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IPrefa
eTake �nitely many 
omplex unit squares, glue the right edge of every squareto the left edge of any square, and every upper edge to a lower edge, su
hthat an orientable 
ompa
t Riemann surfa
e arises. For example we 
an usethe following four squares
|| −−

|| ||| =|||||=and glue edges with equal marks together. We 
all su
h a surfa
e an origami.By mapping ea
h square to the 
omplex unit square glued with itself we geta natural 
overing of a torus. This 
overing is rami�ed only at the verti
esof the squares, whi
h are all mapped to the same point on the torus, hen
ewe have a 
overing with only one bran
h point. On the other hand given a
overing of the torus C/(Z + iZ) by a Riemann surfa
e X whi
h is rami�edat most over 0 we 
an lift the unit square to X and hen
e get a des
riptionof X by glued squares.If we glue parallelograms instead of squares we get a family of Riemannsurfa
es for any given glueing rule. In the moduli spa
e Mg of Riemannsurfa
es of genus g this family forms a one-dimensional subset, on whi
hthere is an a
tion of SL2(R) 
orresponding to the stret
hing and shearing ofthe parallelograms. The interesting point about origamis is that this subsetalways is an algebrai
 
urve ([Lo
℄, Prop. 3.2 ii)). We 
all su
h a 
urve inmoduli spa
e the 
orresponding origami-
urve.Origamis are a spe
ial 
ase of translation surfa
es, whi
h are Riemann sur-fa
es with an atlas where (almost) every 
oordinate 
hange map is a trans-lation. As above there is an SL2(R) a
tion on those translation surfa
es,de�ned by stret
hing and shearing the 
oordinate 
harts. The orbits leadto isometri
 embeddings of the upper half plane H ∼= SL2(R)/ SO2(R) intoTei
hmüller spa
e, whose image is 
alled Tei
hmüller disk. If the proje
tionof this disk in the moduli spa
eMg is an algebrai
 
urve (as is the 
ase fororigamis), then the translation surfa
e is 
alled a Vee
h surfa
e. These sur-fa
es and espe
ially origamis were �rst studied by Vee
h [Vee℄ and Thurston[Thu℄.Sin
e origamis (also known as square-tiled surfa
es) are dense inMg ([HS3℄,�1.5.2) they o�er a good opportunity to study the moduli spa
e Mg. Weare going to give an overview on origamis and origami-
urves in the �rsttwo 
hapters. They have been studied re
ently for example by Lo
hak [Lo
℄,



IIZori
h [Zor℄, S
hmithüsen [S
h2℄ and Herrli
h [HS1℄. We will also presentan algorithm to �nd a set of origamis representing every origami-
urve withgiven degree or Galois group.In the third 
hapter we will study some invariants whi
h 
an be used todistinguish di�erent origami-
urves. Re
ent papers on this topi
 in
lude[HL℄ and [M
2℄. In Appendix A.2 we 
al
ulate some of these invariants forall origami-
urves of origamis made up of up to eight squares.By GAGA there is a one-to-one 
orresponden
e between Riemann surfa
esand 
omplex nonsingular proje
tive 
urves. Thus an origami is a 
overing ofa nonsingular proje
tive 
urve over an ellipti
 
urve whi
h may be rami�edonly over 0. This de�nition 
an be generalized to other ground �elds, su
has the p-adi
 �eld Cp. In the 
omplex world we get every Riemann surfa
eas a quotient of an open subset Ω of P1(C) by a dis
rete subgroup G of
PSL2(C). In the p-adi
 world the analogues of Riemann surfa
es, whi
h admita similar uniformizationΩ/G, are 
alledMumford 
urves. But 
ontrary to the
omplex world not every nonsingular proje
tive 
urve over Cp is a Mumford
urve. Mumford 
urves have been thoroughly studied; two textbooks givinga 
omprehensive introdu
tion are [GP℄ and [FP℄.As Mumford 
urves are the p-adi
 analogues of Riemann surfa
es we de�ne p-adi
 origamis to be 
overings of Mumford 
urves with only one bran
h point,where the bottom 
urve has genus one. In the fourth 
hapter we will 
lassifyall normal non-trivial p-adi
 origamis. This is done using the des
ription ofthe bottom 
urve as an orbifold Ω/G, where Ω ⊂ P1(Cp) and G is a groupa
ting dis
ontinuously on Ω. These groups and the 
orresponding orbifolds
an be studied by looking at the a
tion of G on the Bruhat-Tits-Tree of asuitable sub�eld of Cp and the resulting quotient graph of groups. This hasbeen done by Herrli
h [Her℄, and more re
ently by Kato [Kat2℄ and Bradley[Bra2℄.In Se
tion 4.3 we will see that all normal p-adi
 origamis with a given Galoisgroup H are of the type Ω/Γ→ Ω/G with the following possible 
hoi
es forthe groups Γ and G: The quotient graph of G 
an be 
ontra
ted to

•Ca

∆

Cb //for a p-adi
 triangle group ∆ (where the single vertex represents a subtreewith fundamental group ∆), whi
h means that G is isomorphi
 to the fun-damental group of this graph, i.e.
G ∼= 〈∆, γ; γα1 = α2γ〉 with αi ∈ ∆ of order a.

Γ is the kernel of a morphism ϕ : G → H whi
h is inje
tive when restri
tedto the vertex groups of the quotient graph of G. The rami�
ation index of



IIIthe p-adi
 origami is then b. We have a similar result (Theorem 4.18) for theautomorphism group of the p-adi
 origami.Given a p-adi
 origami whi
h is de�ned over Q we 
an 
hange the ground �eldto C and know that there our origami 
an be des
ribed as a surfa
e gluedfrom squares. A
tually doing this is usually hard, be
ause we would haveto work out equations for the Mumford 
urves and for the 
omplex 
urves
orresponding to the Riemann surfa
es. Nevertheless we 
an often �nd outwhi
h 
omplex origami-
urve belongs to our p-adi
 origami, as mostly the
urve is already uniquely de�ned by �xing the Galois group. In the last
hapter we prove that this is true for the Galois groups Dn × Z/mZ and
A4 × Z/mZ (with n,m ∈ N and n odd).We will also dis
uss some 
ases where this does not work, i.e. where there areseveral origami-
urves of origamis with the same Galois group. In AppendixA.3 we see that for groups of order less than or equal to 250 this happens onlyfor 30 groups. To 
onstru
t examples we 
an take an origami-
urve whi
h isnot �xed by an element σ of the absolute Galois group Gal(Q/Q). As thea
tion of Gal(Q/Q) on origami-
urves is faithful by [Möl℄, Th. 5.4 we 
an�nd su
h a 
urve for any given σ. In this 
ase of 
ourse both the 
urve andits image 
ontain origamis with the same Galois group, and we suspe
t thatall other known invariants of origami-
urves are equal as well.A
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Chapter 1OrigamisIn this �rst 
hapter we want to introdu
e origamis from a variety of view-points. Origamis are 
ompa
t Riemann surfa
es whi
h are obtained by glue-ing several unit squares. Pierre Lo
hak 
oined the term origami in [Lo
℄,while Anton Zori
h uses the term square-tiled surfa
es [Zor℄. But there areseveral other ways to de�ne origamis: Origamis 
an also be de�ned as 
ov-erings of an ellipti
 
urve with a single bran
h point, whi
h is a 
on
ept one
an generalize to algebrai
 
urves over other �elds than C. In [S
h1℄ GabrielaS
hmithüsen often identi�es origamis with 
onjuga
y 
lasses of �nite indexsubgroups of F2. If one wants to use a 
omputer for the 
al
ulation of someproperties of origamis, it is more pra
ti
al to de�ne origamis as homomor-phisms F2 → Sd, or (in the 
ase of normal origamis with Galois group G)as epimorphisms F2 → G. But if one thinks of origamis as spe
ial kindsof translation surfa
es it may be more natural to think of an origami as aRiemann surfa
e with a holomorphi
 1-form whi
h has integer values whenintegrated along elements of the fundamental group.We will now explain all those de�nitions, prove that they are equivalent, andinvestigate how the natural a
tion of SL2(Z) on the set of all origamis 
anbe des
ribed in ea
h 
ase.1.1 De�nitionsDe�nition 1.1. An origami of degree d ∈ N is a 
losed surfa
e X whi
his obtained from d eu
lidean unit squares by glueing (via translations) ea
hright edge to a left one and ea
h upper edge to a lower one.By labeling the squares of an origami with the numbers 1, . . . , d we 
an1



2 CHAPTER 1. ORIGAMISdes
ribe an origami by two permutations σx and σy in Sd, where σx des
ribesthe horizontal glueing and σy des
ribes the verti
al glueing.
|| −−

|| ||| =|||||=
 12 34Example: This origami is des
ribed by σx = (2 3 4) and σy = (1 2).Ea
h origami X de�nes a 
overing of the torus E := R2/Z2 by mappingea
h square to the unit square. This 
overing p : X → E is rami�ed only atthe verti
es of the squares. Removing these rami�
ation points leads to anunrami�ed restri
tion p : X∗ := X \ p−1(0)→ E∗ := E \ {0} of degree d.Conversely, given a 
onne
ted surfa
e X and a 
overing p : X → E of degree

d whi
h may be rami�ed only over 0 ∈ E, we 
an lift the unit square de�ning
E to X. This yields a de
omposition of X into d 
opies of the unit squareglued as des
ribed above.The monodromy of su
h a 
overing is by de�nition the a
tion1 of the fun-damental group π1(E

∗, P ) on the �ber p−1(P ) over any basepoint P ∈ E∗,and without loss of generality we 
an 
hoose both 
oordinates of P to benon-zero in R/Z. The fundamental group π1(E
∗, P ) is isomorphi
 to thefree group generated by x and y, where x is the 
losed path starting at P inhorizontal dire
tion, and y is the 
losed path starting at P in verti
al dire
-tion. Let Pi be the preimage of P in the square with the number i. Thenwe see that the monodromy of the origami is given by the homomorphism

f : F2 → Sym({P1, . . . , Pd}) ∼= Sd whi
h maps x to σx and y to σy.
p :

a a a a

aa

aa

aa

P4
•
// P2

•
// P3

•
//

P1
•
//

→
a a

aa

P
•
//On the other hand a homomorphism f : F2 → Sd des
ribes an origami i�its image is a transitive subgroup of Sd (otherwise the surfa
e obtained byglueing the squares 1, . . . , d a

ording to the permutations f(x) and f(y)would not be 
onne
ted). We denote by Homt(F2, Sd) the set of su
h homo-morphisms.1Note that if we want to 
onsider elements α, β ∈ π1(E

∗, P ) as permutations of the�ber p−1(P ), we need αβ to be the path �rst along β and afterwards along α. This maynot be an intuitive way to de�ne multipli
ation in π1(E
∗, P ), but otherwise the groupwould not a
t on the �ber from the left.



1.1. DEFINITIONS 3The unrami�ed 
overing p : X∗ → E∗ also indu
es an in
lusion ι of thefundamental groups π1(X
∗, P1) →֒ π1(E

∗, P ) ∼= F2. Let H denote the imageof this in
lusion in F2. The left 
osets of H 
orrespond to the d di�erentsquares, whi
h make up X∗, thus the index of H in F2 is d. The group
H 
an also be obtained from the monodromy f : as H is just the groupof all words in F2 whi
h des
ribe a path from P1 ba
k to P1 we 
an write
H = f−1(StabSd

(1)).Conversely, given a subgroup H ⊆ F2 of �nite index d, we 
an de�ne anorigami in the following way: We label d squares with the left 
osets of H .For every square labelled aH we glue its right edge to the left edge of xaH ,and its upper edge to the lower edge of yaH .Altogether we 
an dedu
eProposition 1.2. An origami of degree d 
an be de�ned equivalently asi) a �nite 
overing p : X → E of the torus E by a 
onne
ted surfa
e X,rami�ed only over 0 ∈ E; up to a homeomorphism X ′ → X over E,ii) an element of Inn(Sd)\Homt(F2, Sd),iii) the 
onjuga
y 
lass of a subgroup H of F2 of index d.Proof. We already des
ribed above how 
overings p : X → E of degree d,homomorphisms f : F2 → Sd and subgroups H ⊆ F2 of index d are 
onne
tedto our de�nition of an origami. Now we just have to fa
tor out the 
hoi
eswe made:i) For another 
onne
ted surfa
e X ′ let h : X ′ → X be a homeomorphismand 
onsider the �nite 
overing p′ := p ◦ h. As h is unrami�ed themonodromies of p and p′ 
oin
ide if we set P ′
i := h−1(Pi).ii) When we label the squares with the numbers 1, . . . , d any other number-ing leads to the same origami. This means, that two monodromy maps

f and f ′ des
ribe the same origami, i� there is a renumbering τ ∈ Sdwith f(x) = τf ′(x)τ−1 and f(y) = τf ′(y)τ−1. This means f = κτ ◦ f ′,where κτ ∈ Inn(Sd) is the 
onjugation with τ .iii) For the de�nition of the subgroup H we only 
hoose the basepoint P1 ofthe fundamental group π1(X
∗) out of the d elements in the �ber p−1(P ).If we 
hoose another basepoint Pi instead, then we have to 
onjugateea
h element in H with the image of the path from P1 to Pi in π1(E

∗).



4 CHAPTER 1. ORIGAMIS
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�������Figure 1.1: The image of an origami under the a
tion of SL2(Z)We remark (to part ii) of the previous proposition) that Inn(Sd) = Aut(Sd)for d 6= 6 (see [JR℄ Theorem 7.4), but there exist automorphisms of S6 whi
hare not inner (see [Rot℄ Theorem 3).1.2 Deformation of origamisWe identify the torus E = R2/Z2 with C/Z[i], thus an origami p : X → Ebe
omes a Riemann surfa
e using the 
oordinate 
harts indu
ed by p. Infa
t, we get a lot of Riemann surfa
es: for every A ∈ SL2(R) we 
an de�nethe latti
e ΛA = A · Z2 and the homeomorphism cA : R2/Z2 → R2/ΛA =:

EA, x 7→ A · x. The identi�
ation of R2 with C then leads to new 
oordinate
harts indu
ed by pA := cA ◦ p. We get again a 
omplex stru
ture on thesurfa
e X whi
h we denote by XA.
X

p

��

pA

  A
AA

AA
AA

A

E cA
// EA= C/ΛAIf the torus EA is isomorphi
 to our torus E = EI as a Riemann surfa
e,then pA : X → EA ∼= E de�nes another origami. By

EA = E ⇔ ΛA = Λ⇔ A ∈ SL2(Z)we see that we get an a
tion of SL2(Z) on the set of all origamis.By [LS℄, I.4.5 we have GL2(Z) ∼= Out(F2) := Aut(F2)/ Inn(F2). Let Out+(F2)be the subgroup 
orresponding to SL2(Z) and Aut+(F2) be its preimage in
Aut(F2). This enables us to formulate the a
tion of SL2(Z) on origamis alsofor homomorphisms F2 → Sd and for �nite-index subgroups H of F2:



1.3. NORMAL ORIGAMIS 5Proposition 1.3. A ∈ SL2(Z) ∼= Out(F2) = Aut(F2)/ Inn(F2) a
ts onorigamis in the following way (where ϕ ∈ Aut(F2) is a preimage of A):i) p 7→ pA = cA ◦ p for a �nite 
overing p : X → E,ii) [f ] 7→ [f ◦ ϕ−1] for [f ] ∈ Inn(Sd)\Homt(F2, Sd),iii) [H ] 7→ [ϕ(H)] for the 
onjuga
y 
lass of a subgroup H of F2.Proof. We have to investigate how the a
tion des
ribed above, leading tostatement i), indu
es the a
tions stated in ii) and iii). Re
all from Prop. 1.2that both alternative de�nitions of origamis whi
h we use for ii) and iii) wereobtained via the fundamental group π1(E
∗, P ). By the theorem of Dehn-Nielsen the automorphism ϕ of π1(E

∗, P ) 
omes from a unique homotopy
lass of homeomorphisms c of E∗. The isomorphism
Homeo(E∗)/Homeo0(E∗) ∼= SL2(Z) ∼= Out+(F2)is in fa
t the map c 7→ [ϕ], so we have c = [cA]. The indu
ed maps on thefundamental groups and the monodromy maps are shown in the followingdiagram:

π1(X
∗, P1)

ι

��

ϕ ◦ ι

''OOOOOOOOOOO

π1(E
∗, P ) ϕ

//

f

��

π1(E
∗, P )

f ◦ϕ−1

wwooooooooooooo

SdThus the monodromy f transforms to f ◦ ϕ−1, and the subgroup H = Im(ι)to Im(ϕ ◦ ι) = ϕ(H).1.3 Normal origamisProposition 1.4. The following statements are equivalent:i) p : X → E is a normal 
overing,ii) H is a normal subgroup of F2,iii) H = ker(f).



6 CHAPTER 1. ORIGAMISProof. The 
overing p is normal if and only if π1(X
∗, P1) ⊳ π1(E

∗, P ). Thisshows the equivalen
e i) ⇔ ii). The kernel of f is always a normal subgroupof F2, hen
e iii)⇒ ii).It remains to show ii) ⇒ iii): Starting from a �nite index subgroup H wehave 
onstru
ted the 
orresponding surfa
e X in Se
tion 1.1 by labeling dsquares with the left 
osets of H . If H ⊳ F2 the monodromy is given by the
anoni
al morphism f : F2 → F2/H .De�nition 1.5. An origami whi
h satis�es one of the 
onditions of Propo-sition 1.4 is 
alled normal . The group F2/H ∼= Im(f) is 
alled its Galoisgroup.Proposition 1.6. A normal origami with Galois group G 
an equivalentlybe de�ned as an element of Aut(G)\Epi(F2, G). The a
tion of Out(F2) onsu
h origamis is given by [ϕ] · [f ] = [f ◦ ϕ−1].Proof. For a given epimorphism f : F2 → G we use H := ker(f) as a �niteindex subgroup of F2 to de�ne an origami. This kernel is invariant underautomorphisms of G.On the other hand let H be a �nite index normal subgroup of F2. We haveseen in the proof of Prop. 1.4 that the monodromy map of the 
orrespondingorigami 
an be written as a surje
tive homomorphism f : F2 → F2/H ∼= G(whi
h is of 
ourse unique only up to the 
hosen isomorphism F2/H ∼= G). Ifwe start with another representative of the 
onjuga
y 
lass of H , this 
hangesour map only by an inner automorphism of G. Note that indeed H = ker(f),therefore this 
onstru
tion is inverse to the one des
ribed above.If we use the interpretation of f ∈ Epi(F2, G) as the monodromy map of ourorigami, then Prop. 1.3 ii) des
ribes the a
tion of Out(F2).1.4 Abelian Di�erentialsOrigamis are spe
ial 
ases of translation surfa
es and as su
h 
losely relatedto Abelian di�erentials. We give here a short introdu
tion along the lines of[Zor℄, Se
tions 2 and 4:De�nition 1.7. A translation surfa
e is a Riemann surfa
e X together witha �nite set S := {P1, . . . , Pn} ⊂ X of singularities and an atlas su
h thati) On X∗ := X \ S all 
oordinate-
hange maps are translations.



1.4. ABELIAN DIFFERENTIALS 7ii) For ea
h P ∈ S there is a 
hart f : U → C with f(P ) = 0 su
h thatevery 
oordinate-
hange map f(U) → C is of the form z 7→ zk for a
k ∈ N>1, 
alled the multipli
ity of the singularity P .On a translation surfa
eX two 
harts z and z′ onX∗ di�er only by a 
onstant.Therefore the lo
ally de�ned 1-form dz equals dz′. For the additional 
hartswith 
oordinate-
hange maps z 7→ zk as above we 
an use dz′ = kzk−1dz(whi
h has a zero z = f(P ) = 0 of order k − 1) to extend our 1-formholomorphi
ally to neighborhoods of S. Therefore by setting dz = 0 on Swe 
an extend dz to a globally de�ned holomorphi
 1-form ω ∈ H0(X,ΩX).Su
h a 1-form is also 
alled Abelian di�erential .This works in the other dire
tion as well: Given an Abelian di�erential on asurfa
eX with zeroes P1, . . . , Pn, we 
an re
onstru
t the translation stru
tureon X∗ := X \{P1, . . . , Pn} using lo
ally the 
harts U → C; x 7→

∫ x

x0
ω for anysimply 
onne
ted U ⊂ X∗ with arbitrary x0 ∈ U (di�erent 
harts di�er onlyby a 
onstant).Proposition 1.8. An Abelian di�erential ω on a Riemann surfa
e X de�nesan origami if and only if ∫

γ
ω ∈ Z + iZ for every γ ∈ π1(X

∗) and for everypath γ 
onne
ting two zeroes of ω.In this 
ase the zeroes of ω of order k − 1 are the rami�
ation points of theorigami X → E with rami�
ation index k.Proof. Let p : X → E be an origami. As a Riemann surfa
e glued from unitsquares by translations X is a translation surfa
e with singularities at theverti
es of the squares, i.e. the rami�
ation points of p. At a rami�
ationpoint of order k we have 
oordinate-
hange maps z 7→ zk, therefore ω has azero of order k − 1 at this point.We 
an 
al
ulate the given integrals on E:
∫

γ

ω =

∫

p◦γ

dzwhere p ◦ γ is a 
losed path on E = C/(Z + iZ). Let γ be a lift of p ◦ γ in
C. Its endpoints are equal modulo Z + iZ. Therefore ∫

γ
dz ∈ Z + iZ.On the other hand, given an Abelian di�erential with the stated propertiesfor any z0 ∈ X∗ the map

p : X → C/(Z + iZ); z 7→
z

∫

z0

ω



8 CHAPTER 1. ORIGAMISis well-de�ned and rami�ed only at the zeroes of ω, whi
h are preimages of
0 ∈ E.In [Zor℄ the statement of Proposition 1.8 o

urs in the 
ontext of period
oordinates of Abelian di�erentials, whi
h we will introdu
e as in [EO℄, �1.2:For an origami p : X → E we will usually denote the set of (possible) ra-mi�
ation points p−1(0) by R = {R1, . . . , Rn} (instead of S = {P1, . . . , Pn}),and the rami�
ation index at the point Ri by ei (instead of k). There maybe Ri ∈ p−1(0) where p is not rami�ed, hen
e ei = 1 is also possible2. Setting
ri = ei−1 for ea
h rami�
ation point we note that the divisor K of ω equals
∑

riPi with ∑

ri = 2g − 2 (using Riemann-Hurwitz).Let H denote the moduli spa
e of Abelian di�erentials with zeroes of order
e1, . . . , en at points P1, . . . , Pn on a surfa
e X of genus g = 1 + 1

2

∑

(ei − 1).Consider the relative homology group H1(X, {P1, . . . , Pn} ,Z) and 
hoose astandard basis {γi} (i.e. a symple
ti
 basis γ1, . . . , γ2g of π1(X
∗) and paths

γ2g+i−1 from P1 to Pi for i = 2, . . . , n). Now the map
Φ : H → Cn; ω 7→







∫

γ1

ω, . . . ,

∫

γ2g+n−1

ω





is 
alled the period map. This map de�nes a lo
al 
oordinate system on H ;the 
oordinates of ω ∈ H are 
alled its period 
oordinates. Proposition 1.8states that all period 
oordinates of ω are integer if and only if the translationsurfa
e de�ned by ω is an origami. Therefore we 
an think of origamis as theinteger points in H .

2Note that this means that there are always several di�erent origamis 
orresponding toa given Abelian di�erential ω, be
ause subdividing the squares of an origami into smallersquares means adding points with ei = 1 without 
hanging ω.



Chapter 2Origami-
urvesThe moduli spa
eMg,n is the set of isomorphism 
lasses of Riemann surfa
esof genus g with n pun
tures, endowed with the stru
ture of an algebrai
variety. An origami de�nes a 
urve in this moduli spa
e via the deformationmentioned in se
tion 1.2. In this 
hapter we will explain this 
onstru
tion,and then investigate under whi
h 
onditions two origamis de�ne the same
urve in moduli spa
e. We omit some details whi
h 
an be found for instan
ein [HS2℄, Ch. 1 and 2. For those unfamiliar with the 
on
ept of Tei
hmüllerspa
es and moduli spa
es we re
ommend [Nag℄ as an introdu
tion.2.1 From Tei
hmüller spa
e to moduli spa
eWe want to study the moduli spa
e
Mg,n :=

{
ompa
t Riemann surfa
es X of genus g with n pun
tures1} /

∼with X1 ∼ X2 if there is a biholomorphi
 map h : X1 → X2.This spa
e has a stru
ture of a 
omplex algebrai
 variety of dimension 3g −
3 + n (we will 
onsider only the 
ase where this number is positive). But ingeneral this variety has singularities wherever the group of automorphismsof the 
orresponding Riemann surfa
e is non-trivial. This problem 
an beresolved by looking instead at the set of Riemann surfa
es endowed with aso-
alled marking (whi
h 
hanges if an automorphism is applied, thus re-sulting in a di�erent obje
t in the 
lassifying spa
e). As marking we use
f ∈ Diffeo+(Xref, X), an orientation preserving di�eomorphism Xref → X1A pun
ture of X is a marked point. A biholomorphi
 map h : X1 → X2 has to mappun
tures of X1 to pun
tures of X2. 9



10 CHAPTER 2. ORIGAMI-CURVESfrom a �xed Riemann surfa
e Xref of genus g with n pun
tures to our Rie-mann surfa
e X, and thus arrive at the Tei
hmüller spa
e
Tg,n :=

{

(X, f) : X as above, f ∈ Diffeo+(Xref, X)
}

/∼where (X1, f1) ∼ (X2, f2) if the map f2 ◦ f−1
1 : X1 → X2 is homotopi
 to abiholomorphi
 map h : X1 → X2.We 
an map Tg,n to Mg,n by forgetting the marking f . A marking f of aRiemann surfa
e X 
an be transformed into any other marking of X by 
on-
atenating f with an orientation preserving di�eomorphism of Xref. If thedi�eomorphism is homotopi
 to the identity then of 
ourse the equivalen
e
lass of (X, f) in Tg.n will not 
hange. We denote the set of those di�eomor-phisms by Diffeo0(Xref). This leads to the de�nition of the mapping 
lassgroup

Γg,n := Diffeo+(Xref)/Diffeo0(Xref)
Γg,n a
ts properly dis
ontinuously on Tg,n and the orbit spa
e Tg,n/Γg,n is
Mg,n. One 
an de�ne a metri
 (the so-
alled Tei
hmüller-metri
, see [Nag℄,�2.1.7) and a 
omplex stru
ture on Tei
hmüller spa
e, whi
h turns Tg,n into a
omplex manifold of dimension 3g−3+n (by the Theorem in [Nag℄, �2.5.5).Now let O be an origami de�ned by p : X → E. Let g be the genus of Xand n := |p−1(0)| the number of its pun
tures. For A ∈ SL2(R) we use theidentity-map id : XI → XA to de�ne a marking of XA. With this marking
XA de�nes an element [XA] in the Tei
hmüller spa
e Tg,n. Therefore we havea map

ι : SL2(R)→ Tg,n, A 7→ [XA].Let ∆O be the image of this map, and c(O) the image of ∆O inMg,n.Note that for A ∈ SO2(R) we have (X, id) ∼ (XA, id) be
ause the map X →
XA is lo
ally de�ned by cA : E → EA, whi
h is biholomorphi
. Therefore ιis 
onstant on ea
h SO2(R) orbit and we get a map

ι : H ∼= SO2(R)\ SL2(R)→ Tg,nand in fa
t we 
an 
hoose the isomorphism H ∼= SO2(R)\ SL2(R) in su
ha way that ι : H → Tg,n is a holomorphi
 isometri
 embedding (see [HS2℄,De�nition 2.7). This �ts into a more general 
ontext: In general the image ofsu
h a map is 
alled a Tei
hmüller disk . If its image inMg,n is an algebrai

urve, then this 
urve is 
alled a Tei
hmüller 
urve. For origamis this isalways the 
ase:Proposition 2.1. For an origami O the set c(O) is an algebrai
 
urve.



2.2. COUNTING ORIGAMI-CURVES 11This is proven in [Lo
℄, Prop. 3.2 ii). We 
all su
h a 
urve c(O) an origami-
urve. Furthermore Lo
hak proves there that c(O) is de�ned over a number�eld. We will sket
h a proof for this in Remark 2.5.2.2 Counting origami-
urvesGiven two origamis O and O′ we would like to 
he
k whether both origamisde�ne the same origami-
urve or not. It is helpful to knowProposition 2.2. c(O) = c(O′) if and only if O and O′ are in the same
SL2(Z) orbit,whi
h is proven in [HS1℄, Prop. 5 b) for the de�nition of the SL2(Z) a
tionof Prop. 1.3 iii).We would now like to know how many origami-
urves exist for a given degree
d of the origamis. By Proposition 1.2 ii) an origami 
an be represented by atransitive homomorphism f : F2 → Sd, whi
h is de�ned by σx := f(x) and
σy := f(y) in Sd. Proposition 1.3 ii) tells us that the SL2(Z) a
tion in this
ase 
orresponds to the a
tion of Out(F2) by 
on
atenation. Thus we wantto 
al
ulate the 
ardinality of the set

Inn(Sd)\Homt(F2, Sd)/Out(F2)To do this we �rst omit the 
ondition `transitive' and 
al
ulate 
oset repre-sentatives. Afterwards we 
ount only those representatives whi
h de�ne atransitive homomorphism.For the 
al
ulation of the 
oset representatives we 
hoose a set Gen(Out(F2))of lifts of generators of Out(F2) in Aut(F2) and a set Gen(Inn(Sd)) of gen-erators of Inn(Sd). Then we de�ne the graph G = (V,E) with vertex set
V = Hom(F2, Sd) (whi
h 
an be represented by Sd × Sd) and edge set
E = {{f, f ◦ ϕ} : ϕ ∈ Gen(Out(F2))} ∪ {{f, ψ ◦ f} : ψ ∈ Gen(Inn(Sd))}Two verti
es in this graph are 
onne
ted if and only if they 
orrespond toorigamis in the same SL2(Z) orbit. Thus we get our 
oset representatives bypi
king one vertex out of every 
onne
ted 
omponent of the graph G.As generating set of Out(F2) we use {[ϕS], [ϕT ]} with

ϕS(x) = y, ϕS(y) = x−1, ϕT (x) = x, ϕT (y) = xywhi
h 
orresponds to the generating set {S, T} of SL2(Z) given by
S =

(

0 −1
1 0

) and T =

(

1 1
0 1

)

.



12 CHAPTER 2. ORIGAMI-CURVESAs generating set of Inn(Sd) we use {

κ(1 i) : i ∈ {1, . . . , d}
} where κ(1 i) is the
onjugation with the transposition (1 i) ∈ Sd.An implementation of this algorithm 
an be found in appendix A.1. We 
anuse it to 
al
ulate the number of origami-
urves in the moduli spa
esMg,n.degree d genus g n pun
tures number of 
urves1 1 1 12 1 2 13 1 3 12 1 14 1 4 22 2 35 1 5 12 3 33 1 46 1 6 12 4 83 2 197 1 7 12 5 43 3 224 1 14A more detailed examination of properties of these origami-
urves follows inAppendix A.2. Note that we have to 
ompute the 
onne
ted 
omponents ofa graph with (d!)2 verti
es, for d = 7 these are already more than 25 million.Thus the memory usage grows exponentially in d, therefore for large d itwon't be possible to use this algorithm.If we 
onsider only normal origamis, then we 
an modify the algorithm su
hthat it works for large origamis as well: If we �x a Galois group G, then ea
horigami is represented by an epimorphism F2 → G. The set of origami-
urves
ontaining normal origamis with Galois group G therefore 
orresponds to

Aut(G)\Epi(F2, G)/Out(F2)We 
an thus repla
e Sd in our algorithm by G, the transitivity of the imageof f by its surje
tivity and Gen(Inn(Sd)) by a generating set of Aut(G). Animplementation 
an also be found in appendix A.1. Note that for the graphwe use now the vertex-set G×G, and the 
ardinality of G is the degree d ofour origami. Therefore the memory usage grows only quadrati
ally in d.



2.3. THE VEECH GROUP 13Example 2.3. We use this algorithm to 
al
ulate for example the numberof origami-
urves 
ontaining normal origamis with Galois group PSL(2, 9):degree d genus g n pun
tures number of 
urves660 166 330 1221 220 1265 132 4276 110 2301 60 12.3 The Vee
h groupLet X be a translation surfa
e. An automorphism f of X is 
alled a�ne, if itis (at least on the pun
tured surfa
e X∗) lo
ally de�ned by maps z 7→ A·z+bwith b ∈ C and A ∈ GL2(R) a
ting on z ∈ C by Moebius transformation. Let
Aff+(X) denote the group of orientation preserving a�ne di�eomorphismsof X. As X is a translation surfa
e the 
oordinate 
hange maps of X∗ aretranslations. Therefore A is independent of the 
hosen 
oordinate 
harts andthus also independent of the 
hosen neighborhood. We 
all this matrix A thederivative der(f) of the a�ne di�eomorphism f . Note that on a 
losed surfa
e
f has to be area preserving, thus (together with orientation preserving) weget der(f) ∈ SL2(R). The image der(Aff+(X)) ⊂ SL2(R) of the derivativemap is 
alled the Vee
h group Γ(X) of X (introdu
ed by Vee
h in [Vee℄).For origamis we also have another more a

essible 
hara
terization of theVee
h group:Proposition 2.4. The Vee
h group of an origami is the stabilizer in SL2(Z)under the a
tion de�ned in Proposition 1.3.This was shown in [S
h2℄, Prop. 1 for the de�nition stated in Prop. 1.2 iii).It implies that for an origami O there is a one-to-one 
orresponden
e of theleft 
osets of the Vee
h group Γ(O) in SL2(Z) and the orbit of O under the
SL2(Z) a
tion, and by Prop. 2.2 this 
orresponds to the set of origamis O′whi
h des
ribe the same 
urve c(O′) = c(O) in moduli spa
e.Note that the set of origamis of degree d is a �nite set (as quotient of the�nite set Homt(F2, Sd)). Therefore the Vee
h group (as the stabilizer underthis a
tion) is a subgroup of �nite index in SL2(Z). Gutkin and Judge haveproven in [GJ℄, Theorem 5.5 that having a Vee
h group 
ommensurable to
SL2(Z) is a property whi
h 
hara
terizes origamis.



14 CHAPTER 2. ORIGAMI-CURVESRemark 2.5. Let O be an origami and Γ(O) the image of Γ(O) in PSL2(Z).Then Γ(O)\H is an algebrai
 
urve, and the map
Γ(O)\H→ PSL2(Z)\H ∼= P1(C)is rami�ed at most over three points, therefore by Belyi's theorem the 
urveis de�ned over a number �eld (a fa
t we remarked already after Prop. 2.1).If we repla
e Γ(O) by its 
onjugate with the map z 7→ −z, then the resulting
urve is a
tually the normalization of the origami-
urve c(O) in Mg (see[HS2℄, Cor. 2.21, or for a detailed proof [M
1℄, Cor. 3.3)The Vee
h group also leads to a simple algorithm for listing all origamis whi
hdes
ribe the same 
urve: Given an origami O de�ned by f ∈ Homt(F2, Sd)�rst 
al
ulate a set of left 
oset representatives R of the Vee
h group Γ of

O. Now every element g ∈ SL2(Z) 
an be written as g = rγ with r ∈ Rand γ ∈ Γ. As γ stabilizes O the image gO equals rO. Therefore the set
{rO : r ∈ R} equals the orbit of O under the a
tion of SL2(Z) and thus
ontains all origamis des
ribing the same origami-
urve as O.Constru
ting a set R of 
oset representatives is the most time-
onsumingpart: We start with R = {id}. Then for every element x ∈ R we 
he
k forevery generator g of SL2(Z) (and for every inverse) whether the 
oset of gxis represented by an element in R (i.e. whether gxΓ = yΓ for some y ∈ R,whi
h is equivalent to y−1gx ∈ Γ). If not then we have found a new 
oset andadd it to the set R, then start all over again. As there are only �nitely many
osets this algorithm terminates. Then a representative of every x ∈ SL2(Z)is 
ontained in R whi
h we 
an prove by writing x as a produ
t of the 
hosengenerators and using indu
tion over the word length.This algorithm (based on the Reidemeister-S
hreier method outlined in [LS℄,II.4) was already proposed by S
hmithüsen in [S
h2℄ for the 
al
ulation of
oset representatives (and generators) of the Vee
h group of origamis. Heralgorithm 
al
ulates right 
oset representatives of the proje
tive Vee
h group
Γ, whi
h di�ers only marginally from the one presented here.As generators of SL2(Z) we use the elements S and T already mentionedin Se
tion 2.2. Note that we get the set of 
oset representatives as wordsin the generators S and T , therefore we 
an easily write down a set of lifts
{ϕ1, . . . , ϕm} of those 
oset representatives in Aut(F2) by repla
ing S by ϕSand T by ϕT (with ϕS and ϕT as de�ned on page 11). The homomorphisms
f ◦ ϕ−1

i then de�ne all origamis with the same origami-
urve c(O).For 
he
king whether two origamis O and O′ des
ribe the same 
urve we justhave to 
he
k for ea
h ϕi whether [f ′] = [f ◦ ϕ−1
i ] in Inn(Sd)\Homt(F2, Sd),i.e. whether there is a σ ∈ Sd su
h that f ◦ ϕ−1
i = κσ ◦ f ′ where κσ is the
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onjugation with σ. If there is no ϕi for whi
h we 
an �nd su
h a σ, thenthe 
urves c(O) and c(O′) 
annot be equal.Example 2.6. We illustrate this algorithm for the origami O de�ned by
σx = (1 2) and σy = (1 3). We use the generators ϕS and ϕT of Out(F2) andwe are going to need their inverses:

ϕ−1
S (x) = y−1, ϕ−1

S (y) = x, ϕ−1
T (x) = x, ϕ−1

T (y) = x−1y.We then 
an 
al
ulate the images of our origami under the a
tion of SL2(Z):
f =

{

x 7→ (1 2)

y 7→ (1 3)
R := {id}

fS := f ◦ ϕ−1
S =

{

x 7→ f(y−1) = (1 3)

y 7→ f(x) = (1 2)
= κ(2 3) ◦ f S ∈ Γ

fT := f ◦ ϕ−1
T =

{

x 7→ f(x) = (1 2)

y 7→ f(x−1y) = (1 3 2)
R := {id, T}

fST := fT ◦ ϕ−1
S =

{

x 7→ fT (y−1) = (1 2 3)

y 7→ fT (x) = (1 2)
R := {id, T, ST}

fT 2 := fT ◦ ϕ−1
T =

{

x 7→ fT (x) = (1 2)

y 7→ fT (x−1y) = (1 3)
= f T 2 ∈ Γ

fS2T := fST ◦ ϕ−1
S =

{

x 7→ fST (y−1) = (1 2)

y 7→ fST (x) = (1 2 3)
= κ(1 2) ◦ fT T−1S2T ∈ Γ

fTST := fST ◦ ϕ−1
T =

{

x 7→ fST (x) = (1 2 3)

y 7→ fST (x−1y) = (2 3)
= κ(1 3 2) ◦ fST (ST )−1TST ∈ ΓThus the 
urve c(O) 
ontains exa
tly the three origamis de�ned by f, fS and

fST . This is illustrated in the following diagram:
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Chapter 3InvariantsIn the previous 
hapter we have seen algorithms whi
h de
ide whether twogiven origamis des
ribe the same origami-
urve in moduli spa
e, i.e. whetherthe de�ning homomorphisms F2 → Sd are equal in
Inn(Sd)\Homt(F2, Sd)/Out(F2).Now we want to study data whi
h are invariant for all origamis des
ribing a
ommon 
urve. Su
h invariants 
an be used to distinguish di�erent 
urves.Of 
ourse the obvious invariant would be simply the full SL2(Z) orbit of theorigami, or equivalently listing the full 
oset in Homt(F2, Sd). But this isbased on the des
ription of an origami glued from (
omplex) unit squares(or equivalently the monodromy homomorphism). In the following 
hapterswe also want to 
onsider origamis de�ned over other �elds than C where weare not able to rely on this 
omplex analyti
 
hara
terization of origamis.Instead we will fo
us on invariants whi
h represent properties of the 
overingmap X → E and properties of the origami-
urve itself.3.1 Rami�
ation indi
esIn this 
hapter O will always be an origami of degree d and genus g de�nedby the 
overing p : X → E. Let R := p−1(0) = {R1, . . . , Rn} be the setof (possible) rami�
ation points and let ei denote the rami�
ation index of

p at Ri for i = 1, . . . , n. Let P ∈ E∗ = E \ {0} be an arbitrary point and
{P1, . . . , Pd} = p−1(P ) be the �ber over P . Other notations from the �rsttwo 
hapters will also always refer to this �xed origami O if nothing else isindi
ated. 17



18 CHAPTER 3. INVARIANTSProposition 3.1. The degree d, the number of pun
tures n, the genus g andthe rami�
ation indi
es (ei) of an origami are invariant under the a
tion of
SL2(Z).Proof. For A ∈ SL2(Z) the map cA (de�ned in Se
tion 1.2) is an unrami�ed
overing of degree 1, whi
h �xes the point 0 ∈ E. Therefore 
omposing pwith cA neither 
hanges the degree of the 
overing, nor the preimages of 0,nor the rami�
ation index at any point of X. Of 
ourse the genus of X alsoremains un
hanged.The tuple (ei) is (up to 
hanging the order of its entries) an invariant of theorigami-
urve. The numbers d, n and g are already 
oded in this invariant:For an origami with n rami�
ation indi
es (ei) we have d =

∑

ei and g =
1 + 1

2
(d − n), whi
h follows from Riemann-Hurwitz or by 
al
ulating theEuler-
hara
teristi
.Proposition 3.2. For an origami with monodromy f ∈ Homt(F2, Sd) set

κ := f(xyx−1y−1). Then the rami�
ation indi
es (ei) equal the 
y
le-lengthsof κ.Proof. Let R ∈ p−1(0) be a rami�
ation point with rami�
ation index ei,and i be the number of a square with upper left vertex R. Let γ be thesimple 
losed 
ounter
lo
kwise path in X∗ around R starting at Pi. Up tohomotopy we 
an 
hoose γ to in
lude Pj for every square j whi
h 
ontains apart of γ, thus it is made up of lifts of y−1, x−1, y and x (in this order). Itsproje
tion to π1(E
∗, P ) therefore is a power of xyx−1y−1.The path γ thus starts with a path from Pi to Pκ(i), then it 
ontinues to

Pκ2(i) and so on. After ei times it gets ba
k to Pi for the �rst time be
ausethe path xyx−1y−1 in π1(E
∗, P ) is a simple 
losed path going on
e aroundthe pun
ture of E∗ and ei is the rami�
ation index of R. Therefore ei is theminimal non-trivial number with κei(i) = i and is hen
e the 
y
le-length ofthe 
y
le of κ 
ontaining i.Corollary 3.3. For a normal origami with monodromy f : F2 → Sd allrami�
ation indi
es are equal to ord(κ). This holds also if f is repla
ed by

f : F2 ։ G as des
ribed in Proposition 1.6.Proof. For a normal origami we have f−1(StabSd
(1)) = ker(f) thus κ stabi-lizes one point if and only if it stabilizes all. Thus all 
y
le lengths equal

ord(f(κ)). The se
ond 
hara
terization 
omes from identifying the image of
f with the Galois group G ∼= F2/ ker(f).



3.2. PROPERTIES OF THE ORIGAMI-CURVE 19Proposition 3.4. The sum ∑

(ei − 1) is always even.Conversely for e1, . . . , en ∈ N satisfying this 
ondition there exists an origamiwith rami�
ation indi
es (ei).Proof. The �rst part follows dire
tly from the Theorem of Riemann-Hurwitz,or alternatively from the fa
t that the 
ommutator κ in Prop. 3.2 is alwaysan even permutation.For the se
ond part we 
onstru
t an origami by 
on
atenating horizontallythe following 
omponents:i)
/.

() | /.��()��|*+
-, -,��

*+��whi
h 
reates a new pun
ture with rami�
ation index e = 1,ii)
/.

() || /.()|*+
-, | /.()||*+

-, -,

*+whi
h in
reases the last rami�
ation index by 2,iii)
/.

() || /.��()��|*+
-, ||| /.()|||*+��

-,�� | /.��()��||*+
-, -,��

*+��whi
h in
reases the last rami�
ation index by 1 and 
reates a new pun
-ture with rami�
ation index e = 2.3.2 Properties of the origami-
urveBy Remark 2.5 we know that the normalization of the origami-
urve inMg isa �mirror image� of Γ\H. For simpli
ity of notation we will study geometri
properties of Γ\H and keep in mind that these properties 
oin
ide with theproperties of our origami-
urve.Let d be the index1 of Γ in PSL2(Z). We get the Riemann surfa
e Γ\H byglueing d 
opies of a fundamental domain of PSL2(Z) in H. For this we usethe standard fundamental triangle ∆ shown in Figure 3.1, bounded by theunit 
ir
le and the lines Re(z) = ±1
2
with the point ∞i ex
luded (we 
allthis point the 
usp of ∆). Let {

Γg1, . . . ,Γgd

} be the right 
osets of Γ. Then1the usual notation would be d, as it is the degree of the map Γ\H→ PSL2(Z)\H, butwe don't want to 
onfuse this with the degree of the origami 
overing p : X → E. Likewisewe will use g instead of g and n instead of n when we are talking about the origami-
urve.



20 CHAPTER 3. INVARIANTSthe union of all gi(∆) is a fundamental domain for Γ (if it is 
onne
ted, i.e.if every gi is obtained from another one by multiplying S, T or their inversesfrom the right2). We identify the edges of this fundamental domain usingthe a
tion of Γ on H.Example 3.5. In Example 2.6 we 
al
ulated the set {id, T, ST} of left 
osetrepresentatives of the Vee
h group of an origami. Its right 
osets are therefore
{Γ,Γ · T−1,Γ · T−1S−1}. As S = S−1 in PSL2(Z) and in our 
ase T 2 ∈ Γwe have the right 
osets {

Γ,Γ · T,Γ · TS
}. The 
onstru
ted fundamentaldomain of the origami-
urve is shown in Figure 3.1.
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Figure 3.1: Fundamental domain of an origami-
urve with two 
usps (•)Around the image of a 
usp in Γ\H the 
opies of ∆ 
orrespond to 
osets
Γg,ΓgT . . . ,ΓgTw−1 of Γ for a g ∈ Γ. Thus ea
h of those 
usps 
orrespondsto a paraboli
 generator gTwg−1 of the proje
tive Vee
h group Γ. We 
all wthe width of the 
usp and g ∈ Γ a 
orresponding Strebel element .Now let n be the number of 
usps of the fundamental domain and w1, . . . , wnthe widths of the 
usps. Then we have d =

∑

wi. We 
an 
ompa
tify3the origami-
urve by adding a point at ea
h 
usp. Then our 
onstru
tedfundamental domain is a partition of the origami-
urve into d triangles. Wewould like to use this to 
al
ulate the genus g of the origami-
urve, but theremay be edges whi
h are identi�ed with itself (like for example in Figure 3.1),and then this partition would not be a triangulation. This problem 
an besolved by subdividing these triangles by adding an additional edge throughthe 
enter of those edges. Then we 
an 
ount the verti
es, edges and fa
esof this triangulation to 
al
ulate the Euler 
hara
teristi
 and thus also thegenus of the origami-
urve.2to simplify notation we will often make no di�eren
e between elements in SL2(Z) andtheir proje
tions to PSL2(Z)3The 
ompa
ti�
ation of the moduli spa
eMg,n will be the topi
 of se
tion 3.3



3.3. THE BOUNDARY OF MODULI SPACE 21Proposition 3.6. The Vee
h groups of origamis whi
h des
ribe the same
urve are 
onjugated. The genus g and the number of 
usps n of the origami-
urve, the index d of the Vee
h group Γ, the property −1 ∈ Γ and the 
uspwidths (wi) of an origami are all invariant under the a
tion of SL2(Z).Proof. The numbers g and n represent properties of the origami-
urve andhen
e are obviously invariant.Let O be an origami with Vee
h group Γ and h ∈ SL2(Z). Then the Vee
hgroup of hO is hΓh−1 be
ause (hΓh−1)hO = hΓO = hO. Therefore theVee
h groups of O and hO are 
onjugated and hen
e have the same index in
SL2(Z). As −1 is in the 
enter of SL2(Z) we have −1 ∈ Γ⇔ −1 ∈ hΓh−1.If {

Γgi
} is the system of right 
osets of Γ, then {

(hΓh−1)hgi
} is the systemof right 
osets of hΓh−1. Thus the 
onstru
ted fundamental domain for hOwill be the image of the fundamental domain for O under h. A paraboli
generator gTwg−1 then transforms to hgTwg−1h−1 leading to the same 
uspwidth w.3.3 The boundary of moduli spa
eIn the last se
tion we have mentioned that we 
an 
ompa
tify an origami-
urve by adding a point at ea
h 
usp. While the origami-
urve is a subsetof the moduli spa
e Mg,n the 
usps do not 
orrespond to points in thismoduli spa
e. But we 
an 
ompa
tify Mg.n using the Deligne-Mumford-
ompa
ti�
ation Mg,n. Then the 
usps of the origami-
urve 
orrespond topoints in the boundary ∂Mg,n :=Mg,n \Mg,n.The Deligne-Mumford-
ompa
ti�
ation Mg,n is the moduli spa
e of stableRiemann surfa
es of genus g with n pun
tures4 (
.f. [DM℄). A stable Rie-mann surfa
e is a one-dimensional 
ompa
t 
omplex spa
e X whose onlysingularities are ordinary double points (i.e. points with a neighborhoodisomorphi
 to a double 
one). Additionally it is required that on ea
h ir-redu
ible 
omponent of X of genus 0 there are at least three spe
ial points(where a point is spe
ial if it is a pun
ture or singular).To ea
h stable 
urve we asso
iate the interse
tion graph of its irredu
ible
omponents. This graph has a vertex for every irredu
ible 
omponent andan edge for every singularity, whose endpoints are the verti
es 
orrespondingto the 
omponents 
ontaining the singular point. We mark ea
h vertex witha pair (g, n), where g denotes the genus of the irredu
ible 
omponent, and nthe number of marked points 
ontained therein.4For g = 0 we require n ≥ 3, for g = 1 we need n 6= 0.



22 CHAPTER 3. INVARIANTSEa
h 
usp of an origami-
urve 
orresponds to a point in ∂Mg,n, whi
h is astable 
urve with at least one singularity. The idea for the 
onstru
tion ofthis stable 
urve is the following: Let O be an origami de�ned by the 
overing
p : X → E. The Tei
hmüller disk ∆O then 
onsists of the Riemann surfa
es
XA with A ∈ SL2(R) together with the identity as marking X → XA. Nowthe ray

[0,∞)→ Tg,n de�ned by t 7→ (XA(t), id) with A(t) =

(

et 0
0 e−t

)is 
ontained in this Tei
hmüller disk, and as t tends to ∞ every path on theorigami in horizontal dire
tion be
omes arbitrarily small. If we think of ourorigami as a surfa
e glued from squares this 
orresponds to 
ontra
ting ahorizontal line in the 
enter of ea
h square to a point. The thus 
onstru
tedsingular surfa
e is the stable 
urve 
orresponding to the 
usp of the origami-
urve belonging to the triangle ∆, i.e. to the 
usp with Strebel element
id.For the 
onstru
tion of other boundary points of the origami-
urve we wouldhave to 
ontra
t 
losed paths in other dire
tions. The dire
tions in whi
hthe paths are 
losed are given by s · ( 1

0 ) for a Strebel element s and are
alled Strebel dire
tions. But instead we 
an also look at the origami s−1O,where the desired Strebel dire
tion is transformed to the horizontal one. Wetherefore getProposition 3.7. Let O be an origami and s a Strebel element for a 
uspof its origami-
urve. Then one obtains the stable 
urve 
orresponding to this
usp by 
ontra
ting horizontal lines in the 
enter of ea
h square of the origami
s−1O.A formal proof 
an be found in [HS2℄, Theorem 4.1.Example 3.8. We see in Figure 3.1 that the origami from Example 2.6 hastwo 
usps: one with Strebel element s1 = id and width w1 = 2, and anotherone with Strebel element s2 = TS and width w2 = 1. The resulting Strebeldire
tions and the interse
tion graphs of the resulting stable 
urves are shownin Figure 3.2.We now present an algorithm for the 
omputation of the interse
tion graph.As a �rst step we number all 
losed horizontal lines whi
h we want to 
on-tra
t. This is done by marking an arbitrary square of the origami with thenumber 1, then marking its right neighbor with the same number and soon, until we get ba
k to the square we started with. Then we pi
k a new
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tion graphs of boundary points of an origami-
urveyet unmarked square and start all over for the next horizontal line with thenumber 2, and so on.As se
ond step we number the irredu
ible 
omponents: these are the 
on-ne
ted areas bounded above and below by the 
losed horizontal lines. Wemark the top half of an arbitrary square with the �rst number 1, then we
ontinue marking all adja
ent half squares with the same number, and 
on-tinue with their neighbors. When there are no more unmarked adja
enthalf squares we pi
k a new unmarked square and start all over for the nextirredu
ible 
omponent.Now we 
an de�ne our interse
tion graph: every irredu
ible 
omponent 
or-responds to a vertex in this graph, and every horizontal line to an edge. Theendpoints of an edge are de�ned by the numbers of the 
omponents adja
entto the horizontal line.We still have to 
al
ulate the genus g and the number n of marked points forea
h 
omponent. Let C be the set of bottom half squares in the 
omponentand ei the rami�
ation index of the marked point at the bottom left vertexof the bottom half square i. We 
an 
al
ulate the number of marked pointsby

n =
∑

i∈C

1

eibe
ause for every marked point Rj the ei 
orresponding to Rj are equal tothe rami�
ation index e of Rj and will be 
ounted exa
tly e times, thus forevery marked point the sum ∑

1/e is 1.For the 
al
ulation of the genus we use the triangulation of our 
omponentwhi
h we get by 
ontra
ting the horizontal lines. This triangulation has n+dverti
es, where d is the number of adja
ent horizontal lines (i.e. the degreeof the vertex in the interse
tion graph). The number of fa
es is 2 |C| (forevery bottom half square there is also a top half square). Therefore the Euler
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hara
teristi
 of the 
omponent is
χ = n+ d− 3 |C|+ 2 |C| = n+ d− |C|and we get the genus g = 1− χ

2
.3.4 Automorphisms and their �xed pointsThe group Aut(X) of automorphisms of X is not invariant along the 
urvein moduli spa
e. This is already obvious for the trivial origami E → E.Therefore we would like to de�ne the automorphism group of an origami tobe the interse
tion of all the di�erent automorphism groups o

urring alongthis 
urve:De�nition 3.9. We 
all a bije
tive map σ : X → X an automorphism ofthe origami O, if it indu
es for every A ∈ SL2(R) via X → E → EA a well-de�ned automorphism on EA. The group Aut(O) of all su
h automorphismsis 
alled the automorphism group of O.The group Aut(O) is a subgroup of the group Aut(X) of automorphisms ofXas a Riemann surfa
e. Contrary to Aut(X) the subgroup Aut(O) is invariantfor all 
omplex stru
tures, i.e. for all origamis on c(O). The 
al
ulation ofthis group is simple: Every automorphism σ indu
es on E either the identityor the ellipti
 involution (as these are the only automorphisms of E whi
hindu
e automorphisms on every EA). Therefore the square 
ontaining P1has to be mapped bije
tively to the square 
ontaining σ(P1) (either by atranslation, or by a 180◦ rotation), and the monodromy map determines theimages of the other squares.Given an automorphism σ, the 
al
ulation of its �xed points is also simple:Let x be a �xed point of σ. If σ 6= id indu
es the identity on E, then nopoint in X∗ is �xed by σ, and therefore x ∈ X \X∗ = p−1(0) = {R1, . . . , Rn}.If σ indu
es the ellipti
 involution p(x) has to be �xed by this involution,therefore x ∈ p−1(0) or x ∈ p−1(

{

(0, 1
2
), (1

2
, 0), (1

2
, 1

2
)
}

) := {A1, . . . , A3d}.Thus there are at most 4d possible �xed points.Every automorphism permutes the rami�
ation points Ri and the points Ai.Proposition 3.10. The homomorphism
Aut(O)→ S3d × Snindu
ed by the permutations of the points in A1, . . .A3d and R1, . . . , Rn is (upto renumbering the points) invariant on the origami-
urve.



3.4. AUTOMORPHISMS AND THEIR FIXED POINTS 25Proof. The deformation along the origami-
urve is 
ontinuous, but the points
Ai and Ri are dis
rete in X (be
ause their images in E are dis
rete).Example 3.11. Looking at the origami

|| −− 1||2 ||| =|||3||= 4we see that there is no non-trivial automorphism whi
h des
ends to the iden-tity on E, be
ause square 1 is horizontally adja
ent to itself, but this holdsfor no other square, so there is no possible image for a translation of square 1ex
ept itself. But we 
an rotate square 1 by 180◦. Then square 2 is mappedto itself and squares 3 and 4 are ex
hanged:
−

||
−

1||2 | =| 4||||||= 3 = || −−

1||2 | =| 4||||||= 3
The a
tion of σ on the points Ai and Ri is shown in the following pi
tures:
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OOThe �rst pi
ture shows the two pun
tures R1 and R2 of the origami, whi
hare both �xed. The se
ond one shows the other four �xed points of σ, andin the third pi
ture we see what happens to the other eight points Ai.If an origamiO is normal we 
an determine the group Aut(O) quite expli
itly:Proposition 3.12. An origami O of degree d is normal if and only if it has
d translations. In this 
ase the group of translations is isomorphi
 to theGalois group G of O.Proof. If the origami is normal, then we 
an think of the squares labelled bythe group elements, and for every group element right-multipli
ation de�nesa translation.On the other hand if there are d translations this means that there are twotranslations σ, τ whi
h map square number 1 to its right respe
tively upperneighbor. As the origami is 
onne
ted they generate a group of d elements.The origami is then identi
al to the normal one de�ned by f : F2 ։ 〈σ, τ〉with f(x) = σ and f(y) = τ (in the sense of Proposition 1.6).



26 CHAPTER 3. INVARIANTSProposition 3.13. Let O be a normal origami with Galois group G de�nedby X → E and f : F2 ։ G. Set σ := f(x) and τ := f(y) and let E →
P 1(C) =: P be the quotient map indu
ed by the ellipti
 involution z 7→ −z.Then the following are equivalent:i) Aut(O) 6∼= G,ii) −1 ∈ Γ(O),iii) there exists some ψ ∈ Aut(O) of order 2 not indu
ing the identity on E,iv) the 
omposed map X → E → P is normal.v) there exists some ϕ ∈ Aut(G) with ϕ(σ) = σ−1 and ϕ(τ) = τ−1,In this 
ase we have

Aut(O) ∼= Gal(X/P ) ∼= 〈G,ψ〉 ∼= C2 ⋉Φ Gwhere Φ : C2 → Aut(G) maps the generator of the 
y
li
 group C2 to ϕ.Proof. i)⇔ ii) is 
lear sin
e automorphisms whi
h are not translations indu
ethe ellipti
 involution on E and hen
e have derivative -1.i)⇔ iii) is also 
lear sin
e if there is an automorphism of O whi
h indu
es theellipti
 involution on E we 
an 
on
atenate a translation to �nd a non-trivialautomorphism ψ whi
h maps the square labelled with 1 ∈ G to itself. Thisis an automorphism of order 2.The quotient X/ 〈G,ψ〉 is isomorphi
 to P = P1(C) and fa
tors through
X/G, thus iv) follows. On the other hand if X → P is normal then G (
Gal(X/P ) ⊆ Aut(O), thus iv) ⇒ i)The automorphism ψ maps the square σ to σ−1 and τ to τ−1. Thus theorigami de�ned by f ′ : F2 → G with f ′(x) = σ−1 and f ′(y) = τ−1 is equalto the one de�ned by f in Aut(G)\Epi(F2, G), hen
e f ′ = ϕ ◦ f for anautomorphism ϕ ∈ Aut(G). This means ϕ(σ) = σ−1 and ϕ(τ) = τ−1,therefore i) ⇒ v). The reverse argumentation shows v) ⇒ i).The group of translations is isomorphi
 to G and 
ontained in Aut(O) withindex 2, hen
e normal. Thus we have a split exa
t sequen
e

0 // G // Aut(O) // C2

Φ

ii
// 0Therefore Aut(O) ∼= G⋉Φ C2.
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 di�erentialsAn origami is naturally asso
iated to an Abelian di�erential ω. Its stratum inthe moduli spa
e of Abelian di�erentials is determined by the multipli
itiesof zeroes of ω. A 
ontinuous deformation of the 
omplex stru
ture of anorigami leads also to a 
ontinuous deformation of the Abelian di�erential
ω. Therefore the 
onne
ted 
omponent of ω in the moduli spa
e of Abeliandi�erentials H is invariant on the Tei
hmüller disk de�ned by the origami.Kontsevi
h an Zori
h have shown in [KZ℄ that ea
h stratum 
ontains up to 3
onne
ted 
omponents. The 
onne
ted 
omponent of ω in H is determinedby two properties (see [KZ℄ 2.3, Theorem 1):1. The property `hyperellipti
'.If a hyperellipti
 involution5 σ on X exists, then ω is 
alled hyperellipti
 if ithas only one zero, or if it has two zeroes whi
h are ex
hanged by σ.2. The parity of the 
anoni
al spin stru
ture.A spin stru
ture on X is a divisor D on X with 2D =

∑

(ei−1)Ri in Pic(X).If all ei are odd, then there is a 
anoni
al spin stru
ture D =
∑

ei−1
2
Ri. Theparity of the spin stru
ture D is the parity of ℓ(D)−1 = dimH0(X,L(D))−

1 (where L(D) is the asso
iated invertible sheaf to D), whi
h equals6 thedimension the 
omplete linear system |D|.We 
ompute both properties in Appendix A.2 for all origamis with up toeight squares. For the hyperellipti
ity of ω we will use the following 
hara
-terization:Proposition 3.14. An automorphism σ of a Riemann surfa
e X is a hy-perellipti
 involution if it has order 2 and 2g + 2 �xed points.This 
an be proven easily using Riemann-Hurwitz. In se
tion 3.4 we havealready 
omputed the automorphism group of an origami X (in the 
asewhere the underlying ellipti
 
urve has only trivial automorphisms). We alsohave 
omputed the �xed points of those automorphisms. This is su�
ient toidentify the hyperellipti
 involution (if it exists) by Prop. 3.14. We 
an theneasily determine whether ω is hyperellipti
.For the parity of the 
anoni
al spin stru
ture [KZ℄, 3.2 o�ers another 
har-a
terization, whi
h is more a

essible for a dire
t 
omputation:5A hyperellipti
 involution of X is an automorphism σ of X of order 2 su
h that thequotient X/〈σ〉 has genus 0.6For the de�nition of the 
omplete linear system and the proof of the mentioned equalitywe refer to [Har℄, II.7.7 and the following de�nition.



28 CHAPTER 3. INVARIANTSProposition 3.15. Choose oriented smooth 
losed paths (αi, βi) on X∗ rep-resenting a symple
ti
 basis of H1(X,Z). Then the parity of the 
anoni
alspin stru
ture of ω (if it exists) is equal to the parity of
ϕ(ω) :=

g
∑

i=1

(indαi
+1)(indβi

+1)where indγ is the winding number7 of a 
losed 
urve γ.An origami of genus g is topologi
ally a sphere with g handles. The algorithmfor surfa
e normalization from [Sti℄, 1.3 
an be used to transform our origamiinto this normalized form. A symple
ti
 basis of H1(X,Z) is given thereby the standard generators of the fundamental group of su
h a normalizedsurfa
e: we get two generators for ea
h handle, whi
h interse
t ea
h otheronly on
e, and do not interse
t any other generators. The normalized surfa
e(together with those 2g generators of its fundamental group) 
an now betransformed ba
k to the original origami. Thus we get the paths αi and βineeded for the appli
ation of the proposition.Example 3.16. In Example 3.11 we 
al
ulated an automorphism σ of anorigami of order two with six �xed points. The origami has degree d = 4 and
n = 2 pun
tures, thus its genus is g = 2 and σ is a hyperellipti
 involutionby Prop. 3.14. There is only one zero of ω be
ause one of the pun
tures hasrami�
ation index 1 and is hen
e not a zero of ω. Therefore the 
orrespondingAbelian di�erential is 
ontained in the hyperellipti
 
omponent.For the 
al
ulation of the parity of the 
anoni
al spin stru
ture we �rst
al
ulate a symple
ti
 basis of H1(X,Z) using the algorithm for surfa
e nor-malization. The results are the paths

α1 = y2, β1 = x, α2 = x−1y−1x2yx−2yx, β2 = y−1x−1y−1x−2yxwhi
h are shown8 in Figure 3.3, where one 
an 
he
k easily that they formindeed a symple
ti
 basis.For the 
al
ulation of the winding number of a path γ ∈ π1(X
∗, P ) we �rstrepla
e γ by a 
y
li
ally redu
ed representative of its 
onjuga
y 
lass (this
orresponds to sele
ting another basepoint P for π1(X

∗, P )). Then at ea
hpoint in the same �ber as P over E∗ the path either turns 90◦ left or 90◦ rightor it 
ontinues in its previous dire
tion. We 
an thus 
ompute the winding7Note that the winding numbers depend on the translation stru
ture on X given by ω.8Re
all that we write elements of the fundamental group from right to left, as statedin the footnote on page 2
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Figure 3.3: Representatives of a symple
ti
 basis of H1(X,Z).number indγ easily by 
ounting all the left-turns, subtra
ting the right-turns,and dividing the result by 4.For our example we get
indα1

= indβ1
= indα2

= 0, indβ2
= 1

4
(5− 1) = 1Therefore the parity of the 
anoni
al spin stru
ture in this 
ase is the parityof 1 · 1 + 1 · 2 = 3, whi
h is odd.3.6 The Galois groupLet O and O be two origamis de�ned by p : X → E and p : X → Erespe
tively. We say thatO is a 
overing ofO if there is a 
overing h : X → Xsu
h that p = p◦h. Su
h a 
overing indu
es an in
lusion of the 
orrespondingfundamental groups:

H = π1(X
∗
, P ) →֒ π1(X

∗, P ) = HConversely, if we have two �nite index subgroups H andH of F2 withH ⊂ H ,then the origami de�ned by H 
overs the one de�ned by H .Proposition 3.17. Every origami O has a minimal normal 
overing O′, i.e.a 
overing O′ → O su
h that O′ is a normal origami and every other 
overingof a normal origami O over O also 
overs O′.Proof. Let H be the fundamental group of O as above and H the fundamen-tal group of a normal 
overing of O. Then H is a normal subgroup of F2
ontained in H . Hen
e
H ⊆ N :=

⋂

γ∈F2

γ−1Hγ



30 CHAPTER 3. INVARIANTSwhere N is a normal subgroup of F2. Hen
e the origami O′ de�ned by N is anormal 
overing of O, and the stated in
lusion proves that O 
overs O′.Proposition 3.18. Let O be an origami with monodromy f : F2 → Sd. Thenthe Galois group G of the minimal normal 
overing of O is isomorphi
 to theimage of f and this isomorphy type is invariant under the a
tion of SL2(Z).We 
all this group the Galois group of O.Proof. With the notation as in Prop. 3.17 we use H = f−1(StabSd
(1)) to getthe equation

ker(f) = f−1(id) = f−1
(

⋂

i∈{1,...,d}

StabSd
(i)

)

=
⋂

γ∈F2

γ−1f−1(StabSd
(1))γ =

⋂

γ∈F2

γ−1Hγ = NTherefore we have f(F2) ∼= F2/ ker(f) = F2/N ∼= G.Obviously f(F2) = (f ◦ ϕ)(F2) for every ϕ ∈ Aut(F2), hen
e the invarian
eunder the a
tion of SL2(Z).Example 3.19. Let O be the origami de�ned by σx = (1 2 3)(4 5 6) and
σy = (2 4)(3 5). The monodromy map f : F2 → S6 maps x to σx and y to
σy, therefore the image of f is the subgroup of S6 generated by σx and σy.This group is isomorphi
 to A4. Thus A4 is the Galois group of O. The
orresponding normal 
overing is shown in Figure 3.4.

1'1'3 1 4422
26 4

5' 15'33'
3'5 6' 46'6 113' 1' 4'4'2'2'

2'6' 4' 5 1'53'3
35' 6 4'66'

−→ 113 1 4226 4 5 1335 6 466
Figure 3.4: Minimal normal 
overing of an origami



Chapter 4The non-ar
himedean worldUp to now we have only 
onsidered origamis as 
ompa
t Riemann surfa
es,i.e. proje
tive nonsingular 
urves de�ned over C. In this 
hapter we want tomake an analogous de�nition for 
urves de�ned over the 
ompleted algebrai

losure Cp of the �eld of p-adi
 numbers. As a p-adi
 analogue of Riemannsurfa
es we use Mumford 
urves. Mumford showed in [Mum℄ that these
urves 
an be uniformized as Ω/G where G ⊂ PGL2(Cp) a
ts1 properlydis
ontinuously on Ω ⊂ P1. We are going to use this property as a de�nition.Contrary to the 
omplex setting not every proje
tive nonsingular 
urve is aMumford 
urve. For more details about Mumford 
urves we refer to [GP℄.We will de�ne a p-adi
 origami as a 
overing X → E of Mumford 
urvesde�ned over Cp with at most one bran
h point, where g(E) = 1 (i.e. E isa Tate 
urve). These p-adi
 origamis also form 
urves in the moduli spa
eof 
urves over Cp, whi
h are 
onne
ted to 
orresponding origami 
urves over
C. This 
onne
tion between origamis over Cp and over C will be the topi
 ofChapter 5.In the present 
hapter we will propose methods for the 
al
ulation of someof the invariants introdu
ed in Chapter 3. We restri
t our 
onsiderations tonormal origamis with non-trivial rami�
ation (i.e. non-abelian Galois group).Those origamis will be 
lassi�ed in Se
tion 4.3. It is already known that every�nite group o

urs as a Galois group of a 
overing of a Mumford 
urve over anellipti
 
urve, whi
h was proven in [PV℄, Theorem 1.2. Hen
e the interestingpart will be to 
ontrol the number of bran
h points of su
h 
overings. To dothis we will use some results of Kato and Bradley on Mumford orbifolds.1For better readability we will 
ontinue to write this quotient spa
e as Ω/G even thoughthe a
tion of G is a left a
tion. 31



32 CHAPTER 4. THE NON-ARCHIMEDEAN WORLD4.1 Dis
ontinuous groupsAfter de�ning Mumford 
urves we will 
onstru
t in this se
tion the Bruhat-Tits-Tree B for an extension of Qp using a quite 
on
rete de�nition from
[Her]. A Mumford 
urve is 
losely related to the quotient graph of an a
tionof G on a subtree of B. Often one de�nes a suitable subtree su
h that thequotient be
omes a �nite graph, but instead we will follow Kato [Kat2℄,who uses a slightly larger quotient graph, whi
h 
an be used to 
ontrol therami�
ation behavior of 
overings of Mumford 
urves.De�nition 4.1. Let k be a �eld whi
h is 
omplete with respe
t to a non-ar
himedean valuation and G a subgroup of PGL2(k). A point x ∈ P1(k) is
alled a limit point of G, if there exist pairwise di�erent γn ∈ G (n ∈ N) anda point y ∈ P1(k) satisfying lim γn(y) = x. The set of limit points is denotedby L(G).
G is a dis
ontinuous group, if Ω(G) := P1(k) \ L(G) is nonempty and forea
h x ∈ P1(k) the 
losure Gx of its orbit is 
ompa
t. A dis
ontinuous group
G is 
alled a S
hottky group if it is �nitely generated and has no non-trivialelements of �nite order. Every S
hottky group is free ([GP℄, Theorem I.3.1).A dis
ontinuous groupG a
ts properly dis
ontinuously on Ω(G). For a S
hot-tky group G we know from [GP℄, Theorem III.2.2. that the quotient Ω(G)/Gis the analyti�
ation of an algebrai
 
urve. Su
h a 
urve is 
alled a Mumford
urve.If an arbitrary group G ⊂ PGL2(k) 
ontains a dis
ontinuous group G′ of�nite index, then L(G) = L(G′) and G is also dis
ontinuous. We know from[GP℄, Ch. I, Theorem 3.1 that every �nitely generated dis
ontinuous group
ontains a S
hottky group as a subgroup of �nite index.Let k ⊂ Cp be a �nitely generated extension of Qp. Then the set of absolutevalues |k×| := {|x| : x ∈ k×} is a dis
rete set inR×. For r ∈ |k×| and x ∈ k let
B(x, r) := {y ∈ k : |x− y| ≤ r} be the �
losed� ball2 around x. Constru
t agraph with verti
es B(x, r) and insert edges 
onne
ting B(x, r) and B(x′, r′)with B(x, r) ⊂ B(x′, r′) and [r, r′]∩ |k×| = {r, r′}. This graph is a simpli
ialtree, 
alled the Bruhat-Tits-Tree B(k). The ends3 of this graph 
orrespondbije
tively to the points in P1(k̂), where k̂ denotes the 
ompletion of k. Thea
tion of PGL2(k) on P1(k) 
an be 
ontinued to an a
tion on B(k), and we
an modify B(k) by adding verti
es su
h that this a
tion is without inversion.2Note that as |k×| is dis
rete the ball B(x, r) is both open and 
losed for the topologyindu
ed by the p-adi
 norm.3An end of a graph is an in�nite ray up to �nitely many edges.



4.1. DISCONTINUOUS GROUPS 33Let γ ∈ PGL2(k) be hyperboli
 or ellipti
 with two �xed points in P1(k). Inthis 
ase we de�ne the axis A(γ) to be the in�nite path 
onne
ting the twoends of B(k) 
orresponding to the �xed points of γ. A hyperboli
 element γ ∈
PGL2 a
ts on A(γ) by shifting the whole axis towards the end 
orrespondingto the attra
ting �xpoint of γ. An ellipti
 element �xes A(γ) pointwise. Ithas additional �xed points in B(k) if and only if ord(γ) is a power of p (thisis made more pre
ise in [Her℄, Lemma 3).Let G be a �nitely generated dis
ontinuous subgroup of PGL2(Cp) and let
F (γ) be the set of the two �xed points of γ ∈ G in P1(Cp). Now let kbe the extension of Qp generated by the 
oe�
ients of the generators of Gand the �xed points of representatives of every 
onjuga
y 
lass of ellipti
elements in G. There are only �nitely many su
h 
onjuga
y 
lasses, hen
e kis a �nitely generated �eld extension of Qp and we 
an therefore 
onstru
tthe Bruhat-Tits-Tree B(k) as des
ribed above. Note that by 
onstru
tion
G ⊂ PGL2(k) and F (γ) ⊂ P1(k) for all ellipti
 elements γ ∈ G. Moreoverwe have F (γ) ⊂ P1(k̂) for every hyperboli
 element γ ∈ G be
ause theendpoints of A(γ) 
orrespond to the �xed points of γ.As G is dis
ontinuous, G 
ontains only hyperboli
 and ellipti
 elements([Kat2℄, Lemma 4.2). The set of all �xed points of G

F (G) :=
⋃

γ∈G

F (γ)is a G-invariant subset of P1(k̂), therefore G also a
ts on the subtree T ∗(G)of B(k) generated by the ends 
orresponding to F (G). We 
an now 
onstru
tthe quotient graph G∗(G) := T ∗(G)/G. Ea
h axis of a hyperboli
 elementwill be mapped to a 
ir
le in G∗(G), while ea
h end of T ∗(G) 
orrespondingto a �xed point of an ellipti
 element but not to a �xed point of a hyperboli
element will be mapped to an end of G∗(G). We now turn G∗(G) into a graphof groups4 by labeling the image of a vertex resp. edge x ∈ T ∗(G) with the
onjuga
y 
lass of the stabilizing group Gx of x.The graph G∗(G) 
ontains a lot of useful information about the Mumford
urve Ω(G)/G. The rami�
ation points of the 
overing Ω(G)→ Ω(G)/G arethe �xed points of ellipti
 elements of G whi
h are not �xed points of hyper-boli
 elements ([Kat2℄, Prop. 5.6.2). Therefore the bran
h points 
orrespondbije
tively to the ends of G∗(G). The stabilizing group of su
h an end is a
y
li
 group whose order equals the 
orresponding rami�
ation index. Andby studying the a
tion of the hyperboli
 elements, we �nd that the genus5 of4In this 
hapter a graph will always mean a graph of groups to shorten notation. Forthe de�nition of a graph of groups we refer to [Ser℄, I.4.4.5By the genus of a graph we mean its �rst Betti number.
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G∗(G) equals the genus of Ω(G)/G ([Kat2℄, �5.6.0).De�nition 4.2. We de�ne a p-adi
 origami to be a 
overing of Mumford
urves X → E rami�ed above at most one point with g(E) = 1.Starting from a Mumford 
urve X = Ω/Γ for a S
hottky group Γ we will later
onsider the quotient map to E = Ω/G for an extension G of Γ. As Γ is freethe map Ω→ Ω/Γ is unrami�ed, therefore the bran
h points of X → E areequal to those of Ω → Ω/G. Thus both ne
essary informations for X → Eto be a p-adi
 origami (the genus of E and the number of bran
h points) are
oded in the quotient graph G∗(G) (as its genus and the number of its ends).We will now give two examples of how we 
an use this to 
onstru
t p-adi
origamis.Example 4.3. Let p > 5 and n ∈ N be odd, ζ ∈ Cp be a primitive n-th rootof unity, q ∈ Cp with |q| < |1− ζ | and set

δ =

(

ζ 0
0 1

)

; σ =

(

0 1
1 0

)

; γ =

(

1 + q 1− q
1− q 1 + q

)Thus δ is ellipti
 of order n with �xed points 0 and ∞, the involution σex
hanges the �xed points of δ and has �xed points 1 and −1, and γ ishyperboli
 with the same �xed points as σ. Then we have
• γσ = σγ and δσ = σδ−1

• ∆ := 〈δ, σ〉 is the dihedral group Dn and �xes a single vertex A(δ)∩A(σ).
• Γ := 〈δiγδ−i : i ∈ {0, . . . , n− 1}〉 is a S
hottky group on n free generators.
• Γ is a normal subgroup of G := 〈δ, σ, γ〉 of index 2n, hen
e Ω(G) = Ω(Γ) =:

Ω. It is the kernel of the map ϕ : G→ ∆ de�ned by ϕ|∆ = id and ϕ(γ) = 1.
• The quotient graph G∗ of Ω/G is

•〈σ〉
∆

〈δ〉 //where we use the arrow to indi
ate an end of this graph.
• Sin
e G∗ has genus 1 and one end the map Ω/Γ→ Ω/G is a normal p-adi
origami with Galois group G/Γ ∼= Dn.A more detailed investigation of this origami 
an be found in [Kre℄, Be-merkung 4.3.



4.2. PROPERTIES OF THE QUOTIENT GRAPH 35Example 4.4. Let p > 5 and ζ ∈ Cp be a third root of unity, q ∈ Cp with
|q| small enough6 and set

δ =

(

ζ 0
0 1

)

; σ =

(

−1 1
2 1

)

; γ =

(

q 0
0 1

)Thus δ is ellipti
 of order 3 with �xed points 0 and∞, and γ is hyperboli
 withthe same �xed points. The �xed points of the involution σ are −1
2
(1±

√
3),those of σδσ are σ(0) = 1 and σ(∞) = −1

2
. Then we have

• γδ = δγ and (δσ)3 = id

• ∆ := 〈δ, σ〉 is the tetrahedral group A4 and �xes a single vertexA(δ)∩A(σ).
• Γ := 〈αγα−1 : α ∈ T 〉 is a S
hottky group on 4 free generators.
• Γ is a normal subgroup of G := 〈δ, σ, γ〉 of index 12, hen
e Ω(G) = Ω(Γ) =:

Ω. It is the kernel of the map ϕ : G→ ∆ de�ned by ϕ|∆ = id and ϕ(γ) = 1.
• The quotient graph G∗ of Ω/G is

•〈δ〉
∆

〈σ〉 //

• Sin
e G∗ has genus 1 and one end the map Ω(Γ)/Γ→ Ω(G)/G is a normal
p-adi
 origami with Galois group G/Γ ∼= A4.A more detailed investigation of this origami 
an be found in [Kre℄, Be-merkung 4.4.We will see in Se
tion 4.3 that the quotient graphs G∗ of all non-trivial normal

p-adi
 origamis look similar. We will then use this to investigate how thegroups G and Γ have to be 
hosen su
h that the map Ω/Γ→ Ω/G be
omesa p-adi
 origami. But �rst we have to study the quotient graph G∗ more
losely.4.2 Properties of the quotient graphA graph of groups G∗ is 
alled p-realizable7, if there exists a �nitely generateddis
ontinuous group G ⊂ PGL2(Cp) with G∗ = G∗(G). Let Gnt resp. Gnc bethe subgraph of G∗ 
ontaining only verti
es and edges with non-trivial resp.non-
y
li
 groups.6This is made more pre
ise in [Kre℄, Bemerkung 4.4.7In this se
tion we will often just write realizable if the statements hold for arbitrary p.



36 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDTheorem 4.5. The number of ends of a realizable graph G∗ is
n = χ(Gnc) + 2χ(Gnt)where χ(G) is the Euler-
hara
teristi
8 of a graph G (for in�nite G we takethe limit of χ for all �nite subgraphs of G).Proof. Let D resp. d be the the number of verti
es resp. edges in Gnc. Then

χ(Gnc) = D − d. Analogously let C resp. c be the number of verti
es resp.edges in Gnt \ Gnc. Thus χ(Gnt) = (C +D)− (c+ d). Then we have to show
n = D − d+ 2((C +D)− (c+ d)) = 2(C − c) + 3(D − d)Thus our statement is just a reformulation of [Bra2℄, Theorem 1.Lemma 4.6. Let G be a �nitely generated dis
ontinuous group and let Nbe a subgraph of G∗(G). Then there exists a subgroup N of G with quotientgraph N ∗ := G∗(N) ⊃ N , su
h that the di�eren
e between the two graphs Nand N ∗ is 
ontra
tible9, ex
ept for the ends of N ∗.Proof. Choose a spanning tree of N by deleting edges {e1, . . . , eg} and let N̂be a preimage of this spanning tree in T ∗(G). For ea
h edge ei 
onne
tingverti
es vi and wi let êi be the lift of ei with v̂i ∈ N̂ and ê′i the lift with

ŵ′
i ∈ N̂ . The other endpoints ŵi and v̂′i of êi resp. ê′i 
annot be 
ontained in
N̂ be
ause otherwise N̂ would 
ontain a 
ir
le. Let N be the subgroup of Ggenerated by all stabilizers of verti
es in N̂ and for ea
h edge ei a hyperboli
element γi mapping an v̂i to v̂′i.Thus N is isomorphi
 to the fundamental group10 of the graph of groups
N by [Ser℄, I.5.4, Theorem 13. The stabilizers in N do not 
hange if werestri
t the a
tion from G to N , neither do the identi�
ations of verti
es viathe γi, hen
e the quotient graph T ∗(G)/N 
ontains N . Both graphs havethe 
ommon fundamental group N , thus their di�eren
e 
annot 
hange theirfundamental group, and therefore has to be 
ontra
tible.The tree T ∗(N) is 
ontained in T ∗(G), hen
e G∗(N) = T ∗(N)/N is 
ontainedin T ∗(G)/N . Again both graphs have the 
ommon fundamental group N andhen
e their di�eren
e is 
ontra
tible.8Re
all that the Euler-
hara
teristi
 (number of verti
es minus number of edges) equalsthe di�eren
e of the �rst two Betti-numbers (number of 
onne
ted 
omponents minusgenus).9An edge in a graph of groups may be 
ontra
ted if it is not a loop and the in
lusion ofthe edge group into one of its vertex groups is an isomorphism. After the 
ontra
tion onlythe other vertex remains. Su
h a 
ontra
tion does not 
hange the fundamental group10ofthe graph.10For the de�nition of the fundamental group of a graph of groups we refer to [Ser℄,I.5.1.



4.2. PROPERTIES OF THE QUOTIENT GRAPH 37Proposition 4.7. Let G∗ be a realizable graph, and let C be a 
onne
ted
omponent of Gnc. Then there exists a realizable graph N ∗ with N nc = C (upto 
ontra
tions) and g(N nc) = g(N ∗).Proof. Let G be a �nitely generated dis
ontinuous group with G∗(G) = G∗.Subdivide all edges emanating from C (whi
h all have 
y
li
 stabilizers), andlet ∂(C) be the set of all resulting edges in G∗ \ C whi
h still have a 
ommonvertex with C. For the graph C ∪ ∂(C) Lemma 4.6 yields a graph N ∗ with
N ∗ ⊃ C. As N ∗ and C di�er up to 
ontra
tion only by ends, and endsare stabilized by 
y
li
 groups, we get N nc = C (up to 
ontra
tions) and
g(N nc) = g(C) = g(N ∗).Proposition 4.8. Let G be a 
onne
ted graph of non
y
li
 groups with g(G) >
0. Then there exists no realizable graph G∗ with Gnc = G (up to 
ontra
tions)and g(Gnc) = g(G∗).Proof. Assume there is a �nitely generated dis
ontinuous group G su
h that
G∗ := G∗(G) has the stated properties. Gnt is 
onne
ted, be
ause if σ and
τ are elements of stabilizers of two di�erent 
onne
ted 
omponents of Gnt,then στ is hyperboli
 and its axis 
ontains the path p between the axes of
σ and τ . The image of A(στ) in G∗ is a 
ir
le whi
h 
ontains p and hen
ean edge with trivial stabilizer. This would imply g(G∗) > g(Gnc) 
ontrary tothe assumption.Thus we have g(Gnt) = g(Gnc) and both Gnt and Gnc are 
onne
ted, hen
e
χ(Gnt) = χ(Gnc). Then Theorem 4.5 states χ(Gnt) ≥ 0. But we have χ(Gnt) <
1 be
ause Gnt is 
onne
ted and has positive genus. We thus get χ(Gnt) =
χ(Gnc) = 0 and therefore g(Gnt) = g(Gnc) = 1. Hen
e by Theorem 4.5 thegraph G∗ has no ends.
G 
ontains a normal subgroup Γ of �nite index whi
h is a S
hottky group.As G∗ has no ends, the 
overing Ω(G)/Γ → Ω(G)/G is unrami�ed. As
g(Ω(G)/G) = 1, we 
on
lude g(Ω(G)/Γ) = 1 by Riemann-Hurwitz. There-fore Γ is generated by a single hyperboli
 element γ. All the elements in
G have the same axis as γ (be
ause otherwise there would be rami�
ationpoints). Therefore every �nite subgroup of G is 
y
li
, whi
h 
ontradi
ts theassumption.Proposition 4.9. Let G∗ be a realizable graph. Then g(Gnc) = 0.Proof. For every 
onne
ted 
omponent of Gnc this follows from Propositions4.7 and 4.8.



38 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDDe�nition 4.10. LetG ⊂ PGL2(Cp) be a dis
ontinuous group, g(Ω(G)/G) =
0 and Ω(G) → Ω(G)/G rami�ed over exa
tly three points with rami�
a-tion indi
es n1, n2, n3. Then we 
all G a (p-adi
) triangle group of type
∆(n1, n2, n3).The graph G∗(∆(n1, n2, n3)) is a tree with exa
tly three ends, 
orrespondingto the three bran
h points. Conversely if G is a dis
ontinuous group, Gnt isa tree, and Gnc is 
onne
ted, then χ(Gnt) = χ(Gnc) = 1, and G is a trianglegroup by Theorem 4.5.Theorem 4.11. Let G∗ be a realizable graph and C be a 
onne
ted 
omponentof Gnc. Then the fundamental group of C is a triangle group ∆. This meansthat C 
an be repla
ed by a single vertex with vertex group ∆ without 
hangingthe fundamental group of G∗.Proof. Let N ∗ be the realizable graph asso
iated to C by Proposition 4.7.By Proposition 4.9 this graph has genus zero, so by Theorem 4.5 it has threeends. Therefore the dis
ontinuous group ∆ with quotient graph N ∗ is atriangle group.Now we know that a p-realizable graph G with Gnc 6= ∅ 
an be made up ofverti
es with p-adi
 triangle groups 
onne
ted by edges with 
y
li
 groups,it be
omes vitally important to �nd all triangle groups whi
h 
an o

ur.Fortunately for p > 5 those triangle groups are well-known:Theorem 4.12. For every p there exist the 
lassi
al spheri
al triangle groups(i.e. those with 1

n1
+ 1

n2
+ 1

n3
> 1): the dihedral group Dn = ∆(2, 2, n), andthe symmetry groups of the platoni
 solids A4 = ∆(2, 3, 3), S4 = ∆(2, 3, 4)and A5 = ∆(2, 3, 5). For p > 5 there are no other p-adi
 triangle groups.Proof. Let ∆ be one of the given groups. It is a �nite subgroup of PGL2(Cp)and hen
e dis
ontinuous. Its quotient graph G∗(∆) 
onsists up to 
ontra
tionof only one vertex (otherwise ∆ would be a non-trivial amalgam or HNN-extension of smaller groups, hen
e would not be �nite). This vertex has tobe �xed by the whole group, whi
h is non-
y
li
, hen
e χ(Gnc) = χ(Gnt) = 1.Therefore ∆ is a triangle group by Theorem 4.5.Now let ∆ be a triangle group for p > 5. We have g(G∗(∆)) = 0, hen
e

χ(Gnc) ≥ 1 and χ(Gnt) ≥ 1. By Theorem 4.5 we have then χ(Gnc) = χ(Gnt) =
1, hen
e both graphs are 
onne
ted. One 
an show that for p > 5 all edgesof a realizable tree of groups 
an be 
ontra
ted, whi
h leaves a single vertex.The stabilizer of a vertex always is a �nite subgroup of PGL2(Cp) and hen
eeither 
y
li
 or isomorphi
 to one of the groups stated (for a proof we referto [Kre℄, Satz 2.7).



4.3. NORMAL P -ADIC ORIGAMIS 39For p ≤ 5 there are additional non-spheri
al triangle groups. Bradley, Katoand Voskuil are 
urrently working on their 
lassi�
ation [BKV℄. A prelimi-nary version and an idea of the proofs 
an be found in [Kat1℄.Example 4.13. For p = 5 an ellipti
 element δ of order 5 �xes not only itsaxis, but also all verti
es 
ontained in a small tube around this axis. Thusif we start with a vertex v ∈ B on the axis of δ �xed by a dihedral group D5generated by an element σ of order 2 and δ, then δ �xes also other verti
eson the axis of σ. These verti
es have the stabilizer 〈σ, δ〉 ∼= D5 and we 
an�nd two elements τ and τ ′ of order 3, ea
h with an axis through one of thoseverti
es but not through v, su
h that the stabilizers of these two verti
esunder the a
tion of G := 〈σ, δ, τ, τ ′〉 are 〈σ, δ, τ〉 ∼= A5 and 〈σ, δ, τ ′〉 ∼= A5respe
tively. If we do all this 
arefully we 
an get a dis
ontinuous groupwhose quotient graph looks like this:
•C3oo •
A5

D5 •
D5

C5

��

D5 •
A5

C3 //

The generated group is thus a p-adi
 triangle group of type ∆(3, 3, 5). It isthe fundamental group of the graph shown above, whi
h is A5 ∗D5
A5, where

∗D5
is the amalgamated produ
t over the 
ommon subgroup D5. Detailsabout amalgams as fundamental groups of trees of groups 
an be found in[Ser℄, I.4.5.One 
an generalize this example by starting with the dihedral group D5n for

n ∈ N. Then δn has order 5 and 
an be used to 
onstru
t two stabilizersisomorphi
 to A5. This results in a dis
ontinuous group A5 ∗D5
D5n ∗D5

A5,whi
h is a p-adi
 triangle group of type ∆(3, 3, 5n).4.3 Normal p-adi
 origamisAfter the preliminaries in the last two se
tions we are now ready to formulateour main result. We will restri
t ourselves to rami�ed p-adi
 origamis, i.e.the 
ase g(X) > 1. We are parti
ularly interested in normal origamis, whi
hwe will now 
lassify:Theorem 4.14. Let X → E be a normal p-adi
 origami with g(X) > 1.Then there a is dis
ontinuous group G and a S
hottky group Γ ⊳ G of �niteindex su
h that X ∼= Ω/Γ and E ∼= Ω/G with Ω := Ω(Γ) = Ω(G).



40 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDThe group G is isomorphi
 to the fundamental group of the graph of groups
•Ca

∆

Cb //where ∆ is a p-adi
 triangle group of type ∆(a, a, b). This means that G isisomorphi
 to the fundamental group of this graph.Thus we get
G ∼= 〈∆, γ; γα1 = α2γ〉 with αi ∈ ∆ of order a.The Galois group of the origami is G/Γ.Proof. X is a Mumford 
urve, hen
e there is a S
hottky group Γ ⊂ PGL2(Cp)su
h that X ∼= Ω(Γ)/Γ. The automorphism group AutX is isomorphi
 to

N/Γ, where N is the normalizer of Γ in PGL2(Cp) (this is a theorem from[GP℄, VII.2). The Galois group of the 
overing X → E is a �nite subgroupof AutX and therefore takes the form G/Γ, where Γ is a normal subgroupin G ⊆ N of �nite index. In this 
ase G is dis
ontinuous and Ω(G) = Ω(Γ).The genus of G∗ := G∗(G) equals the genus of E, whi
h is 1. The numberof ends of G∗ equals the number of bran
h points of the map Ω→ Ω/G. Asthe map Ω → Ω/Γ is unrami�ed, this number equals the number of bran
hpoints of X ∼= Ω/Γ → E ∼= Ω/G, whi
h is also 1. Thus G∗ is a realizablegraph of genus one with one end. The stabilizer of this end is a 
y
li
 groupwhose order equals the rami�
ation index above the bran
h point.We now prove that Gnc 
an be repla
ed by a vertex whose vertex group isa triangle group of the form ∆(a, a, b) (a, b ∈ N): We know g(Gnt) ≤ 1,hen
e χ(Gnt) ≥ 0, and the same holds for Gnc. Theorem 4.5 states χ(Gnc) +
2χ(Gnt) = 1, therefore χ(Gnc) = 1 and χ(Gnt) = 0. As g(Gnt) ≤ 1 we 
on
lude
g(Gnt) = 1 and Gnt is 
onne
ted. Prop. 4.9 states g(Gnc) = 0, therefore Gnc is
onne
ted as well. By Theorem 4.11 we 
an repla
e Gnc by a single vertex vwhose vertex group is a triangle group ∆. If we 
ontra
t the rest of the graphas mu
h as possible, we get an edge from v to v with a 
y
li
 stabilizer. Thisstabilizer o

urs therefore on two ends of G∗(∆) (this was N ∗ in Theorem4.11).Note we have seen in Theorem 4.12 that the spheri
al triangle groups of type
∆(a, a, b) are Dn = ∆(2, 2, n) and A4 = ∆(2, 3, 3), and for p > 5 there existno other ones. For p ≤ 5 there are additional possible triangle groups, for
p = 5 we have seen the type ∆(3, 3, 5n) in Example 4.13.We now know that normal p-adi
 origamis are always of the form Ω/Γ →
Ω/G, and we know quite well whi
h groups G 
an o

ur. It remains to



4.3. NORMAL P -ADIC ORIGAMIS 41investigate what groups Γ are possible. The only restri
tion we have for Γ isthat it has to be a S
hottky group of �nite index and normal in G: As the
overing Ω → Ω/Γ is always unrami�ed the rami�
ation of Ω/Γ → Ω/G isequal to the rami�
ation of Ω → Ω/G and hen
e only depends on G. Thegenus of Ω/G also does not depend on the 
hoi
e of Γ.Theorem 4.15. Let G ⊂ PGL2(Cp) be a �nitely generated dis
ontinuousgroup and Γ be a normal subgroup of G of �nite index. Then the followingstatements are equivalent:i) Γ is a S
hottky groupii) Γ ∩Gi = {1} for every vertex group Gi in G∗(G).Proof. i) ⇒ ii) is easy: The vertex groups are �nite, therefore every g ∈ Gihas �nite order. Γ does not 
ontain elements of �nite order. Thus Γ ∩Gi istrivial. For ii) ⇒ i) we pro
eed with three steps:Step 1: Every element of Γ has in�nite order: G is the fundamental groupof G∗(G), hen
e an HNN-extension of an amalgamated produ
t of the Gi. If
g ∈ G has �nite order n > 1, then g is 
onjugated to a g′ ∈ Gi (see [LS℄,IV.2.4 and IV.2.7) with ord(g′) = ord(g) > 1. But by assumption g′ 6∈ Γ andhen
e g 6∈ Γ as Γ is normal in G.Step 2: Γ is free by Ihara's theorem ([Ser℄, I.1.5, Theorem 4): G a
ts on thetree T ∗(G) with quotient graph G∗(G). For an x ∈ T ∗(G) let g ∈ StabG(x) benon-trivial. Then g has �nite order, and with step 1 we see g 6∈ Γ. Thereforethe a
tion on T ∗(G) restri
ted to Γ is free, thus Γ is a free group by [Ser℄,�3.3.Step 3: Γ is a S
hottky group: Γ is by de�nition a �nite index normalsubgroup of G. It is dis
ontinuous be
ause G is and it 
ontains no elementsof �nite order. It is �nitely generated be
ause G is (by Reidemeister-S
hreier,[LS℄, Prop. II.4.2). Thus we know that Γ is a S
hottky group. We 
an even�nd a �nite set of free generators of Γ by looking at its a
tion on T ∗(G): thisa
tion has a �nite fundamental domain and this domain therefore has only�nitely many neighboring translates. The set of these neighboring translates
orresponds to a �nite set of free generators for Γ.We are espe
ially interested in the resulting Galois group H := G/Γ. Thuswe now answer the question what 
hoi
es of Γ are possible if we �x this Galoisgroup:Corollary 4.16. Let H be a �nite group and G ⊂ PGL2(Cp) be a �nitelygenerated dis
ontinuous group. Further let Γ be the kernel of a homomor-phism ϕ : G→ H. Then the following statements are equivalent:



42 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDi) Γ is a S
hottky groupii) ϕ|Gi
is inje
tive for every vertex group Gi in G∗(G).Proof. Follows with ker(ϕ|Gi

) = Γ ∩Gi from the Theorem.Example 4.17. a) Set Gn := 〈Dn, γ; γσ = σγ〉 as in Example 4.3 (with nodd and ord(σ) = 2). We extend this example: Choose m ∈ N andde�ne ϕ : Gn → Dn × Cm by ϕ|Dn
= (id, 1) and ϕ(γ) = (1, c) where cis a generator of Cm. Then Corollary 4.16 states that Γ′ := ker(ϕ) is aS
hottky group and the Galois group of the p-adi
 origami Ω/Γ′ → Ω/Gis Dn × Cm. Note that Γ′ ⊆ Γ := ker(Gn → Dn) for every m, thus wehave a 
overing of origamis Ω/Γ′ → Ω/Γ → Ω/G. We will investigatesu
h 
overings in Se
tion 4.5.b) SetG := 〈A4, γ; γδ = δγ〉 as in Example 4.4 (with ord(δ) = 3). We extendthis example as in a): Choose m ∈ N and de�ne ϕ : Gn → A4 × Cm by

ϕ|A4
= (id, 1) and ϕ(γ) = (1, c) where c is a generator of Cm. ThenCorollary 4.16 states that Γ′ := ker(ϕ) is a S
hottky group and the Galoisgroup of the p-adi
 origami Ω/Γ′ → Ω/G is A4 × Cm. Note that Γ′ ⊆

Γ := ker(Gn → A4) for every m, thus we have again a 
overing of origamis
Ω/Γ′ → Ω/Γ→ Ω/G.
) In Example 4.13 we have 
onstru
ted the 5-adi
 triangle group ∆(3, 3, 5) =
A5 ∗D5

A5. The group G := 〈A5 ∗D5
A5, γ; γδ1 = δ2γ〉, where the δi of or-der 3 are 
hosen out of the two di�erent A5-
omponents, 
an be embeddedinto PGL2(Q5) (to show this one 
an use [Kat2℄, Theorem II). Then we
an de�ne ϕ : G → A5 as the identity on both A5-
omponents of theamalgamated produ
t, and ϕ(γ) = 1. This leads to a 5-adi
 origami withGalois group A5.d) Take the group G5 from part a) and 
onsider the homomorphism ϕ :

G5 → PSL2(F11) de�ned by
ϕ(σ) =

(

6 7
1 5

)

, ϕ(δ) =

(

0 9
6 3

)

, ϕ(γ) =

(

3 7
8 8

)We 
an 
al
ulate that this is indeed a homomorphism by 
he
king therelations of G5 for the given images of ϕ. We 
an also 
he
k that ϕ issurje
tive and that ϕ|D5
is inje
tive. Hen
e ker(ϕ) is a S
hottky groupand the 
orresponding origami has Galois group PSL2(F11).



4.4. AUTOMORPHISMS OF P -ADIC ORIGAMIS 434.4 Automorphisms of p-adi
 origamisThe Galois group of the 
overing X → E is a subgroup of the automorphismgroup AutX. For normal 
omplex origamis we know from Proposition 3.12that the Galois group 
onsists pre
isely of all possible translations. In Propo-sition 3.13 we have seen that if the automorphism group is stri
tly larger thanthe Galois group, then there have to be automorphisms whi
h are not trans-lations, i.e. there is an automorphism whi
h does not indu
e the identity butan involution on E. We now investigate the impli
ations if this happens inthe p-adi
 setting.Theorem 4.18. In the situation of Theorem 4.14 let Aut(X) 
ontain anelement σ of order 2 whi
h indu
es a non-trivial automorphism σ of E �xingthe bran
h point of X → E. Then there is a dis
ontinuous group H 
ontain-ing G as normal subgroup of index 2, whi
h is isomorphi
 to the fundamentalgroup of the graph of groups
•
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∆2
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C2
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??where ∆1 is the p-adi
 triangle group of type ∆(2, 2, a), i.e. ∆1

∼= Da, and
∆2 is a p-adi
 triangle group of type ∆(2, a, 2b) 
ontaining ∆ of index 2.Proof. Let L be the subgroup of AutX generated by σ and the Galois group
Gal(X/E). Every ℓ ∈ L \Gal(X/E) indu
es σ on E, thus ℓ ◦σ ∈ Gal(X/E).Hen
e L 
ontains Gal(X/E) with index 2, and therefore as a normal sub-group. As in the proof of Theorem 4.14 we have L ∼= H/Γ and for a dis
on-tinuous group H and Gal(X/E) ∼= G/Γ for normal subgroup G of index 2 in
H with Ω(H) = Ω(G) = Ω(Γ). Now Ω/H ∼= E/ 〈σ〉 =: P .The bran
h point of X → E is a �xed point of σ and therefore a rami�
ationpoint of E → P . By Riemann-Hurwitz this means that g(P ) = 0 and thereare four rami�
ation points of E → P . As the degree of the map E → Pis 2, and this is also the rami�
ation index of the four rami�
ation points,we know that there are also exa
tly four bran
h points. The 
omposition
X → P of the maps thus has four bran
h points. Over three of them themap X → E is unrami�ed, therefore the 
orresponding rami�
ation indi
esof X → P are 2. Over the fourth bran
h point the map X → E is rami�edwith rami�
ation index b, thus the total rami�
ation index is 2b.



44 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDNow let H∗ be the quotient graph 
orresponding to H . Sin
e Ω/H ∼= P thegraph H∗ is a realizable graph of genus zero with four ends. The stabilizer ofone end is a 
y
li
 group of order 2b, the stabilizers of the other three endsare 
y
li
 groups of order 2.We have g(H∗) = 0, thus this also holds for all subgraphs of H∗. Thereforeany Euler 
hara
teristi
 equals the number of 
onne
ted 
omponents and wehave χ(Hnc) ≥ 1 and χ(Hnt) ≥ 1. As χ(Hnc) + 2χ(Hnt) = 4 by Theorem4.5, we 
on
lude χ(Hnc) = 2 and χ(Hnt) = 1. Thus Hnc has two 
onne
ted
omponents, whi
h we 
an by Theorem 4.11 both repla
e by single verti
eswhose vertex groups are triangle groups ∆1 and ∆2. Furthermore Hnt has tobe 
onne
ted, therefore those two triangle groups have to be 
onne
ted bya path with a nontrivial 
y
li
 stabilizer. This path 
an be 
ontra
ted to asingle edge.It remains to �nd the 
onne
tion between the stabilizing groups of G∗ and
H∗. We get the graph H∗ as the quotient of G∗ by σ (if we ignore the endsof both graphs). The single edge from G∗ has to be mapped to itself andinverted (be
ause otherwise there would still be a 
losed edge in H∗). Thuswe have to insert a vertex on this edge and for 
onstru
ting the quotient G∗we have to take one of the half edges. Therefore the stabilizer of this edge(as it is not �xed by σ) is the same as before (namely Ca) and the originalvertex is �xed by ∆ and σ.Example 4.19. Let ζ be a primitive 10-th root of unity and 
hoose δ, σ and
γ as in Example 4.3. Then the group G := 〈δ2, σ, γ〉 
orresponds to the 
ase
n = 5 of this example. But if we work out the quotient graph ofH := 〈δ, σ, γ〉we note that while there still is a vertex with stabilizer 〈σ, δ〉 ∼= D10 now theelement γδ5 is ellipti
 of order 2, but does not �x this vertex. Instead thereis now another vertex �xed by γδ5 on the axis of σ, its stabilizer is therefore
〈σ, γδ5〉 ∼= D2. This means that γ does not 
reate a 
ir
le in the graph anymore, but the quotient graph be
omes

•
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D2

C2

D10

•
C2

??�����������

C10

��?
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??
??

??
??Now we de�ne a homomorphism ϕ : H → PSL2(F11)× Z/2Z by

ϕ(σ) =

((

6 7
1 5

)

, 0

)

, ϕ(δ) =

((

8 6
4 10

)

, 1

)

, ϕ(γ) =

((

3 7
8 8

)

, 0

)

.



4.5. COVERINGS OF P -ADIC ORIGAMIS 45As in Example 4.17 d) we 
an 
he
k that this is indeed a homomorphism andis inje
tive when restri
ted to the vertex groups. Note that ϕ(δ2) = (( 0 9
6 3 ) , 0),thus ϕ|G is exa
tly the homomorphism 
onsidered in Example 4.17 d), andwe have ker(ϕ) = ker(ϕ|G) = Γ. Thus the p-adi
 origami Ω/Γ → Ω/G 
anbe extended to Ω/Γ → Ω/H with Galois group H/Γ ∼= PSL2(F11) × Z/2Z.This means that the automorphism group of this origami 
ontains the group

PSL2(F11)× Z/2Z.4.5 Coverings of p-adi
 origamisDe�nition 4.20. We 
all a p-adi
 origami Ω/Γ′ → Ω/G simple if it 
oversone of the origamis from Examples 4.3 and 4.4. This means we have Ω/Γ′ →
Ω/Γ→ Ω/G where

G = 〈∆ = Dn, γ; γσ = σγ〉 with n ∈ N odd and σ ∈ Dn of order 2 or
G = 〈∆ = A4, γ; γδ = δγ〉 with δ ∈ A4 of order 3.

Γ and Γ′ are free normal subgroups of �nite index in G, and G/Γ ∼= ∆.Theorem 4.21. Let G,∆ and γ be given as in the de�nition above, ϕ : ∆→
Aut(K) an a
tion of ∆ on a �nite group K and γ ∈ K an element whi
h is�xed by all δ ∈ ∆ whi
h 
ommute with γ in G.De�ne ψ : G → ∆ ⋉ϕ K by δ 7→ (δ, 1) for all δ ∈ ∆ and γ 7→ (1, γ) andset Γ′ = ker(ψ). Then Ω/Γ′ → Ω/G is a simple p-adi
 origami with Galoisgroup Im(ψ).Every simple p-adi
 origami is of this type.Proof. �⇒�: Let K, ϕ and γ be given. We have homomorphisms

G
ψ−→ ∆ ⋉ϕ K

p−→ ∆where p is the proje
tion to the �rst 
omponent. As ψ|∆ is inje
tive Γ′ isa S
hottky group by Corollary 4.16. We see Γ = ker(p ◦ ψ), thus Γ′ ⊂ Γ,therefore we have homomorphisms Ω/Γ′ → Ω/Γ → Ω/G. The Galois groupof the 
omposed 
overing is G/Γ′ = G/ ker(ψ) ∼= Im(ψ).�⇐�: Let Ω/Γ′ → Ω/G be a simple p-adi
 origami. We have homomorphisms
〈∆, γ〉 = G

α−→ G/Γ′ β−→ (G/Γ′)
/

(Γ/Γ′) ∼= G/Γ ∼= ∆where β◦α is an isomorphism on ∆ and maps γ to 1. Therefore β(α(γ)) = 1,thus α(γ) ∈ ker(β) =: K. Moreover β|α(∆) is an isomorphism. We get a splitexa
t sequen
e
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0 // K // G/Γ′ // ∆gg

// 0Thus there is an isomorphism from G/Γ′ to a semidire
t produ
t ∆ ⋉ϕ Kwhere ϕ : ∆ → Aut(K) is the homomorphism indu
ed by the split exa
tsequen
e, i.e. 
onjugation by α(∆). The restri
tion of this isomorphism to
∆ is given by the in
lusion δ 7→ (δ, 1). The image of γ is in the kernel of p,hen
e of the form (1, γ) for a γ ∈ K.Now let δ ∈ ∆ be given with γδ = δγ. In ∆ ⋉ϕ K this means

(δ, γ) = (1, γ)(δ, 1) = (δ, 1)(1, γ) = (δ, ϕ(δ)(γ))Therefore ϕ(δ) �xes γ.Corollary 4.22. Let Ω/Γ′ → Ω/Γ be a simple p-adi
 origami with δγ = γδin G/Γ′ for all δ ∈ ∆. Then the a
tion in the last theorem is trivial on γ,thus the Galois group of this origami is ∆×Z/mZ for an m ∈ N.Example 4.23. Set G = 〈∆ = Dn, γ; γσ = σγ〉 with n ∈ N odd and σ ∈ Dnof order 2. ∆ a
ts on the set {1, . . . , n}. As n is odd σ has a �xed point k.Now 
hoose m ∈ N, set K := (Z/mZ)n, let γ := ek ∈ K be the k-th unitve
tor and de�ne ϕ : ∆ → K by δ 7→ ((xi) 7→ (xδ(i))). By the theorem thisde�nes a simple p-adi
 origami Ω/Γ′ → Ω/G.As G→ ∆ ⋉ϕ K is surje
tive, the Galois group of this origami is ∆ ⋉ϕ K.The same works for G = 〈∆ = A4, γ; γδ = δγ〉 with δ ∈ A4 of order 3: ∆ a
tson {1, 2, 3, 4} and δ has a �xed point. Thus we 
an de�ne a simple p-adi
origami with Galois group ∆ ⋉ϕ (Z/mZ)4.



Chapter 5Conne
ting both worldsIn the �rst three Chapters we have investigated origamis over C, while inChapter 4 we de�ned origamis also over Cp. Now we want to 
onne
t bothworlds: An origami-
urve inMg,C is always de�ned over Q, and thus de�nesalso a 
urve inMg,Q, and this 
urve 
an in turn be interpreted as a 
urve in
Mg,Cp

. Now we ask the question: Does this 
urve interse
t the subspa
e of
Mg,Cp


ontaining Mumford 
urves?The resulting points in Mg,Cp
are still 
urves whi
h 
over an ellipti
 
urvewith only one bran
h point. Thus those 
urves are Mumford 
urves if andonly if they o

ur as p-adi
 origamis. We have introdu
ed several invari-ants of origami-
urves in the last 
hapters, some of whi
h turn up in bothworlds: The rami�
ation indi
es, the Galois group of a normal origami andits automorphism group. By the Lefs
hetz prin
iple ([Lef℄, Appendix) thesealgebrai
 properties of the origamis 
oin
ide over C and over Cp. In some
ases this is enough information to identify the 
omplex origami-
urve whi
hbelongs to a given p-adi
 origami.

5.1 Base 
hange of s
hemesLet XC → EC be an origami over C. We 
an write EC = EC,τ = C/(Z+ τZ)with τ ∈ H, where 0 is the only bran
h point of XC → EC. We have theWeierstrass-
overing ℘ : EC,τ → P1(C). For any rami�
ation point x 6= 0 wehave ℘′(x)2 = 4℘3(x) − g2℘(x) − g3 = 0, so if g2, g3 ∈ Q we get ℘(x) ∈ Q.As ℘(0) = ∞ Belyi's theorem would then imply that both XC and EC arede�ned over Q. Therefore we then have XQ and EQ over Q with the followingdiagram of base 
hanges: 47
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XQ ×Q C = XC −−−→ XQ ←−−− XCp

= XQ ×Q Cp




y





y





y

EQ ×Q C = EC −−−→ EQ ←−−− ECp
= EQ ×Q CpBy varying τ ∈ H we get a 
urve in the moduli-spa
e Mg,C, whi
h leadsto a 
urve inMg,Q, whi
h itself 
an be 
onsidered as a subset of a 
urve in

Mg,Cp
. This 
urve may or may not interse
t the subset of Mumford 
urvesinMg,Cp

.Example 5.1. Consider the origami from Example 3.19:
113 1 4226 4 5 1335 6 466Kappes has proven in [Kap℄, Theorem IV.3.7 that the origami-
urve inMg,Cof this origami 
ontains all the 
urves birationally equivalent to

y2 = (x2 − 1)(x2 − λ2)
(

x2 −
(

λ
λ+1

)2
)for λ ∈ C \

{

0,±1,−1
2
,−2

}. If we now restri
t the 
hoi
e of λ to Q, weget a 
urve in Mg,Q. We 
an now 
hange the base of this 
urve to Cp foran arbitrary prime p. This will result in a 
urve inMg,Cp
. Does this 
urveinterse
t the subspa
e ofMg,Cp


ontaining Mumford 
urves?Fortunately [Bra3℄, Theorem 4.3 o�ers a 
riterion for a hyperellipti
 
urve
X to be a Mumford 
urve: This is the 
ase if and only if the bran
h pointsof X → P1 (in our 
ase ±1,±λ and ± λ

λ+1
) 
an be mat
hed into pairs (ai, bi)su
h that P1 
an be 
overed by annuli Ui ea
h 
ontaining exa
tly one of thosepairs. In our 
ase we 
onsider only p > 2, set λ := q− 1 for any q ∈ C×

p with
|q| < 1 and mat
h the points as follows:

a1 = 1, b1 = −λ = 1− q ⇒|a1 − b1| = |q| < 1

a2 = −1, b2 = λ = q − 1 ⇒|a2 − b2| = |q| < 1

a3 = λ
λ+1

= 1
q
(q − 1), b3 = −1

q
(q − 1) ⇒|a3| = |b3| =

∣

∣

∣

1
q

∣

∣

∣
> 1Thus we 
an 
hoose U1 = B(1, 1) \ B(−1, |q|), U2 = B(1, 1) \ B(1, |q|) and

U3 = P1 \B(1, 1) to get the desired 
overing1.1The balls B(x, r) were de�ned in Se
tion 4.1.



5.2. GALOIS GROUPS WITH A UNIQUE CURVE 49In general it is almost impossible to �nd the equation of a given origami.Therefore we would like a simpler approa
h, and we will do this the otherway round: We have already 
onstru
ted p-adi
 origamis, now we try tomat
h them to the 
orresponding 
omplex origami-
urve. We will do this bymat
hing some of the invariants we have 
al
ulated for both of them in theprevious 
hapters.5.2 Galois groups with a unique 
urveSome Galois groups o

ur only for a single origami-
urve over C. We will nowprove that this is the 
ase for the Galois groups Dn×Z/mZ and A4×Z/mZ,whi
h o

urred as Galois groups of p-adi
 origamis in Example 4.17 a) andb).Lemma 5.2. Let f : F2 → Z/mZ be surje
tive. Then up to an automor-phism of F2 we 
an assume f(x) = 1 and f(y) = 0.Proof. Let cx, cy ∈ N with cx = f(x) and cy = f(y) in Z/mZ.We prove �rst that we 
an 
hoose the representatives cx and cy 
oprime: Let
pi be the prime fa
tors of cx and set

c′y := cy +m ·
∏

pi∤cy

piAssume that there is a pi whi
h is a fa
tor of c′y. If pi | cy then pi would alsohave to be a fa
tor of the right-hand summand, and as it is not 
ontainedin the produ
t we would then have pi | m. But this 
ontradi
ts 〈cx, cy〉 =
Z/mZ. If on the other hand pi ∤ cy, then pi would be a fa
tor of the right-handsummand but not of the left one, whi
h would 
ontradi
t the assumption.Therefore no pi is a fa
tor of c′y, thus gcd(cx, c

′
y) = 1. We 
an repla
e cy by

c′y as both are equivalent modulo m.Now gcd(cx, cy) = 1, thus there exist a, b ∈ Z with acx + bcy = 1. Set
A :=

(

a −cy
b cx

)

∈ SL2(Z)and let ϕ ∈ Aut(F2) be a lift of A. As Z/mZ is abelian we get a 
ommutativediagram
F2

ϕ //

��?
??

? F2
f //

��?
??

? Z/mZ

Z2
ϕ // Z2

f

??����



50 CHAPTER 5. CONNECTING BOTH WORLDSwhere ϕ is the multipli
ation with A. Thus
(f ◦ ϕ)(x) = (f ◦ ϕ)

((

1
0

))

= f

((

a
b

))

= acx + bcy = 1

(f ◦ ϕ)(y) = (f ◦ ϕ)

((

0
1

))

= f

((

−cy
cx

))

= −cycx + cxcy = 0Proposition 5.3. Let n,m ∈ N and n be odd. Up to an automorphism of
F2 there exists only one origami with Galois group Dn ×Z/mZ.Proof. Choose σ, τ ∈ Dn with 〈σ, τ〉 = Dn and ord(σ) = ord(τ) = 2, and set
δ = στ .Let f : F2 → Dn × Z/mZ be the monodromy of a normal origami. ByLemma 5.2 we 
an apply an automorphism of F2 to get f(x) = (α, 1) and
f(y) = (β, 0) for some α, β ∈ Dn. As f has to be surje
tive we know
〈α, β〉 = Dn. Up to an automorphism of Dn we have three 
ases:i) ord(α) = 2, ord(β) = 2, w.l.o.g. (α, β) = (τ, σ)ii) ord(α) = n, ord(β) = 2, w.l.o.g. (α, β) = (δ, σ)iii) ord(α) = 2, ord(β) = n, w.l.o.g. (α, β) = (τ, δ)We 
an apply ϕ ∈ Aut(F2) with x 7→ yx and y 7→ y to get from i) to ii):

(f ◦ ϕ)(x) = f(yx) = (στ, 0 + 1) = (δ, 1) and
(f ◦ ϕ)(y) = f(y) = (σ, 0)For odd m we 
an apply ϕ ∈ Aut(F2) with x 7→ x and y 7→ yxm to get fromi) to iii):
(f ◦ ϕ)(x) = f(x) = (τ, 1) and
(f ◦ ϕ)(y) = f(yxm) = (στm, 0 +m) = (δ, 0)For even m 
ase iii) is not possible, as f would not be surje
tive: Assumethere is a preimage z ∈ f−1(id, 1). We know that f(xy) = f(y−1x) (be
ausethis holds in both 
omponents). Thus we 
an 
hoose z of the form xayb, itsimage is (τaδb, a). Now for f(z)1 = id we need a even, but for f(z)2 = 1 weneed a = 1 in Z/mZ. For even m this is impossible. Therefore there is nopreimage of (id, 1) in this 
ase.



5.2. GALOIS GROUPS WITH A UNIQUE CURVE 51Proposition 5.4. Up to an automorphism of F2 there exists, for any m ∈ N,only one origami with Galois group A4 ×Z/mZ.Proof. Let f : F2 → A4 × Z/mZ be the monodromy of a normal origami.By Lemma 5.2 we 
an apply an automorphism of F2 to get f(x) = (α, 1)and f(y) = (β, 0). As f has to be surje
tive we know 〈α, β〉 = A4. Up to anisomorphism of A4 we have four 
ases:i) ord(α) = 2, ord(β) = 3, w.l.o.g. (α, β) = ((1 2)(3 4), (2 3 4))ii) ord(α) = 3, ord(β) = 2, w.l.o.g. (α, β) = ((1 2 3), (1 2)(3 4))iii) ord(α) = ord(β) = 3, ord(αβ) = 2, w.l.o.g. (α, β) = ((1 2 3), (2 3 4))iv) ord(α) = ord(β) = 3, ord(αβ) = 3, w.l.o.g. (α, β) = ((1 2 4), (2 3 4))We 
an apply ϕ ∈ Aut(F2) with x 7→ xy and y 7→ y to get from iii) to i):
(f ◦ ϕ)(x) = f(xy) = ((1 2 3)(2 3 4), 1) = ((1 2)(3 4), 1) and
(f ◦ ϕ)(y) = f(y) = ((2 3 4), 0)We 
an apply ϕ ∈ Aut(F2) with x 7→ xy−1 and y 7→ y to get from iii) to iv):
(f ◦ ϕ)(x) = f(xy−1) = ((1 2 3)(2 4 3), 1) = ((1 2 4), 1) and
(f ◦ ϕ)(y) = f(y) = ((2 3 4), 0)If m is not divisible by 3 
hoose k ∈ N su
h that km ≡ 1 mod 3. We 
anthen apply ϕ ∈ Aut(F2) with x 7→ x and y 7→ xkmy to get from iii) to ii):

(f ◦ ϕ)(x) = f(x) = ((1 2 3), 1) and
(f ◦ ϕ)(y) = f(xkmy) = ((1 2 3)(2 3 4), 0 + km) = ((1 2)(3 4), 0)If m is divisible by 3, 
ase ii) is not possible, as f would not be surje
tive:Assume there is a preimage z ∈ f−1(id, 1). As the �rst 
omponent of f(z)is id ∈ A4 the presentation of A4 tells us that the element z is 
ontained inthe normal subgroup generated by y2, x3 and (yx)3, and hen
e is a produ
tof 
onjugates of those elements. But f(y2) = (id, 0) and f(x3) = f((yx)3) =

(id, 3). Therefore the se
ond 
omponent of f(z) is divisible by 3. As m isalso divisible by 3 this 
ontradi
ts f(z) = (id, 1).



52 CHAPTER 5. CONNECTING BOTH WORLDSExample 5.5. In Example 5.1 we have shown that the origami O de�nedby
113 1 4226 4 5 1335 6 466o

urs as a p-adi
 origami. Now we have an alternative way of showing this:Let O′ be the minimal normal 
over of O studied in Example 3.19. We haveseen there that the Galois group of O′ is A4. Proposition 5.4 tells us thatthe origami-
urve of O′ is the only 
urve with this Galois group.In Example 4.4 we 
onstru
ted a p-adi
 origami with Galois group A4; in fa
tone for every suitably 
hosen q ∈ P1(Cp). If one of those origamis X ′ is (asan algebrai
 
urve) de�ned over Q and hen
e over C then it has to o

ur onthe origami-
urve of O′. The 
overing O′ → O leads to a morphism X ′ → X,where X is on the origami-
urve of O. As X ′ is a Mumford 
urve the sameholds for X by [Bra1℄, Satz 5.24.5.3 When the group is not enoughIn se
tion 2.2 we have proposed an algorithm to �nd all 
omplex origami-
urves of normal origamis with a given Galois group H . This results in a setof representative origamis given as epimorphisms f : F2 ։ H as des
ribedin Proposition 1.6. For most groups there is only one 
urve with the givenGalois group, but there are 
ases where there are more than one2. Thesmallest example for su
h a group is the group A5 where there are two 
urves.Representatives are given by

f1 : F2 → A5, x 7→ (1 5 3 4 2), y 7→ (1 3 2 4 5) and
f2 : F2 → A5, x 7→ (1 5 2 4 3), y 7→ (2 3)(4 5)We 
an easily see that those two origamis do not de�ne the same 
urve: InCorollary 3.3 we have seen that the rami�
ation index of a normal origamiis the order of f(xyx−1y−1). Hen
e the rami�
ation indi
es of those twoorigamis are
ord(f1(xyx

−1y−1)) = 5 and ord(f2(xyx
−1y−1)) = 32There are 2386 groups with order less than or equal to 250 whi
h 
an be generatedby two elements. Of these there are only 30 where there is more than one 
urve with thisGalois group. We list those groups in Appendix A.3.



5.3. WHEN THE GROUP IS NOT ENOUGH 53Example 5.6. In Example 4.17 
) we have investigated a 5-adi
 origamiwith Galois group A5. Our 5-adi
 origami had rami�
ation index 5 (re
allthat this was the order of the 
y
li
 stabilizer of the single end of the quotientgraph), hen
e this 
orresponds to the 
urve of the origami de�ned by f1.Sometimes �xing the rami�
ation index makes the origami-
urve unique.But there are still some 
ases where two 
urves have equal Galois groups andequal rami�
ation index. An example for su
h a group is the group PSL2(F7),where there are even four 
urves, represented by fi : F2 → PSL2(F7) with
fi(x) = σi and fi(y) = τi with

σ1 = σ2 = σ3 =

(

1 2
5 4

)

, σ4 =

(

0 6
1 6

)

τ1 =

(

6 0
2 6

)

, τ2 = σ4, τ3 =

(

1 3
6 5

)

, τ4 =

(

6 3
3 4

)The two 
urves de�ned by f1 and f2 both have rami�
ation index 4.We have seen in Proposition 3.13 that the automorphism group of an origamiis isomorphi
 to C2 ⋉ΦH where Φ : C2 → Aut(H) maps the generator of the
y
li
 group C2 to the automorphism ϕ of H de�ned by ϕ(f(x)) = f(x)−1and ϕ(f(y)) = f(y)−1. In the example above with Galois group PSL2(F7)and rami�
ation index 4 the automorphism groups are isomorphi
 and hen
e
an not be used to distinguish those two 
urves. But in some 
ases they arehelpful:Example 5.7. In Example 4.17 d) we have investigated a 5-adi
 origami withGalois group PSL2(F11) with rami�
ation index 5. There are four possibleorigami-
urves, represented by fi : F2 → PSL2(F11) with fi(x) = σi and
fi(y) = τi with

σ1 = σ2 = σ3 =

(

4 6
8 4

)

, σ4 =

(

10 10
7 6

)

τ1 = σ4, τ2 =

(

2 1
8 10

)

, τ3 =

(

1 4
0 1

)

, τ4 =

(

4 10
0 3

)The automorphism groups of f2 and f4 are isomorphi
 to PSL2(F11)×Z/2Z,while the other two are isomorphi
 to Aut(PSL2(F11)). We have seen inExample 4.19 that the automorphism group of the p-adi
 origami 
ontains
PSL2(F11) × Z/2Z, thus the 
orresponding 
omplex origami-
urve is eitherde�ned by f2 or f4. We 
an presently not de
ide whi
h of the two 
urves isthe right one, and the reason for this will be
ome 
lear in the next se
tion.



54 CHAPTER 5. CONNECTING BOTH WORLDS5.4 Twin 
urvesConsider the origami shown in Figure 5.1.
214 1 5182176 3 1244 17 62 518 35 6

8237227 8 199 14101512 11 112012
13 10 15141114 15 16 3517 2618

9 20191219 20 121 822724 23 4 2324
Figure 5.1: An origami O whose 
urve is not �xed by 
omplex 
onjugationThis origami has 12 unrami�ed pun
tures and four pun
tures with rami�
a-tion index 3. Its genus is g = 5. The index of the (proje
tive) Vee
h groupis 6. The origami-
urve has genus 0 and has three 
usps, all of width 2. Theinterse
tion graphs of the stable 
urves at these 
usps are shown in Figure5.2. There is only one non-trivial automorphism, whi
h is even a hyperellip-

•
(2,8)

•
(2,8)

•
(0,4)

•
(1,6)

•
(0,2)

•
(1,6)

•
(0,2)

•

•
(0,2)

(0,6) •
(0,2)

•
(1,4)

Figure 5.2: Interse
tion graphs of the stable 
urves at the 
usps of c(O)ti
 involution. It �xes two points of rami�
ation index 3 and ten points oframi�
ation index 0. A 
anoni
al spin stru
ture exists, its parity is even.There is a natural a
tion of the absolute Galois group Gal(Q/Q) on origami-
urves, and by [Möl℄, Theorem 5.4 this a
tion is faithful, i.e. for every σ ∈
Gal(Q/Q) there is an origami-
urve c whi
h is mapped to another origami-
urve cσ 6= c by σ. One would expe
t the properties of the 
urves c and cσto be quite similar.The origami above (
onstru
ted by Florian Nisba
h, [Nis℄) is an example



5.4. TWIN CURVES 55for an origami-
urve whi
h is not �xed by the 
omplex 
onjugation, but isinstead mapped to the 
urve of the origami shown in Figure 5.3.234 1 2 3 120417135 18166 157 228 10199249 102112 11 111412518 13 12 1514 714 15 6 171618516 1713617 18
919 420 11 2221821 22124 23 10 2324Figure 5.3: The image of the c(O) under 
omplex 
onjugationNot surprisingly all the properties stated above hold for this origami as well.We therefore arrive atConje
ture 5.8. All the invariants of origamis introdu
ed in 
hapter 3 arealso invariant under the a
tion of Gal(Q/Q).This would mean that we have to a

ept the fa
t that sometimes we 
annotdistinguish 
ertain origami-
urves just by using our invariants.
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Appendix AAlgorithms and 
al
ulations
A.1 Counting origami-
urvesThis is an implementation of the algorithm outlined in se
tion 2.2 writtenfor the 
omputer algebra system Magma. It 
al
ulates a representative forevery origami-
urve of origamis of degree d. The results up to degree 8 arelisted in se
tion A.2.Note that as the number of verti
es of our graph grows exponentially we don'texpli
itly 
onstru
t the graph 
ompletely before 
omputing its 
onne
ted
omponents to save memory. We rather 
hoose a vertex, delete it, 
omputeits neighbors, 
ontinue with deleting those, and so on, until we deleted a
omplete 
onne
ted 
omponent. Thus the only thing we have to save iswhether a vertex is deleted or not.Components := fun
tion(d)Sd:=Symmetri
Group(d);Idx := SetToIndexedSet(Set(Sd));V := [[true : x in [1..#Sd℄℄ : y in [1..#Sd℄℄;
ount := #Sd^2;result := [℄;// Generators of Inn(Sd): 
onjugations with transpositions (1 i)GenInnSd := [hom<Sd->Sd |s:->Sd![{�1,i�}℄*s*Sd![{�1,i�}℄> : i in [2..d℄℄;while 
ount gt 0 do // while there are verti
es in the graph// find an unused vertex (i,j)57



58 APPENDIX A. ALGORITHMS AND CALCULATIONSi := 0;repeati := i+1;j := Index(V[i℄,true);until i ge #Sd or j ne 0;// if the subgroup generated by i and j is transitive// the vertex (i,j) des
ribes an origami: then save itif IsTransitive(sub<Sd | [Idx[i℄,Idx[j℄℄>) thenAppend(~result, <Idx[i℄,Idx[j℄>);end if;// delete the 
onne
ted 
omponent of (i,j)V[i℄[j℄ := false;
ount := 
ount - 1;todo := [<i,j>℄;while not IsEmpty(todo) dov := todo[#todo℄; // pi
k a vertex vPrune(~todo);// 
al
ulate the endpoints of all edges starting at vs := <Idx[v[1℄℄,Idx[v[2℄℄>;E := [ <s[1℄,s[1℄*s[2℄>, // GenOutF2: x->x, y->x*y<s[2℄,s[1℄^(-1)>℄ // x->y, y->x^(-1)
at [<f(s[1℄),f(s[2℄)> : f in GenInnSd℄;for e in E do // for all neighbours of vn := <Index(Idx, e[1℄), Index(Idx, e[2℄)>;if V[n[1℄℄[n[2℄℄ then // if they still existV[n[1℄℄[n[2℄℄ := false; // delete them from the graph
ount := 
ount-1; // and queue them forAppend(~todo, n); // further 
al
ulationend if;end for;end while;end while;return result;end fun
tion;



A.1. COUNTING ORIGAMI-CURVES 59We 
an do the same thing for normal origamis by sele
ting a Galois group G andthen 
onsider the graph with vertex set G × G. The only things that 
hange arethe 
al
ulation of the generators of Aut(G) and the 
he
k for surje
tivity insteadof transitivity.Given a degree d one 
an use the small groups library of Magma to �nd allgroups of 
ardinality d, and thus one 
an easily 
reate representatives of all normalorigami-
urves of degree d.Components := fun
tion(G)Idx := SetToIndexedSet(Set(G));V := [[true : x in [1..#G℄℄ : y in [1..#G℄℄;
ount := #G^2;result := [℄;// 
al
ulate generators of Aut(G)p,AutG := PermutationRepresentation(AutomorphismGroup(G));GenAutG := [Inverse(p)(f) : f in Generators(AutG)℄;while 
ount gt 0 do // while there are verti
es in the graph// find an unused vertex (i,j)i := 0;repeati := i+1;j := Index(V[i℄,true);until i ge #G or j ne 0;// if the subgroup of G generated by i and j is G itself// the vertex (i,j) des
ribes an origami: then save itif #sub<G | [Idx[i℄,Idx[j℄℄> eq #G thenAppend(~result, <Idx[i℄,Idx[j℄>);end if;// delete the 
onne
ted 
omponent of (i,j)V[i℄[j℄ := false;
ount := 
ount - 1;todo := [<i,j>℄;while not IsEmpty(todo) dov := todo[#todo℄; // pi
k a vertex v



60 APPENDIX A. ALGORITHMS AND CALCULATIONSPrune(~todo);// 
al
ulate the endpoints of all edges starting at vs := <Idx[v[1℄℄,Idx[v[2℄℄>;E := [ <s[1℄,s[1℄*s[2℄>, // GenOutF2: x->x, y->x*y<s[2℄,s[1℄^(-1)>℄ // x->y, y->x^(-1)
at [<f(s[1℄),f(s[2℄)> : f in GenAutG℄;for e in E do // for all neighbours of vn := <Index(Idx, e[1℄), Index(Idx, e[2℄)>;if V[n[1℄℄[n[2℄℄ then // if they still existV[n[1℄℄[n[2℄℄ := false; // delete them from the graph
ount := 
ount-1; // and queue them forAppend(~todo, n); // further 
al
ulationend if;end for;end while;end while;return result;end fun
tion;A.2 Origami 
urves up to degree 8We use the algorithm des
ribed in se
tion A.1 to list all 
urves of origamis withup to eight squares. For ea
h of the 207 origami-
urves we list a representingorigami given by permutations σx and σy. We also 
al
ulate some of the invariantsdes
ribed in 
hapter 3:
d the degree of the origami
g the genus of the origamiram. the rami�
ation indi
es of the pun
tures
d the index of the (proje
tive) Vee
h group
g the genus of the origami-
urve
n the number of 
usps of the origami-
urve
Aut the number of automorphisms-1 is -1 an element of the Vee
h group? If there is even a hyperel-lipti
 involution we mark this with `h'.
H the 
onne
ted 
omponent in the moduli spa
e H of Abeliandi�erentials (`h' if the property �hyperellipti
� is satis�ed, 0 or

1 for the parity of the 
anoni
al spin stru
ture if it exists)



A.2. ORIGAMI CURVES UP TO DEGREE 8 61
σx σy d g ram. d g n Aut -1 Hid id 1 1 1 1 0 1 2 h 1(1 2) (1 2) 2 1 1 1 3 0 2 4 h 1id (1 3 2) 3 1 1 1 1 4 0 2 6 h 1(1 2) (2 3) 3 2 3 3 0 2 2 h h 1(1 2)(3 4) (1 3)(2 4) 4 1 1 1 1 1 1 0 1 8 h 1id (1 4 3 2) 4 1 1 1 1 1 6 0 3 8 h 1(1 2) (2 4 3) 4 2 1 3 9 0 3 2 h h 1(1 3 2) (1 2)(3 4) 4 2 2 2 4 0 2 2 h h(1 2) (1 3)(2 4) 4 2 2 2 6 0 3 4 h hid (1 5 4 3 2) 5 1 1 1 1 1 1 6 0 2 10 h 1(1 3 2) (3 5 4) 5 2 1 1 3 9 0 3 2 h h 1(1 2) (2 5 4 3) 5 2 1 1 3 18 0 5 2 h h 1(1 2) (1 3)(2 5 4) 5 2 1 2 2 24 0 6 2 h h(1 2)(3 4) (2 3)(4 5) 5 3 5 3 0 2 2 h h 0(1 2)(3 4) (2 5 4 3) 5 3 5 6 0 3 1 1(1 3 2) (2 4)(3 5) 5 3 5 10 0 3 2 × 1(1 3 2) (1 4 2)(3 5) 5 3 5 15 0 4 2 h h 0id (1 6 5 4 3 2) 6 1 1 1 1 1 1 1 12 0 4 12 h 1(1 2)(3 4) (1 6 5 4 2 3) 6 2 1 1 1 3 3 0 2 2 h h 1(1 2)(3 4) (1 3)(2 6 5 4) 6 2 1 1 1 3 6 0 3 2 h h 1(1 2) (2 6 5 4 3) 6 2 1 1 1 3 36 0 8 2 h h 1(1 2)(3 4) (1 5 3)(2 6 4) 6 2 1 1 2 2 4 0 2 4 h h(1 2) (1 4 3)(2 6 5) 6 2 1 1 2 2 12 0 4 4 h h(1 3 2) (1 2)(3 6 5 4) 6 2 1 1 2 2 24 0 6 2 h h(1 4 3 2) (1 3 2)(4 6 5) 6 2 1 1 2 2 24 0 6 2 h h(1 2) (1 3)(2 6 5 4) 6 2 1 1 2 2 24 0 6 2 h h(1 2)(3 4) (1 3 2)(4 6 5) 6 3 1 5 10 0 3 2 h h 0(1 2)(3 4) (2 6 5 4 3) 6 3 1 5 10 0 3 1 1(1 3 2) (1 4 2)(3 6 5) 6 3 1 5 15 0 4 2 h h 0(1 2)(3 4) (1 6 5 4 3 2) 6 3 1 5 15 0 4 2 × 1(1 3 2) (1 2 4)(3 6 5) 6 3 1 5 15 0 4 2 h h 0(1 2)(3 4) (2 3)(4 6 5) 6 3 1 5 30 0 7 2 h h 0(1 3 2) (2 4)(3 6 5) 6 3 1 5 60 0 12 1 1(1 2)(3 4) (1 5 3 2)(4 6) 6 3 2 4 16 0 4 1(1 2)(3 4) (2 5 3)(4 6) 6 3 2 4 48 0 10 1(1 2)(3 4)(5 6) (1 3)(2 5)(4 6) 6 3 3 3 3 0 2 12 h 1(1 2)(3 4) (1 3)(2 5)(4 6) 6 3 3 3 6 0 3 4 h h 0(1 3 2) (1 5 2 4)(3 6) 6 3 3 3 6 0 3 2 h h 0(1 2)(3 4) (1 6 4 5 2) 6 3 3 3 9 0 3 2 h 1(1 2)(3 4) (1 3)(2 6 4 5) 6 3 3 3 9 0 3 4 h 1(1 4 3 2) (1 3)(2 5)(4 6) 6 3 3 3 9 0 3 4 h h 0
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σx σy d g ram. d g n Aut -1 H(1 3 2) (1 4)(2 5)(3 6) 6 3 3 3 12 0 4 6 × 1(1 2)(3 4) (1 6 4 5 2 3) 6 3 3 3 18 0 5 2 × 1(1 2)(3 4) (2 6 4 5) 6 3 3 3 18 0 5 4 h 1(1 4 3 2) (1 5 3)(4 6) 6 3 3 3 36 0 8 2 h h 0id (1 7 6 5 4 3 2) 7 1 1 1 1 1 1 1 1 8 0 2 14 h 1(1 3 2) (3 7 6 5 4) 7 2 1 1 1 1 3 36 0 8 2 h h 1(1 2) (2 7 6 5 4 3) 7 2 1 1 1 1 3 54 0 10 2 h h 1(1 2)(3 4) (1 7 6 4 2 5 3) 7 2 1 1 1 2 2 16 0 4 2 h h(1 2) (1 3)(2 7 6 5 4) 7 2 1 1 1 2 2 144 1 24 2 h h(1 2)(3 4) (2 3)(4 7 6 5) 7 3 1 1 5 30 0 7 2 h h 0(1 3 2) (2 5 4)(3 7 6) 7 3 1 1 5 40 0 8 2 × 1(1 3 2) (2 4)(3 7 6 5) 7 3 1 1 5 60 0 12 1 1(1 3 2) (1 5 4 2)(3 7 6) 7 3 1 1 5 105 0 18 2 h h 0(1 3 2) (1 4 2)(3 7 6 5) 7 3 1 1 5 120 0 22 2 h h 0(1 2)(3 4) (2 7 6 5 4 3) 7 3 1 1 5 180 1 30 1 1(1 2)(3 4) (2 5 3)(4 7 6) 7 3 1 2 4 16 0 4 1(1 2)(3 4) (1 7 6 4 5 3 2) 7 3 1 2 4 16 0 4 1(1 5 4 3 2) (1 4 3)(5 7 6) 7 3 1 2 4 48 0 10 1(1 5 4 3 2) (1 3 4)(5 7 6) 7 3 1 2 4 48 0 10 1(1 2)(3 4) (1 5 3 2)(4 7 6) 7 3 1 2 4 384 1 64 1(1 2)(3 4) (1 7 6 4 5 2 3) 7 3 1 3 3 18 0 5 1 1(1 2)(3 4) (1 3)(2 5)(4 7 6) 7 3 1 3 3 36 0 8 2 h h 0(1 2)(3 4) (1 7 6 4 5 2) 7 3 1 3 3 48 0 10 1 1(1 2)(3 4) (1 3)(2 7 6 4 5) 7 3 1 3 3 66 0 11 2 h 1(1 3 2) (1 4)(2 5)(3 7 6) 7 3 1 3 3 72 0 14 2 × 1(1 3 2) (1 5 2 4)(3 7 6) 7 3 1 3 3 180 0 32 2 h h 0(1 5 4 3 2) (1 2 6 4)(5 7) 7 3 2 2 3 24 0 6 1(1 2)(3 4) (2 6 3 5)(4 7) 7 3 2 2 3 24 0 6 2 h(1 2)(3 4) (1 6 3)(2 5)(4 7) 7 3 2 2 3 36 0 8 2 ×(1 2)(3 4) (1 5 2 6 3)(4 7) 7 3 2 2 3 72 0 14 1(1 2)(3 4) (1 6 3 5 2)(4 7) 7 3 2 2 3 108 0 20 2 h(1 2)(3 4)(5 6) (2 3)(4 5)(6 7) 7 4 7 3 0 2 2 h h 0(1 3 2)(4 6 5) (1 2 7 6 5 3 4) 7 4 7 4 0 2 1 1(1 4 3 2)(5 6) (1 2)(3 7 4 5) 7 4 7 7 0 2 2 h h 0(1 4 3 2)(5 6) (1 7 4 5)(2 3) 7 4 7 7 0 2 2 h h 0(1 2)(3 4)(5 6) (2 3 7 6 5 4) 7 4 7 12 0 4 1 0(1 5 4 3 2) (1 4)(2 6 3)(5 7) 7 4 7 21 0 5 2 h h 0(1 5 4 3 2) (1 6 4)(2 3)(5 7) 7 4 7 21 0 5 2 h h 0(1 5 4 3 2) (1 6 4 3)(5 7) 7 4 7 28 0 6 1 0(1 5 4 3 2) (2 3 6 4)(5 7) 7 4 7 42 0 9 1 1(1 5 4 3 2) (1 2)(3 6 4)(5 7) 7 4 7 42 0 9 1 1
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σx σy d g ram. d g n Aut -1 H(1 4 3 2) (1 6 3)(2 5)(4 7) 7 4 7 84 0 16 2 h h 0(1 3 2)(4 5) (2 4)(3 7 5 6) 7 4 7 168 0 30 1 1(1 4 3 2) (2 6 3 5)(4 7) 7 4 7 168 0 30 1 0(1 4 3 2) (2 5)(3 6)(4 7) 7 4 7 189 0 33 2 × 1(1 2)(3 4)(5 6)(7 8) (1 7 5 3)(2 8 6 4) 8 1 1 1 1 1 1 1 1 1 3 0 2 16 h 1id (1 8 7 6 5 4 3 2) 8 1 1 1 1 1 1 1 1 1 12 0 4 16 h 1(1 2)(3 4) (1 3)(2 8 7 6 5 4) 8 2 1 1 1 1 1 3 9 0 3 2 h h 1(1 2)(3 4) (1 8 7 6 5 4 2 3) 8 2 1 1 1 1 1 3 18 0 5 2 h h 1(1 2) (2 8 7 6 5 4 3) 8 2 1 1 1 1 1 3 108 1 17 2 h h 1(1 2)(3 4) (1 8 7 4 2 6 5 3) 8 2 1 1 1 1 2 2 6 0 3 4 h h(1 2)(3 4)(5 6)(7 8) (1 3)(2 7 5 4)(6 8) 8 2 1 1 1 1 2 2 6 0 3 4 h h(1 2)(3 4) (1 6 5 3)(2 8 7 4) 8 2 1 1 1 1 2 2 6 0 3 4 h h(1 3 2)(4 6 5) (1 5 2 4)(3 8 7 6) 8 2 1 1 1 1 2 2 12 0 4 2 h h(1 2) (1 5 4 3)(2 8 7 6) 8 2 1 1 1 1 2 2 24 0 6 4 h h(1 2) (1 3)(2 8 7 6 5 4) 8 2 1 1 1 1 2 2 72 0 14 2 h h(1 3 2) (1 2)(3 8 7 6 5 4) 8 2 1 1 1 1 2 2 96 1 16 2 h h(1 2) (1 4 3)(2 8 7 6 5) 8 2 1 1 1 1 2 2 144 1 24 2 h h(1 2)(3 4) (1 8 7 6 5 4 3 2) 8 3 1 1 1 5 60 0 12 2 × 1(1 4 3 2) (1 6 5 3 2)(4 8 7) 8 3 1 1 1 5 75 0 13 2 h h 0(1 2)(3 4) (2 8 7 6 5 4 3) 8 3 1 1 1 5 130 0 23 1 1(1 2)(3 4) (2 3)(4 8 7 6 5) 8 3 1 1 1 5 240 0 42 2 h h 0(1 3 2) (1 4 2)(3 8 7 6 5) 8 3 1 1 1 5 270 1 45 2 h h 0(1 3 2) (2 4)(3 8 7 6 5) 8 3 1 1 1 5 510 5 77 1 1(1 2)(3 4) (2 8 7 6 4 5 3) 8 3 1 1 2 4 48 0 10 1(1 2)(3 4) (1 5 3 2)(4 8 7 6) 8 3 1 1 2 4 48 0 10 1(1 3 2)(4 5) (1 4)(2 6 3 8 7 5) 8 3 1 1 2 4 96 0 18 1(1 2)(3 4) (1 6 5 3 2)(4 8 7) 8 3 1 1 2 4 384 1 64 1(1 2)(3 4) (2 5 3)(4 8 7 6) 8 3 1 1 2 4 1440 16 210 1(1 3 2)(4 6 5) (1 4 2 5)(3 8 7 6) 8 3 1 1 3 3 3 0 2 2 h 1(1 3 2)(4 6 5) (1 4)(2 5)(3 7)(6 8) 8 3 1 1 3 3 9 0 3 4 h h 0(1 3 2)(4 6 5) (1 8 7 6 3 5)(2 4) 8 3 1 1 3 3 12 0 4 1 1(1 2)(3 4) (1 5 2 3)(4 8 7 6) 8 3 1 1 3 3 18 0 5 2 h h 0(1 4 3 2)(5 6) (1 5)(2 6)(3 7)(4 8) 8 3 1 1 3 3 18 0 5 2 × 1(1 2)(3 4) (1 3)(2 8 7 4 6 5) 8 3 1 1 3 3 18 0 5 4 h 1(1 3 2)(4 6 5) (3 5 4)(6 8 7) 8 3 1 1 3 3 18 0 5 2 h h 0(1 4 3 2) (2 6 5)(4 8 7) 8 3 1 1 3 3 36 0 7 4 h 1(1 3 2) (1 5 2 4)(3 8 7 6) 8 3 1 1 3 3 36 0 8 2 h h 0(1 2)(3 4)(5 6) (1 8 6 7 4 2 5 3) 8 3 1 1 3 3 36 0 8 2 × 1(1 2)(3 4) (1 3)(2 5)(4 8 7 6) 8 3 1 1 3 3 36 0 8 2 h h 0(1 2)(3 4) (1 3)(2 6 5)(4 8 7) 8 3 1 1 3 3 36 0 8 4 h h 0(1 2)(3 4) (2 8 7 4 6 5) 8 3 1 1 3 3 36 0 8 4 h 1
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σx σy d g ram. d g n Aut -1 H(1 2)(3 4) (1 8 7 6 4 5 2) 8 3 1 1 3 3 36 0 8 1 1(1 2)(3 4)(5 6) (1 8 6 7 4 2 3) 8 3 1 1 3 3 45 0 9 2 h 1(1 3 2) (1 4)(2 5)(3 8 7 6) 8 3 1 1 3 3 54 0 11 2 × 1(1 4 3 2) (2 5)(4 8 7 6) 8 3 1 1 3 3 60 0 12 2 h 1(1 2)(3 4) (1 3)(2 8 7 6 4 5) 8 3 1 1 3 3 90 1 15 2 h 1(1 4 3 2) (1 6 5 3)(4 8 7) 8 3 1 1 3 3 144 0 26 2 h h 0(1 3 2) (1 4)(2 6 5)(3 8 7) 8 3 1 1 3 3 144 1 24 2 × 1(1 3 2) (1 6 5 2 4)(3 8 7) 8 3 1 1 3 3 198 0 35 2 h h 0(1 2)(3 4) (1 8 7 6 4 5 2 3) 8 3 1 1 3 3 312 3 48 1 1(1 4 3 2) (1 5 3)(4 8 7 6) 8 3 1 1 3 3 378 4 57 2 h h 0(1 3 2)(4 6 5) (1 5)(2 4)(3 8 7 6) 8 3 1 2 2 3 6 0 3 2 h(1 2)(3 4) (1 5 2 8 7 4 6 3) 8 3 1 2 2 3 18 0 5 2 ×(1 2)(3 4) (1 8 7 4 6 3)(2 5) 8 3 1 2 2 3 18 0 5 1(1 4 3 2)(5 6) (1 5)(2 7 3 6)(4 8) 8 3 1 2 2 3 24 0 6 1(1 2)(3 4) (1 8 7 4 6 2 3 5) 8 3 1 2 2 3 36 0 8 2 ×(1 2)(3 4) (2 6 3 5)(4 8 7) 8 3 1 2 2 3 192 0 34 2 h(1 2)(3 4) (1 5 2 6 3)(4 8 7) 8 3 1 2 2 3 216 1 36 1(1 2)(3 4) (1 6 3 5 2)(4 8 7) 8 3 1 2 2 3 252 1 42 2 h(1 2)(3 4) (1 6 3)(2 5)(4 8 7) 8 3 1 2 2 3 840 10 122 1(1 4 3 2)(5 8 7 6) (1 5 3 7)(2 8 4 6) 8 3 2 2 2 2 1 0 1 16 ×(1 2)(3 4)(5 6)(7 8) (1 3)(2 5)(4 7)(6 8) 8 3 2 2 2 2 3 0 2 16 h(1 2)(3 4) (1 8 4 6 2 7 3 5) 8 3 2 2 2 2 6 0 3 8 ×(1 2)(3 4) (1 7 3 5)(2 8 4 6) 8 3 2 2 2 2 6 0 3 8 h(1 7 6 5 4 3 2) (1 5)(2 3)(4 6)(7 8) 8 3 2 2 2 2 8 0 2 1(1 2)(3 4) (1 7 3 6 2 5)(4 8) 8 3 2 2 2 2 12 0 4 2 h(1 4 3 2)(5 6) (1 5)(2 7)(3 6)(4 8) 8 3 2 2 2 2 12 0 4 4 h(1 3 2)(4 6 5) (1 5)(2 4)(3 7)(6 8) 8 3 2 2 2 2 12 0 4 4 h(1 2)(3 4) (1 5)(2 7 3 6)(4 8) 8 3 2 2 2 2 24 0 6 4 h(1 2)(3 4)(5 6) (2 3 8 6 4 7 5) 8 3 2 2 2 2 36 0 7 2 ×(1 3 2)(4 6 5) (1 2)(3 8 6 7)(4 5) 8 3 2 2 2 2 48 0 10 4 h(1 3 2)(4 5) (1 2)(3 7 4 6)(5 8) 8 3 2 2 2 2 132 1 19 2 h(1 3 2)(4 6 5) (1 7 5 3)(2 8 6 4) 8 4 1 7 7 0 2 2 × 0(1 4 3 2)(5 6) (1 5 3 2)(4 8 6 7) 8 4 1 7 21 0 5 2 × 1(1 4 3 2)(5 6) (1 5 3)(4 8 7) 8 4 1 7 21 0 5 2 h h 0(1 4 3 2)(5 6) (1 2 3 5)(4 8 6 7) 8 4 1 7 21 0 5 2 × 1(1 4 3 2)(5 6) (1 3 5)(4 8 7) 8 4 1 7 21 0 5 2 h h 0(1 3 2)(4 6 5) (2 4 3)(6 8 7) 8 4 1 7 28 0 6 1 0(1 3 2)(4 6 5) (1 4 3)(6 8 7) 8 4 1 7 28 0 6 1 0(1 5 4 3 2) (1 7 4 2 6 3)(5 8) 8 4 1 7 42 0 9 2 h h 0(1 2)(3 4)(5 6) (2 5 4)(6 8 7) 8 4 1 7 42 0 9 2 × 1(1 2)(3 4)(5 6) (2 3)(4 5)(6 8 7) 8 4 1 7 42 0 9 2 h h 0
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σx σy d g ram. d g n Aut -1 H(1 4 3 2) (1 5 2 6 3)(4 8 7) 8 4 1 7 336 1 56 2 × 1(1 5 4 3 2) (1 2 6 4 3)(5 8 7) 8 4 1 7 546 1 91 1 0(1 5 4 3 2) (1 2)(4 6)(5 8 7) 8 4 1 7 546 2 89 1 1(1 4 3 2) (1 6 3)(2 5)(4 8 7) 8 4 1 7 567 5 85 2 h h 0(1 4 3 2) (2 6 3 5)(4 8 7) 8 4 1 7 1260 15 182 1 0(1 4 3 2) (2 5)(3 6)(4 8 7) 8 4 1 7 1932 22 280 1 1(1 4 3 2)(5 6) (2 7 5)(4 8 6) 8 4 2 6 18 0 5 2(1 2)(3 4)(5 6) (2 7 5)(4 8 6) 8 4 2 6 18 0 5 2(1 4 3 2)(5 6) (1 8 6 5 2 3)(4 7) 8 4 2 6 36 0 8 1(1 2)(3 4)(5 6) (1 3)(2 7 5)(4 8 6) 8 4 2 6 36 0 8 2(1 4 3 2)(5 6) (1 3 8 6 5 2)(4 7) 8 4 2 6 36 0 8 1(1 5 4 3 2) (2 6 3)(4 7)(5 8) 8 4 2 6 648 1 108 1(1 3 2)(4 5) (2 6 3 7 4)(5 8) 8 4 2 6 2160 22 318 1(1 4 3 2)(5 6) (2 5)(4 8 6 7) 8 4 3 5 15 0 4 2 × 1(1 2)(3 4)(5 6) (2 3)(4 8 6 7) 8 4 3 5 30 0 7 2 h 0(1 5 4 3 2) (1 7 4 3 6 2)(5 8) 8 4 3 5 45 0 9 2 h 0(1 5 4 3 2) (2 6)(4 7)(5 8) 8 4 3 5 180 0 32 2 × 1(1 4 3 2)(5 6) (1 2)(4 8 6 7) 8 4 3 5 240 1 40 1 1(1 5 4 3 2) (1 2 7 4 6 3)(5 8) 8 4 3 5 270 0 47 1 0(1 3 2)(4 5) (1 6 2)(3 8 5 7) 8 4 3 5 330 3 50 2 h 0(1 3 2)(4 5) (1 7 3 8 5 4)(2 6) 8 4 3 5 540 5 82 1 0(1 3 2)(4 5) (2 6)(3 8 5 7) 8 4 3 5 900 11 130 1 1(1 2)(3 4)(5 6) (1 3)(2 5)(4 7)(6 8) 8 4 4 4 6 0 3 4 h h(1 2)(3 4)(5 6) (1 5 2 3)(4 8 6 7) 8 4 4 4 6 0 3 4 ×(1 4 3 2) (1 7 3 5)(2 6)(4 8) 8 4 4 4 12 0 4 4 h h(1 2)(3 4)(5 6) (1 3)(2 5)(4 8 6 7) 8 4 4 4 12 0 4 4 ×(1 3 2)(4 6 5) (1 2)(3 4)(5 7)(6 8) 8 4 4 4 16 0 4 2 ×(1 3 2)(4 6 5) (1 5 4 2)(3 8 6 7) 8 4 4 4 16 0 4 4 ×(1 3 2)(4 6 5) (1 2 5 4)(3 8 6 7) 8 4 4 4 16 0 4 2 ×(1 2)(3 4)(5 6) (1 8 6 7 4 3 5 2) 8 4 4 4 24 0 6 2 ×(1 2)(3 4)(5 6) (2 8 6 7 4 5) 8 4 4 4 24 0 6 2 ×(1 4 3 2) (1 5)(2 6)(3 7)(4 8) 8 4 4 4 24 0 6 8 ×(1 3 2)(4 5) (1 6 2 4)(3 7)(5 8) 8 4 4 4 24 0 6 2 h h(1 6 5 4 3 2) (1 2)(3 7)(4 5)(6 8) 8 4 4 4 24 0 6 4 ×(1 3 2)(4 6 5) (1 5 4 2)(3 7)(6 8) 8 4 4 4 24 0 6 4 h h(1 4 3 2)(5 6) (1 2)(3 5)(4 7)(6 8) 8 4 4 4 48 0 10 1(1 4 3 2)(5 6) (2 3 7 4 8 6 5) 8 4 4 4 48 0 10 1(1 4 3 2) (1 6 2 5)(3 7)(4 8) 8 4 4 4 72 0 14 2 ×(1 4 3 2)(5 6) (1 5 3)(4 7)(6 8) 8 4 4 4 96 0 18 2 h h(1 3 2)(4 5) (1 6 2 4)(3 8 5 7) 8 4 4 4 240 0 42 2 ×(1 5 4 3 2) (1 7 4)(2 6 3)(5 8) 8 4 4 4 288 0 50 2 h h
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σx σy d g ram. d g n Aut -1 H(1 5 4 3 2) (1 2)(3 6)(4 7)(5 8) 8 4 4 4 384 2 62 2 ×(1 3 2)(4 5) (1 4)(2 6)(3 8 5 7) 8 4 4 4 576 6 86 1A.3 Galois groups whose 
urves are not uniqueThere are 6960 groups whose order is less than or equal to 250. Of these 2386 
an begenerated by two elements and are thus possible Galois groups of origamis. Almostall of the 
orresponding origami-
urves are already uniquely de�ned by their Galoisgroup. There are only 30 ex
eptions, whi
h are listed in the following table. In the
olumns we have noted �rst the group order n, then the number k of the group inthe small-groups-library of Magma (i.e. the group 
an be 
onstru
ted in Magmausing the 
ommand SmallGroup(n,k)) and �nally the number of origami-
urvesand their rami�
ation indi
es:order number 
urves rami�
ation60 5 2 3, 581 10 2 3, 3120 5 2 6, 10120 34 3 2, 3, 5120 35 2 3, 5160 199 2 2, 4162 31 2 3, 3168 42 4 3, 4, 4, 7168 43 2 7, 7180 19 2 3, 5189 7 2 21, 21192 181 2 6, 6192 201 3 2, 4, 4192 202 2 2, 4192 1491 2 6, 6200 44 3 2, 2, 2216 87 2 2, 6216 153 3 4, 4, 4240 89 3 3, 4, 10240 90 3 3, 4, 10240 91 3 2, 3, 5240 92 2 3, 5240 93 2 6, 10240 94 2 6, 10240 189 3 2, 3, 5



A.4. DETERMINING THE AUTOMORPHISM GROUPS 67order number 
urves rami�
ation240 190 2 3, 5243 5 2 3, 3243 7 2 3, 3243 16 2 3, 3243 18 2 3, 3A.4 Determining the automorphism groupsThe followingMagma 
ode 
al
ulates the automorphism group of a normal origamigiven by f : F2 ։ G, more pre
isely by the images σ := f(x) and τ := f(y) ofthe generators. We have seen in Proposition 3.13 that this group is isomorphi
 to
C2 ⋉Φ G where Φ : C2 → Aut(G) maps the generator of the 
y
li
 group C2 to
ϕ ∈ Aut(G) de�ned by ϕ(σ) = σ−1 and ϕ(τ) = τ−1. If su
h an automorphismdoesn't exist the automorphism group equals the Galois group.Aut := fun
tion(sigma,tau)G := sub<Parent(sigma)|[sigma,tau℄>;A := AutomorphismGroup(G);if not IsHomomorphism(G,G,[Inverse(sigma), Inverse(tau)℄)thenreturn G;elsephi := hom<G -> G | [Inverse(sigma), Inverse(tau)℄>;C2 := Cy
li
Group(2);Phi := hom<C2 -> A | [A!phi℄>;return Semidire
tProdu
t(G,C2,Phi);end if;end fun
tion;For the 
onstru
tion of the semidire
t produ
t we need the help of the followingfun
tion, whi
h 
onstru
ts a group H from the set of its elements S and a map
ψ : S × S → S whi
h de�nes the multipli
ation in H. This is done by identifying
y ∈ S with the map ψ( � , y) ∈ Sym(S). We have

ψ( � , x) · ψ( � , y) = ψ(ψ( � , x), y) = ψ( � , ψ(x, y))where the left equation is the way Magma multiplies permutations and the rightequation holds be
ause ψ has to be asso
iative. Thus we get a subgroup H of
Sym(S) whi
h respe
ts the group operation de�ned by ψ.
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tion(S, psi)G := Sym(S);H := sub<G | [G![psi(<x,y>) : x in S℄ : y in S℄>;BSGS(H);Redu
eGenerators(~H);E := {x : x in S | forall{y : y in S | psi(<x,y>) eq y}};e := Rep(E); // the neutral Elementf := map<S->H | y :-> H![psi(<x,y>): x in S℄, p :-> Image(p,S!e)>;return H,f;end fun
tion;We 
an now 
onstru
t a semidire
t produ
t G := H ⋉φ N with ϕ : H → Nby using the multipli
ation on S := N × H de�ned by ψ : S × S → S with
ψ((n1, h1), (n2, h2)) = (n1ϕ(h1)(n2), h1h2). The fun
tion also returns the in
lu-sions iN : N →֒ G, iH : H →֒ G and the proje
tion pH : G։ H.Semidire
tProdu
t := fun
tion(N,H,phi)S := Set(CartesianProdu
t(Set(N),Set(H)));S2 := CartesianProdu
t(S,S);psi := map<S2->S | T :-> S!<N!T[1℄[1℄*phi(H!T[1℄[2℄)(N!T[2℄[1℄),H!T[1℄[2℄*H!T[2℄[2℄> >;G,f := Group(S,psi);iN := hom<N -> G | x :-> f(<x,H!1>) >;iH := hom<H -> G | x :-> f(<N!1,x>) >;pH := hom<G -> H | g :-> (g �� f)[2℄>;if #N*#H eq #Gthen return G,iN,pH,iH;else return false;end if;end fun
tion;
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