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Abstract

The classical models in risk theory consider a single type of claims. In the
insurance business, however, several business lines with separate claim arrival
processes appear naturally, and the individual claim processes may not be
independent. We introduce a new class of models for such situations, where
the underlying counting process is a multivariate continuous time Markov chain
of pure birth type and the dependency of the components arises from the fact
that the birth rate for a specific claim type may depend on the number of
claims in the other component processes. Under certain conditions we obtain
a fluid limit, i.e. a functional law of large numbers for these processes. We
also investigate the consequences of such results for questions of interest in
insurance applications. Several specific subclasses of the general model are
discussed in detail and the Cramér asymptotics of the ruin probabilities are
derived in particular cases.

Keywords: Cramér asymptotics; fluid limits; Lundberg coefficient; multidimen-
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1. Introduction

Recently, in the insurance business, a tendency towards more advanced mathemati-
cal models can be observed. One reason for this development certainly is the discussion
around the regulatory framework of Solvency II. An important topic in this discussion
still is the problem of modelling dependencies. Whereas this question reduces to the
concept of copulas in the case of multivariate random vectors, the situation is much
more complicated if multivariate stochastic processes are involved. At present there
are only a few attempts to address the question of how to model dependent processes
in a way that might be useful for insurance and finance applications. One possibility
is the class of multivariate Lévy processes. For these, the dependence structure can
be characterized by what is known as the Lévy copula of the process; see Cont and
Tankov (2004). Dependence properties of this class are further investigated in Bäuerle
et al. (2008). However, the disadvantage of this class is that—by definition—it does not
show any dependence across time. When we restrict ourselves to counting processes,
there are first suggestions for multidimensional models by Pfeifer and Nešlehová (2004),
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Zocher (2003), and Bäuerle and Grübel (2005). In Pfeifer and Nešlehová (2004) the
authors construct the vector of random numbers of events up to time T by an ordinary
copula and extract the process by conditioning. Zocher (2003) models the dependence
by a random stochastic intensity vector which is sampled once at the beginning, and in
Bäuerle and Grübel (2005) the authors propose a class of models where event points are
produced by thinning and shifts from a homogeneous Poisson process. In the present
paper we propose a model that avoids the reference to such an external mechanism by
assuming instead that the event intensities of the components are interacting. We also
go beyond the modelling of the counting process and investigate the behaviour of ruin
probabilities in the corresponding risk reserve processes.

To be specific, suppose that we have an insurance company with different lines of
business. In each line separately the difference of assets and liabilities can be modelled
as a one-dimensional risk reserve process. However, it makes sense not to assume
that the business lines are independent. We propose to model the dependence by
allowing the rate of arrivals of a claim of a specific type to depend on what happens in
the other lines, specifically on the number of claims that have arrived in the individual
components so far. For example, a large amount of claims in one business line may give
rise to a higher or lower intensity for the other ones. Thus, intensities are interacting.
Models like this have been considered in connection with credit risk.

The paper is organized as follows. In the next section we supply the formal defini-
tions of the counting processes and the risk reserve processes that are relevant for our
models. For the counting processes, we also give some typical examples with simulated
data; these and the corresponding illustrations are meant to provide an intuitive access,
complementing the formal definitions, to the problems and questions that we consider
in the later sections. In Section 3 we look at the general dependence structure and
give conditions under which the counting processes are associated. In Section 4 we
show that, again under certain conditions, a fluid limit can be obtained, and we derive
some properties of the limit. We also derive such results for the associated risk reserve
processes; Section 5 discusses these limits in connection with insurance applications.
We show that, in the context of actuarial applications, a very dangerous situation may
arise if the fluid limit itself is stochastic. In this case, if the premium rate is chosen
according to the expected value principle, the ruin probability may not converge to
zero if the initial reserve tends to infinity. In Section 6 we investigate a class of
models with repelling intensities. We look at the behaviour of ruin probabilities for the
corresponding multivariate risk reserve processes and obtain the Cramér asymptotics.
In Section 7 we consider processes with attracting intensities and again derive the
Cramér asymptotics. It turns out that the Lundberg exponent is the same as for the
corresponding model with independent claims. In Sections 6 and 7 we find a connection
to the classical urn models of Pólya and Eggenberger, and Friedman respectively.

2. The general model

We assume that we have d business lines, labelled j = 1, . . . , d. The counting process
for business line j is denoted by Nj , so that Nj(t) gives the number of claims of type
j that have arrived by time t. We further assume that at most one such event, of
whatever type, happens at any given time and that the number of events in any finite
interval is finite with probability 1. This means that the paths of Nj are continuous
from the right and have left limits (càdlàg), and that the jumps all have size 1. Let
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N = (N(t))t≥0 with N(t) = (N1(t), . . . , Nd(t)) be the vector process that consists of
the d one-dimensional counting processes (Nj(t))t≥0, j = 1 . . . , d. The state space for
the process N is E := N

d
0 and it has càdlàg paths. Our basic assumption is that N

is a time-homogeneous Markov chain; note that the components may not have the
Markov property individually. This differs from the approach in Bäuerle and Grübel
(2005), where the authors started with the assumption that the components are Poisson
processes with constant intensity.

Later we will rescale the state space; E and its rescaled versions are regarded as
subsets of the d-dimensional upper right orthant R

d
+. We put ‖x‖ := |x1|+ · · ·+ |xd| for

all x = (x1, . . . , xd) ∈ R
d; in particular, ‖N(t)‖ is the total number of events up to and

including time t. In view of our general assumption that at any given time at most one
event can take place the jumps of N are from the set B := {e1, . . . , ed}, where ej ∈ E
has j-th component 1 and all other components equal to 0. Hence N = (N(t))t≥0

may be regarded as a multidimensional pure birth process and its stochastic structure
(distribution) is specified by the distribution of the number N(0) of counts at time 0
and the rates for the different jumps, i.e. with suitable functions βj , j = 1, . . . , d,

P
[

N(t+ h) = k + ej

∣

∣N(t) = k
]

= hβj(k) + o(h) as h→ 0,

for all k = (k1, . . . , kd) ∈ E. We write β for the R
d
+-valued function with component

functions β1, . . . , βd. We may assume that ‖β(k)‖ > 0 for all k ∈ E, since the process
would ‘freeze’ at states k ∈ E with β(k) = 0. We will further find it convenient to
assume that the birth rate functions are bounded in the sense that

η := sup
k∈E

‖β(k)‖ <∞. (1)

An important consequence is

P
[

Nj(t) <∞ for all t ≥ 0, j = 1, . . . , d
]

= 1,

i.e. such an assumption prevents ‘explosion’ in finite time.
This general framework contains several interesting subclasses. We illustrate these

in dimension d = 2, where we now present four special models that will be used
throughout the paper. Explicit examples for each of these, with artificial data, are
given in Figure 1. In the whole of that figure the horizontal lines represent time and
the arrival of a claim is marked by a short vertical line, pointing upwards for claims of
the first type, and downwards otherwise.

Of course, if the functions β1 and β2 are constant, then the components are inde-
pendent Poisson processes. Part (a) of Figure 1 shows a realization of the independent
model with β1 = β2 ≡ 1/2. In (b) we have

β1(k1, k2) =
1 + k1

2 + k1 + k2
, β2(k1, k2) =

1 + k2

2 + k1 + k2
(2)

and in (c)

β1(k1, k2) =
1 + k2

2 + k1 + k2
, β2(k1, k2) =

1 + k1

2 + k1 + k2
(3)

respectively. In (b), an increase in the number of claims of a particular type increases
the probability of the next claim being of the same type, which could be regarded as
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Figure 1: Paths of four two-dimensional claim arrival processes.

a case with repelling intensities. In (c) a large number of claims in one component
increases the likelihood for the next claim to be of the other type, which could be
regarded as a case with attracting intensities.

In the cases (a) to (c) the counting process can be constructed from a background
Poisson process with constant rate by a random mechanism that channels the arrivals
to the different claim types, with the probabilities depending on the number of claims
in the different business lines so far. For independent components, i.e. in case (a),
the channelling step may simply consist of tossing a coin. In the last example (d) we
consider a situation where deletion of the background events is possible: With

β1(k1, k2) ≡ 1, β2(k1, k2) =

{

1, if k2 < k1,

0, otherwise,
(4)

claims that the coin would designate to the second type are deleted as soon as the total
number of claims in the second component reaches the total number of claims in the
first component.

A useful tool in the study of continuous time Markov chains such as the present
multivariate claim counting process N = (N(t))t≥0 is the embedded jump chain X =
(X(n))n∈N0

, where the paths of X consist of the sequence of states that N visits
successively. With N as above, X moves from k ∈ E to k + ei with probability

pk,k+ei
=

βi(k)

‖β(k)‖
, i = 1, . . . , d. (5)

Figure 2 shows the graphs of the (interpolated) paths for the jump chains associated
with the data in Figure 1. These are also the graphs of the function t 7→ N(t); for
comparison the diagonals are included.

While this is not our main concern in the present paper, we note that such plots may
serve as a graphical tool to detect dependencies between the component processes, in
much the same way as the well-known scatterplots do for random vectors. Indeed: That
there might be a major difference in the models generating (b) and (c) respectively,
seems easier to see in Figure 2 than in Figure 1.

In the first three of the four examples the sum of the coordinate intensities is
constant, so we may reconstruct N from X by N(t) := X(L(t)), where L = (L(t))t≥0

is a Poisson process with constant rate ‖β‖ and X,L are independent. More generally,
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Figure 2: Path graphs of the jump chains.

in all cases where (1) is satisfied, N can be constructed from a Markov chain X in
discrete time and a Poisson process L with rate η in the above manner: We now use
the uniformized chain X , which has transition probabilities

pk,k+ei
=
βi(k)

η
, i = 1, . . . , d. (6)

complemented by pk,k = 1−η−1‖β(k)‖. This simple device, of ‘obtaining N by running
X according to a Poisson clock L’, often makes it easy to transfer results from X to
N . This technique is known as uniformization and can also be used to simulate the
processes.

On the basis of these multivariate counting processes we can now construct the corre-
sponding multivariate risk reserve processes. We will generally assume that for each of
the d business lines we have a sequence (Uj,k)k∈N of independent non-negative random
variables, all with the same distribution Qj , j = 1, . . . , d; we also assume that the
random variables are independent across the coordinates. Further, we have a premium
income rate cj for the j-th business line, and a fixed initial capital Rj(0). The multi-
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variate risk reserve process R = (Rt)t≥0 is then defined by R(t) = (R1(t), . . . , Rd(t)),
with

Rj(t) := Rj(0) + cjt −

Nj(t)
∑

k=1

Uj,k for all t ≥ 0, j ∈ {1, . . . , d}. (7)

For the risk reserve processes we will generally assume that Rj(0) is deterministic,
and that Nj(0) = 0. One of the most important quantities associated with R is the
probability of ruin, first in the components separately, with

ψj(u) := P
[

inf
t≥0

Rj(t) < 0
∣

∣Rj(0) = u
]

being the probability of ruin of business line j, but also for the sum R0 :=
∑d

j=1 Rj of
the component processes,

ψ0(u) := P
[

inf
t≥0

R0(t) < 0
∣

∣R0(0) = u
]

.

A central issue in this setup is the dependence of the ruin probabilities on the type
of interaction between the claim intensities. The standard one-dimensional theory does
not apply to the component processes, since the components Nj of the multivariate
counting process N are in general not constant rate Poisson processes (neither are they
renewal processes, which would be required in the Sparre-Anderson generalization of
the standard model). The sum process R0, however, may well be a standard one-
dimensional risk reserve process, with premium income rate c0 := c1 + · · · + cd and
claim arrival process ‖N‖. This is the case, for example, if ‖β‖ is a constant function,
as in parts (a) to (c) of our running example, and if additionally the Qj’s do not
depend on j. Moreover, in case (a), or more generally in d dimensions with βj ≡ λj for
some λ1, . . . , λd ≥ 0, R0 is again a standard one-dimensional risk reserve process: The
associated claim arrival rate is λ0 := λ1 + · · · + λd and the claim size distribution is
given by λ−1

0 (λ1Q1 + · · ·+λdQd); note that the Qj ’s may be different in this situation.
Of course, from our present point of view, this latter case is not very interesting as
there is no interaction between the components.

In the next two sections we deal with the general model and obtain results on
stochastic order properties and the asymptotic behaviour under fluid scaling. We will
then investigate models that contain the above repelling and attracting examples (b)
and (c) respectively as special cases, where we also address the question of the influence
of the interaction on the ruin probabilities.

3. Dependence structure

It is quite obvious that the component processes of N are in general dependent.
Moreover it is possible to identify cases where the components show some kind of
positive dependence. There are numerous concepts for dependence and we will restrict
ourselves here to the notion of association: A random vectorX = (X1, . . . , Xd) is called
(positively) associated if Cov(f(X), g(X)) ≥ 0 for all increasing functions f, g : R

d →
R. Here and in the following we use the coordinatewise order on R

d, and monotonicity
refers to this order. For vector-valued functions such as the intensity function β of N ,
increasing means that all the component functions are increasing in the above sense.
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The concept of association can be extended to stochastic processes (cf. Chapter 3.7
in Szekli (1995) for the following definitions): A stochastic process X = (X(t))t≥0

with values in R
d is said to be associated if (X(t1), . . . , X(tn)) is associated (as an

nd-dimensional vector) for all 0 ≤ t1 < t2 < . . . < tn and all n ∈ N. Note that the
property of association remains valid under any permutation of the random variables.
In order to state our result, we need a second important property: A Markov process
X is said to be stochastically monotone if

x 7→ E
[

f(X(t)) | X(s) = x
]

is an increasing function for all increasing f : R
d → R and for all 0 ≤ s < t.

There are many results about stochastic monotonicity for stochastic processes,
however we have not found the following version:

Lemma 1. Let N be a multidimensional pure birth process as defined in Section 2, with
intensity function β : E → R

d
+. If β is increasing then N is stochastically monotone.

Proof. The transition probabilities of the corresponding uniformized chain (X(n))n∈N

are given by

P[Xn+1 = k + ej | Xn = k] =
βj(k)

η
, j = 1, . . . , d.

With probability 1 − η−1‖β(k)‖ no state change occurs; see also the discussion in
Section 2. It is easy to see that the assumption on β implies that X = (X(n))n∈N0

is
stochastically monotone, and this transfers to N = (N(t))t≥0 in a straightforward
manner since the distributions of N can be regarded as Poisson mixtures of the
distributions of X .

The following is the main result of this section.

Theorem 1. If β is increasing, then N is associated.

Proof. We apply Theorem 2.14 in Liggett (1985). Note that N is a Feller process
and that it is stochastically monotone by Lemma 1. Thus, it remains to check that

A(fg) ≥ gAf + fAg

for all increasing functions f, g : N
d → R. Here A denotes the generator of N , which

is given by

Af(k) =

d
∑

j=1

(

f(k + ej) − f(k)
)

βj(k).

An easy calculation shows that A(fg) ≥ gAf + fAg if and only if

d
∑

j=1

βj(k)
(

f(k + ej) − f(k)
)(

g(k + ej) − g(k)
)

≥ 0.

Since f and g are increasing the proof is complete.
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4. Fluid limits

In this section we derive the fluid limits of the multidimensional claim counting and
risk reserve processes that we introduced in Section 2. The fluid model is the result of a
functional law of large numbers and reveals the general path behaviour of the stochastic
processes: We rescale time and state space by the same factor γ > 0 and then let γ tend
to infinity; see e.g. Section 5.4 in Whitt (2002) for a general reference. Formally, and
taking into account that the rescaling should not force the starting values to become
0, we can define for each γ > 0 an operator Ψγ that maps functions f : R+ → R

d to
functions Ψγ(f) : R+ → R

d by

Ψγ(f)(t) := f(0) +
1

γ

(

f(γt) − f(0)
)

for all t ≥ 0.

With the counting processes N and the risk reserve processes R defined in Section 2
we put Nγ := Ψγ(N) and Rγ := Ψγ(R). In particular, Nγ is the process with jump
intensity γβ that starts at the same initial state as N and has jumps of size γ−1.
Our main result, Theorem 2, holds for counting processes which have an arbitrary
(deterministic) value N(0) ∈ N

d at zero. However, when we deal with the risk reserve
processes we will always assume that N(0) = 0. Thus, we can write the components
of N and R as

Nγ
j (t) = Nj(0) +

1

γ

(

Nj(γt) −Nj(0)
)

(8)

and

Rγ
j (t) = Rj(0) + cjt−

1

γ

Nj(γt)
∑

k=1

Uj,k (9)

for all t ≥ 0, j = 1, . . . , d.
We are interested in potential limits of the processes Nγ and Rγ as γ → ∞. We

need two auxiliary results. For the first of these we introduce the processes (Mj(t))t≥0

with

Mj(t) := Nj(t) −Nj(0) −

∫ t

0

βj(N(s)) ds, for j = 1, . . . , d and all t ≥ 0, (10)

and (M(t))t≥0 with M(t) := (M1(t), . . . ,Md(t)) for all t ≥ 0. The following lemma is
a standard fact (see e.g. Davis (1993), Theorem 26.14).

Lemma 2. M is a d-dimensional martingale with respect to (Ft)t≥0.

Obviously we can write (in vector notation)

N(t) = N(0) +M(t) +

∫ t

0

β
(

N(s)
)

ds.

Rescaling time and space as described above we obtain

Nγ(t) = N(0) +Mγ(t) +

∫ t

0

β
(

N(γs)
)

ds, (11)

with Mγ := Ψγ(M). The processes Nγ , γ > 0, are defined on a common probability
space (Ω,F ,P) and each Nγ is a random element with values in Dd[0,∞), the space
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of R
d-valued functions on [0,∞) that are right continuous and have left-hand limits.

We endow Dd[0,∞) with the Skorokhod topology. The symbol ‘→distr’ denotes the
convergence in distribution in this space; this will appear in the theorem below. Our
second auxiliary result, however, deals with convergence in probability. For continuous
limit functions convergence inDd[0,∞) with respect to the Skorohod topology is known
to be equivalent to uniform convergence on compact sets. Hence in order to prove that
a sequence (Xn)n∈N of random elements of Dd[0,∞) converges in probability to 0 as
n→ ∞, it is enough to show that

lim
n→∞

P
[

sup
0≤s≤t

|Xn(s)| > ǫ
]

= 0 for all ǫ > 0 and t > 0.

Lemma 3. Mγ converges to 0 in probability as γ → ∞.

Proof. First choose a line j and define the stopping time

τ j
n := inf

{

t ≥ 0 | |Mγ
j (t)| ≥ n

}

.

Then (Mγ
j (t ∧ τ j

n))t≥0 is a square integrable martingale since it is bounded. Using
Fatou’s lemma and denoting the quadratic variation of the process X by [X ] we obtain

E
[

Mγ
j (t)2

]

≤ lim inf
n→∞

E
[

Mγ
j (t ∧ τ j

n)2
]

≤ lim inf
n→∞

E
[

[

Mγ
j

]

(t ∧ τ j
n)
]

≤
1

γ2
E
[

number of jumps of Mγ
j in [0, t]

]

≤
ηt

γ
.

Hence, by Doob’s inequality,

E
[

sup
0≤s≤t

Mγ
j (s)2

]

≤ 4 E
[

Mγ
j (t)2

]

≤
4ηt

γ
.

The statement of the lemma now follows on using the above criterion for convergence
to 0 in probability together with Markov’s inequality.

We write ⌈x⌉ for the vector with components ⌈xj⌉, j = 1, . . . , d, for x = (x1, . . . , xd) ∈
R

d
+. In R

d we have the probability simplex

Wd :=
{

(x1, . . . , xd) ∈ R
d
+ : x1 + · · · + xd = 1

}

,

to which we transfer the (d−1)-dimensional Lebesgue measure in the canonical fashion.
The following is the main theorem of this section. In it we require that the intensity
function β converges to a function β̃ : Wd → R

d along rays in the sense that, for almost
all x ∈Wd and all sequences (xn)n∈N ⊂ R

d
+,

lim
n→∞

‖xn‖ = ∞, lim
n→∞

xn

‖xn‖
= x =⇒ lim

n→∞
β(⌈xn⌉) = β̃(x). (12)

We extend β̃ to R
d
+ \ {0} by β̃(x) = β̃(‖x‖−1x). With x, y ∈ R

d we denote by x ◦ y =
(x1y1, . . . , xdyd) the componentwise product. Let c = (c1 . . . , cd) be the vector of the
premium income rates.
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Theorem 2. Suppose that β satisfies the conditions (1) and (12) and that the distri-
bution Qj of the claims of type j has finite second moment and mean µj. Then every
sequence (γ(k))k∈N ⊂ (0,∞) with γ(k) → ∞ has a subsequence (γ(k(l)))l∈N such that

Nγ(k(l)) →distr φ, Rγ(k(l)) →distr r

as l → ∞. Further, the paths of the limit processes φ and r are almost surely absolutely
continuous, and they satisfy

φ(t) = φ(0) +

∫ t

0

β̃
(

φ(s) − φ(0)
)

ds. (13)

r(t) = r(0) + ct − µ ◦ φ(t). (14)

Proof. In order to be able to use (12) we need that the total number ‖N(t)‖ of
claims up to time t converges to ∞ with probability 1 as t → ∞. For this, we note
that any ball in ‖ · ‖-norm with finite radius will eventually be left and not be visited
again since

inf
{

‖β(k)‖ : k ∈ E, ‖k‖ ≤M
}

> 0 for all M <∞,

which in turn follows from our general assumption that ‖β(k)‖ > 0 for all k ∈ E and
the fact that the infimum is over a finite set.

We now show that the family {Nγ : γ ≥ 1} is tight. For this, we check the usual
sufficient conditions (see e.g. Kushner and Dupuis (2001)):

lim
m→∞

sup
γ≥1

P
[

‖Nγ(t)‖ ≥ m
]

= 0 for all t ≥ 0, (15)

lim
δ→0

lim sup
γ→∞

sup
τ≤T

E
[

min{1, ‖Nγ(τ + δ) −Nγ(τ)‖}
]

= 0. (16)

In (16) the supremum is over the set of stopping times τ with respect to the filtration
generated by N . The uniformization implies that the total number ‖N(t) −N(0)‖ of
jumps in the time interval (0, t] is bounded from above by a random variable that has
a Poisson distribution with parameter ηt. Hence Markov’s inequality implies that, for
all m,

P
[

‖Nγ(t)‖ ≥ m
]

≤
1

m2
E‖Nγ(t)‖2

≤
3

m2

(

E‖N(0)‖2 + E
(

‖Nγ(t) −N(0)‖2
)

)

≤
3

m2

(

E‖N(0)‖2 +
1

γ2
E
(

‖N(γt) −N(0)‖2
)

)

≤
3

m2

(

E‖N(0)‖2 +
1

γ2

(

ηγt+ (ηγt)2
)

)

,

which shows that (15) above is true. For (16) we condition on the pre-τ σ-field and
use the strong Markov property of N to obtain

E
[

min{1, ‖Nγ(τ + δ) −Nγ(τ)‖}
]

≤ δη

which directly implies the desired statement. Thus we obtain the existence of converg-
ing subsequences.
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Suppose now that we have a converging sequence Nγ(k) with γ(k) → ∞ as k → ∞
and denote the limit of Nγ(k) by φ. Using the Skorohod Representation Theorem we
may assume that this convergence is almost sure instead of in distribution. Let the
basic ω (which we suppress in the notation) be such that we have the convergence in
Dd[0,∞). By the argument given at the beginning of the proof we may also assume
that Nγ(k)(t) → ∞ as t→ ∞. Using property (12) we now obtain for each s > 0

lim
k→∞

β
(

N(γ(k)s)
)

= β̃

(

lim
k→∞

(Nγ(k)(s) −N(0))γ(k) +N(0)
∥

∥(Nγ(k)(s) −N(0))γ(k) +N(0)
∥

∥

)

= β̃



 lim
k→∞

(Nγ(k)(s) −N(0)) + 1
γ(k)N(0)

∥

∥

∥(Nγ(k)(s) −N(0)) + 1
γ(k)N(0)

∥

∥

∥





= β̃

(

φ(s) − φ(0)

‖φ(s) − φ(0)‖

)

= β̃ (φ(s) − φ(0)) .

Because of (1) we can apply dominated convergence, which yields

lim
k→∞

∫ t

0

β
(

N(γ(k)s)
)

ds =

∫ t

0

β̃(φ(s) − φ(0)) ds.

Combining this with the representation (11) and Lemma 3, we obtain the integral
equation for φ. The absolute continuity of t 7→ φ(t) is an immediate consequence of
this equation.

For the analysis of the risk reserve process we first note that the limit result for the
counting processes implies that R̃γ with

R̃γ
j (t) := Rj(0) + cjt− µjN

γ
j (t)

converges in distribution to r along suitably chosen subsequences. It is therefore enough
to show that the difference R̃γ −Rγ converges to 0 in probability as γ → ∞, which in
turn would follow from

lim
γ→∞

P
[

sup
0≤s≤t

∣

∣

∣

1

γ

Nj(γt)
∑

k=1

(Uj,k − µj)
∣

∣

∣ > ǫ
]

= 0 (17)

for all ǫ > 0, t > 0 and j = 1, . . . , d. Conditionally on N the partial sums
∑n

k=1(Uj,k −
µj), n ∈ N, are a martingale and Nj(γt), t > 0, is an increasing family of deterministic,
and hence bounded, stopping times. The optional sampling theorem together with
Doob’s inequality therefore lead to

P
[

sup
0≤s≤t

∣

∣

Nj(γt)
∑

k=1

(Uj,k − µj)
∣

∣ > ǫ
∣

∣

∣N
]

≤
4

ǫ2
E
[(

Nj(γt)
∑

k=1

(Uj,k − µj)
)2 ∣
∣

∣N
]

=
4

ǫ2
Nj(γt)EU

2
j,1 .

In view of ENj(γt) ≤ ηγt we now obtain (17) by taking expectations. This completes
the proof of the theorem.
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We note in passing that assumption (1) can be replaced by the weaker condition

ENγ(t) = Ot(γ), E[Nγ(t)]2 = Ot(γ
2) for all t ≥ 0, as γ → ∞,

where the index t means that the relevant constants may depend on t.

The family of solutions to (13) and (14) is called the fluid limit of the counting
process or risk reserve process respectively. The fluid limit for the counting process
has some interesting properties, which we collect in the following result.

Theorem 3. (a) If β̃ is locally Lipschitz continuous on Wd, then the solution to (13)
is unique up to a set of measure zero whenever ‖φ(0)‖ > 0.

(b) The paths t 7→ φ(t) of the fluid limit are non-decreasing and can grow at most
linearly.

Proof. Part (a) is an immediate consequence of the Phragmen-Lindelöf Theorem, a
standard result from the theory of differential equations.

For part (b) note that β̃ cannot take negative values, which implies that φ is non-
decreasing. From (1) and (12) we obtain that β̃ is bounded, hence the growth restriction
follows from (13).

If the fluid limit for N is a unique and deterministic function φ, then Nγ converges
to φ in probability, a result that may be interpreted as a functional weak law of large
numbers. Of course, the analogous statement then also holds for the risk reserve
processes, as r is simply a function of φ.

5. Applications of fluid limits

Naturally, some information will be lost when passing to the fluid model, as will be
demonstrated in the first subsection. We then show that, nevertheless, the results of
the previous section are useful in the insurance context, especially in connection with
questions concerning the long-term behaviour of the processes.

5.1. Limitations of the fluid model

If βj depends on kj only then there is no interaction and the component processes
are independent. In two dimensions, for example, with β1 = β2 ≡ 1/2, the counting
process N is simply a pair of independent Poisson processes with rates 1/2. The fluid
limit φ is deterministic and consists of the one path t 7→ (t/2, t/2).

Suppose now, still with d = 2, that

β1(k1, k2) =











1, if k2 = k1 + 1,
1
2 , if k2 = k1,

0, otherwise,

and β2(k1, k2) =











1, if k1 = k2 + 1,
1
2 , if k2 = k1,

0, otherwise.

This is the tightest coupling between the component processes that is compatible with
the assumption that at most one event occurs at any given time: The claim numbers
in the two components never differ by more than 1. In this model, the times between
successive claims (of whatever type) are independent and exponentially distributed
with mean 1. Consequently, if we start with zero claims in both components, then Nγ

will converge with probability 1 to the deterministic fluid limit φ(t) = (t/2, t/2).
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These two examples show that the dependence structure may not survive the passage
to the fluid limit. We will see in the next section, however, that for cases with repelling
intensities, such as in part (b) of the illustration in Section 2, the dependence of the
components may lead to random fluid limits, where the distributions of φ and r depend
on the claim intensities.

5.2. Proportion of claim arrivals of different types

A natural question in the context of multivariate counting processes concerns the
average number of claims in the different business lines or, for example, the proportion
of claims in the long run for two fixed business lines. Such questions can easily be
answered with the help of fluid limits. By →p we denote convergence in probability.

Theorem 4. Suppose the conditions of Theorem 2 hold and that β̃ is locally Lipschitz
continuous. Let φ denote the fluid limit. Then, for all i, j ∈ {1, . . . , d} we have for
t→ ∞

Ni(t)

t
→p φi(1) − φi(0),

Ni(t)

Nj(t)
→p

φi(1) − φi(0)

φj(1) − φj(0)

Proof. Note that since β̃ is locally Lipschitz-continuous Theorem 3 (a) implies that
the solution to (13) is unique and that we have Nγ →distr φ for γ → ∞. Now by (8)
we obtain

Ni(γ)

γ
= Nγ

i (1) −Ni(0) +
1

γ
Ni(0).

Thus, Theorem 2 yields
Ni(γ)

γ
→distr φi(1) − φi(0)

and since the limit is a constant we also have convergence in probability. The second
part of the assertion is a consequence of the first part and the continuous mapping
Theorem.

5.3. Insurability

In this section we discuss the question of choosing adequate premium rates for
insurance lines with claims arriving according to the model in Section 2. As in
that section we assume that the claim sizes in each business line j are non-negative,
independent and identically distributed random variables Uj,k, k ∈ N, all with the
same distribution Qj , that claims are stochastically independent across the coordinates
j = 1, . . . , d, and that the family of claim sizes is independent of the arrival process
N . (Some of these assumptions can be weakened.) We recall that ψj(u) denotes the
probability of eventual ruin in business line j, if the initial capital for that line is u.

A first task, which is rather simple in the classical ruin setting, is to choose the
premium rate cj for business line j such that ψj(u) < 1 for all u ≥ 0. In the interacting
context this question is more complicated. The following is a first observation.

Lemma 4. ψj(u) = 1 for some u ≥ 0 if and only if ψj(u) = 1 for all u ≥ 0.

Proof. Obviously the statement for all u ≥ 0 implies the one for a fixed u ≥ 0. Now
fix u ≥ 0 and suppose ψj(u) = 1. The monotonicity of the probability measure yields
ψj(u

′) = 1 for all 0 ≤ u′ ≤ u. Now let u′ > u and suppose ψj(u
′) < 1. However since

{

Nj

(

(u′ − u)c−1
j

)

= 0
}

⊃
{

L
(

(u′ − u)c−1
j

)

− L(0) = 0
}



14 Nicole Bäuerle and Rudolf Grübel

and the probability of the latter event is exp
(

−(u′ − u)c−1
j η

)

> 0 this would imply
ψj(u) < 1, which is a contradiction.

The fluid limit can now serve as a tool for deciding whether ψj(u) = 1. We say
that the fluid limit defined by (13) and (14) is not insurable for business line j, if with
r(0) ≡ 0, every path of the fluid limit has the property that there exists a t0 > 0 such
that rj(t0) < 0.

Theorem 5. If the fluid limit is not insurable for business line j then ψj(u) = 1 for
all u ≥ 0.

Proof. According to Lemma 4 it suffices to show that ψj(0) = 1. In Theorem 2
choose a convergent subsequence

(

Nγ(k), Rγ(k)
)

k∈N
with limk→∞ γ(k) = ∞. By Sko-

rohod’s theorem the process can be constructed on the same probability space such that
the convergence is almost everywhere. Since the limit is continuous with probability
one, the convergence is uniform on compact sets. Now fix an arbitrary ω ∈ Ω
and suppose Rγ(k)(t)(ω) → r(t) on an interval [0, T ] where r is a solution to (14).
Let t0 ∈ [0, T ] (T has to be large enough) be such that rj(t0) < 0 and choose

k large enough to obtain R
γ(k)
j (t0)(ω) < −ε with rj(t0) < −ε < 0. This implies

Rj(γ(k)t0)(ω) < −εγ(k) < 0. Thus, for this trajectory, we have ruin at time t0γ(k) or
earlier.

Moreover, a very dangerous situation may arise whenever the fluid limit is stochastic,
a situation which we will encounter in the next section. To illustrate the situation, let
us look at component j with initial reserve u ≥ 0. Obviously we have for all γ ≥ 1 and
t > 0:

ψj(u) ≥ ψj(uγ) ≥ P[Rγ
j (t) < 0 | Rj(0) = u]

Assuming that we can apply Theorem 2 and letting γ → ∞ this yields

ψj(u) ≥ P[rj(t) < 0 | rj(0) = u]

for all t ≥ 0, where the distribution function of rj(t) is continuous in 0. Note that we
have rj(t) = rj(0) + cjt − µjφj(t). In what follows we assume that the fluid limit is
stochastic and that φj(t)/t =distr ξ independent of t where ξ has a finite expectation Eξ
(these conditions are fulfilled for the models in the next section). Moreover, we assume
that the insurance company calculates the premium rate according to the expected
value principle and sets cj := µjEξ + δ for some δ > 0. Then we obtain with t→ ∞:

ψj(u) ≥ P[δ < µj(ξ − Eξ)].

Note that the probability on the right-hand side does not depend on the initial reserve
u anymore and that it may well be positive if δ is too small. This means that we
cannot obtain a Cramér asymptotic here; even worse, the ruin probability does not
tend to zero if u tends to infinity. Bearing this in mind, a dependence between claim
arrivals may be more dangerous than the case of heavy tailed claims, for example,
where a Cramér asymptotic does not exist either, but the ruin probability at least goes
to zero for u to infinity. The risk in such a situation can only be managed by choosing
a premium rate much higher than the expected cost rate.
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6. Models with repelling intensities

The second of our basic examples has intensity function

β1(k1, k2) =
1 + k1

2 + k1 + k2
, β2(k1, k2) =

1 + k2

2 + k1 + k2
.

It describes a situation where an increasing proportion of claims of one type leads to
an increasing rate of arrival of claims of the same type. This intensity function satisfies
condition (12) with

β̃1(x1, x2) =
x1

x1 + x2
, β̃2(x1, x2) =

x2

x1 + x2
for all x1, x2 ∈ R

2
+ \ {(0, 0)}.

For simplicity we assume in this section that the counting processes start at 0. Then the
associated fluid limit equation (13) has a whole family {φα : 0 ≤ α ≤ 1} of solutions,
given by

φα(t) =
(

αt, (1 − α)t
)

for all t ≥ 0.

This raises the question of what the long-term behaviour of the two-dimensional
counting process (N(t))t≥0 with the above intensity function is. In the examples given
in Section 5.1 there was a single deterministic solution to (13), which implies that the
limit distribution is degenerate. In such cases Theorem 2 gives a full description of
the asymptotic behaviour. In cases where the fluid limit may be random, however,
Theorem 2 would need to be augmented by statements concerning the distribution of
φ. We now carry this out for a class of models that contains the above as a special
case.

For a multivariate counting process with intensity function (2) the embedded jump
chain X = (X(n))n∈N0

can be related to the classical Pólya-Eggenberger urn model:
At time 0, we have one red and one blue ball. In the step from time n to time n+1 we
choose one of the (then n+ 2) balls uniformly at random and put it back into the urn,
together with another ball of the same colour; X1(n) is the number of red balls in the
urn after n steps. It is known that the proportion Zn of red balls at time n converges
almost surely to a random variable Z∞, and that Z∞ is uniformly distributed on the
unit interval; see e.g. Section 6.3.3 in Johnson and Kotz (1977) or p.243 in Feller (1971).
In view of the fact that β1 + β2 is constant we can interpret the counting process as X
being run by a clock that is a constant rate Poisson process, as explained in Section 2,
so that

1

t
N(t) →

(

Z∞

1 − Z∞

)

almost surely as t→ ∞,

with Z∞ as above. This exemplifies a situation where the fluid limit is not determin-
istic, i.e., the randomness does not disappear at the present linear scaling.

It is well-known that the Pólya-Eggenberger urn model arises as an h-transform of
the random walk on N0×N0 that moves from (i, j) to either (i+1, j) or (i, j+1), where
both these transitions have probability 1/2. In fact, the bounded and nonnegative
harmonic functions h associated with this random walk can be written as

h(i, j) =

∫

[0,1]

xi(1 − x)j ν(dx) for all (i, j) ∈ E (18)
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for some probability measure ν on the unit interval; see e.g. p.394ff in Kemeny et al.
(1976) or Section 6 in Sawyer (1997). For example, if ν is the beta distribution with
parameters α1 and α2 then we obtain the transition probabilities

p(i,j),(i+1,j) =
h(i+ 1, j)

2 h(i, j)
=

α1 + i

α1 + α2 + i+ j
,

p(i,j),(i,j+1) =
h(i, j + 1)

2 h(i, j)
=

α2 + j

α1 + α2 + i+ j
,

which contains (2) as a special case if the Poisson clock has rate 1.
Generalizing this to d dimensions we start with the symmetric ‘north-east’ random

walk, which has transition probabilities

pk,k+ej
=

1

d
for all k = (k1, . . . , kd) ∈ E, j = 1, . . . , d,

and consider the h-transform associated with the harmonic function

h(k) =

∫

Wd

xk ν(dx) for all k ∈ E,

where ν is some probability measure on the d-dimensional probability simplex Wd, and
where we have used the abbreviation xk = xk1

1 · · ·xkd

d for x = (x1, . . . , xd) ∈ R
d and

k = (k1, . . . , kd) ∈ E. If ν is concentrated on some z = (z1, . . . , zd) ∈ Wd then this
leads to a north-east random walk with transition probabilities

p
(h)
k,k+ej

= zj for all k = (k1, . . . , kd) ∈ E, j = 1, . . . , d,

so that we may interpret the general case as a mixture of such ‘biased’ random walks.
A straightforward calculation shows that, for general ν, the mixture continues to be
a Markov chain, but that it will in general no longer be a random walk, and that its
transition probabilities are

p
(h)
k,k+ej

=
EZk+ej

EZk
for all k ∈ E, j = 1, . . . , d,

where Z is a random vector with distribution ν. This provides the embedded jump
chain X from which we again obtain a multivariate counting process N by using a
one-dimensional Poisson process L with constant intensity λ as a random clock.

Alternatively we can regard these models as a special class of mixed Poisson pro-
cesses. The following construction of such processes is adapted to our purposes: For a
given dimension d and rate parameter λ > 0 let Z be a random variable with values in
Wd and distribution ν, and let L = (L(t))t≥0 be a one-dimensional Poisson process with
constant intensity λ. Given Z = (z1, . . . , zd) we construct the d-dimensional counting
process N = (N1, . . . , Nd) by independently assigning each of the events of L to the
j-th component with probability zj.

Putting this together we obtain the following result. The second half is obvious
from the construction of N ; note that we even have almost sure convergence of N (γ)

to φ as γ → ∞.
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Theorem 6. The multivariate counting process N associated with λ and ν in the above
construction is a time-homogeneous Markov chain with intensities

βj(k) = λ
EZk+ej

EZk
for all k ∈ E, j = 1, . . . , d,

where Z is a random vector with distribution ν. Moreover, the fluid limit φ for N is
of the form

φ(t) = tλZ for all t ≥ 0.

We regard N as a directionally mixed Poisson process with mixing distribution ν
and base rate λ. This distinguishes these models within the greater class of all mixed
Poisson processes, which in general will not be homogeneous in time. For a thorough
study of general mixed multivariate Poisson processes we refer the reader to Zocher
(2005), which also contains a result similar to the first half of Theorem 6, with a
detailed (and different) proof.

We now turn to the associated risk reserve processes. In the classical one-dimensional
setting the parameters of the standard model consist of the claim arrival rate λ, the
premium income rate c and the claim size distribution Q. We assume that Q is not a
point mass (we consider the case of constant claim sizes as being degenerate), that

H(t) :=

∫

etxQ(dx) < ∞ for some t > 0, (19)

and that

lim
t↑t0

H(t) = ∞ with t0 := sup{t > 0 : H(t) <∞}. (20)

Then the mean µ :=
∫

xQ(dx) associated with Q is finite, and for c > λµ there is a
unique solution κ = κ(λ, c,Q) > 0 of the equation

H(t) = 1 +
ct

λ
. (21)

The ruin probability ψ(u) then decreases asymptotically at an exponential rate as a
function of the initial capital u; more precisely, we have the following Lundberg bound
and the Cramér limit,

ψ(u) ≤ e−κu for all u > 0, lim
u→∞

1

u
logψ(u) = −κ, (22)

see e.g. Rolski et al. (1999), Section 5.4.1. The rate parameter κ is known as the
Lundberg exponent or adjustment coefficient.

In the multivariate case we have, as explained in Section 2, an initial capital uj,
a premium income rate cj and a claim size distribution Qj for the j-th business line,
j = 1, . . . , d. In the following result we obtain the Lundberg exponent for the global
ruin probability ψ0 (which depends on u1, . . . , ud via u := u1+ . . .+ud) in the case that
the underlying multivariate counting process is a directionally mixed Poisson process.
In it supp(ν) denotes the support of the measure ν, and we write 〈x, y〉 =

∑d
j=1 xjyj

for the inner product of the vectors x = (x1, . . . , xd) ∈ R
d and y = (y1, . . . , yd) ∈ R

d.
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Theorem 7. Let N be a directionally mixed Poisson process with mixing distribution
ν and base rate λ, and let R be the associated risk reserve process with nonnegative
premium income rates c1, . . . , cd and claim size distributions Q1, . . . , Qd. We assume
that the claim size distributions are non-degenerate and that they satisfy (19) and (20).
Suppose further that

‖c‖ > λ sup{〈z, µ〉 : z ∈ supp(ν)} (23)

where c = (c1, . . . , cd), µ = (µ1, . . . , µd) and µj =
∫

xQj(dx), j = 1, . . . , d. Then the
global ruin function ψ0 associated with the sum R0 of the components of R satisfies

ψ0(u) ≤ e−κ0u for all u > 0, lim
u→∞

1

u
logψ0(u) = −κ0,

where the Lundberg exponent κ0 is given by

κ0 = inf{κ(z) : z ∈ supp(ν)}

and κ(z) is the Lundberg exponent for the one-dimensional model with premium income

rate ‖c‖, claim arrival intensity λ and claim size distribution
∑d

j=1 zjQj.

Proof. Let A ⊂ Wd be the support of ν and let Hj be the moment generating

function associated with Qj , finite on (−∞, tj0). For each z = (z1, . . . , zd) ∈ A and

with Qz :=
∑d

j=1 zjQj, the function

t 7→ Ψ(z, t) :=

∫

etxQz(dx) − 1 −
‖c‖ t

λ

is differentiable, has the value 0 for t = 0 and approaches ∞ as t → t(z) with t(z) :=
min{tj0 : zj 6= 0, j = 1, . . . , d}. Further, its derivative at 0 is strictly negative in view
of assumption (23) and

∂

∂t

∫

ety Qz(dx)
∣

∣

∣

t=0
=

d
∑

j=1

zj

∫

xQj(dx) = 〈z, µ〉 ,

and similarly, using the general assumption that the claim distributions are not degen-
erate, this function is strictly convex. This establishes the existence and uniqueness of
a positive root κ(z), for each z ∈Wd. We now claim that z 7→ κ(z) is continuous. This
follows with the implicit function theorem if we can show that

∂

∂t
Ψ(z, t) 6= 0 whenever t > 0 and Ψ(z, t) = 0.

In fact,
d
∑

j=1

zjH
′
j(t) −

‖c‖

λ
> 0 if t > 0 and

d
∑

j=1

zjHj(t) = 1 +
‖c‖ t

λ

in view of the strict convexity of t 7→
∫

etxQz(dx) =
∑d

j=1 zjHj(t).
From the construction of the processes it is clear that

ψ0(u) =

∫

A

ψz(u) ν(dz), (24)
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where ψz is the ruin function for the one-dimensional model associated with z ∈ A.
Using the bound in (22) together with the definition of κ0 we obtain the Lundberg
bound for the global ruin probabilities in the multivariate model. The same argument
also shows that

lim sup
u→∞

1

u
logψ0(u) ≤ −κ0.

To obtain a corresponding lower bound we use the continuity of z 7→ κ(z): There is a
mixing vector z̄ = (z̄1, . . . , z̄d) in the compact set A such that κ0 = κ(z̄). For a given
ǫ > 0 let U be the intersection of an ǫ-neighbourhood of z̄ in Wd with the support A
of ν, and let z̃ = (z̃1, . . . , z̃d) be defined by

z̃j := (z̄j − ǫ)+ for j = 1, . . . , d.

With z̃0 := 1 − ‖z̃‖ we finally put

Q̃ :=
d
∑

j=1

z̃jQj + z̃0δ0,

where δ0 denotes the one-point mass in 0. We clearly have Q̃ ≤st Qz in stochastic order
for all z ∈ U , so that the ruin function ψ̃ for the one-dimensional model with premium
income rate ‖c‖, claim arrival intensity λ and claim size distribution Q̃ provides a lower
bound for ψz for all z ∈ U . In particular,

ψ0(u) ≥ ν(U) ψ̃(u),

so that, since ν(U) > 0 in view of z̄ ∈ A,

lim inf
u→∞

1

u
logψ0(u) ≥ −κ̃,

where κ̃ denotes the Lundberg coefficient for the model with claim size distribution Q̃.
Note that the tilded quantities depend on ǫ (whereas ψ0 does not), hence the proof
will be complete if we can show that κ̃→ κ0 as ǫ→ 0.

Let H̃ be the moment generating function associated with Q̃ and let J := {1 ≤ j ≤
d : z̄j > 0}. Choose t̄ such that κ0 < t̄ < min{tj0 : j ∈ J}. It is easy to see that

Hz̄(t) − ǫ
∑

j∈J

sup
0≤t≤t̄

Hj(t) ≤ H̃(t) ≤ Hz̄(t) + z̃0

for all t ∈ [0, t̄]. As Hz̄ is strictly convex and has a positive derivative in κ0 these
inequalities suffice to show that indeed κ̃ → κ0 as ǫ → 0. This completes the proof of
the theorem.

We may rephrase Theorem 7 by saying that for mixed counting processes the worst
of the relevant rates for the corresponding one-dimensional models will be the rate for
the multivariate model. It seems remarkable that only the support of ν matters, as far
as the Lundberg bound and the Cramér asymptotics are concerned. Indeed, if ν has
full support Wd, then the Lundberg exponent κ0 for the multivariate model will simply
be the minimum of the exponents κj of the individual business lines. For example in
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model (2) ν is determined by a Beta(1,1)-distribution and ν has full support W2. In
this case κ0 = min{κ1, κ2}.

We end this section by investigating the ruin probability for the components in the
directionally mixed Poisson model separately. It may be helpful to compare the model
with dependencies to a model where claims occur with the same marginal probabilities,
but independently of each other. So suppose (Xj(n))n∈N0

is the embedded process of
component j and (X⊥

j (n))n∈N0
is the embedded process of the independent situation

where claims arrive at average rate λEZj . In the example of the introduction where the
transition probabilities are given by (2) this would mean that claims arrive with prob-
ability 1/2 at jump times of L and that X⊥

1 (n) has a binomial B(n, 1/2) distribution.
A useful order to compare the risk of two random variables is the convex order (see
e.g. Müller and Stoyan (2002)): Let ξ and η be two random variables. We say that ξ
is smaller in the convex order than η, written ξ ≤cx η, if the inequality Ef(ξ) ≤ Ef(η)
holds for all convex functions f : R → R for which the expectations are finite.

Theorem 8. If N is a directionally mixed Poisson process with mixing distribution ν
and base rate λ, then Xj(n) ≥cx X⊥

j (n) for all n ∈ N and Nj(t) ≥cx N⊥
j (t) for all

t ≥ 0.

Proof. By construction we have Xj(n) ∼ B(n,Zj) conditionally on Zj and X⊥
j ∼

B(n,EZj). Since Xj(n) is a mixture of binomial distributions, a well-known theorem
of de Finetti implies Xj(n) ≥cx X⊥

j (see also Theorem 4.1. in Bäuerle and Müller
(1998)). Since Nj(t) = Xj(L(t)) and the convex order is preserved under mixing (see
Müller and Stoyan (2002) Example 2.5.3) the proof is complete.

According to Theorem 3.1 in Müller and Pflug (2001) this implies that the Lundberg
exponent in the model with dependency—if it exists—is smaller than in the indepen-
dent model. Now let us return to the special example with transition probabilities
given by (2). In the corresponding independent case the Lundberg exponent exists if
c1 > µ1/2 and is given by the positive solution of H(r) = 1 + 2c1r. However, this is
a bad bound as we will see: In this example the general considerations at the end of
Section 5.3 can be applied and we obtain that for all u ≥ 0:

ψ1(u) ≥ P
[ δ

µ1
+

1

2
< Z∞

]

.

Hence, as Z∞ is uniformly distributed on the unit interval, δ has to be at least µ1/2
in order to avoid that the lower bound is strictly positive. In particular if c1 < µ1 no
Lundberg exponent exists! In this case calculating the premium by the expected value
principle is very dangerous because just adding a little bit more than the expected cost
may lead to a probability of ruin which cannot be controlled by increasing the initial
reserve. If δ > µ1/2 or c1 > µ1 we obtain a Cramér asymptotic which can be computed
with the help of Theorem 7 by setting Q2 = δ0 and c2 = 0. In this case the Lundberg
exponent exists and is given by the positive solution of H(r) = 1 + c1r which is of
course smaller than in the independent case.
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7. Models with attracting intensities

In the third of the examples given in Section 2 we have d = 2 and intensities

β1(k1, k2) =
1 + k2

2 + k1 + k2
, β2(k1, k2) =

1 + k1

2 + k1 + k2
.

From Theorem 4 we obtain with t→ ∞:

N1(t)

t
→p

1

2
,

N1(t)

N2(t)
→p 1.

This means that in the long run both business lines generate the same number of claims
which of course is expected due to the symmetric intensity.

In this class an increasing proportion of claims of one type leads to an increasing
rate of arrival of claims of the other type: The two business lines have a stabilizing
effect on each other. The corresponding limit function has the component functions

β̃1(x1, x2) =
x2

x1 + x2
, β̃2(x1, x2) =

x1

x1 + x2
for all x1, x2 ∈ R

2
+ \ {(0, 0)}.

The conditions in Theorem 2 are satisfied, which means that every path of the fluid
limit φ = (φ1, φ2) satisfies the differential equations

φ′(t) = β̃
(

φ(t) − φ(0)
)

.

Now if we define ρi(t) := φi(t) − φi(0) we obtain

ρ′1 =
ρ2

ρ1 + ρ2
, ρ′2 =

ρ1

ρ1 + ρ2
.

This implies ρ′1 + ρ′2 = 1, and some straightforward manipulations lead to

ρ1(t) =
1

2
(a+ t) +

b

a+ t
, ρ2(t) =

1

2
(a+ t) −

b

a+ t
.

Since we have the boundary condition ρ1(0) = ρ2(0) = 0 it follows that a = b = 0
and φ1(t) = t/2 + φ1(0) and φ2(t) = t/2 + φ2(0). Thus, the fluid limit turns out to be
deterministic.

It is now interesting to investigate the embedded jump chain (X(n))n∈N0
of N in

greater detail. From now on let us assume that N1(0) = N2(0) = 0; in particular we
then have X1(n) + X2(n) = n for all n ∈ N0. As in Section 6 there is a connection
to an urn model: We begin with one red and one blue ball at time n = 0, and in the
successive steps we choose one of the balls uniformly at random and put it back into the
urn, together with another ball of the opposite colour. If X̃1(n) and X̃2(n) denote the
number of blue and red balls respectively after n steps then we have Xi(n) = X̃i(n)−1
for i = 1, 2 and all n ∈ N0. This leads to generalized Pólya-Eggenberger distributions
as discussed in Johnson and Kotz (1977), Chapter 4.3. The recursions given there
can be solved in the present special case, resulting in EX1(n) = n/2, which is also
clear due to the symmetry, and Var(X1(n)) = (n + 2)/12 for all n ∈ N. Of course,
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Var(X1(0)) = 0. This can in turn be used in an obvious way to obtain EN1(t) = t/2
and, by conditioning,

Var[N1(t)] = Var
(

E[X1(Lt)|Lt]
)

+ E
(

Var[X1(Lt)|Lt]
)

=
t

3
+

1

6

(

1 − e−t
)

.

For the next result we look at a more general model. We assume that d = 2 and
that ‖β(k1, k2)‖ = 1 is constant for all k ∈ E. Moreover we assume that

β1(k1, k2) ≤
1

2
if k1 ≥ k2, β1(k1, k2) ≥

1

2
if k1 ≤ k2. (25)

This models a situation where there is a tendency towards the diagonal, which includes
cases such as (3). We want to compare (X1(n))n∈N0

with a sequence of random
variables (X⊥

1 (n))n∈N0
where claims arrive independently of each other with rate 1/2.

Thus, X⊥
1 (0) := 0 and for n ∈ N

X⊥
1 (n) :=

n
∑

k=1

Ik,

where (In)n∈N is a sequence of i.i.d. random variables with P[I1 = 1] = P[I1 = 0] = 1/2,
i.e. X⊥

1 (n) has a binomial B(n, 1/2) distribution. Let X⊥
2 (n) := n−X⊥

1 (n) and denote
by N (1/2) a Poisson process with intensity 1/2.

Theorem 9. Under the preceding conditions we have X1(n) ≤cx X
⊥
1 (n) for all n ∈ N

and N1(t) ≤cx N
(1/2)(t) for all t ≥ 0.

Proof. Let

Ym(n) := min{X1(n), X2(n)}, YM (n) := max{X1(n), X2(n)}

and analogously

Y ⊥
m (n) := min{X⊥

1 (n), X⊥
2 (n)}, Y ⊥

M (n) := max{X⊥
1 (n), X⊥

2 (n)}.

We suppose that all these sequences are defined on a common probability space and
generated by the same sequence (Un)n∈N0

of i.i.d, uniformly over the interval (0, 1)
distributed random variables, as follows (where we suppose w.l.o.g. that Y ⊥

m (n) =
X⊥

1 (n), Ym(n) = X1(n))

X1(n+ 1) := X1(n) + 1[Un≤β1(X1(n),X2(n))] and X⊥
1 (n+ 1) := X⊥

1 (n) + 1[Un≤1/2].

Via an induction over n we can show that for all n ∈ N:

Y ⊥
m (n) ≤ Ym(n) ≤ YM (n) ≤ Y ⊥

M (n). (26)

The proof is as follows: For n = 1 we have X1(1) = 1[U0≤1/2] = X⊥
1 (1) and the

inequality is true. Now suppose the inequality holds for k = 1, . . . , n and suppose
w.l.o.g. that Y ⊥

m (n) = X⊥
1 (n), Ym(n) = X1(n) and that Ym(n) < YM (n). In this case

we must have X1(n) ≤ n/2 which implies β1

(

X1(n), X2(n)
)

≥ 1/2. Hence

1[Un≤1/2] ≤ 1[Un≤β1(X1(n),X2(n))]
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and thus
X⊥

1 (n+ 1) ≤ X1(n+ 1) ≤ X2(n+ 1) ≤ X⊥
2 (n+ 1).

In the case Ym(n) = YM (n) we must have X1(n) = X2(n) = n/2. If also X⊥
1 (n) =

X⊥
2 (n) = n/2 the induction step is trivial. If

X⊥
1 (n) < X1(n) = X2(n) < X⊥

2 (n)

the inequality at time n+ 1 remains valid no matter what happens and (26) is shown.
Next let f : R → R be a convex function. Thus, we obtain (note that the sum of

the respective minimum and maximum is always n)

f
(

Y ⊥
M (n)

)

+ f
(

Y ⊥
m (n)

)

≥ f
(

YM (n)
)

+ f
(

Ym(n)
)

.

But this yields

Ef
[

X1(n)
]

=
1

2
Ef
(

Ym(n)
)

+
1

2
Ef
(

YM (n)
)

≤
1

2
Ef
(

Y ⊥
m (n)

)

+
1

2
Ef
(

Y ⊥
M (n)

)

= Ef
(

X⊥
1 (n)

)

and hence the first assertion is shown. Moreover, N1(t) = X1(L(t)) and N (1/2)(t) =
X⊥

1 (L(t)) where L is a Poisson process with intensity 1. Since the convex order is
preserved under mixing (see Müller and Stoyan (2002) Example 2.5.3) the proof is
complete.

Next we derive Lundberg exponents for the global ruin probability ψ0 as in Section 6
for the interacting intensity models with intensities satisfying (25). We assume an
initial capital uj , a premium income rate cj and a claim size distribution Qj for the
j-th business line, j = 1, 2. As before µj :=

∫

xQj(dx) < ∞. Moreover, we define
Q∗ := 1

2Q1+
1
2Q2 and denote byH∗(r) :=

∫

erxQ∗(dx) the moment generating function
of Q∗.

Theorem 10. Suppose that β1(X1(n), X2(n)) →p 1/2 for n → ∞, that ‖c‖ > (µ1 +
µ2)/2 and that Q1 ≤st Q2 or Q2 ≤st Q1 . Then it holds that

lim
u→∞

1

u
logψ0(u) = −κ,

where κ is the positive solution of the equation H∗(r) = 1 + ‖c‖r.

Proof. Let us look at a discrete skeleton of ‖R(t)‖: Let T1, T2, . . . be a sequence of
independent and identically Exp(1)-distributed random variables and define for n ∈ N:

Yn :=

X1(n)
∑

k=1

U1,k +

n−X1(n)
∑

k=1

U2,k − ‖c‖

n
∑

k=1

Tk

where X1(n) is as usual the embedded chain and U1,k ∼ Q1, U2,k ∼ Q2. Obviously we
have ψ0(u) = P

(

∃n ∈ N, Yn > u
)

. Now let

Y ⊥
n :=

n
∑

k=1

Uk − ‖c‖

n
∑

k=1

Tk
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where Uk ∼ Q∗ = 1
2Q1 + 1

2Q2. We claim now that for all n ∈ N:

Yn ≤cx Y
⊥
n .

Obviously the expectations are the same on both sides and due to the convolution
property of the convex order and Theorem 9 it suffices to show that

πt(l) := E
[

l
∑

k=1

U1,k +

n−l
∑

k=1

U2,k − t
]

+

is convex (see also Theorem 4.3.6 in Müller and Stoyan (2002)). This follows from the
following inequality, where we assume that Q1 ≥st Q2:

πt(l + 1) − πt(l) = E
[

l−1
∑

k=1

U1,k +

n−l−1
∑

k=1

U2,k + U1,l + U1,l+1 − t
]

+

−E
[

l−1
∑

k=1

U1,k +
n−l−1
∑

k=1

U2,k + U1,l + U2,n−l − t
]

+

≥ E
[

l−1
∑

k=1

U1,k +

n−l−1
∑

k=1

U2,k + U2,n−l+1 + U1,l+1 − t
]

+

−E
[

l−1
∑

k=1

U1,k +

n−l−1
∑

k=1

U2,k + U2,n−l+1 + U2,n−l − t
]

+

= πt(l) − πt(l − 1)

Thus the statement is shown and it follows that E
[

exp(rYn)
]

≤ E
[

exp(rY ⊥
n )
]

for all
n ∈ N and r ∈ R. A simple calculation shows that

E
[

exp(rY ⊥
n )
]

=

(

H∗(r)

1 + ‖c‖r

)n

and

g(r) := lim
n→∞

1

n
log
(

E
[

exp(rY ⊥
n )
])

= log

(

H∗(r)

1 + ‖c‖r

)

.

We can see that g(r) = 0 if and only if H∗(r) = 1 + ‖c‖r. Since H∗(r) = (H1(r) +
H2(r))/2 this equation has a strictly positive solution under our assumption ‖c‖ >
(µ1 + µ2)/2. On the other hand we have with

Ak :=

{

ω :

∣

∣

∣

∣

β1(X1(n), X2(n)) −
1

2

∣

∣

∣

∣

≤ ε, ∀n ≥ k

}

(note that P[Ak] → 1 for k → ∞ on a suitably defined probability space due to
Skorohod’s representation theorem) that

E
[

exp(rYn)
]

= E
[

exp(rYn) | Ak

]

P[Ak] + E
[

exp(rYn) | Ac
k

]

P[Ac
k]

≥ E
[

exp(rYn) | Ak

]

P[Ak] ≥ E
[

exp(rY ε
n )
]

P[Ak]
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where for n ≥ k

Y ε
n =

Xε
1 (n)
∑

j=1

U1,j +

Xε
2 (n)
∑

j=1

U2,j − ‖c‖
n
∑

i=1

Ti

and (Xε
1(n), Xε

2(n), n−Xε
1(n)−Xε

2 (n)) ∼M(n− k, 1
2 − ε, 1

2 − ε, 2ε) has a multinomial
distribution. We obtain

gε(r) := lim
n→∞

1

n
log
(

E
[

exp(rY ε
n )
])

= log

(

1

1 + ‖c‖r

(

(
1

2
− ε)H1(r) + (

1

2
− ε)H2(r)

)

)

.

Thus, whenever the limit exists we have for all ε > 0 that

gε(r) ≤ lim
n→∞

1

n
log
(

E
[

exp(rYn)
])

≤ g(r).

Letting ε ↓ 0 we obtain

lim
n→∞

1

n
log
(

E
[

exp(rYn)
])

= g(r).

The statement now follows with Theorem 3.1 in Müller and Pflug (2001).

The above proof is based on the asymptotics of the moment generating functions
of a suitably chosen sequence of random variables embedded into the risk process.
The underlying application of the Gärtner-Ellis theorem was introduced in the closely
related queueing context by Glynn and Whitt (1994).

Obviously we obtain here that the Lundberg exponent is the same as in the case
where the claims occur independently with probability 1/2. Also note that the conver-
gence condition β1(X1(n), X2(n)) →p 1/2 is satisfied in the example where β is given
by (3) due to Theorem 4. If we consider the business lines separately we obtain a
Cramér asymptotic if c1 > µ1/2 and the Lundberg exponent is given by the positive
solution of H1(r) = 1 + 2c1r.
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results for Lévy processes. Math. Meth. Oper. Res. 67, 161–186.

Cont, R. and Tankov, P. (2004) Financial Modelling with Jump Processes. Chapman &
Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL.

Davis, M. H. A. (1993) Markov Models and Optimization, volume 49 of Monographs on
Statistics and Applied Probability. Chapman & Hall, London.

Feller, W. (1971) An Introduction to Probability Theory and Its Applications, volume II,
second edition. Wiley, New York.
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