curve) defined over  and hence over C then it has to occur on
the origami-curve of O’. The covering O’ — O leads to a morphism X’ — X
where X is on the origami-curve of O. As X’ is a Mumford curve the same
holds for X by [Bral], Satz 5.24.

5.3 When the group is not enough

In section 2.2 we have proposed an algorithm to find all complex origami-
curves of normal origamis with a given Galois group H. This results in a set
of representative origamis given as epimorphisms f : F5, — H as described
in Proposition 1.6. For most groups there is only one curve with the given
Galois group, but there are cases where there are more than one?. The
smallest example for such a group is the group A5 where there are two curves.
Representatives are given by

fi:Fy— As, x+—(15342), y+— (13245) and

fo:Fy — As, x+— (15243), y+— (23)(45)
We can easily see that those two origamis do not define the same curve: In
Corollary 3.3 we have seen that the ramification index of a normal origami

is the order of f(zxyz~'y~'). Hence the ramification indices of those two
origamis are

ord(fi(zyz~'y™)) =5 and ord(fy(zyr'y™t)) =3

2There are 2386 groups with order less than or equal to 250 which can be generated
by two elements. Of these there are only 30 where there is more than one curve with this
Galois group. We list those groups in Appendix A.3.
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Example 5.6. In Example 4.17 ¢) we have investigated a 5-adic origami
with Galois group As. Our 5-adic origami had ramification index 5 (recall
that this was the order of the cyclic stabilizer of the single end of the quotient
graph), hence this corresponds to the curve of the origami defined by f;.

Sometimes fixing the ramification index makes the origami-curve unique.
But there are still some cases where two curves have equal Galois groups and
equal ramification index. An example for such a group is the group PSLy(F7),
where there are even four curves, represented by f; : F5 — PSLy(F;) with
fi(z) = 0; and fi(y) = 7; with

(1 2 (0 6
01 =02 =03 = 5 4)° 04 = 1 6

(60 B (13 (63
= 2 6/’ To = 04, T3 = 6 5)/° Ty = 3 4

The two curves defined by f; and f; both have ramification index 4.

We have seen in Proposition 3.13 that the automorphism group of an origami
is isomorphic to Cy X H where ® : Cy — Aut(H) maps the generator of the
cyclic group Cy to the automorphism ¢ of H defined by ¢(f(z)) = f(x)!
and o(f(y)) = f(y)~!. In the example above with Galois group PSLy(IF;)
and ramification index 4 the automorphism groups are isomorphic and hence
can not be used to distinguish those two curves. But in some cases they are
helpful:

Example 5.7. In Example 4.17 d) we have investigated a 5-adic origami with
Galois group PSLy(IFy;) with ramification index 5. There are four possible
origami-curves, represented by f; : F5 — PSLy(Fy;) with f;(x) = o, and
fi(y) = 7; with

(46 /10 10
0-1_0-2_0-3_ 8 4 9 04_ 7 6

B (21 (14 (410
71 = 04, T2 = 8 10/’ T3 = 0o 1/ Ty = 0 3

The automorphism groups of f, and f; are isomorphic to PSLy(IF;) X Z /27,
while the other two are isomorphic to Aut(PSLy(IFy;)). We have seen in
Example 4.19 that the automorphism group of the p-adic origami contains
PSLy (1) x Z /27, thus the corresponding complex origami-curve is either
defined by fy or f;. We can presently not decide which of the two curves is
the right one, and the reason for this will become clear in the next section.
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5.4 Twin curves

Consider the origami shown in Figure 5.1.

15 20 22 19 14 23
1201112011 70 8 | 9 (10| 7 8
24| 23 | 24 23 190 20 | 21 | 22 | 19 |20

7 4 12 1 8 9

17 24 21 18
6] 3 | 4 41|12

5 6
1415 |16 | 17 |18 | 13| 14 |15
115 6 5 3 2 ) 5 61[]
18 17

Figure 5.1: An origami O whose curve is not fixed by complex conjugation

This origami has 12 unramified punctures and four punctures with ramifica-
tion index 3. Its genus is ¢ = 5. The index of the (projective) Veech group
is 6. The origami-curve has genus 0 and has three cusps, all of width 2. The
intersection graphs of the stable curves at these cusps are shown in Figure
5.2. There is only one non-trivial automorphism, which is even a hyperellip-

(1,6) (1;4)
«—0 -
(2,8)  (2,8) ) 00 )
04) (16) (02) 0.2) 0.2)
_
(0,2)

Figure 5.2: Intersection graphs of the stable curves at the cusps of ¢(O)

tic involution. It fixes two points of ramification index 3 and ten points of
ramification index 0. A canonical spin structure exists, its parity is even.

There is a natural action of the absolute Galois group Gal(Q/Q) on origami-
curves, and by |Mél|, Theorem 5.4 this action is faithful, i.e. for every o €
Gal(Q/Q) there is an origami-curve ¢ which is mapped to another origami-
curve ¢ # ¢ by 0. One would expect the properties of the curves ¢ and ¢
to be quite similar.

The origami above (constructed by Florian Nisbach, |Nis|) is an example
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for an origami-curve which is not fixed by the complex conjugation, but is
instead mapped to the curve of the origami shown in Figure 5.3.

6 5

17 18 [13 16| 17 |18

23 13 16 20
411215163470
18 13 | 14 150 4 15 | 16 |17

5 12 7 6

21 14 24 15 22 19
120 11 |12 11 910 7 | 8 | 9 |0
24/ 23 | 24 23211 22 | 19 | 20 | 21 |22

1 10 8 9 4 11

Figure 5.3: The image of the ¢(O) under complex conjugation
Not surprisingly all the properties stated above hold for this origami as well.
We therefore arrive at

Conjecture 5.8. All the invariants of origamis introduced in chapter 3 are
also invariant under the action of Gal(Q/Q).

This would mean that we have to accept the fact that sometimes we cannot
distinguish certain origami-curves just by using our invariants.
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Appendix A

Algorithms and calculations

A.1 Counting origami-curves

This is an implementation of the algorithm outlined in section 2.2 written
for the computer algebra system MAGMA. It calculates a representative for
every origami-curve of origamis of degree d. The results up to degree 8 are
listed in section A.2.

Note that as the number of vertices of our graph grows exponentially we don’t
explicitly construct the graph completely before computing its connected
components to save memory. We rather choose a vertex, delete it, compute
its neighbors, continue with deleting those, and so on, until we deleted a
complete connected component. Thus the only thing we have to save is
whether a vertex is deleted or not.

Components := function(d)
Sd:=SymmetricGroup(d) ;
Idx := SetToIndexedSet(Set(Sd));
V := [[true : x in [1..#Sd]] : y in [1..#Sd]];
count := #3d"2;
result := [];

// Generators of Inn(Sd): conjugations with transpositions (1 i)

GenInnSd := [hom<Sd->Sd |
s:->8d![{@1,iQ@}]*s*Sd! [{@1,i@}]> : i in [2..d]];

while count gt 0 do // while there are vertices in the graph

// find an unused vertex (i,j)

o7
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i :=0;
repeat
i := i+1;
j := Index(V[i],true);

until i ge #Sd or j ne O;

// if the subgroup generated by i and j is transitive
// the vertex (i,j) describes an origami: then save it

if IsTransitive(sub<Sd | [Idx[i]

,I1dx[j]11>) then

Append("result, <Idx[i],Idx[j1>);

end if;

// delete the connected component of (i,j)

V[i] [j] := false;

count := count - 1;

todo := [<i,j>];

while not IsEmpty(todo) do
v := todo[#todo];
Prune(“todo) ;

// pick a vertex v

// calculate the endpoints of all edges starting at v

s := <Idx[v[1]],Idx[v[2]]1>;
E := [ <s[1],s[1]*s[2]>,
<s[2],s[1]~(-1)>]

cat [<f(s[1]),f(s[2])>

for e in E do

// GenOutF2: x->x, y->x*y
// x->y, y->x~(-1)

: f in GenInnSd];

// for all neighbours of v

n := <Index(Idx, e[1]), Index(Idx, e[2])>;

if V[n[1]1]1[n[2]] then
VIn[1]] [n[2]] := false;

count := count-1;
Append ("todo, n);
end if;
end for;
end while;

end while;
return result;
end function;

// if they still exist
// delete them from the graph
// and queue them for
// further calculation
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We can do the same thing for normal origamis by selecting a Galois group G and
then consider the graph with vertex set G x G. The only things that change are
the calculation of the generators of Aut(G) and the check for surjectivity instead
of transitivity.

Given a degree d one can use the small groups library of MAGMA to find all
groups of cardinality d, and thus one can easily create representatives of all normal
origami-curves of degree d.

Components := function(G)
Idx := SetToIndexedSet(Set(GR));
V := [[true : x in [1..#G]] : y in [1..#G]];
count := #G~2;
result := [];

// calculate generators of Aut(G)

p,AutG := PermutationRepresentation(AutomorphismGroup(G));
GenAutG := [Inverse(p)(f) : f in Generators(AutG)];

while count gt 0 do // while there are vertices in the graph

// find an unused vertex (i,j)

i:=0;
repeat
i = i+1;
j := Index(V[i],true);

until i ge #G or j ne O;

// if the subgroup of G generated by i and j is G itself
// the vertex (i,j) describes an origami: then save it

if #sub<G | [Idx[i],Idx[j]1]> eq #G then
Append ("result, <Idx[i],Idx[jl1>);
end if;

// delete the connected component of (i,j)

V[il[j]1 := false;
count := count - 1;
todo := [<i,j>];
while not IsEmpty(todo) do
v := todo[#todo]; // pick a vertex v
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Prune (™

// calc
s :=K<I
E :=[
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todo) ;

ulate the endpoints of all edges starting at v

dx[v[11],Idx[v[2]]>;
<s[1],s[1]*s[2]>, // GenOutF2: x->x, y->x*y
<s[2],s[1]~(-1)>] // x->y, y->x~(-1)

cat [<f(s[1]),f(s[2])> : f in GenAutG];

for e in E do // for all neighbours of v
n := <Index(Idx, el[1]), Index(Idx, e[2])>;
if V[n[1]1][n[2]] then // if they still exist
V[n[11]1[n[2]] := false; // delete them from the graph
count := count-1; // and queue them for
Append ("todo, n); // further calculation
end if;
end for;

end while;

end while;
return result
end function;

s

A.2 Origami curves up to degree 8

We use the algorithm described in section A.1 to list all curves of origamis with
up to eight squares. For each of the 207 origami-curves we list a representing
origami given by permutations o, and o,. We also calculate some of the invariants

described in chapter 3:

d the degree of the origami

g the genus of the origami

ram. the ramification indices of the punctures
d the index of the (projective) Veech group
g the genus of the origami-curve

n the number of cusps of the origami-curve

Aut  the number of automorphisms

is -1 an element of the Veech group? If there is even a hyperel-
liptic involution we mark this with ‘h’.

the connected component in the moduli space J# of Abelian
differentials (‘h’ if the property “hyperelliptic” is satisfied, 0 or
1 for the parity of the canonical spin structure if it exists)
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Oz oy ‘d‘g‘ ram. d g‘n‘Aut‘—l‘jf‘
id id 1)1 1 1 0| 1 2 | h| 1
(12) (12) 2 |1 11 3 0| 2 4 | h| 1
id (132) 301 111 4 0| 2 6 | h| 1
(12) (23) 3|2 3 3 0| 2 2 | h|hi
(12)(34) (13)(24) 411 1111 1 0| 1 8 | h| 1
id (1432) 411 1111 6 0| 3 8 | h| 1
(12) (243) 412 13 9 0| 3 2 | h|hi
(132) (12)(34) 42 22 4 0] 2 2 | h
(12) (13)(24) 42 22 6 0] 3 4 | n
id (15432) 51 11111 6 0| 2 10 | h| 1
(132) (354) 52 113 9 0| 3 2 | h|h1
(12) (2543) 5|2 113 18 | 0| 5 2 | h|hi
(12) (13)(254) 5|2 122 24 | 0| 6 2 | h| h
(12)(34) (23)(45) 5| 3 5 3 ol 2] 2 [nlno
(12)(34) (2543) 53 5 6 0| 3 1 1
(132) (24)(35) 53 5 10 | o] 3 2 | x| 1
(132) (142)(35) 53 5 15 | 0| 4 2 | h|ho
id (165432) 6| 1] 111111 12 | 0| 4 12 | h| 1
(12)(34) (165423) 6| 2 1113 3 0] 2 2 | h|hi
(12)(34) (13)(2654) 6| 2 1113 6 0| 3 2 | h|hi
(12) (26543) 6 | 2 1113 36 | 0| 8 2 | h|hi
(12)(34) (153)(264) 6 | 2 1122 4 0| 2 4 | h| h
(12) (143)(265) 6 | 2 1122 12 | 0| 4 4 | h| h
(132) (12)(3654) 6 | 2 1122 24 | 0| 6 2 | h| h
(1432) (132)(465) 6| 2 1122 24 | 0| 6 2 | h| h
(12) (13)(2654) 6| 2 1122 24 | 0| 6 2 | h|h
(12)(34) (132)(465) 6|3 15 10 | o] 3 2 | h|ho
(12)(34) (26543) 6|3 15 10 | o] 3 1 1
(132) (142)(365) 6| 3 15 15 | 0| 4 2 | h|ho
(12)(34) (165432) 6| 3 15 15 | 0| 4 2 | x| 1
(132) (124)(365) 6| 3 15 15 | 0| 4 2 | h|ho
(12)(34) (23)(465) 6|3 15 30 | 0| 7 2 | h|ho
(132) (24)(365) 6|3 15 60 | 0 | 12 1 1
(12)(34) (1532)(46) 6|3 24 16 | 0| 4 1
(12)(34) (253)(46) 6|3 24 48 | o | 10 1
(12)(34)(56) (13)(25)(46) 6|3 33 3 0| 2 12 | h| 1
(12)(34) (13)(25)(46) 6|3 33 6 0] 3 4 | h|ho
(132) (1524)(36) 6|3 33 6 0| 3 2 | h|ho
(12)(34) (16452) 6|3 33 9 0| 3 2 | h| 1
(12)(34) (13)(2645) 6|3 33 9 0| 3 4 | h| 1
(1432) (13)(25)(46) 6|3 33 9 0| 3 4 | h|ho
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Oz ‘ oy ‘d‘g‘ ram. ‘ d ‘g‘n‘Aut‘—l‘jf‘
(132) (14)(25)(36) 6|3 33 12 | 0| 4 6 | x| 1
(12)(34) (164523) 6|3 33 18 | 0] 5 2 | x| 1
(12)(34) (2645) 6|3 33 18 | 0] 5 4 | h| 1
(1432) (153)(46) 6|3 33 36 | 0| 8 2 | h|ho

id (1765432) 71| 1111111 8 0| 2 14 | h| 1
(132) (37654) 7|2 11113 36 | 0| 8 2 | h|hi
(12) (276543) 7|2 11113 54 | 0] 10| 2 | h|hi1
(12)(34) (1764253) 7|2 11122 16 | 0| 4 2 | h|h
(12) (13)(27654) 7|2 11122 144 | 1 | 24| 2 | h|h
(12)(34) (23)(4765) 7|3 115 30 | 0| 7 2 | h|ho
(132) (254)(376) 7|3 115 40 | 0| 8 2 | x| 1
(132) (24)(3765) 7|3 115 60 | 0 | 12 1 1
(132) (1542)(376) 7|3 115 105 | 0| 18 | 2 | h|ho
(132) (142)(3765) 7|3 115 120 | 0| 22| 2 | h|ho
(12)(34) (276543) 7|3 115 180 | 1 | 30 1 1
(12)(34) (253)(476) 7|3 124 16 | 0| 4 1
(12)(34) (1764532) 7|3 124 16 | 0| 4 1
(15432) (143)(576) 7|3 124 48 | o | 10 1
(15432) (134)(576) 7|3 124 48 | o | 10 1
(12)(34) (1532)(476) 7|3 124 384 | 1 | 64 1
(12)(34) (1764523) 7|3 133 18 | 0] 5 1 1
(12)(34) (13)(25)(476) | 7 | 3 133 36 | 0| 8 2 | h|ho
(12)(34) (176452) 73 133 48 | 0o | 10 1 1
(12)(34) (13)(27645) 7|3 133 66 | 0 | 11 2 | h| 1
(132) (14)(25)(376) | 7 | 3 133 72 | 0| 14| 2 1
(132) (1524)(376) 7|3 133 180 | 0 | 32 | 2 ho
(15432) (1264)(57) 7|3 223 24 | 0| 6 1
(12)(34) (2635)(47) 7|3 223 24 | 0| 6 2 | h
(12)(34) (163)25)(47) | 7| 3 223 36 | 0| 8 2 | x
(12)(34) (15263)(47) 73 223 72 | 0| 14 1
(12)(34) (16352)(47) 7|3 223 108 | 0| 2| 2 |n

(12)(34)(56) (23)(45)(67) 7|4 7 3 0| 2 2 | h|ho
(132)(465) (1276534) 7| 4 7 4 0| 2 1 1
(1432)(56) (12)(3745) 7| 4 7 7 0| 2 2 ho
(1432)(56) (1745)(23) 7| 4 7 7 0| 2 2 ho
(12)(34)(56) (237654) 7|4 7 12 | 0| 4 1 0
(15432) (14)(263)(57) | 7 | 4 7 21 | 0| 5 2 | h|ho
(15432) (164)(23)(57) | 7 | 4 7 21 | 0| 5 2 ho
(15432) (1643)(57) 7| 4 7 28 | 0| 6 1 0
(15432) (2364)(57) 7|4 7 42 o] 9 1 1
(15432) (12)(364)(57) | 7 | 4 7 42 o] 9 1 1
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‘ Oz oy d| g ram. d |g ‘ n ‘ Aut ‘ -1 ‘ I ‘
(1432) (163)(25)(47) | 7 | 4 7 84 | 0| 16| 2 |h|ho
(132)(45) (24)(3756) 7| 4 7 168 | 0 | 30 1 1
(1432) (2635)(47) 7|4 7 168 | 0 | 30 1 0
(1432) (25)(36)(47) 7|4 7 189 | 0| 33 | 2 | x| 1
(12)(34)(56)(78) | (1753)(2864) | 8 | 1 | 11111111 | 3 0| 2 16 | h | 1
id (18765432) 8|1 11111111 | 12 | 0 | 4 16 | h | 1
(12)(34) (13)(287654) | 8 | 2| 111113 9 0| 3 2 | h|hi
(12)(34) (18765423) 82| 111113 18 | 0] 5 2 | h|h1
(12) (2876543) 8 2] 111113 108 | 1] 17| 2 | h|h1
(12)(34) (18742653) 82| 111122 6 0| 3 4 | h|nh
(12)(34)(56)(78) | (13)(2754)(68) | 8 | 2 | 111122 6 0| 3 4 | h|nh
(12)(34) (1653)(2874) | 8 | 2| 111122 6 0| 3 4 | h| h
(132)(465) (1524)(3876) | 8 | 2| 111122 12 | 0| 4 2 | h| h
(12) (1543)(2876) | 8 | 2| 111122 24 | 0| 6 4 | h| h
(12) (13)(287654) | 8 | 2| 111122 72 | o | 14| 2 |h|h
(132) (12)(387654) | 8 | 2 | 111122 9% | 1|16 | 2 | h|h
(12) (143)(28765) | 8 | 2 | 111122 144 | 1 | 24| 2 | h|h
(12)(34) (18765432) 8|3 1115 60 | 0| 12 | 2 | x| 1
(1432) (16532)(487) | 8 | 3 1115 75 | 0] 13| 2 | h|hoO
(12)(34) (2876543) 8|3 1115 130 | 0 | 23 1 1
(12)(34) (23)(48765) 8 | 3 1115 240 | 0 | 42 | 2 | h|ho
(132) (142)(38765) | 8 | 3 1115 270 | 1 | 45 | 2 | h|ho
(132) (24)(38765) 8 |3 1115 510 | 5 | 77 | 1 1
(12)(34) (2876453) 8 | 3 1124 48 | 0 | 10 1
(12)(34) (1532)(4876) | 8 | 3 1124 48 | o | 10 1
(132)(45) (14)(263875) | 8 | 3 1124 96 | 0 | 18 1
(12)(34) (16532)(487) | 8 | 3 1124 384 | 1 | 64 1
(12)(34) (253)(4876) 8|3 1124 1440 | 16 | 210 | 1
(132)(465) (1425)(3876) | 8 | 3 1133 3 0| 2 2 | h| 1
(132)(465) (14)(25)(37)(68) | 8 | 3 1133 9 0| 3 4 | h|ho
(132)(465) (187635)(24) | 8 | 3 1133 12 | 0| 4 1 1
(12)(34) (1523)(4876) | 8 | 3 1133 18 | 0] 5 2 | h|ho
(1432)(56) (15)(26)(37)(48) | 8 | 3 1133 18 | 0] 5 2 | x| 1
(12)(34) (13)(287465) | 8 | 3 1133 18 | 0] 5 4 | h| 1
(132)(465) (354)(687) 8|3 1133 18 | 0] 5 2 | h|ho
(1432) (265)(487) 8|3 1133 36 | 0| 7 4 | h| o1
(132) (1524)(3876) | 8 | 3 1133 36 | 0| 8 2 | h|ho
(12)(34)(56) (18674253) 8 |3 1133 36 | 0| 8 2 | x| 1
(12)(34) (13)(25)(4876) | 8 | 3 1133 36 | 0| 8 2 | h|ho
(12)(34) (13)(265)(487) | 8 | 3 1133 36 | 0| 8 4 | h|ho
(12)(34) (287465) 8 |3 1133 36 | 0| 8 4 | h| 1
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Oz ‘ oy ‘d‘g‘ ram. ‘ d ‘g‘n‘Aut‘—l‘jf‘
(12)(34) (1876452) 8|3 1133 36 | 0| 8 1 1
(12)(34)(56) (1867423) 8|3 1133 45 | 0| 9 2 | h| 1
(132) (14)(25)(3876) | 8 | 3 1133 54 | 0 | 11 2 | x| 1
(1432) (25)(4876) 8 |3 1133 60 | 0| 12 | 2 | h| 1
(12)(34) (13)(287645) | 8 | 3 1133 90 | 1| 15 | 2 | h| 1
(1432) (1653)(487) 8 |3 1133 144 | 0| 26| 2 | h|ho
(132) (14)(265)(387) | 8 | 3 1133 44 | 1 | 24 | 2 | x| 1
(132) (16524)(387) | 8 | 3 1133 198 | 0 [ 3 | 2 | h|ho
(12)(34) (18764523) 8|3 1133 312 | 3 | 48 1 1
(1432) (153)(4876) 8|3 1133 378 | 4| 57| 2 | h|ho
(132)(465) (15)(24)(3876) | 8 | 3 1223 6 0] 3 2
(12)(34) (15287463) 8 |3 1223 18 | 0] 5 2 | x
(12)(34) (187463)(25) | 8 | 3 1223 18 | 0] 5 1
(1432)(56) (15)(2736)(48) | 8 | 3 1223 24 | 0| 6 1
(12)(34) (18746235) 8 |3 1223 36 | 0| 8 2
(12)(34) (2635)(487) 8|3 1223 192 | 0 | 34 | 2
(12)(34) (15263)(487) | 8 | 3 1223 216 | 1 | 36 1
(12)(34) (16352)(487) | 8 | 3 1223 252 | 1| 42| 2 |nh
(12)(34) (163)(25)(487) | 8 | 3 1223 840 | 10 | 122 | 1
(1432)(5876) (1537)(2846) | 8 | 3 2222 1 0] 1 16 | x
(12)(34)(56)(78) | (13)(25)(47)(68) | 8 | 3 2222 3 o] 2] 16 |n
(12)(34) (18462735) 8 |3 2222 6 0| 3 8 | x
(12)(34) (1735)(2846) | 8 | 3 2222 6 0| 3 8 | h
(1765432) (15)(23)(46)(78) | 8 | 3 2222 8 0| 2 1
(12)(34) (173625)(48) | 8 | 3 2222 12 | 0| 4 2 | h
(1432)(56) (15)(27)(36)(48) | 8 | 3 2222 12 | 0| 4 4 | n
(132)(465) (15)(24)(37)(68) | 8 | 3 2222 12 | 0| 4 4 | n
(12)(34) (15)(2736)(48) | 8 | 3 2222 24 | 0| 6 4 | n
(12)(34)(56) (2386475) 8 |3 2222 36 | 0| 7 2 | x
(132)(465) (12)(3867)(45) | 8 | 3 2222 48 0| 10| 4 |n
(132)(45) (12)(3746)(58) | 8 | 3 2222 132|119 2 |n
(132)(465) (1753)(2864) | 8 | 4 17 7 0| 2 2 | x| o0
(1432)(56) (1532)(4867) | 8 | 4 17 21 | 0| 5 2 | x| 1
(1432)(56) (153)(487) 8 | 4 17 21 | 0| 5 2 | h|ho
(1432)(56) (1235)(4867) | 8 | 4 17 21 | 0| 5 2 | x| 1
(1432)(56) (135)(487) 8 | 4 17 21 | 0| 5 2 | h|ho
(132)(465) (243)(687) 8 | 4 17 28 | 0| 6 1 0
(132)(465) (143)(687) 8 | 4 17 28 | 0| 6 1 0
(15432) (174263)(58) | 8 | 4 17 2 o] 9 2 | h|ho
(12)(34)(56) (254)(687) 8 | 4 17 2 o] 9 2 1
(12)(34)(56) (23)(45)(687) | 8 | 4 17 42 | 0| 9 2 h o
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‘ Oy ‘ oy ‘d‘g‘ ram ‘ ‘g‘n ‘Aut‘—l‘jf‘
(1432) (15263)(487) | 8 | 4 17 336 | 1 | 56 2 | x| 1
(15432) (12643)(587) | 8 | 4 17 546 | 1 | 91 1 0
(15432) (12)(46)(587) | 8 | 4 17 546 | 2 | 89 1 1
(1432) (163)(25)(487) | 8 | 4 17 567 | 5 | 85 2 | h|ho
(1432) (2635)(487) 8 | 4 17 1260 | 15 | 182 | 1 0
(1432) (25)(36)(487) | 8 | 4 17 1932 | 22 | 280 | 1 1
(1432)(56) (275)(486) 8 | 4 26 18 | 0| 5 2
(12)(34)(56) (275)(486) 8 | 4 26 18 0| 5 2
(1432)(56) (186523)(47) | 8 | 4 26 36 | 0| 8 1
(12)(34)(56) (13)(275)(486) | 8 | 4 26 36 | 0| 8 2
(1432)(56) (138652)(47) | 8 | 4 26 36 | 0| 8 1
(15432) (263)(47)(58) | 8 | 4 26 648 | 1 | 108 | 1
(132)(45) (26374)(58) 8 | 4 26 2160 | 22 | 318 | 1
(1432)(56) (25)(4867) 8 | 4 35 15 | 0| 4 2 | x| 1
(12)(34)(56) (23)(4867) 8 | 4 35 30 | 0| 7 2 | h| 0
(15432) (174362)(58) | 8 | 4 35 45 | 0| 9 2 |h| o0
(15432) (26)(47)(58) 8 | 4 35 180 | 0 | 32 2 | x| 1
(1432)(56) (12)(4867) 8 | 4 35 240 | 1 | 40 1 1
(15432) (127463)(58) | 8 | 4 35 270 | 0 | 47 1 0
(132)(45) (162)(3857) 8 | 4 35 330 | 3 | 50 2 |h| o0
(132)(45) (173854)(26) | 8 | 4 35 540 | 5 | 82 1 0
(132)(45) (26)(3857) 8 | 4 35 900 | 11 | 130 | 1 1
(12)(34)(56) (13)(25)(47)(68) | 8 | 4 44 6 0| 3 4 | h|n
(12)(34)(56) (1523)(4867) | 8 | 4 44 6 0| 3 4 | x
(1432) (1735)(26)(48) | 8 | 4 44 12 | o | 4 4 | h| h
(12)(34)(56) (13)(25)(4867) | 8 | 4 44 12 | o | 4 4 | x
(132)(465) (12)(34)(57)(68) | 8 | 4 44 16 | 0| 4 2 | x
(132)(465) (1542)(3867) | 8 | 4 44 16 | 0| 4 4 | x
(132)(465) (1254)(3867) | 8 | 4 44 16 | 0| 4 2 | x
(12)(34)(56) (18674352) 8 | 4 44 24 | 0| 6 2 | x
(12)(34)(56) (286745) 8 | 4 44 24 | 0| 6 2 | x
(1432) (15)(26)(37)(48) | 8 | 4 44 24 [ 0| 6 | 8 | x
(132)(45) (1624)(37)(58) | 8 | 4 44 24 | 0| 6 2 | h|nh
(165432) (12)(37)(45)(68) | 8 | 4 44 24 | 0] 6 4 | x
(132)(465) (1542)(37)(68) | 8 | 4 44 24 | 0] 6 4 | h| h
(1432)(56) (12)(35)(47)(68) | 8 | 4 44 48 | 0 | 10 1
(1432)(56) (2374865) 8 | 4 44 48 | 0 | 10 1
(1432) (1625)(37)(48) | 8 | 4 44 72 | 0| 14 2 | x
(1432)(56) (153)(47)(68) | 8 | 4 44 96 | 0 | 18 2 | h|nh
(132)(45) (1624)(3857) | 8 | 4 44 240 | 0 | 42 2 | x
(15432) (174)(263)(58) | 8 | 4 44 288 | 0 | 50 2 | h|nh
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‘ Oz ‘ oy ‘d‘g‘ ram. ‘ d ‘g‘n‘Aut‘—l‘jf‘
(15432) (12)(36)(47)(58) | 8 | 4 44 384 | 2| 62| 2 | x
(132)(45) (14)(26)(3857) | 8 | 4 44 576 | 6 | 86 1

A.3 Galois groups whose curves are not unique

There are 6960 groups whose order is less than or equal to 250. Of these 2386 can be
generated by two elements and are thus possible Galois groups of origamis. Almost
all of the corresponding origami-curves are already uniquely defined by their Galois
group. There are only 30 exceptions, which are listed in the following table. In the
columns we have noted first the group order n, then the number k of the group in
the small-groups-library of MAGMA (i.e. the group can be constructed in MAGMA
using the command SmallGroup(n,k)) and finally the number of origami-curves
and their ramification indices:

‘ order ‘ number ‘ curves ‘ ramification ‘

60 5 2 3,5
81 10 2 3,3
120 5 2 6, 10
120 34 3 2,3, 5
120 35 2 3,5
160 199 2 2,4
162 31 2 3,3
168 42 1 3,4,4,7
168 13 2 7.7
180 19 2 3,5
189 7 2 21, 21
192 181 2 6, 6
192 201 3 2,4 4
192 202 2 2,4
192 | 1491 2 6, 6
200 A4 3 2,2 2
216 87 2 2,6
216 153 3 144
240 89 3 3,4, 10
240 90 3 3,4, 10
240 91 3 2,3, 5
240 92 2 3,5
240 93 2 6, 10
240 94 2 6, 10
240 189 3 2,3, 5
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‘ order ‘ number ‘ curves ‘ ramification ‘

240 190 2 3,9
243 3 2 3,3
243 7 2 3,3
243 16 2 3,3
243 18 2 3,3

A.4 Determining the automorphism groups

The following MAGMA code calculates the automorphism group of a normal origami
given by f : Fy — G, more precisely by the images o := f(z) and 7 := f(y) of
the generators. We have seen in Proposition 3.13 that this group is isomorphic to
Cy Xg G where ® : Co — Aut(G) maps the generator of the cyclic group Cs to
¢ € Aut(G) defined by (o) = 07! and p(7) = 771, If such an automorphism
doesn’t exist the automorphism group equals the Galois group.

Aut := function(sigma,tau)
G := sub<Parent(sigma) | [sigma,taul>;
A := AutomorphismGroup(G);
if not IsHomomorphism(G,G, [Inverse(sigma), Inverse(tau)])

then
return G;
else
phi := hom<G -> G | [Inverse(sigma), Inverse(tau)]>;

C2 := CyclicGroup(2);
Phi := hom<C2 -> A | [Alphil>;
return SemidirectProduct(G,C2,Phi);
end if;
end function;

For the construction of the semidirect product we need the help of the following
function, which constructs a group H from the set of its elements S and a map
¥ 8 xS — S which defines the multiplication in H. This is done by identifying
y € S with the map ¥(.,y) € Sym(S). We have

1[)(-,3)) 'T,Z)(-,y) :¢(@Z)(-,l‘),y) :T/)(-ﬂ/)(l”ay))

where the left equation is the way MAGMA multiplies permutations and the right
equation holds because 9 has to be associative. Thus we get a subgroup H of
Sym(S) which respects the group operation defined by .
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Group := function(S, psi)
G := Sym(S);
H := sub<G | [G![psi(<x,y>) : x in S] : y in S]>;
BSGS(H) ;

ReduceGenerators(~H) ;
E:={x: xin S | forall{y : y in S | psi(<x,y>) eq y}};
e := Rep(E); // the neutral Element
f := map<S->H | y :-> H![psi(<x,y>): x in S], p :-> Image(p,S'e)>;
return H,f;
end function;

We can now construct a semidirect product G := H x4 N with ¢ : H — N
by using the multiplication on S := N x H defined by ¢ : § x5 — § with
¥((n1,h1), (n2, ha)) = (n1@(h1)(n2), hihe). The function also returns the inclu-
sions iy : N — G, igy : H — G and the projection py : G - H.

SemidirectProduct := function(N,H,phi)
S := Set(CartesianProduct(Set(N),Set(H)));
S2 := CartesianProduct(S,S);
psi := map<S2->S | T :-> SIKN!T[1][1]#phi (H!T[1][2]) (N!T[2][1]),
HIT[1] [2]*H!T[2] [2]> >;
G,f := Group(S,psi);
iN := hom<N -> G | x :-> f(<x,H!1>) >;
iH := hom<H -> G | x :-> f(KN!1,x>) >;
pH := hom<G -> H | g :-> (g @@ £f)[2]>;
if #Nx#H eq #G
then return G,iN,pH, iH;

else return false;
end if;
end function;
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