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Abstract

In this paper we investigate dependence properties and comparison results for mul-
tidimensional Lévy processes. In particular we address the questions, whether or not
dependence properties and orderings of the copulas of the distributions of a Lévy
process can be characterized by corresponding properties of the Lévy copula, a con-
cept which has been introduced recently in Cont and Tankov (2004) and Kallsen and
Tankov (2006). It turns out that association, positive orthant dependence and posi-
tive supermodular dependence of Lévy processes can be characterized in terms of the
Lévy measure as well as in terms of the Lévy copula. As far as comparisons of Lévy
processes are concerned we consider the supermodular and the concordance order and
characterize them by orders of the Lévy measures and by orders of the Lévy copulas,
respectively. An example is given that the Lévy copula does not determine depen-
dence concepts like multivariate total positivity of order 2 or conditionally increasing
in sequence. Besides these general results we specialize our findings for subfamilies of
Lévy processes. The last section contains some applications in finance and insurance
like comparison statements for ruin times and probabilities and option prices which
extends the current literature.
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1 Introduction

Recent considerations in finance and insurance have led to an increasing interest in mul-
tidimensional stochastic processes and to questions of dependence between the marginal
processes. Whereas for random vectors stochastic comparisons and concepts of characteriz-
ing the dependence structure by means of copulas are well-established (see e.g. the books of
Denuit et al. (2005), Joe (1997), Müller and Stoyan (2002) and Nelsen (2006)) there is still
need of similar statements in case stochastic processes are involved. In the present paper we
will address these questions for the class of multidimensional Lévy processes. A well-known
property of this class of processes is that it can be characterized by the Lévy-Khintchine
triplet (A, ν, γ), where A is a covariance matrix of a Brownian motion, γ is a drift parameter
and ν is the Lévy-measure determining the frequency and size of jumps. The location pa-
rameter γ is not interesting when it comes to questions of dependence. Thus, the dependence
structure of a multivariate Lévy process can be characterized completely by the Lévy mea-
sure and the covariance matrix of the Brownian motion. Since the continuous part and the
jump part of a Lévy process are independent it suffices to consider the dependence structure
of the continuous and the discontinuous part of Lévy processes separately. In our paper we
will focus on the dependence structure of the jump part only since dependence properties of
multivariate Brownian motion are well established.
As far as dependence properties are concerned some general results on association of Markov
processes can be found in Liggett (2005). Moreover association properties of families of in-
finitely divisible distributions have already been investigated in Resnick (1988) and Samorod-
nitsky (1995). We generalize their findings to other notions of dependence like positive or-
thant dependence and positive supermodular dependence. It turns out that in the case of
Lévy processes all three notions coincide and can be characterized by the property that the
Lévy measure is concentrated on Rd

++,−− = {x ∈ Rd | xi ≥ 0 ∀i or xi ≤ 0 ∀i}, i.e. jumps in
the components are jointly upwards or downwards.
In analogy to copulas for random vectors, Cont and Tankov (2004) have introduced the
concepts of Lévy copulas which has been further refined in Kallsen and Tankov (2006). In
the case of a multidimensional compound Poisson process the Lévy copula coincides (up
to a constant) with the copula of the multivariate distribution of the jumps. Kallsen and
Tankov (2006) generalize this to arbitrary Lévy processes. They suggest to use this concept in
order to characterize the dependence among components of multidimensional Lévy processes.
Indeed we show that it is possible to characterize association in terms of the Lévy copula
as well, however, the Lévy copula fails to characterize other dependence properties like
multivariate total positivity of order 2 or conditionally increasing in sequence, even in the
case of a compound Poisson process.
Another important issue of this paper is the comparison of Lévy processes with respect to
the strength of dependence between the components. So far comparison results for Markov
processes are mainly restricted to stochastic dominance relations (see e.g. Szekli (1995),
chapter 2.4). We will address the supermodular and the concordance order here. For the
supermodular order some results can already be found in Bergenthum and Rüschendorf
(2007) who have investigated this question nicely in the general context of semimartingales.
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Using an interpolation formula which can be obtained from Houdré (1998) and Houdré et al.
(1998) we show that the supermodular ordering of the Lévy processes is equivalent to an
adequately defined supermodular ordering of the Lévy measures. A similar result holds for
the concordance order. Finally the concordance as well as the supermodular order can also
be characterized in terms of the Lévy copulas. In the case of 2-dimensional processes where
it is well-known that the supermodular order and the concordance order coincide, we obtain
a particular simple characterization in terms of the Lévy copula: Namely these orderings
hold if and only if the Lévy copulas under consideration can be ordered pointwise.
To outline our results we give a number of examples. For compound Poisson processes it
turns out that life is easy and as expected these criteria reduce to criteria for the jump size
distribution. In order to generate further examples, we define a family of Archimedean Lévy
copulas which includes copulas with positive dependence. Last but not least we indicate
applications of our results in finance and insurance. First we focus on ruin times and ruin
probabilities of portfolios of risk processes extending results in Denuit et al. (2007) and
Bregman and Klüppelberg (2005). Then we investigate consequences for exponential Lévy
processes which typically arise as price processes of risky assets. Finally implications for
option prices and for credit risk portfolios are indicated.
Our paper is organized as follows: In Section 2 we recall the dependence concepts and the
dependence orderings we use in our paper and indicate in particular how they are used for
Lévy processes. Section 3 investigates dependence properties of Lévy processes. We show
that association, positive orthant dependence and positive supermodular dependence coincide
and can be characterized by the property that the Lévy measure is concentrated on Rd

++,−−.
In terms of Lévy copulas this is equivalent to the Lévy copula vanishing on Rd − Rd

++,−−.
The next section then addresses the question of comparisons. We consider the supermodular
and the concordance order and characterize them by orders of the Lévy measures and by
orders of the Lévy copulas respectively. An example in this section shows that the Lévy
copula does not determine order relations like multivariate total positivity of order 2 or
conditionally increasing in sequence which are not induced by integral relations. Section 5
presents some examples. The extension of Archimedean copulas can be found here. Finally
Section 6 contains some applications of our results in finance and insurance like comparison
statements for ruin times and probabilities and option prices.

2 Dependence Concepts and Dependence Orders

In this section we summarize the basic definitions and properties of dependence concepts
and dependence orders which we will use later. For an introduction and further properties
of these concepts see e.g. Denuit et al. (2005), Joe (1997) or Müller and Stoyan (2002). One
possibility to introduce a dependence concept is to consider the set of all random vectors X
which are larger than X⊥ with respect to some dependence order, where we denote by X⊥ a
random vector with the same marginals as X, but with independent components. Therefore
we will first introduce some well known dependence orders, namely upper orthant order,
lower orthant order, concordance order and supermodular order, which are defined below. In
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order to define the last concept, recall that a function f : Rd → R is called supermodular, if

f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y)

for all x, y ∈ Rd with x ∨ y and x ∧ y denoting the componentwise maximum and minimum
of x and y, respectively. Moreover, we denote by

FX(t) = P (X1 ≤ t1, . . . , Xd ≤ td)

the distribution function of a random vector, and the survival function by

F̄X(t) = P (X1 > t1, . . . , Xd > td).

Definition 2.1. a) A random vector X = (X1, ..., Xd) is said to be smaller than the random
vector X̃ = (X̃1, ..., X̃d) in the supermodular order, writtenX ≤sm X̃, if Ef(X) ≤ Ef(X̃)
for all supermodular functions f such that the expectations exist.
b) A random vector X = (X1, ..., Xd) is said to be smaller than the random vector X̃ =
(X̃1, ..., X̃d) in the upper orthant order, written X ≤uo X̃, if F̄X(t) ≤ F̄X̃(t) for all t ∈ Rd.
c) A random vector X = (X1, ..., Xd) is smaller than the random vector X̃ = (X̃1, ..., X̃d) in
the lower orthant order, written X ≤lo X̃, if FX(t) ≤ FX̃(t) for all t ∈ Rd.
d) A random vector X = (X1, ..., Xd) is smaller than the random vector X̃ = (X̃1, ..., X̃d) in
the concordance order, written X ≤c X̃, if both X ≤uo X̃ and X ≤lo X̃ hold.

In the sequel we will frequently use the following properties, which are fulfilled by all these
orders, see Theorem 3.3.19 and 3.9.14 in Müller and Stoyan (2002) for details.

(C) If X1, X2 and X̃1, X̃2 are independent, then X1 � X̃1 and X2 � X̃2 implies X1 +X2 �
X̃1 + X̃2;

(W) If (Xn), (X̃n) are sequences of random vectors, converging in distribution to X and X̃
respectively, then Xn � X̃n for all n implies X � X̃.

(ID) If X � X̃, then (X, . . . , X) � (X̃, . . . , X̃).

Now we will define the following three dependence concepts:

Definition 2.2. A random vector X = (X1, . . . , Xd) is said to be

a) (positively) associated, if for all increasing functions f, g : Rd → R

Cov(f(X), g(X)) ≥ 0.

b) positive orthant dependent (POD) if X⊥ ≤c X;

c) positive supermodular dependent (PSMD) if X⊥ ≤sm X.
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The notion of association is already well-established since the pioneering paper by Esary
et al. (1967). Positive orthant dependence can be traced back to Lehmann (1966) whereas
positive supermodular dependence has only been developed recently. All these dependence
concepts have been proved fruitful for applications in finance and insurance.

Remark 2.3. Note that there are different ways of characterizing the concordance order.
The following statements are equivalent (see Müller and Stoyan (2002), Theorem 3.3.15 and
p. 112).

a) X ≤c X̃.

b) The inequality
Ef(X) ≤ Ef(X̃) (2.1)

holds for all functions f =
∏d

i=1 fi where fi : R → [0,∞), i = 1, . . . , d are all increasing
or all decreasing.

c) The inequality (2.1) holds for all f : Rd → R such that f is d-increasing or −f is
d-decreasing. A function f is called d-increasing if for all a, b ∈ Rd with a ≤ b

Vf

(
(a, b]

)
:=

∑
x∈{a1,b1}×...×{ad,bd}

(−1)]{k:xk=ak}f(x) ≥ 0

where Vf (A) is called the f -volume of the set A. f is called d-decreasing if f(−x) is
d-increasing.

These dependence properties satisfy the following implication (for the first see Christofides
and Vaggelatou (2004) and for the second e.g. Bäuerle (1997)):

association ⇒ PSMD ⇒ POD.

Association has the following properties (for a proof of these properties see Esary et al.
(1967)):

Lemma 2.4. a) If X = (X1, . . . , Xd) is associated, then (f1(X), . . . , fk(X)) is associated
if the functions f1, . . . , fk : Rd → R are all increasing (or all decreasing).

b) If X1, . . . , Xd are independent, then X = (X1, . . . , Xd) is associated.

c) If X = (X1, . . . , Xd) and Y = (Y1, . . . , Yk) are associated and stochastically indepen-
dent, then (X, Y ) is associated.

d) If {X(n) = (X
(n)
1 , . . . , X

(n)
d ), n ∈ N} is a sequence of associated random vectors with

X(n) d→ X, then X is again associated.

Now let X = (X(t))t≥0 be a stochastic process with values in Rd and X(0) = x0 ∈ Rd.
There are different possibilities for extending the dependence concepts from random vectors
to stochastic processes (see also Szekli (1995)). A natural condition would be
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Definition 2.5. The stochastic process X = (X(t))t≥0 is said to be associated (POD,
PSMD) if and only if (X(t1), . . . , X(tn)) is associated (POD, PSMD) for all 0 ≤ t1 < t2 <
. . . < tn and all n ∈ N.

Note that (X(t1), . . . , X(tn)) is an nd-dimensional random vector. In case the process X =
(X(t))t≥0 has independent increments, the condition can be simplified:

Lemma 2.6. Let X = (X(t))t≥0 be a stochastic process with independent increments. X is
associated (POD, PSMD) if and only if X(t) is associated (POD, PSMD) for all t ≥ 0.

Proof. The only-if-part is trivial. Therefore suppose that X(t) has one of the properties for

all t ≥ 0. Obviously
(
X(t1), . . . , X(tn)

)
can be written as(

X(t1), X(t1) +
(
X(t2)−X(t1)

)
, . . . , X(t1) +

(
X(t2)−X(t1)

)
+ . . .+

(
X(tn)−X(tn−1)

))
where X(t1),

(
X(t2)−X(t1)

)
, . . . ,

(
X(tn)−X(tn−1)

)
are independent due to the assumption

of independent increments. Thus, it is sufficient to show that whenever a random vector X

is associated (POD, PSMD) then X̂ =
(
0, . . . , 0, X, . . . , X

)
with values in Rnd (X̂ has kd

zeros with an arbitrary k ∈ {0, 1, . . . n} and n− k blocks of X) is associated (POD, PSMD)
and that these properties are preserved under convolution, i.e. if X and Y are independent
random vectors which are associated (POD, PSMD), then also X +Y . As far as association
is concerned both statements follow from Lemma 2.4 a). For POD and PSMD this follows
from the properties (C) and (ID) of the corresponding dependence orders.

Remark 2.7. There are also other definitions in the literature for dependence of stochastic
processes. In Ebrahimi (2002) for example the author defines that the 2-dimensional process
X =

(
X1(t), X2(t)

)
t≥0

is associated if and only if(
X1(t1), X2(t2)

)
is associated for any time points 0 ≤ t1, t2. In case X has independent increments this is
obviously equivalent to our definition. The same holds true for POD and PSMD if defined
in an analogous way.

A similar definition with similar consequences can be stated for dependence orders.

Definition 2.8. Two stochastic processes X = (X(t))t≥0 and X̃ = (X̃(t))t≥0 are said to be
comparable with respect to the order � ∈ {≤c,≤uo,≤lo,≤sm} (written X � X̃) if

(X(t1), . . . , X(tn)) � (X̃(t1), . . . , X̃(tn))

for all 0 ≤ t1 < t2 < . . . < tn and all n ∈ N.

In case the processes have independent increments, the condition can be simplified.

Lemma 2.9. Let X = (X(t))t≥0 and X̃ = (X̃(t))t≥0 be stochastic processes with independent
increments, and let � ∈ {≤c,≤uo,≤lo,≤sm}. Then X � X̃ if and only if X(t) � X̃(t) for
all t ≥ 0.

Proof. The proof is very similar to the proof of Lemma 2.6.
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3 Dependence properties of Lévy processes

Let X = (X(t))t≥0 be a d-dimensional Lévy-process, i.e. a stochastically continuous process
with independent and stationary increments. From the Lévy-Itô-decomposition we know
that the distribution of a Lévy process is uniquely determined by a characteristic triplet
(A, ν, γ), where A is a covariance matrix of a Brownian motion, γ is a drift parameter and ν
is the Lévy-measure determining the frequency and size of jumps. The characteristic function
is then given by

E exp(i〈u,Xt〉) = exp
(
t ·
(
i〈γ, u〉 − 1

2
〈Au, u〉+

∫
Rd

(ei〈u,x〉 − 1− i〈u, h(x)〉)ν(dx)
))
,

where the truncation function h : Rd → Rd is given by h(u) = (h1(u), . . . , hd(u)) with

hi(u) = ui1{|ui|≤1}.

The dependence structure of a multivariate Lévy process can be characterized completely by
the Lévy measure and the covariance matrix of the Brownian motion. Since the continuous
part and the jump part of a Lévy process are independent (Sato (1999)[Theorem 19.2]) it
suffices to consider the dependence structure of the continuous and the discontinuous part of
Lévy processes separately. In the following we will focus on the dependence structure of the
jump part of a Lévy process only since the Brownian part is easy to handle. Therefore from
now on a Lévy process will be completely characterized by its Lévy measure ν. Recall that
for any Borel set B the quantity ν(B) describes the expected number of jumps per time unit
with jump size in B. In particular, in the case of a compound Poisson process with jump
size distribution Q and intensity λ it holds ν(B) = λ ·Q(B).
The next result can be derived from Samorodnitsky (1995)[Theorem 3.1.] or from Proposition
6 in Resnick (1988). Here, we present a slightly different proof for this result using a Theorem
of Liggett (2005):

Proposition 3.1. Let X be a d-dimensional Lévy process with Lévy measure ν. X is asso-
ciated if and only if ν is concentrated on Rd

++,−− = {x ∈ Rd | xi ≥ 0 ∀i or xi ≤ 0 ∀i}, i.e.
ν(Rd − Rd

++,−−) = 0.

Proof. First note that every Lévy process is a Feller process (Applebaum (2004)[Theorem
3.1.9.]) and every Lévy process is stochastically monotone because of the independence of
its increments. Thus by Liggett (2005)[Theorem 2.14] the following holds: X is associated
if and only if

Afg ≥ gAf + fAg (3.1)

for all increasing functions f, g : Rd → R in the domain of the generator A of X. By Sato
(1999)[Theorem 31.5] the infinitesimal generator of a Lévy process is given by

Af(x) =

∫
Rd

(
f(x+ y)− f(x)− 〈∇f(x), h(y)〉

)
ν(dy)
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for f ∈ C2
0 , where we denote by ∇f the gradient of the function f . Using this representation,

we obtain that inequality (3.1) is fulfilled if and only if

Afg − fAg − gAf ≥ 0

⇔
∫

Rd

(
f(x+ y)g(x+ y)− f(x)g(x)− f(x)g(x+ y) + f(x)g(x)

−g(x)f(x+ y) + f(x)g(x)
)
ν(dy) ≥ 0

⇔
∫

Rd

(
g(x+ y)− g(x)

)(
f(x+ y)− f(x)

)
ν(dy) ≥ 0.

Let i 6= j. Choosing f(y) = 1[yi≥0] and g(y) = 1[yj≥0] and fixing x with xi < 0 and xj > 0,
we get that

f(x+ y)− f(x) =

{
1 , xi + yi ≥ 0 (⇒ yi ≥ −xi > 0)
0 , otherwise

and

g(x+ y)− g(x) =

{
−1 , xj + yj < 0 (⇒ yj < −xj < 0)

0 , otherwise
.

Therefore
(f(x+ y)− f(x))(g(x+ y)− g(x)) = −1[yi≥−xi, yj<−xj ].

As xi < 0 and xj > 0 were arbitrary, we must have ν({y : yi > 0, yj < 0}) = 0. Hence
we see that ν has to be concentrated on the negative or positive orthant. Vice versa if ν is
concentrated on Rd

++,−− the integral is greater or equal zero since f , g are increasing.

Remark 3.2. Samorodnitsky (1995) has shown that association of X(t) for an arbitrary
fixed t > 0 is not enough to deduce association of the process X.

Next we give a short review of Lévy copulas, a concept which has been introduced recently by
Cont and Tankov (2004) and which can be used to characterize the dependence among com-
ponents of multidimensional Lévy processes. For details concerning the following definitions
see Kallsen and Tankov (2006). As usual sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0. Also
for I = {i1, . . . , ik} ⊂ {1, . . . , d} and x = (x1, . . . , xd) ∈ Rd we define xI := (xi1 , . . . , xik).
Moreover, we define R̄ := (−∞,∞].

Definition 3.3. Let X be a Rd-valued Lévy process with Lévy measure ν.

a) The tail integral of X is the function U : (R\{0})d → R defined by

U(x1, . . . , xd) :=
d∏

i=1

sgn(xi)ν

(
d∏

j=1

I(xj)

)
,

where I(x) =

{
(x,∞) , x ≥ 0

(−∞, x] , x < 0
.
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b) For I ⊂ {1, . . . , d} non-empty, the I-marginal tail integral U Iof X is the tail integral
of the process XI = (X i)i∈I . To simplify notation, we denote one-dimensional margins
by Ui := U{i}.

Definition 3.4. For a measure defining function F : R̄d → R̄ we define for any non-empty
I ⊂ {1, . . . , d}, the I-margin F I of F by

F I(uI) = lim
a→∞

∑
uIc∈{−a,∞}|Ic|

F (u)
∏
i∈Ic

sgn(ui).

Theorem 3.5. (and Definition). Let X be a Rd-valued Lévy process. Then there exists
a measure defining function F : R̄d → R̄ with univariate marginals which are the identity
functions on R̄ such that

U I(xI) = F I
(
Ui1(xi1), . . . , Uik(xik)

)
for all I = {i1, . . . , ik} ⊂ {1, . . . , d} and all x ∈

(
R − {0}

)|I|
. This function is unique on∏d

i=1 RanUi. F is called Lévy copula of X.

In what follows we want to characterize association also in terms of the Lévy copula. The
next lemma shows that the Lévy copula vanishing on Rd−Rd

++,−− is equivalent to the Lévy
measure being concentrated on Rd

++,−−.

Proposition 3.6. Let X be a Rd-valued Lévy process with Lévy measure ν and Lévy copula
F . The following statements are equivalent:

a) ν(Rd − Rd
++,−−) = 0.

b) F (u) = 0 for u ∈ (Rd − Rd
++,−−) ∩

∏d
i=1 RanUi.

c) For all i, j ∈ {1, . . . , d} with i 6= j we have F {i,j}(ui, uj) = 0 for all ui ∈ RanUi, uj ∈
RanUj with sgn(ui) · sgn(uj) < 0.

Proof. The equivalence of a) and b) follows from the definition and Theorem 3.5. By Sklar’s
theorem for Lévy copulas (Kallsen and Tankov (2006)[Theorem 3.6]) and the definition of
tail integrals we have

F {i,j}(Ui(xi), Uj(xj)) = U{i,j}(xi, xj) = sgn(xi)sgn(xj)ν
{i,j}(I(xi)× I(xj)). (3.2)

Now assume that F {i,j}(ui, uj) = 0 for all i, j ∈ {1, . . . , d} when sgn(ui) · sgn(uj) < 0.
Then, using (3.2) and the fact that xi > 0 if and only if Ui(xi) > 0, it follows that
ν{i,j}(I(xi)× I(xj)) = 0 if sgn(xi) · sgn(xj) < 0. Noticing that ν(Rd − Rd

++,−−) > 0 implies

that ν{i,j}(I(xi)× I(xj)) > 0 for some i, j, xi, xj, this yields ν(Rd − Rd
++,−−) = 0.

Conversely suppose that ν(Rd − Rd
++,−−) = 0, that is ν{i,j}(I(xi) × I(xj)) = 0 if sgn(xi) ·

sgn(xj) < 0. Thus by (3.2) we know that F {i,j}(ui, uj) = 0 if sgn(ui) · sgn(uj) < 0 and if
(ui, uj) ∈ RanUi × RanUj.
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Remark 3.7. From (3.2) it follows directly that whenever (ui, uj) ∈ RanUi × RanUj we
obtain in general that F {i,j}(ui, uj) ≥ 0 if sgn(ui) · sgn(uj) > 0 and F {i,j}(ui, uj) ≤ 0 if
sgn(ui) · sgn(uj) < 0.

The following Corollary is a direct consequence of Proposition 3.6 and Proposition 3.1.

Corollary 3.8. A Lévy process is associated if and only if the Lévy copula satisfies F (u) = 0
for u ∈ (Rd − Rd

++,−−) ∩
∏d

i=1 RanUi.

Next we can characterize the POD property of Lévy processes. It turns out that association
and POD coincide in this case.

Theorem 3.9. Let X be a d-dimensional Lévy process. X is POD if and only if X is
associated.

Proof. Since association implies POD only the only if part requires an argument. Let X
be POD and I = {i, j} with i, j ∈ {1, . . . , d} and i 6= j. Thus XI is POD. According
to Lemma 3.8 we have to show that F {i,j}(ui, uj) ≥ 0 for all i, j ∈ {1, . . . , d}, i 6= j and
ui,∈ RanUi, uj ∈ RanUj with sgn(ui) · sgn(uj) < 0. W.l.o.g. suppose I = {1, 2}.
Before we proceed with the proof let us introduce some notations, analogously to Kallsen
and Tankov (2006). Let X(t) = (X1(t), X2(t)) be a R2-valued random vector. We denote by

H
(α1,α2)
t : R2 → [0, 1] the joint distribution function of (−α1X1(t),−α2X2(t)), by C

(α1,α2)
t :

[0, 1]d → [0, 1] an (ordinary) copula of (−α1X1(t),−α2X2(t)) and by H
(αi)
t,i : R → [0, 1] the

distribution function of −αiXi(t). Then by Sklar’s Theorem we obtain

C
(α1,α2)
t

(
H

(α1)
t,1 (z1), H

(α2)
t,2 (z2)

)
= H

(α1,α2)
t (z1, z2).

Now let us return to the proof of our statement and fix t > 0. Due to the POD property we
obtain for arbitrary z1, z2 ∈ R:

P
(
X1(t) ≤ z1,−X2(t) ≤ z2

)
≤ P

(
X1(t) ≤ z1

)
P
(
−X2(t) ≤ z2

)
.

By means of copulas we can write

C
(−1,1)
t

(
H

(−1)
t,1 (z1), H

(1)
t,2 (z2)

)
= H

(−1,1)
t (z1, z2) ≤ H

(−1)
t,1 (z1)H

(1)
t,2 (z2).

Analogously we obtain

C
(1,−1)
t

(
H

(1)
t,1 (z1), H

(−1)
t,2 (z2)

)
= H

(1,−1)
t (z1, z2) ≤ H

(1)
t,1 (z1)H

(−1)
t,2 (z2).

Note now that in general, when (X1, X2) is a POD random vector, then there exists a copula
C for it such that C(u1, u2) ≥ u1u2 for all u1, u2 ∈ [0, 1]. Hence we can find copulas such
that for all u1, u2 ∈ [0, 1]

C
(−1,1)
t

(
u1, u2) ≤ u1u2

C
(1,−1)
t

(
u1, u2) ≤ u1u2

9



In particular we obtain for u1 < 0, u2 > 0 and t > 0 small

0 ≤ −C(−1,1)
t

(
− tu1, tu2)− t2u1u2

and for u1 > 0, u2 < 0 and t > 0 small

0 ≤ −C(1,−1)
t

(
tu1,−tu2)− t2u1u2.

Applying Kallsen and Tankov (2006)[Theorem 5.1.] we obtain in both cases

0 ≤ − lim
t→0

1

t
C

(sgn (u1),sgn (u2))
t (t|u1|, t|u2|)− lim

t→0

1

t
t2u1u2 = F {1,2}(u1, u2).

which yields the assertion in combination with Remark 3.7.

Finally we investigate the case of positive supermodular dependence. However, since this is
a property weaker than association and stronger than POD we obtain immediately

Corollary 3.10. Let X be a d-dimensional Lévy process. The concepts of association, POD
and PSMD of X coincide in this case. They can be characterized by the following two
equivalent conditions

a) the Lévy measure is concentrated on Rd
++,−−.

b) the Lévy copula vanishes on
(
Rd − Rd

++,−−

)
∩
∏d

i=1 RanUi.

There are other important concepts of dependence, which are stronger than association. An
important one is multivariate total positivity of order 2 (MTP2) which holds for a random
vector X = (X1, . . . , Xd), if it has a density f with respect to a product measure fulfilling

f(x)f(y) ≤ f(x ∨ y)f(x ∧ y)

for all x, y ∈ Rd. Another interesting concept is conditionally increasing in sequence (CIS),
which holds if

P (Xi > t|X1 = x1, . . . , Xi−1 = xi−1)

is an increasing function of x1, . . . , xi−1 for all t. It is well known that MTP2 implies CIS
which in turn implies association, see e.g. Karlin and Rinott (1980) for the first statement
and e.g. Müller and Stoyan (2002) Theorem 3.10.11 for the second and a general overview.
These two concepts are preserved under monotone transformations of the marginals, and
therefore they are properties of the copula of the random vector. In the next example we
will show, however, that for a Lévy process these two concepts can not be characterized by
the Lévy copula. As the example only uses compound Poisson processes, it even shows that
these concepts can not be characterized by the copula of the jump size distributions in the
case of a compound Poisson process. This demonstrates that there are important dependence
properties of copulas, which in the case of a Lévy process can not be characterized by the
Lévy copula.
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Example 3.11. Assume that there is given a bivariate compound Poisson process with Lévy
measure

ν =
1

3
(δ(1,0) + δ(2,1) + δ(3,3)),

where as usual δx denotes the one-point measure in x. Then

ν ∗ ν =
1

9
(δ(2,0) + 2δ(3,1) + δ(4,2) + 2δ(4,3) + 2δ(5,4) + δ(6,6)).

For t small the random vector X(t) has mass O(1) in the origin, O(t) in the points of
support of ν and mass O(t2) in the points of support of ν ∗ ν, whereas the mass in all other
points is of smaller magnitude. Therefore the conditional distribution of X2 given X1 = 3 is
approximately δ3, whereas the conditional distribution of X2 given X1 = 4 is approximately
(δ2 + δ3)/2 and thus stochastically smaller. Hence X(t) is not CIS and therefore also not
MTP2. On the other hand the Lévy copula of ν is the comonotone copula, and if one
considers a Lévy process with the same Lévy copula, but with identical marginals (e.g.
ν = (δ(1,1) + δ(2,2) + δ(3,3))/3), then X(t) obviously is comonotone and thus also MTP2 and
CIS. This shows that the property of being MTP2 and CIS can not be characterized by the
Lévy copula. It also depends on the marginals of the Lévy measure.

4 Comparison of Lévy Processes

In this section we deal with comparison of Lévy processes with respect to dependence order-
ings. In particular we consider the supermodular order ≤sm and the concordance order. For
the supermodular order some results can be found in Bergenthum and Rüschendorf (2007)
who have investigated this question for the more general case of semimartingales, which
includes Lévy processes as a special case. However, our results are more explicit and we also
give a characterization in terms of Lévy copulas.
We will now give an appropriate definition of supermodular order for general (possibly in-
finite) Lévy measures, which will yield the result that supermodular ordering of the Lévy
measures implies supermodular ordering of the corresponding Lévy processes. As we have
to take care of the possible singularity of the measures at zero, we need some technical
conditions on the functions to ensure that the occurring integrals are finite. We will denote

B0 :=
{
f : Rd → R | f is measurable and bounded and lim sup

x→0

|f(x)|
‖x‖2

<∞
}
.

As any Lévy measure ν fulfills
∫

(‖x‖2∧1)ν(dx) <∞, this implies that for any Lévy measure
ν and any f ∈ B0 the integral

∫
fdν is finite. Thus the integrals in the following definition

are all well-defined.

Definition 4.1. Lévy measures ν, ν̃ are said to be comparable with respect to the super-
modular order (written ν ≤sm ν̃), if for all supermodular f ∈ B0:∫

fdν ≤
∫
fdν̃.

11



There are other classes of supermodular functions, which generate the same order. We denote

B00 :=
{
f : Rd → R | f is measurable and bounded and ∃ε > 0 s.t. f(x) = 0, if ‖x‖ < ε

}
the set of all bounded, measurable functions f with the property that f vanishes around
zero.

Lemma 4.2. For Lévy measures ν, ν̃ the following conditions are equivalent:

a) ν ≤sm ν̃;

b) ν and ν̃ have the same marginal tail integrals and
∫
fdν ≤

∫
fdν̃ for all increasing

supermodular f ∈ B0;

c)
∫
fdν ≤

∫
fdν̃ for all infinitely differentiable supermodular f ∈ B0;

d)
∫
fdν ≤

∫
fdν̃ for all supermodular f ∈ B00.

Proof. The proof of the equivalence of a) and b) follows the same lines as the proof of
Theorem 3.3 and Theorem 3.4 in Müller and Scarsini (2000). The proof of the equivalence
of b) and c) is easily adapted from a similar result in Denuit and Müller (2002). As trivially
a) implies d), we can finish the proof by showing that d) implies a). Therefore assume that
f ∈ B0 is a supermodular function. Let us define

fn(x) := f(round(nx)/n),

where as usual round(x)i = ni ∈ Z for ni − 1/2 < xi ≤ ni + 1/2. Then fn is a bounded
supermodular function vanishing around zero, and thus fn ∈ B00. Therefore

∫
fndν ≤∫

fndν̃. As fn converges to f pointwise, by dominated convergence we get
∫
fdν ≤

∫
fdν̃.

Remark 4.3. Notice that in part b) we require ν and ν̃ to have the same marginal tail inte-
grals and not the same marginals. Indeed it may happen that the marginals differ concerning
their point masses in zero. As an example consider for ν̃ a Lévy measure concentrated on
the diagonal {x : x1 = . . . = xd} and let ν be the Lévy measure with the same marginal tail
integrals but with mass concentrated on the axis (so that the corresponding Lévy process
has independent components). Then indeed ν ≤sm ν̃ (for a proof see Remark 4.6), but the
marginals of ν have point masses in zero, whereas the marginals of ν̃ don’t.

Next we show that for finite Lévy measures the condition f ∈ B0 can be removed, which
in particular implies that for probability measures our new definition coincides with the
classical one.

Lemma 4.4. For Lévy measures ν, ν̃ with finite total mass the following conditions are
equivalent:

a) ν ≤sm ν̃;
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b) ν and ν̃ have the same marginal tail integrals and
∫
fdν ≤

∫
fdν̃ for all bounded

increasing supermodular f : Rd → R;

Proof. We only prove that a) implies the ordering of the Lévy measures for all bounded
continuous supermodular functions. The rest of the proof is as in Lemma 4.2. Thus let us
assume that ν ≤sm ν̃ holds and that f is an arbitrary bounded continuous supermodular
function. As ν and ν̃ must have the same total mass,

∫
fdν ≤

∫
fdν̃ holds if and only

if
∫

(f − f(0))dν ≤
∫

(f − f(0))dν̃. Thus we can assume without loss of generality that
f(0) = 0. As in the proof of Lemma 4.2 let us define

fn(x) := f(round(nx)/n).

Then fn is a bounded supermodular function vanishing around zero, and thus fn ∈ B0.
Therefore

∫
fndν ≤

∫
fndν̃. As fn converges to f pointwise, by dominated convergence we

get
∫
fdν ≤

∫
fdν̃.

Now we can state the main result about supermodular comparison of Lévy processes. The
implication from a) to b) can already be found in Bergenthum and Rüschendorf (2007),
where a different proof is given.

Theorem 4.5. For Lévy processes X, X̃ with Lévy measures ν, ν̃, the following conditions
are equivalent:

a) ν ≤sm ν̃;

b) X ≤sm X̃.

Proof. For the proof we will use the following interpolation formula, which can be derived
from Houdré (1998) and Houdré et al. (1998): let f be a bounded twice continuously dif-
ferentiable function (written f ∈ C2

b ) and denote by A and Ã the generators of the Lévy
processes X and X̃ respectively. Then

Ef(X̃(t))− Ef(X(t))

=

∫ 1

0

E[(Ã − A)f(X(α)(t))]dα

=

1∫
0

∫ ∫
Rd

(f(x+ u)− f(x)− 〈h(u),∇f(x)〉)(tν̃ − tν)(du)PX(α)(t)(dx)dα (4.1)

where (X(α)) is a Lévy process with Lévy measure αν̃ + (1− α)ν.
Now assume that a) holds. To show b), it is sufficient to show Ef(X(t)) ≤ Ef(X̃(t)) for
supermodular functions f ∈ C2

b (see Denuit and Müller (2002)). But if f ∈ C2
b then

u 7→ gx(u) := f(x+ u)− f(x)− 〈h(u),∇f(x)〉

is a supermodular function in B0. To see supermodularity, notice that we have chosen h
such that u 7→ −〈h(u),∇f(x)〉 is a sum of functions depending only on one variable and
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therefore supermodular, and gx ∈ B0 follows easily by developing f in a Taylor series around
x. Thus ν ≤sm ν̃ implies that the inner integral in (4.1) is non-negative, and therefore the
whole expression in (4.1) must be non-negative. This shows that a) implies b).
Next assume that b) holds and that f ∈ C2

b ∩ B0. From (4.1) we get

0 ≤ lim
t→0

Ef(X̃(t))− Ef(X(t))

t

= lim
t→0

1∫
0

∫
Rd

E
(
f(X(α)(t) + u)− f(X(α)(t))− 〈h(u),∇f(X(α)(t))〉

)
(ν̃ − ν)(du)dα

=

∫
f(u)(ν̃ − ν)(du).

The last equality here follows from the fact that X
(α)
t → 0 a.s. for t → 0 and from the

fact that for f ∈ C2
b ∩ B0 we have that f and ∇f are continuous with f(0) = 0 and

∇f(0) = 0. Thus we have
∫
fdν ≤

∫
fdν̃ for all f ∈ C2

b ∩ B0 and hence especially for all
infinite differentiable f ∈ B0. It follows now from Lemma 4.2 that b) implies a).

Remark 4.6. The PSMD result from Theorem 3.10 is an easy corollary from Theorem 4.5.
Notice that any univariate function is supermodular and therefore supermodular ordering can
only hold for Lévy measures with the same marginal tail integrals. Thus for supermodular
functions f we have

∫
fdν̃ −

∫
fdν =

∫
fdν̃ −

∫
fdν, where

f(x1, . . . , xd) = f(x)− f(x1, 0, . . . , 0)− f(0, x2, 0, . . . , 0)− . . .− f(0, . . . , 0, xd) + (d− 1)f(0).

is a function vanishing on all axis. But a supermodular function vanishing on all axis must
be non-negative on Rd

++,−−. Next notice that if X is a Lévy process with Lévy measure ν,
then the Lévy process with the same marginals and independent components has a Lévy
measure ν⊥ which is concentrated on the axis. Therefore for ν concentrated on Rd

++,−− and
f supermodular we get∫

fdν −
∫
fdν⊥ =

∫
fdν −

∫
fdν⊥ =

∫
fdν ≥ 0

and thus that the Lévy process X is PSMD if ν is concentrated on Rd
++,−−.

Let us now turn to the concordance order. A natural definition to compare Lévy measures
in that way is

Definition 4.7. Lévy measures ν, ν̃ are said to be comparable with respect to the concor-
dance order (written ν ≤c ν̃), if for all f ∈ B0 which are d-increasing or d-decreasing:∫

fdν ≤
∫
fdν̃.
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The preceding results for the supermodular order (in particular Lemma 4.4 and Theorem 4.5)
can be shown for the concordance order in completely the same way. The analogy to Lemma
4.2 follows from Denuit and Müller (2002) Theorem 3.2. The translation of Lemma 4.4 is
straightforward. It is important to note that the concordance order also implies that the
marginal tail integrals of the Lévy measures have to be equal. Since Theorem 4.5 is the main
result for the supermodular order in this section we will formulate it for the concordance
order also. The proof follows the same lines.

Theorem 4.8. For Lévy processes X, X̃ with Lévy measures ν, ν̃, the following conditions
are equivalent:

a) ν ≤c ν̃;

b) X ≤c X̃.

For d = 2 it is well-known that the orders ≤sm and ≤c coincide. This property carries over
to the comparison of Lévy measures. Moreover in this case the characterization of ≤sm and
≤c simplifies. This is due to the fact that in this case the order can be generated by products
of functions of the form

x 7→ 1[x≥t] if t > 0 and x 7→ −1[x≤t] if t < 0

x 7→ −1[x≥t] if t > 0 and x 7→ 1[x≤t] if t < 0.

We obtain here

Lemma 4.9. Let d = 2. For Lévy measures ν, ν̃ with tail integrals U, Ũ the following
conditions are equivalent:

a) ν ≤c ν̃;

b) ν ≤sm ν̃;

c) ν and ν̃ have the same marginal tail integrals and U(x) ≤ Ũ(x) for all x ∈ (R\{0})2.

Next we will express the two considered orders in terms of the Lévy copulas. We will show
that the supermodular and the concordance ordering of Lévy processes holds if and only if
they have the same marginals and their Lévy copulas fulfill an appropriate condition. To
define that condition we need the following classes of functions.

Definition 4.10. a) Let SSM be the class of bounded measurable functions f : (R\{0})d →
R with the property that the function f̃ : Rd → R defined by

f̃(u1, . . . , ud) =

{
f( 1

u1
, . . . , 1

ud
), if u ∈ (R\{0})d,

0, else,
(4.2)

is supermodular with f̃ ∈ B00.
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b) Let SI
d be the class of bounded measurable functions f : (R\{0})d → R with the

property that the function f̃ : Rd → R defined by (4.2) is d-increasing or −f̃ is d-
decreasing with f̃ ∈ B00.

Functions in SSM are supermodular, if they are restricted to an orthant, but in general they
are not supermodular on the whole domain. A typical example of a function f ∈ SSM in
case d = 2 is

f(x1, x2) = 1{(0,a)×(0,b)}(x1, x2)

for a, b > 0.
In what follows note that since a Lévy copula is d-increasing and continuous there exists a
unique measure µF on R̄d − {(∞, . . . ,∞)} such that µF

(
[a1, b1)× . . .× [ad, bd)

)
is equal to

the F -volume of [a1, b1)× . . .× [ad, bd).
Definition 4.10 in particular implies that for f ∈ SSM there is some K such that f(x) = 0 if
mini=1,...,d |xi| > K. Together with the boundedness this has the consequence that

∫
fdµF is

finite for any Lévy copula measure µF and all f ∈ SSM . Using this class SSM we can show
now that supermodular ordering of Lévy processes can be characterized in terms of Lévy
copulas.

Theorem 4.11. For Lévy processes X, X̃ with Lévy measures ν, ν̃ and Lévy copula measures
µF , µF̃ the following conditions are equivalent:

a) X ≤sm X̃;

b) ν and ν̃ have the same marginal tail integrals and
∫
fdµF ≤

∫
fdµF̃ for all f ∈ SSM .

Proof. Assume that a) holds. As X ≤sm X̃ implies that X and X̃ have the same marginals,
it is clear that ν and ν̃ have the same marginal tail integrals U1, . . . , Ud. Moreover, it follows
from Theorem 4.5 that ν ≤sm ν̃ and hence

∫
fdν ≤

∫
fdν̃ for all supermodular f ∈ B00. ν

(ν̃) is the image of µF (µF̃ ) under the mapping

T : (u1, . . . , ud) 7→ (U−1
1 (u1), . . . , U

−1
d (ud))

where

U−1
i (u) =

{
inf{x > 0 | u ≥ Ui(x)}, u ≥ 0
inf{x < 0 | u ≥ Ui(x)} ∧ 0, u < 0

is the canonical inverse. Thus∫
fdν =

∫
fdµT

F =

∫
f ◦ TdµF

=

∫
f(U−1

1 (u1), . . . , U
−1
d (ud))µF (d(u1, . . . , ud))

=

∫
f̂(

1

u1

, . . . ,
1

ud

)µF (d(u1, . . . , ud)),

and ∫
fdν̃ =

∫
f̂(

1

u1

, . . . ,
1

ud

)µF̃ (d(u1, . . . , ud)),
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where f̂(x) = f(h1(x1), . . . , hd(xd)) with

hi(x) =

{
U−1

i ( 1
x
), x 6= 0,

0, x = 0,
i = 1, . . . , d.

As the functions hi, i = 1, . . . , d are increasing and continuous in the origin, f̂ is supermodular
and in B00, if and only if this holds for f . Thus∫

fdν ≤
∫
fdν̃

is equivalent to ∫
gdµF ≤

∫
gdµF̃

for all g ∈ SSM . Hence a) implies b), and the implication from b) to a) follows the same
lines.

There is an important practical case where we can circumvent the use of class SSM . We
obtain

Corollary 4.12. Let X and X̃ be associated Lévy processes with corresponding Lévy copula
measures µF and µF̃ . Then the following conditions are equivalent:

a) X ≤sm X̃.

b) the Lévy measures have the same marginal tail integrals and
∫

Rd
++,−−

fdµF ≤
∫

Rd
++,−−

fdµF̃

for all bounded and supermodular f : Rd
++,−− → R with f(x) = 0 for all x ∈ Rd

++,−−
with mini=1,...,d |xi| > K.

Proof. Since X is associated we have∫
Rd

fdν =

∫
Rd

++

fdν +

∫
Rd
−−

fdν

for all f ∈ B00 and the same for ν̃. Now we have f : Rd
++,−− → R is supermodular if and

only if f is supermodular as a function on Rd
++ and Rd

−− separately. Thus we obtain that

X ≤sm X̃ in this case is equivalent to∫
Rd

++

fdν ≤
∫

Rd
++

fdν̃ and

∫
Rd
−−

gdν ≤
∫

Rd
−−

gdν̃

for all f : Rd
++ → R, g : Rd

−− → R supermodular and zero around x = 0. But on Rd
++ and

Rd
−− separately the transformation used in the proof of Theorem 4.11 leads to a supermodular

function again. Using the same arguments yields the statement.

Obviously we obtain for the concordance order a similar result. The proof is omitted since
it follows the same lines.

17



Theorem 4.13. For Lévy processes X, X̃ with Lévy measures ν, ν̃ and Lévy copula measures
µF , µF̃ the following conditions are equivalent:

a) X ≤c X̃.

b) ν and ν̃ have the same marginal tail integrals and
∫
fdµF ≤

∫
fdµF̃ for all f ∈ SI

d .

In the case d = 2 we obtain from Lemma 4.9 and Sklar’s Theorem for Lévy copulas the
following simple characterization:

Corollary 4.14. Let d = 2. For Lévy processes X, X̃ with Lévy measures ν, ν̃ and Lévy
copulas F , F̃ the following conditions are equivalent:

a) X ≤c X̃.

b) X ≤sm X̃.

c) ν and ν̃ have the same marginal tail integrals and F ≤ F̃ .

5 Examples

In this section we analyze the dependence properties of some popular Lévy processes.

Compound Poisson process
Let X be a d-dimensional compound Poisson process with intensity λ and jump size distri-
bution Q. The Lévy measure on Rd is given by ν = λQ. Thus due to Theorem 3.9 X is
associated (POD, PSMD) if and only if the common jumps have the same direction i.e. the
jumps size distribution is concentrated on R++,−−.
As far as the comparison of compound Poisson processes is concerned, suppose that we have
two d-dimensional compound Poisson processes X and X̃ with intensities λ and λ̃ respec-
tively and jump size distributions Q and Q̃ respectively and that λ̃ ≤ λ. Then we can
w.l.o.g. assume that the intensity of the tilde process is λ and it has jump size distribution
˜̃Q = λ̃

λ+λ̃
Q̃ + λ

λ+λ̃
δ0 since this leads to the same process in probability. Thus, by Theorem

4.5 and Lemma 4.4 X and X̃ can be compared in the supermodular order if and only if the

ordinary distributions Q and ˜̃Q can be compared in the supermodular order.

Archimedean Lévy copulas
Kallsen and Tankov (2006) have introduced a family of Archimedean Lévy copula, how-
ever, it can be checked easily that the class of Lévy processes generated by their family of
Archimedean Lévy copulas in case d > 2 does not include positive dependent Lévy processes
in terms of association. Thus, we present another definition here. The idea is as follows.
We first define an Archimedean copula for spectrally positive Lévy measures on (0,∞)d, and
then we extend this to the whole Euclidean space by defining such an Archimedean copula
for each orthant and combining them in an appropriate way. On (0,∞)d we use the following
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definition, which is a straightforward extension of the definition of an Archimedean copula
for probability measures: Let φ : (0,∞) → (0,∞) be a strictly decreasing function with
alternating signs of derivatives up to order d and with limt→0 φ(t) = ∞ and limt→∞ φ(t) = 0
and define

Fφ(u1, . . . , ud) = φ

(
d∑

i=1

φ−1(ui)

)
, u1, . . . , ud > 0. (5.1)

Then Fφ satisfies the properties of a Lévy copula on (0,∞)d.

Remark 5.1. Notice that we use the more familiar additive generator approach in contrast
to the multiplicative generator approach used in Kallsen and Tankov (2006), but they differ
only by a logarithmic transformation, see Nelsen (2006) for the case of Archimedean copulas
of probability measures.

Now let I = {−1, 1}d and notice that for each i = (i1, . . . , id) ∈ I we have an orthant

Oi = {x ∈ Rd : sgn(xj) = ij, j = 1, . . . , d}

Given a set of functions Fφi
, i ∈ I, and a weight function η : I → [0, 1] having the property

that for each k ∈ {1, . . . , d} ∑
{i:ik=−1}

η(i) =
∑

{i:ik=1}

η(i) = 1, (5.2)

we can then define an Archimedean Lévy copula on Rd by

F (u1, . . . , ud) =


∑
i∈I

(
η(i)Fφi

(|u1|, . . . , |ud|)1{u∈Oi}
d∏

j=1

sgn(uj)

)
, if |uj| > 0, j = 1, . . . , d,

0 , else.

(5.3)
In contrast to the definition of Kallsen and Tankov (2006) our proposal allows for positive
dependence. It follows immediately from Lemma 3.6 and Theorem 3.10:

Lemma 5.2. An Archimedean Lévy copula as defined in (5.3) is associated if and only if

η(1, 1, . . . , 1) = η(−1,−1, . . . ,−1) = 1.

Example 5.3. In case we choose ϕ(u) = u−
1
θ in (5.1) and η(1, 1) = η(−1,−1) = 1, then we

obtain the Clayton-Lévy copula

F (u) = Fθ(u1, u2) = (u−θ
1 + u−θ

2 )−
1
θ1[u∈R2

++] + ((−u1)
−θ + (−u2)

−θ)−
1
θ1[u∈R2

−−]

By Theorem 4.14 we know that Xθ ≤c Xθ′ ⇔ Fθ ≤ Fθ′ ⇔ θ ≤ θ
′
.
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6 Applications

6.1 Ruin times

Suppose that the purely discontinuous Lévy process X = (X1(t), . . . , Xd(t))t≥0 represents
the evolution of d risk reserve processes of different business lines. Of particular interest are
the ruin times (or more general first hitting times) of these processes. Denote by

τj := inf{t ≥ 0 |Xj(t) ≤ 0}

the ruin time of risk reserve j, j = 1, . . . , d. If the risk reserve processes are positive depen-
dent, then the ruin time points are positive dependent. This statement can be formalized as
follows:

Theorem 6.1. Let X = (X1(t), . . . , Xd(t))t≥0 be a Rd-valued Lévy process. If X is associated
(or POD or PSMD) then the ruin time points τ = (τ1, . . . , τd) are associated (or POD or
PSMD).

Proof. Let us consider a discretisation of our model. For 4 > 0, the discrete ruin time τ4j
of the j-th risk process is then defined as

τ4j = min{m4 ≥ 0 | Xj(m4) < 0} for j = 1, . . . , d,m ∈ N

and
τ

[n],4
j = min{τ4j , n}

the ruin time truncated at n. Similarly to Denuit et al. (2007) τ
[n],4
j can be written as

τ
[n],4
j =

n∑
l=1

l∏
m=1

1{Xj(m4)≥0} + 1.

Note that we know from Lemma 2.6 that the vector
(
Xj(m4) − Xj((m − 1)4), j =

1, . . . , d,m = 1, . . . ,M
)

is associated. Now, τ
[n],4
j is a conjunction of non-decreasing func-

tions of this vector, and consequently
(
τ

[n],4
1 , . . . , τ

[n],4
d

)
is associated (see Lemma 2.4 a)).

We now change over to the continuous setting and let 4 tend to 0. Note that we are using
the (unique) càdlàg version of a Lévy process as customary. As the partition gets finer, τ

[n],4
j

converges a.s. to τ
[n]
j , which implies the convergence in distribution. According to Lemma

2.4 d) we conclude that τ
[n]
j is associated. Letting n → ∞ and using the same arguments

again, we obtain that the ruin time vector τ = (τ1, . . . , τd) is associated.

It is also possible to derive a comparison result. It follows from Proposition 2.6 in Denuit
et al. (2007):
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Theorem 6.2. Let X = (X1(t), . . . , Xd(t))t≥0 and X̃ = (X̃1(t), . . . , X̃d(t))t≥0 be two Rd-
valued Lévy processes. If X ≤sm X̃ then the ruin time points are ordered:

τ = (τ1, . . . , τd) ≤sm τ̃ = (τ̃1, . . . , τ̃d).

Another popular risk model is to consider a portfolio of risk processes whose sum describes
the risk of an insurance company. Models of this type have for example been investigated
in Juri (2002) and Bregman and Klüppelberg (2005). Suppose now that the portfolio is
described by an Rd-valued Lévy process X = (X1(t), . . . , Xd(t))t≥0. By X+

t :=
∑d

i=1Xi(t)
we denote the one-dimensional risk process for the insurance company. Note that this is
again a Lévy process. By ψX we denote its probability of ruin, i.e.

ψX(u) = P

(
inf
t≥0

X+
t < 0 | X+

0 = u

)
.

A question of interest is how dependence between the components influences the probability
of ruin. We obtain:

Theorem 6.3. Suppose we have two portfolios of risk processes X = (X1(t), . . . , Xd(t))t≥0

and X̃ = (X̃1(t), . . . , X̃d(t))t≥0 which are both Rd-valued Lévy processes. If X ≤sm X̃ then∫ ∞

u

ψX(s)ds ≤
∫ ∞

u

ψX̃(s)ds.

This statement can be shown in the same way as Theorem 1 in Bäuerle and Rolski (1998).
Moreover Proposition 5.1. in Asmussen et al. (1995) then implies that the corresponding
adjustment coefficients R and R̃, whenever they exist, are ordered by R ≥ R̃. Now let us
consider an explicit example: Suppose d = 2, and the components of the risk processes are
linked by the Clayton Lévy copula in Example 5.3 with parameter θ. From Theorem 6.3,
Theorem 4.14 and Example 5.3 it follows that the corresponding adjustment coefficient is
decreasing in θ. This is reasonable since we obtain for θ →∞ the complete dependence case
and for θ → 0 the independence copula. This generalizes results given in Theorem 3.12 in
Bregman and Klüppelberg (2005).

6.2 Option pricing and credit risk

Suppose we have a financial market with d risky assets whose vector of price processes
is denoted by

(
S1(t), . . . , Sd(t)

)
t≥0

. Prices of risky assets are often modelled as exponential

Lévy processes. Here we suppose that
(
X1(t)), . . . , Xd(t)

)
t≥0

is a d-dimensional Lévy process
with purely discontinuous paths and that the price processes satisfy the following stochastic
differential equation

dSi(t) = Si(t−)
[
µi(t)dt+ σi(t−)dXi(t)

]
(6.1)

Si(0) = 1

where σi(t) > 0, µi(t) are bounded deterministic càdlàg functions. Further we assume for all
i = 1, . . . , d
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(A1) E[exp(−hXi(1))] <∞ for all h ∈ (−h1, h1), for some h1 > 0.

(A2) σi(t)
(
Xi(t)−Xi(t−)

)
≥ −1 for all t ≥ 0.

The first assumption guarantees that Xi(t) has finite moments of all orders and the second
assumption implies that the jumps of Xi(t) are bounded from below and that Si(t) ≥ 0 for
all t. A solution of the stochastic differential equation (6.1) is given by (see e.g. Protter
(1990))

Si(t) = exp

[∫ t

0

µi(s)−
1

2
σ2

i (s)ds

]
×
∏

0<s≤t

(
1 + σi(s)(Xi(s)−Xi(s−))

)
Lemma 6.4. If the Lévy process X is associated (or POD or PSMD), then the price processes
are associated (and thus also POD and PSMD).

Proof. That S(t) is associated for any t ≥ 0 has been shown in Bäuerle (2002). Since the
price processes have independent increments, the statement follows from Lemma 2.6.

This lemma can be applied when option prices on more than one stock are computed. Sup-
pose for example that we have two stocks where the stock price processes under the risk
neutral probability measure Q are two exponential Lévy processes as before and a determin-
istic bond with price process B =

(
B(t)

)
t≥0

. We look at a contingent claim with pay-off

H = h(S1(T ), S2(T )). Its price is given by π(H) = B−1
T EQ[h(S1(T ), S2(T ))]. The following

lemma now follows easily form our results

Lemma 6.5. If h is a supermodular function and S1 and S2 are associated, then

π(H) ≥ π(H)⊥

where π(H)⊥ is the price of the same option under the assumption of independent price
processes.

Typical functions h which are supermodular are

h(x, y) =
(
min(x, y)−K

)+
, h(x, y) =

(
−max(x, y)−K

)+
, h(x, y) =

(
x+ y −K

)+
.

Obviously the preceding Lemma also holds when the pay-off h(S1, S2) of the option is path-
dependent and h has enough structure. Examples are here

h(s1, s2) =
(

min
(

inf
t∈[0,T ]

s1(t), inf
t∈[0,T ]

s2(t)
)
−K

)+

h(s1, s2) =
(
−max( sup

t∈[0,T ]

s1(t), sup
t∈[0,T ]

s1(t))−K
)+

h(s1, s2) =
(
s1(T )−K

)+
1[inft∈[0,T ] s2(t)≥b].

As far as the comparison of the stock prices are concerned, we obtain the following result
(for the current model and under the assumptions made so far).
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Lemma 6.6. Let X and X̃ be two Lévy processes with X ≤sm X̃. Then the corresponding
price processes satisfy S ≤sm S̃.

Proof. Define logS :=
(
logS1(t), . . . , logSd(t)

)
t≥0

. Note that the supermodular order is
preserved under increasing transformations of the margins. Thus, as in the proof of Lemma
2.6 and Lemma 2.9 respectively we obtain that X ≤sm X̃ implies

log
(
1 + σi(t)

(
Xi(t)−Xi(t− h)

))
≤sm log

(
1 + σi(t)

(
X̃i(t)− X̃i(t− h)

))
, ∀t, h > 0

and thus
S(t) ≤sm S̃(t) ∀t > 0 ⇒ S ≤sm S̃.

As a consequence, a comparison of option prices can be done along the lines of Lemma 6.5.
Another application of the preceding considerations are structural models of credit risk.
Here a default of one counterparty is triggered whenever its stock price falls below a certain
threshold.
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Applebaum, D. (2004) Lévy processes and stochastic calculus. Cambridge University Press,
Cambridge.

Asmussen, S., Frey, A., Rolski, T., and Schmidt, V. (1995) Does Markov-modulation
increase the risk? ASTIN Bull. 49–66.
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Bäuerle, N. (2002) Risk management in credit risk portfolios with correlated assets. In-
surance Math. Econom. 30, 187–198.
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Houdré, C., Pérez-Abreu, V., and Surgailis, D. (1998) Interpolation, correlation
identities, and inequalities for infinitely divisible variables. J. Fourier Anal. Appl. 4, 651–
668.

Joe, H. (1997) Multivariate Models and Dependence Concepts, volume 73 of Monographs
on Statistics and Applied Probability. Chapman & Hall, London.

Juri, A. (2002) Supermodular order and Lundberg exponents. Scand. Actuar. J. 17–36.

Kallsen, J. and Tankov, P. (2006) Characterization of dependence of multidimensional
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