
Invariants of omplex andp-adi origami-urves
Zur Erlangung des akademishenGrades einesDoktors derNaturwissenshaftenvon der Fakultät für Mathematik derUniversität Karlsruhe (TH)genehmigteDissertationvonDipl.-Math. Karsten Kremeraus Stuttgart

Tag der mündlihen Prüfung: 22. Juli 2009Referent: Prof. Dr. Frank HerrlihKorreferent: PD Dr. Stefan Kühnlein





IPrefaeTake �nitely many omplex unit squares, glue the right edge of every squareto the left edge of any square, and every upper edge to a lower edge, suhthat an orientable ompat Riemann surfae arises. For example we an usethe following four squares
|| −−

|| ||| =|||||=and glue edges with equal marks together. We all suh a surfae an origami.By mapping eah square to the omplex unit square glued with itself we geta natural overing of a torus. This overing is rami�ed only at the vertiesof the squares, whih are all mapped to the same point on the torus, henewe have a overing with only one branh point. On the other hand given aovering of the torus C/(Z + iZ) by a Riemann surfae X whih is rami�edat most over 0 we an lift the unit square to X and hene get a desriptionof X by glued squares.If we glue parallelograms instead of squares we get a family of Riemannsurfaes for any given glueing rule. In the moduli spae Mg of Riemannsurfaes of genus g this family forms a one-dimensional subset, on whihthere is an ation of SL2(R) orresponding to the strething and shearing ofthe parallelograms. The interesting point about origamis is that this subsetalways is an algebrai urve ([Lo℄, Prop. 3.2 ii)). We all suh a urve inmoduli spae the orresponding origami-urve.Origamis are a speial ase of translation surfaes, whih are Riemann sur-faes with an atlas where (almost) every oordinate hange map is a trans-lation. As above there is an SL2(R) ation on those translation surfaes,de�ned by strething and shearing the oordinate harts. The orbits leadto isometri embeddings of the upper half plane H ∼= SL2(R)/ SO2(R) intoTeihmüller spae, whose image is alled Teihmüller disk. If the projetionof this disk in the moduli spaeMg is an algebrai urve (as is the ase fororigamis), then the translation surfae is alled a Veeh surfae. These sur-faes and espeially origamis were �rst studied by Veeh [Vee℄ and Thurston[Thu℄.Sine origamis (also known as square-tiled surfaes) are dense inMg ([HS3℄,�1.5.2) they o�er a good opportunity to study the moduli spae Mg. Weare going to give an overview on origamis and origami-urves in the �rsttwo hapters. They have been studied reently for example by Lohak [Lo℄,



IIZorih [Zor℄, Shmithüsen [Sh2℄ and Herrlih [HS1℄. We will also presentan algorithm to �nd a set of origamis representing every origami-urve withgiven degree or Galois group.In the third hapter we will study some invariants whih an be used todistinguish di�erent origami-urves. Reent papers on this topi inlude[HL℄ and [M2℄. In Appendix A.2 we alulate some of these invariants forall origami-urves of origamis made up of up to eight squares.By GAGA there is a one-to-one orrespondene between Riemann surfaesand omplex nonsingular projetive urves. Thus an origami is a overing ofa nonsingular projetive urve over an ellipti urve whih may be rami�edonly over 0. This de�nition an be generalized to other ground �elds, suhas the p-adi �eld Cp. In the omplex world we get every Riemann surfaeas a quotient of an open subset Ω of P1(C) by a disrete subgroup G of
PSL2(C). In the p-adi world the analogues of Riemann surfaes, whih admita similar uniformizationΩ/G, are alledMumford urves. But ontrary to theomplex world not every nonsingular projetive urve over Cp is a Mumfordurve. Mumford urves have been thoroughly studied; two textbooks givinga omprehensive introdution are [GP℄ and [FP℄.As Mumford urves are the p-adi analogues of Riemann surfaes we de�ne p-adi origamis to be overings of Mumford urves with only one branh point,where the bottom urve has genus one. In the fourth hapter we will lassifyall normal non-trivial p-adi origamis. This is done using the desription ofthe bottom urve as an orbifold Ω/G, where Ω ⊂ P1(Cp) and G is a groupating disontinuously on Ω. These groups and the orresponding orbifoldsan be studied by looking at the ation of G on the Bruhat-Tits-Tree of asuitable sub�eld of Cp and the resulting quotient graph of groups. This hasbeen done by Herrlih [Her℄, and more reently by Kato [Kat2℄ and Bradley[Bra2℄.In Setion 4.3 we will see that all normal p-adi origamis with a given Galoisgroup H are of the type Ω/Γ→ Ω/G with the following possible hoies forthe groups Γ and G: The quotient graph of G an be ontrated to

•Ca

∆

Cb //for a p-adi triangle group ∆ (where the single vertex represents a subtreewith fundamental group ∆), whih means that G is isomorphi to the fun-damental group of this graph, i.e.
G ∼= 〈∆, γ; γα1 = α2γ〉 with αi ∈ ∆ of order a.

Γ is the kernel of a morphism ϕ : G → H whih is injetive when restritedto the vertex groups of the quotient graph of G. The rami�ation index of



IIIthe p-adi origami is then b. We have a similar result (Theorem 4.18) for theautomorphism group of the p-adi origami.Given a p-adi origami whih is de�ned over Q we an hange the ground �eldto C and know that there our origami an be desribed as a surfae gluedfrom squares. Atually doing this is usually hard, beause we would haveto work out equations for the Mumford urves and for the omplex urvesorresponding to the Riemann surfaes. Nevertheless we an often �nd outwhih omplex origami-urve belongs to our p-adi origami, as mostly theurve is already uniquely de�ned by �xing the Galois group. In the lasthapter we prove that this is true for the Galois groups Dn × Z/mZ and
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Chapter 1OrigamisIn this �rst hapter we want to introdue origamis from a variety of view-points. Origamis are ompat Riemann surfaes whih are obtained by glue-ing several unit squares. Pierre Lohak oined the term origami in [Lo℄,while Anton Zorih uses the term square-tiled surfaes [Zor℄. But there areseveral other ways to de�ne origamis: Origamis an also be de�ned as ov-erings of an ellipti urve with a single branh point, whih is a onept onean generalize to algebrai urves over other �elds than C. In [Sh1℄ GabrielaShmithüsen often identi�es origamis with onjugay lasses of �nite indexsubgroups of F2. If one wants to use a omputer for the alulation of someproperties of origamis, it is more pratial to de�ne origamis as homomor-phisms F2 → Sd, or (in the ase of normal origamis with Galois group G)as epimorphisms F2 → G. But if one thinks of origamis as speial kindsof translation surfaes it may be more natural to think of an origami as aRiemann surfae with a holomorphi 1-form whih has integer values whenintegrated along elements of the fundamental group.We will now explain all those de�nitions, prove that they are equivalent, andinvestigate how the natural ation of SL2(Z) on the set of all origamis anbe desribed in eah ase.1.1 De�nitionsDe�nition 1.1. An origami of degree d ∈ N is a losed surfae X whihis obtained from d eulidean unit squares by glueing (via translations) eahright edge to a left one and eah upper edge to a lower one.By labeling the squares of an origami with the numbers 1, . . . , d we an1



2 CHAPTER 1. ORIGAMISdesribe an origami by two permutations σx and σy in Sd, where σx desribesthe horizontal glueing and σy desribes the vertial glueing.
|| −−

|| ||| =|||||=
 12 34Example: This origami is desribed by σx = (2 3 4) and σy = (1 2).Eah origami X de�nes a overing of the torus E := R2/Z2 by mappingeah square to the unit square. This overing p : X → E is rami�ed only atthe verties of the squares. Removing these rami�ation points leads to anunrami�ed restrition p : X∗ := X \ p−1(0)→ E∗ := E \ {0} of degree d.Conversely, given a onneted surfae X and a overing p : X → E of degree

d whih may be rami�ed only over 0 ∈ E, we an lift the unit square de�ning
E to X. This yields a deomposition of X into d opies of the unit squareglued as desribed above.The monodromy of suh a overing is by de�nition the ation1 of the fun-damental group π1(E

∗, P ) on the �ber p−1(P ) over any basepoint P ∈ E∗,and without loss of generality we an hoose both oordinates of P to benon-zero in R/Z. The fundamental group π1(E
∗, P ) is isomorphi to thefree group generated by x and y, where x is the losed path starting at P inhorizontal diretion, and y is the losed path starting at P in vertial dire-tion. Let Pi be the preimage of P in the square with the number i. Thenwe see that the monodromy of the origami is given by the homomorphism

f : F2 → Sym({P1, . . . , Pd}) ∼= Sd whih maps x to σx and y to σy.
p :

a a a a

aa

aa

aa

P4
•
// P2

•
// P3

•
//

P1
•
//

→
a a

aa

P
•
//On the other hand a homomorphism f : F2 → Sd desribes an origami i�its image is a transitive subgroup of Sd (otherwise the surfae obtained byglueing the squares 1, . . . , d aording to the permutations f(x) and f(y)would not be onneted). We denote by Homt(F2, Sd) the set of suh homo-morphisms.1Note that if we want to onsider elements α, β ∈ π1(E

∗, P ) as permutations of the�ber p−1(P ), we need αβ to be the path �rst along β and afterwards along α. This maynot be an intuitive way to de�ne multipliation in π1(E
∗, P ), but otherwise the groupwould not at on the �ber from the left.



1.1. DEFINITIONS 3The unrami�ed overing p : X∗ → E∗ also indues an inlusion ι of thefundamental groups π1(X
∗, P1) →֒ π1(E

∗, P ) ∼= F2. Let H denote the imageof this inlusion in F2. The left osets of H orrespond to the d di�erentsquares, whih make up X∗, thus the index of H in F2 is d. The group
H an also be obtained from the monodromy f : as H is just the groupof all words in F2 whih desribe a path from P1 bak to P1 we an write
H = f−1(StabSd

(1)).Conversely, given a subgroup H ⊆ F2 of �nite index d, we an de�ne anorigami in the following way: We label d squares with the left osets of H .For every square labelled aH we glue its right edge to the left edge of xaH ,and its upper edge to the lower edge of yaH .Altogether we an dedueProposition 1.2. An origami of degree d an be de�ned equivalently asi) a �nite overing p : X → E of the torus E by a onneted surfae X,rami�ed only over 0 ∈ E; up to a homeomorphism X ′ → X over E,ii) an element of Inn(Sd)\Homt(F2, Sd),iii) the onjugay lass of a subgroup H of F2 of index d.Proof. We already desribed above how overings p : X → E of degree d,homomorphisms f : F2 → Sd and subgroups H ⊆ F2 of index d are onnetedto our de�nition of an origami. Now we just have to fator out the hoieswe made:i) For another onneted surfae X ′ let h : X ′ → X be a homeomorphismand onsider the �nite overing p′ := p ◦ h. As h is unrami�ed themonodromies of p and p′ oinide if we set P ′
i := h−1(Pi).ii) When we label the squares with the numbers 1, . . . , d any other number-ing leads to the same origami. This means, that two monodromy maps

f and f ′ desribe the same origami, i� there is a renumbering τ ∈ Sdwith f(x) = τf ′(x)τ−1 and f(y) = τf ′(y)τ−1. This means f = κτ ◦ f ′,where κτ ∈ Inn(Sd) is the onjugation with τ .iii) For the de�nition of the subgroup H we only hoose the basepoint P1 ofthe fundamental group π1(X
∗) out of the d elements in the �ber p−1(P ).If we hoose another basepoint Pi instead, then we have to onjugateeah element in H with the image of the path from P1 to Pi in π1(E

∗).



4 CHAPTER 1. ORIGAMIS
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�������Figure 1.1: The image of an origami under the ation of SL2(Z)We remark (to part ii) of the previous proposition) that Inn(Sd) = Aut(Sd)for d 6= 6 (see [JR℄ Theorem 7.4), but there exist automorphisms of S6 whihare not inner (see [Rot℄ Theorem 3).1.2 Deformation of origamisWe identify the torus E = R2/Z2 with C/Z[i], thus an origami p : X → Ebeomes a Riemann surfae using the oordinate harts indued by p. Infat, we get a lot of Riemann surfaes: for every A ∈ SL2(R) we an de�nethe lattie ΛA = A · Z2 and the homeomorphism cA : R2/Z2 → R2/ΛA =:

EA, x 7→ A · x. The identi�ation of R2 with C then leads to new oordinateharts indued by pA := cA ◦ p. We get again a omplex struture on thesurfae X whih we denote by XA.
X

p

��

pA

  A
AA

AA
AA

A

E cA
// EA= C/ΛAIf the torus EA is isomorphi to our torus E = EI as a Riemann surfae,then pA : X → EA ∼= E de�nes another origami. By

EA = E ⇔ ΛA = Λ⇔ A ∈ SL2(Z)we see that we get an ation of SL2(Z) on the set of all origamis.By [LS℄, I.4.5 we have GL2(Z) ∼= Out(F2) := Aut(F2)/ Inn(F2). Let Out+(F2)be the subgroup orresponding to SL2(Z) and Aut+(F2) be its preimage in
Aut(F2). This enables us to formulate the ation of SL2(Z) on origamis alsofor homomorphisms F2 → Sd and for �nite-index subgroups H of F2:



1.3. NORMAL ORIGAMIS 5Proposition 1.3. A ∈ SL2(Z) ∼= Out(F2) = Aut(F2)/ Inn(F2) ats onorigamis in the following way (where ϕ ∈ Aut(F2) is a preimage of A):i) p 7→ pA = cA ◦ p for a �nite overing p : X → E,ii) [f ] 7→ [f ◦ ϕ−1] for [f ] ∈ Inn(Sd)\Homt(F2, Sd),iii) [H ] 7→ [ϕ(H)] for the onjugay lass of a subgroup H of F2.Proof. We have to investigate how the ation desribed above, leading tostatement i), indues the ations stated in ii) and iii). Reall from Prop. 1.2that both alternative de�nitions of origamis whih we use for ii) and iii) wereobtained via the fundamental group π1(E
∗, P ). By the theorem of Dehn-Nielsen the automorphism ϕ of π1(E

∗, P ) omes from a unique homotopylass of homeomorphisms c of E∗. The isomorphism
Homeo(E∗)/Homeo0(E∗) ∼= SL2(Z) ∼= Out+(F2)is in fat the map c 7→ [ϕ], so we have c = [cA]. The indued maps on thefundamental groups and the monodromy maps are shown in the followingdiagram:

π1(X
∗, P1)

ι

��

ϕ ◦ ι

''OOOOOOOOOOO

π1(E
∗, P ) ϕ

//

f

��

π1(E
∗, P )

f ◦ϕ−1

wwooooooooooooo

SdThus the monodromy f transforms to f ◦ ϕ−1, and the subgroup H = Im(ι)to Im(ϕ ◦ ι) = ϕ(H).1.3 Normal origamisProposition 1.4. The following statements are equivalent:i) p : X → E is a normal overing,ii) H is a normal subgroup of F2,iii) H = ker(f).



6 CHAPTER 1. ORIGAMISProof. The overing p is normal if and only if π1(X
∗, P1) ⊳ π1(E

∗, P ). Thisshows the equivalene i) ⇔ ii). The kernel of f is always a normal subgroupof F2, hene iii)⇒ ii).It remains to show ii) ⇒ iii): Starting from a �nite index subgroup H wehave onstruted the orresponding surfae X in Setion 1.1 by labeling dsquares with the left osets of H . If H ⊳ F2 the monodromy is given by theanonial morphism f : F2 → F2/H .De�nition 1.5. An origami whih satis�es one of the onditions of Propo-sition 1.4 is alled normal . The group F2/H ∼= Im(f) is alled its Galoisgroup.Proposition 1.6. A normal origami with Galois group G an equivalentlybe de�ned as an element of Aut(G)\Epi(F2, G). The ation of Out(F2) onsuh origamis is given by [ϕ] · [f ] = [f ◦ ϕ−1].Proof. For a given epimorphism f : F2 → G we use H := ker(f) as a �niteindex subgroup of F2 to de�ne an origami. This kernel is invariant underautomorphisms of G.On the other hand let H be a �nite index normal subgroup of F2. We haveseen in the proof of Prop. 1.4 that the monodromy map of the orrespondingorigami an be written as a surjetive homomorphism f : F2 → F2/H ∼= G(whih is of ourse unique only up to the hosen isomorphism F2/H ∼= G). Ifwe start with another representative of the onjugay lass of H , this hangesour map only by an inner automorphism of G. Note that indeed H = ker(f),therefore this onstrution is inverse to the one desribed above.If we use the interpretation of f ∈ Epi(F2, G) as the monodromy map of ourorigami, then Prop. 1.3 ii) desribes the ation of Out(F2).1.4 Abelian Di�erentialsOrigamis are speial ases of translation surfaes and as suh losely relatedto Abelian di�erentials. We give here a short introdution along the lines of[Zor℄, Setions 2 and 4:De�nition 1.7. A translation surfae is a Riemann surfae X together witha �nite set S := {P1, . . . , Pn} ⊂ X of singularities and an atlas suh thati) On X∗ := X \ S all oordinate-hange maps are translations.



1.4. ABELIAN DIFFERENTIALS 7ii) For eah P ∈ S there is a hart f : U → C with f(P ) = 0 suh thatevery oordinate-hange map f(U) → C is of the form z 7→ zk for a
k ∈ N>1, alled the multipliity of the singularity P .On a translation surfaeX two harts z and z′ onX∗ di�er only by a onstant.Therefore the loally de�ned 1-form dz equals dz′. For the additional hartswith oordinate-hange maps z 7→ zk as above we an use dz′ = kzk−1dz(whih has a zero z = f(P ) = 0 of order k − 1) to extend our 1-formholomorphially to neighborhoods of S. Therefore by setting dz = 0 on Swe an extend dz to a globally de�ned holomorphi 1-form ω ∈ H0(X,ΩX).Suh a 1-form is also alled Abelian di�erential .This works in the other diretion as well: Given an Abelian di�erential on asurfaeX with zeroes P1, . . . , Pn, we an reonstrut the translation strutureon X∗ := X \{P1, . . . , Pn} using loally the harts U → C; x 7→

∫ x

x0
ω for anysimply onneted U ⊂ X∗ with arbitrary x0 ∈ U (di�erent harts di�er onlyby a onstant).Proposition 1.8. An Abelian di�erential ω on a Riemann surfae X de�nesan origami if and only if ∫

γ
ω ∈ Z + iZ for every γ ∈ π1(X

∗) and for everypath γ onneting two zeroes of ω.In this ase the zeroes of ω of order k − 1 are the rami�ation points of theorigami X → E with rami�ation index k.Proof. Let p : X → E be an origami. As a Riemann surfae glued from unitsquares by translations X is a translation surfae with singularities at theverties of the squares, i.e. the rami�ation points of p. At a rami�ationpoint of order k we have oordinate-hange maps z 7→ zk, therefore ω has azero of order k − 1 at this point.We an alulate the given integrals on E:
∫

γ

ω =

∫

p◦γ

dzwhere p ◦ γ is a losed path on E = C/(Z + iZ). Let γ be a lift of p ◦ γ in
C. Its endpoints are equal modulo Z + iZ. Therefore ∫

γ
dz ∈ Z + iZ.On the other hand, given an Abelian di�erential with the stated propertiesfor any z0 ∈ X∗ the map

p : X → C/(Z + iZ); z 7→
z

∫

z0

ω



8 CHAPTER 1. ORIGAMISis well-de�ned and rami�ed only at the zeroes of ω, whih are preimages of
0 ∈ E.In [Zor℄ the statement of Proposition 1.8 ours in the ontext of periodoordinates of Abelian di�erentials, whih we will introdue as in [EO℄, �1.2:For an origami p : X → E we will usually denote the set of (possible) ra-mi�ation points p−1(0) by R = {R1, . . . , Rn} (instead of S = {P1, . . . , Pn}),and the rami�ation index at the point Ri by ei (instead of k). There maybe Ri ∈ p−1(0) where p is not rami�ed, hene ei = 1 is also possible2. Setting
ri = ei−1 for eah rami�ation point we note that the divisor K of ω equals
∑

riPi with ∑

ri = 2g − 2 (using Riemann-Hurwitz).Let H denote the moduli spae of Abelian di�erentials with zeroes of order
e1, . . . , en at points P1, . . . , Pn on a surfae X of genus g = 1 + 1

2

∑

(ei − 1).Consider the relative homology group H1(X, {P1, . . . , Pn} ,Z) and hoose astandard basis {γi} (i.e. a sympleti basis γ1, . . . , γ2g of π1(X
∗) and paths

γ2g+i−1 from P1 to Pi for i = 2, . . . , n). Now the map
Φ : H → Cn; ω 7→







∫

γ1

ω, . . . ,

∫

γ2g+n−1

ω





is alled the period map. This map de�nes a loal oordinate system on H ;the oordinates of ω ∈ H are alled its period oordinates. Proposition 1.8states that all period oordinates of ω are integer if and only if the translationsurfae de�ned by ω is an origami. Therefore we an think of origamis as theinteger points in H .

2Note that this means that there are always several di�erent origamis orresponding toa given Abelian di�erential ω, beause subdividing the squares of an origami into smallersquares means adding points with ei = 1 without hanging ω.



Chapter 2Origami-urvesThe moduli spaeMg,n is the set of isomorphism lasses of Riemann surfaesof genus g with n puntures, endowed with the struture of an algebraivariety. An origami de�nes a urve in this moduli spae via the deformationmentioned in setion 1.2. In this hapter we will explain this onstrution,and then investigate under whih onditions two origamis de�ne the sameurve in moduli spae. We omit some details whih an be found for instanein [HS2℄, Ch. 1 and 2. For those unfamiliar with the onept of Teihmüllerspaes and moduli spaes we reommend [Nag℄ as an introdution.2.1 From Teihmüller spae to moduli spaeWe want to study the moduli spae
Mg,n :=

{ompat Riemann surfaes X of genus g with n puntures1} /

∼with X1 ∼ X2 if there is a biholomorphi map h : X1 → X2.This spae has a struture of a omplex algebrai variety of dimension 3g −
3 + n (we will onsider only the ase where this number is positive). But ingeneral this variety has singularities wherever the group of automorphismsof the orresponding Riemann surfae is non-trivial. This problem an beresolved by looking instead at the set of Riemann surfaes endowed with aso-alled marking (whih hanges if an automorphism is applied, thus re-sulting in a di�erent objet in the lassifying spae). As marking we use
f ∈ Diffeo+(Xref, X), an orientation preserving di�eomorphism Xref → X1A punture of X is a marked point. A biholomorphi map h : X1 → X2 has to mappuntures of X1 to puntures of X2. 9



10 CHAPTER 2. ORIGAMI-CURVESfrom a �xed Riemann surfae Xref of genus g with n puntures to our Rie-mann surfae X, and thus arrive at the Teihmüller spae
Tg,n :=

{

(X, f) : X as above, f ∈ Diffeo+(Xref, X)
}

/∼where (X1, f1) ∼ (X2, f2) if the map f2 ◦ f−1
1 : X1 → X2 is homotopi to abiholomorphi map h : X1 → X2.We an map Tg,n to Mg,n by forgetting the marking f . A marking f of aRiemann surfae X an be transformed into any other marking of X by on-atenating f with an orientation preserving di�eomorphism of Xref. If thedi�eomorphism is homotopi to the identity then of ourse the equivalenelass of (X, f) in Tg.n will not hange. We denote the set of those di�eomor-phisms by Diffeo0(Xref). This leads to the de�nition of the mapping lassgroup

Γg,n := Diffeo+(Xref)/Diffeo0(Xref)
Γg,n ats properly disontinuously on Tg,n and the orbit spae Tg,n/Γg,n is
Mg,n. One an de�ne a metri (the so-alled Teihmüller-metri, see [Nag℄,�2.1.7) and a omplex struture on Teihmüller spae, whih turns Tg,n into aomplex manifold of dimension 3g−3+n (by the Theorem in [Nag℄, �2.5.5).Now let O be an origami de�ned by p : X → E. Let g be the genus of Xand n := |p−1(0)| the number of its puntures. For A ∈ SL2(R) we use theidentity-map id : XI → XA to de�ne a marking of XA. With this marking
XA de�nes an element [XA] in the Teihmüller spae Tg,n. Therefore we havea map

ι : SL2(R)→ Tg,n, A 7→ [XA].Let ∆O be the image of this map, and c(O) the image of ∆O inMg,n.Note that for A ∈ SO2(R) we have (X, id) ∼ (XA, id) beause the map X →
XA is loally de�ned by cA : E → EA, whih is biholomorphi. Therefore ιis onstant on eah SO2(R) orbit and we get a map

ι : H ∼= SO2(R)\ SL2(R)→ Tg,nand in fat we an hoose the isomorphism H ∼= SO2(R)\ SL2(R) in suha way that ι : H → Tg,n is a holomorphi isometri embedding (see [HS2℄,De�nition 2.7). This �ts into a more general ontext: In general the image ofsuh a map is alled a Teihmüller disk . If its image inMg,n is an algebraiurve, then this urve is alled a Teihmüller urve. For origamis this isalways the ase:Proposition 2.1. For an origami O the set c(O) is an algebrai urve.



2.2. COUNTING ORIGAMI-CURVES 11This is proven in [Lo℄, Prop. 3.2 ii). We all suh a urve c(O) an origami-urve. Furthermore Lohak proves there that c(O) is de�ned over a number�eld. We will sketh a proof for this in Remark 2.5.2.2 Counting origami-urvesGiven two origamis O and O′ we would like to hek whether both origamisde�ne the same origami-urve or not. It is helpful to knowProposition 2.2. c(O) = c(O′) if and only if O and O′ are in the same
SL2(Z) orbit,whih is proven in [HS1℄, Prop. 5 b) for the de�nition of the SL2(Z) ationof Prop. 1.3 iii).We would now like to know how many origami-urves exist for a given degree
d of the origamis. By Proposition 1.2 ii) an origami an be represented by atransitive homomorphism f : F2 → Sd, whih is de�ned by σx := f(x) and
σy := f(y) in Sd. Proposition 1.3 ii) tells us that the SL2(Z) ation in thisase orresponds to the ation of Out(F2) by onatenation. Thus we wantto alulate the ardinality of the set

Inn(Sd)\Homt(F2, Sd)/Out(F2)To do this we �rst omit the ondition `transitive' and alulate oset repre-sentatives. Afterwards we ount only those representatives whih de�ne atransitive homomorphism.For the alulation of the oset representatives we hoose a set Gen(Out(F2))of lifts of generators of Out(F2) in Aut(F2) and a set Gen(Inn(Sd)) of gen-erators of Inn(Sd). Then we de�ne the graph G = (V,E) with vertex set
V = Hom(F2, Sd) (whih an be represented by Sd × Sd) and edge set
E = {{f, f ◦ ϕ} : ϕ ∈ Gen(Out(F2))} ∪ {{f, ψ ◦ f} : ψ ∈ Gen(Inn(Sd))}Two verties in this graph are onneted if and only if they orrespond toorigamis in the same SL2(Z) orbit. Thus we get our oset representatives bypiking one vertex out of every onneted omponent of the graph G.As generating set of Out(F2) we use {[ϕS], [ϕT ]} with

ϕS(x) = y, ϕS(y) = x−1, ϕT (x) = x, ϕT (y) = xywhih orresponds to the generating set {S, T} of SL2(Z) given by
S =

(

0 −1
1 0

) and T =

(

1 1
0 1

)

.



12 CHAPTER 2. ORIGAMI-CURVESAs generating set of Inn(Sd) we use {

κ(1 i) : i ∈ {1, . . . , d}
} where κ(1 i) is theonjugation with the transposition (1 i) ∈ Sd.An implementation of this algorithm an be found in appendix A.1. We anuse it to alulate the number of origami-urves in the moduli spaesMg,n.degree d genus g n puntures number of urves1 1 1 12 1 2 13 1 3 12 1 14 1 4 22 2 35 1 5 12 3 33 1 46 1 6 12 4 83 2 197 1 7 12 5 43 3 224 1 14A more detailed examination of properties of these origami-urves follows inAppendix A.2. Note that we have to ompute the onneted omponents ofa graph with (d!)2 verties, for d = 7 these are already more than 25 million.Thus the memory usage grows exponentially in d, therefore for large d itwon't be possible to use this algorithm.If we onsider only normal origamis, then we an modify the algorithm suhthat it works for large origamis as well: If we �x a Galois group G, then eahorigami is represented by an epimorphism F2 → G. The set of origami-urvesontaining normal origamis with Galois group G therefore orresponds to

Aut(G)\Epi(F2, G)/Out(F2)We an thus replae Sd in our algorithm by G, the transitivity of the imageof f by its surjetivity and Gen(Inn(Sd)) by a generating set of Aut(G). Animplementation an also be found in appendix A.1. Note that for the graphwe use now the vertex-set G×G, and the ardinality of G is the degree d ofour origami. Therefore the memory usage grows only quadratially in d.



2.3. THE VEECH GROUP 13Example 2.3. We use this algorithm to alulate for example the numberof origami-urves ontaining normal origamis with Galois group PSL(2, 9):degree d genus g n puntures number of urves660 166 330 1221 220 1265 132 4276 110 2301 60 12.3 The Veeh groupLet X be a translation surfae. An automorphism f of X is alled a�ne, if itis (at least on the puntured surfae X∗) loally de�ned by maps z 7→ A·z+bwith b ∈ C and A ∈ GL2(R) ating on z ∈ C by Moebius transformation. Let
Aff+(X) denote the group of orientation preserving a�ne di�eomorphismsof X. As X is a translation surfae the oordinate hange maps of X∗ aretranslations. Therefore A is independent of the hosen oordinate harts andthus also independent of the hosen neighborhood. We all this matrix A thederivative der(f) of the a�ne di�eomorphism f . Note that on a losed surfae
f has to be area preserving, thus (together with orientation preserving) weget der(f) ∈ SL2(R). The image der(Aff+(X)) ⊂ SL2(R) of the derivativemap is alled the Veeh group Γ(X) of X (introdued by Veeh in [Vee℄).For origamis we also have another more aessible haraterization of theVeeh group:Proposition 2.4. The Veeh group of an origami is the stabilizer in SL2(Z)under the ation de�ned in Proposition 1.3.This was shown in [Sh2℄, Prop. 1 for the de�nition stated in Prop. 1.2 iii).It implies that for an origami O there is a one-to-one orrespondene of theleft osets of the Veeh group Γ(O) in SL2(Z) and the orbit of O under the
SL2(Z) ation, and by Prop. 2.2 this orresponds to the set of origamis O′whih desribe the same urve c(O′) = c(O) in moduli spae.Note that the set of origamis of degree d is a �nite set (as quotient of the�nite set Homt(F2, Sd)). Therefore the Veeh group (as the stabilizer underthis ation) is a subgroup of �nite index in SL2(Z). Gutkin and Judge haveproven in [GJ℄, Theorem 5.5 that having a Veeh group ommensurable to
SL2(Z) is a property whih haraterizes origamis.



14 CHAPTER 2. ORIGAMI-CURVESRemark 2.5. Let O be an origami and Γ(O) the image of Γ(O) in PSL2(Z).Then Γ(O)\H is an algebrai urve, and the map
Γ(O)\H→ PSL2(Z)\H ∼= P1(C)is rami�ed at most over three points, therefore by Belyi's theorem the urveis de�ned over a number �eld (a fat we remarked already after Prop. 2.1).If we replae Γ(O) by its onjugate with the map z 7→ −z, then the resultingurve is atually the normalization of the origami-urve c(O) in Mg (see[HS2℄, Cor. 2.21, or for a detailed proof [M1℄, Cor. 3.3)The Veeh group also leads to a simple algorithm for listing all origamis whihdesribe the same urve: Given an origami O de�ned by f ∈ Homt(F2, Sd)�rst alulate a set of left oset representatives R of the Veeh group Γ of

O. Now every element g ∈ SL2(Z) an be written as g = rγ with r ∈ Rand γ ∈ Γ. As γ stabilizes O the image gO equals rO. Therefore the set
{rO : r ∈ R} equals the orbit of O under the ation of SL2(Z) and thusontains all origamis desribing the same origami-urve as O.Construting a set R of oset representatives is the most time-onsumingpart: We start with R = {id}. Then for every element x ∈ R we hek forevery generator g of SL2(Z) (and for every inverse) whether the oset of gxis represented by an element in R (i.e. whether gxΓ = yΓ for some y ∈ R,whih is equivalent to y−1gx ∈ Γ). If not then we have found a new oset andadd it to the set R, then start all over again. As there are only �nitely manyosets this algorithm terminates. Then a representative of every x ∈ SL2(Z)is ontained in R whih we an prove by writing x as a produt of the hosengenerators and using indution over the word length.This algorithm (based on the Reidemeister-Shreier method outlined in [LS℄,II.4) was already proposed by Shmithüsen in [Sh2℄ for the alulation ofoset representatives (and generators) of the Veeh group of origamis. Heralgorithm alulates right oset representatives of the projetive Veeh group
Γ, whih di�ers only marginally from the one presented here.As generators of SL2(Z) we use the elements S and T already mentionedin Setion 2.2. Note that we get the set of oset representatives as wordsin the generators S and T , therefore we an easily write down a set of lifts
{ϕ1, . . . , ϕm} of those oset representatives in Aut(F2) by replaing S by ϕSand T by ϕT (with ϕS and ϕT as de�ned on page 11). The homomorphisms
f ◦ ϕ−1

i then de�ne all origamis with the same origami-urve c(O).For heking whether two origamis O and O′ desribe the same urve we justhave to hek for eah ϕi whether [f ′] = [f ◦ ϕ−1
i ] in Inn(Sd)\Homt(F2, Sd),i.e. whether there is a σ ∈ Sd suh that f ◦ ϕ−1
i = κσ ◦ f ′ where κσ is the



2.3. THE VEECH GROUP 15onjugation with σ. If there is no ϕi for whih we an �nd suh a σ, thenthe urves c(O) and c(O′) annot be equal.Example 2.6. We illustrate this algorithm for the origami O de�ned by
σx = (1 2) and σy = (1 3). We use the generators ϕS and ϕT of Out(F2) andwe are going to need their inverses:

ϕ−1
S (x) = y−1, ϕ−1

S (y) = x, ϕ−1
T (x) = x, ϕ−1

T (y) = x−1y.We then an alulate the images of our origami under the ation of SL2(Z):
f =

{

x 7→ (1 2)

y 7→ (1 3)
R := {id}

fS := f ◦ ϕ−1
S =

{

x 7→ f(y−1) = (1 3)

y 7→ f(x) = (1 2)
= κ(2 3) ◦ f S ∈ Γ

fT := f ◦ ϕ−1
T =

{

x 7→ f(x) = (1 2)

y 7→ f(x−1y) = (1 3 2)
R := {id, T}

fST := fT ◦ ϕ−1
S =

{

x 7→ fT (y−1) = (1 2 3)

y 7→ fT (x) = (1 2)
R := {id, T, ST}

fT 2 := fT ◦ ϕ−1
T =

{

x 7→ fT (x) = (1 2)

y 7→ fT (x−1y) = (1 3)
= f T 2 ∈ Γ

fS2T := fST ◦ ϕ−1
S =

{

x 7→ fST (y−1) = (1 2)

y 7→ fST (x) = (1 2 3)
= κ(1 2) ◦ fT T−1S2T ∈ Γ

fTST := fST ◦ ϕ−1
T =

{

x 7→ fST (x) = (1 2 3)

y 7→ fST (x−1y) = (2 3)
= κ(1 3 2) ◦ fST (ST )−1TST ∈ ΓThus the urve c(O) ontains exatly the three origamis de�ned by f, fS and

fST . This is illustrated in the following diagram:
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Chapter 3InvariantsIn the previous hapter we have seen algorithms whih deide whether twogiven origamis desribe the same origami-urve in moduli spae, i.e. whetherthe de�ning homomorphisms F2 → Sd are equal in
Inn(Sd)\Homt(F2, Sd)/Out(F2).Now we want to study data whih are invariant for all origamis desribing aommon urve. Suh invariants an be used to distinguish di�erent urves.Of ourse the obvious invariant would be simply the full SL2(Z) orbit of theorigami, or equivalently listing the full oset in Homt(F2, Sd). But this isbased on the desription of an origami glued from (omplex) unit squares(or equivalently the monodromy homomorphism). In the following hapterswe also want to onsider origamis de�ned over other �elds than C where weare not able to rely on this omplex analyti haraterization of origamis.Instead we will fous on invariants whih represent properties of the overingmap X → E and properties of the origami-urve itself.3.1 Rami�ation indiesIn this hapter O will always be an origami of degree d and genus g de�nedby the overing p : X → E. Let R := p−1(0) = {R1, . . . , Rn} be the setof (possible) rami�ation points and let ei denote the rami�ation index of

p at Ri for i = 1, . . . , n. Let P ∈ E∗ = E \ {0} be an arbitrary point and
{P1, . . . , Pd} = p−1(P ) be the �ber over P . Other notations from the �rsttwo hapters will also always refer to this �xed origami O if nothing else isindiated. 17



18 CHAPTER 3. INVARIANTSProposition 3.1. The degree d, the number of puntures n, the genus g andthe rami�ation indies (ei) of an origami are invariant under the ation of
SL2(Z).Proof. For A ∈ SL2(Z) the map cA (de�ned in Setion 1.2) is an unrami�edovering of degree 1, whih �xes the point 0 ∈ E. Therefore omposing pwith cA neither hanges the degree of the overing, nor the preimages of 0,nor the rami�ation index at any point of X. Of ourse the genus of X alsoremains unhanged.The tuple (ei) is (up to hanging the order of its entries) an invariant of theorigami-urve. The numbers d, n and g are already oded in this invariant:For an origami with n rami�ation indies (ei) we have d =

∑

ei and g =
1 + 1

2
(d − n), whih follows from Riemann-Hurwitz or by alulating theEuler-harateristi.Proposition 3.2. For an origami with monodromy f ∈ Homt(F2, Sd) set

κ := f(xyx−1y−1). Then the rami�ation indies (ei) equal the yle-lengthsof κ.Proof. Let R ∈ p−1(0) be a rami�ation point with rami�ation index ei,and i be the number of a square with upper left vertex R. Let γ be thesimple losed ounterlokwise path in X∗ around R starting at Pi. Up tohomotopy we an hoose γ to inlude Pj for every square j whih ontains apart of γ, thus it is made up of lifts of y−1, x−1, y and x (in this order). Itsprojetion to π1(E
∗, P ) therefore is a power of xyx−1y−1.The path γ thus starts with a path from Pi to Pκ(i), then it ontinues to

Pκ2(i) and so on. After ei times it gets bak to Pi for the �rst time beausethe path xyx−1y−1 in π1(E
∗, P ) is a simple losed path going one aroundthe punture of E∗ and ei is the rami�ation index of R. Therefore ei is theminimal non-trivial number with κei(i) = i and is hene the yle-length ofthe yle of κ ontaining i.Corollary 3.3. For a normal origami with monodromy f : F2 → Sd allrami�ation indies are equal to ord(κ). This holds also if f is replaed by

f : F2 ։ G as desribed in Proposition 1.6.Proof. For a normal origami we have f−1(StabSd
(1)) = ker(f) thus κ stabi-lizes one point if and only if it stabilizes all. Thus all yle lengths equal

ord(f(κ)). The seond haraterization omes from identifying the image of
f with the Galois group G ∼= F2/ ker(f).



3.2. PROPERTIES OF THE ORIGAMI-CURVE 19Proposition 3.4. The sum ∑

(ei − 1) is always even.Conversely for e1, . . . , en ∈ N satisfying this ondition there exists an origamiwith rami�ation indies (ei).Proof. The �rst part follows diretly from the Theorem of Riemann-Hurwitz,or alternatively from the fat that the ommutator κ in Prop. 3.2 is alwaysan even permutation.For the seond part we onstrut an origami by onatenating horizontallythe following omponents:i)
/.

() | /.��()��|*+
-, -,��

*+��whih reates a new punture with rami�ation index e = 1,ii)
/.

() || /.()|*+
-, | /.()||*+

-, -,

*+whih inreases the last rami�ation index by 2,iii)
/.

() || /.��()��|*+
-, ||| /.()|||*+��

-,�� | /.��()��||*+
-, -,��

*+��whih inreases the last rami�ation index by 1 and reates a new pun-ture with rami�ation index e = 2.3.2 Properties of the origami-urveBy Remark 2.5 we know that the normalization of the origami-urve inMg isa �mirror image� of Γ\H. For simpliity of notation we will study geometriproperties of Γ\H and keep in mind that these properties oinide with theproperties of our origami-urve.Let d be the index1 of Γ in PSL2(Z). We get the Riemann surfae Γ\H byglueing d opies of a fundamental domain of PSL2(Z) in H. For this we usethe standard fundamental triangle ∆ shown in Figure 3.1, bounded by theunit irle and the lines Re(z) = ±1
2
with the point ∞i exluded (we allthis point the usp of ∆). Let {

Γg1, . . . ,Γgd

} be the right osets of Γ. Then1the usual notation would be d, as it is the degree of the map Γ\H→ PSL2(Z)\H, butwe don't want to onfuse this with the degree of the origami overing p : X → E. Likewisewe will use g instead of g and n instead of n when we are talking about the origami-urve.



20 CHAPTER 3. INVARIANTSthe union of all gi(∆) is a fundamental domain for Γ (if it is onneted, i.e.if every gi is obtained from another one by multiplying S, T or their inversesfrom the right2). We identify the edges of this fundamental domain usingthe ation of Γ on H.Example 3.5. In Example 2.6 we alulated the set {id, T, ST} of left osetrepresentatives of the Veeh group of an origami. Its right osets are therefore
{Γ,Γ · T−1,Γ · T−1S−1}. As S = S−1 in PSL2(Z) and in our ase T 2 ∈ Γwe have the right osets {

Γ,Γ · T,Γ · TS
}. The onstruted fundamentaldomain of the origami-urve is shown in Figure 3.1.
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Figure 3.1: Fundamental domain of an origami-urve with two usps (•)Around the image of a usp in Γ\H the opies of ∆ orrespond to osets
Γg,ΓgT . . . ,ΓgTw−1 of Γ for a g ∈ Γ. Thus eah of those usps orrespondsto a paraboli generator gTwg−1 of the projetive Veeh group Γ. We all wthe width of the usp and g ∈ Γ a orresponding Strebel element .Now let n be the number of usps of the fundamental domain and w1, . . . , wnthe widths of the usps. Then we have d =

∑

wi. We an ompatify3the origami-urve by adding a point at eah usp. Then our onstrutedfundamental domain is a partition of the origami-urve into d triangles. Wewould like to use this to alulate the genus g of the origami-urve, but theremay be edges whih are identi�ed with itself (like for example in Figure 3.1),and then this partition would not be a triangulation. This problem an besolved by subdividing these triangles by adding an additional edge throughthe enter of those edges. Then we an ount the verties, edges and faesof this triangulation to alulate the Euler harateristi and thus also thegenus of the origami-urve.2to simplify notation we will often make no di�erene between elements in SL2(Z) andtheir projetions to PSL2(Z)3The ompati�ation of the moduli spaeMg,n will be the topi of setion 3.3



3.3. THE BOUNDARY OF MODULI SPACE 21Proposition 3.6. The Veeh groups of origamis whih desribe the sameurve are onjugated. The genus g and the number of usps n of the origami-urve, the index d of the Veeh group Γ, the property −1 ∈ Γ and the uspwidths (wi) of an origami are all invariant under the ation of SL2(Z).Proof. The numbers g and n represent properties of the origami-urve andhene are obviously invariant.Let O be an origami with Veeh group Γ and h ∈ SL2(Z). Then the Veehgroup of hO is hΓh−1 beause (hΓh−1)hO = hΓO = hO. Therefore theVeeh groups of O and hO are onjugated and hene have the same index in
SL2(Z). As −1 is in the enter of SL2(Z) we have −1 ∈ Γ⇔ −1 ∈ hΓh−1.If {

Γgi
} is the system of right osets of Γ, then {

(hΓh−1)hgi
} is the systemof right osets of hΓh−1. Thus the onstruted fundamental domain for hOwill be the image of the fundamental domain for O under h. A paraboligenerator gTwg−1 then transforms to hgTwg−1h−1 leading to the same uspwidth w.3.3 The boundary of moduli spaeIn the last setion we have mentioned that we an ompatify an origami-urve by adding a point at eah usp. While the origami-urve is a subsetof the moduli spae Mg,n the usps do not orrespond to points in thismoduli spae. But we an ompatify Mg.n using the Deligne-Mumford-ompati�ation Mg,n. Then the usps of the origami-urve orrespond topoints in the boundary ∂Mg,n :=Mg,n \Mg,n.The Deligne-Mumford-ompati�ation Mg,n is the moduli spae of stableRiemann surfaes of genus g with n puntures4 (.f. [DM℄). A stable Rie-mann surfae is a one-dimensional ompat omplex spae X whose onlysingularities are ordinary double points (i.e. points with a neighborhoodisomorphi to a double one). Additionally it is required that on eah ir-reduible omponent of X of genus 0 there are at least three speial points(where a point is speial if it is a punture or singular).To eah stable urve we assoiate the intersetion graph of its irreduibleomponents. This graph has a vertex for every irreduible omponent andan edge for every singularity, whose endpoints are the verties orrespondingto the omponents ontaining the singular point. We mark eah vertex witha pair (g, n), where g denotes the genus of the irreduible omponent, and nthe number of marked points ontained therein.4For g = 0 we require n ≥ 3, for g = 1 we need n 6= 0.



22 CHAPTER 3. INVARIANTSEah usp of an origami-urve orresponds to a point in ∂Mg,n, whih is astable urve with at least one singularity. The idea for the onstrution ofthis stable urve is the following: Let O be an origami de�ned by the overing
p : X → E. The Teihmüller disk ∆O then onsists of the Riemann surfaes
XA with A ∈ SL2(R) together with the identity as marking X → XA. Nowthe ray

[0,∞)→ Tg,n de�ned by t 7→ (XA(t), id) with A(t) =

(

et 0
0 e−t

)is ontained in this Teihmüller disk, and as t tends to ∞ every path on theorigami in horizontal diretion beomes arbitrarily small. If we think of ourorigami as a surfae glued from squares this orresponds to ontrating ahorizontal line in the enter of eah square to a point. The thus onstrutedsingular surfae is the stable urve orresponding to the usp of the origami-urve belonging to the triangle ∆, i.e. to the usp with Strebel element
id.For the onstrution of other boundary points of the origami-urve we wouldhave to ontrat losed paths in other diretions. The diretions in whihthe paths are losed are given by s · ( 1

0 ) for a Strebel element s and arealled Strebel diretions. But instead we an also look at the origami s−1O,where the desired Strebel diretion is transformed to the horizontal one. Wetherefore getProposition 3.7. Let O be an origami and s a Strebel element for a uspof its origami-urve. Then one obtains the stable urve orresponding to thisusp by ontrating horizontal lines in the enter of eah square of the origami
s−1O.A formal proof an be found in [HS2℄, Theorem 4.1.Example 3.8. We see in Figure 3.1 that the origami from Example 2.6 hastwo usps: one with Strebel element s1 = id and width w1 = 2, and anotherone with Strebel element s2 = TS and width w2 = 1. The resulting Strebeldiretions and the intersetion graphs of the resulting stable urves are shownin Figure 3.2.We now present an algorithm for the omputation of the intersetion graph.As a �rst step we number all losed horizontal lines whih we want to on-trat. This is done by marking an arbitrary square of the origami with thenumber 1, then marking its right neighbor with the same number and soon, until we get bak to the square we started with. Then we pik a new
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(1,1)Figure 3.2: Intersetion graphs of boundary points of an origami-urveyet unmarked square and start all over for the next horizontal line with thenumber 2, and so on.As seond step we number the irreduible omponents: these are the on-neted areas bounded above and below by the losed horizontal lines. Wemark the top half of an arbitrary square with the �rst number 1, then weontinue marking all adjaent half squares with the same number, and on-tinue with their neighbors. When there are no more unmarked adjaenthalf squares we pik a new unmarked square and start all over for the nextirreduible omponent.Now we an de�ne our intersetion graph: every irreduible omponent or-responds to a vertex in this graph, and every horizontal line to an edge. Theendpoints of an edge are de�ned by the numbers of the omponents adjaentto the horizontal line.We still have to alulate the genus g and the number n of marked points foreah omponent. Let C be the set of bottom half squares in the omponentand ei the rami�ation index of the marked point at the bottom left vertexof the bottom half square i. We an alulate the number of marked pointsby

n =
∑

i∈C

1

eibeause for every marked point Rj the ei orresponding to Rj are equal tothe rami�ation index e of Rj and will be ounted exatly e times, thus forevery marked point the sum ∑

1/e is 1.For the alulation of the genus we use the triangulation of our omponentwhih we get by ontrating the horizontal lines. This triangulation has n+dverties, where d is the number of adjaent horizontal lines (i.e. the degreeof the vertex in the intersetion graph). The number of faes is 2 |C| (forevery bottom half square there is also a top half square). Therefore the Euler



24 CHAPTER 3. INVARIANTSharateristi of the omponent is
χ = n+ d− 3 |C|+ 2 |C| = n+ d− |C|and we get the genus g = 1− χ

2
.3.4 Automorphisms and their �xed pointsThe group Aut(X) of automorphisms of X is not invariant along the urvein moduli spae. This is already obvious for the trivial origami E → E.Therefore we would like to de�ne the automorphism group of an origami tobe the intersetion of all the di�erent automorphism groups ourring alongthis urve:De�nition 3.9. We all a bijetive map σ : X → X an automorphism ofthe origami O, if it indues for every A ∈ SL2(R) via X → E → EA a well-de�ned automorphism on EA. The group Aut(O) of all suh automorphismsis alled the automorphism group of O.The group Aut(O) is a subgroup of the group Aut(X) of automorphisms ofXas a Riemann surfae. Contrary to Aut(X) the subgroup Aut(O) is invariantfor all omplex strutures, i.e. for all origamis on c(O). The alulation ofthis group is simple: Every automorphism σ indues on E either the identityor the ellipti involution (as these are the only automorphisms of E whihindue automorphisms on every EA). Therefore the square ontaining P1has to be mapped bijetively to the square ontaining σ(P1) (either by atranslation, or by a 180◦ rotation), and the monodromy map determines theimages of the other squares.Given an automorphism σ, the alulation of its �xed points is also simple:Let x be a �xed point of σ. If σ 6= id indues the identity on E, then nopoint in X∗ is �xed by σ, and therefore x ∈ X \X∗ = p−1(0) = {R1, . . . , Rn}.If σ indues the ellipti involution p(x) has to be �xed by this involution,therefore x ∈ p−1(0) or x ∈ p−1(

{

(0, 1
2
), (1

2
, 0), (1

2
, 1

2
)
}

) := {A1, . . . , A3d}.Thus there are at most 4d possible �xed points.Every automorphism permutes the rami�ation points Ri and the points Ai.Proposition 3.10. The homomorphism
Aut(O)→ S3d × Snindued by the permutations of the points in A1, . . .A3d and R1, . . . , Rn is (upto renumbering the points) invariant on the origami-urve.



3.4. AUTOMORPHISMS AND THEIR FIXED POINTS 25Proof. The deformation along the origami-urve is ontinuous, but the points
Ai and Ri are disrete in X (beause their images in E are disrete).Example 3.11. Looking at the origami

|| −− 1||2 ||| =|||3||= 4we see that there is no non-trivial automorphism whih desends to the iden-tity on E, beause square 1 is horizontally adjaent to itself, but this holdsfor no other square, so there is no possible image for a translation of square 1exept itself. But we an rotate square 1 by 180◦. Then square 2 is mappedto itself and squares 3 and 4 are exhanged:
−

||
−

1||2 | =| 4||||||= 3 = || −−

1||2 | =| 4||||||= 3
The ation of σ on the points Ai and Ri is shown in the following pitures:
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OOThe �rst piture shows the two puntures R1 and R2 of the origami, whihare both �xed. The seond one shows the other four �xed points of σ, andin the third piture we see what happens to the other eight points Ai.If an origamiO is normal we an determine the group Aut(O) quite expliitly:Proposition 3.12. An origami O of degree d is normal if and only if it has
d translations. In this ase the group of translations is isomorphi to theGalois group G of O.Proof. If the origami is normal, then we an think of the squares labelled bythe group elements, and for every group element right-multipliation de�nesa translation.On the other hand if there are d translations this means that there are twotranslations σ, τ whih map square number 1 to its right respetively upperneighbor. As the origami is onneted they generate a group of d elements.The origami is then idential to the normal one de�ned by f : F2 ։ 〈σ, τ〉with f(x) = σ and f(y) = τ (in the sense of Proposition 1.6).



26 CHAPTER 3. INVARIANTSProposition 3.13. Let O be a normal origami with Galois group G de�nedby X → E and f : F2 ։ G. Set σ := f(x) and τ := f(y) and let E →
P 1(C) =: P be the quotient map indued by the ellipti involution z 7→ −z.Then the following are equivalent:i) Aut(O) 6∼= G,ii) −1 ∈ Γ(O),iii) there exists some ψ ∈ Aut(O) of order 2 not induing the identity on E,iv) the omposed map X → E → P is normal.v) there exists some ϕ ∈ Aut(G) with ϕ(σ) = σ−1 and ϕ(τ) = τ−1,In this ase we have

Aut(O) ∼= Gal(X/P ) ∼= 〈G,ψ〉 ∼= C2 ⋉Φ Gwhere Φ : C2 → Aut(G) maps the generator of the yli group C2 to ϕ.Proof. i)⇔ ii) is lear sine automorphisms whih are not translations induethe ellipti involution on E and hene have derivative -1.i)⇔ iii) is also lear sine if there is an automorphism of O whih indues theellipti involution on E we an onatenate a translation to �nd a non-trivialautomorphism ψ whih maps the square labelled with 1 ∈ G to itself. Thisis an automorphism of order 2.The quotient X/ 〈G,ψ〉 is isomorphi to P = P1(C) and fators through
X/G, thus iv) follows. On the other hand if X → P is normal then G (
Gal(X/P ) ⊆ Aut(O), thus iv) ⇒ i)The automorphism ψ maps the square σ to σ−1 and τ to τ−1. Thus theorigami de�ned by f ′ : F2 → G with f ′(x) = σ−1 and f ′(y) = τ−1 is equalto the one de�ned by f in Aut(G)\Epi(F2, G), hene f ′ = ϕ ◦ f for anautomorphism ϕ ∈ Aut(G). This means ϕ(σ) = σ−1 and ϕ(τ) = τ−1,therefore i) ⇒ v). The reverse argumentation shows v) ⇒ i).The group of translations is isomorphi to G and ontained in Aut(O) withindex 2, hene normal. Thus we have a split exat sequene

0 // G // Aut(O) // C2

Φ

ii
// 0Therefore Aut(O) ∼= G⋉Φ C2.



3.5. HOLOMORPHIC DIFFERENTIALS 273.5 Holomorphi di�erentialsAn origami is naturally assoiated to an Abelian di�erential ω. Its stratum inthe moduli spae of Abelian di�erentials is determined by the multipliitiesof zeroes of ω. A ontinuous deformation of the omplex struture of anorigami leads also to a ontinuous deformation of the Abelian di�erential
ω. Therefore the onneted omponent of ω in the moduli spae of Abeliandi�erentials H is invariant on the Teihmüller disk de�ned by the origami.Kontsevih an Zorih have shown in [KZ℄ that eah stratum ontains up to 3onneted omponents. The onneted omponent of ω in H is determinedby two properties (see [KZ℄ 2.3, Theorem 1):1. The property `hyperellipti'.If a hyperellipti involution5 σ on X exists, then ω is alled hyperellipti if ithas only one zero, or if it has two zeroes whih are exhanged by σ.2. The parity of the anonial spin struture.A spin struture on X is a divisor D on X with 2D =

∑

(ei−1)Ri in Pic(X).If all ei are odd, then there is a anonial spin struture D =
∑

ei−1
2
Ri. Theparity of the spin struture D is the parity of ℓ(D)−1 = dimH0(X,L(D))−

1 (where L(D) is the assoiated invertible sheaf to D), whih equals6 thedimension the omplete linear system |D|.We ompute both properties in Appendix A.2 for all origamis with up toeight squares. For the hyperelliptiity of ω we will use the following hara-terization:Proposition 3.14. An automorphism σ of a Riemann surfae X is a hy-perellipti involution if it has order 2 and 2g + 2 �xed points.This an be proven easily using Riemann-Hurwitz. In setion 3.4 we havealready omputed the automorphism group of an origami X (in the asewhere the underlying ellipti urve has only trivial automorphisms). We alsohave omputed the �xed points of those automorphisms. This is su�ient toidentify the hyperellipti involution (if it exists) by Prop. 3.14. We an theneasily determine whether ω is hyperellipti.For the parity of the anonial spin struture [KZ℄, 3.2 o�ers another har-aterization, whih is more aessible for a diret omputation:5A hyperellipti involution of X is an automorphism σ of X of order 2 suh that thequotient X/〈σ〉 has genus 0.6For the de�nition of the omplete linear system and the proof of the mentioned equalitywe refer to [Har℄, II.7.7 and the following de�nition.



28 CHAPTER 3. INVARIANTSProposition 3.15. Choose oriented smooth losed paths (αi, βi) on X∗ rep-resenting a sympleti basis of H1(X,Z). Then the parity of the anonialspin struture of ω (if it exists) is equal to the parity of
ϕ(ω) :=

g
∑

i=1

(indαi
+1)(indβi

+1)where indγ is the winding number7 of a losed urve γ.An origami of genus g is topologially a sphere with g handles. The algorithmfor surfae normalization from [Sti℄, 1.3 an be used to transform our origamiinto this normalized form. A sympleti basis of H1(X,Z) is given thereby the standard generators of the fundamental group of suh a normalizedsurfae: we get two generators for eah handle, whih interset eah otheronly one, and do not interset any other generators. The normalized surfae(together with those 2g generators of its fundamental group) an now betransformed bak to the original origami. Thus we get the paths αi and βineeded for the appliation of the proposition.Example 3.16. In Example 3.11 we alulated an automorphism σ of anorigami of order two with six �xed points. The origami has degree d = 4 and
n = 2 puntures, thus its genus is g = 2 and σ is a hyperellipti involutionby Prop. 3.14. There is only one zero of ω beause one of the puntures hasrami�ation index 1 and is hene not a zero of ω. Therefore the orrespondingAbelian di�erential is ontained in the hyperellipti omponent.For the alulation of the parity of the anonial spin struture we �rstalulate a sympleti basis of H1(X,Z) using the algorithm for surfae nor-malization. The results are the paths

α1 = y2, β1 = x, α2 = x−1y−1x2yx−2yx, β2 = y−1x−1y−1x−2yxwhih are shown8 in Figure 3.3, where one an hek easily that they formindeed a sympleti basis.For the alulation of the winding number of a path γ ∈ π1(X
∗, P ) we �rstreplae γ by a ylially redued representative of its onjugay lass (thisorresponds to seleting another basepoint P for π1(X

∗, P )). Then at eahpoint in the same �ber as P over E∗ the path either turns 90◦ left or 90◦ rightor it ontinues in its previous diretion. We an thus ompute the winding7Note that the winding numbers depend on the translation struture on X given by ω.8Reall that we write elements of the fundamental group from right to left, as statedin the footnote on page 2
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Figure 3.3: Representatives of a sympleti basis of H1(X,Z).number indγ easily by ounting all the left-turns, subtrating the right-turns,and dividing the result by 4.For our example we get
indα1

= indβ1
= indα2

= 0, indβ2
= 1

4
(5− 1) = 1Therefore the parity of the anonial spin struture in this ase is the parityof 1 · 1 + 1 · 2 = 3, whih is odd.3.6 The Galois groupLet O and O be two origamis de�ned by p : X → E and p : X → Erespetively. We say thatO is a overing ofO if there is a overing h : X → Xsuh that p = p◦h. Suh a overing indues an inlusion of the orrespondingfundamental groups:

H = π1(X
∗
, P ) →֒ π1(X

∗, P ) = HConversely, if we have two �nite index subgroups H andH of F2 withH ⊂ H ,then the origami de�ned by H overs the one de�ned by H .Proposition 3.17. Every origami O has a minimal normal overing O′, i.e.a overing O′ → O suh that O′ is a normal origami and every other overingof a normal origami O over O also overs O′.Proof. Let H be the fundamental group of O as above and H the fundamen-tal group of a normal overing of O. Then H is a normal subgroup of F2ontained in H . Hene
H ⊆ N :=

⋂

γ∈F2

γ−1Hγ



30 CHAPTER 3. INVARIANTSwhere N is a normal subgroup of F2. Hene the origami O′ de�ned by N is anormal overing of O, and the stated inlusion proves that O overs O′.Proposition 3.18. Let O be an origami with monodromy f : F2 → Sd. Thenthe Galois group G of the minimal normal overing of O is isomorphi to theimage of f and this isomorphy type is invariant under the ation of SL2(Z).We all this group the Galois group of O.Proof. With the notation as in Prop. 3.17 we use H = f−1(StabSd
(1)) to getthe equation

ker(f) = f−1(id) = f−1
(

⋂

i∈{1,...,d}

StabSd
(i)

)

=
⋂

γ∈F2

γ−1f−1(StabSd
(1))γ =

⋂

γ∈F2

γ−1Hγ = NTherefore we have f(F2) ∼= F2/ ker(f) = F2/N ∼= G.Obviously f(F2) = (f ◦ ϕ)(F2) for every ϕ ∈ Aut(F2), hene the invarianeunder the ation of SL2(Z).Example 3.19. Let O be the origami de�ned by σx = (1 2 3)(4 5 6) and
σy = (2 4)(3 5). The monodromy map f : F2 → S6 maps x to σx and y to
σy, therefore the image of f is the subgroup of S6 generated by σx and σy.This group is isomorphi to A4. Thus A4 is the Galois group of O. Theorresponding normal overing is shown in Figure 3.4.
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−→ 113 1 4226 4 5 1335 6 466
Figure 3.4: Minimal normal overing of an origami



Chapter 4The non-arhimedean worldUp to now we have only onsidered origamis as ompat Riemann surfaes,i.e. projetive nonsingular urves de�ned over C. In this hapter we want tomake an analogous de�nition for urves de�ned over the ompleted algebrailosure Cp of the �eld of p-adi numbers. As a p-adi analogue of Riemannsurfaes we use Mumford urves. Mumford showed in [Mum℄ that theseurves an be uniformized as Ω/G where G ⊂ PGL2(Cp) ats1 properlydisontinuously on Ω ⊂ P1. We are going to use this property as a de�nition.Contrary to the omplex setting not every projetive nonsingular urve is aMumford urve. For more details about Mumford urves we refer to [GP℄.We will de�ne a p-adi origami as a overing X → E of Mumford urvesde�ned over Cp with at most one branh point, where g(E) = 1 (i.e. E isa Tate urve). These p-adi origamis also form urves in the moduli spaeof urves over Cp, whih are onneted to orresponding origami urves over
C. This onnetion between origamis over Cp and over C will be the topi ofChapter 5.In the present hapter we will propose methods for the alulation of someof the invariants introdued in Chapter 3. We restrit our onsiderations tonormal origamis with non-trivial rami�ation (i.e. non-abelian Galois group).Those origamis will be lassi�ed in Setion 4.3. It is already known that every�nite group ours as a Galois group of a overing of a Mumford urve over anellipti urve, whih was proven in [PV℄, Theorem 1.2. Hene the interestingpart will be to ontrol the number of branh points of suh overings. To dothis we will use some results of Kato and Bradley on Mumford orbifolds.1For better readability we will ontinue to write this quotient spae as Ω/G even thoughthe ation of G is a left ation. 31



32 CHAPTER 4. THE NON-ARCHIMEDEAN WORLD4.1 Disontinuous groupsAfter de�ning Mumford urves we will onstrut in this setion the Bruhat-Tits-Tree B for an extension of Qp using a quite onrete de�nition from
[Her]. A Mumford urve is losely related to the quotient graph of an ationof G on a subtree of B. Often one de�nes a suitable subtree suh that thequotient beomes a �nite graph, but instead we will follow Kato [Kat2℄,who uses a slightly larger quotient graph, whih an be used to ontrol therami�ation behavior of overings of Mumford urves.De�nition 4.1. Let k be a �eld whih is omplete with respet to a non-arhimedean valuation and G a subgroup of PGL2(k). A point x ∈ P1(k) isalled a limit point of G, if there exist pairwise di�erent γn ∈ G (n ∈ N) anda point y ∈ P1(k) satisfying lim γn(y) = x. The set of limit points is denotedby L(G).
G is a disontinuous group, if Ω(G) := P1(k) \ L(G) is nonempty and foreah x ∈ P1(k) the losure Gx of its orbit is ompat. A disontinuous group
G is alled a Shottky group if it is �nitely generated and has no non-trivialelements of �nite order. Every Shottky group is free ([GP℄, Theorem I.3.1).A disontinuous groupG ats properly disontinuously on Ω(G). For a Shot-tky group G we know from [GP℄, Theorem III.2.2. that the quotient Ω(G)/Gis the analyti�ation of an algebrai urve. Suh a urve is alled a Mumfordurve.If an arbitrary group G ⊂ PGL2(k) ontains a disontinuous group G′ of�nite index, then L(G) = L(G′) and G is also disontinuous. We know from[GP℄, Ch. I, Theorem 3.1 that every �nitely generated disontinuous groupontains a Shottky group as a subgroup of �nite index.Let k ⊂ Cp be a �nitely generated extension of Qp. Then the set of absolutevalues |k×| := {|x| : x ∈ k×} is a disrete set inR×. For r ∈ |k×| and x ∈ k let
B(x, r) := {y ∈ k : |x− y| ≤ r} be the �losed� ball2 around x. Construt agraph with verties B(x, r) and insert edges onneting B(x, r) and B(x′, r′)with B(x, r) ⊂ B(x′, r′) and [r, r′]∩ |k×| = {r, r′}. This graph is a simpliialtree, alled the Bruhat-Tits-Tree B(k). The ends3 of this graph orrespondbijetively to the points in P1(k̂), where k̂ denotes the ompletion of k. Theation of PGL2(k) on P1(k) an be ontinued to an ation on B(k), and wean modify B(k) by adding verties suh that this ation is without inversion.2Note that as |k×| is disrete the ball B(x, r) is both open and losed for the topologyindued by the p-adi norm.3An end of a graph is an in�nite ray up to �nitely many edges.



4.1. DISCONTINUOUS GROUPS 33Let γ ∈ PGL2(k) be hyperboli or ellipti with two �xed points in P1(k). Inthis ase we de�ne the axis A(γ) to be the in�nite path onneting the twoends of B(k) orresponding to the �xed points of γ. A hyperboli element γ ∈
PGL2 ats on A(γ) by shifting the whole axis towards the end orrespondingto the attrating �xpoint of γ. An ellipti element �xes A(γ) pointwise. Ithas additional �xed points in B(k) if and only if ord(γ) is a power of p (thisis made more preise in [Her℄, Lemma 3).Let G be a �nitely generated disontinuous subgroup of PGL2(Cp) and let
F (γ) be the set of the two �xed points of γ ∈ G in P1(Cp). Now let kbe the extension of Qp generated by the oe�ients of the generators of Gand the �xed points of representatives of every onjugay lass of elliptielements in G. There are only �nitely many suh onjugay lasses, hene kis a �nitely generated �eld extension of Qp and we an therefore onstrutthe Bruhat-Tits-Tree B(k) as desribed above. Note that by onstrution
G ⊂ PGL2(k) and F (γ) ⊂ P1(k) for all ellipti elements γ ∈ G. Moreoverwe have F (γ) ⊂ P1(k̂) for every hyperboli element γ ∈ G beause theendpoints of A(γ) orrespond to the �xed points of γ.As G is disontinuous, G ontains only hyperboli and ellipti elements([Kat2℄, Lemma 4.2). The set of all �xed points of G

F (G) :=
⋃

γ∈G

F (γ)is a G-invariant subset of P1(k̂), therefore G also ats on the subtree T ∗(G)of B(k) generated by the ends orresponding to F (G). We an now onstrutthe quotient graph G∗(G) := T ∗(G)/G. Eah axis of a hyperboli elementwill be mapped to a irle in G∗(G), while eah end of T ∗(G) orrespondingto a �xed point of an ellipti element but not to a �xed point of a hyperbolielement will be mapped to an end of G∗(G). We now turn G∗(G) into a graphof groups4 by labeling the image of a vertex resp. edge x ∈ T ∗(G) with theonjugay lass of the stabilizing group Gx of x.The graph G∗(G) ontains a lot of useful information about the Mumfordurve Ω(G)/G. The rami�ation points of the overing Ω(G)→ Ω(G)/G arethe �xed points of ellipti elements of G whih are not �xed points of hyper-boli elements ([Kat2℄, Prop. 5.6.2). Therefore the branh points orrespondbijetively to the ends of G∗(G). The stabilizing group of suh an end is ayli group whose order equals the orresponding rami�ation index. Andby studying the ation of the hyperboli elements, we �nd that the genus5 of4In this hapter a graph will always mean a graph of groups to shorten notation. Forthe de�nition of a graph of groups we refer to [Ser℄, I.4.4.5By the genus of a graph we mean its �rst Betti number.
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G∗(G) equals the genus of Ω(G)/G ([Kat2℄, �5.6.0).De�nition 4.2. We de�ne a p-adi origami to be a overing of Mumfordurves X → E rami�ed above at most one point with g(E) = 1.Starting from a Mumford urve X = Ω/Γ for a Shottky group Γ we will lateronsider the quotient map to E = Ω/G for an extension G of Γ. As Γ is freethe map Ω→ Ω/Γ is unrami�ed, therefore the branh points of X → E areequal to those of Ω → Ω/G. Thus both neessary informations for X → Eto be a p-adi origami (the genus of E and the number of branh points) areoded in the quotient graph G∗(G) (as its genus and the number of its ends).We will now give two examples of how we an use this to onstrut p-adiorigamis.Example 4.3. Let p > 5 and n ∈ N be odd, ζ ∈ Cp be a primitive n-th rootof unity, q ∈ Cp with |q| < |1− ζ | and set

δ =

(

ζ 0
0 1

)

; σ =

(

0 1
1 0

)

; γ =

(

1 + q 1− q
1− q 1 + q

)Thus δ is ellipti of order n with �xed points 0 and ∞, the involution σexhanges the �xed points of δ and has �xed points 1 and −1, and γ ishyperboli with the same �xed points as σ. Then we have
• γσ = σγ and δσ = σδ−1

• ∆ := 〈δ, σ〉 is the dihedral group Dn and �xes a single vertex A(δ)∩A(σ).
• Γ := 〈δiγδ−i : i ∈ {0, . . . , n− 1}〉 is a Shottky group on n free generators.
• Γ is a normal subgroup of G := 〈δ, σ, γ〉 of index 2n, hene Ω(G) = Ω(Γ) =:

Ω. It is the kernel of the map ϕ : G→ ∆ de�ned by ϕ|∆ = id and ϕ(γ) = 1.
• The quotient graph G∗ of Ω/G is

•〈σ〉
∆

〈δ〉 //where we use the arrow to indiate an end of this graph.
• Sine G∗ has genus 1 and one end the map Ω/Γ→ Ω/G is a normal p-adiorigami with Galois group G/Γ ∼= Dn.A more detailed investigation of this origami an be found in [Kre℄, Be-merkung 4.3.



4.2. PROPERTIES OF THE QUOTIENT GRAPH 35Example 4.4. Let p > 5 and ζ ∈ Cp be a third root of unity, q ∈ Cp with
|q| small enough6 and set

δ =

(

ζ 0
0 1

)

; σ =

(

−1 1
2 1

)

; γ =

(

q 0
0 1

)Thus δ is ellipti of order 3 with �xed points 0 and∞, and γ is hyperboli withthe same �xed points. The �xed points of the involution σ are −1
2
(1±

√
3),those of σδσ are σ(0) = 1 and σ(∞) = −1

2
. Then we have

• γδ = δγ and (δσ)3 = id

• ∆ := 〈δ, σ〉 is the tetrahedral group A4 and �xes a single vertexA(δ)∩A(σ).
• Γ := 〈αγα−1 : α ∈ T 〉 is a Shottky group on 4 free generators.
• Γ is a normal subgroup of G := 〈δ, σ, γ〉 of index 12, hene Ω(G) = Ω(Γ) =:

Ω. It is the kernel of the map ϕ : G→ ∆ de�ned by ϕ|∆ = id and ϕ(γ) = 1.
• The quotient graph G∗ of Ω/G is

•〈δ〉
∆

〈σ〉 //

• Sine G∗ has genus 1 and one end the map Ω(Γ)/Γ→ Ω(G)/G is a normal
p-adi origami with Galois group G/Γ ∼= A4.A more detailed investigation of this origami an be found in [Kre℄, Be-merkung 4.4.We will see in Setion 4.3 that the quotient graphs G∗ of all non-trivial normal

p-adi origamis look similar. We will then use this to investigate how thegroups G and Γ have to be hosen suh that the map Ω/Γ→ Ω/G beomesa p-adi origami. But �rst we have to study the quotient graph G∗ morelosely.4.2 Properties of the quotient graphA graph of groups G∗ is alled p-realizable7, if there exists a �nitely generateddisontinuous group G ⊂ PGL2(Cp) with G∗ = G∗(G). Let Gnt resp. Gnc bethe subgraph of G∗ ontaining only verties and edges with non-trivial resp.non-yli groups.6This is made more preise in [Kre℄, Bemerkung 4.4.7In this setion we will often just write realizable if the statements hold for arbitrary p.



36 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDTheorem 4.5. The number of ends of a realizable graph G∗ is
n = χ(Gnc) + 2χ(Gnt)where χ(G) is the Euler-harateristi8 of a graph G (for in�nite G we takethe limit of χ for all �nite subgraphs of G).Proof. Let D resp. d be the the number of verties resp. edges in Gnc. Then

χ(Gnc) = D − d. Analogously let C resp. c be the number of verties resp.edges in Gnt \ Gnc. Thus χ(Gnt) = (C +D)− (c+ d). Then we have to show
n = D − d+ 2((C +D)− (c+ d)) = 2(C − c) + 3(D − d)Thus our statement is just a reformulation of [Bra2℄, Theorem 1.Lemma 4.6. Let G be a �nitely generated disontinuous group and let Nbe a subgraph of G∗(G). Then there exists a subgroup N of G with quotientgraph N ∗ := G∗(N) ⊃ N , suh that the di�erene between the two graphs Nand N ∗ is ontratible9, exept for the ends of N ∗.Proof. Choose a spanning tree of N by deleting edges {e1, . . . , eg} and let N̂be a preimage of this spanning tree in T ∗(G). For eah edge ei onnetingverties vi and wi let êi be the lift of ei with v̂i ∈ N̂ and ê′i the lift with

ŵ′
i ∈ N̂ . The other endpoints ŵi and v̂′i of êi resp. ê′i annot be ontained in
N̂ beause otherwise N̂ would ontain a irle. Let N be the subgroup of Ggenerated by all stabilizers of verties in N̂ and for eah edge ei a hyperbolielement γi mapping an v̂i to v̂′i.Thus N is isomorphi to the fundamental group10 of the graph of groups
N by [Ser℄, I.5.4, Theorem 13. The stabilizers in N do not hange if werestrit the ation from G to N , neither do the identi�ations of verties viathe γi, hene the quotient graph T ∗(G)/N ontains N . Both graphs havethe ommon fundamental group N , thus their di�erene annot hange theirfundamental group, and therefore has to be ontratible.The tree T ∗(N) is ontained in T ∗(G), hene G∗(N) = T ∗(N)/N is ontainedin T ∗(G)/N . Again both graphs have the ommon fundamental group N andhene their di�erene is ontratible.8Reall that the Euler-harateristi (number of verties minus number of edges) equalsthe di�erene of the �rst two Betti-numbers (number of onneted omponents minusgenus).9An edge in a graph of groups may be ontrated if it is not a loop and the inlusion ofthe edge group into one of its vertex groups is an isomorphism. After the ontration onlythe other vertex remains. Suh a ontration does not hange the fundamental group10ofthe graph.10For the de�nition of the fundamental group of a graph of groups we refer to [Ser℄,I.5.1.



4.2. PROPERTIES OF THE QUOTIENT GRAPH 37Proposition 4.7. Let G∗ be a realizable graph, and let C be a onnetedomponent of Gnc. Then there exists a realizable graph N ∗ with N nc = C (upto ontrations) and g(N nc) = g(N ∗).Proof. Let G be a �nitely generated disontinuous group with G∗(G) = G∗.Subdivide all edges emanating from C (whih all have yli stabilizers), andlet ∂(C) be the set of all resulting edges in G∗ \ C whih still have a ommonvertex with C. For the graph C ∪ ∂(C) Lemma 4.6 yields a graph N ∗ with
N ∗ ⊃ C. As N ∗ and C di�er up to ontration only by ends, and endsare stabilized by yli groups, we get N nc = C (up to ontrations) and
g(N nc) = g(C) = g(N ∗).Proposition 4.8. Let G be a onneted graph of nonyli groups with g(G) >
0. Then there exists no realizable graph G∗ with Gnc = G (up to ontrations)and g(Gnc) = g(G∗).Proof. Assume there is a �nitely generated disontinuous group G suh that
G∗ := G∗(G) has the stated properties. Gnt is onneted, beause if σ and
τ are elements of stabilizers of two di�erent onneted omponents of Gnt,then στ is hyperboli and its axis ontains the path p between the axes of
σ and τ . The image of A(στ) in G∗ is a irle whih ontains p and henean edge with trivial stabilizer. This would imply g(G∗) > g(Gnc) ontrary tothe assumption.Thus we have g(Gnt) = g(Gnc) and both Gnt and Gnc are onneted, hene
χ(Gnt) = χ(Gnc). Then Theorem 4.5 states χ(Gnt) ≥ 0. But we have χ(Gnt) <
1 beause Gnt is onneted and has positive genus. We thus get χ(Gnt) =
χ(Gnc) = 0 and therefore g(Gnt) = g(Gnc) = 1. Hene by Theorem 4.5 thegraph G∗ has no ends.
G ontains a normal subgroup Γ of �nite index whih is a Shottky group.As G∗ has no ends, the overing Ω(G)/Γ → Ω(G)/G is unrami�ed. As
g(Ω(G)/G) = 1, we onlude g(Ω(G)/Γ) = 1 by Riemann-Hurwitz. There-fore Γ is generated by a single hyperboli element γ. All the elements in
G have the same axis as γ (beause otherwise there would be rami�ationpoints). Therefore every �nite subgroup of G is yli, whih ontradits theassumption.Proposition 4.9. Let G∗ be a realizable graph. Then g(Gnc) = 0.Proof. For every onneted omponent of Gnc this follows from Propositions4.7 and 4.8.



38 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDDe�nition 4.10. LetG ⊂ PGL2(Cp) be a disontinuous group, g(Ω(G)/G) =
0 and Ω(G) → Ω(G)/G rami�ed over exatly three points with rami�a-tion indies n1, n2, n3. Then we all G a (p-adi) triangle group of type
∆(n1, n2, n3).The graph G∗(∆(n1, n2, n3)) is a tree with exatly three ends, orrespondingto the three branh points. Conversely if G is a disontinuous group, Gnt isa tree, and Gnc is onneted, then χ(Gnt) = χ(Gnc) = 1, and G is a trianglegroup by Theorem 4.5.Theorem 4.11. Let G∗ be a realizable graph and C be a onneted omponentof Gnc. Then the fundamental group of C is a triangle group ∆. This meansthat C an be replaed by a single vertex with vertex group ∆ without hangingthe fundamental group of G∗.Proof. Let N ∗ be the realizable graph assoiated to C by Proposition 4.7.By Proposition 4.9 this graph has genus zero, so by Theorem 4.5 it has threeends. Therefore the disontinuous group ∆ with quotient graph N ∗ is atriangle group.Now we know that a p-realizable graph G with Gnc 6= ∅ an be made up ofverties with p-adi triangle groups onneted by edges with yli groups,it beomes vitally important to �nd all triangle groups whih an our.Fortunately for p > 5 those triangle groups are well-known:Theorem 4.12. For every p there exist the lassial spherial triangle groups(i.e. those with 1

n1
+ 1

n2
+ 1

n3
> 1): the dihedral group Dn = ∆(2, 2, n), andthe symmetry groups of the platoni solids A4 = ∆(2, 3, 3), S4 = ∆(2, 3, 4)and A5 = ∆(2, 3, 5). For p > 5 there are no other p-adi triangle groups.Proof. Let ∆ be one of the given groups. It is a �nite subgroup of PGL2(Cp)and hene disontinuous. Its quotient graph G∗(∆) onsists up to ontrationof only one vertex (otherwise ∆ would be a non-trivial amalgam or HNN-extension of smaller groups, hene would not be �nite). This vertex has tobe �xed by the whole group, whih is non-yli, hene χ(Gnc) = χ(Gnt) = 1.Therefore ∆ is a triangle group by Theorem 4.5.Now let ∆ be a triangle group for p > 5. We have g(G∗(∆)) = 0, hene

χ(Gnc) ≥ 1 and χ(Gnt) ≥ 1. By Theorem 4.5 we have then χ(Gnc) = χ(Gnt) =
1, hene both graphs are onneted. One an show that for p > 5 all edgesof a realizable tree of groups an be ontrated, whih leaves a single vertex.The stabilizer of a vertex always is a �nite subgroup of PGL2(Cp) and heneeither yli or isomorphi to one of the groups stated (for a proof we referto [Kre℄, Satz 2.7).



4.3. NORMAL P -ADIC ORIGAMIS 39For p ≤ 5 there are additional non-spherial triangle groups. Bradley, Katoand Voskuil are urrently working on their lassi�ation [BKV℄. A prelimi-nary version and an idea of the proofs an be found in [Kat1℄.Example 4.13. For p = 5 an ellipti element δ of order 5 �xes not only itsaxis, but also all verties ontained in a small tube around this axis. Thusif we start with a vertex v ∈ B on the axis of δ �xed by a dihedral group D5generated by an element σ of order 2 and δ, then δ �xes also other vertieson the axis of σ. These verties have the stabilizer 〈σ, δ〉 ∼= D5 and we an�nd two elements τ and τ ′ of order 3, eah with an axis through one of thoseverties but not through v, suh that the stabilizers of these two vertiesunder the ation of G := 〈σ, δ, τ, τ ′〉 are 〈σ, δ, τ〉 ∼= A5 and 〈σ, δ, τ ′〉 ∼= A5respetively. If we do all this arefully we an get a disontinuous groupwhose quotient graph looks like this:
•C3oo •
A5

D5 •
D5

C5

��

D5 •
A5

C3 //

The generated group is thus a p-adi triangle group of type ∆(3, 3, 5). It isthe fundamental group of the graph shown above, whih is A5 ∗D5
A5, where

∗D5
is the amalgamated produt over the ommon subgroup D5. Detailsabout amalgams as fundamental groups of trees of groups an be found in[Ser℄, I.4.5.One an generalize this example by starting with the dihedral group D5n for

n ∈ N. Then δn has order 5 and an be used to onstrut two stabilizersisomorphi to A5. This results in a disontinuous group A5 ∗D5
D5n ∗D5

A5,whih is a p-adi triangle group of type ∆(3, 3, 5n).4.3 Normal p-adi origamisAfter the preliminaries in the last two setions we are now ready to formulateour main result. We will restrit ourselves to rami�ed p-adi origamis, i.e.the ase g(X) > 1. We are partiularly interested in normal origamis, whihwe will now lassify:Theorem 4.14. Let X → E be a normal p-adi origami with g(X) > 1.Then there a is disontinuous group G and a Shottky group Γ ⊳ G of �niteindex suh that X ∼= Ω/Γ and E ∼= Ω/G with Ω := Ω(Γ) = Ω(G).



40 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDThe group G is isomorphi to the fundamental group of the graph of groups
•Ca

∆

Cb //where ∆ is a p-adi triangle group of type ∆(a, a, b). This means that G isisomorphi to the fundamental group of this graph.Thus we get
G ∼= 〈∆, γ; γα1 = α2γ〉 with αi ∈ ∆ of order a.The Galois group of the origami is G/Γ.Proof. X is a Mumford urve, hene there is a Shottky group Γ ⊂ PGL2(Cp)suh that X ∼= Ω(Γ)/Γ. The automorphism group AutX is isomorphi to

N/Γ, where N is the normalizer of Γ in PGL2(Cp) (this is a theorem from[GP℄, VII.2). The Galois group of the overing X → E is a �nite subgroupof AutX and therefore takes the form G/Γ, where Γ is a normal subgroupin G ⊆ N of �nite index. In this ase G is disontinuous and Ω(G) = Ω(Γ).The genus of G∗ := G∗(G) equals the genus of E, whih is 1. The numberof ends of G∗ equals the number of branh points of the map Ω→ Ω/G. Asthe map Ω → Ω/Γ is unrami�ed, this number equals the number of branhpoints of X ∼= Ω/Γ → E ∼= Ω/G, whih is also 1. Thus G∗ is a realizablegraph of genus one with one end. The stabilizer of this end is a yli groupwhose order equals the rami�ation index above the branh point.We now prove that Gnc an be replaed by a vertex whose vertex group isa triangle group of the form ∆(a, a, b) (a, b ∈ N): We know g(Gnt) ≤ 1,hene χ(Gnt) ≥ 0, and the same holds for Gnc. Theorem 4.5 states χ(Gnc) +
2χ(Gnt) = 1, therefore χ(Gnc) = 1 and χ(Gnt) = 0. As g(Gnt) ≤ 1 we onlude
g(Gnt) = 1 and Gnt is onneted. Prop. 4.9 states g(Gnc) = 0, therefore Gnc isonneted as well. By Theorem 4.11 we an replae Gnc by a single vertex vwhose vertex group is a triangle group ∆. If we ontrat the rest of the graphas muh as possible, we get an edge from v to v with a yli stabilizer. Thisstabilizer ours therefore on two ends of G∗(∆) (this was N ∗ in Theorem4.11).Note we have seen in Theorem 4.12 that the spherial triangle groups of type
∆(a, a, b) are Dn = ∆(2, 2, n) and A4 = ∆(2, 3, 3), and for p > 5 there existno other ones. For p ≤ 5 there are additional possible triangle groups, for
p = 5 we have seen the type ∆(3, 3, 5n) in Example 4.13.We now know that normal p-adi origamis are always of the form Ω/Γ →
Ω/G, and we know quite well whih groups G an our. It remains to



4.3. NORMAL P -ADIC ORIGAMIS 41investigate what groups Γ are possible. The only restrition we have for Γ isthat it has to be a Shottky group of �nite index and normal in G: As theovering Ω → Ω/Γ is always unrami�ed the rami�ation of Ω/Γ → Ω/G isequal to the rami�ation of Ω → Ω/G and hene only depends on G. Thegenus of Ω/G also does not depend on the hoie of Γ.Theorem 4.15. Let G ⊂ PGL2(Cp) be a �nitely generated disontinuousgroup and Γ be a normal subgroup of G of �nite index. Then the followingstatements are equivalent:i) Γ is a Shottky groupii) Γ ∩Gi = {1} for every vertex group Gi in G∗(G).Proof. i) ⇒ ii) is easy: The vertex groups are �nite, therefore every g ∈ Gihas �nite order. Γ does not ontain elements of �nite order. Thus Γ ∩Gi istrivial. For ii) ⇒ i) we proeed with three steps:Step 1: Every element of Γ has in�nite order: G is the fundamental groupof G∗(G), hene an HNN-extension of an amalgamated produt of the Gi. If
g ∈ G has �nite order n > 1, then g is onjugated to a g′ ∈ Gi (see [LS℄,IV.2.4 and IV.2.7) with ord(g′) = ord(g) > 1. But by assumption g′ 6∈ Γ andhene g 6∈ Γ as Γ is normal in G.Step 2: Γ is free by Ihara's theorem ([Ser℄, I.1.5, Theorem 4): G ats on thetree T ∗(G) with quotient graph G∗(G). For an x ∈ T ∗(G) let g ∈ StabG(x) benon-trivial. Then g has �nite order, and with step 1 we see g 6∈ Γ. Thereforethe ation on T ∗(G) restrited to Γ is free, thus Γ is a free group by [Ser℄,�3.3.Step 3: Γ is a Shottky group: Γ is by de�nition a �nite index normalsubgroup of G. It is disontinuous beause G is and it ontains no elementsof �nite order. It is �nitely generated beause G is (by Reidemeister-Shreier,[LS℄, Prop. II.4.2). Thus we know that Γ is a Shottky group. We an even�nd a �nite set of free generators of Γ by looking at its ation on T ∗(G): thisation has a �nite fundamental domain and this domain therefore has only�nitely many neighboring translates. The set of these neighboring translatesorresponds to a �nite set of free generators for Γ.We are espeially interested in the resulting Galois group H := G/Γ. Thuswe now answer the question what hoies of Γ are possible if we �x this Galoisgroup:Corollary 4.16. Let H be a �nite group and G ⊂ PGL2(Cp) be a �nitelygenerated disontinuous group. Further let Γ be the kernel of a homomor-phism ϕ : G→ H. Then the following statements are equivalent:



42 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDi) Γ is a Shottky groupii) ϕ|Gi
is injetive for every vertex group Gi in G∗(G).Proof. Follows with ker(ϕ|Gi

) = Γ ∩Gi from the Theorem.Example 4.17. a) Set Gn := 〈Dn, γ; γσ = σγ〉 as in Example 4.3 (with nodd and ord(σ) = 2). We extend this example: Choose m ∈ N andde�ne ϕ : Gn → Dn × Cm by ϕ|Dn
= (id, 1) and ϕ(γ) = (1, c) where cis a generator of Cm. Then Corollary 4.16 states that Γ′ := ker(ϕ) is aShottky group and the Galois group of the p-adi origami Ω/Γ′ → Ω/Gis Dn × Cm. Note that Γ′ ⊆ Γ := ker(Gn → Dn) for every m, thus wehave a overing of origamis Ω/Γ′ → Ω/Γ → Ω/G. We will investigatesuh overings in Setion 4.5.b) SetG := 〈A4, γ; γδ = δγ〉 as in Example 4.4 (with ord(δ) = 3). We extendthis example as in a): Choose m ∈ N and de�ne ϕ : Gn → A4 × Cm by

ϕ|A4
= (id, 1) and ϕ(γ) = (1, c) where c is a generator of Cm. ThenCorollary 4.16 states that Γ′ := ker(ϕ) is a Shottky group and the Galoisgroup of the p-adi origami Ω/Γ′ → Ω/G is A4 × Cm. Note that Γ′ ⊆

Γ := ker(Gn → A4) for every m, thus we have again a overing of origamis
Ω/Γ′ → Ω/Γ→ Ω/G.) In Example 4.13 we have onstruted the 5-adi triangle group ∆(3, 3, 5) =
A5 ∗D5

A5. The group G := 〈A5 ∗D5
A5, γ; γδ1 = δ2γ〉, where the δi of or-der 3 are hosen out of the two di�erent A5-omponents, an be embeddedinto PGL2(Q5) (to show this one an use [Kat2℄, Theorem II). Then wean de�ne ϕ : G → A5 as the identity on both A5-omponents of theamalgamated produt, and ϕ(γ) = 1. This leads to a 5-adi origami withGalois group A5.d) Take the group G5 from part a) and onsider the homomorphism ϕ :

G5 → PSL2(F11) de�ned by
ϕ(σ) =

(

6 7
1 5

)

, ϕ(δ) =

(

0 9
6 3

)

, ϕ(γ) =

(

3 7
8 8

)We an alulate that this is indeed a homomorphism by heking therelations of G5 for the given images of ϕ. We an also hek that ϕ issurjetive and that ϕ|D5
is injetive. Hene ker(ϕ) is a Shottky groupand the orresponding origami has Galois group PSL2(F11).



4.4. AUTOMORPHISMS OF P -ADIC ORIGAMIS 434.4 Automorphisms of p-adi origamisThe Galois group of the overing X → E is a subgroup of the automorphismgroup AutX. For normal omplex origamis we know from Proposition 3.12that the Galois group onsists preisely of all possible translations. In Propo-sition 3.13 we have seen that if the automorphism group is stritly larger thanthe Galois group, then there have to be automorphisms whih are not trans-lations, i.e. there is an automorphism whih does not indue the identity butan involution on E. We now investigate the impliations if this happens inthe p-adi setting.Theorem 4.18. In the situation of Theorem 4.14 let Aut(X) ontain anelement σ of order 2 whih indues a non-trivial automorphism σ of E �xingthe branh point of X → E. Then there is a disontinuous group H ontain-ing G as normal subgroup of index 2, whih is isomorphi to the fundamentalgroup of the graph of groups
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??where ∆1 is the p-adi triangle group of type ∆(2, 2, a), i.e. ∆1

∼= Da, and
∆2 is a p-adi triangle group of type ∆(2, a, 2b) ontaining ∆ of index 2.Proof. Let L be the subgroup of AutX generated by σ and the Galois group
Gal(X/E). Every ℓ ∈ L \Gal(X/E) indues σ on E, thus ℓ ◦σ ∈ Gal(X/E).Hene L ontains Gal(X/E) with index 2, and therefore as a normal sub-group. As in the proof of Theorem 4.14 we have L ∼= H/Γ and for a dison-tinuous group H and Gal(X/E) ∼= G/Γ for normal subgroup G of index 2 in
H with Ω(H) = Ω(G) = Ω(Γ). Now Ω/H ∼= E/ 〈σ〉 =: P .The branh point of X → E is a �xed point of σ and therefore a rami�ationpoint of E → P . By Riemann-Hurwitz this means that g(P ) = 0 and thereare four rami�ation points of E → P . As the degree of the map E → Pis 2, and this is also the rami�ation index of the four rami�ation points,we know that there are also exatly four branh points. The omposition
X → P of the maps thus has four branh points. Over three of them themap X → E is unrami�ed, therefore the orresponding rami�ation indiesof X → P are 2. Over the fourth branh point the map X → E is rami�edwith rami�ation index b, thus the total rami�ation index is 2b.



44 CHAPTER 4. THE NON-ARCHIMEDEAN WORLDNow let H∗ be the quotient graph orresponding to H . Sine Ω/H ∼= P thegraph H∗ is a realizable graph of genus zero with four ends. The stabilizer ofone end is a yli group of order 2b, the stabilizers of the other three endsare yli groups of order 2.We have g(H∗) = 0, thus this also holds for all subgraphs of H∗. Thereforeany Euler harateristi equals the number of onneted omponents and wehave χ(Hnc) ≥ 1 and χ(Hnt) ≥ 1. As χ(Hnc) + 2χ(Hnt) = 4 by Theorem4.5, we onlude χ(Hnc) = 2 and χ(Hnt) = 1. Thus Hnc has two onnetedomponents, whih we an by Theorem 4.11 both replae by single vertieswhose vertex groups are triangle groups ∆1 and ∆2. Furthermore Hnt has tobe onneted, therefore those two triangle groups have to be onneted bya path with a nontrivial yli stabilizer. This path an be ontrated to asingle edge.It remains to �nd the onnetion between the stabilizing groups of G∗ and
H∗. We get the graph H∗ as the quotient of G∗ by σ (if we ignore the endsof both graphs). The single edge from G∗ has to be mapped to itself andinverted (beause otherwise there would still be a losed edge in H∗). Thuswe have to insert a vertex on this edge and for onstruting the quotient G∗we have to take one of the half edges. Therefore the stabilizer of this edge(as it is not �xed by σ) is the same as before (namely Ca) and the originalvertex is �xed by ∆ and σ.Example 4.19. Let ζ be a primitive 10-th root of unity and hoose δ, σ and
γ as in Example 4.3. Then the group G := 〈δ2, σ, γ〉 orresponds to the ase
n = 5 of this example. But if we work out the quotient graph ofH := 〈δ, σ, γ〉we note that while there still is a vertex with stabilizer 〈σ, δ〉 ∼= D10 now theelement γδ5 is ellipti of order 2, but does not �x this vertex. Instead thereis now another vertex �xed by γδ5 on the axis of σ, its stabilizer is therefore
〈σ, γδ5〉 ∼= D2. This means that γ does not reate a irle in the graph anymore, but the quotient graph beomes
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??Now we de�ne a homomorphism ϕ : H → PSL2(F11)× Z/2Z by

ϕ(σ) =

((

6 7
1 5

)

, 0

)

, ϕ(δ) =

((

8 6
4 10

)

, 1

)

, ϕ(γ) =

((

3 7
8 8

)

, 0

)

.



4.5. COVERINGS OF P -ADIC ORIGAMIS 45As in Example 4.17 d) we an hek that this is indeed a homomorphism andis injetive when restrited to the vertex groups. Note that ϕ(δ2) = (( 0 9
6 3 ) , 0),thus ϕ|G is exatly the homomorphism onsidered in Example 4.17 d), andwe have ker(ϕ) = ker(ϕ|G) = Γ. Thus the p-adi origami Ω/Γ → Ω/G anbe extended to Ω/Γ → Ω/H with Galois group H/Γ ∼= PSL2(F11) × Z/2Z.This means that the automorphism group of this origami ontains the group

PSL2(F11)× Z/2Z.4.5 Coverings of p-adi origamisDe�nition 4.20. We all a p-adi origami Ω/Γ′ → Ω/G simple if it oversone of the origamis from Examples 4.3 and 4.4. This means we have Ω/Γ′ →
Ω/Γ→ Ω/G where

G = 〈∆ = Dn, γ; γσ = σγ〉 with n ∈ N odd and σ ∈ Dn of order 2 or
G = 〈∆ = A4, γ; γδ = δγ〉 with δ ∈ A4 of order 3.

Γ and Γ′ are free normal subgroups of �nite index in G, and G/Γ ∼= ∆.Theorem 4.21. Let G,∆ and γ be given as in the de�nition above, ϕ : ∆→
Aut(K) an ation of ∆ on a �nite group K and γ ∈ K an element whih is�xed by all δ ∈ ∆ whih ommute with γ in G.De�ne ψ : G → ∆ ⋉ϕ K by δ 7→ (δ, 1) for all δ ∈ ∆ and γ 7→ (1, γ) andset Γ′ = ker(ψ). Then Ω/Γ′ → Ω/G is a simple p-adi origami with Galoisgroup Im(ψ).Every simple p-adi origami is of this type.Proof. �⇒�: Let K, ϕ and γ be given. We have homomorphisms

G
ψ−→ ∆ ⋉ϕ K

p−→ ∆where p is the projetion to the �rst omponent. As ψ|∆ is injetive Γ′ isa Shottky group by Corollary 4.16. We see Γ = ker(p ◦ ψ), thus Γ′ ⊂ Γ,therefore we have homomorphisms Ω/Γ′ → Ω/Γ → Ω/G. The Galois groupof the omposed overing is G/Γ′ = G/ ker(ψ) ∼= Im(ψ).�⇐�: Let Ω/Γ′ → Ω/G be a simple p-adi origami. We have homomorphisms
〈∆, γ〉 = G

α−→ G/Γ′ β−→ (G/Γ′)
/

(Γ/Γ′) ∼= G/Γ ∼= ∆where β◦α is an isomorphism on ∆ and maps γ to 1. Therefore β(α(γ)) = 1,thus α(γ) ∈ ker(β) =: K. Moreover β|α(∆) is an isomorphism. We get a splitexat sequene



46 CHAPTER 4. THE NON-ARCHIMEDEAN WORLD
0 // K // G/Γ′ // ∆gg

// 0Thus there is an isomorphism from G/Γ′ to a semidiret produt ∆ ⋉ϕ Kwhere ϕ : ∆ → Aut(K) is the homomorphism indued by the split exatsequene, i.e. onjugation by α(∆). The restrition of this isomorphism to
∆ is given by the inlusion δ 7→ (δ, 1). The image of γ is in the kernel of p,hene of the form (1, γ) for a γ ∈ K.Now let δ ∈ ∆ be given with γδ = δγ. In ∆ ⋉ϕ K this means

(δ, γ) = (1, γ)(δ, 1) = (δ, 1)(1, γ) = (δ, ϕ(δ)(γ))Therefore ϕ(δ) �xes γ.Corollary 4.22. Let Ω/Γ′ → Ω/Γ be a simple p-adi origami with δγ = γδin G/Γ′ for all δ ∈ ∆. Then the ation in the last theorem is trivial on γ,thus the Galois group of this origami is ∆×Z/mZ for an m ∈ N.Example 4.23. Set G = 〈∆ = Dn, γ; γσ = σγ〉 with n ∈ N odd and σ ∈ Dnof order 2. ∆ ats on the set {1, . . . , n}. As n is odd σ has a �xed point k.Now hoose m ∈ N, set K := (Z/mZ)n, let γ := ek ∈ K be the k-th unitvetor and de�ne ϕ : ∆ → K by δ 7→ ((xi) 7→ (xδ(i))). By the theorem thisde�nes a simple p-adi origami Ω/Γ′ → Ω/G.As G→ ∆ ⋉ϕ K is surjetive, the Galois group of this origami is ∆ ⋉ϕ K.The same works for G = 〈∆ = A4, γ; γδ = δγ〉 with δ ∈ A4 of order 3: ∆ atson {1, 2, 3, 4} and δ has a �xed point. Thus we an de�ne a simple p-adiorigami with Galois group ∆ ⋉ϕ (Z/mZ)4.



Chapter 5Conneting both worldsIn the �rst three Chapters we have investigated origamis over C, while inChapter 4 we de�ned origamis also over Cp. Now we want to onnet bothworlds: An origami-urve inMg,C is always de�ned over Q, and thus de�nesalso a urve inMg,Q, and this urve an in turn be interpreted as a urve in
Mg,Cp

. Now we ask the question: Does this urve interset the subspae of
Mg,Cp

ontaining Mumford urves?The resulting points in Mg,Cp
are still urves whih over an ellipti urvewith only one branh point. Thus those urves are Mumford urves if andonly if they our as p-adi origamis. We have introdued several invari-ants of origami-urves in the last hapters, some of whih turn up in bothworlds: The rami�ation indies, the Galois group of a normal origami andits automorphism group. By the Lefshetz priniple ([Lef℄, Appendix) thesealgebrai properties of the origamis oinide over C and over Cp. In someases this is enough information to identify the omplex origami-urve whihbelongs to a given p-adi origami.

5.1 Base hange of shemesLet XC → EC be an origami over C. We an write EC = EC,τ = C/(Z+ τZ)with τ ∈ H, where 0 is the only branh point of XC → EC. We have theWeierstrass-overing ℘ : EC,τ → P1(C). For any rami�ation point x 6= 0 wehave ℘′(x)2 = 4℘3(x) − g2℘(x) − g3 = 0, so if g2, g3 ∈ Q we get ℘(x) ∈ Q.As ℘(0) = ∞ Belyi's theorem would then imply that both XC and EC arede�ned over Q. Therefore we then have XQ and EQ over Q with the followingdiagram of base hanges: 47



48 CHAPTER 5. CONNECTING BOTH WORLDS
XQ ×Q C = XC −−−→ XQ ←−−− XCp

= XQ ×Q Cp




y





y





y

EQ ×Q C = EC −−−→ EQ ←−−− ECp
= EQ ×Q CpBy varying τ ∈ H we get a urve in the moduli-spae Mg,C, whih leadsto a urve inMg,Q, whih itself an be onsidered as a subset of a urve in

Mg,Cp
. This urve may or may not interset the subset of Mumford urvesinMg,Cp

.Example 5.1. Consider the origami from Example 3.19:
113 1 4226 4 5 1335 6 466Kappes has proven in [Kap℄, Theorem IV.3.7 that the origami-urve inMg,Cof this origami ontains all the urves birationally equivalent to

y2 = (x2 − 1)(x2 − λ2)
(

x2 −
(

λ
λ+1

)2
)for λ ∈ C \

{

0,±1,−1
2
,−2

}. If we now restrit the hoie of λ to Q, weget a urve in Mg,Q. We an now hange the base of this urve to Cp foran arbitrary prime p. This will result in a urve inMg,Cp
. Does this urveinterset the subspae ofMg,Cp

ontaining Mumford urves?Fortunately [Bra3℄, Theorem 4.3 o�ers a riterion for a hyperellipti urve
X to be a Mumford urve: This is the ase if and only if the branh pointsof X → P1 (in our ase ±1,±λ and ± λ

λ+1
) an be mathed into pairs (ai, bi)suh that P1 an be overed by annuli Ui eah ontaining exatly one of thosepairs. In our ase we onsider only p > 2, set λ := q− 1 for any q ∈ C×

p with
|q| < 1 and math the points as follows:

a1 = 1, b1 = −λ = 1− q ⇒|a1 − b1| = |q| < 1

a2 = −1, b2 = λ = q − 1 ⇒|a2 − b2| = |q| < 1

a3 = λ
λ+1

= 1
q
(q − 1), b3 = −1

q
(q − 1) ⇒|a3| = |b3| =

∣

∣

∣

1
q

∣

∣

∣
> 1Thus we an hoose U1 = B(1, 1) \ B(−1, |q|), U2 = B(1, 1) \ B(1, |q|) and

U3 = P1 \B(1, 1) to get the desired overing1.1The balls B(x, r) were de�ned in Setion 4.1.



5.2. GALOIS GROUPS WITH A UNIQUE CURVE 49In general it is almost impossible to �nd the equation of a given origami.Therefore we would like a simpler approah, and we will do this the otherway round: We have already onstruted p-adi origamis, now we try tomath them to the orresponding omplex origami-urve. We will do this bymathing some of the invariants we have alulated for both of them in theprevious hapters.5.2 Galois groups with a unique urveSome Galois groups our only for a single origami-urve over C. We will nowprove that this is the ase for the Galois groups Dn×Z/mZ and A4×Z/mZ,whih ourred as Galois groups of p-adi origamis in Example 4.17 a) andb).Lemma 5.2. Let f : F2 → Z/mZ be surjetive. Then up to an automor-phism of F2 we an assume f(x) = 1 and f(y) = 0.Proof. Let cx, cy ∈ N with cx = f(x) and cy = f(y) in Z/mZ.We prove �rst that we an hoose the representatives cx and cy oprime: Let
pi be the prime fators of cx and set

c′y := cy +m ·
∏

pi∤cy

piAssume that there is a pi whih is a fator of c′y. If pi | cy then pi would alsohave to be a fator of the right-hand summand, and as it is not ontainedin the produt we would then have pi | m. But this ontradits 〈cx, cy〉 =
Z/mZ. If on the other hand pi ∤ cy, then pi would be a fator of the right-handsummand but not of the left one, whih would ontradit the assumption.Therefore no pi is a fator of c′y, thus gcd(cx, c

′
y) = 1. We an replae cy by

c′y as both are equivalent modulo m.Now gcd(cx, cy) = 1, thus there exist a, b ∈ Z with acx + bcy = 1. Set
A :=

(

a −cy
b cx

)

∈ SL2(Z)and let ϕ ∈ Aut(F2) be a lift of A. As Z/mZ is abelian we get a ommutativediagram
F2

ϕ //

��?
??

? F2
f //

��?
??

? Z/mZ

Z2
ϕ // Z2

f

??����



50 CHAPTER 5. CONNECTING BOTH WORLDSwhere ϕ is the multipliation with A. Thus
(f ◦ ϕ)(x) = (f ◦ ϕ)

((

1
0

))

= f

((

a
b

))

= acx + bcy = 1

(f ◦ ϕ)(y) = (f ◦ ϕ)

((

0
1

))

= f

((

−cy
cx

))

= −cycx + cxcy = 0Proposition 5.3. Let n,m ∈ N and n be odd. Up to an automorphism of
F2 there exists only one origami with Galois group Dn ×Z/mZ.Proof. Choose σ, τ ∈ Dn with 〈σ, τ〉 = Dn and ord(σ) = ord(τ) = 2, and set
δ = στ .Let f : F2 → Dn × Z/mZ be the monodromy of a normal origami. ByLemma 5.2 we an apply an automorphism of F2 to get f(x) = (α, 1) and
f(y) = (β, 0) for some α, β ∈ Dn. As f has to be surjetive we know
〈α, β〉 = Dn. Up to an automorphism of Dn we have three ases:i) ord(α) = 2, ord(β) = 2, w.l.o.g. (α, β) = (τ, σ)ii) ord(α) = n, ord(β) = 2, w.l.o.g. (α, β) = (δ, σ)iii) ord(α) = 2, ord(β) = n, w.l.o.g. (α, β) = (τ, δ)We an apply ϕ ∈ Aut(F2) with x 7→ yx and y 7→ y to get from i) to ii):

(f ◦ ϕ)(x) = f(yx) = (στ, 0 + 1) = (δ, 1) and
(f ◦ ϕ)(y) = f(y) = (σ, 0)For odd m we an apply ϕ ∈ Aut(F2) with x 7→ x and y 7→ yxm to get fromi) to iii):
(f ◦ ϕ)(x) = f(x) = (τ, 1) and
(f ◦ ϕ)(y) = f(yxm) = (στm, 0 +m) = (δ, 0)For even m ase iii) is not possible, as f would not be surjetive: Assumethere is a preimage z ∈ f−1(id, 1). We know that f(xy) = f(y−1x) (beausethis holds in both omponents). Thus we an hoose z of the form xayb, itsimage is (τaδb, a). Now for f(z)1 = id we need a even, but for f(z)2 = 1 weneed a = 1 in Z/mZ. For even m this is impossible. Therefore there is nopreimage of (id, 1) in this ase.



5.2. GALOIS GROUPS WITH A UNIQUE CURVE 51Proposition 5.4. Up to an automorphism of F2 there exists, for any m ∈ N,only one origami with Galois group A4 ×Z/mZ.Proof. Let f : F2 → A4 × Z/mZ be the monodromy of a normal origami.By Lemma 5.2 we an apply an automorphism of F2 to get f(x) = (α, 1)and f(y) = (β, 0). As f has to be surjetive we know 〈α, β〉 = A4. Up to anisomorphism of A4 we have four ases:i) ord(α) = 2, ord(β) = 3, w.l.o.g. (α, β) = ((1 2)(3 4), (2 3 4))ii) ord(α) = 3, ord(β) = 2, w.l.o.g. (α, β) = ((1 2 3), (1 2)(3 4))iii) ord(α) = ord(β) = 3, ord(αβ) = 2, w.l.o.g. (α, β) = ((1 2 3), (2 3 4))iv) ord(α) = ord(β) = 3, ord(αβ) = 3, w.l.o.g. (α, β) = ((1 2 4), (2 3 4))We an apply ϕ ∈ Aut(F2) with x 7→ xy and y 7→ y to get from iii) to i):
(f ◦ ϕ)(x) = f(xy) = ((1 2 3)(2 3 4), 1) = ((1 2)(3 4), 1) and
(f ◦ ϕ)(y) = f(y) = ((2 3 4), 0)We an apply ϕ ∈ Aut(F2) with x 7→ xy−1 and y 7→ y to get from iii) to iv):
(f ◦ ϕ)(x) = f(xy−1) = ((1 2 3)(2 4 3), 1) = ((1 2 4), 1) and
(f ◦ ϕ)(y) = f(y) = ((2 3 4), 0)If m is not divisible by 3 hoose k ∈ N suh that km ≡ 1 mod 3. We anthen apply ϕ ∈ Aut(F2) with x 7→ x and y 7→ xkmy to get from iii) to ii):

(f ◦ ϕ)(x) = f(x) = ((1 2 3), 1) and
(f ◦ ϕ)(y) = f(xkmy) = ((1 2 3)(2 3 4), 0 + km) = ((1 2)(3 4), 0)If m is divisible by 3, ase ii) is not possible, as f would not be surjetive:Assume there is a preimage z ∈ f−1(id, 1). As the �rst omponent of f(z)is id ∈ A4 the presentation of A4 tells us that the element z is ontained inthe normal subgroup generated by y2, x3 and (yx)3, and hene is a produtof onjugates of those elements. But f(y2) = (id, 0) and f(x3) = f((yx)3) =

(id, 3). Therefore the seond omponent of f(z) is divisible by 3. As m isalso divisible by 3 this ontradits f(z) = (id, 1).



52 CHAPTER 5. CONNECTING BOTH WORLDSExample 5.5. In Example 5.1 we have shown that the origami O de�nedby
113 1 4226 4 5 1335 6 466ours as a p-adi origami. Now we have an alternative way of showing this:Let O′ be the minimal normal over of O studied in Example 3.19. We haveseen there that the Galois group of O′ is A4. Proposition 5.4 tells us thatthe origami-urve of O′ is the only urve with this Galois group.In Example 4.4 we onstruted a p-adi origami with Galois group A4; in fatone for every suitably hosen q ∈ P1(Cp). If one of those origamis X ′ is (asan algebrai urve) de�ned over Q and hene over C then it has to our onthe origami-urve of O′. The overing O′ → O leads to a morphism X ′ → X,where X is on the origami-urve of O. As X ′ is a Mumford urve the sameholds for X by [Bra1℄, Satz 5.24.5.3 When the group is not enoughIn setion 2.2 we have proposed an algorithm to �nd all omplex origami-urves of normal origamis with a given Galois group H . This results in a setof representative origamis given as epimorphisms f : F2 ։ H as desribedin Proposition 1.6. For most groups there is only one urve with the givenGalois group, but there are ases where there are more than one2. Thesmallest example for suh a group is the group A5 where there are two urves.Representatives are given by

f1 : F2 → A5, x 7→ (1 5 3 4 2), y 7→ (1 3 2 4 5) and
f2 : F2 → A5, x 7→ (1 5 2 4 3), y 7→ (2 3)(4 5)We an easily see that those two origamis do not de�ne the same urve: InCorollary 3.3 we have seen that the rami�ation index of a normal origamiis the order of f(xyx−1y−1). Hene the rami�ation indies of those twoorigamis are
ord(f1(xyx

−1y−1)) = 5 and ord(f2(xyx
−1y−1)) = 32There are 2386 groups with order less than or equal to 250 whih an be generatedby two elements. Of these there are only 30 where there is more than one urve with thisGalois group. We list those groups in Appendix A.3.



5.3. WHEN THE GROUP IS NOT ENOUGH 53Example 5.6. In Example 4.17 ) we have investigated a 5-adi origamiwith Galois group A5. Our 5-adi origami had rami�ation index 5 (reallthat this was the order of the yli stabilizer of the single end of the quotientgraph), hene this orresponds to the urve of the origami de�ned by f1.Sometimes �xing the rami�ation index makes the origami-urve unique.But there are still some ases where two urves have equal Galois groups andequal rami�ation index. An example for suh a group is the group PSL2(F7),where there are even four urves, represented by fi : F2 → PSL2(F7) with
fi(x) = σi and fi(y) = τi with

σ1 = σ2 = σ3 =

(

1 2
5 4

)

, σ4 =

(

0 6
1 6

)

τ1 =

(

6 0
2 6

)

, τ2 = σ4, τ3 =

(

1 3
6 5

)

, τ4 =

(

6 3
3 4

)The two urves de�ned by f1 and f2 both have rami�ation index 4.We have seen in Proposition 3.13 that the automorphism group of an origamiis isomorphi to C2 ⋉ΦH where Φ : C2 → Aut(H) maps the generator of theyli group C2 to the automorphism ϕ of H de�ned by ϕ(f(x)) = f(x)−1and ϕ(f(y)) = f(y)−1. In the example above with Galois group PSL2(F7)and rami�ation index 4 the automorphism groups are isomorphi and henean not be used to distinguish those two urves. But in some ases they arehelpful:Example 5.7. In Example 4.17 d) we have investigated a 5-adi origami withGalois group PSL2(F11) with rami�ation index 5. There are four possibleorigami-urves, represented by fi : F2 → PSL2(F11) with fi(x) = σi and
fi(y) = τi with

σ1 = σ2 = σ3 =

(

4 6
8 4

)

, σ4 =

(

10 10
7 6

)

τ1 = σ4, τ2 =

(

2 1
8 10

)

, τ3 =

(

1 4
0 1

)

, τ4 =

(

4 10
0 3

)The automorphism groups of f2 and f4 are isomorphi to PSL2(F11)×Z/2Z,while the other two are isomorphi to Aut(PSL2(F11)). We have seen inExample 4.19 that the automorphism group of the p-adi origami ontains
PSL2(F11) × Z/2Z, thus the orresponding omplex origami-urve is eitherde�ned by f2 or f4. We an presently not deide whih of the two urves isthe right one, and the reason for this will beome lear in the next setion.



54 CHAPTER 5. CONNECTING BOTH WORLDS5.4 Twin urvesConsider the origami shown in Figure 5.1.
214 1 5182176 3 1244 17 62 518 35 6

8237227 8 199 14101512 11 112012
13 10 15141114 15 16 3517 2618

9 20191219 20 121 822724 23 4 2324
Figure 5.1: An origami O whose urve is not �xed by omplex onjugationThis origami has 12 unrami�ed puntures and four puntures with rami�a-tion index 3. Its genus is g = 5. The index of the (projetive) Veeh groupis 6. The origami-urve has genus 0 and has three usps, all of width 2. Theintersetion graphs of the stable urves at these usps are shown in Figure5.2. There is only one non-trivial automorphism, whih is even a hyperellip-
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Figure 5.2: Intersetion graphs of the stable urves at the usps of c(O)ti involution. It �xes two points of rami�ation index 3 and ten points oframi�ation index 0. A anonial spin struture exists, its parity is even.There is a natural ation of the absolute Galois group Gal(Q/Q) on origami-urves, and by [Möl℄, Theorem 5.4 this ation is faithful, i.e. for every σ ∈
Gal(Q/Q) there is an origami-urve c whih is mapped to another origami-urve cσ 6= c by σ. One would expet the properties of the urves c and cσto be quite similar.The origami above (onstruted by Florian Nisbah, [Nis℄) is an example



5.4. TWIN CURVES 55for an origami-urve whih is not �xed by the omplex onjugation, but isinstead mapped to the urve of the origami shown in Figure 5.3.234 1 2 3 120417135 18166 157 228 10199249 102112 11 111412518 13 12 1514 714 15 6 171618516 1713617 18
919 420 11 2221821 22124 23 10 2324Figure 5.3: The image of the c(O) under omplex onjugationNot surprisingly all the properties stated above hold for this origami as well.We therefore arrive atConjeture 5.8. All the invariants of origamis introdued in hapter 3 arealso invariant under the ation of Gal(Q/Q).This would mean that we have to aept the fat that sometimes we annotdistinguish ertain origami-urves just by using our invariants.
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Appendix AAlgorithms and alulations
A.1 Counting origami-urvesThis is an implementation of the algorithm outlined in setion 2.2 writtenfor the omputer algebra system Magma. It alulates a representative forevery origami-urve of origamis of degree d. The results up to degree 8 arelisted in setion A.2.Note that as the number of verties of our graph grows exponentially we don'texpliitly onstrut the graph ompletely before omputing its onnetedomponents to save memory. We rather hoose a vertex, delete it, omputeits neighbors, ontinue with deleting those, and so on, until we deleted aomplete onneted omponent. Thus the only thing we have to save iswhether a vertex is deleted or not.Components := funtion(d)Sd:=SymmetriGroup(d);Idx := SetToIndexedSet(Set(Sd));V := [[true : x in [1..#Sd℄℄ : y in [1..#Sd℄℄;ount := #Sd^2;result := [℄;// Generators of Inn(Sd): onjugations with transpositions (1 i)GenInnSd := [hom<Sd->Sd |s:->Sd![{�1,i�}℄*s*Sd![{�1,i�}℄> : i in [2..d℄℄;while ount gt 0 do // while there are verties in the graph// find an unused vertex (i,j)57



58 APPENDIX A. ALGORITHMS AND CALCULATIONSi := 0;repeati := i+1;j := Index(V[i℄,true);until i ge #Sd or j ne 0;// if the subgroup generated by i and j is transitive// the vertex (i,j) desribes an origami: then save itif IsTransitive(sub<Sd | [Idx[i℄,Idx[j℄℄>) thenAppend(~result, <Idx[i℄,Idx[j℄>);end if;// delete the onneted omponent of (i,j)V[i℄[j℄ := false;ount := ount - 1;todo := [<i,j>℄;while not IsEmpty(todo) dov := todo[#todo℄; // pik a vertex vPrune(~todo);// alulate the endpoints of all edges starting at vs := <Idx[v[1℄℄,Idx[v[2℄℄>;E := [ <s[1℄,s[1℄*s[2℄>, // GenOutF2: x->x, y->x*y<s[2℄,s[1℄^(-1)>℄ // x->y, y->x^(-1)at [<f(s[1℄),f(s[2℄)> : f in GenInnSd℄;for e in E do // for all neighbours of vn := <Index(Idx, e[1℄), Index(Idx, e[2℄)>;if V[n[1℄℄[n[2℄℄ then // if they still existV[n[1℄℄[n[2℄℄ := false; // delete them from the graphount := ount-1; // and queue them forAppend(~todo, n); // further alulationend if;end for;end while;end while;return result;end funtion;



A.1. COUNTING ORIGAMI-CURVES 59We an do the same thing for normal origamis by seleting a Galois group G andthen onsider the graph with vertex set G × G. The only things that hange arethe alulation of the generators of Aut(G) and the hek for surjetivity insteadof transitivity.Given a degree d one an use the small groups library of Magma to �nd allgroups of ardinality d, and thus one an easily reate representatives of all normalorigami-urves of degree d.Components := funtion(G)Idx := SetToIndexedSet(Set(G));V := [[true : x in [1..#G℄℄ : y in [1..#G℄℄;ount := #G^2;result := [℄;// alulate generators of Aut(G)p,AutG := PermutationRepresentation(AutomorphismGroup(G));GenAutG := [Inverse(p)(f) : f in Generators(AutG)℄;while ount gt 0 do // while there are verties in the graph// find an unused vertex (i,j)i := 0;repeati := i+1;j := Index(V[i℄,true);until i ge #G or j ne 0;// if the subgroup of G generated by i and j is G itself// the vertex (i,j) desribes an origami: then save itif #sub<G | [Idx[i℄,Idx[j℄℄> eq #G thenAppend(~result, <Idx[i℄,Idx[j℄>);end if;// delete the onneted omponent of (i,j)V[i℄[j℄ := false;ount := ount - 1;todo := [<i,j>℄;while not IsEmpty(todo) dov := todo[#todo℄; // pik a vertex v



60 APPENDIX A. ALGORITHMS AND CALCULATIONSPrune(~todo);// alulate the endpoints of all edges starting at vs := <Idx[v[1℄℄,Idx[v[2℄℄>;E := [ <s[1℄,s[1℄*s[2℄>, // GenOutF2: x->x, y->x*y<s[2℄,s[1℄^(-1)>℄ // x->y, y->x^(-1)at [<f(s[1℄),f(s[2℄)> : f in GenAutG℄;for e in E do // for all neighbours of vn := <Index(Idx, e[1℄), Index(Idx, e[2℄)>;if V[n[1℄℄[n[2℄℄ then // if they still existV[n[1℄℄[n[2℄℄ := false; // delete them from the graphount := ount-1; // and queue them forAppend(~todo, n); // further alulationend if;end for;end while;end while;return result;end funtion;A.2 Origami urves up to degree 8We use the algorithm desribed in setion A.1 to list all urves of origamis withup to eight squares. For eah of the 207 origami-urves we list a representingorigami given by permutations σx and σy. We also alulate some of the invariantsdesribed in hapter 3:
d the degree of the origami
g the genus of the origamiram. the rami�ation indies of the puntures
d the index of the (projetive) Veeh group
g the genus of the origami-urve
n the number of usps of the origami-urve
Aut the number of automorphisms-1 is -1 an element of the Veeh group? If there is even a hyperel-lipti involution we mark this with `h'.
H the onneted omponent in the moduli spae H of Abeliandi�erentials (`h' if the property �hyperellipti� is satis�ed, 0 or

1 for the parity of the anonial spin struture if it exists)



A.2. ORIGAMI CURVES UP TO DEGREE 8 61
σx σy d g ram. d g n Aut -1 Hid id 1 1 1 1 0 1 2 h 1(1 2) (1 2) 2 1 1 1 3 0 2 4 h 1id (1 3 2) 3 1 1 1 1 4 0 2 6 h 1(1 2) (2 3) 3 2 3 3 0 2 2 h h 1(1 2)(3 4) (1 3)(2 4) 4 1 1 1 1 1 1 0 1 8 h 1id (1 4 3 2) 4 1 1 1 1 1 6 0 3 8 h 1(1 2) (2 4 3) 4 2 1 3 9 0 3 2 h h 1(1 3 2) (1 2)(3 4) 4 2 2 2 4 0 2 2 h h(1 2) (1 3)(2 4) 4 2 2 2 6 0 3 4 h hid (1 5 4 3 2) 5 1 1 1 1 1 1 6 0 2 10 h 1(1 3 2) (3 5 4) 5 2 1 1 3 9 0 3 2 h h 1(1 2) (2 5 4 3) 5 2 1 1 3 18 0 5 2 h h 1(1 2) (1 3)(2 5 4) 5 2 1 2 2 24 0 6 2 h h(1 2)(3 4) (2 3)(4 5) 5 3 5 3 0 2 2 h h 0(1 2)(3 4) (2 5 4 3) 5 3 5 6 0 3 1 1(1 3 2) (2 4)(3 5) 5 3 5 10 0 3 2 × 1(1 3 2) (1 4 2)(3 5) 5 3 5 15 0 4 2 h h 0id (1 6 5 4 3 2) 6 1 1 1 1 1 1 1 12 0 4 12 h 1(1 2)(3 4) (1 6 5 4 2 3) 6 2 1 1 1 3 3 0 2 2 h h 1(1 2)(3 4) (1 3)(2 6 5 4) 6 2 1 1 1 3 6 0 3 2 h h 1(1 2) (2 6 5 4 3) 6 2 1 1 1 3 36 0 8 2 h h 1(1 2)(3 4) (1 5 3)(2 6 4) 6 2 1 1 2 2 4 0 2 4 h h(1 2) (1 4 3)(2 6 5) 6 2 1 1 2 2 12 0 4 4 h h(1 3 2) (1 2)(3 6 5 4) 6 2 1 1 2 2 24 0 6 2 h h(1 4 3 2) (1 3 2)(4 6 5) 6 2 1 1 2 2 24 0 6 2 h h(1 2) (1 3)(2 6 5 4) 6 2 1 1 2 2 24 0 6 2 h h(1 2)(3 4) (1 3 2)(4 6 5) 6 3 1 5 10 0 3 2 h h 0(1 2)(3 4) (2 6 5 4 3) 6 3 1 5 10 0 3 1 1(1 3 2) (1 4 2)(3 6 5) 6 3 1 5 15 0 4 2 h h 0(1 2)(3 4) (1 6 5 4 3 2) 6 3 1 5 15 0 4 2 × 1(1 3 2) (1 2 4)(3 6 5) 6 3 1 5 15 0 4 2 h h 0(1 2)(3 4) (2 3)(4 6 5) 6 3 1 5 30 0 7 2 h h 0(1 3 2) (2 4)(3 6 5) 6 3 1 5 60 0 12 1 1(1 2)(3 4) (1 5 3 2)(4 6) 6 3 2 4 16 0 4 1(1 2)(3 4) (2 5 3)(4 6) 6 3 2 4 48 0 10 1(1 2)(3 4)(5 6) (1 3)(2 5)(4 6) 6 3 3 3 3 0 2 12 h 1(1 2)(3 4) (1 3)(2 5)(4 6) 6 3 3 3 6 0 3 4 h h 0(1 3 2) (1 5 2 4)(3 6) 6 3 3 3 6 0 3 2 h h 0(1 2)(3 4) (1 6 4 5 2) 6 3 3 3 9 0 3 2 h 1(1 2)(3 4) (1 3)(2 6 4 5) 6 3 3 3 9 0 3 4 h 1(1 4 3 2) (1 3)(2 5)(4 6) 6 3 3 3 9 0 3 4 h h 0



62 APPENDIX A. ALGORITHMS AND CALCULATIONS
σx σy d g ram. d g n Aut -1 H(1 3 2) (1 4)(2 5)(3 6) 6 3 3 3 12 0 4 6 × 1(1 2)(3 4) (1 6 4 5 2 3) 6 3 3 3 18 0 5 2 × 1(1 2)(3 4) (2 6 4 5) 6 3 3 3 18 0 5 4 h 1(1 4 3 2) (1 5 3)(4 6) 6 3 3 3 36 0 8 2 h h 0id (1 7 6 5 4 3 2) 7 1 1 1 1 1 1 1 1 8 0 2 14 h 1(1 3 2) (3 7 6 5 4) 7 2 1 1 1 1 3 36 0 8 2 h h 1(1 2) (2 7 6 5 4 3) 7 2 1 1 1 1 3 54 0 10 2 h h 1(1 2)(3 4) (1 7 6 4 2 5 3) 7 2 1 1 1 2 2 16 0 4 2 h h(1 2) (1 3)(2 7 6 5 4) 7 2 1 1 1 2 2 144 1 24 2 h h(1 2)(3 4) (2 3)(4 7 6 5) 7 3 1 1 5 30 0 7 2 h h 0(1 3 2) (2 5 4)(3 7 6) 7 3 1 1 5 40 0 8 2 × 1(1 3 2) (2 4)(3 7 6 5) 7 3 1 1 5 60 0 12 1 1(1 3 2) (1 5 4 2)(3 7 6) 7 3 1 1 5 105 0 18 2 h h 0(1 3 2) (1 4 2)(3 7 6 5) 7 3 1 1 5 120 0 22 2 h h 0(1 2)(3 4) (2 7 6 5 4 3) 7 3 1 1 5 180 1 30 1 1(1 2)(3 4) (2 5 3)(4 7 6) 7 3 1 2 4 16 0 4 1(1 2)(3 4) (1 7 6 4 5 3 2) 7 3 1 2 4 16 0 4 1(1 5 4 3 2) (1 4 3)(5 7 6) 7 3 1 2 4 48 0 10 1(1 5 4 3 2) (1 3 4)(5 7 6) 7 3 1 2 4 48 0 10 1(1 2)(3 4) (1 5 3 2)(4 7 6) 7 3 1 2 4 384 1 64 1(1 2)(3 4) (1 7 6 4 5 2 3) 7 3 1 3 3 18 0 5 1 1(1 2)(3 4) (1 3)(2 5)(4 7 6) 7 3 1 3 3 36 0 8 2 h h 0(1 2)(3 4) (1 7 6 4 5 2) 7 3 1 3 3 48 0 10 1 1(1 2)(3 4) (1 3)(2 7 6 4 5) 7 3 1 3 3 66 0 11 2 h 1(1 3 2) (1 4)(2 5)(3 7 6) 7 3 1 3 3 72 0 14 2 × 1(1 3 2) (1 5 2 4)(3 7 6) 7 3 1 3 3 180 0 32 2 h h 0(1 5 4 3 2) (1 2 6 4)(5 7) 7 3 2 2 3 24 0 6 1(1 2)(3 4) (2 6 3 5)(4 7) 7 3 2 2 3 24 0 6 2 h(1 2)(3 4) (1 6 3)(2 5)(4 7) 7 3 2 2 3 36 0 8 2 ×(1 2)(3 4) (1 5 2 6 3)(4 7) 7 3 2 2 3 72 0 14 1(1 2)(3 4) (1 6 3 5 2)(4 7) 7 3 2 2 3 108 0 20 2 h(1 2)(3 4)(5 6) (2 3)(4 5)(6 7) 7 4 7 3 0 2 2 h h 0(1 3 2)(4 6 5) (1 2 7 6 5 3 4) 7 4 7 4 0 2 1 1(1 4 3 2)(5 6) (1 2)(3 7 4 5) 7 4 7 7 0 2 2 h h 0(1 4 3 2)(5 6) (1 7 4 5)(2 3) 7 4 7 7 0 2 2 h h 0(1 2)(3 4)(5 6) (2 3 7 6 5 4) 7 4 7 12 0 4 1 0(1 5 4 3 2) (1 4)(2 6 3)(5 7) 7 4 7 21 0 5 2 h h 0(1 5 4 3 2) (1 6 4)(2 3)(5 7) 7 4 7 21 0 5 2 h h 0(1 5 4 3 2) (1 6 4 3)(5 7) 7 4 7 28 0 6 1 0(1 5 4 3 2) (2 3 6 4)(5 7) 7 4 7 42 0 9 1 1(1 5 4 3 2) (1 2)(3 6 4)(5 7) 7 4 7 42 0 9 1 1



A.2. ORIGAMI CURVES UP TO DEGREE 8 63
σx σy d g ram. d g n Aut -1 H(1 4 3 2) (1 6 3)(2 5)(4 7) 7 4 7 84 0 16 2 h h 0(1 3 2)(4 5) (2 4)(3 7 5 6) 7 4 7 168 0 30 1 1(1 4 3 2) (2 6 3 5)(4 7) 7 4 7 168 0 30 1 0(1 4 3 2) (2 5)(3 6)(4 7) 7 4 7 189 0 33 2 × 1(1 2)(3 4)(5 6)(7 8) (1 7 5 3)(2 8 6 4) 8 1 1 1 1 1 1 1 1 1 3 0 2 16 h 1id (1 8 7 6 5 4 3 2) 8 1 1 1 1 1 1 1 1 1 12 0 4 16 h 1(1 2)(3 4) (1 3)(2 8 7 6 5 4) 8 2 1 1 1 1 1 3 9 0 3 2 h h 1(1 2)(3 4) (1 8 7 6 5 4 2 3) 8 2 1 1 1 1 1 3 18 0 5 2 h h 1(1 2) (2 8 7 6 5 4 3) 8 2 1 1 1 1 1 3 108 1 17 2 h h 1(1 2)(3 4) (1 8 7 4 2 6 5 3) 8 2 1 1 1 1 2 2 6 0 3 4 h h(1 2)(3 4)(5 6)(7 8) (1 3)(2 7 5 4)(6 8) 8 2 1 1 1 1 2 2 6 0 3 4 h h(1 2)(3 4) (1 6 5 3)(2 8 7 4) 8 2 1 1 1 1 2 2 6 0 3 4 h h(1 3 2)(4 6 5) (1 5 2 4)(3 8 7 6) 8 2 1 1 1 1 2 2 12 0 4 2 h h(1 2) (1 5 4 3)(2 8 7 6) 8 2 1 1 1 1 2 2 24 0 6 4 h h(1 2) (1 3)(2 8 7 6 5 4) 8 2 1 1 1 1 2 2 72 0 14 2 h h(1 3 2) (1 2)(3 8 7 6 5 4) 8 2 1 1 1 1 2 2 96 1 16 2 h h(1 2) (1 4 3)(2 8 7 6 5) 8 2 1 1 1 1 2 2 144 1 24 2 h h(1 2)(3 4) (1 8 7 6 5 4 3 2) 8 3 1 1 1 5 60 0 12 2 × 1(1 4 3 2) (1 6 5 3 2)(4 8 7) 8 3 1 1 1 5 75 0 13 2 h h 0(1 2)(3 4) (2 8 7 6 5 4 3) 8 3 1 1 1 5 130 0 23 1 1(1 2)(3 4) (2 3)(4 8 7 6 5) 8 3 1 1 1 5 240 0 42 2 h h 0(1 3 2) (1 4 2)(3 8 7 6 5) 8 3 1 1 1 5 270 1 45 2 h h 0(1 3 2) (2 4)(3 8 7 6 5) 8 3 1 1 1 5 510 5 77 1 1(1 2)(3 4) (2 8 7 6 4 5 3) 8 3 1 1 2 4 48 0 10 1(1 2)(3 4) (1 5 3 2)(4 8 7 6) 8 3 1 1 2 4 48 0 10 1(1 3 2)(4 5) (1 4)(2 6 3 8 7 5) 8 3 1 1 2 4 96 0 18 1(1 2)(3 4) (1 6 5 3 2)(4 8 7) 8 3 1 1 2 4 384 1 64 1(1 2)(3 4) (2 5 3)(4 8 7 6) 8 3 1 1 2 4 1440 16 210 1(1 3 2)(4 6 5) (1 4 2 5)(3 8 7 6) 8 3 1 1 3 3 3 0 2 2 h 1(1 3 2)(4 6 5) (1 4)(2 5)(3 7)(6 8) 8 3 1 1 3 3 9 0 3 4 h h 0(1 3 2)(4 6 5) (1 8 7 6 3 5)(2 4) 8 3 1 1 3 3 12 0 4 1 1(1 2)(3 4) (1 5 2 3)(4 8 7 6) 8 3 1 1 3 3 18 0 5 2 h h 0(1 4 3 2)(5 6) (1 5)(2 6)(3 7)(4 8) 8 3 1 1 3 3 18 0 5 2 × 1(1 2)(3 4) (1 3)(2 8 7 4 6 5) 8 3 1 1 3 3 18 0 5 4 h 1(1 3 2)(4 6 5) (3 5 4)(6 8 7) 8 3 1 1 3 3 18 0 5 2 h h 0(1 4 3 2) (2 6 5)(4 8 7) 8 3 1 1 3 3 36 0 7 4 h 1(1 3 2) (1 5 2 4)(3 8 7 6) 8 3 1 1 3 3 36 0 8 2 h h 0(1 2)(3 4)(5 6) (1 8 6 7 4 2 5 3) 8 3 1 1 3 3 36 0 8 2 × 1(1 2)(3 4) (1 3)(2 5)(4 8 7 6) 8 3 1 1 3 3 36 0 8 2 h h 0(1 2)(3 4) (1 3)(2 6 5)(4 8 7) 8 3 1 1 3 3 36 0 8 4 h h 0(1 2)(3 4) (2 8 7 4 6 5) 8 3 1 1 3 3 36 0 8 4 h 1



64 APPENDIX A. ALGORITHMS AND CALCULATIONS
σx σy d g ram. d g n Aut -1 H(1 2)(3 4) (1 8 7 6 4 5 2) 8 3 1 1 3 3 36 0 8 1 1(1 2)(3 4)(5 6) (1 8 6 7 4 2 3) 8 3 1 1 3 3 45 0 9 2 h 1(1 3 2) (1 4)(2 5)(3 8 7 6) 8 3 1 1 3 3 54 0 11 2 × 1(1 4 3 2) (2 5)(4 8 7 6) 8 3 1 1 3 3 60 0 12 2 h 1(1 2)(3 4) (1 3)(2 8 7 6 4 5) 8 3 1 1 3 3 90 1 15 2 h 1(1 4 3 2) (1 6 5 3)(4 8 7) 8 3 1 1 3 3 144 0 26 2 h h 0(1 3 2) (1 4)(2 6 5)(3 8 7) 8 3 1 1 3 3 144 1 24 2 × 1(1 3 2) (1 6 5 2 4)(3 8 7) 8 3 1 1 3 3 198 0 35 2 h h 0(1 2)(3 4) (1 8 7 6 4 5 2 3) 8 3 1 1 3 3 312 3 48 1 1(1 4 3 2) (1 5 3)(4 8 7 6) 8 3 1 1 3 3 378 4 57 2 h h 0(1 3 2)(4 6 5) (1 5)(2 4)(3 8 7 6) 8 3 1 2 2 3 6 0 3 2 h(1 2)(3 4) (1 5 2 8 7 4 6 3) 8 3 1 2 2 3 18 0 5 2 ×(1 2)(3 4) (1 8 7 4 6 3)(2 5) 8 3 1 2 2 3 18 0 5 1(1 4 3 2)(5 6) (1 5)(2 7 3 6)(4 8) 8 3 1 2 2 3 24 0 6 1(1 2)(3 4) (1 8 7 4 6 2 3 5) 8 3 1 2 2 3 36 0 8 2 ×(1 2)(3 4) (2 6 3 5)(4 8 7) 8 3 1 2 2 3 192 0 34 2 h(1 2)(3 4) (1 5 2 6 3)(4 8 7) 8 3 1 2 2 3 216 1 36 1(1 2)(3 4) (1 6 3 5 2)(4 8 7) 8 3 1 2 2 3 252 1 42 2 h(1 2)(3 4) (1 6 3)(2 5)(4 8 7) 8 3 1 2 2 3 840 10 122 1(1 4 3 2)(5 8 7 6) (1 5 3 7)(2 8 4 6) 8 3 2 2 2 2 1 0 1 16 ×(1 2)(3 4)(5 6)(7 8) (1 3)(2 5)(4 7)(6 8) 8 3 2 2 2 2 3 0 2 16 h(1 2)(3 4) (1 8 4 6 2 7 3 5) 8 3 2 2 2 2 6 0 3 8 ×(1 2)(3 4) (1 7 3 5)(2 8 4 6) 8 3 2 2 2 2 6 0 3 8 h(1 7 6 5 4 3 2) (1 5)(2 3)(4 6)(7 8) 8 3 2 2 2 2 8 0 2 1(1 2)(3 4) (1 7 3 6 2 5)(4 8) 8 3 2 2 2 2 12 0 4 2 h(1 4 3 2)(5 6) (1 5)(2 7)(3 6)(4 8) 8 3 2 2 2 2 12 0 4 4 h(1 3 2)(4 6 5) (1 5)(2 4)(3 7)(6 8) 8 3 2 2 2 2 12 0 4 4 h(1 2)(3 4) (1 5)(2 7 3 6)(4 8) 8 3 2 2 2 2 24 0 6 4 h(1 2)(3 4)(5 6) (2 3 8 6 4 7 5) 8 3 2 2 2 2 36 0 7 2 ×(1 3 2)(4 6 5) (1 2)(3 8 6 7)(4 5) 8 3 2 2 2 2 48 0 10 4 h(1 3 2)(4 5) (1 2)(3 7 4 6)(5 8) 8 3 2 2 2 2 132 1 19 2 h(1 3 2)(4 6 5) (1 7 5 3)(2 8 6 4) 8 4 1 7 7 0 2 2 × 0(1 4 3 2)(5 6) (1 5 3 2)(4 8 6 7) 8 4 1 7 21 0 5 2 × 1(1 4 3 2)(5 6) (1 5 3)(4 8 7) 8 4 1 7 21 0 5 2 h h 0(1 4 3 2)(5 6) (1 2 3 5)(4 8 6 7) 8 4 1 7 21 0 5 2 × 1(1 4 3 2)(5 6) (1 3 5)(4 8 7) 8 4 1 7 21 0 5 2 h h 0(1 3 2)(4 6 5) (2 4 3)(6 8 7) 8 4 1 7 28 0 6 1 0(1 3 2)(4 6 5) (1 4 3)(6 8 7) 8 4 1 7 28 0 6 1 0(1 5 4 3 2) (1 7 4 2 6 3)(5 8) 8 4 1 7 42 0 9 2 h h 0(1 2)(3 4)(5 6) (2 5 4)(6 8 7) 8 4 1 7 42 0 9 2 × 1(1 2)(3 4)(5 6) (2 3)(4 5)(6 8 7) 8 4 1 7 42 0 9 2 h h 0
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σx σy d g ram. d g n Aut -1 H(1 4 3 2) (1 5 2 6 3)(4 8 7) 8 4 1 7 336 1 56 2 × 1(1 5 4 3 2) (1 2 6 4 3)(5 8 7) 8 4 1 7 546 1 91 1 0(1 5 4 3 2) (1 2)(4 6)(5 8 7) 8 4 1 7 546 2 89 1 1(1 4 3 2) (1 6 3)(2 5)(4 8 7) 8 4 1 7 567 5 85 2 h h 0(1 4 3 2) (2 6 3 5)(4 8 7) 8 4 1 7 1260 15 182 1 0(1 4 3 2) (2 5)(3 6)(4 8 7) 8 4 1 7 1932 22 280 1 1(1 4 3 2)(5 6) (2 7 5)(4 8 6) 8 4 2 6 18 0 5 2(1 2)(3 4)(5 6) (2 7 5)(4 8 6) 8 4 2 6 18 0 5 2(1 4 3 2)(5 6) (1 8 6 5 2 3)(4 7) 8 4 2 6 36 0 8 1(1 2)(3 4)(5 6) (1 3)(2 7 5)(4 8 6) 8 4 2 6 36 0 8 2(1 4 3 2)(5 6) (1 3 8 6 5 2)(4 7) 8 4 2 6 36 0 8 1(1 5 4 3 2) (2 6 3)(4 7)(5 8) 8 4 2 6 648 1 108 1(1 3 2)(4 5) (2 6 3 7 4)(5 8) 8 4 2 6 2160 22 318 1(1 4 3 2)(5 6) (2 5)(4 8 6 7) 8 4 3 5 15 0 4 2 × 1(1 2)(3 4)(5 6) (2 3)(4 8 6 7) 8 4 3 5 30 0 7 2 h 0(1 5 4 3 2) (1 7 4 3 6 2)(5 8) 8 4 3 5 45 0 9 2 h 0(1 5 4 3 2) (2 6)(4 7)(5 8) 8 4 3 5 180 0 32 2 × 1(1 4 3 2)(5 6) (1 2)(4 8 6 7) 8 4 3 5 240 1 40 1 1(1 5 4 3 2) (1 2 7 4 6 3)(5 8) 8 4 3 5 270 0 47 1 0(1 3 2)(4 5) (1 6 2)(3 8 5 7) 8 4 3 5 330 3 50 2 h 0(1 3 2)(4 5) (1 7 3 8 5 4)(2 6) 8 4 3 5 540 5 82 1 0(1 3 2)(4 5) (2 6)(3 8 5 7) 8 4 3 5 900 11 130 1 1(1 2)(3 4)(5 6) (1 3)(2 5)(4 7)(6 8) 8 4 4 4 6 0 3 4 h h(1 2)(3 4)(5 6) (1 5 2 3)(4 8 6 7) 8 4 4 4 6 0 3 4 ×(1 4 3 2) (1 7 3 5)(2 6)(4 8) 8 4 4 4 12 0 4 4 h h(1 2)(3 4)(5 6) (1 3)(2 5)(4 8 6 7) 8 4 4 4 12 0 4 4 ×(1 3 2)(4 6 5) (1 2)(3 4)(5 7)(6 8) 8 4 4 4 16 0 4 2 ×(1 3 2)(4 6 5) (1 5 4 2)(3 8 6 7) 8 4 4 4 16 0 4 4 ×(1 3 2)(4 6 5) (1 2 5 4)(3 8 6 7) 8 4 4 4 16 0 4 2 ×(1 2)(3 4)(5 6) (1 8 6 7 4 3 5 2) 8 4 4 4 24 0 6 2 ×(1 2)(3 4)(5 6) (2 8 6 7 4 5) 8 4 4 4 24 0 6 2 ×(1 4 3 2) (1 5)(2 6)(3 7)(4 8) 8 4 4 4 24 0 6 8 ×(1 3 2)(4 5) (1 6 2 4)(3 7)(5 8) 8 4 4 4 24 0 6 2 h h(1 6 5 4 3 2) (1 2)(3 7)(4 5)(6 8) 8 4 4 4 24 0 6 4 ×(1 3 2)(4 6 5) (1 5 4 2)(3 7)(6 8) 8 4 4 4 24 0 6 4 h h(1 4 3 2)(5 6) (1 2)(3 5)(4 7)(6 8) 8 4 4 4 48 0 10 1(1 4 3 2)(5 6) (2 3 7 4 8 6 5) 8 4 4 4 48 0 10 1(1 4 3 2) (1 6 2 5)(3 7)(4 8) 8 4 4 4 72 0 14 2 ×(1 4 3 2)(5 6) (1 5 3)(4 7)(6 8) 8 4 4 4 96 0 18 2 h h(1 3 2)(4 5) (1 6 2 4)(3 8 5 7) 8 4 4 4 240 0 42 2 ×(1 5 4 3 2) (1 7 4)(2 6 3)(5 8) 8 4 4 4 288 0 50 2 h h
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σx σy d g ram. d g n Aut -1 H(1 5 4 3 2) (1 2)(3 6)(4 7)(5 8) 8 4 4 4 384 2 62 2 ×(1 3 2)(4 5) (1 4)(2 6)(3 8 5 7) 8 4 4 4 576 6 86 1A.3 Galois groups whose urves are not uniqueThere are 6960 groups whose order is less than or equal to 250. Of these 2386 an begenerated by two elements and are thus possible Galois groups of origamis. Almostall of the orresponding origami-urves are already uniquely de�ned by their Galoisgroup. There are only 30 exeptions, whih are listed in the following table. In theolumns we have noted �rst the group order n, then the number k of the group inthe small-groups-library of Magma (i.e. the group an be onstruted in Magmausing the ommand SmallGroup(n,k)) and �nally the number of origami-urvesand their rami�ation indies:order number urves rami�ation60 5 2 3, 581 10 2 3, 3120 5 2 6, 10120 34 3 2, 3, 5120 35 2 3, 5160 199 2 2, 4162 31 2 3, 3168 42 4 3, 4, 4, 7168 43 2 7, 7180 19 2 3, 5189 7 2 21, 21192 181 2 6, 6192 201 3 2, 4, 4192 202 2 2, 4192 1491 2 6, 6200 44 3 2, 2, 2216 87 2 2, 6216 153 3 4, 4, 4240 89 3 3, 4, 10240 90 3 3, 4, 10240 91 3 2, 3, 5240 92 2 3, 5240 93 2 6, 10240 94 2 6, 10240 189 3 2, 3, 5



A.4. DETERMINING THE AUTOMORPHISM GROUPS 67order number urves rami�ation240 190 2 3, 5243 5 2 3, 3243 7 2 3, 3243 16 2 3, 3243 18 2 3, 3A.4 Determining the automorphism groupsThe followingMagma ode alulates the automorphism group of a normal origamigiven by f : F2 ։ G, more preisely by the images σ := f(x) and τ := f(y) ofthe generators. We have seen in Proposition 3.13 that this group is isomorphi to
C2 ⋉Φ G where Φ : C2 → Aut(G) maps the generator of the yli group C2 to
ϕ ∈ Aut(G) de�ned by ϕ(σ) = σ−1 and ϕ(τ) = τ−1. If suh an automorphismdoesn't exist the automorphism group equals the Galois group.Aut := funtion(sigma,tau)G := sub<Parent(sigma)|[sigma,tau℄>;A := AutomorphismGroup(G);if not IsHomomorphism(G,G,[Inverse(sigma), Inverse(tau)℄)thenreturn G;elsephi := hom<G -> G | [Inverse(sigma), Inverse(tau)℄>;C2 := CyliGroup(2);Phi := hom<C2 -> A | [A!phi℄>;return SemidiretProdut(G,C2,Phi);end if;end funtion;For the onstrution of the semidiret produt we need the help of the followingfuntion, whih onstruts a group H from the set of its elements S and a map
ψ : S × S → S whih de�nes the multipliation in H. This is done by identifying
y ∈ S with the map ψ( � , y) ∈ Sym(S). We have

ψ( � , x) · ψ( � , y) = ψ(ψ( � , x), y) = ψ( � , ψ(x, y))where the left equation is the way Magma multiplies permutations and the rightequation holds beause ψ has to be assoiative. Thus we get a subgroup H of
Sym(S) whih respets the group operation de�ned by ψ.



68 APPENDIX A. ALGORITHMS AND CALCULATIONSGroup := funtion(S, psi)G := Sym(S);H := sub<G | [G![psi(<x,y>) : x in S℄ : y in S℄>;BSGS(H);RedueGenerators(~H);E := {x : x in S | forall{y : y in S | psi(<x,y>) eq y}};e := Rep(E); // the neutral Elementf := map<S->H | y :-> H![psi(<x,y>): x in S℄, p :-> Image(p,S!e)>;return H,f;end funtion;We an now onstrut a semidiret produt G := H ⋉φ N with ϕ : H → Nby using the multipliation on S := N × H de�ned by ψ : S × S → S with
ψ((n1, h1), (n2, h2)) = (n1ϕ(h1)(n2), h1h2). The funtion also returns the inlu-sions iN : N →֒ G, iH : H →֒ G and the projetion pH : G։ H.SemidiretProdut := funtion(N,H,phi)S := Set(CartesianProdut(Set(N),Set(H)));S2 := CartesianProdut(S,S);psi := map<S2->S | T :-> S!<N!T[1℄[1℄*phi(H!T[1℄[2℄)(N!T[2℄[1℄),H!T[1℄[2℄*H!T[2℄[2℄> >;G,f := Group(S,psi);iN := hom<N -> G | x :-> f(<x,H!1>) >;iH := hom<H -> G | x :-> f(<N!1,x>) >;pH := hom<G -> H | g :-> (g �� f)[2℄>;if #N*#H eq #Gthen return G,iN,pH,iH;else return false;end if;end funtion;
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