
December, 2008
Don’t distribute

A BAYESIAN APPROACH TO INCORPORATE MODEL
AMBIGUITY IN A DYNAMIC RISK MEASURE

NICOLE BÄUERLE∗ AND ANDRÉ MUNDT‡

Abstract. In this paper we consider an explicit dynamic risk measure for
discrete-time payment processes which have a Markovian structure. The risk
measure is essentially a sum of conditional Average Value–at–Risks. Analogous
to the static Average Value–at–Risk, this risk measures can be reformulated
in terms of the value functions of a dynamic optimization problem, namely
a so-called Markov decision problem. This observation gives a nice recursive
computation formula. Afterwards, the definition of the dynamic risk measure is
generalized to a setting with incomplete information about the risk distribution
which can be seen as model ambiguity. We choose a parametric approach
here. The dynamic risk measure is again defined as the sum of conditional
Average Value–at–Risks or equivalently is the solution of a Bayesian decision
problem. Finally, it is possible to discuss the effect of model ambiguity on the
risk measure: Surprisingly, it may be the case that the risk decreases when
additional ”risk” due to parameter uncertainty shows up. All investigations
are illustrated by a simple but useful coin tossing game proposed by Artzner
and by the classical Cox–Ross-Rubinstein model.

1. Introduction and Motivation

Dealing with risk is particularly important for financial corporations such as banks
and insurance companies, since they face uncertain events in various lines of their
business. An important tool in risk management is the implementation of risk mea-
sures, in particular ones which go beyond the variance. Since the risk is modeled
by random quantities, i. e. random variables or, in a dynamic framework, stochastic
processes, the established procedure is first to estimate or approximate the distri-
bution of such positions and then to quantify the risk due to the unknown outcome.
The value of a risk measure can be interpreted as the present (and future in case
of dynamic risk measures) monetary value which is necessary to keep the risk ac-
ceptable. However, in contrast to most approaches so far, it seems reasonable to
incorporate the model risk which stems from calibrating the risk process into the
risk assessment. We will present an approach here which deals with this topic and
which could be extended in various directions.

In this paper we introduce an explicit dynamic risk measure, based on a pro-
posal by Pflug and Ruszczyński (2005) for stochastic (risk) processes which have
a Markovian structure. This class of risk processes is large enough to include the
most popular financial models in discrete-time. The dynamic risk measure is a
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sum of conditional Average Value–at–Risk and it can be shown that it has a lot
of desirable properties. Since the static Average Value–at–Risk is a solution of
a (static) optimization problem we will show that our dynamic risk measure is a
solution of a dynamic (Markovian) optimization problem. This dynamic problem
turns out to be a Markov Decision Problem. The advantage of this representation
is the recursive computation formula which we obtain. Moreover, we generalize the
dynamic risk measure to situations with incomplete information about the risk dis-
tribution which can be seen as model risk. In order to do this we use a parametric
model and take a Bayesian approach, i.e. we suppose that the random variables
of the risk process depend on an unknown parameter θ ∈ Θ and we have a prior
distribution µ for this unknown parameter. Of course in a dynamic context, the
information about the unknown parameter which is gained over time by observing
the risk process should be incorporated into the risk measurement procedure. Thus,
we can in principle use the same definition of the dynamic risk measure w.r.t. the
corresponding ”Bayesian” probability measure. It can be shown that this is equiv-
alent to a Bayesian decision problem. Thus, we get again a recursive computation
algorithm and this recursive representation enables us to discuss the influence of
model ambiguity. Namely, we are interested in comparing the risk in a situation
where the parameter is unknown with prior distribution µ to a situation where the
parameter is known and equal to

∫
θµ(dθ). It turns out that such a comparison in

general is very hard. We only get some partial answers.
Let us illustrate the approach by a simple example due to Artzner which has also

been cited in Pflug and Ruszczyński (2005): Imagine that it is possible to play one
of the following two games. A coin is tossed three times and the player can win one
Euro in two different ways. In the first game, this is the case if the last throw shows
heads. The second variant awards the player with one Euro if at least two of the
three throws show heads. Now the question arises which of the two games is less
risky for the player? If we know that the coin is fair then the approach in Pflug and
Ruszczyński (2005) returns a number which also incorporates the way information
is gained in this game, leading to a smaller risk for game 2. Now assume that
the probability for heads is not known but a prior distribution is available (e.g. an
expert opinion). Here again it is crucial that information is gained (also about the
unknown probability for heads) as the coin is tossed. This information should be
included in the risk measurement procedure. It indeed turns out that if the prior
distribution is µ = U(0, 1) then the risk (measured with our Bayesian risk measure)
is smaller than in the case the probability for heads is known and equal to 1

2 .
One of the first papers to investigate the notion of dynamic risk measures was

Wang (1999). By now there are quite a number of papers on dynamic risk mea-
sures in discrete time, we just mention e.g. Riedel (2004), Burgert (2005), Weber
(2006), Delbaen (2006), Föllmer and Penner (2006), Frittelli and Scandolo (2006).
These papers show properties or characterize dynamic risk measures. More explicit
dynamic risk measures can be found in Boda and Filar (2006) and Roorda and
Schumacher (2007) (both consider dynamic Average Value–at–Risk) or the papers
by Pflug (2001, 2006) and Pflug and Ruszczyński (2005). In Pflug (2006) the role
of information in risk measurement is highlighted. All these papers assume that
there is no explicit model ambiguity. In Cont et al. (2006) the authors deal with
model risk by investigating robustness properties and empirical risk measures.
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The paper is organized as follows. Section 2 gives a short review of static risk
measures and Section 3 highlights the role of information in measuring risk. In
the next section a dynamic version of a risk measure for processes introduced by
Pflug and Ruszczyński (2005) is defined. We will be able to give a reformulation
in terms of Markov decision processes if the income processes considered possess
a Markovian structure. This can be advantageous for computational purposes.
In Section 5 we generalize the model to the case where the generating random
variables of the income process depend on some unknown parameter. A Bayesian
risk measure is introduced which is again a sum of condition Average Value–at–
Risk. This time it can be solved by a Bayesian decision model. In Section 6 we
compare the risk measures with and without model ambiguity. Some conditions
are given under which the risk measures can be compared. It turns out that in the
Cox–Ross-Rubinstein model these conditions are satisfied and uncertainty decreases
the risk.

2. Static Risk Measures

In this section we recall some facts about static risk measures which we use in the
sequel. (For a thorough treatment see e.g. Föllmer and Schied (2004)). Negative
values of financial positions are interpreted as a loss. By L1(Ω,F ,P) we denote the
equivalence classes of integrable random variables.

Definition 2.1. A mapping ρ : L1(Ω,F ,P) → R is called a (static) risk measure
if it is monotone and translation invariant.

Example 2.2. A classical and famous risk measure is Value–at–Risk. For a risk
X ∈ L1(Ω,F ,P) and level γ ∈ (0, 1) it is defined by

VaRγ(X) := q−γ (−X) = inf{x ∈ R | P(−X ≤ x) ≥ γ}.
Consequently, VaRγ(X) represents the smallest monetary value such that −X does
not exceed this value at least with probability γ. Hence, we are interested in
calculating the Value–at–Risk for large values of γ, e. g. set γ = 0.95 or γ = 0.99.

Example 2.3. Another well–known risk measure called Average Value–at–Risk
can be defined by using Value–at–Risk. For γ ∈ (0, 1) it represents an average of
the Value–at–Risk to all safety levels larger than γ, formally for X ∈ L1(Ω,F ,P)

AVaRγ(X) :=
1

1− γ

∫ 1

γ

VaRu(X)du, γ ∈ (0, 1). (2.1)

The definition, which is continuous and strictly increasing in the safety level γ, is
also valid for γ = 0 and we obtain AVaR0(X) = E[−X]. By Uryasev and Rockafellar
(2002), Average Value–at–Risk can be represented by a simple convex optimization
problem. Fix γ ∈ (0, 1) and X ∈ L1(Ω,F ,P). Then we have

AVaRγ(X) = inf
b∈R

{
b +

1
1− γ

E
[
(−X − b)+

] }
. (2.2)

In fact, the infimum is attained in b∗ = VaRα(X). Besides the properties mentioned
in Definition 2.1, the Average-Value-at-Risk is also convex.

A law invariant risk measure ρ (i.e. ρ depends only on the distribution of the risk)
such as Value–at–Risk or Average Value–at–Risk can be regarded as a mapping on
M1, the set of all distributions on R with finite mean in the sense that ρ(µ) := ρ(X)
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whenever L(X) = µ for µ ∈ M1. Let X ∈ L1(Ω,F ,P) and Y be another random
variable on R. Then the conditional distribution L(X |Y = y) exists for every
y ∈ R, is unique almost surely and we can define:

ρ(X |Y = y) := ρ(L(X |Y = y)), y ∈ R. (2.3)

Note the following result (for a proof see Corollary 1.1 in Mundt (2007)).

Lemma 2.4. Let ρ = VaRγ or ρ = AVaRγ for some γ ∈ (0, 1). Then the mapping
y 7→ ρ(X |Y = y) defined in (2.3) is (B,B)–measurable.

3. Risk Measures and Information

Up to now most approaches in finding risk measurement procedures assume that
the law governing the risk or the income process is known. In applications however
the probability distribution is unknown and has to be estimated from data. This
implies another risk coming from mis-specifying the model. Some authors (see e.g.
Cont et al. (2006)) thus discuss robustness of the risk measure w.r.t. changes in the
model. Obviously, if more data is available, then the range of possible models is
smaller and hence more information helps to determine the risk more appropriately.
Note however that the well-established coherent risk measures already involve some
kind of model risk since the dual representation for a risk X ∈ L∞ is given by

sup
Q∈M

EQ[−X]

where M is a certain class of probability measures. But often (see e.g the Average
Value–at–Risk) this class M is not sufficient.

When we turn to a dynamic risk measurement, the notion of information also has
another dimension. This has e.g. been explained in Pflug (2006) and is illustrated
with the coin tossing example of the introduction. Different information which is
available for the decision maker in terms of different measurability conditions, leads
to different risk assignments. In this paper now we are going to combine these two
aspects. More precisely, we suppose that model ambiguity is given by an unknown
parameter of the risk distribution. Further the risk is measured dynamically over a
certain time horizon and thus the information about the unknown parameter which
is obtained during the time range of the model is incorporated. This approach is
explained in Section 5 for a Bayesian parametric model. However, it seems to be
difficult to measure the ”value of information” in terms of a more concentrated prior
distribution (this information can be compared w.r.t. the Blackwell information
order or simply the convex order).

4. A Risk Measure by Pflug and Ruszczyński and its MDP Version

We apply our risk measures only to special income processes in finite and discrete
time which have a Markovian structure. This is not a severe restriction because
many models in finance (e.g. stock price models, interest rate models) are Markovian
or can be made Markovian with moderate effort.

4.1. Income Process. The income or risk processes we consider are defined in
discrete time with time horizon T ∈ N and evolve as follows: Assume that we
are given independent random variables Y1, . . . , YT on (Ω,F ,P) which generate a
filtration on the probability space via

F0 := {∅, Ω}, Ft := σ(Y1, . . . , Yt), t = 1, . . . , T.
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We further assume that a Markov chain (Zt)t=0,1,...,T is given through

Z0 ≡ c ∈ R, Zt := gt(Zt−1, Yt), t = 1, . . . , T,

where gt : R2 → R are (B2,B)–measurable functions. We restrict ourselves to
income processes I = (I1, . . . , IT ) ∈ ×T

t=1L
1(Ω,Ft,P) for which It only depends

on Zt−1 and on Yt for t = 1, . . . , T . In other words, we assume that there exist
(B2,B)–measurable functions ht : R2 → R, such that

It = ht(Zt−1, Yt), t = 1, . . . , T. (4.1)

Denote the set of these income processes by XM. Obviously XM includes all Mar-
kovian processes. Examples are given in Section 4.4.

4.2. Definition and Properties of the Risk Measure. Next we define a con-
crete dynamic risk measures. In general, a dynamic risk measure ρ is a mapping
ρ : Ω×{0, 1, . . . , T−1}×XM → R such that (ρt(I))t=0,1,...,T−1 is an (Ft)t=0,1,...,T−1–
adapted process and satisfies some reasonable properties. We are not going to
discuss properties of dynamic risk measures in general, but will list a number of
properties which are satisfied by the dynamic risk measure in Definition 4.1. For a
general overview on dynamic risk measures and further properties see Riedel (2004),
Burgert (2005) and Mundt (2007).

We are now ready to introduce a dynamic version of a risk measure proposed by
Pflug and Ruszczyński (2005). There the authors considered more general income
processes. The restriction to income processes XM seems to be natural.

Let (ct)t=1,...,T be a sequence of discounting factors with ct > ct+1 > 0, t =
1, . . . , T , and (γt)t=1,...,T be a sequence of safety levels with γt ∈ (0, 1), t = 1, . . . , T .
Furthermore set λt := ct+1

ct
, t = 1, . . . , T , and define for every t a static risk measure

via
ρ(t)(X) := λtE[−X] + (1− λt)AVaRγt(X), X ∈ L1(Ω,F ,P). (4.2)

Definition 4.1. For t = 0, 1, . . . , T − 1 set

ρPR
t (I) := E

[ T∑

k=t+1

ck

ct
· ρ(k)(Ik | Fk−1)

∣∣∣Ft

]
, I ∈ XM.

Remark 4.2. (a) This risk measure was defined in Pflug and Ruszczyński
(2005) for t = 0 via a different optimization model than the one which
we will consider below. In Pflug (2006), it is defined in a more general
setting.

(b) Since ck

ct
is just the discount factor from time k to t, we see that the risk

measure at time t is the conditional expectation under Ft of a discounted
sum of convex mixtures of two conditional static risk measure applied to
each component of the process I ∈ XM.

(c) The risk measure may be seen as a dynamic version of the AVaR.

We next list a number of properties, the dynamic risk measure of Definition 4.1
has. Part of the properties are already shown in Pflug and Ruszczyński (2005),
proofs for the others can be found in Mundt (2007).

Proposition 4.3. The dynamic risk measure ρPR of Definition 4.1 has the follow-
ing properties:
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(a) ρPR is monotone, i. e. for all I(1), I(2) ∈ XM with I
(1)
t ≤ I

(2)
t for all t =

1, . . . , T it holds

ρPR
t (I(1)) ≥ ρPR

t (I(2)), t = 0, 1, . . . , T − 1.

(b) ρPR is homogeneous, i. e. for all t = 1, . . . , T , I ∈ XM and Λ ∈ L∞(Ω,Ft,P)
with Λ > 0 we have

ρPR
t (Λ · I) = Λ · ρPR

t (I).

(c) ρPR is translation invariant, i.e. for all Y = (0, . . . , 0, Yt+1, . . . , YT ) ∈ XM

which are predictable and
∑T

k=t+1 ckYk is Ft-measurable it holds that

ρPR
t (I + Y ) = ρPR

t (I)−
T∑

k=t+1

ck

ct
Yk.

(d) ρPR is subadditive, i. e. for all I(1), I(2) ∈ XM and t = 1, . . . , T it holds

ρPR
t (I(1) + I(2)) ≤ ρPR

t (I(1)) + ρPR
t (I(2)), t = 0, 1, . . . , T − 1.

(e) ρPR is independent of the past, i. e. for every t = 0, 1, . . . , T−1 and I ∈ XM,
ρPR

t (I) does not depend on I1, . . . , It−1. More precisely, for every I ∈ X it
holds

ρPR
t (I1, . . . , IT ) = ρPR

t (0, . . . , 0, It, . . . , IT ), t = 0, 1, . . . , T − 1.

4.3. Formulation as a Markov decision problem (MDP). It is well-known
that the Average Value–at–Risk is the solution of an optimization problem (cf.
Equation (2.2)). Analogously we show that ρPR is the solution of a dynamic opti-
mization problem, namely a so-called Markov decision problem which can be inter-
preted as a dynamic cash balance problem. The advantage of this representation
is that we obtain a recursive computation algorithm (see (4.3)). For the general
MDP theory compare e.g. Hernández-Lerma and Lasserre (1996), Puterman (1994)
or Hinderer (1970). For abbreviation let

q0 := 0, qt :=
ct − ct+1γt

1− γt
> ct, t = 1, . . . , T.

The data of the Markov decision problem is as follows:
• The state space is denoted by S ⊂ R2 and equipped with the σ–algebra
S := B2

S . Let s := (w, z) ∈ S be an element of the state space, where w, z
represent realizations of a wealth process (Wt)t=1,...,T and the generating
Markov chain (Zt)t=1,...,T , respectively, at time t.

• The action space is R equipped with B. Then a ∈ R denotes the consumed
amount at time t. Let D := S × R.

• The disturbance Yt has values in E ⊂ R equipped with E := BE . The
distribution of Yt is denoted by Qt.

• The transition function Tt : D × E → S at time t = 1, . . . , T is given by

Tt(s, a, y) : = (Ft(w, ht(z, y), a), gt(z, y))

= (w+ + ht(z, y)− a, gt(z, y)).

for (s, a, y) = (w, z, a, y) ∈ D ×E. It gives the current state if the previous
state is s, the action a is chosen and if the disturbance attains the value y.
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• The one-step reward function at time t = 0, 1, . . . , T − 1 is a measurable
mapping rt : D → R defined as

rt(s, a) := −qtw
− + ct+1a, (s, a) ∈ D.

• The terminal reward is a measurable mapping VT : S → R defined as

VT (s) := cT+1w
+ − qT w−, s = (w, z) ∈ S.

Furthermore, let us denote by

F := {f : S → R | f is (S,B)–measurable}
the set of decision rules. Then π ∈ F t is a t-step Markov policy. For every π =
(f0, . . . , fT−1) ∈ FT we recursively define the resulting Markov decision process
(Xt)t=1,...,T via

X0 ∈ S, Xt := (Wt, Zt) := Tt(Xt−1, ft−1(Xt−1), Yt), t = 1, . . . , T.

and the value functions via

Vt,π(s) := Eπ
t,s

[ T−1∑

k=t

rk(Xk, fk(Xk)) + VT (XT )
]
, s ∈ S,

for every π = (ft, . . . , fT−1) ∈ FT−t where Eπ
t,s is the expectation w.r.t. the condi-

tional probability Pπ(· | Xt = s) and

Vt(s) := sup
π∈F T−t

Vt,π(s), s ∈ S.

Note that

Vt−1(s) := sup
a∈R

{
rt−1(s, a) +

∫

E

Vt(Tt(w, z, a, y))Qt(dy)}, s ∈ S (4.3)

holds and provides a recursive computation. We now obtain the following explicit
formula for the value functions:

Theorem 4.4. For t = 0, 1, . . . , T and (w, z) ∈ S the value function is given by

Vt(w, z) = ct+1w
+ − qtw

− −
T∑

k=t+1

ck · E[ρ(k)(Ik |Zk−1) |Zt = z],

and the optimal policy π∗ = (f∗t , . . . , f∗T−1) is

f∗k (w, z) = w+ −VaRγk
(Ik+1 |Zk = z), (w, z) ∈ S,

for k = t, . . . , T − 1.

Proof. The proof is by backward induction on t. The case t = T is trivial. We
first consider the case t = T − 1. By the value iteration (cf. e.g. Theorem 3.2.1 in
Hernández-Lerma and Lasserre (1996)) we have for (w, z) ∈ S

VT−1(w, z) + qT−1w
−

= sup
a∈R

{
qT−1w

− + rT−1(w, z, a) +
∫

E

VT (TT (w, z, a, y))QT (dy)}

= sup
a∈R

{
cT a + E[cT+1[w+ + hT (z, YT )− a]+ − qT [w+ + hT (z, YT )− a]−]

}

= cT w+ + cT+1E[hT (z, YT )]− (cT − cT+1)AVaRγT (hT (z, YT ))

= cT w+ + cT+1E[IT |ZT−1 = z]− (cT − cT+1)AVaRγT
(IT |ZT−1 = z),
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where we used Equation (2.2) in the last but one step. We note that the supremum
is attained in

f∗T−1(w, z) = −VaRγT
(hT (z, YT ) + w+) = w+ −VaRγT

(IT |ZT−1 = z).

By Lemma 2.4, VT−1 and fT−1 are indeed measurable functions on S. Hence, the
assertion is true for t = T − 1.

Now assume that the assertion is true for t ≤ T − 1. The value iteration yields
for (w, z) ∈ S

Vt−1(w, z) + qt−1w
−

= sup
a∈R

{
qt−1w

− + rt−1(w, z, a) + E[Vt(Xt)|Xt−1 = (w, z), at−1 = a]}

= sup
a∈R

{
cta + E

[
ct+1[w+ + ht(z, Yt)− a]+ − qt[w+ + ht(z, Yt)− a]−

]}

+
T∑

k=t+1

ckE
[
E[ρ(k)(Ik|Zk−1) | Zt] | Zt−1 = z

]

= ctw
+ + ct+1E[It|Zt−1 = z]− (ct − ct+1)AVaRγt

(It|Zt−1 = z)

+
T∑

k=t+1

ckE
[
ρ(k)(Ik|Zk−1) | Zt−1 = z

]
.

Hence, the statement is shown. ¤
As a direct consequence we have the following representation of the dynamic risk

measure.

Corollary 4.5. For every t = 0, 1, . . . , T − 1 it holds

ρPR
t (I) = − 1

ct
Vt(0, Zt), I ∈ XM.

This representation provides us with a way to calculate ρPR via (4.3).

4.4. Examples.

Example 4.6. Consider the example by Artzner with general but known success
probability θ ∈ (0, 1). We have T = 3 and Y1, Y2, Y3 are independent with P(Yt =
1) = θ = 1− P(Yt = 0), t = 1, 2, 3. Furthermore,

Z0 ≡ 0, Zt = Zt−1 + Yt, t = 1, 2, 3.

We investigate the two resulting income processes I
(1)
A = (0, 0, Y3) and I

(2)
A =

(0, 0, 1{Z2+Y3≥2}). Direct calculations (see also Section 6.2) show that for θ ∈ (0, 1)

ρPR
1 (I(1)

A )(ω)

{
< ρPR

1 (I(2)
A )(ω) , ω ∈ {Y1 = 0},

> ρPR
1 (I(2)

A )(ω) , ω ∈ {Y1 = 1},
If θ is chosen appropriately, all orderings are possible for the case t = 0. But in the
most important situation θ = 1

2 or equivalently, when I
(1)
A and I

(2)
A are identically

distributed, we have
ρPR
0 (I(1)

A ) > ρPR
0 (I(2)

A ).
In particular, we see that the dynamic risk measure ρPR is not law invariant. The
interpretation of this last inequality is as follows: The risk at time t = 0 is the
expectation of the conditional static risk measure ρ(3) of the final value I

(i)
A,3, i = 1, 2,
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given the information F2. When calculating the risk of I
(1)
A , the final payment

I
(1)
A,3 = Y3 is stochastically independent from this information (namely the random

variable Z2). Thus, the information is not used in this case. On the other hand,
calculating the risk of I

(2)
A uses this additional information that is generated over

time in order to diminish the risk of the process at time t = 0.

Example 4.7. In the first example, It depends only on Zt. Now, we consider the
standard Cox-Ross-Rubinstein (CRR)-model to generate an income process, where
It depends on Zt−1 and Yt. Define the distribution of Yt by

P(Yt = u) = θ = 1− P(Yt = d),

where 0 < d < 1 < u and θ ∈ (0, 1). Let the price process of an asset be given by
Z0 ≡ 1 and Zt := Zt−1 ·Yt for t = 0, 1, . . . , T . If a policy holder has one unit of this
asset in her portfolio, her income from t− 1 to t is given by

It = Zt − Zt−1 = (Yt − 1) · Zt−1, t = 1, . . . , T.

The random variable It can attain negative values of course. The income in period
(t − 1, t] can not be formulated as a function of Zt, so we have to include Zt−1 in
defining It. This is why we assume (4.1). We easily compute for t ∈ {1, . . . , T}

E[Yt] = d + θ(u− d),

AVaRγ(Yt) = −d− 1[0,θ](γ)
θ − γ

1− γ
(u− d), γ ∈ [0, 1].

Then, the dynamic risk measure becomes by a straightforward calculation

ρPR
t (I) = Zt ·

T∑

k=t+1

ck

ct
· E[Y1]k−t−1 · (1 + ρ(k)(Yk)

)
,

concluding the example.

5. Extension to model ambiguity

In this section, we generalize the definition of the dynamic risk measure from Sec-
tion 4 to models with unknown risk distribution. Indeed, in reality it is seldom the
case that a risk distribution is given, instead we have data. There are now different
possible approaches to deal with this situation: in a non-parametric model one can
consider an empirical risk measure or measure the risk of the empirical distribu-
tion. In a parametric model one can for example estimate the parameter and then
measure the risk (for these approaches see Cont et al. (2006)). But in a dynamic
context this estimate has to be updated. In what follows we consider a parametric
model and take a Bayesian approach.

5.1. Model Setup. We assume that all generating random variables Yt, t =
1, . . . , T, depend on a parameter ϑ ∈ Θ ⊂ R which might be unknown and there-
fore is modeled as a random variable on the given probability space with unknown
distribution L(ϑ). If ϑ is known, for example with value θ ∈ Θ, its distribution
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reduces to L(ϑ) = δθ, where δθ denotes the distribution concentrated in θ. We
make the usual assumption:

Assumption 1: Under ϑ, the random variables Y1, . . . , YT are (conditionally)
independent.

Sometimes, the parameter ϑ can be interpreted as an unknown probability.
In this case, we choose Θ = (0, 1). In the Artzner–example and the Cox–Ross-
Rubinstein model, this is the probability for heads or an upward development of
the asset respectively.

Let P(Θ) be the set of all probability measures on Θ so that we have L(ϑ) ∈
P(Θ), and equip P(Θ) with the standard σ-algebra MΘ. We assume that a prior
distribution µ ∈ P(Θ) for the unknown parameter is given. In a dynamic context it
does not seem to be reasonable to estimate θ at the beginning and fix it. Instead, the
information about the unknown parameter which is gained over time by observing
(Yt), should of course be incorporated into the risk measurement procedure. Indeed
we define the dynamic risk measure as before where the conditional distribution is
now taken w.r.t. a new probability measure. In order to explain this, suppose (Ω,F)
is the underlying measurable space and Pθ is the probability measure if ϑ is known
and equal to θ. Let now P := µ0⊗P θ be the unique probability measure on Θ×Ω
defined by µ0 and the transition probability (θ,B) 7→ Pθ(B). Moreover, define

P̄(B) := P(Θ×B) =
∫

µ0(dθ)Pθ(B)

on (Ω,F). In order to simplify the notation we assume that

Assumption 2: For every t = 1, . . . , T the law Qθ
t ( · ) either has a counting

density or a Lebesgue–density w.r.t. a σ-finite measure ν which we will denote by
qθ
t ( · ).

From our assumption it follows that P̄ has a density p̄ which satisfies

p̄(y) = p̄(y1, . . . , yT ) =
∫

µ0(dθ)qθ
1(y1)

∫
µ1(dθ|y1)qθ

2(y2) . . . (5.1)

. . .

∫
µT−1(dθ|y1, . . . , yT−1)qθ

T (yT )

see e.g. Rieder (1975). By ρ̄(k) we denote the the same risk measure as in (4.2)
with P replaced by P̄.

Definition 5.1. For every I ∈ XM we define a Bayesian dynamic risk measure by

ρB,µ0
t (I) = Ē

[ T∑

k=t+1

ck

ct
· ρ̄(k)(Ik | Fk−1)

∣∣∣Ft

]
, t = 0, 1, . . . , T − 1.

Remark 5.2. Obviously every ρB,µ0
t (I) is Ft−measurable. Consequently, the dy-

namic risk measure (ρB,µ0
t (I))t=0,1,...,T−1 is an (Ft)t=0,1,...,T−1–adapted process.

Moreover, it is not difficult to see from the definition that ρB,µ0 satisfies the proper-
ties of Proposition 4.3 w.r.t. the new probability measure P̄ and is thus a reasonable
dynamic risk measure.

5.2. Representation as a Bayesian Decision Problem. Analogously to the
first part of the paper we will now show that the Bayesian dynamic risk measure
is the solution of a Bayesian MDP. The advantage of the MDP formulation is its
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recursive computations which allows in Section 6 to establish some comparison
results between models with and without model ambiguity. Hence, we proceed as
follows:

For every fixed θ ∈ Θ, we can formulate an optimization problem as in Section 4
by replacing the reference probability P with Pθ. We obtain a family of value
functions (V θ

t )t∈{0,1,...,T} for every θ ∈ Θ. In what follows we define

V µ
t (s) := sup

π

∫

Θ

V θ
t,π(s)µ(dθ), s ∈ S (5.2)

where t ∈ {0, 1, . . . , T − 1}, µ ∈ P(Θ) and the supremum is taken over all policies
which may depend on the total available history so far. It is well-known that
problems like this can be solved by a Bayesian decision model (see e.g. Rieder
(1975)). We will first recall this technique and then show how to derive the dynamic
risk measure by this approach. The Bayesian decision model is defined as follows:

• The state space is denoted by S ⊂ R2 × P(Θ) and equipped with the cor-
responding σ–algebra S := (B2 ⊗MΘ)S . For convenience, we sometimes
use the notation S = S′ × M = S1 × S2 × M. Let (s, µ) := (w, z, µ) ∈ S
be an element of the state space, where w, z, µ represent realizations of the
wealth process Wt, the generating Markov chain Zt and the conditional
distribution of ϑ given the history up to time t, respectively.

• The action space is R equipped with B. Let D := S × R.
• The distribution Qt of the disturbance Yt now depends on µt. More precisely,

let Qt : M×E → [0, 1] at time t = 1, . . . , T be the probability kernel between
(M,MΘ) and (E, E) defined by

Qt(µ; B) :=
∫

Θ

Qθ
t (B)µ(dθ), B ∈ E ,

where Qθ
t (B) = Pθ(Yt ∈ B).

• The transition function Tt : D × E → S at time t = 1, . . . , T is given by

Tt(s, µ, a, y) := (T ′t (s, a, y), Φt(µ, y))

with
T ′t (s, a, y) = (w+ + ht(z, y)− a, gt(z, y))

for (s, µ, a, y) = (w, z, µ, a, y) ∈ D × E and Φt : P(Θ) × E → P(Θ) is
the so-called Bayes operator, which updates the estimated distribution µ ∈
P(Θ) by using the new observation y ∈ E. It will be defined and further
investigated below.

• The one-step reward function is as before and does not depend on µ, i.e.

rt(s, µ, a) = rt(s, a) = −qtw
− + ct+1a.

• The terminal reward function is is as before and does not depend on µ, i.e.

VT (s, µ) = VT (s) = cT+1w
+ − qT w−.

As mentioned above, let us further describe the Bayes operator. For t = 1, . . . , T
the Bayes operator Φt : P(Θ)× E → P(Θ) is defined via

Φt(µ, y)(B) :=

∫
B

qθ
t (y)µ(dθ)∫

Θ
qθ
t (y)µ(dθ)

, B ∈ BΘ, (µ, y) ∈ P(Θ)× E.

The set of decision rules FB , the Markov decision process (Xt)t=0,1,...,T and
the value functions (Vt)t=0,1,...,T are defined analogously to Section 4 but with the
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extended state space and the extended transition function. The third component
of (Xt)t=0,1,...,T which is independent of the chosen policy π ∈ FT

B can be defined
recursively via

µ0 ∈ P(Θ), µt = Φt(µt−1, Yt), t = 1, . . . , T. (5.3)

A chosen initial distribution µ0 ∈ P(Θ) is the prior distribution, while the µt,
t = 1, . . . , T , are called posterior distributions. They can be interpreted as the
distribution of ϑ at time t given the history (Y1, . . . , Yt) if ϑ is drawn according to µ0

at time 0. Under some mild integrability assumptions it holds for all t = 0, 1, . . . T
that

Vt(s, µ) = V µ
t (s), (s, µ) ∈ S,

(see Rieder (1975)), i.e. the value functions solve problem (5.2). Note that this
implies a recursion for Vt analogously to (4.3). The following result is crucial.

Theorem 5.3. Let t = 0, 1, . . . , T and w ∈ S1. Then

Vt(w,Zt, µt) = ct+1w
+ − qtw

− − Ē
[ T∑

k=t+1

ck · ρ̄(k)(Ik | Fk−1)
∣∣∣Ft

]

and the optimal policy π∗ = (f∗t , . . . , f∗T−1) is

f∗k (w,Zk, µk) = w+ −VaRγk+1

(
Ik+1

∣∣Fk

)

for k = t, . . . , T − 1 and w ∈ S1.

Proof. The proof is analogous to the proof of Theorem 4.4 and done by induction:
t = T is trivial. Let us look at t = T − 1 (note that µT−1 = µT−1(· |y1, . . . , yT−1)):

VT−1(w, z, µT−1) + qT−1w
−

= sup
a∈R

{
qT−1w

− + rT−1(w, z, a)

+
∫

E

∫

Θ

VT (TT (w, z, a, y))qθ
T (y)ν(dy)µT−1(dθ|y1, . . . , yT−1)

}

= sup
a∈R

{
cT a +

∫

E

∫

Θ

(
cT+1(w+ + hT (z, y)− a)+ − qT (w+ + hT (z, y)− a)−

)

qθ
T (y)ν(dy)µT−1(dθ|y1, . . . , yT−1)

}
.

Now from (5.1) it follows that

p̄(yT |y1, . . . , yT−1) =
∫

µT−1(dθ|y1, . . . , yT−1)qθ
T (yT ).

Hence

VT−1(w, z, µT−1) + qT−1w
− = sup

a∈R

{
cT a+

+
∫

E

(
cT+1(w+ + hT (z, y)− a)+ − qT (w+ + hT (z, y)− a)−

)
p̄(y|y1, . . . , yT−1)ν(dy)

}

and we obtain

VT−1(w, z, µT−1) = cT w+ − qT−1w
−

− cT Ē
[
ρ̄(T )(IT | Y1 = y1, . . . , YT−1 = yT−1

) | Y1 = y1, . . . , YT−1 = yT−1

]
.



A BAYESIAN APPROACH TO DYNAMIC RISK MEASURES 13

The remaining part of the proof is basically the same as for Theorem 4.4, only with
some more cumbersome notational effort. ¤

From Definition 5.4 and Theorem 5.3 we obtain the following representation.

Corollary 5.4. Consider the Bayesian decision model for an income process I ∈
XM. Furthermore, let an initial distribution µ0 ∈ P(Θ) be given from which we
obtain the sequence of posterior distributions (µt)t=1,...,T via (5.3). It holds that

ρB,µ0
t (I) := − 1

ct
Vt(0, Zt, µt), t = 0, 1, . . . , T − 1. (5.4)

The representation of the risk measure is now of the same structure as the one
in the case where ϑ is known, compare Corollary 4.5.

Remark 5.5. Note that ρB,µ0 can easily be extended to so-called Hidden Markov
Models. There it is assumed that Θ = {θ1, . . . , θm} is finite, however, the unknown
parameter ϑ ∈ Θ is not fixed over time but varies according to a Markov chain
(ξt) with state space Θ and transition probabilities (pij). If ξt = θj , then the
true parameter at time t is θj , however, cannot be observed directly. Again under
(ξ1, . . . , ξT ) the random variables Y1, . . . , YT are independent. In this case we define

ρHMM,µ0
t (I) := − 1

ct
Vt(0, Zt, µt), t = 0, 1, . . . , T − 1,

where Vt(0, Zt, µt) is given as before only with a different Bayes operator which is
now

Φ(µ, y)(θk) =

∑m
j=1 µ(θj)pjkq

θj

t (y)
∑m

j=1 µ(θj)q
θj

t (y)
.

6. Influence of model ambiguity

In this section we investigate the influence of model ambiguity in some special
cases by comparing the risk measure ρB,µ0

t (I) with ρ
B,δµ̄

t (I) = ρPR,µ̄
t (I) where µ̄ =∫

θµ0(dθ). It turns out that model ambiguity may lower the risk.

6.1. Comparison Results. In what follows it turns out that general statements
about comparison results are quite difficult and not intuitive. First we give a
simple criterion which leads to the desired comparison, however this criterion is
quite restrictive. We use the following abbreviations: For any distribution µ on R,
we denote, if they exist, by mµ and σ2

µ its first moment and its variance respectively.

Proposition 6.1. Let t = 0, 1, . . . , T − 1 and s ∈ S′. If θ 7→ V θ
t,π(s) is convex on

Θ = (0, 1) for every π ∈ FT−t, then

Vt(s, µ) ≥ Vt(s, δmµ), µ ∈ P(0, 1).

Proof. Let µ ∈ P(0, 1). Since θ → V θ
t,π(s) is convex, Jensen’s inequality yields

∫

Θ

V θ
t,π(s) µ(dθ) ≥ V

mµ

t,π (s) = Vt,π(s, δmµ), π ∈ FT−t. (6.1)

Consequently,

Vt(s, µ) = sup
π

∫

Θ

V θ
t,π(s) µ(dθ)

(6.1)

≥ sup
π∈F T−t

Vt,π(s, δmµ) = Vt(s, δmµ).

¤
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In the following section of examples, we will see that our models do in general
not fulfill the strong assumption of Proposition 6.1. We also see, that it is usually
not enough to assume convexity of θ 7→ V θ

t,π∗(s) if π∗ is chosen such that

sup
π∈F T−t

Vt,π(s, δmµ
) = Vt,π∗(s, δmµ

),

because the optimal policies for θ differ in general. On the other hand we obtain:

Proposition 6.2. Let t = 0, 1, . . . , T , s ∈ S′ and assume that the inequality
Vt(s, δmµ) ≤ Vt(s, µ) holds for all µ ∈ P(0, 1). Then θ 7→ V θ

t (s) is convex on
Θ.

Proof. It is well known that Vt(s, ·) is convex on P(0, 1). Now take θ1, θ2 ∈ Θ,
λ ∈ [0, 1] and note that mλδθ1+(1−λ)δθ2

= λθ1 + (1 − λ)θ2. The assumption and
convexity of Vt(s, ·) then yield the assertion:

V
λθ1+(1−λ)θ2
t (s) = Vt(s, δλθ1+(1−λ)θ2) ≤ Vt(s, λδθ1 + (1− λ)δθ2)

≤ λVt(s, δθ1) + (1− λ)Vt(s, δθ2) = λV θ1
t (s) + (1− λ)V θ2

t (s).

¤

We now state the main comparison result of this section. Here we consider the
binomial model, i.e. we interpret ϑ as a probability, i. e. choose Θ = (0, 1) and
assume that

P(Yt = u |ϑ = θ) = θ = 1− P(Yt = d |ϑ = θ), θ ∈ Θ, t = 1, . . . , T,

for some 0 ≤ d < 1 ≤ u. In this setting, the Beta distribution is a conjugate prior
distribution for the binomial distribution. If we have no information about the
parameter ϑ at time 0, we usually start with µ0 = U(0, 1), which is a special Beta
distribution, namely U(0, 1) = Beta(1, 1). In order to compute the risk measure
we have to calculate the Bayes operator and the transition kernel. It is well known
that the Bayes operator preserves the class of Beta distributions and that we have
for α, β > 0 and µ := Beta(α, β)

Φ(µ, y) = Beta(α + 1{u}(y), β + 1{d}(y)), y ∈ {u, d}. (6.2)

Note that Φ does not depend on the time index t, thus we skip it here. Consequently,
with such an initial distribution, we only need to calculate the transition kernel for
this class of distributions. It is also well known and easily calculated that

Q(µ; u) = mµ =
α

α + β
, Q(µ; d) = 1−mµ =

β

α + β
, (6.3)

where mµ denotes the mean of the distribution µ.
Next we have to recall the following definition: A function g : B → R, B ⊂ R2,

is called supermodular, if

g(x ∧ y) + g(x ∨ y) ≥ g(x) + g(y)

for all x, y, x ∨ y, x ∧ y ∈ B, where ∧ denotes the componentwise minimum and ∨
the componentwise maximum of the vectors.

The following theorem gives a manageable criterion for the desired comparison
result. It will be applied in the next subsection to the CRR model.
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Theorem 6.3. Consider the Bayesian decision model from above. If for all t =
0, 1, . . . , T and s ∈ S′, a ∈ R the function

(y, θ) 7→ V θ
t (T ′t (s, a, y)), (y, θ) ∈ {u, d} × (0, 1),

is supermodular, then it holds for all t ∈ {0, 1, . . . , T}
Vt(s, µ) ≥ Vt(s, δmµ

), (s, µ) ∈ S.

Proof. The proof of the theorem is by backward induction on t. For t = T we even
have equality

VT (s, µ) = VT (s, δmµ), (s, µ) ∈ S.

Now assume that the assertion holds for fixed t = 1, . . . , T and let (s, µ) ∈ S, where
µ ∈ P(0, 1) with µ 6∈ {δθ | θ ∈ Θ}. Note that then Φ(µ, y) ∈ P(0, 1) for y ∈ {u, d}.
Furthermore, by definition of the transition kernel we have in the same way as in
(6.3)

Qt(µ;u) = mµ = 1−Qt(µ; d). (6.4)

Moreover, note that r is independent of µ. Consequently, the induction hypothesis
(I.H.) yields with µu := Φt(µ, u), µd := Φt(µ, d) and with mu := mΦt(µ,u), md :=
mΦt(µ,d)

Vt−1(s, µ)

= sup
a∈R

{
rt−1(s, a) +

∫
Vt(Tt(s, µ, a, y))Qt(µ; dy)

}

(6.4)
= sup

a∈R

{
rt−1(s, a) + mµ · Vt(T ′t (s, a, u), µu) + (1−mµ) · Vt(T ′t(s, a, d), µd)

}

I.H.≥ sup
a∈R

{
rt−1(s, a) + mµ · Vt(T ′t (s, a, u), δmu) + (1−mµ) · Vt(T ′t (s, a, d), δmd

)
}
.

Note that we have md < mµ < mu and it can be shown that if σ2
µ > 0 then:

mµ

1−mµ
(mΦ(µ,u) −mµ) = mµ −mΦ(µ,d).

This yields
mµ

1−mµ
=

mµ −md

mu −mµ
. (6.5)

Furthermore, by assumption and since it can be shown that θ 7→ Vt(ŝ, δθ) is convex
on Θ for every ŝ ∈ S′ we obtain

Vt(ŝ, δmµ)− Vt(ŝ, δmd
)

mµ −md
≤ Vt(ŝ, δmu)− Vt(ŝ, δmµ)

mu −mµ
. (6.6)

Again, we get with ŝ = T ′t (s, a, u), a ∈ R, by the supermodularity assumption

Vt(T ′t (s, a, d), δmµ)− Vt(T ′t (s, a, d), δmd
)

≤ Vt(T ′t (s, a, u), δmµ)− Vt(T ′t (s, a, u), δmd
)

(6.6)

≤ mµ −md

mu −mµ

(
Vt(T ′t (s, a, u), δmu)− Vt(T ′t (s, a, u), δmµ)

)

(6.5)
=

mµ

1−mµ

(
Vt(T ′t (s, a, u), δmu)− Vt(T ′t (s, a, u), δmµ)

)
,
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which is equivalent to

mµ · Vt(T ′t(s, a, u), δmu
) + (1−mµ) · Vt(T ′t (s, a, d), δmd

)

≥ mµ · Vt(T ′t(s, a, u), δmµ
) + (1−mµ) · Vt(T ′t (s, a, d), δmµ

).

Combining this with the preceding inequality for Vt−1, we get

Vt−1(s, µ)

≥ sup
a∈R

{
rt−1(s, a) + mµ · Vt(T ′t (s, a, u), δmu

) + (1−mµ) · Vt(T ′t (s, a, d), δmd
)
}

≥ sup
a∈R

{
rt−1(s, a) + mµ · Vt(T ′t (s, a, u), δmµ) + (1−mµ) · Vt(T ′t (s, a, d), δmµ)

}

= Vt−1(s, δmµ),

thus completing the proof of the theorem. ¤
The result can be used to compare the two dynamic risk measures with and

without model ambiguity. The proof follows directly from Theorem 6.3.

Corollary 6.4. Let the assumption of Theorem 6.3 be fulfilled and suppose (µt) is
the sequence of posterior distributions defined via (5.3). Then

ρ
PR,mµt
t (I) ≥ ρB, µ0

t (I), I ∈ XM.

Thus, we see that if the supermodularity assumption is fulfilled the dynamic risk
measure ρPR is more conservative than ρB since it assigns a higher risk to every
process I ∈ XM. This result is somehow counterintuitive since additional ”risk”
due to model ambiguity leads to a lower value of the risk measure.

6.2. Examples. In this section we treat the coin–tossing game proposed by Artzner
and the standard Cox–Ross–Rubinstein model. These will complement the results
from the previous section and the remarks that were left open. Furthermore we
will see how to calculate the dynamic risk measures in concrete situations.

The Artzner–game
Consider the Artzner–example. We have E = {0, 1} and S′ = R × N0, whereas
because of T = 3 also S′ = R × {0, 1, 2, 3} can be used. But this makes no differ-
ence for our investigations. Take the process I1 = I2 = 0, I3 = 1{Z2+Y3≥2}. It can
be shown that θ 7→ V θ

t (s), s ∈ S′, is convex for this model, however we will find
(s, µ) ∈ S′ × P(0, 1) such that

V1(s, µ) < V1(s, δmµ)

which means that the comparison of Theorem 6.3 is not valid in this situation. We
can assume without loss of generality that w = 0 and have to consider the two
cases z = 0 and z = 1, which are just the possible realizations of Z1 = Y1. First, we
choose s = (0, 1) and consequently µ = Beta(2, 1), such that mµ = 2

3 . Furthermore
let γ3 > 2

3 , e. g. γ3 = 0.95. In this case, we have AVaRθ
γ3

(Y3) = 0 for all θ ≤ 0.95.
It follows that

V1

(
0, 1, δ 2

3

)
= −c3 · E 2

3
[
ρ
(3)
2
3

(1{Z2+Y3≥2} |Z2 = 1 + Y2)
]

= −c3 ·
(2

3
ρ
(3)
2
3

(1{Y3≥0}) +
1
3
ρ
(3)
2
3

(1{Y3≥1})
)

= −c3 ·
(2

3
· (−1)− 1

3
· 2
3
· λ3

)
=

2
9
c4 +

2
3
c3,
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while we obtain

V1

(
0, 1,Beta(2, 1)) = −c3 · E1,2,1

[
ρ
(3)
1,2,1

(
1{Z2+Y3≥2}

∣∣ Y2, Z1 = 1
)]

= −c3 · E
[
ρ(3)

(
1{Y2+Y3≥1}

∣∣ Y2, ϑ =
2 + 1{1}(Y2)

4

) ∣∣ ϑ =
2
3

]

= −c3 ·
(2

3
· ρ(3)

3
4

(1{Y3≥0}) +
1
3
· ρ(3)

1
2

(1{Y3≥1})
)

= −c3 ·
(2

3
· (−1)− 1

3
· 1
2
λ3

)
=

1
6
c4 +

2
3
c3 < V1

(
0, 1, δ 2

3

)
.

Similar calculations show that for s = (0, 0) and thus µ = Beta(1, 2) the reverse
inequality holds:

V1

(
0, 0, δ 1

3

)
=

1
9
c4 <

1
6
c4 = V1

(
0, 0, Beta(1, 2)

)
.

Indeed, no general comparison result can be stated in the Artzner–example. But
since the problem is very simple, all quantities can easily be computed. So let us
also look at the important case t = 0, s = (0, 0) and µ = Beta(1, 1) = U(0, 1),
therefore mµ = 1

2 ,

V0

(
0, 0, δ 1

2

)
=

1
4
c3 +

1
4
c4

and

V0

(
0, 0,U(0, 1)

)
=

1
3
c3 +

1
6
c4 > V0

(
0, 0, δ 1

2

)
,

since c4 < c3. We conclude that the risk measures have the order:

ρ
PR, 1

2
0 (I) > ρ

B,U(0,1)
0 (I).

In Table 1 we give some numerical values of the risk measures, where the variables
ck = 0.95k−1, k = 1, 2, 3, c4 = 0.932 and qk = 1.2 · ck, k = 1, 2, 3, are chosen
analogously to Pflug and Ruszczyński (2001). In that work, the values for ρPR

0 (I(1))
and ρPR

0 (I(2)) can already be found.

The Cox–Ross–Rubinstein model
Now, let us treat the CRR model. First, we want to show that the assumption of
Proposition 6.1 is too strong. It is easily seen that θ 7→ V θ

T−1,π(s) is linear, therefore
convex, for every s ∈ S′ and π = fT ∈ F . But for t = T − 2, it can be shown that
there exists π ∈ F 2 such that θ 7→ V θ

T−2,π(s) is concave (cf. Mundt (2007)) and
consequently Proposition 6.1 cannot be applied to obtain comparison results in the
CRR model. But as we will see now, the assumption of Theorem 6.3 is fulfilled.

Note that the state space is S′ = R×R+, therefore Zt > 0 for all t = 0, 1, . . . , T .
Let us first calculate the value functions V θ

t (s) for s ∈ S′ and θ ∈ Θ at time
t ∈ {1, . . . , T}. As in Example 4.7 we obtain

V θ
t (w, z)− ct+1w

+ + qtw
−

= z

T∑

k=t+1

ckEθ[Y1]k−(t+1)
(
λkθ(u− d) + d− 1 + (1− λk)1[0,θ](γk)

θ − γk

1− γk
(u− d)

)
.

Now, let (s, a) = (w, z, a) ∈ S′ ×A. Recall that

T ′t (s, a, y) = (w+ + z(y − 1)− a, zy), y ∈ {u, d}.
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ρPR
0 (I(1)) -0.4325

ρ
B,U(0,1)
0 (I(1)) -0.4325
ρPR
0 (I(2)) -0.4419

ρ
B,U(0,1)
0 (I(2)) -0.445

Y1 = 1 Y1 = 0

ρPR
1 (I(1)) -0.5766 -0.2883

ρ
B,U(0,1)
1 (I(1)) -0.5766 -0.2883
ρPR
1 (I(2)) -0.7939 -0.0961

ρ
B,U(0,1)
1 (I(2)) -0.7458 -0.1442

Y1 + Y2 = 2 Y1 + Y2 = 1 Y1 + Y2 = 0

ρPR
2 (I(1)) -0.6828 -0.4552 -0.2276

ρ
B,U(0,1)
2 (I(1)) -0.6828 -0.4552 -0.2276
ρPR
2 (I(2)) -0.95 -0.4552 0

ρ
B,U(0,1)
2 (I(2)) -0.95 -0.4552 0

Table 1. The dynamic risk measures in the Artzner–game

This yields

V θ
t (T ′t (s, a, u))− V θ

t (T ′t (s, a, d))

= ct+1(w+ + z(u− 1)− a)+ − qt(w+ + z(u− 1)− a)−

− ct+1(w+ + z(d− 1)− a)+ + qt(w+ + z(d− 1)− a)−

+ z(u− d) ·
T∑

k=t+1

ck · Eθ[Y1]k−(t+1)(λkθ(u− d) + d− 1)

+ z(u− d) ·
T∑

k=t+1

ck · Eθ[Y1]k−(t+1)(1− λk)1[0,θ](γk)
θ − γk

1− γk
(u− d).

We have to show that this term is non–decreasing in θ. To this extend, we
only have to consider the two sums. Since Eθ[Y1] = θ(u − d) + d, the last one
is the sum of non–negative products of non–decreasing functions, therefore clearly
non–decreasing. The first sum is just the value function V θ

t (0, z(u − d)), if θ ≤
min{γt+1, . . . , γT }. So we only have to show that V θ

t (s) is non–decreasing in θ on
this interval for every s ∈ S′. This can be seen as follows. The case t = T − 1 is
obvious, so assume t ≤ T − 2. Furthermore, without loss of generality, we can take
(w, z) = (0, 1). Let us write the value function as

V θ
t (w, z) = ct+1(λt+1θ(u− d) + d− 1) + ct+2(θ(u− d) + d)(λt+2θ(u− d) + d− 1)

+
T∑

k=t+3

ck · Eθ[Y1]k−(t+1)(λkθ(u− d) + d)−
T∑

k=t+3

ck · Eθ[Y1]k−(t+1).

One easily obtains

∂V θ
t (w, z)
∂θ

≥ cT+1(u− d)Eθ[Y1]T−t−1(T − t) ≥ 0.
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Figure 1. The value function in the CRR model

To visualize the behavior of the value function, we provide a simple graph in
Figure 1. We set ck = 0.95k−1, k = 1, . . . , T , cT+1 = 0.93T−1 and γk = 0.95,
k = 1, . . . , T . Notice the point of non–differentiability at θ = 0.95 = γT .

Corollary 6.5. The supermodularity assumption is satisfied in the CRR model and
thus the comparison result of Corollary 6.4 holds, i.e.

ρ
PR,mµt
t (I) ≥ ρB, µ0

t (I), I ∈ XM.

Acknowledgement: The authors would like to thank two anonymous referees
for valuable comments concerning the motivation of the paper.
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Pflug, G. C. and Ruszczyński, A. (2005) Measuring risk for income streams.
Comput. Optim. Appl. 32, 161–178. 1, 2, 3, 5
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