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Chapter 1

Introduction

Auctions have a long tradition, dating back as far as 500 B.C. when women were auc-
tioned for marriage in Babylonia. Auctions were also popular in the Roman Empire,
ancient China, Japan, and Greece. In the last two centuries, they have been applied
in many areas from philately and other collectibles and antiques to perishables like
fish and tulips, treasury bills, construction contracts, and telecommunications licenses
(Cassady, Jr., 1967; Milgrom, 1987; Lucking-Reiley, 2000b; Klemperer, 2004). With
the success of the Internet, new applications for auctions arose.1 Contrary to tradi-
tional auction formats, in auctions conducted via the Internet, it is not necessary that
people meet in one place at one time.2 This led to the development of many new auc-
tion formats employed, for example, to negotiate contracts in consumer-to-consumer
or business-to-business relationships (see Anandalingam, Day, and Raghavan, 2005,
for an overview).

The term auction is derived from the Latin word augere, which means to augment
or to increase. It refers to the traditional type of auction where the price is determined
by sequentially increasing a publicly announced bid until only one bidder is willing to
pay that amount. An auction is defined as “a market institution with an explicit set of
rules determining resource allocation and prices on the basis of bids from the market
participants” (McAfee and McMillan, 1987, p. 701). Auctions are an appropriate
selling mechanism if the seller is uncertain about the item’s value to potential buyers
and if the costs of running an auction are low (e.g., Ockenfels, Reiley, and Sadrieh,

1See Lucking-Reiley (2000a) for an overview of the years 1993–1999 with an ascertainment of the
situation in 1998.

2Participation by phone was also possible before the Internet.
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Chapter 1 Introduction

2006).3

Amongst private sellers, Internet auctions became popular as an instrument offer-
ing access to many potential buyers, mainly for small collectibles. They have the
advantage of low transaction costs (of running the auction) and of reaching a large
audience (Ockenfels et al., 2006). Nowadays, on the most popular auction sites, there
are not only private sellers but also professional retailers offering almost anything one
can imagine. The trade volume is huge, at least for some auction platforms. For ex-
ample, on eBay Marketplace, the largest Internet auction platform in the USA, 55% of
the gross merchandise volume of $ 60 billion comes from auctions (and the remaining
45% from a fixed-price listing format). The number of fixed price and auction listings
on a single day can reach 140 million. At the end of 2008, 86.3 million active users4

were counted (eBay Inc., 2008). eBay offers its auction platform in 38 markets.5 Be-
sides the USA, Germany and the United Kingdom are the largest eBay markets. In
Germany, eBay.de has more than 14.5 million active users and on average more than
30 million items are offered concurrently.6 In other countries, different companies are
market leaders, for example Yahoo! Japan Auctions (auctions.yahoo.co.jp) in Japan7

and ricardo.ch in Switzerland.8 There are also auction platforms that have specialized
in certain products, like my-hammer.de for craftsmen and services,9 AuctionVine.com
and WineBid.com for wines in the US, or Surplex.com for used machinery. Platform
operators usually charge listing fees and/or transaction fees. In some cases, the plat-
form operators are also sellers of the products (merchant sites like uBid.com). This
may lead to a conflict of interest, especially with certain new selling procedures.

The auction formats applied on most auction sites (e.g., eBay and Yahoo!) are
variants of an ascending second-price proxy auction (Lucking-Reiley, 2000a). That
is, a bidder submits a bidding limit to an automatic proxy bidding agent, which bids
on his behalf up to this limit.10 As long as the auction is open, a bidder can submit

3Auctions are also used as buying mechanism, called a reverse auction, where sellers act as bidders
and the lowest bid wins.

4An active user had bid, bought, or sold at least once in 2008.
5eBay.de, http://pages.ebay.de/aboutebay/thecompany/companyoverview.html, April 28, 2009.
6http://presse.ebay.de/news.exe?content=FD, April 28, 2009.
7www.japanauctioncenter.com/
8www.ricardo.ch/pages/about company/de.php, April 28, 2009.
9There, however, the lowest offer does not win automatically (Stiftung Warentest, 2007).

10On some platforms, the bidder may choose if he wants to use a proxy bidder or the seller may
choose if he offers a proxy bidding agent, e.g., at www.trademe.co.nz and azubo.de (bidders’
choice) or uBid.com (sellers’ choice).
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new bids, i.e., he can increase his bidding limit. The bidder with the highest submitted
bid (or bidding limit) is the current high bidder. His bidding limit is hidden to other
bidders. The current standing bid equals the second-highest submitted bid (e.g., at
WineBid.com) or the second-highest submitted bid plus one increment (e.g., in eBay
auctions). When the auction ends, the current high bidder becomes the winner and
the current standing bid is the price he has to pay.

There are two types of ending rules: soft close and hard close. eBay uses a hard
close rule in which each auction has a fixed ending time. Amazon and Yahoo! auctions
are often mentioned as examples of sites that implement flexible or soft close rules,
under which an auctions’ ending time is delayed whenever a new bid is submitted
(e.g., Roth and Ockenfels, 2002; Houser and Wooders, 2005).11

Many variants of this auction format and other auction forms (e.g., sealed-bid
auctions and Dutch auctions) are offered on the Internet. Sometimes sellers have
additional options. An example is the “Buy-It-Now” option on eBay that allows a
buyer to purchase an item at a posted price instead of starting the auction process.12

Once a bid is submitted, this option disappears. On some platforms, sellers can offer a
buyout price as an alternative fixed price during the whole auction process. Setting a
secret reserve price is another popular option for sellers. Bidders are usually informed
if the reserve price is met by the standing bid. If it is not met at the end, the item
is either not sold or, on some platforms, the seller may decide nevertheless to sell to
the high bidder.

In what follows, the term Internet auctions refers to consumer-to-consumer Internet
auctions offered on platforms operated by independent companies.13 However, some
of the descriptions and also some of our results are not restricted to this environment.

Due to the success and the growing economic relevance, Internet auctions started
to attract the interest of researchers (see Bajari and Hortaçsu, 2004, for an overview).
Auctions offered on Internet platforms were typically analyzed as separate auctions
of a single unit. But the typical presence of multiple, similar auctions should be

11The flexible or soft close rule is also called the going-going-gone rule. Yahoo! auctions offers both
ending options. Yahoo! auctions closed in many countries (e.g., the US and Canada in 2007) and
is mainly active in Japan and other Asian countries. Amazon auctions is not active anymore.
uBid.com and compendo.de also have a soft close ending rule.

12See, e.g., Seifert (2006).
13Note that, for example, eBay has changed from a platform dominated by consumer-to-consumer

auctions to one used by professional sellers and traditional stores. Besides offering items in
auctions, sellers can use a pure fixed-price listing or offer the additional “Buy-It-Now” feature.
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Chapter 1 Introduction

expected to have an effect on behavior and on outcomes. Recently, this aspect began
to be included in theoretical and empirical research. In this thesis, such a model of
multiple auctions is analyzed.

We assume these auctions are offered by independent sellers. That is, in contrast to
other multi-unit auctions like the spectrum auctions, there is no single seller in whose
interest the auctioneer can coordinate bids. In principle, the platform operator may
act as an auctioneer who coordinates bids. The difference from the case of a single
seller is that the auctioneer who acts on behalf of multiple sellers may be unable to
act in the interest of every single seller. A decision may be in the interest of one seller
but to the disadvantage of another seller. We call these auctions independent.

On an auction platform, a bidder can usually choose between many items offered for
sale. Let us assume that he is interested in buying only one item. However, a bidder
may evaluate many different items even though he wants to buy only one. Assume,
for example, you want to buy a mountain bike. On an Internet auction platform you
find a huge number of offers.14 You may prefer a new bike to a used one, but if the
seller of the used bike seems to be trustworthy (has a high rating in the reputation
system) you may also consider buying the used bike. You may prefer a red bike to
a yellow one, a full-suspension bike to a hard tail, a “Cannondale” to a “Specialized”
bike, this year’s model to last year’s, and so on. But, eventually, you want to buy
only one bike. In the end, the price you have to pay will determine which bike you
prefer. This example illustrates the unit-demand preferences for heterogeneous items
in our model.

Furthermore, different bidders may consider different items to be substitutes. Thus,
a bidder interested solely in Cannondale and another one interested in Specialized
bikes only will not compete. However, both of them may compete with bidders who
are less restrictive, who in turn may be competitors in some auctions and not in
others. This competition, or lack thereof, is included in unit-demand preferences for
heterogeneous items because a bidder may regard an item as useless and assign it
a value of zero. If one bidder has a low valuation for an item, this does not tell us
anything about its ranking or absolute value for another bidder.

There are other reasons why the assumption of homogeneous items may be im-
proper. A seller’s reputation, shipping costs and terms seem to have an influence on

14For example, on April 22, 2009, 2,161 mountain bikes were listed on eBay.com in the category
“Mountain Bikes.”
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prices (e.g., Melnik and Alm, 2002, 2005; Hossain and Morgan, 2006; Houser and
Wooders, 2006; Resnick, Zeckhauser, Swanson, and Lockwood, 2006).15 Moreover,
items are presented differently, with more or less appealing layout and with or with-
out pictures of the item. In contrast to some of the examples above, these factors
probably make an item more or less attractive to all bidders.

The mountain bike example highlights another important aspect of Internet auc-
tions. Some bidders may enter a search term like “Cannondale mountain bike” or
“Specialized mountain bike,”16 others may click through the system of categories to
the subcategory “Mountain Bikes,” while others may search for the term “mountain
bike” in the category “Bicycles and Frames” and then refine for “Complete Bike” and
“New.”17 Thus, a potential bidder’s search strategy influences the set of auctions
that he will know of. The necessity of knowing about an item to permit trade can
be modeled via existent and non-existent links in a network of bidders and sellers.
It motivates our analysis of incomplete bidder-seller networks in the last theoretical
part of this thesis.

The mountain bike example shows, first, that bidders may consider items as sub-
stitutes while having different values for them, and second, that different bidders may
consider different items as substitutes. Third, even if bidders have similar preferences,
they may nevertheless have different search strategies and thus face different sets of
auctions.

Internet auctions have another advantage over traditional auctions: bidders need
not meet at a certain time and place. The auctions are typically open for bids over
some time period (on eBay, for example, one to ten days). Bidders may check auctions
that are interesting to them from time to time and can bid whenever they want.

Our basic model incorporates multiple independent auctions and assumes unit-
demand preferences for heterogeneous items, as motivated above. The preference
structure also allows different bidders to consider different items as substitutes. The
auction format is a second-price proxy auction and the ending rule may be interpreted
as a soft close rule. Bidders submit bids asynchronously. In an extension of the
model, results concerning the incomplete bidder-seller network that most likely arises

15For a discussion and an overview of many empirical studies, see Bajari and Hortaçsu (2004).
16Note that these are proposed search terms if you enter “cann” or “spec” into the search field,

respectively, which may increase the probability that potential bidders use them. The search
terms gave 114 and 176 results on April 22, 2009, respectively, at eBay.com.

17This search gives 522 results.
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on auction platforms are presented.
The structure of this thesis is as follows. In the next chapter, concepts used or

referred to in the analysis are introduced and an overview of the related literature is
given. Having provided this background, the main model is analyzed in Chapter 3.
In Section 3.1, the model is presented. Section 3.2 provides the equilibrium analysis.
A certain strategy is proposed, outcomes that result from following this strategy are
analyzed, and, finally, incentives to follow this strategy are investigated. The results
of Chapter 3 establish a relation to Vickrey outcomes. Hence, Chapter 4 is dedicated
to the analysis of a certain aspect of Vickrey auctions: the impact of increasing a
valuation on the outcome. The results are interesting in themselves, but also provide
a basis for the investigation of the bidder-seller network model in Chapter 5. This
chapter combines results of Chapters 3 and 4 to investigate auctions in incomplete
bidder-seller networks. Results of an experimental study of the basic model of Chapter
3 are presented in Chapter 6. Chapter 7 concludes.
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Chapter 2

Concepts and Related Literature

This chapter provides an overview of the methods and concepts used. We start with
the concepts applied in the analysis of the basic model, and then introduce cooperative
games, Vickrey auctions, and the assignment game since those will also play a role in
the further analysis.

Then, related literature – in particular, results related to the assignment game,
auction theory, and experiments – is presented and connections between our model
and the literature are established.

2.1 Concepts and Definitions

In this section, we present the theoretical background, concepts, and definitions that
are used in our model. The first part deals with the general, game-theoretic setting
and the solution concept. After that, cooperative games, the Vickrey auction, and
the assignment game are briefly introduced.

Game Theoretic Background The following formal description of a non-cooper-
ative game in extensive form Γ closely follows the description of the extensive form
representation of a game in Mas-Colell, Whinston, and Green (1995, p. 227).

Definition 2.1 (Game in extensive form) A game in extensive form Γ = {S, u}
is described by its extensive-form structure S = {I,Y ,A, prec(·), a(·),H, H(·), s(·), ρ(·)}
and a collection of utility functions u = (ui)i∈I. The elements are given by:

• A finite set of players I, a finite set of nodes Y, and a finite set of possible
actions A.

7



Chapter 2 Concepts and Related Literature

• A function prec(·): Y → {Y ∪ ∅} that assigns a unique precedent node to
every node of the game. The first node in the game tree is denoted by y0, i.e.,
prec(y0) = ∅. The assignment of nodes to predecessors is such that the resulting
structure is a tree.1

• A function a(·): Y\{y0} → A that assigns every node of the game to the action
that leads to this node from its predecessor.2

• A collection of information sets H and the function H(·): Y → H that assigns
every node y ∈ Y to an information set H(y) ∈ H.

• A function s: H → I ∪ {0} that assigns every information set to a player who
moves at all decision nodes in the information set. 0 denotes the nature player.
The collection of player i’s information sets is denoted by Hi = {H ∈ H :

s(H) = i} for i ∈ I ∪ {0}.

• A function ρ: H0 × A → [0, 1] that assigns probabilities to actions at every
information set of nature. Actions not available at an information set have
probability zero; probabilities for available actions add up to one.

• A collection of utility functions u = (ui)i∈I with individual utility functions
ui(·): Z → R, where Z denotes the set of terminal nodes in the game tree.

We will, in a slight abuse of notation, denote player i’s information sets H(y) ∈ Hi

by Hi, and refer to information sets by H(y), H, or Hi, depending on what is more
suitable. When using the notation Hi, we will also write y ∈ Hi if Hi = H(y). The
information sets H(y) ∈ H partition Y . It is required that the same set of action
choices be available at all nodes in the same information set (i.e., if H(y) = H(y′)

then a(y) = a(y′)). The set of available actions at an information set H is A(H) :=

{c ∈ A : c ∈ a(y) for y ∈ H}. Information sets represent knowledge of other players’
past actions and of one’s own type.

In the following, we describe important concepts in the context of the model that
we are going to analyze. First, a common approach is to assume common knowledge
in a game.

1A tree is a connected graph without cycles.
2The initial node does not have a predecessor and therefore the function a is not defined for node
y0.
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Definition 2.2 (Common knowledge) Some aspect of the game is common knowl-
edge among players, if all players know it3 and know that all other players know it,
and know that all other players know that they know it, and so on.

This intuitive definition of common knowledge is due to Lewis (2002, p. 52ff.). For
early formal definitions of common knowledge see, for example, Schiffer (1972) and
Aumann (1976). We assume common knowledge of the structure of the game and of
rationality.
Besides the knowledge structure of a game, another related, important aspect is the

information structure. It is common to distinguish between imperfect and incomplete
information.

Definition 2.3 (Imperfect information) A sequential game is a game of imper-
fect information if some player does not know all actions the players before him have
chosen, when it is his turn. Considering information sets this is equivalent to at least
one non-singleton information set existing.

Definition 2.4 (Incomplete information) A game is a game of incomplete in-
formation if at least some factor of the game, such as the set of players, the set of
strategies of all players, the utility functions, or the structure of the game, is not
common knowledge.

If the full description of the game is common knowledge, the game is a game of
complete information.4

If players do not have complete information in a game, further concepts are required
to model the incomplete information. The most popular concept is that of a common
prior. This assumption goes back to Harsanyi (1967, 1968a, 1968b).

Definition 2.5 (Common prior) The assumption of a common prior indicates that
the “state of the world” – an |I|-tuple of types of the players – is drawn out of a com-
mon basic probability distribution.

3That is, it is mutual knowledge (see, e.g., Aumann and Brandenburger, 1995).
4Harsanyi (1967) states that the basic ways in which incomplete information in a normal form
game can occur are as incomplete information over the outcome function that assigns outcomes
to strategy combinations, over utility functions (i.e., the evaluation of the outcomes by the
players), or over strategy spaces. He argues that all these kinds of incomplete information can
be expressed as incomplete information over utility functions.

9
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In other words, the players’ subjective probability distributions over states of the
world can be derived as conditional probability distributions from some basic proba-
bility distribution – the common prior distribution. This assumption is often justified
by the statement that all differences in information between players are included in
their type, i.e., in their private information or attribute vector. Thus, the assumption
asserts that a player’s beliefs in different states of the world are posterior probabilities
formed from a common prior probability distribution of all players, given his private
information.5

Harsanyi (1967, 1968a, 1968b) shows that under the assumption of a common prior,
a game with incomplete information can be transformed into a game with complete,
but imperfect information with an initial move by nature. For the formulation of the
model this means that we introduce a nature player that draws an |I|-tuple of types
or the attribute vectors of players (more generally, a “state of the world”) using the
common prior as probability distribution. After that, every player learns only his
own type, but not those of the other players. Thus, every player uses a subjective
posterior probability distribution that is derived from a common prior distribution
over the unknown parameters, to analyze the game. Such a game can be analyzed with
the usual equilibrium concepts for games with complete but imperfect information.
Thus, the so-called Harsanyi transformation (Harsanyi, 1968b) provides a basis for
the analysis of games with incomplete information.6

Another important concept for the analysis of extensive form games is that of
perfect recall:

Definition 2.6 (Perfect recall) A game Γ is a game with perfect recall if

(1) H(y) = H(ŷ) implies that y is not a (direct or indirect) predecessor of ŷ, and ŷ
is not a predecessor of y, and

(2) if y, ŷ, and y′ are decision nodes of i with H(y) = H(ŷ) 6= H(y′) and y′ precedes
y (directly or indirectly) and action c ∈ a(y′) is the action at y′ on the path to
y, then a predecessor ŷ′of ŷ must exist that is also element of H(y′) and the
action that leads from ŷ′ to ŷ must also be c.

5This assumption is not without controversy. For a discussion of the common prior assumption,
see, for example, Morris (1995). For a recent, positive approach, see Heifetz (2006).

6See also Aumann and Heifetz (2002). Harsanyi (1968b) also shows how his theory can be extended
to the “inconsistent case,” the case without common prior.
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The introduction of perfect recall as a restriction on the information partition goes
back to Kuhn (1950, 1953).7 Perfect recall is the assumption that a player remembers
everything he knew at his earlier information sets of the game and he remembers all his
previous action choices. As a consequence, all nodes that belong to some information
set of player i are reached by the same sequence of choices made by player i, and i’s
information sets can be ordered by precedence. Perfect recall is a common assumption
imposed on extensive-form games. In the following, when we talk about a game in
extensive form, we always assume perfect recall.

So far, we considered concepts related to the extensive-form structure of a game.
Now we consider concepts to describe the players’ behavior in the game and their
conjectures about other players’ behavior. The first aspect is covered by the notion
of a behavior strategy profile; the second aspect by the notion of a system of beliefs.

In the analysis of the model, we restrict ourselves to pure strategies. Therefore, we
define a behavior strategy profile in pure strategies as follows.

Definition 2.7 (Behavior strategy profile σ = (σi)i∈I in pure strategies) A be-
havior strategy profile σ in pure strategies is a collection of behavior strategies σi(·):
Hi → A(H)H∈Hi

that assign an available action a ∈ A(H) to every information set
H ∈ Hi of player i.

A pure strategy of player i consists of action choices for all his information sets. For
pure strategies, this coincides with the concept of behavior strategies. Σi denotes the
set of pure strategies of player i and σ ∈ Σ := Σ1 × . . .× Σn.

Allowing a player to choose a probability distribution over pure strategies results in
a mixed strategy. Mixed strategies differ from mixed behavior strategies in that they
are probability distributions over strategies and mixed behavior strategies contain
probability distributions over available actions at each information set of a player,
i.e., they are locally randomized strategies. Kuhn’s theorem (Kuhn, 1950, 1953) states
that under the condition of perfect recall, each mixed behavior strategy can also be
expressed as a mixture over pure strategies if strategies are uncorrelated between
players.

To formalize the players’ conjectures at non-singleton information sets caused by
their lack of information, the concept of a system of beliefs is introduced.

7The definition given here follows Mas-Colell et al. (1995).
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Definition 2.8 (System of beliefs) A system of beliefs is a vector µ = (µH)H∈H,
where µH for each H ∈ H is a function µH : H → [0, 1] such that

∑
y∈H µH(y) = 1.

The beliefs of a player at one of his information sets reflects his conjectures about the
past play.

For the description of an equilibrium, the notion of an assessment, which goes
back to Kreps and Wilson (1982), is necessary. It combines a strategy profile with a
system of beliefs. A perfect Bayesian equilibrium is an assessment that fulfills certain
conditions.

Definition 2.9 (Assessment) An assessment is a pair (σ, µ) that consists of a be-
havior strategy profile σ and a system of beliefs µ at the information sets.

Note that the set of assessments of a game in extensive form can be derived from the
structure of the game S, but does not depend on the utility function.

Consistency concepts define restrictions on beliefs, or the way beliefs are derived
from previous play and beliefs in the game tree. We define the concept of Bayesian
consistency that can be applied along the path induced by the strategy profile σ, as
follows.

Definition 2.10 (Bayesian consistency) An assessment (σ, µ) is Bayesian con-
sistent if beliefs are derived from the strategies of other players by Bayes’ rule wher-
ever possible:
At each information set H(y) the beliefs µH(y) for all y ∈ H(y) are given by

µH(y) =
Probσ(y)

Probσ(H(y))

whenever Probσ(H(y)) > 0, i.e., along the path induced by σ. Probσ denotes the
prior probabilities induced by σ.

Bayesian consistency is also referred to as weak consistency (e.g., Hendon, Jacobsen,
and Sloth, 1996). An alternative consistency concept that eliminates contradictions
between players’ behavioral conjectures and beliefs is updating consistency.

Definition 2.11 (Updating consistency (Perea, 2002)) An assessment (σ, µ) is
updating consistent if for every player i, every two information sets Hi and H ′i of i
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with H ′i succeeding Hi, and every behavior strategy σ̂i of i, beliefs fulfill the following
condition for all y ∈ H ′i whenever Prob(σ̂i,σ−i)(H ′i|Hi, µHi

) > 0:

µH′i(y) =
Prob(σ̂i,σ−i)(y|Hi, µHi

)

Prob(σ̂i,σ−i)(H ′i|Hi, µHi
)
.

In this definition and in the following, σ−i denotes the behavior strategies of all
players except for i. In contrast to Bayesian consistency, updating consistency defines
requirements on (σ, µ) at information sets Hi off the equilibrium path. It takes into
account that from player i’s point of view, the past behavior of the other players,
given that Hi is reached, is described by his belief µHi

. His conjecture about their
behavior on paths starting in Hi is given by σ−i. Whenever reaching H ′i is compatible
with these beliefs about the past and conjectures about future behavior of the other
players evaluated at Hi and i’s own strategy σ̂i, the beliefs of i at H ′i are required to
be induced by Bayes’ law (see Perea, 2001, p. 70 ff.).
The previous definitions of information and related properties of the extensive-form

structure have been independent of the payoffs at the terminal nodes. We now come
to the first concept that restricts the set of strategies by assuming some kind of ratio-
nality and, therefore, needs to take payoffs into account. In particular, we consider
the concept of sequential rationality. In the following definition, E[ui(σ|H,µH)] de-
notes the expected payoff of i if σ is played, given that H has been reached and beliefs
at H are µH .

Definition 2.12 (Sequential rationality) A strategy σi of player i is sequentially
rational for beliefs µ if for all H ∈ Hi

σi ∈ arg max
σ̃i∈Σi

E[ui(σ̃i, σ−i)|H,µH ].

A strategy profile σ = (σi)i∈I is sequentially rational if it consists of sequentially
rational strategies σi for all i ∈ I.

A property that helps to determine sequentially-rational strategies is the one-shot-
deviation principle. The one-shot-deviation principle, a generalization of the one-
stage-deviation principle, is due to Hendon et al. (1996). The validity of the one-
stage-deviation principle for extensive-form games with observable actions goes back
to Blackwell (1965). We define the one-shot-deviation principle and cite a proposition
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that reveals when the principle applies.

Definition 2.13 (One-shot-deviation principle) In a finite extensive-form game
Γ = (S, u) for a given σ−i and µ, a strategy σi = (σiH)H∈Hi

of player i is optimal if
and only if player i cannot improve by choosing a strategy σ̂i that differs from σi at
one of i’s information sets.

In the words of Perea (2002), (σ, µ) fulfills the one-shot-deviation principle if σi is
globally optimal if and only if it is locally optimal. The following proposition gives a
necessary and sufficient condition such that an assessment (σ, µ) in an extensive-form
structure S satisfies the one-shot-deviation principle for every utility function u.

Proposition 2.1 (Perea (2002)) An assessment (σ, µ) satisfies the one-shot-de-
viation principle if and only if µ is updating consistent.

The next step is to define a suitable solution concept. The first proposed equilibrium
concept that extends the idea of subgame perfect equilibrium to improper subgames
(that start at non-singleton information sets), i.e., to games with imperfect informa-
tion, is the sequential equilibrium of Kreps and Wilson (1982). Since this concept
is hard to apply formally to our game, we solve for a perfect Bayesian equilibrium
(PBE). The article of Fudenberg and Tirole (1991b) contains an early discussion of
this concept (see also Fudenberg and Tirole, 1991a). The following definition of a
PBE restricts beliefs off the equilibrium path by updating consistency. In the liter-
ature, several versions of PBE exist, which differ with respect to the restrictions on
beliefs off the equilibrium path.8

Definition 2.14 (Perfect Bayesian equilibrium (PBE)) An assessment (σ∗, µ)

constitutes a perfect Bayesian equilibrium (PBE), if

• σ∗ is sequentially rational for the given system of beliefs µ,

• beliefs µ are determined by Bayesian updating wherever possible, and

• off the equilibrium path σ∗ is sequentially rational relative to some updating
consistent beliefs.

8The PBE without initial restrictions on beliefs off the equilibrium path is introduced in Mas-Colell
et al. (1995) as weak PBE and is equivalent to the weak sequential equilibrium of Myerson (1991)
(compare Mas-Colell et al., 1995, p. 283). Weak PBEs sometimes have undesirable properties,
for example, the concept does not assure subgame perfection.
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We also use the notion of an epsilon-equilibrium that goes back to Radner (1980).

Definition 2.15 (Epsilon-equilibrium (Radner, 1980)) An epsilon-equilibrium
is a combination of strategies such that the resulting payoffs of the players are within
ε of the maximum possible expected payoff against the other players’ strategies.

Several approaches to judge the efficiency of the outcome of a game exist. When
we talk about efficiency, we mean the simplest approach as defined below. Since in
our model all players’ payoffs are measured in monetary units (they are linear in
money) and money is the means of exchange, the rather strong assumptions for such
an efficiency measure are fulfilled.9

Definition 2.16 (Efficient outcome) An outcome is efficient if it maximizes the
sum of payoffs of all players.

Cooperative Games The central assumption in models of cooperative game the-
ory is that players can commit to binding agreements. A game in characteristic
function form Γc = (I, c) is described by the set of players I and the characteris-
tic function c : P(I) → R with c(S) = 0 if S = ∅. The game Γc is also called a
game in coalitional function form and c its coalitional function. The sets S ⊆ I are
called coalitions if nonempty and I is called the grand coalition. We only consider
coalitional games with transferable utility (so-called TU games). A coalition S can
then divide its coalitional value c(S) in any way among the players i ∈ S. A solution
concept for cooperative games is a rule that assigns one or several feasible payoff
vectors u, payoff vectors with the property

∑
i∈I ui ≤ c(I), to games (I, c).10 One of

the main solution concepts is the core, which was defined for the first time in Gillies
(1959). Other popular solution concepts are the von Neumann/Morgenstern stable
set, the Shapley value solution, and the nucleolus.11

In the following, we assume super-additivity12 of c and thus we only consider so-
called proper games (Holler and Illing, 2000; Owen, 1968).

9However, we show below that our efficient outcomes are also Pareto-optimal.
10For some solution concepts, the rule may also assign the empty set as the solution to some games.

For example, the core or the von Neumann/Morgenstern stable set may be empty (Owen, 1968).
11For an introduction to the theory of cooperative games see for example Moulin (1991) and Peleg

and Sudhölter (2007).
12Formally: for all S, T ⊂ I such that S ∩ T = ∅, c(S) + c(T ) ≤ c(S ∪ T ).
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An imputation is an efficient and individually rational payoff vector. Hence, the
imputation set is{

u ∈ RI :
∑
i∈I

ui = c(I) and ui ≥ c({i}) for each i ∈ I

}
.

If a payoff vector is an imputation, coalitions consisting of single players have no in-
centive to leave the grand coalition (non-improvability by individuals). Most solution
concepts consider only imputations. The solution concept we use is the core.13

Definition 2.17 (Core) The core C(Γc) of a game in characteristic function form
Γc = (I, c) is a set of payoff vectors u:

C(Γc) =

{
u ∈ RI :

∑
i∈I

ui = c(I) and
∑
i∈S

ui ≥ c(S) for all S ⊂ I

}
.

Payoff vectors in the core have the property that the value of the grand coalition is
shared or goes to one player and no blocking sub-coalition S, i.e., no coalition S that
may improve upon these payoffs, exists (non-improvability by coalitions). The core
characterizes payoff combinations that are stable with respect to coalition formation.
The core of a game may consist of a continuum of payoff vectors, a single payoff
vector, or it may be empty.
In the characteristic function form associated with a non-cooperative game, the

value of a coalition equals the maximum that the coalition can assure itself in the
worst case, i.e., whatever players outside the coalition do (the maximin value) (see,
e.g., Holler and Illing, 2000; Owen, 1968).
With respect to auctions, the core is considered an important concept (see Milgrom,

2004). If equilibrium payoffs of bidders and sellers in a non-cooperative auction game
are in the core of a suitably defined cooperative game, the outcome is stable against
renegotiation. Efficiency and stability against renegotiation are often aims of auction
design.

Vickrey Auction Vickrey auctions are a subset of the non-cooperative games that
are related to the famous Vickrey-Clarke-Groves (VCG) mechanisms (Vickrey, 1961;
13See, e.g., Slikker and van den Nouweland (2001); Milgrom (2004). The empty sum is assumed to

equal zero.
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Clarke, 1971; Groves, 1973). Other games where these mechanisms are applied are, for
instance, models of public goods. A mechanism consists of a set of players, a message
space for each player, and an outcome function that assigns a decision and transfers
for each player to each message profile (Jackson, 2003). Combining a mechanism
with utility functions we get a game. For an overview of VCG mechanisms and their
specification as auction mechanisms see Milgrom (2004) or Krishna (2002).

The single-unit Vickrey auction, the multi-unit Vickrey auction, and the Vickrey
package auction are all based on the VCG mechanism. The three specifications men-
tioned refer to auctions of single items, multi-unit auctions with bids for packages of
items only related to the size of the package, and package auctions, where bidders’
may bid for every package of items separately, depending on the items in the pack-
age. Vickrey auctions are one-shot, sealed-bid auctions that assign the items for sale
efficiently with respect to the submitted bids. Bidders who do not win an item pay
nothing and winning bidders’ payoffs equal their respective marginal values to the
grand coalition.

In the following definition, we assume that the seller does not have the option to
act in the auction game. He accepts the payments and does not set limit prices
strategically.

Definition 2.18 (Vickrey auction) A Vickrey auction is a normal form game with
incomplete information G = (N ∪ {s},Θ1 × . . . × Θn,A1 × . . . × An, u), where the
players are the seller s and the bidders i ∈ N with |N | = n, each bidder i’s action
space Ai equals his type/valuation space Θi, and his utility function ui is quasi-linear.
On the basis of the bidders’ actions (bids),

• items are assigned efficiently,

• Vickrey payments of bidders i are pVi = c(N\{i} ∪ {s})− c−i(N ∪ {s}), and

• the seller receives all payments.

The expression c−i(N ∪ {s}) denotes the value of coalition (N ∪ {s}) without i’s
contribution to that coalition. Vickrey auctions are important because they are the
only one-shot sealed-bid auctions that yield an efficient allocation of goods, where
bidding truthfully is a dominant strategy, and losing bidders pay nothing.14 Bidding
14This is because Vickrey-Clarke-Groves mechanisms are the only efficient and incentive compatible

17



Chapter 2 Concepts and Related Literature

truthfully means that each bidder i with type θi ∈ Θi submits a bid bi ∈ Ai with
bi = θi.

We will refer to a variant of the Vickrey auction, where each bidder’s bids (val-
uations) are such that he buys at most one item. Thus, bidders’ payments may be
related to individual items. We have multiple sellers, each offering one item. Then, it
is possible to assign the payments to individual sellers and we use the appropriately
extended definition, that each seller receives the payment of the bidder who buys his
item.

Assignment Game Details on the historical background of the game are given in
Section 2.2.1. For the assignment game, a characteristic function form and a more
explicit market game interpretation are usually given.
The assignment game in characteristic function form Γcag = (N ∪M, c) contains

disjoint sets, N and M , of players (e.g., buyers and sellers) with |N | = n and |M | =
m. Each pair of players (i, j) with i ∈ N and j ∈ M can generate a value dij.
The characteristic function c assigns the value dij to such pairs (i, j). Every other
coalition’s characteristic function value is either the maximum sum of pairs’ values
in the coalition, or zero if no pair (i, j) is part of the coalition. This characteristic
function is super-additive.
We can interpret the assignment game as a market game by defining dij := max{0, vij−

vSj } the gains from trade that the buyer-seller pair (i, j) may achieve in a market
(N ,M ,V ,vS) with buyers’ valuations for each item V := (vij)i∈N,j∈M and sellers val-
uations for their item vS := (vSj )j∈M .15 Utility functions ui of bidder i and uSj of
seller j are assumed to be quasi-linear. A price vector is denoted by p = (p1, . . . , pm).
Thus, dij = (vij − pj) + (pj − vSj ) is the sum of payoffs ui := vij − pj of the potential
buyer i and uSj := pj − vSj of the potential seller j, if this sum is non-negative. The
price is paid by the buyer and received by the seller and, therefore, has no influence
on the conjoint value of a trading pair. If we assume that prices and values of players
are continuous, there are always item prices such that a buyer is indifferent between

direct mechanisms (see, e.g., Milgrom (2004) and Jackson (2003); the result goes back to Groves
(1973) and Green and Laffont (1977)).

15Our main focus is on the buyers or bidders. To distinguish them from the sellers, sellers’ valuations
and payoffs are denoted with a superscript S, whereas bidders’ valuations vij and payoffs ui have
no superscript. The index i refers to buyers and j to sellers.
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the items. This is an important property of this model.16

An assignment matches buyers and sellers. If a buyer i is assigned to a seller j, the
seller j is also assigned to buyer i. An assignment is defined as a matrix of zeros and
ones as follows.

Definition 2.19 (Assignment) An assignment is a n×m matrix x with xij ∈ {0, 1}
for 1 ≤ i ≤ n and 1 ≤ j ≤ m. If xij = 1, buyer i is assigned to seller j and vice
versa; xij = 0 indicates that i and j are not matched.

Not every assignment matrix represents a feasible assignment.

Definition 2.20 (Feasible assignment) An assignment x is feasible if∑
j∈M

xij ≤ 1 for all i,∑
i∈N

xij ≤ 1 for all j.

The set of all feasible assignments is denoted by X.

A feasible payoff-assignment combination is such that the sum of payoffs may be
reached in the given assignment where side-payments between players are allowed.

The next definition considers optimal assignments.

Definition 2.21 (Optimal assignment) A feasible assignment x ∈ X is optimal
if ∑

i∈N

∑
j∈M

(vij − vSj ) · xij ≥
∑
i∈N

∑
j∈M

(vij − vSj ) · x′ij for all x′ ∈ X .17 (2.1)

When we compare the set of efficient outcomes and the set of optimal assignments,
we can conclude from

16This property transfers to our multiple-auctions game with discrete valuations and prices as defined
in Section 3.1. In our formulation, with the restrictions on discrete valuations and prices given
there, the following results for continuous valuations and prices are also valid.

17Alternatively,
∑

i∈N

∑
j∈M dij · xij ≥

∑
i∈N

∑
j∈M dij · x′ij for all x′ ∈ X. Thus, optimal assign-

ments maximize the sum of gains from trade achieved by bidder-seller pairs.
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max
x∈X

(∑
i

ui +
∑
j

uSj

)
= max

x∈X

(∑
i

∑
j

(vij − pj)xij −
∑
i

∑
j

(pj − vSj )xij

)

= max
x∈X

(∑
i

∑
j

(vij − vSj )xij

)

that the assignments in these sets are identical.18 Optimal assignments combined
with a price vector give an efficient outcome, and each efficient outcome consists of
an optimal assignment (Shapley and Shubik, 1971).
An alternative approach to assess efficiency of outcomes is Pareto-efficiency or

Pareto-optimality. In contrast to our efficiency measure, Pareto-efficiency does not
require interpersonal comparability of utility.

Definition 2.22 (Pareto-optimal outcome) An outcome (x, p) is Pareto-optimal
if no other outcome (x̃, p̃) exists such that

• ui(x̃, p̃) ≥ ui(x, p) and uSj (x̃, p̃) ≥ uSj (x, p) for all i ∈ N , j ∈M and

• uh(x̃, p̃) > uh(x, p) for at least one buyer h ∈ N or uSk (x̃, p̃) > uSk (x, p) for at
least one seller k ∈M .

Allowing for side-payments, the set of efficient outcomes and the set of Pareto-optimal
outcomes coincide. An outcome that is not efficient cannot be Pareto-optimal: oth-
erwise, we may increase the sum of bidders’ valuations minus sellers’ valuations (the
gains from trade) and rearrange payments such that every player gets the same or
more than before.19 Thus, any Pareto-optimal outcome is efficient. If an outcome is
not Pareto-optimal, then there exists another outcome where every player has at least
the same payoff and at least one player is better off. This is not possible by rearrang-
ing prices beacause a higher price makes a buyer worse off and a lower price makes a
seller worse off. Thus, the gains from trade must be larger in a Pareto-improving out-
come and this implies that the former outcome was not efficient. Hence, any efficient
outcome is Pareto-optimal (in the current environment with transferable utility).
18The sets of efficient outcomes and optimal assignments also correspond to each other if the set of

feasible assignments allows a bidder to buy more than one item even as he evaluates only one,
that is, if

∑
j xij ≤ m for all i is feasible and ui = maxj{vijxij}.

19Under our later restrictions on the grid of valuations and the grid of bids (which consequently
equals the grid of prices) such a rearrangement is possible even with discrete prices.
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That is, with quasi-linear utility functions, efficient or Pareto-optimal outcomes
are associated with optimal assignments and vice versa. It can be shown that side-
payments are not necessary for this to hold (Roth and Sotomayor, 1990). In the
following, we denote an optimal assignment by xeff .

The assignment game is related to the theory of one-to-one matching,20 where the
main issue is stability of matchings (Roth and Sotomayor, 1990). A payoff-assignment
combination is stable if it is individually rational and no blocking buyer-seller pair
exists.21

Definition 2.23 (Stable payoff-assignment combination) A feasible payoff-
assignment combination (u, x) is stable if

(1) ui ≥ 0 and uSj ≥ 0 for all i ∈ N , j ∈M , and

(2) ui + uSj ≥ dij for all (i, j) ∈ N ×M .

The first part is the individual rationality condition. The second part of the definition
states that no coalition of one buyer and one seller can improve upon the stable
payoffs.
The characteristic function c(·) of the assignment game Γcag gives the value of an

optimal assignment. It is defined as

c(S) = max
x∈X

∑
i∈S∩N

∑
j∈S∩M

dij · xij for all S ⊆ (N ∪M).

The empty sum is assumed to equal zero. Thus, the characteristic function assigns
the maximum value of possible trades between its members to a coalition. It follows
that simple coalitions of only one player have a characteristic value of zero as no trade
can be realized (c({i}) = 0 for all i ∈ N ∪M). Note that coalitions consisting only of
players from one side of the market also have a characteristic function value of zero,
i.e., c(S) = 0 for all coalitions S ⊆ N or S ⊆M .

20Also called the marriage model. There, no payments between agents are possible.
21Roth and Sotomayor (1990, Definition 8.4, p. 205).
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Therefore, the core of the assignment game Γcag can be described as

C(Γcag) =

{
(u, uS) ∈ R|N∪M | :

∑
i∈N

ui +
∑
j∈M

uSj = max
x∈X

∑
i∈N

∑
j∈M

dijxij ,∑
i∈S

ui +
∑
j∈T

uSj ≥ max
x∈X

∑
i∈S

∑
j∈T

dij xij for all S, T 6= ∅, S ⊆ N, T ⊆M ,

∑
i∈S

ui ≥ 0 for S ⊆ N , and
∑
j∈T

uSj ≥ 0 for T ⊆M

}
.

From this explicit description of the value of a coalition it becomes obvious that stable
assignment-payoff combinations are those that fulfill the core conditions for coalitions
consisting of a single buyer and a single seller or of a single buyer-seller pair.

2.2 Literature Review

In this section, we discuss models and results from different strands of literature that
are related to our multiple-auctions game in Chapter 3.

As discussed in Milgrom (2004), the core of an auction game is useful because it
contains all outcomes where no coalition of players has an incentive to renegotiate
with the seller. The relevant associated game in coalitional form to our multiple-
auctions game is the cooperative version of the assignment game, which is extensively
analyzed in the literature. Considering auction theory, we distinguish between models
that consider the case of multiple sellers and those where a single seller offers multiple
items. A third category includes models that explicitly relate to Internet auctions.
Furthermore, we describe experimental and empirical studies on auctions. Since eBay
is by far the largest consumer-to-consumer auction platform in the US, most studies
use eBay data and consider features of eBay auctions, like the fixed ending time. Our
model, however, uses a soft close rule.

2.2.1 Assignment Game

Shapley and Shubik (1971) describe the assignment game as “a model for a two-sided
market in which a product that comes in large, indivisible units (houses, cars, etc.)
is exchanged for money, and in which each participant either supplies or demands
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exactly one unit. The units need not be alike, and the same unit may have different
values to different participants.” The definition of the assignment game as a cooper-
ative market game goes back to Shapley (1955). Assignment problems had already
occurred earlier in the literature. For example, Thorndike (1950) asks for a method
for optimally assigning candidates to jobs. The underlying question of the optimal as-
signment problem is (in the current context) to determine which disjoint buyer-seller
pairs generate the maximum overall gains from trade in the market. Disjoint pairs
and unmatched potential buyers and sellers build a feasible assignment. Koopmans
and Beckmann (1957) describe the mathematical background of the linear assignment
problem and its solution, provide an early analysis as a market game, and present the
relation to the zero-sum game of John von Neumann.22 Roth and Sotomayor (1990)
give an extensive and excellent overview of results concerning the assignment game.
A formal description of the assignment game and the usual solution concepts applied
to it is given in Section 2.1.

We begin our overview by considering the stability of assignment-payoff combi-
nations. It turns out that in every stable payoff-assignment combination, a matched
pair receives its coalitional value and every unmatched player receives a payoff of zero.
Moreover, in the assignment game with continuous payoffs (and values of pairs), an
optimal assignment is compatible with any stable payoff, and any stable outcome may
only be associated with an assignment that is optimal (see, e.g., Roth and Sotomayor,
1990). Therefore, we also refer to stable payoffs instead of stable payoff-assignment
combinations, keeping in mind that they are associated with the optimal assignment.

Shapley and Shubik (1971) show that the set of stable payoffs and the core of
the cooperative assignment game Γcag coincide. Both are associated with an optimal
assignment. As we already mentioned in the previous section, the stability conditions
are a subset of the core conditions. Thus, any core payoff is stable. If an outcome
is stable, then the payoffs are in the core: if the outcome is not in the core, then
there exists a blocking coalition T ⊆ N ∪M such that

∑
i∈T∩N ui +

∑
j∈T∩M uj <

c(T ). Since x determines buyer-seller pairs as essential coalitions, we have c(T ) =

maxx∈X
∑

i∈T∩N
∑

j∈T∩M c({i, j})xij. Hence, a blocking coalition has at least one
buyer-seller pair (i, j) with ui + uj < c({i, j}) = dij and the payoffs are not stable.23

22The Hungarian method of Kuhn (1955/2004) determines optimal assignments.
23For the proof of feasibility of the payoffs, see Shapley and Shubik (1971) or Roth and Sotomayor

(1990).
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Thus, the coincidence of core and stable payoffs is due to the bidder-seller pairs being
the essential coalitions in this game.24

The core of the assignment game is non-empty.25 Furthermore, the core with the
partial order %B, which orders outcomes according to buyers preferences, forms a
complete lattice (Shapley and Shubik, 1971). That is, if two payoff vectors u =

(uB, uS) and û = (ûB, ûS) are in the core, then the payoffs (uB,ûS) and (ûB,uS) are
also in the core. The existence of buyer-optimal and seller-optimal payoffs as extreme
points of the core is, thus, straightforward. We will mainly consider the buyer-optimal
payoff vector, the payoffs that each buyer weakly prefers to any other payoff vector
in the core.

Moreover, the core of the assignment game Γcag coincides with the set of payoffs in
(appropriately defined) competitive (Walrasian) equilibria of the associated market
game (Shapley and Shubik, 1971; Kaneko, 1982; Quinzii, 1984).26

Recent analyses of the assignment game consider the extreme points of its core
(Hamers, Klijn, Tijs, and Villar, 2002; Núñez and Rafels, 2003b), singleton cores
(Sotomayor, 2003; Wako, 2006), stable cores (Solymosi and Raghavan, 2001), buyer-
seller exactness (Núñez and Rafels, 2003a), and the Shapley value in buyer-seller
exact games (Hoffmann and Sudhölter, 2007).

2.2.2 Auctions

Our model is related to models of auctions with multiple independent sellers and to
multi-unit auctions with one seller. There are also models that explicitly relate to
Internet auctions. These auctions used to be analyzed as independent single-unit auc-
tions. More recently, the important aspect that a potential bidder can usually choose
between several auctions offered on an Internet auction platform (or even between
auctions offered at different auctions platforms) started to be taken into account. We

24Side-payments are allowed, but it is shown that all payoffs in the core may be reached without
side-payments between different buyer-seller pairs (i, j) and (h, k) in an optimal assignment (cp.
e.g., Roth and Sotomayor, 1990).

25That is, it is a so-called balanced game (see, e.g., Shapley, 1967; Slikker and van den Nouweland,
2001). For TU games, a game with a non-empty core is a balanced game and vice versa.

26A price vector is competitive if there is at least one buyer interested in each item that has
a price above the minimum price and if there is at most one buyer who strictly prefers it.
Therefore, the market clears and each buyer receives an item in his demand set. A competitive
price combined with a feasible assignment of items to buyers is a competitive equilibrium. In
competitive equilibria, assignments are efficient.
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review some of the results of these theoretical studies, starting with auctions offered
by multiple sellers and central coordination of bids. Then we present the case of a
single seller (but mostly, more general specifications of bidders’ valuations), where
coordination of bids is possible and is not a very critical assumption. Finally, we
report studies that explicitly relate to Internet auctions.27

Multiple Sellers All models in this section assume that sellers offer one item each
and that each bidder wants to buy at most one item. Demange (1982) and Leonard
(1983) consider the non-cooperative, one-shot auctions game related to the assignment
game that selects the bidder-optimal outcome. They were the first to investigate
incentive compatibility for bidders to reveal their true valuations. Bidders submit
one bid and an algorithm determines the outcome of the auction, depending on the
bids. Bidding truthfully is a dominant strategy, because bidders’ optimal payoffs in
the core equal their payoffs in the efficient assignment with Vickrey payments; i.e.,
the auction is in fact a Vickrey auction.

Demange, Gale, and Sotomayor (1986) explicitly relate the assignment game to
dynamic auction mechanisms.28 In their “exact auction algorithm,” bidders announce
their demand and the auctioneer calculates overdemanded sets, chooses a minimal
overdemanded set, and increases the prices in all auctions in this set by one price
unit.29 The bidders submit their demand again, and so on, until the auctioneer
finds a matching of bidders to auctions such that each bidder receives an auction
in his demand set. In their “approximate auction mechanism,” bidders increase the
standing bid by an increment in their preferred auction and the price equals the
submitted bid. That is, they consider multiple English auctions. However, they do
not consider the strategic behavior of bidders but the convergence of the described
bidding behavior. They show that their exact auction algorithm converges to the
competitive equilibrium with the minimum prices, which corresponds to the bidder-
optimal outcome in the core. For the approximate auction algorithm, they find an

27For an introduction to auction theory see, e.g., Berninghaus, Ehrhart, and Güth (2006); Krishna
(2002); Menezes and Monteiro (2005); Milgrom (2004).

28Auction algorithms similar to those used in these auctions to determine the outcomes are also
used in Operations Research for example to determine shortest paths or to solve related problems
(see, e.g., Bertsekas, 1991, 1992).

29An overdemanded set is a set of items (or auctions) such that the number of bidders who demand
only items in this set is higher than the number of items. A minimal overdemanded set is an
overdemanded set such that no subset of this set is also overdemanded.
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upper bound on deviations from minimum competitive prices.
Generalizations with respect to valuations are due to Crawford and Knoer (1981)

and Kelso and Crawford (1982). They do not consider incentives, but their adjust-
ment process may also be interpreted as an auction algorithm. Crawford and Knoer
(1981) analyze a model where the two sides of the market are represented by firms
and the workers for whom they compete. Workers have firm specific job satisfaction
and productivity, and the potential salaries are also specified for each firm-worker
pair. They present a salary-adjustment process that converges to a core allocation.
They generalize the assignment game by showing that the existence of the core and
the convergence to a core allocation do not depend on the assumption of transferable
utility. Furthermore, the process converges to the optimal outcome for the market
side that proposes the salaries. Kelso and Crawford (1982) show that this conver-
gence to the proposer-optimal strict core allocation of their adjustment process also
holds for more general valuations – in particular, whenever their “workers are gross
substitutes” condition (in the following, called gross substitutes) applies.30 These
models have in common that the adjustment processes are algorithms that determine
an outcome under a behavioral assumption on the participants. These multi-stage
processes consist at each stage of a certain proposal made by each seller to his most
preferred worker given the current salary and a preliminary acceptance or refusal by a
worker. The outcome of this algorithm is then analyzed with respect to its properties
(competitive equilibrium, core).

Single Seller The literature on multi-unit auctions with indivisible items may be
classified according to the following criteria: homogeneity and heterogeneity of items;
unit demand, decreasing marginal valuations, or additive valuations in the case of
homogeneous items; unit demand, gross substitutes or other substitutes conditions,
additive package valuations, and general package preferences for heterogeneous items.
Our model considers bidders with unit demand when items are heterogeneous. This
is an extreme case of substitutes preferences. Thus, we concentrate on models that

30The gross substitutes condition (on bidders’ valuations for packages) assures the existence of the
core for these two-sided markets with multiple players on both market sides. Milgrom (2004)
translates the definition of “bidder i’s valuations satisfy the gross substitutes condition” of Kelso
and Crawford (1982) to: (p′−j ≥ p−j and p′j = pj) → Dij(p′) ≥ Dij(p), where Dij(p) denotes i’s
demand for j at price vector p. See also Gul and Stacchetti (1999) for an alternative definition
when utility functions are quasi-linear.
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consider auctions for heterogeneous items and that allow for substitutes preferences.
In the multiple seller case with one item per seller, it is necessary that prices

are determined per item. The market-clearing prices and assignment have to be
found without central coordination. The single seller case gives rise to other kinds
of package pricing, such as non-anonymous or non-additive pricing. The single seller
or auctioneer can coordinate the bids. Thus, bidders’ actions may be to announce
demand sets and the auctioneer, as a central coordination device, clears the market
and determines prices. In some cases, a competitive equilibrium with additive (unit)
prices fails to exist. Bikhchandani and Ostroy (2002) show how to adjust pricing rules,
packages of items and the definition of competitive equilibrium such that existence is
restored. In the single seller case, the core is non-empty. At least the seller-optimal
outcome, where the assignment is efficient and the single seller receives all gains from
trade, is in the core.31 In our case with multiple sellers and unit-demand preferences,
the core differs from that when only one seller is present, but the Vickrey outcomes
are the same.

Milgrom (2000) describes the simultaneous ascending auction that was applied to
sell radio spectrum licenses in the USA in 1994. He shows that straightforward,
myopic bidding – bidding on an auction in the demand set – leads to an outcome
close to competitive equilibrium.

Gul and Stacchetti (2000) consider an ascending price auction with demand bids32

for monotone gross substitutes valuations (as defined in Gul and Stacchetti, 1999)
that generalizes the auction by Demange et al. (1986). Prices for all items in the
excess demand set are increased by one unit. They show that truthful submission of
demands at each stage is a PBE if the Vickrey outcome equals the efficient outcome at
minimum competitive prices. This is true in our unit-demand preferences case. The
existence of additive and anonymous prices33that correspond to a Vickrey outcome
cannot be assured for all gross substitutes valuations. Thus, they also find that no
incentive compatible, ascending auction exists that assigns such prices to items. A

31This is because all coalitions that do not contain the seller have a coalitional value of zero.
32With demand bids we refer to auctions where bidders submit their demand at given prices (like

in an English auction) and the auctioneer adjusts prices in contrast to price bids where bidders
submit a certain number for some or each package (like in a second-price auction or a first-price
auction).

33That is, prices p(X) =
∑

j∈X pj for packages of items X, where pj for all j are identical for all
bidders.
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preliminary assignment to a given auction, that exists in our multiple-auctions game,
occurs in their game indirectly, since a bidder has to accept the price of the previous
stage if the auction game ends.

The algorithmic primal-dual approach of de Vries, Schummer, and Vohra (2007)
generalizes the model of Demange et al. (1986) to general valuations by introducing
the concept of minimally undersupplied sets of bidders and by allowing for non-
anonymous and non-additive prices.34 They categorize auction algorithms as subgra-
dient algorithms and primal-dual algorithms. The former require each participant to
report one element of his demand correspondence at each iteration whereas the latter
require each participant to report complete demand sets at each iteration. Our model
indirectly implements a subgradient algorithm because we have price bids equivalent
to reporting one element of the demand set at each iteration. Demange et al. (1986),
Ausubel (2004), Gul and Stacchetti (2000), and de Vries et al. (2007) are related
to primal-dual algorithms while Crawford and Knoer (1981), Kelso and Crawford
(1982), Parkes (1999), Ausubel and Milgrom (2002) and the uniform-price auction
implement subgradient algorithms.

Subgradient algorithms are either not exact or do not converge in a finite number
of iterations (de Vries et al., 2007). Our model implements a subgradient algorithm
that does not converge to the exact solution. It differs from other models in the
asynchronous submission of bids and the random bidding order.

Ausubel and Milgrom (2002), Mishra and Parkes (2007), and de Vries et al. (2007)
investigate whether and under which conditions ascending price auctions with ap-
propriate adjustments of prices in each round lead to Vickrey outcomes35 and find a
“no gap” condition36 on the joint preferences of bidders, or bidder-submodularity.37

34Similarly, Ausubel (2006) allows for non-linear prices for the prices for different quantities of a
single type of commodity to restore incentive compatibility.

35Bikhchandani and Ostroy (2006) ask the same question for homogeneous, multi-unit demand with
decreasing marginal valuations.

36The condition demands that Vickrey payments of each bidder equal the sum of the minimum
competitive prices for all possible reports of valuations (where the set of possible reports is
restricted).

37The coalitional function c is bidder-submodular (defined on the lattice given by the partially
ordered set of coalitions, which are ordered by set inclusion), if c(S∪{i})−c(S) ≥ c(T∪{i})−c(T )
for each bidder i and for all coalitions S and T , with S ⊂ T , that contain the seller. If all items
are substitutes for all bidders, then c is bidder-submodular. These are exactly the valuations for
which the Vickrey outcome of every subset of the players that contains the seller is in the core
(Ausubel and Milgrom, 2002; Milgrom, 2004). Note that if bidder’s valuations satisfy the gross
substitutes condition, these valuations are also submodular, but (for more than two goods) the
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Bidder-submodularity of the coalitional function guarantees that the Vickrey payoffs
are in the core.38 The valuations structure that we consider in our model is a spe-
cial (and extreme) case of gross substitutes. With these valuations, the bidders are
substitutes and the coalitional function is bidder-submodular.

If the submitted demand bids can be explained by truthful bidding according to
some underlying valuations, then truthful bidding is an equilibrium for certain classes
of auctions (primal-dual auctions in de Vries et al. (2007), other specific auction algo-
rithms for more general valuations in Mishra and Parkes (2007)). Mishra and Parkes
(2007) find an ex-post Nash equilibrium but do not consider sequential rationality off
the equilibrium path. Ausubel and Milgrom (2002) characterize Nash equilibria of
the proxy package auction, where the participant instructs a single proxy bidder for
bidding in the whole game, if Vickrey payoffs are in the core. In our game, each new
bid is a new instruction for a proxy bidder and each auction uses a different proxy
bidder. Only Gul and Stacchetti (2000) explicitly solve for a PBE.

Internet Auctions Several models explicitly relate to Internet auctions. Theoret-
ical and empirical studies on Internet auctions used to treat auctions offered on a
platform as unrelated, single-unit auctions (e.g., Roth and Ockenfels, 2002; Ockenfels
and Roth, 2006). Only recently has the multiple-auctions aspect of Internet auctions
begun to be incorporated. Bajari and Hortaçsu (2004) and Ockenfels et al. (2006)
give overviews of the literature on Internet auctions.

Often, the phenomena of late and multiple bids are the focus of this research.
Sniping (last minute bidding) is an extreme version of late bidding which occurs in
auctions with hard close rules (i.e., with fixed ending times). Sniping is modeled as
a last round of bids submitted simultaneously, such that no bidder can react to the
bids.

opposite is not true (Milgrom, 2004).
38In general, bidders’ Vickrey payoffs determine an upper bound for every single bidder’s payoff

in the core. The cases where the Vickrey payoffs are in the core are exactly those, where a
single bidder-optimal point in the core exists. This Pareto-optimal point for bidders consists of
the Vickrey payoffs (Ausubel and Milgrom, 2002; Milgrom, 2004; Ausubel and Milgrom, 2006).
With gross substitutes preferences or if bidders are substitutes, competitive equilibrium prices
form a lattice and Vickrey prices are the lower bound on the sum of competitive prices a bidder
pays (Gul and Stacchetti, 1999; Bikhchandani and Ostroy, 2002). Bidders are substitutes if
c(I)− c(I\T ) ≥

∑
i∈T (c(I)− c(I\{i})) for all subsets of players T ⊂ I that do not contain the

seller (e.g., Bikhchandani and Ostroy, 2002). The bidders-are-substitutes condition is necessary
and sufficient for Vickrey payoffs to be in the core (de Vries et al., 2007).
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Ockenfels and Roth (2006) explain sniping in a private-values model where last
minute bids may get lost. Sniping avoids a bidding war with bidders who bid below
their valuation but submit new bids when they are outbid. Bajari and Hortaçsu (2003)
explain sniping in a common-values model with an attempt to withhold information
on the item. Sniping can also be explained in a sequential auctions model (Wang,
2006b, 2006a). Wang (2006b) explains sniping as equilibrium behavior in an affiliated-
private-values model with two sequential, second-price proxy (eBay) auctions39 of the
same kind of item. All symmetric equilibria in monotone and undominated strate-
gies contain sniping in all but the last auction. The outcome is efficient, but with
strict affiliation the expected prices increase, being lower than in a joint multi-unit
Vickrey auction (expected prices are constant and equal to the multi-unit auction for
independent values). With a soft close rule, sniping does not occur in equilibrium.
Stryszowska (2006) concentrates on the independent-private-values setting and gets
the same results. See Bajari and Hortaçsu (2004) for a discussion of the different
hypotheses.

Late bidding is not surprising when considering overlapping auctions with hard
close rules. This game has similarities to sequential auctions. The first auction ends
and then bidders consider the next auctions. Thus, the number of bids in one auction
increases when another auction has ended. This is an explanation for late bidding
but not necessarily for sniping.

The submission of multiple bids from one bidder in the same auction (multiple
bidding) is more interesting in the context of our model. Multiple bidding in single,
second-price proxy auctions is not predicted by the standard independent-private-
values approach. In a single auction model, multiple and late bidding can be explained
by outside search for alternative offers (outside prices) (Vadovic, 2008). Bidders with
low search costs bid late and search for outside prices whereas bidders with high
search costs do not search unless they are outbid and bid early or submit multiple
bids. Analyzing Internet auctions as multiple simultaneously offered auctions or as
overlapping auctions often results in multiple bidding in equilibrium (Peters and
Severinov, 2006; Stryszowska, 2006).

39Second-price proxy auctions are those where the bid is submitted to a proxy bidding agent that
determines the current standing bid as the second highest submitted bid (probably plus one
increment) and selects the bidder with the highest bid as the current high bidder. The submission
of several bids is allowed.
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Stryszowska (2006) considers several models of multiple auctions offering the same
item in an independent-private-values environment, mostly with the hard close rule.
Auctions progress in rounds in which bids are simultaneously submitted. She explains
sniping in equilibrium when several auctions are available at the same time. Another
approach compares simultaneous auctions with overlapping auctions under a hard
close rule and with uncertain bid transmission in the last bidding stage. In equi-
librium, both sniping and late bidding may occur in simultaneous auctions whereas
bidders use multiple early bidding to coordinate in overlapping auctions, avoiding
inefficiencies that occur under sniping.

Huang, Chen, Chen, and Chou (2007) propose a model of overlapping auctions.
Auctions’ time periods where bids are accepted overlap, but the auctions do not
have to start or end at the same time. A new bidder arrives after each period and
the winner leaves. In equilibrium, cross-bidding, switching between auctions that
are open for bids at the same time, never occurs. Bidders only switch to another
auction when the first auction closes, so in equilibrium auctions are effectively handled
like sequential auctions and, therefore, late bidding occurs. Last minute bidding in
the currently ending auctions occurs when new auctions arrive randomly, giving an
explanation other than preventing revelation of information or coordination. The
authors’ empirical study supports this hypothesis.

Juda and Parkes (2006, 2009) address the sequential auction problem in online
auctions that occurs due to the fixed ending time. Their empirical study suggests
that the problem exists. They propose a bidding agent for the auction platform
which uses an options system. Bidders submit valuations as well as starting and
ending times of their bidding activity. A bidder’s proxy agent wins options and
decides which options to exercise at the ending time. Thus, a seller has to wait for his
payment until a bidder exercises his option. The advantage of their proxy system is
that it makes truthful bidding a dominant strategy, it allows for entry and departure
of bidders in the market, and it simplifies bidding for bidders with certain demand
structures. A disadvantage is that sellers have to agree to its application and that
it may reduce the fascination of the auctions for bidders because they just tell the
proxy agent their preferences.

The model most closely related to ours is that of Peters and Severinov (2006).
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Our model is a generalization of theirs with respect to valuations.40 A homogeneous
good is offered in multiple, second-price proxy auctions and bidders, who have unit
demand, bid sequentially in a given order until no new bids are submitted. In the
perfect Bayesian equilibrium, the highest valuation of a losing bidder determines the
price, which is unique for the whole auctions market.

Another closely related model is that of Bansal and Garg (2005). Their auctions
are multiple English auctions with a fixed bid increment and arbitrary sequential
(asynchronous) bidding. A bidder i’s valuation for a single item j is given by vij.
Bidders’ valuations for packages of items P are the sum of the ki maximum valuations
for items in the package. The parameter ki ≤ |P | may differ for each bidder i. These
valuations are a special case of multi-unit substitutes preferences and a generalization
of the unit-demand preferences in our model. They introduce a Local Greedy Bidding
strategy (LGB) and give an upper bound for inefficiency of their LGB. Their concept
of a marginal loser is equivalent to our price determining bidder. For the case ki = 1,
which is our unit-demand case, they discuss incentives to deviate from submitting the
LGB to a proxy (in a one-shot auction), taking the increment into account. However,
they do not consider sequential rationality.

2.2.3 Experimental and Empirical Studies

Online auctions are the subject of many laboratory experiments but they are also
very suitable for field experiments where the experimenter acts as a seller and for
empirical studies. Bajari and Hortaçsu (2004) and Ockenfels et al. (2006) review the
experimental and empirical literature.

Many studies consider the timing of bids. Anwar, McMillan, and Zheng (2006)
observe 40% of bids in the final 10% of auction time on eBay. Bajari and Hortaçsu
(2003) observe late and very late bidding in an empirical study of common-value
auctions.41 32% of all bids are submitted in the last 3% of time, which is, for example,
in the last two hours of a three day auction and 25% of winning bids arrive within
the last 0.2% of time (the last 8 minutes in a three day auction). They also find that
auctions with low minimum bids attract more bidders. Roth and Ockenfels (2002)

40They also consider strategic choice of reserve prices by sellers and we do not.
41They empirically classify their eBay coin auctions as common-value auctions, as a negative corre-

lation between the number of bidders and the height of bids in an auction suggests.
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and Ockenfels and Roth (2006) report more late bidding in eBay (hard close) auctions
than in Amazon (soft close) auctions (e.g., 20% vs. 7 % of last bids are submitted in
the last hour). 8% of bids on eBay are last minute bids, often classified as sniping. 43%
of the auctions received last minute bids. Ariely, Ockenfels, and Roth (2005) confirm
with a laboratory experiment that the different ending rules cause such differences in
behavior in single auctions. The hard close rule was represented by 100% and 80%
probability of bid transmission in the second and last bidding stage, respectively.
Furthermore, the outcomes in their soft close auctions are more efficient and prices
are higher. Houser and Wooders (2005) conduct a field experiment with 15 pairs of
auctions with different closing rules. They also find that the soft close rule leads to
higher prices.

The impact of bidders’ experience on their behavior is also investigated. In the
study of Ockenfels and Roth (2006), experienced bidders bid later on eBay while on
Amazon they bid earlier.42 Borle, Boatwright, and Kandane (2006) allow for a non-
linear relation between bidders’ experience and bid submission time. They report
that the more experienced bidders bid more often at the beginning and also at the
end of the auction in an empirical study of eBay auctions.

Wang (2006a) compares sequential, one-shot, second-price, sealed-bid auctions and
second-price, proxy auctions in the laboratory, where the submission of bids is possible
whenever a bidder wants during a period of 60 seconds. He observes early and late
bidding with sequential eBay auctions and declining prices under both auction formats
(starting from prices above those predicted).

Hoppe (2008a) conducts an experiment related to the theory of Stryszowska (2006)
and does not observe the predicted efficiency of outcomes, which he attributes to co-
ordination failure by bidders. He conducts another experiment on overlapping, hard-
close auctions of homogeneous items where bidders have unit demand, comparing
high (five of six periods) and low (one of six periods) numbers of overlapping periods
(Hoppe, 2008b). Bids are submitted simultaneously in each period. He observes that
30% of bidders are cross-bidders in the simultaneous-auctions treatment while about
60% are cross-bidders in both overlapping-auctions treatments. Efficiency is higher in
both overlapping-auctions treatments compared to his simultaneous-auctions treat-
ment. Sellers’ revenues are higher than predicted by theory and also higher in the

42A bidder’s experience is measured by a “feedback number” that is calculated from information
gained from the reputation systems of the respective auction platforms.
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overlapping-auctions treatments.
Anwar et al. (2006) test the predictions of Peters and Severinov (2006) –in par-

ticular, the existence of cross-bidding and bidding in the auction with the lowest
standing bid when items are homogeneous.43 They find that almost 20% of bidders
are cross-bidders, excluding multi-unit bidders (who may have multi-unit demand).
About 70% of bids are submitted in the auction with the lowest standing bid.44 In
groups of auctions where winning bidders are cross-bidders and non-cross-bidders,
the winning cross-bidders paid on average 9% less.45

In the empirical study of Hayne, Smith, and Vijayasarathy (2003) covering more
than 11,000 eBay auctions, 20% of bids are incremental bids and 61% of bidders
submit multiple bids (in the same auction). In their field experiment, Haruvy and
Popkowski Leszczyc (2008) find that 15.5% of bidders are cross-bidders in pairs of
simultaneously offered auctions on eBay that end at the same time. About half of
the bidders bid only once.

All the experiments mentioned consider unit demand for homogeneous items. Other
experiments on single-seller, multi-unit auctions concentrate on demand reduction
(Engelmann and Grimm, 2009), multiple round auction mechanisms for selling pack-
ages (Kagel, Lien, and Milgrom, 2009), or the appropriateness of simultaneous or
sequential auctions or auctions that allow for package bids (Ledyard, Porter, and
Rangel, 1997).

2.2.4 Buyer-Seller Networks

The economic literature on social and economic networks has vastly grown in recent
years. Jackson (2007, 2008) gives an overview of theoretical results; Kosfeld (2004)
surveys experimental results.

We consider a market where trading opportunities between sellers and bidders are

43They select a subsample of their data and consider groups of data points where a Central Pro-
cessing Unit (CPU) is offered by the same seller, with the same description, the same starting
price and delivery conditions, and that ends within a certain time slot (one day, one hour, or one
minute).

44In particular, they find 20%, 20%, 14% cross-bidders and 76%, 72%, and 62% of submitted bids in
the auction with the lowest standing bid in their minute, daily, and hourly samples, respectively.
The percentage of bids is the average percentage of such bids over auctions.

45Tung, Gopal, and Whinston (2003) get contradicting results, but it is not clear on basis of which
data or under which auction format.
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restricted by an incomplete network of contacts between agents on the two sides
of the market. In this environment, Kranton and Minehart (2000, 2001) consider
market-wide, simultaneously ascending auctions of homogeneous items and buyers’
and sellers’ incentives to invest in connections. Corominas-Bosch (2004) investigates
a model of multilateral bargaining in buyer-seller networks. Trading pairs leave the
market and the remaining agents bargain for another round. She shows how the
market can be decomposed in small components for which the equilibrium solution can
be derived. The model predictions are experimentally tested by Charness, Corominas-
Bosch, and Fréchette (2007). Both the auctions and the bargaining model use a
prominent theorem called Hall’s theorem or the marriage theorem (Hall, 1935).46

46Frobenius (1917) proved a related result on matchings in bipartite graphs.
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Chapter 3

The Multiple-Auctions Game

The multiple-auctions game is a non-cooperative game in extensive form. Multiple,
indivisible, heterogeneous items are offered by independent sellers. Bidders have unit-
demand preferences, i.e., they may have positive valuations for many items, but want
to own only one of them. Valuations for items are independent and private. Sellers
set starting prices non-strategically and equal to their valuation. Total supply and
demand in the auctions market does not change, so the entry of bidders or sellers is
not considered.

This chapter starts with a description of the model (Section 3.1). In Section 3.2, a
symmetric strategy for bidders is proposed (Section 3.2.1), all outcomes resulting from
following this strategy are described, and one of them is chosen as a reference outcome
(Section 3.2.2). The remainder of the analysis refers to this reference outcome, keeping
the range of possible deviations from the reference outcome in mind. The solution
concept applied is the perfect Bayesian epsilon-equilibrium (Section 3.2.2.5). The
equilibrium strategy described is a best reply against many reasonable strategies,
but not against all strategies – it is not a dominant strategy. Section 3.3 provides a
discussion of the model’s assumptions and the results. Furthermore, in Chapter 6,
an experiment that tests the model and the analysis and, thus, gives a hint of the
descriptive power of the analysis, is presented.

Our model adds to the existing literature in that it considers a combination of the
following characteristics: independent auctions (no coordination of demand by the
seller), price bids (in contrast to demand bids to a given price), asynchronous bidding
with a random bidding order, second-price proxy auction format, unit-demand pref-
erences, heterogeneous items, and the analysis of the bidders’ incentives. All these
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single aspects have been addressed in the literature, however, not in this combination.
The difference from the model of Peters and Severinov (2006) is mainly that we take
heterogeneous items into account.

3.1 Introducing the Model

In this section, a formal description of the multiple-auctions game is given. Further-
more, an example of naive bidding is presented to illustrate some problems that a
bidder faces.

3.1.1 Model Description

The multiple-auctions game Γa is a game in extensive form with imperfect and in-
complete information. Applying the Harsanyi transformation results in a game with
complete but imperfect information that can be analyzed with the familiar equilib-
rium concepts. We describe the model after the transformation. In the following, the
model is explained in the context of ascending auctions.

Before describing the details formally, we give an overview of the course of the
game. Nature moves first and determines all non-public parameters (bidding order,
bidders’ valuations, and sellers’ valuations). Then, every seller non-strategically sets
a starting price in his auction. Every auction is conducted as a second-price proxy
auction. In each round, one bidder may act and can decide not to bid or to submit one
bid in an auction of his choice. All bidders are always informed about the so-called
current standing bid and the current high bidder in each auction. The current high
bid is not made public. The game ends if all bidders have quit or hold a high bidder
position, and no new bids are submitted. In each auction, the current high bidder
becomes the winner and the current standing bid is the price he has to pay.

In what follows, we describe the model in detail and comment on the assumptions.
First, the set of players and preferences (utility functions) are specified. Then, the
bidding process is introduced and bidders’ strategy sets are characterized. Finally,
the role of the nature player is explained and the information structure is described.

Set of Players The finite set of players I = 0∪N ∪M consists of “nature,” whom
we denote player 0, the set of n bidders N := {B1, . . . , Bn}, and the set of m sellers
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M := {A1, . . . , Am}. In what follows, we use the index i to refer to bidders and the
index j to refer to sellers. Every auction is associated with exactly one seller. Thus,
we will, in a slight abuse of notation, often refer to the auction of seller j ∈M simply
as auction j.1

Preferences Bidders’ and sellers’ valuations are private knowledge and assumed to
be independent. Every seller j offers one item for sale. His valuation for his item
is given by vSj . The vector of sellers’ valuations is vS ∈ {0, . . . , v̄S}m ⊂ Nm with
v̄S ∈ N <∞ denoting some sufficiently large number.

Every buyer wants to buy exactly one of the offered items. His marginal valuation
for a second item is always equal to zero. From his point of view, the items may
differ. A matrix of buyers’ valuations gives each buyer’s valuation for each item in
the case that he buys only this item. The matrix of buyers’ valuations is given by
V := (vij)n×m with vij ∈ {0, . . . , v̄} ⊂ N for all i ∈ N , j ∈ M , and v̄ ∈ N < ∞
denoting some sufficiently large number.

The assumption that the valuations of the bidders and sellers are integers may be
understood as a normalization of the more general formulation that valuations lie on
a grid with some fixed grid spacing (cp. Peters and Severinov, 2006). Thus, the grid
spacing acts as a numeraire. This assumption is tantamount to the idea that bidders
and sellers determine their valuations in a monetary unit, say in euros.2

An assignment matches bidders and sellers. The rules of the multiple-auctions
game allow bidders to win at most one of the m auctions and sellers to offer only one
item. Thus, we merely consider feasible assignments x ∈ X ⊂ {0, 1}n×m as defined
in Section 2.1, Definition 2.20. In analyzing the multiple-auctions game, we are not
only interested in the resulting assignment but also in the final prices. Therefore, we
define an outcome of the game as follows:

Definition 3.1 (Outcome) An outcome (x, p) of the multiple-auctions game Γa

consists of a feasible assignment x ∈ X and a vector of prices p = (p1, . . . , pm) ∈ Rm0,+.

The collection of utility functions u = {uS1 (·), . . . , uSm(·), u1(·), . . . , un(·)} consists of

1To simplify notation, we will often use the index i as i = 1, . . . , n instead of i = B1, . . . , Bn.
2The assumption that these valuations are integers is quite common in the literature. See, for
example, Shapley and Shubik (1971), Crawford and Knoer (1981), or Demange et al. (1986) for
a discussion.

38



Chapter 3 The Multiple-Auctions Game

utility functions uSj (·), ui(·): X × Rm0,+ → R for sellers j ∈ M and bidders i ∈ N .3

The functions are defined over outcomes (x, p). Sellers’ utility functions are specified
as

uSj (x, p) =

{
pj − vSj if xij = 1 for some i
0 otherwise.

Bidders’ utility functions are given by

ui(x, p) = max
j∈M
{vij · xij} −

m∑
j=1

pj · xij.4

Thus, we have an independent-private-values model with quasi-linear utility, no ex-
ternalities,5 unlimited bidder budgets, and free disposal.6,7 The preferences that are
reflected in our bidders’ utility functions of bidders are sometimes called unit-demand
preferences (see Gul and Stacchetti, 2000). Unit-demand preferences are an extreme
kind of substitutes valuation. They are assumed in the popular assignment game
and in auction models related to that game (e.g., Demange, 1982; Leonard, 1983;
Demange and Gale, 1985; Demange et al., 1986).8

Bidding Process Starting prices are denoted by b0 = {b0
1, . . . , b

0
m} with b0 ∈ Nm.

At the beginning, the current standing bids bsj are set equal to b0
j for all j ∈ M . As

long as no bid or only one bid is submitted in auction j, bsj = b0
j . If auction j has

received at least two bids, the standing bid in j equals the second highest of these
bids. The current standing bids are publicly announced. A new bid in an auction
j has to exceed the current standing bid bsj at least by the minimum bid increment

3Since we only consider bidders’ incentives and, thus, bidders’ payoffs occur very often in the
analysis, we indicate sellers’ payoffs with superscript S, but do not use an analog superscript for
bidders to simplify notation.

4With our restrictions on feasible assignments x ∈ X, ui(x, p) = maxj∈M{vij · xij} −
∑m

j=1 pj ·
xij =

∑m
j=1(vij − pj) · xij . We use the more general definition of unit-demand preferences

ui(x, p) = maxj∈M{vij ·xij}−
∑m

j=1 pj ·xij because we use this utility function in Appendix A.2
where we consider assignments with

∑
j xij ≤ m for all i feasible.

5A bidder’s utility payoff depends only on the price he pays and his valuation but not on the
assignment of the other items to the other bidders.

6Also called monotonicity: a bidder’s valuation for a package of items S is weakly higher than for
T if T ⊂ S.

7These assumptions are common in related models (e.g., Ausubel and Milgrom, 2002; Ausubel,
2006).

8For a discussion of these utility functions, see, for example, Shapley and Shubik (1971).
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ι. We assume that ι is smaller than one, the grid spacing of valuations. In addition
we assume that ι equals 1/k for some k ∈ {2, 3, 4, . . .} and that it thereby defines a
refinement of the grid of valuations. All bids are restricted to this finer grid.9 Besides
the public standing bid, there is a hidden current high bid bhj in each auction where
at least one bidder has submitted a bid. It equals the highest hitherto submitted bid
in auction j. Thus, the high bids are proxy bids that are submitted to an automatic
bidding agent who bids in the following on behalf of the bidder.10 The vectors of
current standing bids and current high bids are denoted by bs and bh, respectively.
The function Bh: M → N ∪M assigns every auction j ∈ M to its current high

bidder i ∈ N or, by convention, assigns the seller to his own auction if no bidder has
yet bid in this auction. In each auction, the bidder who submitted the current high
bid is the current high bidder. At every decision node there is exactly one high bidder
in every auction (a bidder i ∈ N or the seller himself in his auction). If two bidders
have submitted identical bids, the bidder who bid first is the current high bidder. In
a slight abuse of notation, we sometimes use the notation Bh to refer to the vector
of high bidders in auctions j = 1, . . . ,m. Furthermore, in examples, Bh may refer to
current high bidders or final winning bidders: whenever it is combined with a price
vector, Bh refers to winning bidders.
At each stage or bidding round, one bidder i is selected to make a decision. When-

ever it is bidder i’s turn to bid and he holds no high-bidder position, he can decide not
to bid or to submit a (proxy) bid in one auction of his choice. Bidder i is free to bid
any amount bij, with bsj + ι ≤ bij ≤ b̄ on the grid determined by the increment size in
auction j. That is, his bid has to be at least one increment ι higher than the current
standing bid and it is bounded above by some sufficiently large number b̄ <∞.11 We

9The final prices are implicitly also restricted to this finer grid.
10In the current model, the usual system of Internet auctions is assumed. A bidder submits a bid for

an auction to the bidding agent. The bidding agents outbid each other by minimum increments
until only one bidding agent is left in the auction. Then the process stops until a bidder submits
a new proxy bid. In the terminology of the model, the standing bid represents the currently
highest bid submitted by a bidding agent on behalf of a bidder, and the current high bid is
the highest currently submitted bid to a proxy bidding agent. In Internet auctions, the current
standing bid is often determined as the second-highest submitted bid plus one increment (unlike
our model), if the high bid is at least as high as this bid.

11Clearly in an auction the height of every bid is finite. The maximum bid b̄ in every auction can
be arbitrarily high but finite, so that the set of actions and the set of nodes are finite. For the
same reason we restrict bidding to the grid given by the increment. We believe this assumption
is justifiable because bids are usually measured in monetary units and, therefore, a smallest unit
of measurement exists. The same argument holds for the starting prices and the valuations.
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do not allow a bidder who is a current high bidder in an auction to bid again until he
is outbid in this auction. That is, we assume that he does not bid because winning
more than one auction is not in his interest. Due to this assumption, a bidder may
be a high bidder in only one auction at any given bidding stage.12

If a new bid bij arrives, i becomes the new high bidder in j if bij > bhj . In this case,
the current high bidder is adjusted to Bh(j) = i and the current high bid is increased
to the amount of his bid bij. If bij ≤ bhj , the bid bij determines the new standing
bid bsj . Whenever a new bid is submitted, either the standing bid or the high bidder
changes as an observable component for all bidders. Bid withdrawal is not allowed.13

If a bidder decides not to bid and is not the current high bidder in any auction, then
he will not be selected again to bid. His position in the bidding sequence is skipped.
Thus, the decision not to bid is de facto an exit decision. We call the bidders that
have not quit the game active bidders and denote the set of active bidders at a given
bidding stage by Ba. If every bidder is either a current high bidder or has quit the
game, all auctions end. If the standing bids in all auctions equal b̄, the only available
action for a bidder is to choose not to bid. Since bids may only increase, the finiteness
of the game is thus assured. The standing bids bsj at the end of the auctions are also
referred to as the prices pj.

In what follows, we sometimes refer to high bids or standing bids at different
bidding stages. To reduce the complexity of the notation, we use words like “current,”
“previous,” “following,” “new,” etc., to clarify which high bid or standing bid we are
referring to. However, where necessary, we employ an index for stages t.

Strategies In this analysis, we consider only bidders’ incentives. We assume that
every seller sets his starting price b0

j equal to his valuation, i.e., b0
j = vSj for all j ∈M .14

A (behavior) bidding strategy σi for bidder i is a mapping from information sets

12The impact of relaxing this assumption is discussed in Appendix A.2.
13Compare, for example, the eBay rules: “A bid is a binding contract. All bids are active until the

auction ends. If you win a listing, you’re obligated to complete the transaction. Except under
special circumstances, bid retraction is not permitted. Furthermore, misuse of the bid retraction
option to manipulate the bidding process is not permitted. This includes any manipulation of
the bidding process to discover the maximum bid of the current high bidder or to uncover the
reserve price.” (http://pages.ebay.com/help/policies/invalid-bid-retraction.html, May 9, 2009).

14The starting price is also called a limit price or an initial-bid price (Hall, 2002). Similar to a
revealed starting price is the concept of a hidden reserve price, a lower limit on the price set by
the seller but not announced to the bidders. In the literature, the term reserve price sometimes
also refers to a revealed starting price.
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to bids. It prescribes for each information set of bidder i what to bid and in which
auction. A bid bij of bidder i in auction j has to be at least one increment above
the current standing bid bsj and at most b̄. Furthermore, the grid determined by the
size of the increment restricts the set of possible bids. We choose this formulation to
prevent cases where a bidder does not submit a new bid because of the size of the
increment (when the standing bid is below his valuation but the standing bid plus
an increment is above his valuation). In general, discrete bid increments may distort
bidders’ incentives (Chwe, 1989; David et al., 2007; Rogers, David, Jennings, and
Schiff, 2007). In our formulation, a rational bidder is always interested in submitting
a bid when the standing bid is below his valuation. A decision not to bid, if one does
not hold a current high bidder position, is de facto an exit decision.

Formally, a strategy σi is described as follows: to each information set Hi it assigns
a vector of bids (bi1, . . . , bim) ∈ {0, ι, . . . , b̄}m. Each of these vectors contains at most
one positive element bij > 0 with the following interpretation: if bij > 0 exists, i
submits a bid of size bij in auction j; if bij = 0 for all j, i does not submit a bid.
Thus, a vector of bids consisting solely of zeros corresponds to the decision not to bid.
A bid bij > 0 has to respect the auction rules, i.e., bij ≥ bsj + ι. We consider only pure
(behavior) strategies σi (see Definition 2.7). The strategy space Σi of bidder i ∈ N
consists of all strategies σi that fulfill these requirements.

Nature At the first decision node, nature selects bidder sequence o and valuations
vS and V out of a commonly known, joint, basic probability distribution F (·) that
respects the assumption of independence of valuations and that assigns positive prob-
ability to each feasible combination. A bidder sequence or bidding order o describes
the succession of bidders that are selected to bid in all possible rounds from round
one to the maximum number of rounds,15 i.e., the nature player determines the order
of bidders in the whole game.16 The bidders do not know the sequence. We say

15In case n > m, the maximum number of rounds is 2×
∑m

j=1((b̄− b0j )/ι) + n−m. Assuming that
ι equals 1/k for some k ∈ {2, 3, . . .}, 2 (b̄ − b0j )/ι is the maximum number of bids that may be
submitted in an auction j. This is the case if bidding starts at b0j and all bidders increase the
standing bid by an increment. The auction ends no later than when two bidders have submitted
the bid b̄ in j. The n −m additional rounds are due to the ending rule (the exit of the losing
bidders).

16An alternative formulation closer to Definition 2.1 is that nature chooses the bidder who has the
opportunity to bid after each round randomly. Our formulation is closer to the original Harsanyi
model (Harsanyi, 1967), where nature plays only once, in the first stage. With our assumptions on
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that a bidder is selected to bid or that it is a bidder’s turn to bid when the sequence
prescribes that he is the next bidder to act in the game (i.e., one of his information
sets is reached).

This bidder sequence is meant to model bidders checking interesting auctions at
randomly selected points in time. Some bidders do this more often than others. Thus,
there is no fixed sequence of the n bidders that is repeated until the auctions end, but
instead one of all possible sequences over the whole game occurs. The formulation
is identical to nature randomly selecting one of the bidders after each round. The
bidder sequence may select the same bidder i in subsequent bidding rounds.

Information (Nodes and Information Sets) We assume perfect recall (see Defi-
nition 2.6), which assures that every player remembers his own past bids in all auctions
as well as all previous standing bids and high bidders.

A bidder i can, at each bidding stage, observe the vector of standing bids bs (in-
cluding the vector of starting prices b0 in stage one), the identity of the bidders who
submitted bsj for all j, the identities of the current high bidders Bh, his own current
high bids bhj for all j with Bh(j) = i, and his own valuations vij for all j. However,
the magnitude of high bids bhj for all j with Bh(j) 6= i is unknown to i. He only
knows that bhj ≥ bsj . He usually observes the previous bidding order (and the stage
in the game tree), but if an opponent does not bid when it is his turn, bidder i
does not learn his identity because none of the observable variables change when the
selected bidder does not place a bid. Thus, i also does not observe his opponents’
exit decisions (by not bidding). So he cannot judge which or how many bidders are
still active, and, thus, he does not know Ba or |Ba|. The information sets contain
all possible constellations (decision nodes) that are consistent with this description
of the bidder’s private knowledge, perfect recall, and the common observation of bs

and Bh at each decision node.
For the sake of completeness, we state this formally. Bidder i’s information at

set H t
i ∈ Hi is described by the history hi(t) as observed by i for bidding stages

information, both formulations are equivalent. With the alternative formulation, the restriction
on a bidder’s strategy space that he may not bid if he is high bidder, could be alternatively
formulated by deleting the current high bidders from the set from which nature chooses the next
bidder. An interpretation is that a high bidder has no incentive to visit the auction platform
until he receives an e-mail that tells him that he has been outbid.
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t = 0, 1, . . . , T , with the final bidding stage denoted by T .17 The history hi(t) :=

(h0
i , h

1
i , . . . , h

t−1
i ; oti;B

a,t
i ) is given by the information known in previous stages. Thus,

h0
i := (vi, b

0) (with the assumption that b0 = vS) and hti = (bs,t, bh,ti , B
h,t, BPD,t) for

all t = 1 . . . , T , where bs,t, bh,ti , Bh,t, and BPD,t are the current standing bids, i’s
current high bids, the current high bidders, and the bidders who submitted the bids
that determine the current standing bids at stage t, respectively. oti is the information
that i collected about the order of bidders during the previous bidding stages (and
the current stage, if it is i’s turn to bid), and Ba,t

i (in a slight abuse of notation) is i’s
activity status at t, i.e., Ba,t

i = 1 if i is still allowed to bid and Ba,t
i = 0 otherwise. Note

that hi(t) implicitly contains information about former high bids and the identities
of bidders that have been outbid before stage t.18

Thus, the information set H t
i contains all nodes at stage t with identical histories

hi(t) from i’s point of view. Note that all nodes in H t
i share the same objectively

observable information about current standing bids bs,t and current high bidders Bh,t,
but not all nodes with the same standing bids and high bidders are in the same
information set. The nodes in an information set differ with respect to bidders’
valuations V−i, bidding orders o, high bids bh, and sets of active bidders Ba that i
cannot distinguish.

The different elements of the model are summarized in the List of Symbols (see
page 202). In the following, the indices g, h, and i refer solely to bidders and j, k,
and l to sellers or auctions.

3.1.2 An Example of Naive Bidding

In a single second-price proxy auction with our restrictions on increments, bidding
one’s valuation is a weakly dominant strategy in an independent-private-values en-
vironment. eBay, for example, advises bidders to submit their true valuation to a
bidding agent.19 We present an example of naive bidding in the sense that the bidder

17T is not determined in advance. However, a final bidding stage exists because the game is finite.
18The combination of all bidders’ information, h(t) = (h0, h1, . . . , ht−1; o(t);Ba,t), contains all avail-

able information, i.e., h0 = (V, b0), ht
i = (bs,t, bh,t, Bh,t), the complete previous order of bidders

o(t), and the current set of active bidders Ba.
19“Although we suggest that you bid the maximum amount that you’re willing to pay for an item, you

won’t necessarily pay that amount.” (http://pages.ebay.com/help/buy/bidding-overview.html,
April 28, 2009)
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ignores the presence of several auctions. Instead, he simply submits a bid equal to
his valuation in the auction where his preferred item is sold and where his valuation
is above the standing bid.

Figure 3.1 illustrates the result of naive bidding in an example with three sellers
(auctions) and three bidders. All sellers’ valuations and, thus, all starting prices equal
zero: vS = b0 = (0, 0, 0). The table contains the three bidders’ valuations for the three
items offered in auctions A1–A3 (i.e., the valuation matrix V ), the resulting winners
Bh, prices p, and bidders’ payoffs ui. For example, Bidder B1 has valuations 11, 6,
and 3 for the items sold in auctions A1, A2, and A3, respectively. A1 is won by B1

at price p1 = 10, resulting in the payoff u1 = 11− 10 = 1.
The four drawings below the table illustrate the bidding process. Bidder B1 bids

first. He bids in auction A1, where his value of 11 is his highest of all the items. His
bid is b11 = v11 = maxj{v1j} = 11. Then, it is B2’s turn. He bids b21 = 10 because
item A1 has the highest value for him. Thus, the standing bid increases from 0 to
10, but B1 remains the current high bidder in A1. After that, B3 bids b31 = 10 and
becomes current high bidder in A3 at standing bid bs3 = 0. Then, B2 bids b23 = 7,
his second highest valuation, because the standing bid bs1 = 10 in A1 has reached
B2’s highest valuation. Bidding above 10 in A1 is not rational for B2. His bid in A2

increases the standing bid bs3 to 7. Since B1 and B3 are current high bidders, they
do not bid, and the next bid is again submitted by B2. He bids b22 = 2, becomes the
high bidder, and the game ends because no bidder is allowed to submit further bids.
Thus, in the resulting outcome, B1 wins A1 at p1 = 10 and has a payoff u1 = 1, B2

wins A2 at p2 = 0 and has a payoff u2 = 2, and B3 wins A3 at p3 = 7 and has a
payoff u3 = 3.
Note that the bidders are not content with this outcome. At prices p = (10, 0, 7),

B1 prefers to buy item A2. Thus, B1 and seller A2 could profitably deviate. If B1

buys A2 (instead of A1) at a price of 3, then both of them are better off. The same
argument holds for B3 and A2. Furthermore, the final assignment in the example
is not efficient. For example, if B2 and B3 exchange their items, the sum of payoffs
increases by 2.20

20Note that naive bidding is also not an equilibrium if items are homogeneous. Consider an example
with three bidders, B1, B2, and B3, with valuations v1 = 20, v2 = 15, and v3 = 10 who
participate in two auctions, A1 and A2 with starting prices of zero. B1 bids 20 in A1 and B3
bids 10 in A2. B2 only knows that in each auction a bidder has submitted a bid above the
standing bids, which are still zero in both auctions. He bids 15 in A1 and, because he does not
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A1 A2 A3 ui

B1 11 6 3 1
B2 10 2 7 2
B3 4 7 10 3

Bh B1 B2 B3
p 10 0 7

A1 A2 A3

0

bsj , bhj B1
11

0 0
A1 A2 A3

bsj , bhj B1

10
11

0 0

A1 A2 A3

bsj , bhj B1 B311
10

0

10

0
A1 A2 A3

bsj , bhj B1

B2

0

B311
10

2

10

7

Figure 3.1: An example of naive bidding
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In the following section, we characterize outcomes that do not have these undesir-
able properties and present a bidding strategy that is better suited for this environ-
ment.21

3.2 Analyzing the Multiple-Auctions Game

We introduce a specific behavior strategy (Section 3.2.1), describe and characterize
the outcome (Section 3.2.2), and prove that our strategy configuration constitutes a
perfect Bayesian epsilon-equilibrium (Section 3.2.2.5).

3.2.1 Strategy σ∗i

In this section we define a particular behavior strategy that we denote by σ∗i for
i ∈ N . First, we introduce some elements used in the definition of the strategy.
From a bidder i’s point of view, his current maximum potential payoff in an auction

j is determined by the difference between his valuation for item j and the current
standing bid bsj , which represents the lowest price at which he may win the auction.
Thus, his current maximum potential payoff is defined as follows.

Definition 3.2 The current maximum potential payoff ∆ij for bidder i in auction j
is

∆ij := vij − bsj .

A bidder has to outbid the current standing bid by at least ι to become the high
bidder. If bhj = bsj it may be possible to win j at price pj = bsj .

To define our strategy σ∗i , we need the current maximum potential payoff ∆i(1) and
the current second-highest potential payoff ∆i(2) for bidder i at a given stage of the
game as perceived by bidder i.

become high bidder, he bids 15 in A2. Then, the auctions end, B1 and B2 win A1 and A2,
respectively, at prices p1 = 15 and p2 = 10. The minimum competitive price in this example
is 10, which results in the PBE of Peters and Severinov (2006) with incremental bidding in the
auction with the lowest standing bid. The outcome of naive bidding is efficient but it is not a
competitive equilibrium since B1 prefers to buy item A2 if p = (15, 10).

21Although suggesting entering the maximum willingness to pay to the proxy bidder, eBay also
realizes the problem that arises in the example: “Don’t bid on identical items in different listings
if you just want one item. If you win both, you’ll be obligated to buy both. If you’re outbid
on an item, wait until the auction has ended before placing a bid on an equivalent item. If
the bidder who won the auction retracts the bid, your bid could become the winning bid.”
(http://pages.ebay.com/help/buy/bidding-overview.html#tips, April 28, 2009)
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Definition 3.3 The current maximum potential payoff for bidder i is given by

∆i(1) := max
j∈M

∆ij .

Note that the auction that provides bidder i’s current maximum potential payoff ∆i(1)

may be not unique.

Definition 3.4 The current second-highest potential payoff for bidder i is

∆i(2) := max
j∈M
{∆ij : ∆ij 6= ∆i(1)}.

The current maximum potential payoff ∆i(1) for bidder i is the largest difference ∆ij

over all auctions j and ∆i(2) is the second largest such difference with ∆i(2) 6= ∆i(1).
The maximum potential payoff ∆i(1) leads to the definition of i’s current demand set.

Definition 3.5 Bidder i’s current demand set is given by

Di := {j ∈M : ∆ij = ∆i(1) and ∆ij ≥ 0}.22

If auctions with Bh(j) = j (where no bid has been submitted yet) are contained in
Di, we denote the subset that consists of these auctions by D0

i :

D0
i := {j : j ∈ Di and Bh(j) = j} .

Let us now define strategy σ∗i .

Definition 3.6 (Strategy σ∗i ) The strategy σ∗i : Hi → A(Hi)Hi∈Hi
for bidder i ∈ N

specifies that bidder i chooses the following action whenever he is selected to bid (i.e.,
whenever one of his information sets Hi is reached):

(1) If ∆i(1) ≤ 0, then he does not bid (bij = 0 for all j).

(2) If ∆i(1) > 0 and |Di| = 1, then i makes the following bid in auction j ∈ Di:

bij = vij −max{∆i(2), 0} .
22Auctions j with ∆ij = 0 are included in i’s demand set to guarantee that a current high bidder

i, who has bid bij = bhj and wins j at pj = bsj , wins an auction in his demand set. On the other
hand, for a bidder h who is not a current high bidder in j and ∆hj = 0, i.e., he is indifferent
between winning j and not winning j, a definition with ∆ij > 0 would fit better with the intuition
in the multiple-auctions game.
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(3) If ∆i(1) > 0 and |Di| > 1, then bidder i bids in an auction j ∈ D0
i if D0

i 6= ∅ or in
an auction j ∈ Di, otherwise. In both cases, he chooses randomly (with uniform
probability) one of the auctions in D0

i or Di, respectively. In the selected auction
j, he bids

bij = bsj + ι .

The strategy combination σ∗ is given by the vector (σ∗i )i∈N . Remember that a bidder
i who is a current high bidder cannot bid because we restrict his strategy space.
Part (1) of the definition simply states that bidder i does not submit a bid if all

standing bids are so high that positive profit from winning an auction is impossible
(i’s maximum potential payoff ∆ij in any auction j is negative). Thus, he does not
bid and exits the game. This bidder will not be selected again to bid.
In cases (2) and (3) of Definition 3.6, positive profits from winning an auction seem

to be achievable. In part (2), the current maximum potential payoff is associated with
a unique auction j. Then, i determines his bid bij by the equation vij − bij = ∆i(2), if
∆i(2) > 0. On the other hand, if ∆i(2) < 0, which means that j is the only profitable
auction left, i determines his bid by the equation vij − bij = 0.23 That is, bidder i
selects his bid bij such that the minimum payoff he may achieve with this bid is equal
to the maximum payoff he may achieve in any other auction at the current stage. The
possible payoffs in other auctions may only become worse as bids increase while the
minimum payoff he can achieve with his bid in auction j is constant as long as he is
not outbid.24 His payoff, if this bid is his last bid in the game, is the maximum payoff
he can get from buying any item at the realized prices. Thus, bidding according to
σ∗i , a bidder will not regret his actions, as long as his bid does not influence the other
bidders in an unfavorable way.
The same line of reasoning leads to bid bij = bsj + ι in part 3 of Definition 3.6.

Here, we have several auctions j′ with ∆ij′ = ∆i(1). Thus, the maximum payoff i may
achieve in an other auction is equal to the maximum payoff in the selected auction
j. In such cases, we will sometimes say that i is indifferent between bidding in the

23This situation is equivalent to bidding in a single second-price auction.
24Or as long as he does not revise his bid. Because current high bidders are never selected to bid,

he does not have the chance to revise his bid as long as he is the high bidder. Note that a bidder
who follows σ∗i will always have the possibility to revise a bid when he is outbid and he does not
need to revise his bid otherwise. The revision of bids in ascending auctions, if allowed, is usually
only permitted if the bid is increased. Similarly, bid withdrawals are usually inadmissible.
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auctions in Di (or D0
i ). Solving vij − bij = ∆i(1) results in bij = vij −∆i(1) and may

be simplified to bij = bsj . A new bid in an auction has to be higher than the current
standing bid, and, therefore, i cannot submit this bid bij = bsj . Not bidding results
in quitting the game. To avoid this, i increases the current standing bid in j by one
increment ι, which gives bij = bsj + ι. Note that with this bid an exposure problem
arises: i may win j at a price equal to bsj + ι even though he may have won a different
auction k in Di at a price of bsk. We refer to this problem as the increment problem
and analyze its consequences in Section 3.2.2.
The preference for an auction in D0

i is because i’s knows that with a bid bij =

bsj + ι = b0
j + ι he becomes the high bidder in j with an unchanged standing bid bsj .

If bidder i bids according to σ∗i in an auction j and bhj > bij, he will not become a
high bidder at this stage. But because he submitted a bid, he will have the chance
to bid again at a later stage, if he so desires.
Consider part (2) with ∆i(2) = vik − bsk > 0. If bidder i bids more than described

by σ∗i , such as bij = vij −∆i(2) + ι, bidder i might win auction j at a price equal to
this bid and receive a payoff of uij = vij − vij + ∆i(2) − ι = ∆i(2) − ι. If nothing has
changed in the other auctions, bidder i would prefer to withdraw his bid and bid in
auction k, where he still has the chance to win at a price of bsk and receive a payoff
equal to ∆i(2), which is clearly higher than the payoff ∆i(2)− ι. By bidding according
to σ∗i , he avoids this exposure problem. This bidding strategy assures that he either
wins the auction with the highest possible payoff or he is outbid and has the chance
to bid again.
A current high bidder in an auction j could not improve his payoff by bidding in

additional auctions if j is in his demand set, even if he was allowed to do so. But if
j is not in his demand set, he may have an incentive to bid in another auction. We
relax this assumption in Appendix A.2.
Throughout the following, we denote the outcome that results from the use of σ∗

by (x∗, p∗).

An Example to Illustrate Strategy σ∗i Figure 3.2 contains an example with
three auctions and three bidders who follow strategy σ∗. This example builds upon
the example on naive bidding of Figure 3.1.
Again, B1 submits the first bid in auction A1, where his value is highest. However,

now the selection criterion is the largest difference between valuation and price, which,
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A1 A2 A3 ui
B1 11 6 3 6
B2 10 2 7 5
B3 4 7 10 8
Bh B2 B1 B3
p 5 0 2

A1 A2 A3

bsj , bhj
11− b11 = 6− 0
b11 = 5

B1

0

5

0 0
A1 A2 A3

bsj , bhj
10− b21 = 7− 0
b21 = 3

B1
5
3

0 0

A1 A2 A3

bsj , bhj
10− b33 = 7− 0
b33 = 3

B1
5
3

0

B3
3

0
A1 A2 A3

bsj , bhj
7− bs3 = 10− 3
b23 = 0 + ι

B1
5
3

ι

B3
3

0

A1 A2 A3

bsj , bhj

b21 = 3 + ι
b21 = 3 + 2ι
b23 = 2ι . . .
b21 = 5 + ι

B2 5 + ι
5

2
3B3

0
A1 A2 A3

bsj , bhj
6− bs2 = 11− 5
b12 = 0 + ι

B2 5 + ι
5

2
3B3

ι0
B1

Figure 3.2: An example on bidding according to σ∗
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in the beginning, is identical to the highest valuation because all starting prices equal
zero. He calculates his bid according to 11 − b11 = 6 − 0, where the right-hand side
gives his maximum possible gain in any other auction, A2 in this case. Next, B2

bids in A1 = arg max{v2j − bsj} and submits the bid b21 = 3. He does not become
high bidder, but the standing bid in A1 increases to bs1 = 3. B3 submits b33 = 3

and becomes the high bidder in A3. Then, it is B2’s turn and he is indifferent
between A3 with v23 − bs3 = 7 − 0 = 7 and A1 with v21 − bs1 = 10 − 3 = 7. That
is, his demand set is not a singleton and part (3) of the definition of σ∗i applies. In
this situation, B2 randomly selects A3 and submits a bid that exceeds bs3 by one
increment: b23 = bs3 + ι = ι. B2 does not become the high bidder and, with his next
bid, increases the standing bid in A1 by ι: b21 = bs1 + ι = 3+ ι. As long as he does not
become the high bidder, he continues to bid in A1 and A3, increasing the standing
bids one increment at a time. Finally, B2 becomes the high bidder in A1. It is B1’s
turn and he, being indifferent between bidding in A1 and A2, submits the bid b12 = ι.
All bidders have a high-bidder position in some auction and are no longer allowed to
bid.
The winning bidders of auctions A1, A2, and A3 are B2, B1, and B3, respectively.

The prices are p = (5, 0, 2), weakly below the prices that result from naive bidding
(p = (10, 0, 7)). Each bidder weakly prefers the auction he wins to any other auction at
the final prices. Thus, no bidder-seller pair wants to jointly deviate. The assignment
is efficient.
Note that these prices are not the unique outcome, due to the randomizing that

occurs when bidders are indifferent. For instance, B1 may, at his last decision in
the example above, decide to bid b11 = 5 + ι before submitting b12 = ι. Then, the
assignment is the same, but the price in A1 is an increment higher.
When we analyze outcomes in the following sections, we take these randomizations

into account.

3.2.2 Characteristics of the Outcome (x∗, p∗)

In this section, we describe properties of the outcome (x∗, p∗) that results if all
bidders follow strategy σ∗. First, we analyze stability of the outcome, efficiency of
the assignment, and the level of prices for increments ι ∈ {1/2, 1/3, . . .}. We show
that the outcome may, but does not always, have these desirable properties and point
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out when, why, and to what extend the properties are violated. A further restriction
on the increment avoids or constrains the deviations.25

In our model, some minimum increment is necessary so that standing bids increase.
Otherwise, an indifferent bidder (part (3) of the definition of σ∗i ) would submit a bid
equal to the standing bid and the activity rule implied by the rule for quitting the
game would be useless. In a single, dynamic, second-price auction j (i.e., m = 1),
the increment may lead to an outcome where two bidders who follow the strategy
to bid up to their valuation (which is reflected in part (2) of σ∗i ), may, at the final
prices, have strictly positive potential payoffs. For example, if vij = 10, vhj = 11,
bhj = bsj = 9.6, Bh(j) = h and ι = 0.5, bidder i would not submit an additional bid
because 10.1 > 10. However, at the resulting final price pj = 9.6, both bidder i (0.4)

and bidder h (1.4) have a potential or realized positive payoff, respectively. Thus, for
bidder h it is advantageous that the standing bid is 9.6 instead of 9.5, because this
prevents i from submitting an additional bid. On the other hand, if i submits the bid
10.1, he may win auction j at 9.6 if no other bid is submitted and, in this situation,
he misses a possible gain by not bidding. Therefore, whether bidding 10.1 pays off
for i in this situation depends on the other bidders.
Modeling the grid of feasible bids as a sub-grid of the grid of valuations and choosing

the minimum increment equal to the grid size of the bidding grid, we avoid the
problems that arise from the size of the discrete increment above. A standing bid of
9.6 is then impossible and at each standing bid, the next feasible bid (one minimum
increment above the current standing bid) is either submitted by i if all his potential
payoffs resulting from this bid are higher than or equal to zero, or he does not bid if
all potential payoffs are lower than or equal to zero.26

Thus, distortions due to the increment that are of the kind illustrated by the
example do not occur in our model. However, with multiple auctions there is another
undesirable impact of a minimum bid increment. Consider an example with m = 2,
bs = (7.5, 7.5), bh = (7.5, 7.5), ι = 0.5, and vi = (10, 10). It is bidder i’s turn to
bid and he is not the high bidder in any auction. Suppose he is indifferent between
bidding in the two auctions. Assume that if i bids in auction A1, no other bidder

25The restriction avoids deviations form efficiency and constrains deviations of prices.
26For a discussion of the influence of the discrete increment on the results of a single-unit English

auction see, e.g., Rothkopf and Harstad (1994) and David et al. (2007). For problems that
arise with a continuum of feasible bids when players’ payoffs may change discontinuously and an
analysis thereof, see Reny (1999).
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will bid there, whereas if he bids in A2, another bidder will submit the final bid of 8

there. Thus, if i bids bi1 = 8 in A1, he gets the payoff ui = 2.5, whereas a bid bi2 = 8

in A2 leads to ui = 2. Such a price determining bid is possible under σ∗, even if we
choose valuations and feasible bids as in our model.

Peters and Severinov (2006) have an additional specification in their equilibrium
strategy that allows bidders with homogeneous unit-demand preferences (vij = vig

for all i ∈ N and j, g ∈M) to coordinate and to avoid this problem. We will describe
later why their method does not apply when items are heterogeneous.

In the following, we analyze the outcome (x∗, p∗) and take the impact of the in-
crement into account. The potential influence of the increment is manifold. By
restricting ourselves to increments of the form ι = 1/k for k ∈ {2, 3, . . .}, we avoid
the case where a bidder does not submit a bid when the standing bid is below his
valuation because the minimum allowed bid would exceed his valuation. But the
problem that still occurs is caused by the need to increase some bid when a bidder
is indifferent between several auctions. This may lead to mis-coordination that is
resolved by additional bids or that is not resolved at all.

3.2.2.1 Stability of (x∗, p∗)

A key property of outcomes in the literature on two-sided matching is their stability
(see Roth and Sotomayor, 1990). If an outcome is stable, other characteristics can be
deduced. Thus, we start our analysis with an examination of the stability of outcomes
that result from playing according to σ∗. For this purpose we repeat and check the
requirements for stability given in Definition 2.23. An outcome (x, p) evaluated via u
and uS is stable if it is individually rational and no bidder-seller-pair wants to jointly
deviate:

(1) ui(x, p) ≥ 0 and uSj (x, p) ≥ 0 for all i ∈ N , j ∈M and

(2) ui(x, p) + uSj (x, p) ≥ dij = max{vij − vSj , 0} for all pairs (i, j) ∈ N ×M .

The first conditions are fulfilled for bidders and sellers. Following σ∗, no participant
bids above his valuation and the price is less than or equal to the high bid. Thus,
in the worst case for a winning bidder, the price equals his valuation and he gets
a payoff of zero. A losing bidder – one who does not win any auction – also has a
payoff of zero. A seller j who sets his reservation price b0

j equal to his valuation vSj
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as assumed, realizes a price of at least b0
j if the item is sold, which gives him a payoff

of at least zero, or he does not sell his good and has a payoff of zero.
To check if the second condition is fulfilled, we have to look at the sum of payoffs

of every realized and every alternative bidder-seller pair at the resulting outcome
(x∗, p∗). We distinguish five cases of pairs (i, j): i and j trade with each other, both
i and j do not trade, i does not trade but j does, i trades but j does not and, finally,
both i and j trade but not with each other.

Case 1. xij = 1: If xij = 1 we have ui = vij − pj and vSj = pj − vSj . Thus,
ui + uSj = vij − vSj = dij ≥ 0 because a pair with vij ≤ vSj may not arise under σ∗.

Case 2. xik = 0 for all k, xhj = 0 for all h: In this case ui = uSj = 0. Since
ui = 0 ≥ vik − pk for all k and pj = b0

j = vSj for all j who do not sell their items, we
find that ui + uSj = 0 ≥ vij − vSj and, thus, ui + uSj ≥ dij.

Case 3. xik = 0 for all k, ∃h 6= i such that xhj = 1: In this case, ui + uSj ≥ 0 and
ui + uSj = 0 + pj − vSj ≥ vij − vSj since vij ≤ pj if xik = 0 for all k, and, therefore
ui + uSj ≥ dij.

Case 4. ∃ k 6= j such that xik = 1, xhj = 0 for all h: Clearly, ui + uSj ≥ 0 and
ui + uSj = vik − pk + 0. To ensure stability, the inequality vik − pk ≥ vij − pj =

vij − b0
j = vij − vSj has to be valid. This is not assured, as we will discuss below.

Case 5. ∃ k 6= j such that xik = 1, ∃h 6= i such that xhj = 1: In this case, both
agents trade, but not with each other. We have ui + uSj = vik − pk + pj − vSj ≥ 0. For
vik − pk + pj − vSj ≥ vij − vSj to be valid, the condition vik − pk ≥ vij − pj has to be
fulfilled. But we can show that this condition may be violated.

The last two cases allow for 0 ≤ ui +uSj < vij − vSj = dij for a bidder-seller pair (i, j),
causing an instable outcome. As we have seen, this may only happen when bidder i
trades with some seller k but prefers to trade with some other seller j. The reason
for instability in this case is that bidder i may prefer to win auction j at price pj to
winning k at pk, or that seller j may prefer to sell to i at a price higher than pj. In
our model, only the bidders can influence the prices and the assignment. Thus, we
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concentrate on the possible increase in payoff for bidder i when analyzing the possible
blocking pair.

First, we show that the difference in the sum of payoffs that causes instability is
of at most size ι, and thus, if such a profitable deviation exists, it is of exactly size
ι since all feasible prices lie on a grid with grid space ι. How can such an instable
outcome occur? Remember that when i bids in k, vik − bsk ≥ vij − bsj for all j and
at the end of the game we postulate that an instability due to vik − pk < vij − pj

occurs. We have bik = bhj ≥ pk ≥ bsk and pj ≥ bsj . It may happen that bidder i, when
deciding on his last bid in the game, is in the situation vik − bsk = vij − bsj . Let us
first consider the fourth case from above. If, in the described situation of indifference
between auctions k and j, both Bh(k) = k and Bh(j) = j (i.e., bsk = b0

k and bsj = b0
j),

then bidder i chooses one of them arbitrarily, in our case k, and bids bik = bsk + ι.
He becomes the current high bidder, another bidder submits a bid of the same size
in k, and the auctions end. Then we have vik − pk = vij − b0

j − ι = vij − pj − ι, and i
prefers to win j at price pj to winning k. Thus, ui + uSj ≥ max{vij − vSj − ι, 0}, but
we cannot assure that ui + uSj ≥ dij.
In the fifth case listed above, the argument is similar. Suppose vik − bsk = vij − bsj

and Bh(j) 6= j. Thus, bidder i is either indifferent between bidding in one of these
auctions (if Bh(k) 6= k) or he prefers k (if Bh(k) = k). He decides to bid in k, bids
bik = bsk + ι, becomes the high bidder, and the standing bid does not change. After
his turn one more bidder bids in k and the standing bid increases by one increment
to the final price pk = bik. The standing bid in j remains unchanged until the end of
the game. In this situation, vik − pk = vij − pj − ι < vij − pj.
Since i’s winning bid in both the forth and the fifth cases is an increase by no more

that ι, the deviation may never exceed one increment ι. The situations discussed
above are the only ways that such an instable situation can emerge: vij−pj < ∆i(2)−ι
can only hold if bij > vij −∆i(2) + ι holds but a bidder i never submits such a bid bij,
and subsequent bidders cannot increase the standing bid to a final price greater than
pj = bij if i wins with this bid bij.
We summarize the result in the following Lemma 3.1:

Lemma 3.1 An outcome (x∗, p∗) that results from playing σ∗ may be instable.
If (x∗, p∗) is instable,

• the payoffs of at least one pair (i, j) ∈ N ×M that is not matched under x∗ can
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be combined, such that ui(x∗, p∗) + uSj (x∗, p∗) = dij − ι and

• for all pairs (i, j): ui(x∗, p∗) + uSj (x∗, p∗) ≥ dij − ι.

We conclude that stability cannot be assured if bidders follow σ∗, but we can restrict
incentives to deviate to ι. The core of the assignment game equals the set of payoff
vectors in stable payoff-assignment combinations. The cooperative game induced by
the multiple-auctions game is the cooperative version of the assignment game. Thus,
our analysis also shows that the outcome (x∗, p∗) is not always in the core.
We now shift the focus away from the stability of (x∗, p∗) and concentrate on the

range of prices p∗ that occur and the efficiency of x∗. Therefore, we recapitulate the
main aspects of the occurrence of instable pairs in (x∗, p∗) and anticipate some of the
results that also relate to the issue of stability:

• A stable outcome exists (see Shapley and Shubik (1971) or Roth and Sotomayor
(1990, Theorem 8.5, p. 207)) and it may have been reached by following σ∗, i.e.,
the random selection of the bidder sequence and the random selection in case
of indifference cause the deviation.

• If an instable outcome results, this depends on a decision made by a bidder who
was indifferent between at least two auctions in his last move in the game.

• For an instable pair (i, j), we have ui + uSj = dij − ι. The deviation is never
more (or less) than one increment.

• In i’s finally preferred auction j, the standing bid does not change anymore
after his final move.

• The price determining bidder BPD(k) (as defined below in Definition 3.7) in
auction k (the auction won by bidder i) placed a bid after bidder i’s final move.

3.2.2.2 Prices p∗

We consider the prices p∗ that result from playing according to σ∗ and characterize the
range in which they may lie as well as the circumstances that lead to the respective
prices. For this analysis, we first introduce so-called price determining bidders and
define a reference outcome. Then, we analyze deviations from reference prices.
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Definition 3.7 (Price determining bidder BPD(j) in auction j) The price de-
termining bidder BPD(j) ∈ {N ∪ j} in auction j

• is bidder i with bij = pj, if such a bid bij exists and is unique,

• if bidders i and h with bids bij = bhj = pj exist and x∗hj = 1, then BPD(j) = i,

• if two bidders i and h with bids bij = bhj = pj and x∗ij = x∗hj = 0 exist, and i
submits his bid before h, then BPD(j) = i, and

• if no bidder submits a bid in j, then BPD(j) = j.

A bidder i is called the price determining bidder27 BPD(j) = i in auction j, if he
submits the unique bid bij that equals the final price in auction j. If two bidders i
and h both submit bids equal to pj and h wins the auction, then BPD(j) = i. If two
bidders i and h both submit bids equal to pj, i submitted his bid before h,28 and
another bidder wins the auction, then BPD(j) = i. More than two bidders cannot
submit the same bid in an auction because a new bid has to exceed the current
standing bid. If no bidder submits a bid in j, then, in a slight abuse of language, the
seller j is the price determining bidder. Thus, the price determining bidder in each
auction is uniquely defined for each realized play of the multiple-auctions game.
We distinguish two kinds of price determining bidders: internal price determining

bidders (those that are included in the set of winning bidders) and external price
determining bidders (those that do not win any auction). Results concerning the
price determining bidders are given in Proposition 3.1, from whose proof we derive a
further proposition on the timing of submitted bids (Proposition 3.2).

Proposition 3.1 If a bidder i follows σ∗i and he is the price determining bidder in
auction k, i.e., BPD(k) = i, then

• Bh(k) 6= i, and

• either xil = 0 for all l ∈M and pk = vik (external price determining bidder)

27We will, in a slight misuse of notation, occasionally replace the long expression “price determining
bidder” by BPD in the text.

28Then, i was the high bidder in j with the bid bij , which was higher than the current standing bid,
and h afterwards submitted the bid bhj = bij , thereby increasing the standing bid.
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• or ∃ j, j 6= k such that xij = 1 and vij − pj = vik − pk or vij − pj = vik − pk ± ι
(internal price determining bidder).

Proof of Proposition 3.1: First, we show that Bh(k) 6= i if BPD(k) = i, i.e., i
does not determine his own price. Assume that Bh(k) = BPD(k) = i. Bidder i who
follows σ∗i does not bid in k if he is the current high bidder. Bidder i becomes BPD(k)

by submitting a bid bik = pk > bs,tk at stage t and either bh,tk ≥ bik or bik > bh,tj ,
where bs,tk and bh,tk denote the current standing bid and the current high bid at stage
t, respectively. If a bid bik with bh,tk ≥ bik > bs,tk makes him the price determining
bidder, he must have bid in an auction in which he was the current high bidder, a
contradiction. If his price determining bid is bik > bh,tk , he becomes the high bidder
and the ultimate winner must submit his winning bid in a later round. If i is the
winning bidder, he must bid in an auction where he is the current high bidder, again
a contradiction.

Second, we show that if BPD(k) = i and i wins no auction, then the final price pk
in k equals his valuation for item k, i.e., his price determining bid is bik = vik. Since
i does not win any auction, his payoff is zero. The auctions are over. Thus, i did not
want to submit any more bids, because otherwise the game would not have ended.
He never submits a bid bik > vik. Suppose his price determining bid in k is bik < vik.
Then he would not stop bidding because at the end he is not the high bidder in any
auction. Thus, his price determining bid has to be bik = vik = pk.
Third, we assert that a price determining bidder i in k who wins an auction j 6= k

is approximately indifferent between j and k. At the stage t when i submits bik = pk

either

(1) vik − bs,tk > vil − bs,tl for all l 6= k, or

(2) ∃l 6= k such that vik − bs,tk = vil − bs,tl .

In Case 1, the submitted bid is bik = vik −∆t
i(2) > bs,tk . With this bid, i either

(a) becomes current high bidder or

(b) his bid determines the new standing bid bs,t
+

k ,

where t+ > t indicates that bs,t
+

k is the standing bid later in the auction than bs,tk . In
each case the standing bid increases because new bids always increase the standing
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bid. Thus, bs,t
+

k > bs,tk . If i becomes the current high bidder (Case (a)) with this
bid bik, he must be outbid by another bidder, the winner of k, before he submits
any other bid. Then, the bid bik also determines the current standing bid bs,t

+

k in k,
as in Case (b). Thus, both (a) and (b) lead to a situation where i may bid again
and vik − bs,t

+

k ≥ vil − bs,t
+

l because this was how i determined his bid bik = bs,t
+

k

and standing bids in other auctions l may have increased (for l 6= k, bs,t
+

l ≥ bsl is
the standing bid at this bidding stage and bs,tl can have changed or not due to other
bidders’ bids since the initial situation). Since we are considering i’s price determining
bid, we know that bs,t

+

k = pk. Bidder i submits his bid in j later and bs,t
+

k = pk does
not change anymore. Thus, when i bids in j we must have vij − bs,t

+

j ≥ vil − bs,t
+

l for
all l. Because standing bids can only increase, we have vik − bs,t

+

k = ∆t
i(2) ≥ vil− bs,t

+

l

for all l including j. Thus, vij − bs,t
+

j = vik − bs,t
+

k and bs,t
+

j = bs,tj , i.e., i is indifferent
between k and j when he submits his winning bid in j, and the standing bid in j

has not changed since the initial situation we considered. It follows that the winning
bid is bij = bs,t

+

j + ι. Assume to the contrary that this bid was not his winning bid.
Since i wins j, he would have to bid again in j. The standing bid in j would increase.
Then, i would prefer k over j and bid in k. This is a contradiction to the assumption
that the bid bik = bs,t

+

k = pk is the price determining bid. Thus, in Case 1, when i

submits his winning bid in j he is indifferent between j and k, and his winning bid in
j is ι higher than the current standing bid in j. The worst case is that another bidder
submits a bid equal to i’s bid in j and, thus, vij−pj = vik−pk or vij−pj = vik−pk−ι.
In each case, the winning bid of a bidder who follows σ∗i is his last bid.
After submitting the price determining bid in k and before submitting the winning

bid in j, i may submit other bids in auctions with a difference between valuation and
standing bid equal to ∆t

i(2), if such auctions exist. Bidder i may also be the price
determining bidder in these auctions. Then, i is indifferent between them and the
auction he wins at the final prices.
In Case 2, when vik − bs,tk = vil − bs,tl for at least one l 6= k, i bids one increment

above bs,tk , i.e., bik = bs,tk + ι = vik − vil + bs,tl + ι = pk. With this bid, i either
determines the new standing bid, or he becomes high bidder and is outbid by another
bidder later. In both cases, there is some round t+ > t when bs,t

+

k = bik = pk and i
is not high bidder in k. Since i wins an auction by assumption, he submits another
bid in at least one other auction, the auction j that he wins, after submitting his
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price determining bid. Similar to the argument before, we conclude from the fact
that standing bids in all auctions other than j can only increase between i’s decision
to bid in k and his decision to bid in j, and the fact that i preferred k to j before,
that either vij − bs,t

+

j = vik − bs,t
+

k + ι if the standing bid in j has not increased (i.e.,
bs,t

+

j = bs,tj ), or vij − bs,t
+

j = vik − bs,t
+

k if the standing bid in j has increased by ι (i.e.,
bs,t

+

j = bs,tj + ι). (Of course, in the latter case, standing bids in all other auctions
that were in i’s demand set when he bid in k also increased by ι).) That means that
j is now either better by ι than k for i, or i is indifferent. In either case, i submits
the bid bij = bs,t

+

j + ι in j. With this bid, he either becomes the high bidder or he
does not. If he becomes the high bidder, he either wins j at bij − ι = pj (if no other
bidder submits a bid in j), or at bij = pj (if another bid is submitted after i’s winning
bid). If he does not become the high bidder with his bid (which can occur when
vij − bs,t

+

j = vik − bs,t
+

k + ι), he submits a new bid that is one increment higher. In
this case, the final price may again equal his bid or be an increment lower.

Summarizing Case 2, the final price pj may be such that when vij−bs,t
+

j = vik−bs,t
+

k

before i’s final bid in j, we may have vij − pj = vik − pk or vij − pj = vik − pk − ι.
When vij − bsj = vik − bs,t

+

k + ι before i bids in j, we may have vij − pj = vik − pk + ι

or vij − pj = vik − pk (or vij − pj = vik − pk − ι if i increases the standing bid with
two subsequent bids in k, both which rise the standing bid by ι). �

From Proposition 3.1, it follows that Bh(j) 6= BPD(j) for all j ∈ M if all bidders
follow σ∗. The price determining bidder is approximately indifferent between his
payoff and the payoff from winning the auction in which he determined the price.
Thus, we get the following corollary.

Corollary 3.1 A winning bidder i in auction j with high bid bij = bhj > pj + ι is not
the price determining bidder in any auction, i.e.,

bhj > pj + ι⇒ Bh(j) 6= BPD(l) for all l ∈M.

From the argument in the proof we can also draw conclusions about some winning
bids and timing. These are summarized in the following Proposition 3.2.

Proposition 3.2 Whenever the price determining bidder i = BPD(j) in j wins an-
other auction l 6= j, i.e., xil = 1,
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• he wins this auction by increasing the standing bid by an increment,

• his winning bid in l is submitted after his price determining bid in j, and

• the last bid submitted in j was submitted before the last bid in l.

Proof of Proposition 3.2: The results follow from the argument in the proof of
Proposition 3.1. �

Clearly, if pj > b0
j then a price determining bidder i = BPD(j) /∈M exists. We now

define our reference outcome and analyze deviations from it.

Definition 3.8 (Reference outcome) The reference outcome (x̄∗, p̄∗) is the out-
come which results from playing according to σ∗ with the property that all internal
and external price determining bidders are indifferent between their payoff at (x̄∗, p̄∗)

and the difference between their valuation and the price in the auction in which they
determine the price.

The reference outcome is one of usually several outcomes that may result from play
according to σ∗. This outcome is not guaranteed by σ∗ because of the random bidding
order and the random selection of an auction according to part (3) of the definition
of σ∗i .

The following lemmas refine the statement of Proposition 3.1 and are derived from
the argument in the proof of Proposition 3.1. They describe some properties of a
deviation from the reference outcome. Lemma 3.2 describes what we call an upwards
deviation from bidder i’s reference outcome of indifference at final prices.

Lemma 3.2 If all bidders follow σ∗, bidder i wins auction j, BPD(k) = i for some
k 6= j, and vij − pj > vik − pk then

• vij − pj = vik − pk + ι,

• i prefers j by one increment over k (with ∆i(2) = ∆ik) when submitting the
winning bid,

• i is indifferent between j and k when submitting the price determining bid in k.

Lemma 3.3 describes a downwards deviation from internal price determining bidder
i’s reference result. This deviation is the one already considered in Section 3.2.2.1.29

29These deviations do not necessarily cause a deviation from the reference price because such up-
wards and downwards deviations may accumulate, as shown below.
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Lemma 3.3 If all bidders follow σ∗, bidder i wins auction j, BPD(k) = i for some
k 6= j, and vij − pj < vik − pk then

• vij − pj + ι = vik − pk,

• i is indifferent between j and k when submitting the winning bid in j,

• BPD(j) submits his bid in j after bidder i.

For an external price determining bidder, no such deviations occur.

Corollary 3.2 If all bidders follow σ∗, bidder i wins no auction, and BPD(j) = i for
some auction j, then vij − pj = 0 ≥ vik − pk for all k ∈M and, thus, vij = pj.

From this corollary, we conclude that externally determined prices (and prices pj with
BPD(j) = j) are integers because all bidders’ and sellers’ valuations are integers. Note
that all reference prices p̄∗j are integers because they have to lie on the same grid as
the valuations.
External price determining bidders with unit-demand preferences are concerned

with the absolute level of the prices because they do not win an auction. One item at
a time, they compare a payoff of zero with the payoff from buying each item. Internal
price determining bidders, on the other hand, determine from their point of view the
relative prices of items. Winning bidders are concerned with the relative advantage
of the item they win over the other items at the given prices.
Lemmas 3.2, 3.3, and Corollary 3.2 consider individual bidders. Lemma 3.4 trans-

fers the results to the resulting outcome (x∗, p∗).

Lemma 3.4 If all bidders follow σ∗, then in the resulting outcome (x∗, p∗) the fol-
lowing inequalities hold:

vij − p∗j ≥ vik − p∗k − ι
vij − p∗j ≥ 0

}
for i : ∃j ∈M : x∗ij = 1 and k ∈M,

0 ≥ vik − p∗k for i : x∗ik = 0 for all k ∈M,

p∗k ≥ vSk for all k ∈M.

Proof of Lemma 3.4: No bidder ever bids above vij in any auction j. Therefore,
vij−p∗j ≥ 0 at the final prices for the winning bidder i in an auction j. From Lemmas
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3.2 and 3.3, we already know that the inequalities in the first line hold for internal
price determining bidders. For all submitted bids of some bidder i in j we have
pj ≤ bij ≤ ∆i(1) + ι. Thus, the inequalities are valid for all winning bidders. Losing
bidders i submit bids bij ≤ vij in auctions j and do not stop bidding until all standing
bids are at least as high as their valuation. This proves the second row of inequalities.
The third row considers the sellers. Prices equal starting prices if the item is not sold.
If it is sold, at least one bidder has bid more than the starting price and he pays at
least the starting price. �

In the reference outcome (x̄∗, p̄∗), where the increment problem does not occur,
these equations would be

vij − p̄∗j ≥ vik − p̄∗k
vij − p̄∗j ≥ 0

}
for i : ∃j ∈M : x̄∗ij = 1 and k ∈M,

0 ≥ vik − p̄∗k for i : x̄∗ik = 0 for all k ∈M,

p̄∗k ≥ vSk for all k ∈M.

Before further analyzing the outcome (x∗, p∗), we look at a restriction on the number
of deviations caused by internal price determining bidders.

Lemma 3.5 The number of internal price determining bidders is less than or equal
to min{n− 1,m− 1}.

Proof of Lemma 3.5: The last bid in the game is either a winning bid or the
bid of an external price determining bidder. If it is a winning bid then either the
auction is won at its starting price or the previous high bidder is outbid and wins
no auction. In both cases, the price determining bidder is not internal. Thus, if any
item is sold, then there is there is at least one item that is sold and does not have an
internal price determining bidder. The maximum number of items sold is min{n,m}.
Combining these two arguments, we find that the maximum number of internal price
determining bidders is at most min{n− 1,m− 1}. �

From this argument we can directly infer the following lemma:

Lemma 3.6 The last bid in the multiple-auctions game Γa is submitted in an auction
j with an external price determining bidder or with BPD(j) = j.
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Individual bidders’ deviations from the reference prices p̄∗ as examined in Lemmas
3.2 and 3.3 may accumulate.

Proposition 3.3 Price deviations from the reference price p̄∗ may accumulate up to
a maximum of (min{n,m} − 1) · ι.

Proof of Proposition 3.3: We know from Lemmas 3.2 and 3.3 and Corollary
3.2 that price deviations from the reference prices are always caused by internal
price determining bidders. Combining this with the information on the number of
internal price determining bidders in Lemma 3.5, we conclude that no more than
min{n − 1,m − 1} deviations may occur. We now show how they may accumulate.
The proof is given by an instructive example with increment ι = 0.5. In Table 3.1, a
valuation matrix is given. Bold valuations in italics indicate the efficient assignment.30

Three outcomes are described by the winning bidders Bh and price vectors p∗, p′, or
p′′ resulting from strategy profile σ∗. Additionally, the winning bidders’ final high
bids bh and the price determining bidders BPD are given. In the upper outcome,
all items sell at a price of five and the assignment is efficient. This is the reference
outcome (x̄∗, p̄∗).31 The outcome in the middle shows the maximum accumulation of
deviations from the reference outcome. In auction A5, we have a price equal to seven,
which is five plus four increments, i.e., p5 = 5 + (min{n,m} − 1) · ι = 5 + 4 · 0.5.
The lower outcome shows an accumulation of several downwards deviations of prices
(going along with bidders’ downwards deviations from indifference). At least in this
example, the maximum downwards price deviation seems to be 1.5.32

An illustration of the three outcomes is given in Figure 3.3. In the graphs, an arrow
pointing from a bidder to an auction indicates that the bidder wins that auction.
Arrows originating in auctions indicate the respective price determining bidders. We
call a path in the graph that starts at an auction or a bidder and follows the arrows
30In all examples, if not stated differently, we assume vS = 0.
31For the connection between the efficient assignment xeff and the reference outcome x̄∗, see Propo-

sition 3.4.
32In a simulation, the maximum accumulation of price deviations in this example occurs in 9

of 10,000 outcome calculations using σ∗. The outcome (x̄∗, p̄∗) is observed 619 times. The
lower outcome in Table 3.1 is observed 14 times. All other outcomes are combinations of
x̄∗ and prices pj ∈ {4.0, 4.5, 5.0, 5.5, 6.0, 6.5}; the most frequently observed price vector is
p = (5.0, 5.5, 5.5, 5.5, 5.5) (630 times), and average prices are p = (5.0, 5.3, 5.3, 5.2, 5.3). Price
determining bidders in this example are unambiguous, as given in the table. Final high bids are
variable. Note that this example is especially designed to facilitate the occurrence of maximum
deviations.
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Table 3.1: Example of the maximum price deviation from (x̄∗, p̄∗).

A1 A2 A3 A4 A5
B1 8 8 0 0 0
B2 0 10 10 0 0
B3 0 0 15 15 0
B4 0 0 0 16 16
B5 0 0 0 0 18
B6 5 0 0 0 0
Bh B1 B2 B3 B4 B5
bh 5.5 5.0 5.0 5.5 18.0
p̄∗ 5.0 5.0 5.0 5.0 5.0
BPD B6 B1 B2 B3 B4
Bh B1 B2 B3 B4 B5
bh 5.5 6.0 6.5 7.0 18.0
p′ 5.0 5.5 6.0 6.5 7.0
BPD B6 B1 B2 B3 B4
Bh B1 B2 B3 B4 B5
bh 5.5 5.0 4.5 4.0 18.0
p′′ 5.0 5.0 4.5 4.0 3.5
BPD B6 B1 B2 B3 B4

an indifference path: on such a path, a bidder is indifferent between the auction
that an arrow points to and auctions from which arrows point to him. Note that an
indifference path either ends at a bidder who does not win an auction and who, thus,
is a potential external price determining bidder, or at an auction j with BPD(j) = j

and, therefore, pj = b0
j .33 The dashed arrows in the graph on the right in Figure

3.3 indicate that the price determining bidder slightly (by one increment) prefers the
auction that he wins. On the other hand, arrows with double arrowheads from k to
i indicate that vij − pj = vik − pk − ι for xij = 1, i.e., bidder i who wins j prefers
to win k at price pk by one increment. For a detailed description of how such an
accumulation as exemplified in Table 3.1 can arise, see Appendix A.1. There, in a
simpler example, each bid is stated.

We have shown by example that the maximum deviation of (min{n,m} − 1) · ι
may occur. We have to show that the accumulated deviation cannot be higher. Since
(x̄∗, p̄∗) is an outcome, there are no losing bidders willing to bid at prices p̄∗. Denote

33This kind of graph goes back to Demange (1982). See the proof of Proposition 3.9 for an alternative
description.

66



Chapter 3 The Multiple-Auctions Game

Figure 3.3: The assignment x̄∗ with prices p̄∗ (left), p′ (right), p′′ (below) in the ex-
ample of Proposition 3.3.

the number of sold items at (x̄∗, p̄∗) by w and the set of winning bidders by W . At
standing bids bs ≥ p̄∗ there are w or less bidders willing to bid (a subset of the winning
bidders at p̄∗). We have w or less different price determining bidders.

As soon as every remaining bidder holds a high bidder position, the game ends.
At standing bids bs ≥ p̄∗, w or more bidders hold a high bidder position.34 For these
high bidders i in j, either vij − bsj = ∆i(1) ≥ 0 or vij − bsj = ∆i(1) − ι. For bidding
activity to occur, at least one of the winning bidders under x̄∗ must not have a high
bidder position. Thus, at least one of the losing bidders under x̄∗ has to hold a high
bidder position (or this auction k has p̄∗k = b0

k). In the auctions k where this is the
case, standing bids bsk = p̄∗k. These bidders will not bid anymore. Thus, all standing
bids above p̄∗ are determined by winning bidders i ∈ W and, thus, by internal price
determining bidders. A bidder cannot be his own BPD (Proposition 3.1). Neighboring
prices in the chain deviate by at most ι (Lemmas 3.2 and 3.3). Since there are no
more than w ≤ min{n,m} − 1 internal price determining bidders (Lemma 3.5), the

34There may be more than w current high bidders. Consider the following example: vS =
(0, 0, 0, 0, 3), ι = 0.5, bidder Bi wins item Ai under x̄∗, i ∈ 1, . . .,4, and the fifth item is not
sold in the unique reference outcome with p̄∗ = (2, 2, 2, 2, 3). Auction A5 has a starting price
b05 = 3. Bidder B4 has valuations v44 = 4 = v45. In the reference outcome, Auction A1 has
an external price determining bidder, Bidder B5. Now, if B5 holds the high bidder position in
A1 at bs1 = 2 and B1 that of A2 and so on, and deviations occur and accumulate such that
bs4 = 3, and it is B4’s turn to bid, then he may bid b45 = 3.5 and five auctions have a high
bidder Bh(j) 6= j. Then, five items are sold due to the accumulation of deviations (and the
assignment is inefficient). Our argument in the proof can be adapted to this case of more than
w high bidders. We will not mention it separately anymore.
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number of auctions with prices p∗j ≥ p̄∗ is less than or equal to min{n,m}− 1. The w
winning bidders, of whom at most w − 1 are also price determining, cannot increase
the prices above the described maximum deviation. This is because at every vector
of standing bids bs ≥ p̄∗, as soon as the external price determining bidders are outbid
in auctions j with bsj = p̄∗j , all w high bidder positions are held by these winning
bidders i ∈ W , who consequently do not submit new bids. Thus, “indifference circles”
of bidders who sequentially increase the prices cannot exist.

Note that the last price on the path that is determined by an external bidder or the
seller is always equal to the price given by p̄∗. Similarly, all prices p∗j have to be equal
to or higher than all valuations of losing bidders, i.e., if x∗ij = 0 for all j for a bidder i,
then vij ≤ p∗j for all p∗j . For internal price determining bidders, the relation of prices is
important for determining their demand, thus, they determine relative prices and may
be less concerned about absolute prices in their bidding behavior. Thus, if the only
bidders that demand items on an indifference path are internal price determining
bidders, one winning bidder at the first node and one external price determining
bidder at the last node, downwards price deviations may occur. One deviation is of
size ι. If all internal price determining bidders cause such deviations, these accumulate
to a maximum of w − 1 when w items are sold. Since w ≤ min{n,m} − 1, the result
is proved.
Note that in the example above, the maximum accumulation of downwards de-

viations is min{n,m} − 2, because the first internal BPD cannot cause a deviation
downwards. With this number of bidders, B1 will not be the chosen to bid for the
first time at the end of the game. This is the precondition for such a deviation. But
when B1 is chosen to bid for the first time, he will submit his only bid, b11 = 5. In
more complex examples, the maximum deviation of a price could probably also be
reached in downwards direction. �

In order for the maximum deviation to occur, the valuations of the bidders have to
be such that all but one determine the prices of the others and a special bidder order
has to arise.
The deviations have to be seen as relative deviations: on the indifference path,

neighboring prices may be an increment closer or farther away from the reference
price than the price before. We have seen that these deviations may accumulate on
indifference paths. On the other hand, they may also compensate for other deviations
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if they go in the opposite direction. Or they do not have to occur at all and exact
reference prices may result.

A necessary condition for such price deviations is the existence of an indifference
path on which several internal price determining bidders determine the prices of each
other. The occurrence of such an indifference path depends on the existence of internal
price determining bidders, i.e., on the valuation matrix, the order in which bids are
submitted, and chance (because each bidder selects one of the auctions by chance
when he is indifferent).

In more complex examples, the graph that displays the final outcome may contain
several disconnected indifference paths, separated bidder-seller pairs, and single un-
connected nodes (losing bidders or unsold items). On the other hand, if we not only
display links between auctions and their price determining bidder but also include
arrows from auctions to other indifferent bidders in the graph, such components may
be connected. Then, each bidder has at most one outgoing directed edge, but may
have several incoming edges. Similarly, an auction may have at most one incoming
edge, but several outgoing edges. In the following, when using such graphs, it will be
clear from the description if it is a reduced graph (only the respective price determin-
ing bidder has an incoming edge) or if it is a complete graph (all indifferent bidders
who do not win the respective auction have an incoming edge). Note that bidders in
separated components of a complete graph have no interest in items outside of their
component (their indifference paths).

We find that a deviation from p̄∗j to p∗j is bounded by p̄∗j +ι ·(min{n,m}−1) ≥ p∗j ≥
p̄∗j − ι · (min{n,m} − 1). Demange et al. (1986, Theorem 4) find a similar maximum
deviation of prices in their “approximate auction mechanism,” which is related to the
auction game considered here.35 In their model, bidders increase the standing bid by
an increment in their preferred auction and the price equals the submitted bid. They
do not consider strategic behavior of bidders. In the approximate auction mechanism,
for each resulting price p∗j , the bounds are pj + ι ·min{n,m} ≥ p∗j ≥ pj− ι ·min{n,m}.
The similarity of the results in these two auction mechanisms occurs because, at
the end of the multiple-auctions game, internal price determining bidders effectively
increase standing bids by only an increment. The difference in the bounds arises
because, in the multiple-auctions game, the winner and the price determining bidder

35Similar bounds have been derived, e.g., by Bertsekas (1992) and Bansal and Garg (2005). Due to
the different auction formats, their bounds are larger than our bound of (min{n,m} − 1) · ι.
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have to submit bids such that a deviation occurs.
With a single seller, the maximum sum of accumulated deviations from p̄∗ (i.e., the

range of the sum of prices) may be of interest. The absolute value of the maximum
sum of price deviations in the game is ι+2ι+ . . .+(min{m,n}−1)ι = ι ·(min{m,n}−
1) min{m,n}/2 because along the indifference path, the deviation may increase by at
most ι from auction to auction.

A third kind of deviation (other than upwards and downwards deviations of prices)
is a deviation from the reference assignment x̄∗. We consider this deviation in the
next section.

3.2.2.3 The Assignment x∗ (Efficiency)

We now turn to the analysis of the assignment x∗ that results from play of σ∗. We
investigate whether x∗ may deviate from the reference assignment x̄∗ (see Definition
3.8). From the previous section, such a deviation may result if too many upwards
price deviations accumulate. That is, accumulated price deviations induce a bidder
to prefer (or to be indifferent to) an auction that would not be in his demand set
otherwise. If this happens, he may win a different auction than he does under x̄∗. We
begin the analysis of the assignment x∗ by characterizing the reference assignment
x̄∗.

Proposition 3.4 If p∗ = p̄∗ then x∗ = xeff .

That is, the assignment x∗ that results from playing σ∗ when the resulting prices are
the reference prices p̄∗, and thus all internal price determining bidders are indifferent
between the auction they win and the auction in which they determine the price,
is efficient. Remember that efficient assignments of the multiple-auctions game are
optimal assignments under valuations V and vS.
Proof of Proposition 3.4: We assume n ≥ m. At first, we prove the result for
vS = 0, and then we show that it is also valid for vS ≥ 0. Bidders’ payoffs have the
following properties:

If ∃ j such that x∗ij = 1, then uBi (x∗, p̄∗) = vij − p̄∗j ≥ vik − p̄∗k ∀ k ∈M.

If x∗ij = 0 ∀ j, then uBi (x∗, p̄∗) = 0 ≥ vik − p̄∗k ∀ k ∈M.

(3.1)
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Every auction is won by at most one bidder and every bidder i wins at most one
auction because i may not submit a bid when Bh(j) = i for some j. Therefore,
the sum of all payoffs on the left hand side of Equations (3.1) is

∑
i∈N u

B
i (x∗, p̄∗) =∑

i∈N
∑

j∈M vijx
∗
ij −

∑
j∈M p̄∗j .

Now consider some alternative assignment x̃ at prices p̄∗. For x̃ we assume that
every bidder wins at most one auction. For every auction k that is won by some
bidder i, we can compare the difference vik − p̄∗k for x̃ik = 1 with i’s payoff under x∗,
which is vij − p̄∗j for x∗ij = 1 or zero if x∗ij = 0 for all j. In each case, we can see from
Equations (3.1) that for each auction’s winner i under x̃, the payoff under x̃ is not
higher than under x∗. A bidder who does not win an auction under x̃ has a payoff
of zero, which is the minimum a bidder following σ∗i can get. Hence it follows that∑

i∈N
∑

j∈M vijx
∗
ij −

∑
j∈M p̄∗j ≥

∑
i∈N
∑

j∈M vijx̃ij −
∑

j∈M p̄∗j and, thus,∑
i∈N

∑
j∈M

vijx
∗
ij ≥

∑
i∈N

∑
j∈M

vijx̃ij (3.2)

for all alternative assignments x̃.36 From this we conclude that x∗ is an efficient
assignment, i.e., x∗ = xeff .
Now we take vS ≥ 0 into account. We rearrange bidders and sellers such that the

first η bidders and sellers trade and possibly some n− η bidders and m− η sellers do
not trade in the outcome (x∗, p̄∗), i.e., x∗ii = 1 for all i = 1, . . . , η. Summing up the
payoffs of all bidders and sellers we get

η∑
i=1

(vii − p̄i)︸ ︷︷ ︸
trading bidders under x∗

+

η∑
i=1

(
p̄i − vSi

)
︸ ︷︷ ︸

trading sellers under x∗

+
n∑

i=η+1

0︸ ︷︷ ︸
non-trading bidders under x∗

+
m∑

i=η+1

(
p̄i − vSi

)
︸ ︷︷ ︸

=0, non-trading sellers under x∗

.

If no bidders or sellers who do not trade exist, this does not make a difference for this
sum. Now we compare this outcome with a different outcome (x̃,p̄∗), i.e., we keep
prices but change the assignment. To keep notation simple, we assume that under
x̃ µ pairs trade and rename bidders again such that x̃kk = 1 for all k = 1, . . . , µ.
Note, however, that these trading bidders and sellers may form different trading pairs

36If we allow a bidder to win more than one auction under x̃, resulting in a valuation of zero for
the second item, the sum of valuations on the left hand side of Equation (3.2) would decrease or
remain the same.
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than under x∗ and that other bidders and sellers may trade. Therefore, we denote
valuations after renaming bidders by ṽij for i ∈ N , j ∈M and those of sellers by ṽSj .
Summing up payoffs under x̃ gives

µ∑
k=1

(ṽkk − p̄k)︸ ︷︷ ︸
trading bidders under x̃

+

µ∑
k=1

(
p̄k − ṽSk

)
︸ ︷︷ ︸

trading sellers under x̃

+
n∑

k=µ+1

0︸ ︷︷ ︸
non-trading bidders under x̃

+
m∑

k=µ+1

(
p̄k − ṽSk

)
︸ ︷︷ ︸

=0, non-trading sellers under x̃

.

Subtracting the payoffs under x̃ from those under x∗ results in(
η∑
i=1

(vii − p̄i) +
m∑
i=1

(
p̄i − vSi

))
−

(
µ∑
k=1

(ṽkk − p̄k) +
m∑
k=1

(
p̄k − ṽSk

))

=

η∑
i=1

(vii − p̄i)−
µ∑
k=1

(ṽkk − p̄k) =
m∑
j=1

n∑
i=1

(vij − p̄j) · x∗ij −
m∑
j=1

n∑
i=1

(vij − p̄j) · x̃ij.

Note that
∑m

i=1(p̄i − vSi ) =
∑m

k=1(p̄k − ṽSk ) as renaming the sellers results in a per-
mutation ṽS of vS. Thus, asking for efficiency when bidders follow σ∗ in the case of
vS ≥ 0 can be reduced to a comparison of bidders’ payoffs. This has been considered
above. �

Upwards deviations in prices may result in an inefficient assignment x∗.

Proposition 3.5 Deviations from p̄∗ may result in an inefficient assignment.
In this inefficient assignment, the sum of payoffs is at least37∑

i∈N

∑
j∈M

(
(vij − vSj ) · xeffij

)
− (min{n,m} − 1) · ι.

Proof of Proposition 3.5: The first statement is proved by an example with in-
crement ι = 0.5. In Table 3.2, bidders’ valuations are presented twice. The respective
valuation for the item won by a bidder is bold and in italics. Beneath each (of the
identical) valuation matrices, two exemplary outcomes are described by the winning
bidders Bh, the final high bids bh, the price vector p∗, and the price determining
bidders BPD. The resulting outcome x∗ on the left side of the example equals the

37Bertsekas (1992) and Bansal and Garg (2005) find a bound of min{n,m} · ι for auction algorithms
similar to ours except that they are both with English (pay your bid) auctions.
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efficient assignment xeff , whereas on the right hand side we have a deviation from
xeff . Figures 3.4 and 3.5 illustrate the examples on the left and the right side of Table

Table 3.2: An example where accumulated deviations may lead to an inefficient out-
come.

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5
B1 8 8 0 0 0 B1 8 8 0 0 0
B2 0 10 10 0 0 B2 0 10 10 0 0
B3 0 0 15 15 0 B3 0 0 15 15 0
B4 0 0 0 16 16 B4 0 0 0 16 16
B5 17 0 0 0 18 B5 17 0 0 0 18
B6 5 0 0 0 0 B6 5 0 0 0 0
Bh B1 B2 B3 B4 B5 Bh B5 B1 B2 B3 B4
bh 5.5 5.5 5.0 5.0 6.0 bh 5.5 5.0 5.5 6.0 6.5
p̄∗ 5.0 5.0 5.0 5.0 5.0 p′′ 5.0 5.0 5.5 6.0 6.5
BPD B6 B1 B2 B3 B4 BPD B6 B2 B3 B4 B5
Bh B1 B2 B3 B4 B5 Bh B5 B1 B2 B3 B4
bh 5.5 5.0 5.0 5.0 4.5 bh 5.5 5.5 5.5 6.0 6.0
p′ 5.0 5.0 4.5 5.0 4.5 p′′′ 5.0 5.5 5.5 5.5 6.0
BPD B6 B1 B2 B3 B4 BPD B6 B2 B3 B4 B5

3.2, respectively. Remember, arrows with double arrowheads indicate that the price
determining bidder prefers the auction in which he determines the price over the auc-
tion that he wins by one increment. As before, dashed arrows indicate the opposite
preference (for the auction he wins). In Figure 3.5, the dotted arrow to bidder B1

means that although he is not the price determining bidder, he has these approxi-
mate indifference characteristics. The deviation from (xeff , p̄∗) may increase, remain
constant, or decrease by an increment between adjacent auctions on the indifference
path (auctions separated by a single bidder). These deviations are those described
in Lemmas 3.2 and 3.3. In the outcome on the right side of Figure 3.4, B2 is worse
off winning A2 than A3, the auction in which he determines the price. B3 prefers
winning A3 to winning A4, and B4 would improve his payoff by buying the item in
A5. In this example, p′ = (5, 5, 4.5, 5, 4.5). The deviation caused by B3 compensates
for the downwards deviation caused by B2. B4 causes another downwards deviation.
This example shows how combinations of deviations as described in Lemmas 3.2 and
3.3 may occur on an indifference path such that the resulting prices deviate from p̄∗.
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Figure 3.4: Efficient assignment xeff at prices p̄∗ and deviating prices p′ in the example
in Table 3.2.

Figure 3.5: An inefficient assignment xineff at prices p′′ and p′′′ that may arise in the
example in Table 3.2.

Note that the last price on the path that is determined by an external bidder is
always equal to the price given by p̄∗.

The right-hand side of Table 3.2 and Figure 3.5 exemplify another kind of devia-
tion: an accumulation of upwards deviations that results in an inefficient assignment.
The valuation matrix is the same as that considered in Figure 3.4. The assignment
is inefficient. This is a result of the accumulated deviations that are reflected in
p = (5, 5, 5.5, 6, 6.5). The dotted arrow from A1 to B1 in the figure indicates B1’s
indifference. The arrow is not solid because B1 is not the price determining bidder
in A1. We see that if B5 is the last bidder to submit a bid, then he prefers bidding
in A1 at a standing bid of 5 to bidding in A5 at a standing bid of 6.5. The accumu-
lation of upwards price deviations leads to a decision of bidder B5 that determines
his final payoff because all winning bidders are tied to some auction and B6 is not
bidding anymore. The cascade of upwards deviations may for some bidder (in our
case B5) result in the perceived attractiveness of an auction that he does not win in
any efficient allocation because less upwards deviations have accumulated there.

We now turn to the second statement in Proposition 3.5. We allow for deviations
from p̄∗ so that we can investigate inefficient assignments. As we know from Proposi-
tion 3.4, the reference price vector p̄∗ guarantees an efficient assignment x∗ = xeff . In
Table 3.2 an example of an inefficient assignment x∗ is given. A precondition for an

74



Chapter 3 The Multiple-Auctions Game

inefficient assignment is an internal price determining bidder with vij − p∗j < vik − p∗k
when x∗ij = 1. We now construct an outcome (x∗, p∗) with the maximum number of
such price deviations.

We assume n > m38 and that all items are sold. Thus, we can rearrange bidders and
items, such that B1 wins A2, B2 wins A3, and so on for the last m− 1 auctions, and
Bm wins A1. We assume that B2 determines the price in A2, B3 that in A3, and so
on, but the price in A1 is determined by an external price determining bidder B(m+1)

. The existence of at least one non-internally determined price (by an external price
determining bidder or by the seller’s starting price) is assured by Lemma 3.5. We want
to construct the maximum number of deviations. Because deviations only occur for
internal price determining bidders, we assume the maximum number of m−1 internal
price determining bidders. From Lemma 3.6 we know that either B(m + 1) or Bm
submits the final bid in the game. If Bm submits the last bid in the game, then we
know that he does not prefer a different auction in the final outcome. If B(m + 1)

submits the last bid in the game in A1, the induced increase in the standing bid in
A1 leads to the preference of Bm for Am over A1 in the final outcome. We know that
Bm’s price determining bid in Am was submitted before his last bid in A1. Since
Bm’s price determining bid in Am causes bidder B(m− 1) to prefer A(m− 1) by an
increment over Am in the final outcome, we know that B(m−1) submitted his bid in
Am before Bm (see Lemma 3.3) and his bid in A(m− 1) before that in Am, because
he wins Am. Arguing like that, we find that B1 submitted his bid in A2 before B2

and his bid in A1 before his final bid in A2. Since after this final bid of B1 in A2

the standing bid in A1 increased, caused by Bm’s last bid in the game, bidder B1

cannot prefer A1 over A2 in the final outcome. From this argument, we find that all
winning bidders aside from B1 prefer their alternative auction by an increment over
the auction they win. With this, we get the maximum amount of deviations that may

38The inverse case, n ≥ m, can be investigated analogously. The same conclusions are valid for the
case where not all items are sold due to high starting prices.
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cause an inefficiency

v12 − p∗2 = v11 − p∗1 ≥ v1k − p∗k for all k ∈M

v23 − p∗3 + ι = v22 − p∗2 ≥ v2k − p∗k for all k ∈M
...

vm−1,m − p∗m + ι = vm−1,m−1 − p∗m−1 ≥ vm−1,k − p∗k for all k ∈M

vm1 − p∗1 + ι = vmm − p∗m ≥ vmk − p∗k for all k ∈M

0 = vm+1,1 − p∗1 ≥ vm+1,k − p∗k for all k ∈M

0 ≥ vm+2,k − p∗k for all k ∈M
...

0 ≥ vnk − p∗k for all k ∈M .

Summing up the left- and right-hand sides of the first m equations, respectively, we
get

m−1∑
j=1

(vj,j+1 − p∗j+1) + vm1 − p∗1 + (m− 1)ι =
m∑
j=1

(vjj − pj).

If we now take the inequalities into account in the same way as we did above, we
find that

∑m
j=1(vjj − pj) is the value of an efficient assignment. Thus, we constructed

a case with the maximum sum of deviations and can restrict the range of the inef-
ficiency to (m − 1)ι in the case n > m. With n ≤ m, the result of an equivalent
analysis is an inefficiency of size (n− 1)ι. �

Thus, upwards deviations in prices from p̄∗ may cause inefficient assignments. This
may only happen under certain constellations of bidders’ valuations: accumulated
deviations, which may occur on a path of internal price determining bidders, increase
the price in j, causing the winner of j under xeff to submit a winning bid in an
auction k 6= j. At all prices above the reference prices, the number of active bidders
is never higher than the number of items sold under the efficient assignment. Thus, all
active bidders hold a high bidder position. For components of the graph (separated
indifference paths), we can state the following. At prices below the reference prices,
the accumulated price deviations cannot lead to an inefficient assignment (in that
component): there would be at least one unmatched active bidder, who, with his
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bid, initiates bidding activity that resolves the inefficient assignments. Furthermore,
deviations may lead to a connection of separated indifference paths.

3.2.2.4 Restricting the Size of the Increment

From Propositions 3.3 and 3.4, we know the maximum sum of upwards deviations
from p̄∗ and we know that, without any deviation in prices, the assignment is effi-
cient. Together with Proposition 3.5, this means that a restriction of the increment
ι can assure an efficient assignment x∗. The following proposition establishes this
supposition.

Proposition 3.6 An assignment x∗ that results from playing σ∗ with ι < 1/min{n−
1,m− 1} is efficient, i.e., x∗ = xeff .

Proof of Proposition 3.6: We refer to the argument and inequalities in the proofs
of Propositions 3.4 and 3.5. From these proofs we know that we can reduce the
question to a comparison of bidder payoffs. From Lemma 3.4 we know that for every
i either

∃ j such that x∗ij = 1 and ui(x
∗, p∗) = vij − p∗j + ι ≥ vik − p∗k ∀ k ∈M or

x∗ij = 0 ∀ j and ui(x
∗, p∗) = 0 ≥ vik − p∗k ∀ k ∈M.

(3.3)
Following Proposition 3.3, the number of equalities in the first row is at most min{n−
1,m− 1}. Summing up both sides of the inequalities (as explained and done before,
for example, in the proof of Proposition 3.5) we find for a comparison of (x∗, p∗) with
any alternative feasible assignment x′ at the same prices p∗ that in the worst case
(when the maximum of min{n−1,m−1} winning bidders prefer the auction in which
they are the price determining bidder over the auction they win at the final prices p∗)∑

i∈N

∑
j∈M

vijx
∗
ij + min{n− 1,m− 1} · ι−

∑
j∈M

p∗j ≥
∑
i∈N

∑
j∈M

vijx
′
ij −

∑
j∈M

p∗j . (3.4)

Note that in Equation (3.4) equality is not possible, because the valuations and,
therefore, the sums of valuations are integers. The sum of deviations, min{n−1,m−
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1} · ι, is smaller than one by assumption (ι < 1/min{n− 1,m− 1}). Thus,∑
i∈N

∑
j∈M

vijx
∗
ij + 1 >

∑
i∈N

∑
j∈M

vijx
∗
ij + min{n− 1,m− 1} · ι

>
∑
i∈N

∑
j∈M

vijx
′
ij.

From this we get
1 >

∑
i∈N

∑
j∈M

vijx
′
ij −

∑
i∈N

∑
j∈M

vijx
∗
ij.

Since valuations are integers we can conclude that∑
i∈N

∑
j∈M

vijx
∗
ij ≥

∑
i∈N

∑
j∈M

vijx
′
ij. (3.5)

Since an efficient assignment xeff exists, it is either x∗ = xeff or it exists x′ = xeff . From
Equation 3.5 we see that if x′ = xeff , then

∑
i∈N
∑

j∈M vijx
∗
ij =

∑
i∈N
∑

j∈M vijx
′
ij and

both x∗ and x′ are efficient. We considered the case of the maximum number of ι-
deviations from indifference. Clearly, this argument is valid for all other outcomes
(x∗, p∗) with fewer deviations. Thus, we have shown the result.

For a discussion of the case of several efficient assignments, see Appendix A.3. From
there we know that in all efficient assignments, all bidders and sellers have the same
payoff. �

Thus, the precondition for a resulting inefficient assignment (i.e., the accumulation
of price deviations from p̄∗ such that a bidder finally bids in an auction that he is not
assigned to under an efficient assignment) cannot be fulfilled with this restriction on
the increment ι. From Proposition 3.3 and the knowledge that all deviations from p̄∗

are accumulations by ±ι from the price in a neighboring auction on an indifference
path, we get the following corollary.

Corollary 3.3 With ι < 1/min{n−1,m−1}, all prices p∗j are in the range p̄∗j +1 >

p∗j > p̄∗j − 1. For ι→ 0, p∗j → p̄∗j .

Thus, by restricting ι, we assure an efficient outcome and prices that are close to
the reference outcome. However, the potential instability of an outcome (x∗, p∗)

as described in Section 3.2.2.1 is not prevented. In the following, we concentrate
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on the outcome (xeff , p̄∗) and neglect deviations thereof. Furthermore, we neglect
the potential that the bidder winning auction j prefers another auction k by one
increment ι. With ι small enough, every outcome from playing according to σ∗ is
approximately equal to the reference outcome, independent of the realization of the
bidding order and the bidders’ randomized choice rules (part (3) of σ∗i ).
Note that the price deviations may be reduced by additional selection rules in the

strategy σ∗i . For example, Peters and Severinov (2006) present a rule that assures
a unique market price when bidders have homogeneous valuations, i.e., for every i,
vij = vik for all j, k ∈ M . Their rule does not help in our context. Other rules are
conceivable. For example, an indifferent bidder may bid preferably in the auction
where his valuation is highest (because higher valuations have a better chance of
being part of the efficient assignment), or in the auction with the higher auction
number (which would then have to be made public) to avoid inefficiencies caused by
deviations on a closed indifference path. These rules avoid some of the deviations
but not all of them. For example, inefficiency may occur if we introduce the rule to
bid in the auction with the lower auction number, as the upper outcome on the right
in the example in Table 3.2 shows. There, B5 prefers A1 over A5 by an increment
when he submits his final bid. It seems that in our environment with heterogeneous
unit-demand preferences, it is not possible to collect or infer the information needed
to differentiate between auctions to assure that the outcome does not deviate from
(xeff , p̄∗). Thus, we allow for the deviations but restrict the increment to at least
avoid inefficient assignments.

3.2.2.5 Analyzing the Reference Outcome (x̄∗, p̄∗)

From the former analysis, we know that x̄∗ = xeff and, with ι < min{n,m} − 1, all
prices p∗ are in the range p̄∗ + 1 > p∗ > p̄∗ − 1. Furthermore, (x̄∗, p̄∗) is stable. To
see this, note that the deviations, which cause unstable outcomes (x,p), do not occur
under (x̄∗, p̄∗).
The following definitions of quasi-competitive prices and competitive equilibrium

are based on those given in Roth and Sotomayor (1990, p. 209).

Definition 3.9 (Quasi-competitive prices) A price vector p is called quasi-compe-
titive if a feasible assignment x ∈ X exists such that

(1) xij = 1 ⇒ j ∈ arg maxk{vik − pk}
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(2) xij = 0 for all j ⇒ maxk{vik − pk} ≤ 0.

Then, x is compatible with p. Thus, at a quasi-competitive price vector every buyer
can be assigned to an item in his demand set and a bidder that does not win an
auction is either indifferent between winning and not winning at p or strictly prefers
not to buy.

Definition 3.10 (Competitive equilibrium) A feasible outcome (x, p) is a com-
petitive equilibrium if

(1) p is quasi-competitive,

(2) x is compatible with p, and

(3) if xij = 0 for all i, then pj = b0
j .

In the literature, a competitive equilibrium is also called Walrasian equilibrium. We
call quasi-competitive prices p that are part of a competitive equilibrium (x, p) com-
petitive prices.

Proposition 3.7 The outcome (x̄∗, p̄∗) is a competitive equilibrium.

Proof of Proposition 3.7: Let us first show that the prices p̄∗ are quasi-competitive.
Following σ∗i , no bidder wins more than one auction. Thus, x̄∗ is feasible. For every
bidder i, vij− p̄∗j ≥ vik− p̄∗k for x̄∗ij = 1. Thus, j is in i’s demand set and Condition (1)
of Definition 3.9 is fulfilled for all winning bidders. A losing bidder h does not stop
bidding until vhj − bsj ≤ 0. Therefore, vhj − p̄∗j ≤ 0 for losing bidders h (Condition (2)
of Definition 3.9).
Since in x̄∗ every bidder is assigned to an auction in his demand set, x̄∗ is compatible

with the resulting prices.
An unsold item j has the price pj = b0

j . This can easily be seen from the rules
of the auction since any such auction j has not received any bids. As soon as any
bidder submits a bid in an auction the item will be sold because withdrawing bids
is not allowed. Thus, no unsold item has a price above (or below) the starting price
and Condition (3) is also fulfilled. �

Gul and Stacchetti (1999, Lemma 6) show that this result holds more generally.
They prove for more general substitutes valuations (“gross substitutes”) that if p is any
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competitive price vector and x is any efficient assignment, then (x, p) is a competitive
equilibrium.

The remainder of this section reproduces important results that go back to Demange
(1982), Leonard (1983), and Demange et al. (1986) for the multiple-auctions game.
First, a result of Demange et al. (1986, p. 868, Theorem 1) for their auction mecha-
nism is also valid in the multiple-auctions game.

Proposition 3.8 Prices p̄∗ are minimum competitive prices.

Proof of Proposition 3.839: Assume that q is a quasi-competitive price vector and
p̄∗ � q. That is, there exists at least one auction j where p̄∗j > qj. We show that if p̄∗

(which is reached when following σ∗) is a vector of quasi-competitive prices (which
is the case according to Proposition 3.7), then q may not be competitive. To make
clear to which stage in the auction we refer, we denote by bs,t the vector of standing
bids at stage t. In the beginning, we have b0

j = vSj . Thus b0 ≤ q. Then there exists
an auction j and a stage t+ where we observe for the first time a standing bid above
q, i.e., bs,tj ≤ qj < bs,t

+

j and bs,tk = bs,t
+

k ≤ qk for all k 6= j. When this happens, there
exists a high bidder Bh(j) := i and a bidder who determines the standing bid bs,t

+

j

that we denote by h (remember, h 6= i). Bidder i has bid at least bs,t
+

j and when he
chose this bid his second best auction, denoted by l, was at most as good as auction
j. Thus, if nothing has changed in that second best auction l, he may be indifferent
between auction j at price bs,t+ and auction l, or prefer j: vij − bs,t

+

j ≥ vil − bs,t
+

l .
Additionally we have vij − bs,t

+

j < vij − qj and vik − bs,t
+

k ≥ vik − qk for all k 6= j.
Thus, vij − qj > vij − bs,t

+

j ≥ vik − bs,t
+

k ≥ vik − qk. Bidder h has bid bs,t
+

j in auction
j in or before round t+. He chose his bid in auction j such that he was indifferent
between vhj − bhj (= vhj − bs,t

+

j ) and his second best auction at the current standing
bid. So we know that vhj − bs,t

+

j ≥ vhk− bs,t
+

k for all k 6= j. Relating this to q, we find
vhj− qj > vhj− bs,t

+

j ≥ vhk− bs,t
+

k = vhk− qk. It follows that we have two bidders who
both prefer winning auction j to winning any other auction when the price in auction
j is higher than qj and prices in all other auctions k are lower than or equal to qk.
Thus, at q there also exists at least two bidders who strictly prefer winning auction
j to winning any other auction and, therefore, q cannot be a quasi-competitive price
vector. �

39The proof follows the idea of Demange et al. (1986) as stated in Roth and Sotomayor (1990).
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Corollary 3.4 (xeff , p̄∗) is the bidder-optimal competitive equilibrium.

The competitive equilibrium with the lowest price is the bidder-optimal equilibrium.
That is, at (xeff , p̄∗) all bidders get their maximum payoff compared to all other
competitive equilibria. For more on the existence of a bidder-optimal competitive
equilibrium, see Shapley and Shubik (1971) or Roth and Sotomayor (1990).

Another important result that may now be reproduced for the multiple-auctions
game is that the minimum competitive prices are Vickrey prices.

Prices Resulting from σ∗ are Vickrey Prices We claim that prices p̄∗ are
Vickrey prices, i.e., every bidder has to pay a price that equals the loss of the other
bidders caused by his entry into the game. In other words, prices are such that i’s
utility is equal to the increase in the value of the grand coalition caused by his entry.

Remember, the value of a bidder-seller coalition is40

c(S, T ) = max
x∈X

∑
i∈S

∑
j∈T

(vij − vsj ) · xij for ∅ 6= S ⊆ N and ∅ 6= T ⊆M

(see Section 2.1, p. 22). Let c−i(N,M) denote the value of the grand coalition without
i’s contribution to c(N,M). That is,

c−i(N,M) =

{
c(N,M)− vij for xeffij = 1

c(N\{i},M) if xeffij = 0 for all j ∈M.

With this, we define bidder i’s Vickrey payment pVi as follows (see Definition 2.18).

Definition 3.11 (Vickrey payment pVi ) Bidder i’s Vickrey payment is

pVi = c(N\{i},M)− c−i(N,M).

That is, for winning bidders i the price pVi = c(N\{i},M)−(c(N,M)−vij) for xeffij = 1

and for losing bidders i pVi = 0. Because i’s payoff is given by ui(pV , xeff ) = vij − pVi
for xeffij = 1 or ui(pV , xeff ) = 0, the Vickrey payoff is represented by the following
formula.

40In the following, we write c(S, T ) instead of c(S ∪ T ) where S ⊆ N and T ⊆M .
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Definition 3.12 (Vickrey payoff) Bidder i’s Vickrey payoff is

ui(p
V , xeff ) = c(N,M)− c(N\{i},M).

Since each bidder wins at most one auction, we can in this environment relate the
Vickrey prices uniquely to auctions. Therefore, we also define Vickrey prices pVj .

Definition 3.13 (Vickrey prices pVj ) Prices pV are Vickrey prices if

• pVj = c(N\{i},M) − (c(N,M) − vij) for all j ∈ M and for the i ∈ N with
xeffij = 1, and

• pVj = vSj , otherwise.

In this definition, we artificially introduce Vickrey prices pVj for items j that are not
sold. Note that we similarly defined p̄∗j = vSj if j is not sold.

We use Vickrey payments and Vickrey prices pV interchangeably when it is clear
from context which we mean.

Proposition 3.9 The prices p̄∗ are Vickrey prices: p̄∗j = pVj for j.

The proof follows that of Demange (1982). We draw upon the presentation in Roth
and Sotomayor (1990). Another early proof of incentive compatibility is due to
Leonard (1983).
Proof of Proposition 3.9: Suppose xeff is an optimal assignment for (N , M ,
V ,vS). Construct a graph with nodes N ∪M and a directed edge from i ∈ N to
j ∈ M if xeffij = 1. If bidder i is indifferent between the auction j that he wins and a
different auction k at p̄∗, then add a directed edge from k to i.41 WE consider paths
given by directed edges in this graph.

Let j be an auction with price p̄∗j larger than b0
j on such a path. Then, there exists

a further directed path starting at j and ending at a bidder who buys nothing or
at an auction l with price p̄∗l equal to its reservation price b0

l . To see this, consider
first the bidders on the path. By definition of the path, it ends if a losing bidder
is reached (who, being indifferent between winning an auction and a payoff of zero,

41For example, if bidder i determines the price in auction k, then he is indifferent in this way.
There may also be other indifferent (and, depending on the bidding sequence, potentially price
determining) bidders.
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is a potential external price determining bidder) and it does not end if the bidder
wins an auction (he is indifferent between his payoff and another auction and, thus,
is a potential internal price determining bidder). Thus, the path cannot end at an
internal price determining bidder. Next, consider an auction l with p̄∗l > b0

l . In such
an auction, a price determining bidder exists, and, thus, the path may not end. On
the other hand, if l is sold at p̄∗l = b0

l then a bidder who is indifferent may exist but
the path may also end at auction l. An unsold auction l has p̄∗l = b0

l and no incoming
link. The node may be isolated or an indifferent bidder exists. Thus, either a losing
bidder or an auction l with p̄∗l = b0

l is at the end of a path starting at j.
On the other hand, such a path cannot start at an auction j with price larger than

b0
j . Otherwise, j would have a price determining bidder but no winner. However, for
every auction with price larger than b0

j we have Bh(j) 6= j and thus, a winning bidder.
All bidders that are not reached by any path from j are not interested in buying an

item on the path starting at j at price p̄∗. Otherwise, they would have an outgoing
(as buyers) or incoming (as potential price determining bidders) edge with an auction
on the path.

Assume w.l.o.g. that bidder i1 is the winner of auction j1 with pj1 > b0
j1
. Thus,

there exists at least one directed path from j1 that ends at a bidder ik or an auction
jk, k ≥ 1, as described above. Suppose that the path consists of the following nodes
in the given order:

• j1, i2, j2, i3, . . ., jk−1, ik, or

• j1, i2, j2, i3, . . ., jk−1, ik, jk and ik wins jk at price p̄∗jk = b0
jk

Now consider the assignment x′ under (N\{i1},M, V, vS) with x′i2j1 = 1, x′i3j2 =

1, . . ., x′ikjk−1
= 1 and leave jk unassigned if it is on the path (see Figure 3.6 for

an illustration).42 In addition, all other matchings in x′ are equal to the original
assignments under xeff for all i ∈ N\{i1, . . . , ik}.
We continue by showing that (x′, p̄∗)43 is a stable outcome of the game without i1,

thus it is an optimal assignment (by Corollary 8.8 of Roth and Sotomayor (1990),
p. 207) and the related sum of payoffs is equal to the value of the characteristic
function. By the definition of stability (see Definition 2.23), the outcome (x′, p̄∗) is
42For example, this reassignment x′ might be to assign every good to the bidder who determines its

price under xeff .
43Note that price vector p̄∗ is unchanged.
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Figure 3.6: Illustration of indifference paths in the proof of Proposition 3.9.

stable if all payoffs are larger than or equal to zero and u′i + uS,′j ≥ dij for all i, j,
with u′i := ui(x

′, p̄∗) and uS,′j := uSj (x′, p̄∗). Note that under (x′, p̄∗) u′i = u∗i for all
i 6= i1 because those bidders that are reassigned under x′ are indifferent between
their assigned item under (xeff , p̄∗) and (x′, p̄∗). With this, the individual rationality
condition is clearly satisfied because under (xeff , p̄∗) all bidders i 6= i1 and all sellers
have payoffs larger than or equal to zero and their payoff does not change. Secondly,
assume that i wins k under x′ and j under xeff . Then u′i + uS,′l = vik − p̄∗k + p̄∗l − vSl =

vij − p̄∗j + p̄∗l − vSl ≥ vil − p̄∗l + p̄∗l − vSl = dil because vik − p̄∗k = vij − p̄∗j ≥ vil − p̄∗l for
all l, including l = j and l = k (for k we have u′i + uS,′k = dik). Therefore, (x′, p̄∗) is
stable and thus x′ is an optimal assignment. We find that

c(N\{i1},M) =
∑

i∈N\{i1},j∈M

dijx
′
ij.

Since u′i + uS,′j = dij for x′ij = 1, u′i = u∗i for all i 6= i1, and uS,′j = uS,∗j for all j, it
follows that∑
i∈N\{i1},j∈M

dijx
′
ij =

∑
i∈N\{i1}

u′i +
∑
j∈M

uS,′j =
∑
i∈N

u∗i − u∗i1 +
∑
j∈M

uS,∗j = c(N,M)− u∗i1

and thus we have
u∗i1 = c(N,M)− c(N\{i1},M).

Together with u∗i1 = vi1j1 − pj1 this results in

p̄∗j1 = vi1j1 − ui1 = vi1j1 − c(N,M) + c(N\{i1},M)

= c(N\{i1},M)− (c(N,M)− vi1j1) = pVj1 .

�
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Let us mention some properties of the cooperative game associated with the multiple-
auctions game. The core of the multiple-auctions game equals that of the assignment
game. All payoff vectors on the grid determined by the increment size are achievable
without side payments because the only necessary transfers in the core are the prices.
Since the bidding rules of the multiple-auctions game restrict the set of prices, the
remaining core payoff vectors are only achievable via side-payments. However, all
corners (extreme points of the simplex) of the core do not require side-payments.
This holds in particular for the bidder-optimal (and the seller-optimal) outcome in
the core.

3.2.3 Equilibrium Analysis

We show that the strategy combination σ∗ is a perfect Bayesian epsilon-equilibrium
(ε-PBE) of the multiple-auctions game Γa.
If not stated otherwise, all outcomes considered in this section are reference out-

comes (see Definition 3.8). This implies that we assume ι < 1/min{n− 1,m− 1} as
discussed in Section 3.2.2.4. Deviations from the reference outcome, which are due to
the random factor in bids and bidding order, are analyzed in detail in Section 3.2.2.
All prices may deviate from the reference prices by at most ± ι ·min{n− 1,m− 1},
but the assignment is efficient. As a consequence, at outcome (x∗, p∗) bidders may
exist that prefer to win a different auction by ι. This deviation might be prevented
if they changed their randomly selected auction in case of indifference (part (3) of
σ∗i ). On the other hand, a bid in an auction outside of demand set Di may prevent
a deviation caused by another bidder, or it may cause downwards price deviations.
We do not analyze such strategic options, which may have a positive probability to
minimally increase a bidder’s payoff. We account for the deviations by solving for an
epsilon-equilibrium (see Definition 2.15). The deviations analyzed in Section 3.2.2.4
determine the size of epsilon.
In order for an assessment (σ∗, µ) to constitute a PBE of the multiple-auctions

game Γa, it is sufficient to require beliefs to be updating consistent and to apply the
one-shot-deviation principle to σ∗.44 That is, for all information sets Hi of i we have
to show that σ∗i is at least as profitable against σ∗−i as any other strategy of i that

44For definitions of these concepts, see Section 2.1.
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deviates from σ∗i only at the information set Hi. Since players are symmetric, we
consider a representative bidder i.

Prior to the equilibrium analysis, we explain some details about our assumptions
on beliefs at information sets. This is merely for the sake of completeness.

3.2.3.1 Beliefs

Beliefs µHi
of bidder i at his information sets Hi ∈ Hi are probability distributions

over the nodes in Hi. We do not specify these distributions explicitly, but merely
describe conditions that these probability distributions have to fulfill.

Let us characterize nodes y in an information set H(y). All nodes y in H(y) are
described by the same values for vS, bs, Bh, and BPD. That means that nodes in an
information set differ only with respect to the remaining characteristics V−i, o, bh,
and Ba. The relevant beliefs are therefore probability distributions over nodes that
differ with respect to the latter. Bidder i updates his beliefs (by Bayesian updating)
at Hi according to the relevant information gained during the course of the game.
In game Γa, the updating of beliefs and the consistency requirement for beliefs on

the equilibrium path result in the following restrictions on the beliefs of bidder i at
information set H t

i .

• Beliefs about current high bids:

– Prob{bh,tj ≥ bs,tj } = 1 for all auctions j with Bh,t(j) 6= i.

– Prob{bh,tj = bs,tj } = 1 for all auctions j with Bh,t(j) = j.

• Beliefs about valuations:

– Prob{vhj ≥ bs,tj } = 1 for all h and j with Bh,t(j) = h, h 6= i.

– Prob{vhj ≥ b̃hj} = 1 for all h and j with Bh,t(j) 6= h, h 6= i and b̃hj ∈ N,
where b̃hj denotes the highest bid of bidder h that i observed in auction j
up to the current stage t. Thus, 0 ≤ b̃hj ≤ bsj .

• Beliefs about active bidders:
Prob{Ba,t

h = 1} > 0 for h 6= i ∈ N if Prob{vhj ≥ bs,tj } > 0 for at least one
auction j. That is, i assigns positive probability to bidder h still being active if
he assigns positive probability to h having a valuation above the standing bid
in an auction.
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• Beliefs about bidding orders: The beliefs assign positive probability to all bid-
ding orders that are consistent with oti.

Note that all these restrictions on beliefs are consistent with bidder i’s observations
during the game. In order for beliefs to be consistent with σ∗−i, bidder i also has to
include information about an opponent’s differences between his valuations, which
this opponent uses to determine his bids.45 Since we will argue that our PBE is a
PBE for many realizations of beliefs and that the exact specification is not important,
we do not analyze beliefs in any more detail. In particular, we do not specify concrete
probability distributions over nodes in Hi. All probability distributions that are com-
patible with the described restrictions and, more restrictively, with σ∗ and updating
consistency, are feasible systems of beliefs µ for our equilibrium analysis.
Beliefs off the equilibrium path cannot be inferred from opponents’ equilibrium

behavior. The restrictions on beliefs explicitly stated above are, however, compatible
with behavior according to σ∗−i of appropriately modified opponents. In other words,
the objectively observable components vSj = b0

j , bs, Bh, and BPD at some information
set off the equilibrium path are compatible with bidders who play according to σ∗−i
with different valuations than those that are really drawn by nature. The modification
assigns the opponents these different valuations. It is possible, however, that the
bidding behavior of these modified bidders at earlier stages (before Hi) can not be
reconciled with σ∗−i. At those information sets Hi, we assume an adjustment of beliefs
such that they fulfill the restrictions above but do not have to include the information
about the differences in opponents’ valuations. We demand updating consistency of
bidder i’s beliefs at all his information sets that follow such an information set Hi

with adjusted beliefs.

3.2.3.2 A Perfect Bayesian Epsilon-Equilibrium (ε-PBE)

In this section, we prove that σ∗ combined with the appropriate beliefs constitutes
a ε-PBE. To explain why the details of beliefs do not play a role, we introduce the
concept of ex-post equilibrium before moving on to the equilibrium analysis.

45For example, if there are two items and bidder h 6= i bids bh1 = 4 in auction A1 when the standing
bids are bs = (1, 1), then i’s beliefs about h’s valuations when h is outbid and i learns his bid
should reflect the fact that h determined this bid either from vh1−4 = vh2−1 or from vh1−4 = 0
when vh1 ≥ 4.
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With strategy σ∗, the bidding order determined by nature has no influence on
the reference outcome. If an information set off the prospective equilibrium path is
reached, the outcome (x, p) that results from further play of σ∗ depends on the node
in yHi

∈ Hi that is reached. We consider the strategies σ∗h of players h 6= i, which
depend mainly on valuations vh. Thus, we write ui(x, p) = ui(σi, σ−i, v

S, V, yHi
) and

include valuations explicitly, but have the other factors specified above implicitly
included in yHi

. If σ∗i (vi) is part of a PBE, then

σ∗i (vi) ∈ max
σi

EµHi

(
ui(σi, σ

∗
−i, v

S, vi, V−i, yHi
)
)

(3.6)

for all vi and at all information sets Hi with beliefs µHi
. That is, for given beliefs µHi

over nodes yHi
∈ Hi, σ∗i maximizes i’s expected payoff if, from Hi on, all opponents

play according to σ∗−i. We do not calculate the expected payoffs, but rather show
that σ∗i is a best reply against each realization of vS and V−i for all types vi, starting
at an arbitrary node yHi

∈ Hi. Concretely,

σ∗i (vi) ∈ max
σi

ui(σi, σ
∗
−i, v

S, vi, V−i, yHi
) (3.7)

for all vi and V−i at all nodes yHi
in information sets Hi. Clearly, (3.6) follows from

(3.7) for i’s decisions at all nodes yHi
∈ Hi. Then, σ∗i is a best reply against σ∗−i for

all realizations of vS, V and o. An equilibrium with this property is also called an
ex-post equilibrium (see, e.g., Crémer and McLean, 1985). In the words of Holzman
and Monderer (2004, p. 88), a strategy builds a symmetric ex-post equilibrium if it
has the property that “if an agent assumes that the other agents use this strategy, it is
optimal for him to use it as well, regardless of the other agents’ valuations and of the
number of them who actually participate in the auction.”46 The set of ex-post Nash
equilibria of a game is a subset of the Bayes-Nash equilibria and a superset of the
ex-post dominant strategy equilibria, but in general not a superset of the dominant
strategy equilibria (Crémer and McLean, 1985). Kalai (2004) notes that the ex-
post Nash equilibria of a simultaneous move game are a superset of its extensively
robust equilibria. We extend the definition of ex-post Nash equilibrium to the case

46Note that strategy σ∗i does not depend on the number of bidders and sellers. We made no
assumption about the observability of these numbers at the beginning of the game. But it is
clear that a bidder does not know the number of active bidders and he does not know how many
bidders have valuations below vS .
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of an extensive form game with imperfect information in the manner of Peters and
Severinov (2006). Since an ex-post equilibrium does not depend on beliefs, we do not
characterize them in more detail but simply assume that they have the consistency
properties described above for feasible systems of beliefs.

With strategy σ∗ and the system of beliefs µ we can now specify the ε-PBE of the
multiple-auctions game Γa.

Theorem 3.1 (ε-PBE of Γa) The symmetric bidding strategies σ∗i for all bidders
i ∈ N and the system of beliefs µ constitute a perfect Bayesian epsilon-equilibrium of
the multiple-auctions game Γa.

We begin the proof of Theorem 3.1 with some general considerations. Then, we
show that a unilateral deviation by bidder i from σ∗ cannot lead to an improvement
for i. The next step considers all information sets off the equilibrium path, that is,
information sets that are not reached if all players play according to σ∗. Taking the
situation at the off-equilibrium information set as starting point, a unilateral deviation
by bidder i from σ∗ also does not pay. Finally, we use the one-shot-deviation principle
to argue that then no combination of deviations by bidder i can be profitable.

Lemma 3.7 If bidder i bids in auction j, this bid influences bids of bidders h 6= i

and Bh(j) 6= h who follow strategies σ∗h as follows:

• The probability that bidder h bids in auction j decreases or is unchanged. The
bid of bidder h in case he bids in auction j is unchanged.

• The probability that bidder h bids in auction k 6= j increases or is unchanged.
The bid of bidder h in case he bids in an auction k 6= j increases or is unchanged.

Proof of Lemma 3.7: The probability of a bid in auction j by bidder h depends on
the probability that j ∈ arg maxk∈M{vhk− bsk}. Clearly, this probability is negatively
influenced by an increase in bsj . When bidder i bids in auction j, bsj increases or
does not change. Thus, the probability that bidder h bids in auction j decreases
or is not influenced by i’s bid. On the other hand, this negative influence on the
probability that j ∈ arg maxk∈M{vhk − bsk} has the reverse impact on auctions k 6= j.
The probability that bidder h bids in k 6= j increases or remains the same.
According to strategy σ∗h, the magnitude of bid bhk of bidder h in auction k is

vhk − ∆h(2) or bsk + ι. The bid bhk = bsk + ι is clearly not influenced by an increase
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in the standing bid bsj . In the case k = j, the bid bhj is not influenced by a change
in bsj because choosing to bid in j implies ∆h(1) = ∆hj 6= ∆h(2) if h follows σ∗h. In
the case k 6= j, it may be that ∆h(2) = ∆hj. If the standing bid bsj increased when
i bid in j, the bid bhk would then increase too. It may also be the case that the
increase in bsj causes bidder h’s bid to change from bhk = bsk + ι to bhk = vhk −∆h(2)

if ∆hj = ∆h(1) becomes ∆hj = ∆h(2) (due to the relative impairment of auction j for
h). The argument in this case is the same as before. �

From Lemma 3.7 we can conclude that a bid by bidder i in auction j fosters
competition in auctions k 6= j and reduces competition in auction j or has no effect.
Bidder i does not know if his bid will have an effect or not. By bidding in j, i makes
auction j less attractive and the other auctions more attractive.

Unilateral Deviation on the Equilibrium Path We state and prove the follow-
ing lemma that considers only the potential equilibrium path.

Lemma 3.8 Strategy σ∗i is a best reply of i against σ∗−i for all i ∈ N .

Proof of Lemma 3.8: The proof follows the idea of Gul and Stacchetti (2000).
Bidding such that vij − pj < 0 for xij = 1 or quitting the auctions game when a

price is below i’s valuation can never be optimal because σ∗i assures ui ≥ 0. Therefore,
we only consider positive payoffs for i in what follows.
Consider unilateral deviations by i that result either in another stable outcome

or in an unstable outcome. Since the outcome (x̄∗, p̄∗) is the bidder-optimal core
outcome, there is no other core outcome where any bidder has a higher payoff and,
thus, also no stable outcome where any bidder has a higher payoff.47 Therefore, a
unilateral deviation that results in a stable outcome cannot be better for i.

Next, suppose i’s unilateral deviation leads to unstable payoffs (u(x′, p′), uS(x′, p′))

associated with an unstable outcome (x′, p′). The instability may only be due to
0 ≤ vik − p′k < maxl 6=k∈M{vil − p′l} for x′ik = 1 because σ∗h avoids instabilities for
bidders h 6= i in the reference outcome. Let j ∈ M be the auction that i wins
in the outcome (x̄∗, p̄∗), i.e., x̄∗ij = 1. Furthermore, replace vi by ṽi with ṽil = vil

for l 6= k and ṽik = dmaxl∈M{vil − p′l} + p′ke > vik. That is, ṽik is an integer

47Remember that we analyze reference outcomes and that, therefore, the set of stable outcomes
equals the set of core outcomes.
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equal to maxl∈M{vil − pl} + p′k or the next highest integer. With valuation ṽi, the
outcome (x′, p′) is stable and prices are competitive prices, but possibly not minimum
competitive prices. Therefore,

p′k ≥ p̃∗k, (3.8)

where p̃∗k denotes the minimum competitive price in the economy where i’s valuation
is replaced by ṽi. Let p̃Vi and p̃Vk denote i’s Vickrey payment and the Vickrey price
for item k if i bids ṽi, respectively. They are identical because x̃∗ik = 1. Since the
Vickrey price equals the minimum competitive price, we have

p̃∗k = p̃Vk = p̃Vi . (3.9)

On the other hand, if i bids according to σ∗i and vi in the multiple-auctions game, he
wins j in the outcome (x̄∗, p̄∗) and thus also in the Vickrey outcome. Since p̄∗j is the
minimum competitive price, we have

p̄∗j = pVj = pVi . (3.10)

Now, consider bidding ṽi instead of vi as a deviation from truthful bidding in a Vickrey
auction. Since bidding truthfully is a weakly dominant strategy, we know that

vik − p̃Vi ≤ vij − pVi . (3.11)

From (3.8), (3.9), (3.11), and (3.10) it follows that

vik − p′k ≤ vik − p̃∗k = vik − p̃Vi ≤ vij − pVi = vij − p̄∗j .

Thus, ui(x′, p′) = vik − p′k ≤ vij − p̄∗j = ui(x̄
∗, p̄∗).

Hence it follows that no unilateral deviation from σ∗i is profitable against σ∗−i.
�

We call the paths in the game tree that result from the play of σ∗ equilibrium paths.

Unilateral Deviation at an Information Set Hi Off the Equilibrium Path
We consider an arbitrary information set Hi and investigate if bidding according to
σ∗i at Hi is a best reply to σ∗−i. That is, we assume that all bidders h 6= i follow σ∗h

92



Chapter 3 The Multiple-Auctions Game

from Hi on. As alternatives for bidder i, we consider only behavior strategies that
deviate from σ∗i solely at Hi.

An information set Hi at a stage t of the game contains nodes which are character-
ized by the same standing bids bs, high bidders Bh, price determining bidders BPD,
and history h(i)t.

At an information set Hi where i has a choice between actions, he is still active
(i.e., i ∈ Ba) and he does not hold any high bidder position. Not bidding when σ∗i
prescribes i to bid results in quitting the game with a payoff of zero, but an increase in
i’s payoff at no risk (of decreasing it) is possible. Thus, bidding in this case is optimal.
On the other hand, bidding when σ∗i prescribes i not to bid (i.e., if ∆i(1) < 0) means
risking a loss without having a chance of a positive payoff. Then, i’s best reply is to
quit the game (by not bidding).

Before we discuss where and how much to bid in deviations from σ∗i , we look at
differences between information sets on and off the equilibrium path. If some Hi off
the equilibrium path is reached, at least one bidder has bid differently than prescribed
by σ∗. This may result in a constellation of price determining bidders, standing bids,
high bids, high bidders, or a set of active bidders not consistent with an equilibrium
path. The consequences of each of these elements on further play by bidders h 6= i are
as follows. The identity of a price determining bidder has no impact. The standing
bid may affect the selection of an auction and the height of future bids. Since bid
withdrawals are not allowed, the current standing bids at Hi have to be considered
as the given lowest possible prices. For the same reason, the current high bids bh

at Hi cannot decrease. If an auction is not in the demand set of its high bidder
or if the standing bid increases such that the item leaves the demand set, we call
the preliminary assignment of the high bidder to the auction a (preliminary) mis-
assignment.

The strategy σ∗h avoids further mis-assignments of any bidder h. None of i’s ac-
tions can induce a bidder h 6= i to become mis-assigned. Therefore, no further
mis-assignment may occur.
A preliminary mis-assignment of h to j at Hi may lead to the omission of bids

of some of the mis-assigned bidder h compared to the situation without his mis-
assignment. Moreover, it may cause more and higher bids in auctions l 6= j by other
bidders (Lemma 3.7). Either it becomes a final mis-assignment if h is not outbid or
h is outbid and the mis-assignment is dissolved.
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Let us consider i’s impact on dissolving the mis-assignment of h in j. We omit the
case in which σ∗i prescribes i to outbid h in j because this is considered later. Instead,
we concentrate on the possibility that i can prevent a bidder g from outbidding h.
Note that it can never be profitable for i to induce a bidder g to outbid a mis-assigned
bidder h because this may lead to additional bids by h. Now, if i wants to prevent a
bid of g that would outbid h in j, he has to decrease the probability that g bids in j or
decrease g’s bid in j. From Lemma 3.7, the probability that g bids in j decreases with
a bid in j and increases with a bid in k 6= j. Thus, i cannot decrease this probability
with a bid in k. A bid in j that does not outbid h but increases the standing bid
prevents bids that would be below h’s high bid anyway (and thus have no impact on
the relevant bid of g). Not bidding is not a profitable option for i either because this
is an exit decision. Thus, i has no possibility of reducing or preventing any bid that
would correct a mis-assignment.

Before, we classified some possible deviations from σ∗i as unprofitable. Now, we
consider the remaining conceivable deviations by taking a different point of view. We
know that a deviation on the equilibrium path does not pay. For the rest of the
analysis, we describe the game tree following Hi as part of an equilibrium path of a
manipulated game Γ̃a, where Ṽ−i replaces V−i and Ñ replaces N .

First, all bidders that are not active anymore at Hi are deleted from N if they are
not price determining bidder in any auction. Deleting them is possible because they
do not play a role on any path beginning at Hi. If a bidder h with h /∈ Ba is a price
determining bidder in one or several auctions j, we replace him by a virtual bidder
h̃j for each such auction j with vh̃jj

= bsj and vh̃jk
= 0 for all items k 6= j. Like the

original bidder h, these bidders are inactive, but considering game Γ̃a, bidding up to
bsj and quitting when selected to bid next time, is prescribed for h̃j by strategy σ∗

h̃j
.

Those current price determining bidders h at Hi who are still active are supplemented
by virtual bidders h̃j with valuations as described before.48 Thus, the current standing
bid bsj at Hi in each auction is characterized as the result of a bid according to σ∗.49

48Of course, these standing bids do not necessarily contradict σ∗. To avoid further differentiation,
we introduce more virtual bidders h̃ than necessary.

49Note that this kind of manipulation is incompatible with the assumption that bidders can observe
the identity of the high bidders and price determining bidders. We abstract from this problem by
either assuming that they cannot observe the identities (which is not consistent with the common
practice in most auctions) or by arguing that the identity does not play a role in the strategy σ∗
and that a deviation to a strategy that takes bidders’ identities into account does not pay off.
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Similarly, since we do not manipulate the valuations of the active bidders, their bids
on the paths starting at Hi are not changed in Γ̃a compared to Γa. Thus, we have
put Hi on the equilibrium path by manipulating the set of bidders and the valuation
matrix. The newly introduced bidders are inactive in the remainder of the game.

At information sets off the equilibrium path, mis-assigned high bidders, that is,
bidders that are current high bidder in auctions that are not in their demand set, and
deviating high bids may occur. A deviation in a high bid of h is one that cannot have
been calculated according to σ∗h. If the high bid is too low, bidder h will either be
outbid and can bid again or he will win with this bid. In both cases, the deviation is
not relevant to the resulting prices and winners. Thus, we forgo a further examination
of this case.50 The magnitude of the bid is irrelevant if the auction is in the demand
set of the winner at the final price. Thus, even if the bid is too high and bidder h wins
the auction, there is not necessarily a mis-assignment at the end. However, if h is
still the high bidder when the standing bid in j increases51 by so much that auction j
is no longer in his demand set, he becomes mis-assigned. Although the classification
as a mis-assignment is caused by bids submitted after Hi, this is similar to mis-
assigned bidders at Hi. Thus, we deal with both deviations in an analogous manner
as follows. For integrating a mis-assigned bidder h at j into the considerations, we
again introduce a virtual bidder g̃ with vg̃j = bhj (bhj denoting the high bid at Hi)

and vg̃k = 0 for k 6= j. If h is not outbid during the following bidding process, he is
deleted from the set of bidders.52 However, if h is outbid during the following bidding
process, h is not deleted. The mis-assignment may prevent the original bidder h
from bidding. However, if he is outbid, he is still an active bidder (because he had
a high bidder position) and he has the opportunity submit new bids. These bids are
consistent with those that the original bidder h would have submitted if he was not
mis-assigned. However, we assume that the bidding order does not give him the right
to bid until he is outbid in j.

With this manipulation, we introduce the bids that were too high into the game
Γ̃a such that the future bidding behavior of h is guaranteed to be described by σ∗h.
However, there is one decisive difference from the manipulations considered for the

50In fact, a strategy that equals σ∗i except for the height of the bids may also be an equilibrium
strategy. Our argument is also valid for bids between bsj + ι and bij as prescribed by σ∗i .

51Of course, the standing bids in the other auctions may also increase.
52His price determining bids and his winning bid are assured by the virtual bidders h̃ and g̃.
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case of standing bids and price determining bidders: if a bidder is mis-assigned,
the kind of manipulation of the matrix depends on whether h is outbid. That is,
at information set Hi it is not yet determined which manipulation for h will be
conducted. Therefore, which manipulated valuation matrix is relevant depends on
the bidding behavior of the other bidders, including i.

As we argued above, i cannot prevent other bidders from outbidding a mis-assigned
bidder h and it is never in i’s interest to induce others to outbid h. Thus, it remains
to consider the case that i’s own bid is decisive for dissolving a mis-assignment at
Hi. We consider the following simplified situation: all bidders with valuations lower
than or equal to the current standing bids have quit the game and all remaining
active bidders are current high bidders in one or several auctions. Thus, now that
it is i’s turn to bid, no bidder besides i is willing or able to submit a bid. If i’s
decision prescribed by σ∗i at Hi is decisive for dissolving the mis-assignment of h to
j, the relevant analysis compares outcomes where h is mis-assigned with outcomes
that result if h is outbid during the course of the auctions game. The outcomes
are unambiguous because in the game following Hi all bidders bid according to σ∗−i.
Thus, our argument for the selected simplest information set is still valid in more
complicated situations, for example, if some bidders that will quit have not quit yet
or are still willing to submit bids.

Let us compare the outcomes resulting from i’s decision at the described informa-
tion set Hi. Note that the comparison of these outcomes may be seen as a decision
between bidding against sets of bidders with different valuation matrices: one ma-
trix where the mis-assigned bidder h does not bid anymore (describing the situation
where he is mis-assigned) and another matrix where h bids according to his original
valuations.

First, note that i does not profit from dissolving h’s mis-assignment if h stays
mis-assigned under σ∗i . Dissolving the mis-assignment leads to bidding activity by
h, which, compared to the situation without new bids by h, results in weakly higher
prices.

Assume that σ∗i prescribes i to outbid h in j. Then, j is in i’s demand set. Thus,
not outbidding h in j means bidding in an auction not in i’s demand set (or, if several
auctions are in i’s demand set, i may bid in one of these auctions, but bidding there
is not considered a deviation from σ∗i ). Bidder i, when submitting a bid in j, does
not know if his bid is high enough to become the high bidder, i.e., he does not know
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if b∗ij > bhj or b∗ij ≤ bhj . Our assumption that i is decisive for dissolving h’s mis-
assignment implies that b∗ij > bhj . From b∗ij being prescribed by σ∗i , we conclude that
vij − bsj > vij − b∗ij ≥ vik − bsk for all k 6= j. Combining this with b∗ij > bhj and bsj ≤ bhj

we get
vij − bsj ≥ vij − bhj > vij − b∗ij ≥ vik − bsk. (3.12)

Therefore, whenever h is still mis-assigned to j in the final outcome, i does not
win his most preferred auction at the final prices. Hence, to investigate a possible
profitable deviation from σ∗i by not dissolving a mis-assignment, we have to compare
an unstable (and inefficient) outcome, where h wins j and i prefers to win j to his
assignment, with an outcome where h bids weakly more but i wins his preferred
auction.
Let us denote the relevant variables in the two situations as follows. If i deviates

in Hi, we denote the auction in which he bids by k and the final price vector in the
resulting outcome by p1. If i follows σ∗i at Hi, the resulting prices are given by p2. The
symbols bh and bs always refer to the situation at Hi. Remember, the mis-assigned
bidder is denoted by h. He is mis-assigned to auction j. Bidder i is supposed to bid
b∗ij in j according to σ∗i .
From this, we conclude for the auction k that i may win by deviating, using

• b∗ij > bhj ≥ bsj ,

• vij − b∗ij = maxl 6=j{vil − bsl }, and

• p1
k = bhk ≥ bsk,

that
vij − bsj ≥ vij − bhj > vij − b∗ij ≥ vik − bsk ≥ vik − p1

k. (3.13)

Note that bidder i, who deviates from σ∗i may either win k with his bid or he will
bid in j later if he is outbid in k or immediately at the stage after Hi if he does not
become high bidder in k.53 Thus, we do not have to consider i winning an auction
different from k. We also know that p2

j ≥ bhj since h is outbid by i in this case. In both
cases, since we concentrate on information sets Hi with the characteristics described
above, the bidding order in the game following Hi is determined by the order in which
53In this case, bidder i will be selected to bid again because all other active bidders are current high

bidders in Hi and, therefore, cannot bid in additional auctions.
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high bidders are outbid. That is, whenever a bidder is outbid, he is the next bidder
who may submit a bid because he is the only active bidder who holds no current high
bidder position.

If i wins k and the following play of the other bidders results in dissolving h’s
mis-assignment to j, then the deviation cannot pay for i. The bids of h, which i’s
deviation seeks to avoid, will nevertheless become relevant. Therefore, if i’s deviation
from σ∗i is profitable, then h wins j and none of the bidders who bid after i bid more
than bhj in j. That means that if i bids at Hi in k and wins k with this bid, then the
bidding dynamics that follow (in a deterministic bidding order) lead to a maximum
bid equal to bhj in j, resulting in p1

j ≤ bhj .
Assume i follows σ∗i and wins j with b∗ij. Then, from Equation (3.13), vij − b∗ij ≥

vik − p1
k so the deviation does not pay. Hence, in order for the deviation to be

profitable, i has to be outbid in j and, therefore, p2
j ≥ b∗ij. Then, dissolving h’s mis-

assignment led to a bid higher than b∗ij. That is, if h gets rid of his mis-assignment in
j, he bids in some auction l such that this bid induces a chain of bids in the auctions
that includes the bid above b∗ij in j. A chain of bids in auctions or a chain of bidders
in auctions from l to j is a visualization of the following: h bids in l, then the former
high bidder of l bids in l1, the former high bidder of l1 bids in l2 and so on, until a
bidder bids in j.54 The auction k, which i wins if deviating, cannot be part of this
chain starting at l because outbidding the high bidder in k does not lead to a bid in
j higher than bhj . On the other hand, the auction l, in which h bids if outbid in j,
may also not be part of the chain of bidders and auctions that starts at k: whenever
the high bidder in l is outbid, the reactions of the others lead to the higher bid in j.
Therefore, these two chains of auctions and bids are separable.

Hence, if h is outbid in j by i and afterwards i is also outbid in j, the auction k
still has the same high bidder and high bid as in Hi. Bidder i may still bid in k.
If a deviation in Hi leads to winning k with a bid bik, i could now win k with the
same bid bik. Therefore, we conclude that a deviation from σ∗i aiming at avoiding
the dissolution of a mis-assignment is never profitable for i. Note that we did not
exclude the possibility of further dissolved mis-assignments in the considered chains
of auctions and bidders.

54This neglects unsuccessful bids (considering the capture of a high bidder position). Such a bid is
followed by another bid of the former bidder or the end of the game if this bidder quits.
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One-Shot-Deviation Principle Since beliefs µi are required to be updating con-
sistent, the one-shot-deviation principle applies. Thus, since σ∗i is a best reply against
σ∗−i when considering only unilateral deviations at single information sets, the assess-
ment (σ∗, µ) forms a PBE of Γa.

Epsilon-Equilibrium Taking neglected deviations from prices p̄∗ due to the ran-
dom factor in the strategy σ∗ and the random bidder sequence into account, an
improvement by ι may be possible for a bidder. If he could anticipate accumula-
tions of deviations, he might be able to use such accumulations to his advantage.
Note, however, that even these manipulations cannot increase his payoff by more
than min{n − 1,m − 1} · ι < 1. We call the maximum deviations ε-deviations and
the equilibrium an ε-equilibrium.

Note that any bid between bsj + ι and bij, as described by σ∗i , would also be a best
reply. Strategy σ∗i is the strategy in this class of bids with the lowest number of
submitted bids.
Since the strategy σ∗ does not depend on beliefs about V−i, vS, and o, but is optimal

against all realizations thereof, the ε-PBE is also an ex-post equilibrium, neglecting
epsilon-deviations.55 Note, however, that for a PBE, optimal expected payoffs are
decisive (cp. Equation 3.6). Thus, it is possible that beliefs µ exist such that (σ∗, µ)

is a PBE. That is, the restriction to ε-PBE may be dispensable. Since handling
beliefs in more detail seems difficult and unlikely to lead to promising new insights,
we concentrate on the more practical approach of allowing for epsilon-deviations.

3.3 Discussion and Further Issues

We relate our results to the literature and discuss briefly some further issues.

Relating the Results to Other Models Our model fills a gap in the literature.
Albeit many related models and analyses exist, our independent second-price proxy
auction model with heterogeneous items provides new insights.

55We prefer to refer to our equilibrium as ε-PBE because the deviations would be hard to motivate
if we assumed that valuations V−i are known by i. Deviations may then be avoided. However,
as mentioned before, it is not clear if this is always in the interest of a bidder. Analyzing the
game assuming full information is also not desirable because this assumption is hard to justify.
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The multiple-auctions game is a generalization of the model of Peters and Severinov
(2006) with respect to bidders’ preferences.56 They consider only homogeneous items,
which means that a bidder’s valuations for all items are identical. With heterogeneous
items, the efficient outcome does not only depend on the sets of winning and losing
bidders, but on who wins which auction. Thus, the independent bidding process has
to deal with a more complex coordination or assignment problem.

In our model, we exclude the kind of impact of the increment typically considered
for single unit auctions (see Chwe, 1989; David et al., 2007; Rogers et al., 2007;
Rothkopf and Harstad, 1994) because we restrict bids to a certain grid of values.
However, in the multi-unit case, minimum bid increments evoke other problems. We
provide an upper bound on deviations and give insights into why they occur.57 Peters
and Severinov (2006) show how these deviations can be avoided in the case of homoge-
neous items. Bidders can coordinate their beliefs by observing the bidding dynamics
(changes in current high bidders and standing bids), such that the unique price vector
in every outcome in their PBE is our reference price. Their method does not extend to
the heterogeneous case. It is an open question whether a similar method exists for our
environment. Several attempts we made have not been successful. The occurrence of
deviations can be reduced, but they do not disappear completely and not for all valu-
ation matrices or bidding sequences. The decisive differences to Peters and Severinov
(2006) are that in the homogeneous items case a losing bidder’s valuation determines
all prices (even though a winning bidder may submit the price determining bid) and,
therefore, all deviations lead to prices above the minimum competitive price. These
deviations are not in the interest of any winning bidder. With heterogeneous items,
deviations may include prices below minimum competitive prices. Note that such
a lower price may even be to the advantage of a bidder in an unstable pairing. It
follows that it is not clear whether a bidder would have an incentive to avoid these
deviations, even if we found a way to coordinate exactly on our reference outcome.
In our analysis, we assume that increments are small and that bidders accept the
deviations that occur due to the increment. Thus, we solve for an ε-equilibrium.

Most related papers concentrate on Nash equilibria or do not consider strategic
bidding. Gul and Stacchetti (2000), de Vries et al. (2007), and Mishra and Parkes
(2007) describe PBE in auctions with simultaneous submission of complete demand

56And, e.g., the random bidding order.
57See Bansal and Garg (2005), Bertsekas (1992), and Demange et al. (1986), for related analyses.
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sets and central bid coordination. The solution concept that we apply is the ε-PBE.
Our equilibrium reference outcome is an efficient assignment at minimum compet-

itive prices. By following the equilibrium strategy, bidders coordinate themselves on
the bidder-optimal solution. If all bidders follow the equilibrium strategy or a similar
straightforward bidding strategy (bidding one increment above the standing bid), the
coordination problem of assigning the items to bidders efficiently is solved without a
central coordination advice (which acts similarly to a Walrasian auctioneer).

The application of the second-price rule accounts for the close relation to models
with demand bids. Second-price proxy bidding can be interpreted as indicating one
element of the demand set.58 Therefore, the multiple-auctions game is related to
the category of auctions where bidders simultaneously announce one element of their
demand set at each bidding stage (e.g., Ausubel and Milgrom, 2002; Crawford and
Knoer, 1981; Kelso and Crawford, 1982; Parkes, 1999).59 However, bidders bid asyn-
chronously and we allow for a random bidding order. Our model has these features
in common with the work of Bansal and Garg (2005), who address similar questions
on the increment problem in independent English auctions. A minimum increment
is needed for the process to proceed. This increment causes deviations because the
winning bidders have to solve a coordination problem. Thus, the predicted prices
are not unique but lie within a bounded range. Another difference from models with
demand bids and coordination by a central seller is that high bidders lose their status
only when they are explicitly outbid. If high bidders are not allowed to bid, as in our
model, strategy σ∗i is nevertheless a best reply off the equilibrium path and against
all realizations of bidders’ valuations. However, if high bidders are allowed to bid, a
bidder may hold several high bidder positions off the equilibrium path. Then, even
the extended version of σ∗i given in Appendix A.2 is not a best reply for all valuations
(see the example in the appendix).

Our model reproduces multiple bidding (by a bidder in one auction), cross-bidding,
and incremental bidding60 as part of the equilibrium strategy. Multiple and incre-

58Price bids may be seen as indicating the maximum price at which the item is still in the demand
set of the bidder in the worst case (when the other standing bids do not change).

59Milgrom and Strulovici (2009) show that in an auction with substitutes valuations and where
bidding is submitting the demand at current prices, it is enough to submit one of the demanded
packages per bidder at each simultaneous bidding stage to reach an approximate competitive
equilibrium. This is closely related to our result because the price bids submitted here mark the
maximum price at which the item is still in the demand set.

60Remember that multiple bidding refers to multiple bids by a bidder in the same auction, cross-
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mental bidding have often been considered as irrational or caused by a misunder-
standing of the auction format. Empirical studies on eBay find almost 20% cross-
bidders (Anwar et al., 2006),61 20% incremental bids, and 61% bidders with multiple
bids (Hayne et al., 2003). In a field experiment with pairs of simultaneously of-
fered items, 15.5% of participants are cross-bidders (Haruvy and Popkowski Leszczyc,
2008). Hoppe (2008a) observes 30% (in simultaneous auctions) to 60% (in overlap-
ping auctions) cross-bidders in his experiment. In the theory of Peters and Severinov
(2006) for homogeneous items, as soon as incoming bids have leveled out the dif-
ferences in standing bids among auctions, only incremental bidding occurs until the
end. In contrast, in our model, both incremental bidding and larger bidding steps
may appear in each bidding phase.

Contrary to many models that relate to Internet auctions and especially to eBay
auctions, we do not consider hard close auctions. The ending rule resembles a soft
close rule because auctions only end if no new bids are submitted. An example of an
auction site that comes close to our model is Bidshares (www.bidshares.com), where
many auctions are scheduled to end at the same time, but bidding activity within the
last 30 minutes extends the ending time.

Other Equilibria Consider the following strategy σ̂i: bid bij = b̄ in an auction j
where Bh(j) = j and j ∈ arg maxj:Bh(j)=j{vij − b0

j}, and do not bid if Bh(j) 6= j for
all j ∈ M . In other words, bid in the auction where your potential profit is highest
of those where no one has bid yet, and quit if no such auction exists. If you bid,
submit the maximum bid allowed. All bidders choosing this strategy, constitutes a
Nash equilibrium. All items sell at starting prices. Losing bidders have no chance to
improve because all high bids are maximal when it is their turn to bid. All winning
bidders receive the item they appreciate most among those available for them.

However, the equilibrium depends on the credibility of the winners’ risky high
bids. A losing bidder’s deviation, for example to σ∗, can be expensive for the winner.
The deviating bidder, however, does not lose anything by doing so. The resulting
assignment is in general not efficient. Furthermore, the equilibrium relies on the

bidding is switching between auctions, and incremental bidding is bidding just one increment
above the standing bid.

61They exclude multi-unit bidders who hold several high bidder positions because they probably
have multi-unit demand.
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existence of a maximum bid b̄.
Off the equilibrium path, deviating from σ̂i may be profitable. Suppose a bidder h

has submitted a very low bid in auction j, for example bhj = b0
j + ι, instead of bhj = b̄.

It is bidder i’s turn, and in all auctions a bid has been submitted. The strategy
prescribes that he quit. However, with a valuation vhj > b0

j + ι, he may improve his
payoff by bidding in j.

One may assume that a bidder i would never lose by deviating from σ̂i to σ∗i .
However this is not true. Assume a bidder i is selected to bid and auction j is the
only auction where no bid has yet been submitted. According to σ̂i, he bids bij = b̄ in
j and gains ui = vij − b0

j . Strategy σ∗i may tell him, however, to bid in k 6= j. With
this bid, he does not become the high bidder because the high bid is bhk = b̄. Then,
another bidder h is selected and, bidding according to σ̂h, bids bhj = b̄. When it is i’s
turn to bid the next time, all high bids are equal to b̄ and he cannot win any auction.
His payoff is zero, and, thus, less than he receives by following σ̂i. Thus, this example
shows that σ∗ is not a dominant strategy.

Strategic Sellers Haruvy et al. (2008) promote the analysis of competing auctions.
One type of competition between auctions is that between independent auctions of-
fered by competing sellers. One decision a seller faces is how to optimally set his
starting price or his (unrevealed) reserve price. This may decrease efficiency if b0

j is
set above vSj . A strategic seller j in the game would never set b0

j below vSj because he
only gains additional sales that result in a negative payoff. Thus, b0

j ≥ vSj .
In the assignment game, it is in general not possible to align incentives for bidders

and sellers to reveal their valuations (see Roth and Sotomayor, 1990). A mechanism
may only assure incentive compatibility for one side of the market. We considered
the bidders side. A mechanism that implements the seller-optimal outcome would
be incentive compatible for the sellers’ side. Usually, the bidder-optimal and the
seller-optimal outcome differ.

For large markets, however, strategic sellers may set the starting price equal to their
valuation in equilibrium. For example, Peters and Severinov (2006) find that in their
model with homogeneous unit-demand preferences, sellers have an incentive to reveal
their reservation value truthfully. However, this result only holds for a sufficiently
large number of traders. It is not clear if or how the result of Peters and Severinov
(2006) extends to our model.
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More General Substitutes Valuations Auctions suited for more general pref-
erences have been analyzed and applied (e.g., by the Federal Communications Com-
mission in spectrum auctions). An example is the simultaneous ascending auction,
which is an auction format with open (price) bids, proceeding in rounds (Milgrom,
2000). In this model, there is only one seller and straightforward bidding converges
to a competitive equilibrium if all items are substitutes for all bidders. However, a
competitive equilibrium with independent prices for each item, which is required in
the case of multiple sellers, may fail to exist. Bikhchandani and Ostroy (2006) show
that for more general substitutes valuations so-called pricing equilibria exist where
prices refer to packages or bidders and are, thus, nonlinear or even non-anonymous.

For more general demand structures in multi-unit auctions, using other strategic
options may pay: for example, signaling via bids (see Klemperer, 2002) or profitable
demand reduction (e.g., Ausubel and Cramton, 2002).

Our analysis is also valid for the case of simple additive valuations for packages
(the borderline case between substitutes valuations and complementary valuations
of bidders, also called neutral package valuations; the value of a package equals the
sum of values of items in the package). Then, every bidder’s demand for an item
is independent of the prices in other auctions and they treat each auction like a
single unit auction. For unit-demand preferences and additive valuations, prices in
competitive equilibrium are anonymous and can be assigned to items.

Note, however, that our analysis does not extend to a bidder population with a
mixture of unit-demand preferences and additive valuations for packages. This is
illustrated by the example below. In this mixed population, it makes a difference
whether a bidder with additive valuations for the m items participates or if m bid-
ders participate who demand only one item each. The strategic situation with the
single bidder with additive valuations is different. He may increase his payoff the in
competitive equilibrium by reducing his demand when playing against bidders with
unit-demand preferences.

Consider the example in Table 3.3 with two bidders, B1 with unit demand and B2

with additive valuations, and two items A1 and A2.
The efficient assignment allocates both items to Bidder B2. B2’s Vickrey price is

pVB2 = 4 and the minimum competitive prices are pCEA1 = 2 and pCEA2 = 4, resulting in
Vickrey payoffs uVB1 = 0 and uVB2 = 5 and competitive payoffs uCEB1 = 0 and uCEB2 = 3.
The outcome in the middle illustrates what happens if B2 is split up into two bid-
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Table 3.3: The impact of splitting a bidder’s demand between two bidders (i.e., shill
bidding) and of demand reduction in a mixed population with a unit-
demand bidder B1 and a bidder B2 with additive valuations.

A1 A2 (A1, A2) pV pCE uV uCE

B1 2 4 4 0 0 0 0
B2 3 6 9 4 2+4 5 3

B1 2 4 4 0 0 0 0
B2a 3 0 3 2 2 1 1
B2b 0 6 6 4 4 2 2

B1 2 4 4 0 0 2 2
B2 0 6 6 2 2 4 4

ders B2a and B2b with unit-demand preferences. Adding these two bidders’ payoffs
gives a lower Vickrey payoff (1+2<5) than B2 has in the upper outcome. However,
the payoffs in the minimum competitive equilibrium equal those that B2 receives by
bidding truthfully (1+2=3).

However, as stated above, B2 has an incentive to reduce demand in an ascending
auction. A deviation of B2 by bidding (0, 6, 6) in a Vickrey auction or by bidding
up to these valuations in an ascending auction, results in the assignment of A1 to
B1 and A2 to B2 with prices and payoffs pVB1 = 0, pVB2 = 2, pCEA1 = 0, pCEA2 = 2,
uVB1 = 2, uVB2 = 4, uCEB1 = 2, and uCEB2 = 4. Thus, not surprisingly, B2’s Vickrey
payoff decreases. However, his demand reduction increases his payoff in competitive
equilibrium from 3 to 4.

In a population of bidders with unit-demand preferences, bidders have an incentive
to bid straightforwardly in an ascending auction. The same is true for bidders in a
population with additive valuations. But if we mix these two populations, this is no
longer true for the bidders with the additive valuations, as the example shows.

Outside Options In our model, sellers’ valuations may be considered as outside
options. If each bidder is also assigned an outside option with value v0

i , a result of
Demange and Gale (1985) states that the bidders’ optimal payoff vector in the core
weakly increases in v0 and weakly decreases in vS. The opposite statement applies to
sellers’ payoffs in the bidder-optimal outcome.
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Effect of Additional Bidders and Sellers The effect of new entrants in the
assignment game is summarized in Roth and Sotomayor (1990). We apply those
results to our model.

If a bidder is added to the game, every bidders’ payoff in the Vickrey outcome
weakly decreases and every seller’s payoff weakly increases. Adding a seller has the
reverse effect.

If an added bidder i wins an auction, then the indifference path leading to this
auction is reversed. The seller j whose item is won by i profits the most by his entry.
The sellers’ gains are decreasing in their distance from i on the reversed path. On the
other hand, the bidder who used to win j is harmed most by i’s entry, and bidders
along the reversed indifference path are harmed less the farther they are away (Mo,
1988).

Asking for the impact of additional bidders is related to the phenomenon considered
next paragraph: profitable shill bidding.

Shill Bidding If a bidder pretends to be more than one bidder or a seller pretends
to be a bidder (called shill bidding), this may increase prices. On eBay, for example,
shill bidding by sellers is prohibited,62 but it is hard to control.
Consider the following matrix of valuations of five bidders for items offered in four

auctions (vS = (0, 0, 0, 0)):

A1 A2 A3 A4

B1 10 0 0 0
B2 10 20 0 0
B3 0 20 30 0
B4 0 0 30 40
B5 0 0 0 39

Consider first the minimum competitive equilibrium (or Vickrey outcome) if B5 does
not participate. Bidders B1–B4 win A1–A4, respectively, at prices p = (0, 0, 0, 0).
Thus, the sum of the sellers’ revenues is zero and all gains from trade (which amount
to 100) go to the bidders.

62See http://pages.ebay.com/help/policies/seller-shill-bidding.html.
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This changes drastically if one of the sellers creates a false identity and enters as
bidder B5. Bidders B1–B4 win the same auction. However, the items are sold at
prices p = (9, 19, 29, 39), giving the sellers a total revenue of 96. Thus, almost all
gains from trade go to the sellers.

The example shows how the entry of a (losing) bidder may shift all gains from
trade from the buyers’ side to the sellers’ side. One may assume that seller A4 has
introduced this shill bidder. However, all sellers profit from B5’s existence. Thus,
they may also have introduced B5 as a shill bidder and have bid in the auction of a
different seller to decrease the chance of detection of the manipulation. The additional
bidder raises the price level in the whole marketplace, not only in one auction. Only
a bidder that does not win any auction and does not determine any price does not
influence the results (like in a second-price auction).

We gave an extreme example that illustrates the value of additional (artificially
introduced or real) bidders for the auction platform. One may think that increasing
bids has a similar effect. However, the situation is not quite as simple as it seems, as
the following chapter shows.
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Chapter 4

Monotonicity of Vickrey Payoffs and
Prices

Vickrey auctions have nice theoretical properties, but also many drawbacks.1 Despite
its weaknesses, the Vickrey auction plays an important role in the design and analysis
of auctions.

In the previous chapter, we identified a PBE of the multiple-auctions game Γa with
the following properties. The equilibrium (reference) outcome is efficient and prices
are minimum competitive prices. Moreover, they equal Vickrey prices.2 That is, ev-
ery bidder pays an amount equal to the loss of social surplus due to his participation.
Note that the Vickrey outcome is the bidder-optimal outcome in the core if the coali-
tional function is bidder-submodular (e.g., Milgrom, 2004). A population of bidders
with unit-demand preferences fulfills the bidder-submodularity condition. Thus, the
payoffs in our equilibrium outcome equal the bidder-optimal payoffs in the core of the
associated cooperative game.
In this chapter, we consider the effect of an increase or decrease in a single valuation

vij on the reference outcome (x̄∗, p̄∗) in the PBE of the multiple-auctions game. We
use the results of Propositions 3.4 and 3.9 that (x̄∗, p̄∗) = (xeff , pV ). Hence, we directly
analyze the outcome of a Vickrey auction (xeff , pV ) where all bidders’ bids equal their
valuations, which is a weakly dominant strategy. Note that increasing a bidder’s

1For a discussion of advantages and disadvantages of the Vickrey auction see, e.g., Ausubel and Mil-
grom (2006), Lucking-Reiley (2000b), Milgrom (2004), Rothkopf (2007), and Rothkopf, Teisberg,
and Kahn (1990).

2In the following, if we refer to Vickrey prices, payments, or outcomes, we mean equilibrium prices,
payments, and outcomes in the equilibrium of the Vickrey auction where all bidders truthfully
submit their valuation.
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valuation for an item is equal to assuming that he increases his bid in a Vickrey
auction but different from assuming that he submits a higher bid at a final stage of
the multiple-auctions game. That is, the situation that we consider is an increase in
a valuation before the multiple-auction game starts, but not an increase that occurs
during bidding. For example, an increase during the bidding process may result in
an outcome where a bidder determines a price with an earlier bid that he would not
submit under his new valuations.

Bidders’ and sellers’ optimal payoffs are monotone with respect to the entry of
bidders: each seller’s payoff weakly weakly increases and each bidder’s payoff weakly
decreases (e.g., Roth and Sotomayor, 1990). Moreover, monotonicity of the (single)
seller’s Vickrey revenue in bidders holds for all valuation structures that are bidder-
submodular (e.g., Milgrom, 2004). It has been assumed that in this case the single
seller’s Vickrey revenue is also monotone increasing in bidders’ valuations (Day and
Milgrom, 2008). In our environment, this would imply that the sum of sellers’ rev-
enues in the Vickrey outcome is weakly monotone increasing in reported valuations
of bidders. However, we show that this is not true.

In the single seller case, a property of the Vickrey auction is non-monotonicity of
seller’s revenue, mainly in connection with complementary valuations for packages
(e.g., Milgrom, 2004; Beck, 2009) or budget restrictions (e.g., Day and Milgrom,
2008). We add another critical point: non-monotonicity with respect to increasing
single valuations even if items are substitutes. However, considering individual Vick-
rey payments, we find that they are either weakly monotone increasing or decreasing.

We use a comparative statics approach to compare Vickrey outcomes for different
valuation matrices, assuming that bidders report valuations truthfully. This may
be considered an examination of the effect of a unilateral deviation in a Vickrey
auction on prices. The deviation considered is the submission of a higher bid in a
single auction. The results are relevant for the analysis of the bidder-seller networks in
Chapter 5, but they are also of independent interest because they reveal characteristics
of the Vickrey auction.
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4.1 Impact of Increasing Valuations on Vickrey

Payoffs and Prices

In the following, we do not distinguish between valuations and bids. For instance, in
the following example, the increased valuation may also be interpreted as an increased
bid.

To illustrate the subject of this section, we give an example of the reaction of
prices to an increased valuation. In the example in Figure 4.1, ṽ41 = 6 > 1 = v41,

A1 A2 A3 A1 A2 A3

B1 5 3 0 5 3 0
B2 0 10 10 0 10 10
B3 0 0 15 0 0 15
B4 1 7 0  6 7 0

Bh B1 B2 B3 B4 B2 B3
pV 1 7 7 5 6 6

Figure 4.1: Example of the reaction of prices to an increasing valuation vij = v41.

p̃V1 = 5 > 1 = pV1 , and p̃Vl = 6 < 7 = pVl for l ∈ {A2, A3}. This illustrates that
prices may increase or decrease. In the following we analyze the impact of increasing
valuations in detail.
For this, we also make use the concept of a price determining bidder but in a

different context than in the multiple-auctions game. There, BPD(j) is the bidder who
submitted the bid that equals the price in auction j. In this section, we use the term in
a slightly different way and introduce a different notation: BI(j) is a correspondence
that gives all bidders (except for the winning bidder of auction j) that are indifferent
between winning j and the payoff that they receive in the outcome (xeff , pV ). Thus,
these are all the possible price determining bidders in different bidder sequences in the
multiple-auctions game (except for the case BPD(j) = j and i ∈ BI(j)). Notice that
the price determining bidder BI(j) may be not unique and it may be that BI(j) = ∅.3

In this section, we mainly refer to Vickrey prices pVj instead of Vickrey payments
pVi (see Section 3.2.2.5 for definitions). Remember that we defined Vickrey prices pVj

3In the examples, we indicate BI(j) = ∅ by “–”.
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for unsold items j as pVj = vSj . These artificial prices serve mainly as a benchmark if
j is sold after the considered change in a valuation.
Throughout this section, we write x instead of xeff to simplify notation since all

considered assignments are efficient. For the same reason, we write for example N\i
instead of N\{i}. If the efficient assignment x refers to a market different from
(N,M, V, vS), for example to (N\i,M, V, vS), we denote this by x(N\i,M). The
coalitional values for (N,M, V, vS) and (N\i,M, V, vS) are denoted by c(N,M) and
c(N\i,M), respectively.
The terms ṽij “is part of,” “contributes to,” “is contained in,” or “is a summand of”

c̃(N,M) refers to c̃(N,M) =
∑

h∈N\i,k∈M\j(vhk− vSk )xhk + (vij − vSj ) (equivalently for
other coalitional values).
Before we consider further implications of an increased valuation, we present Lemma

4.1, which shows the important role of the price determining bidder.4

Lemma 4.1 Suppose xij = 1 in the market (N,M, V, vS) and g ∈ BI(j). Then

(1) g wins j in the market (N\i,M, V, vS) if g = BI(j) or g is one of several possible
winners j in (N\i,M, V, vS) if BI(j) is not uniquely defined,

(2) the summands of c(N\i,M) are determined by replacing the summands of c(N,M)

by the respective bidders’ valuations along an indifference path in (x, pV ) starting
at auction j, and retaining summands that are off the considered indifference
path.

Lemma 4.1 includes the following statements:

• The bidder g with x′gj = 1 in the efficient assignment x′(N\i,M) is indifferent
between winning j at pVj and his payoff uVg .

• Every bidder g who is indifferent between winning an auction k at pVk and his
payoff uVg , such that k has j as a predecessor on an indifference path, may be
assigned to k under an efficient assignment x′(N\i,M).

Proof of Lemma 4.1: Lemma 4.1 follows from the argument used in the proof of
Proposition 3.9. �

4Furthermore, Lemma 4.1 is used in the proofs of Propositions 4.2 and 4.3.
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To employ Lemma 4.1 in this chapter, remember that the Vickrey outcome is a
competitive equilibrium if bidders have unit-demand preferences and that the results
on the indifference paths of the previous chapter also apply to the Vickrey outcome.

The following three propositions, 4.1, 4.2, and 4.3, consider all possible points of
departure of an increase in a single valuation. Note that we do not distinguish between
a valuation and a bid. The distinction may be relevant because the assignment and
the prices are calculated on the basis of the bids, and the payoff is based on the
valuation, the assignment, and the price. We keep this in mind and distinguish
between valuations and bids whenever this is relevant in the proofs.

The notation vij refers to i’s valuation before the change, and ṽij to the same
valuation after the increase. In the following, all parameters and function values that
relate to the situation after the change from vij to ṽij are labeled with a tilde.5

We start our analysis with an increasing valuation in the auction that bidder i
wins.

Proposition 4.1 If a valuation vij with xij = 1 increases ceteris paribus to ṽij > vij,
this results in

(1) an unaltered price pVj and assignment x: p̃Vj = pVj and x̃ = x,

(2) lower or unchanged prices in auctions l ∈M\j: p̃Vl ≤ pVl .

Proof of Proposition 4.1: First, we prove (1). It can be easily seen that the
efficient assignment x is not influenced by the change in vij: a reassignment would be
a contradiction to efficiency of x. Bidder i remains the winner of auction j. Since the
winner of an auction does not influence the price he has to pay in a Vickrey outcome,
pVj is unaltered.
Next, we prove (2) and consider prices in auctions k ∈ M\j. Since the efficient

assignment is unaltered, pVl = c(N\h,M) − c−h(N,M) and p̃Vl = c̃(N\h,M) −
c̃−h(N,M) for xhl = x̃hl = 1 and h ∈ N\i.6 Let δ := ṽij − vij > 0. Since x̃ = x,

5The coalitional values c(N,M) and c̃(N,M) refer to markets (N,M, V, vS) and (N,M, Ṽ , vS),
respectively.

6Remember that the expression c−h(N,M) represents the coalitional value of the coalition (N,M)
reduced by the payoff of player h. In our game, this means c−h(N,M) = c(N,M)− vhl.
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c̃−h(N,M) = c−h(N,M) + δ and we get

pVl − p̃Vl = c(N\h,M)− c−h(N,M)− c̃(N\h,M) + c̃−h(N,M)

= δ − (c̃(N\h,M)− c(N\h,M)).

We know
δ ≥ c̃(N\h,M)− c(N\h,M),

because otherwise c(N\h,M) is not maximal (the increase beyond δ may be reached
under the original valuations too). With this, we conclude that pVl − p̃Vl ≥ 0 and,
thus, pVl ≥ p̃Vl , which completes the proof. �

We can derive some more information from the last inequalities in the proof. First,
note that c̃(N\h,M) − c(N\h,M) ≥ 0 because the maximum sum of valuations of
all bidders except for h cannot decrease if the valuation of one bidder i 6= h increases.
Thus, pVl − p̃Vl ≤ δ = ṽij − vij. The difference pVl − p̃Vl can take any integer value
between δ and 0 because c̃(N\h,M) − c(N\h,M) takes an integer value between 0

and δ.7

The difference c̃(N\h,M) − c(N\h,M) equals δ if ṽij is contained in c̃(N\h,M)

and vij in c(N\h,M). This happens if xij(N\h,M) = x̃ij(N\h,M) = 1,8 i.e., i wins
j regardless of whether h participates. An example is given in Figure 4.2.9 There,
i = j = 2, h = l = 1 or h = l = 3, and δ = 2. The change in B2’s valuation v22 does
not impact the prices in A1 and A3.

We have c̃(N\h,M) − c(N\h,M) = 0 if neither vij nor ṽij is contained in the
respective sums of valuations. That is, if h does not participate, then i wins a
different auction than j. This is, for example, the case if i is the price determining
bidder in l with xhl = 1. An example is given in Figure 4.3 (left example). There,
i = j = 2, h = l = 3, and δ = 2. Then, the decrease in the price for B3 in A3, due
to the increase in the valuation of B2, is maximal and equal to 2.

Price decreases between 0 and δ may occur if ṽij is part of c̃(N\h,M) but vij

7The restriction to integers is due to all vij being integers. If vij ∈ R, then pV
l − p̃V

l is in the
interval [0, δ] ⊂ R.

8Remember that we write xij(N\h,M) to make it clear which market the efficient assignment
relates to when it is not the full market (N,M, V, vS).

9Unless we say otherwise, vS = 0 in all examples in the current chapter.

113



Chapter 4 Monotonicity of Vickrey Payoffs and Prices

A1 A2 A3 A1 A2 A3

B1 5 8 0 5 8 0
B2 0 10 6  0 12 6
B3 11 0 15 11 0 15
B4 1 0 0 1 0 0
B5 0 0 3 0 0 3

Bh B1 B2 B3 B1 B2 B3
pV 1 4 3 1 4 3
g ∈ BI B4 B1 B5 B4 B1 B5

Figure 4.2: Example of Proposition 4.1 (prices pVA1 and pVA3 are unchanged).

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

B1 5 8 0 5 8 0 5 8 0 5 8 0
B2 0 10 10  0 12 10 0 10 10  0 12 10
B3 11 0 15 11 0 15 11 0 15 11 0 15
B4 1 0 0 1 0 0 1 0 0 1 0 0
B5 0 0 0 0 0 0 0 0 3 0 0 3

Bh B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3
pV 1 4 4 1 4 2 1 4 4 1 4 3
BI B4 B1 B2 B4 B1 B2 B4 B1 B2 B4 B1 B5

Figure 4.3: Examples of Proposition 4.1 (maximum and intermediate changes in
pVA3).11

is not contained in c(N\h,M) (i.e., if x̃ij(N\h,M) = 1 and, thus, c̃(N\h,M) =∑
g 6=h,g 6=i

∑
k 6=j(vgk− vSk )x̃gk + ṽij − vSj , but xij(N\h,M) = 0 and, thus, c(N\h,M) >∑

g 6=h,g 6=i
∑

k 6=j(vgk − vSk )xgk + vij − vSj ). The example on the right in Figure 4.3
illustrates this for i = j = 2, h = l = 3, and δ = 2. With B2’s valuation v22 = 10,
we have c(N\h,M) = v41 + v12 + v23 = 1 + 8 + 10 = 19. But if the valuation changes
to ṽ22 = 12, then c̃(N\h,M) = v11 + v22 + v53 = 5 + 12 + 3 = 20, which leads to a
decrease in the price of A3 to p̃V3 = 3 = p3 − 1.10

The intuition behind the possible decrease in prices pl is that the increase in i’s

10Note that it is impossible for vij to be contained in c(N\h,M) but ṽij not to be containd in
c̃(N\h,M), so this combination is irrelevant.

11We write BI to save space. Price determining bidders g ∈ BI(j) are unique for all j in these
examples anyway.
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valuation makes it less likely that he prefers to switch to a different item if an opponent
quits. He either does not want to switch before the increase, as in the example in
Figure 4.2, or he switches to a different auction before and after the increase, as in
Figure 4.3 on the left, or he switches before the increase but does not wish to do so
after the increase, as in Figure 4.3 on the right. Whether a bidder prefers to switch
to a different auction can be deduced from his position as price determining bidder.

From another point of view, the increase in i’s valuation leads to a reduction in his
demand for other items.

The following proposition considers the increase in a valuation vij if i wins k 6= j.

Proposition 4.2 If a valuation vij such that xij = 0 and xik = 1 for k 6= j increases
ceteris paribus to ṽij > vij, we get Vickrey prices p̃V with

(1) p̃Vj ≥ pVj ,

(2) p̃Vk = pVk if x̃ = x,

(3) p̃Vk ≤ pVk if x̃ 6= x,

(4) p̃Vl ≥ pVl for l ∈M\{j, k} if x̃ = x, and

(5) three disjoint categories L1, L2, L3 ⊂M\{j, k} of auctions with prices

• p̃Vl ≤ pVl and p̃Vl < pVl for a high enough value ṽij if l ∈ L1 and x̃ 6= x,

• p̃Vl = pVl for all ṽij > vij if l ∈ L2 and x̃ 6= x, and

• p̃Vl ≥ pVl and p̃Vl > pVl for a high enough value ṽij if l ∈ L3 and x̃ 6= x.

Figure 4.4 contains a numerical example with i = B1, j = A3, and k = A1. In
the example, valuation v13 increases stepwise. When it reaches 18, a change in the
efficient assignment occurs. Therefore, the figure provides examples of cases (1)–(5).
The last two price vectors in the figure indicate that A2 is in category L1.
Proof of Proposition 4.2: If x̃ij = 0 then x̃ = x, because whenever the increase in
vij to ṽij leads to a different assignment, x̃ij makes up one of the differences. If, on
the other hand, x̃ij = 1, then x̃ and x differ in two or more entries. Since xik = 1,
the change from xij = 0 to x̃ij = 1 induces x̃ik = 0. Notice the following impact of
ṽij on coalitional values if xij = 0.
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A1 A2 A3 A1 A2 A3 A1 A2 A3

B1 5 5 0  5 5 4  5 5 6  
B2 0 10 10 0 10 10 0 10 10
B3 0 0 15 0 0 15 0 0 15
B4 2 0 0 2 0 0 2 0 0

Bh B1 B2 B3 B1 B2 B3 B1 B2 B3
pV 2 2 2 2 2 2 2 2 3
g ∈ BI B4 B1 B2 B4 B1 B2 B4 B1 B1

B1 5 5 18  5 5 19  5 5 20
B2 0 10 10 0 10 10 0 10 10
B3 0 0 15 0 0 15 0 0 15
B4 2 0 0 2 0 0 2 0 0

B1 B2 B3 B4 B2 B1 B4 B2 B1
Bh

B4 B2 B1
pV 2 2 15 1 1 15 0 0 15

B4 B1 B1 B1 B1 B3 B1 B1 B3
g ∈ BI

B1 B1 B3

Figure 4.4: A numerical example of the impact of a stepwise increase in v13.
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• For both x̃ij = 0 and x̃ij = 1

c̃(N\i,M) = c(N\i,M). (4.1)

• If x̃ij = 0, then x̃ = x, and

c̃(N,M) = c(N,M), (4.2)

c̃−g(N,M) = c−g(N,M) for all g ∈ N, (4.3)

c̃(N\g,M) ≥ c(N\g,M) for all g ∈ N\i. (4.4)

• If x̃ij = 1, then x̃ 6= x and

c̃(N,M) ≥ c(N,M), (4.5)

c̃−g(N,M) T c−g(N,M) for all g ∈ N, (4.6)

c̃(N\g,M) ≥ c(N\g,M) for all g ∈ N\i. (4.7)

Because a change in a coalitional value may only occur if ṽij is part of this coalitional
value, (4.1) follows. This is obviously impossible for c̃(N\i,M). Equations (4.2) and
(4.3) follow from x̃ = x for the same reason.
Coalitional values are weakly monotone increasing in valuations because the maxi-

mum sum of valuations (minus sellers valuations), which equals the coalitional value,
may not decrease if valuations increase. Therefore, (4.4), (4.5), and (4.7) are valid.
The strict inequality c̃(N\g,M) > c(N\g,M) in (4.4) and (4.7) applies if ṽij is part
of the sum that is represented by c̃(N\g,M). This is the case if i ∈ BI(l) for xgl = 1

or if i is in the set i ∈ BI(q) for some other auction q on the respective part of the
indifference path, as considered in Lemma 4.1. Note that vij may be contained in
c(N\g,M) or not. We have c̃(N\g,M) = c(N\g,M) if ṽij and vij are irrelevant for
these coalitional values. Equality holds in (4.5) at a single value ṽij = v̂ij, as explained
below. For higher values ṽij > v̂ij, we have c̃(N,M) > c(N,M) because ṽij is part of
c̃(N,M) if x̃ij = 1.
Note, however, that c̃−g(N,M) is not a coalitional value. Because c̃−g(N,M) =

c̃(N,M)− vgl for x̃gl = 1 (or c̃−g(N,M) = c̃(N,M)), a change in the assignment may
imply that g wins an item l′ with value vgl′ T vgl. Thus, c̃−g(N,M) may be higher,
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lower or equal to c−g(N,M), as given in (4.6).
Let us divide the increase from vij to ṽij into incremental steps of size one. In a

slight abuse of notation, we denote all valuations during this increase by ṽij. Since
xij = 0 at vij and x̃ij = 1 at the final value of ṽij, a valuation v̂ij ∈ (vij, ṽij] exists
that is the lowest value such that x̃ij = x̂ij = 1.
A stepwise increase in ṽij may change the assignment only once because ṽij = v̂ij

is a summand of c̃(N,M) and the optimal assignment also has to assign i to j for
values ṽij > v̂ij to achieve the maximum sum of payoffs. Thus, once ṽij is part of
c̃(N,M), the optimal assignment does not change anymore.
We claim that at v̂ij both the assignment x and the new assignment, denoted by x̂,

are optimal. Assume to the contrary that ĉ(N,M) > c(N,M). Since we only consider
integers, this implies that ĉ(N,M) ≥ c(N,M)+1. An increase vij +1 = v̂ij leads to a
new unique optimal assignment. However, this increase of one implies that ĉ(N,M) ≤
c(N,M) + 1 because the maximum sum cannot increase by more than vij increases.
From ĉ(N,M) ≥ c(N,M)+1 ≥ ĉ(N,M) it follows that c(N,M)+1 = ĉ(N,M). Now,
consider the valuations whose sum gives ĉ(N,M). We know that v̂ij is one of them.
In this case, decreasing v̂ij by one and adding the same valuations as before results in
an amount equal to c(N,M). Thus, the optimal assignment associated with ĉ(N,M)

is also an optimal assignment with valuation vij = v̂ij − 1. This is a contradiction to
the definition of v̂ij.

Thus, at valuation v̂ij both assignment x and x̃ are optimal. Therefore, at ṽij = v̂ij,
i may win either k or j. Other reassignments may also occur. With this, we further
differentiate the impact on diverse coalitional values. Remember that c̃(N\i,M) =

c(N\i,M) is valid independent of ṽij and any possible change in assignment x̃. We
distinguish three cases for values ṽij: ṽij < v̂ij, ṽij = v̂ij, and ṽij > v̂ij. Cases 1 and 3
are as before.

• Case 1: ṽij < v̂ij (x̃ = x)

c̃(N,M) = c(N,M),

c̃−g(N,M) = c−g(N,M) for all g ∈ N,

c̃(N\g,M) ≥ c(N\g,M) for all g ∈ N\i.
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• Case 2: ṽij = v̂ij (x̃ = x, x̃ 6= x)

c̃(N,M) = ĉ(N,M) = c(N,M),

c̃−g(N,M) = ĉ−g(N,M) = c−g(N,M) for all g ∈ N,

c̃(N\g,M) = ĉ(N\g,M) ≥ c(N\g,M) for all g ∈ N\i.

• Case 3: ṽij > v̂ij (x̃ 6= x)

c̃(N,M) > ĉ(N,M),

c̃−g(N,M) T ĉ−g(N,M) for all g ∈ N,

c̃(N\g,M) ≥ ĉ(N\g,M) for all g ∈ N\i.

For item’s Vickrey prices this has the following implications. In case 1 since no
reassignment occurs, prices are described by

p̃Vj = c̃(N\h,M)− c̃(N,M) + vhj ≥ pVj (4.8a)

p̃Vj = vSj = pVj (4.8b)

p̃Vk = c̃(N\i,M)− c̃(N,M) + vik = pVk (4.8c)

p̃Vl = c̃(N\g,M)− c̃(N,M) + vgl ≥ pVl , g ∈ N\{i, h}, l ∈M\{j, k} (4.8d)

p̃Vl = vSl = pVl , l ∈M\{j, k} (4.8e)

If a bidder exists that wins j under x, we denote him by h. The comparison to the
price p associated with vij is given. The results follow directly from the impact of ṽij
on the coalitional values as characterized above and the definition pVl = vSj if item l

is unsold.
Note that the inequalities and equalities hold for all starting valuations vij < v̂ij.

Therefore, in (4.8a) and (4.8d), the inequality indicates that p̃Vj and p̃Vl are weakly
monotone increasing in ṽij on the range vij to v̂ij.

In case 2, x̃ = x and x̃ = x̂ are both efficient. If several efficient assignments exist,
Vickrey prices for all efficient assignments are identical (Lemma A.1 in Appendix
A.3).12 However, prices may be associated with different winners or some items may

12Here, it is important to note that we refer to Vickrey prices instead of Vickrey payments; Vickrey
payments may differ.
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be sold or unsold for higher values ṽij. We provide calculations of prices for both
assignments (left: x̃ = x, right: x̃ 6= x).13 Case 2 is relevant for the transition
between assignments. The equations and inequalities from case 1 are also valid here,
because it is just a special case of x̃ = x.

p̂Vj = c̃(N\h,M)− c̃(N,M) + vhj = c̃(N\i,M)− c̃(N,M) + ṽij (4.9a)

p̂Vj = vSj = c̃(N\i,M)− c̃(N,M) + ṽij (4.9b)

p̂Vk = c̃(N\i,M)− c̃(N,M) + vik = c̃(N\g,M)− c̃(N,M) + vgj, g ∈ N\i (4.9c)

p̂Vk = c̃(N\i,M)− c̃(N,M) + vik = vSk (4.9d)

p̂Vl = c̃(N\g,M)− c̃(N,M) + vgl = c̃(N\f,M)− c̃(N,M) + vfl,

g ∈ N\{i, h}, f ∈ N\i, l ∈M\{j, k} (4.9e)

p̂Vl = c̃(N\g,M)− c̃(N,M) + vgl = vSl , g ∈ N\{i, h}, l ∈M\{j, k} (4.9f)

p̂Vl = vSl = c̃(N\g,M)− c̃(N,M) + vgl, g ∈ N\i, l ∈M\{j, k} (4.9g)

p̂Vl = vSl , l ∈M\{j, k} (4.9h)

In case 3, the unique assignment is x̃ 6= x, i.e., the items are assigned to the bidders
on the right in equalities (4.9a)–(4.9c), (4.9e), and (4.9g), and are unsold in (4.9d),
(4.9f), and (4.9h). Remember that we consider a stepwise increase in ṽij starting at
a valuation vij ≤ v̂ij. For the analysis of the overall impact on prices, we therefore
have to take the earlier changes (from cases 1 and 2) into account. In the following
equations, however, we only consider the relation to prices at v̂ij.

p̃Vj = c̃(N\i,M)− c̃(N,M) + ṽij = p̂Vj (4.10a)

p̃Vk = c̃(N\g,M)− c̃(N,M) + vgj ≤ p̂Vk , g ∈ N\i (4.10b)

p̃Vk = vSk = p̂Vk (4.10c)

p̃Vl = c̃(N\g,M)− c̃(N,M) + vgl ≤ p̂Vl , g ∈ N\i, l ∈M\{j, k} (4.10d)

p̃Vl = vSl = p̂Vl , l ∈M\{j, k} (4.10e)

Equations (4.10c) and (4.10e) need no further explanation: the item is not sold and
the price is determined by definition. Equations (4.10a), (4.10b), and (4.10d) are

13We assume that no more than two efficient assignments exist. If there are more than two, we may
deal with this in an analogous manner.
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A1 A2 A1 A2

B1 2 2  2 5
B2 0 2 0 2

Bh B1 B2 – B1
pV 1 1 1 2
g ∈ BI – B1 – B2
vS 1 0 1 0

Figure 4.5: Example of (P4): i = B1 wins auction k = A1 before the change from
v12 = 2 to ṽ12 = 5 and he wins auction j = A2 after the change. Seller
A1’s item is not sold after the increase.

derived from Proposition 4.1.
Consider the impact of the stepwise increase in ṽij starting at value vij. Possible

paths connecting the equations in case 1 to those in case 3 are the following:

j

{
(4.8a) −→ (4.9a) −→ (4.10a) (P1)
(4.8b) −→ (4.9b) −→ (4.10a) (P2)

k

{
↗ (4.9c) −→ (4.10b) (P3)

(4.8c) ↘ (4.9d) −→ (4.10c) (P4)

l


↗ (4.9e) −→ (4.10d) (P5)

(4.8d) ↘ (4.9f) −→ (4.10e) (P6)
↗ (4.9g) −→ (4.10d) (P7)

(4.8e) ↘ (4.9h) −→ 4.10e (P8)

On paths (P1) and (P2), price p̃Vj increases weakly until p̂Vj and is then constant
for further increases in p̃Vj . With this, part (1) of Proposition 4.2 is proved. Price
p̃Vk is constant until ṽij = v̂ij and decreases weakly afterwards, as can be concluded
from the equations on paths (P3) and (P4). This confirms Proposition 4.2 (2) and
(3). Figure 4.5 illustrates (4.10c).
Let us consider the remaining paths (P5), (P6), (P7), and (P8). The inequalities

along these may be combined as follows. We denote the values of p̃Vl in case 1 by p̃V,1l
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and in case 3 by p̃V,3l , 14 and get

(P5) pVl ≤ p̃V,1l = c̃(N\g,M)− c̃(N,M) + vgl

≤ p̂Vl = c̃(N\f,M)− c̃(N,M) + vfl ≥ p̃V,3l , g ∈ N\{i, h}, f ∈ N\i ,

(P6) pVl ≤ p̃V,1l = c̃(N\g,M)− c̃(N,M) + vgl ≤ p̂Vl = vSl = p̃V,3l , g ∈ N\{i, h} ,

(P7) pVl = p̃V,1l = vSl = p̂Vl = c̃(N\g,M)− c̃(N,M) + vgl ≥ p̃V,3l , g ∈ N\i ,

(P8) pVl = p̃V,1l = vSl = p̂Vl = p̃V,3l .

Part (4) of Proposition 4.1 follows from the comparison between pVl and p̃V,1l in (P5)–
(P8). It remains to prove part (5) of the proposition.
Firstly, consider path (P8). The price in auction l is not influenced at all by the

increase in ṽij. Thus, these auctions are of category L2. We denote this by l(P8) ∈ L2.
On (P7), price p̃V,1l in assignment x equals vSl . Thus, the inequality (≥ p̃V,3l ) may

only be fulfilled with equality, vSj = p̃V,3l , because a decrease below vSj is impossible.15

Therefore, price p̃Vl is constant and l(P7) ∈ L2.
Similarly, along path (P6), price p̃V,3l in the new assignment equals vSl . Thus, even

though item l is sold when ṽij ≤ v̂ij, price p̃V,1l calculated by g’s payment formula
may not be lower than p̃V,3l . It follows that price p̃Vl is constant and l(P6) ∈ L2.
However, along path (P5), we find pVl ≤ p̃V,1l ≤ p̂Vl ≥ p̃V,3l . To analyze this case in

detail, we distinguish the subcases f 6= g (for values ṽij above v̂ij bidder g is replaced
by a different bidder f as the winner of l) and f = g (g remains the winner of l).
Let us first consider the subcase f 6= g, i.e., the assignment of l changes at ṽij = v̂ij.

In this case, prices are calculated by p̃Vl = p̃V,1l = c̃(N\g,M) − c̃(N,M) + vgl for
ṽij ≤ v̂ij and by p̃Vl = p̃V,3l = c̃(N\f,M) − c̃(N,M) + vfl for ṽij ≥ v̂ij. If ṽij is
not part of c̃(N\g,M) for all ṽij ≤ v̂ij, then the price p̃Vl = p̃V,1l is constant until
v̂ij is reached. If, however, ṽij contributes to c̃(N\g,M) for some value of ṽij, then
p̃Vl = p̃V,1l is weakly increasing.16 For bidder f ’s payment, the reverse holds: if ṽij is
part of c̃(N\f,M) for ṽij = v̂ij, then p̃Vl = p̃V,3l is constant for all ṽij ≥ v̂ij. If, on the
other hand, ṽij is not part of c̃(N\f,M), price p̃Vl = p̃V,3l decreases from ṽij = v̂ij on,

14Following this logic, one might introduce p̃V,2
l = p̂V

l .
15Suppose g is assigned to l in the optimal assignment x̃. Then c̃(N,M) = c̃(N\g,M\l) + vgl − vS

l .
With c̃(N\g,M\l) ≤ c̃(N\g,M) we get c̃(N,M) − vgl = c̃(N\g,M\l) − vS

l ≤ c̃(N\g,M) − vS
l .

From this, vS
l ≤ c̃(N\g,M)− c̃(N,M) + vgl = p̃V

l follows for Vickrey prices pV
l .

16It increases strictly once ṽij enters c̃(N\g,M) and is constant for lower values of ṽij if ṽij = vij

is not already part of c̃(N\g,M).
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Figure 4.6: A reassignment of i, g, f , g′, and f ′ at the transition between two efficient
assignments at ṽij = v̂ij.

until eventually ṽij enters c̃(N\f,M).
In the current subcase f 6= g, the transition between prices p̃V,1l below and p̃V,3l

above p̂Vl not only depends on coalitional values but also on vgl and vfl. However,
remember that Vickrey prices for all efficient assignments are identical. Therefore, to
analyze the impact of the increase in ṽij we can again concentrate on the development
of the differences c̃(N\g,M) − c̃(N,M) and c̃(N\f,M) − c̃(N,M). It is clear that
c̃(N,M) is constant for ṽij ≤ v̂ij and increasing for ṽij ≥ v̂ij. Thus, we explore the
relationship between c̃(N\g,M) and c̃(N\f,M).
If g 6= f a reassignment of l takes place at value ṽij = v̂ij. Since both assignments

are efficient and bidders have the same Vickrey payments in all efficient assignments,
we conclude that the reassignment occurs along an indifference path. Figure 4.6
depicts such an indifference path both for x̂ = x (left hand side) and for x̂ = x̃

(right hand side). In (P5), l is reassigned from g to f at ṽij = v̂ij. Thus, in the
figure, f ∈ BI(l), i.e., f is the first bidder on the indifference path starting at l.
In the following argument, we distinguish between situations where g and f are
predecessors or successors of i and j on the indifference path. Therefore, Figure 4.6
contains bidders g and f and item l who are predecessors of i and j as well as g′, f ′,
and l′ who are successors.

From Lemma 4.1(2) we conclude that c̃(N\g,M) and c̃(N\f,M) are both derived
from c̃(N,M) by replacing the summands on the indifference path starting at g and
f , respectively. Figure 4.7 illustrates how to construct the new indifference path
when a bidder is absent. In the upper left corner, bidder g does not participate. The
path formerly starting at g is reversed and stops at l.17 In the lower left corner, the

17This describes the situation at prices p̂. However, note that if g is absent, prices of items on this
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Figure 4.7: The assignments associated with c̃(N\g,M) (upper row) and c̃(N\g′,M)
(lower row) at the two efficient assignments x̂ = x (left) and x̂ = x̃
(right).18

indifference path constructed from x if g′ leaves is illustrated. The graphs on the
right correspond to the adaptation of x̃ when g or g′ are absent.
In the following, we need to distinguish between ṽij contributing to c̃(N\g,M),

c̃(N\f,M), c̃(N\g′,M), and c̃(N\f ′,M). In Figure 4.7 a bold arrow indicates if i
wins j in coalitions (N\g,M) and (N\g′,M) or if i wins k. Consider the graph in the
upper left corner. If g is absent, i wins j and therefore ṽij = v̂ij is part of c̃(N\g,M).
Obviously a rearrangement when f is absent would also assign i to j. The same
applies to the graph in the upper right corner. Thus, if g and f are predecessors of
i and j in the graph that describes x̂ = x, then ṽij = v̂ij is part of both c̃(N\g,M)

and c̃(N\f,M). Similarly, considering successors g′ and f ′ of i and j, we conclude
from the graphs in the lower row that ṽij = v̂ij is neither part of c̃(N\g′,M) nor
c̃(N\f ′,M).
Therefore, it is impossible for ṽij to be part of c̃(N\g,M) (p̃V,1l increases) but not

of c̃(N\f,M) (p̃V,3l decreases). If ṽij is neither part of c̃(N\g,M) nor c̃(N\f,M) at
ṽij = v̂ij, then p̃Vl = p̃V,1l is constant and p̃Vl = p̃V,3l decreases until eventually ṽij

contributes to c̃(N\f,M). Then, l(P5) ∈ L1. On the other hand, if ṽij is both part of

reversed indifference path may be decreased until some other bidder outside the indifference path
becomes indifferent or an auction reaches a price equal to the seller’s valuation. In the current
analysis, we are only interested in coalitional values and not in market prices without g.

18The respective assignments for f and f ′ are derived equivalently.
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Table 4.1: Evolution of prices along paths (P1)–(P8) for increasing valuations ṽij.

vij ≤ ṽij ≤ v̂ij ṽij ≥ v̂ij Proof of part

(P1) (−→) ↗ −→ (1)
(P2) (−→) ↗ −→ (1)
(P3) −→ ↘ −→ (2), (3)
(P4) −→ −→ (2), (3)
(P5) −→ ↘ −→ (4), (5) L1

(−→) ↗ −→ (4), (5) L3

−→ −→ (4), (5) L2

(P6) −→ −→ (4), (5) L2

(P7) −→ −→ (4), (5) L2

(P8) −→ −→ (4), (5) L2

c̃(N\g,M) and of c̃(N\f,M) at ṽij = v̂ij, then p̃Vl = p̃V,1l increases and p̃Vl = p̃V,3l is
constant, i.e., l(P5) ∈ L3. A special case occurs if ṽij enters c̃(N\g,M) at ṽij = v̂ij.
Then, price p̃Vl is constant, i.e., l(P5) ∈ L2 in this case.
If f = g, the assignment of l does not change. It follows that g is not on the

indifference path of i and j at ṽij = v̂ij. Bidder g may be part of a different indifference
path but not that which contains i and j. According to part (2) of Lemma 4.1, the
coalitional value c̃(N\g,M) is thus calculated by replacing summands on g’s path
and retaining those off this path. Therefore, summands that are associated with the
indifference path of i and j are retained. Hence it follows that ṽij ≤ v̂ij is not part
of c̃(N\g,M) but ṽij ≥ v̂ij contributes to c̃(N\g,M). Thus, prices p̃V,1l are constant
because ṽij is not part both of c̃(N,M) and c̃(N\g,M). At ṽij = v̂ij, ṽij enters
both c̃(N,M) and c̃(N\g,M), and, therefore, prices p̃V,3l are also constant. This gives
auctions l in category L2, i.e., l(P5) ∈ L2 if g = f .
With this, part (5) of the proposition is proved. �

Table 4.1 gives an overview of the results related to paths (P1)–(P8) in the proof.
The comprehensive example in Figures 4.8 and 4.9 shows the different classes of

Proposition 4.2 for k = A1, j = A3, L1 = {A2}, L2 = {A5, A6}, and L3 = {A4} .
Figure 4.9 illustrates selected coalitional value functions for increasing values of ṽij.

Furthermore, the evolution of prices pV2 , pV4 , and pV5 is given, where v̂13 = 16 and, for
example, pV4 = c̃(N\B4,M) − c̃(N,M) + v44 for ṽ13 ≤ 16 and pV4 = c̃(N\B3,M) −
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A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

B1 5 5 0 0 0 0  5 5 6 0 0 0  
B2 0 10 10 0 0 0 0 10 10 0 0 0
B3 0 0 15 5 0 0 0 0 15 5 0 0
B4 0 0 0 3 0 0 0 0 0 3 0 0
B5 2 0 0 0 0 0 2 0 0 0 0 0
B6 1 0 0 0 0 0 1 0 0 0 0 0
B7 0 0 0 0 3 1 0 0 0 0 3 1
B8 0 0 0 0 2 1 0 0 0 0 2 1

Bh B1 B2 B3 B4 B7 B8 B1 B2 B3 B4 B7 B8
pV 2 2 2 0 1 0 2 2 3 0 1 0
g ∈ BI B5 B1 B2 B5 B8 B5 B5 B1 B2 B5 B8 B5

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

B1 5 5 14 0 0 0  5 5 16 0 0 0  
B2 0 10 10 0 0 0 0 10 10 0 0 0
B3 0 0 15 5 0 0 0 0 15 5 0 0
B4 0 0 0 3 0 0 0 0 0 3 0 0
B5 2 0 0 0 0 0 2 0 0 0 0 0
B6 1 0 0 0 0 0 1 0 0 0 0 0
B7 0 0 0 0 3 1 0 0 0 0 3 1
B8 0 0 0 0 2 1 0 0 0 0 2 1

B1 B2 B3 B4 B7 B8 B1 B2 B3 B4 B7 B8
Bh

B5 B2 B1 B3 B7 B8
pV 2 2 11 1 1 0 2 2 13 3 1 0

B5 B1 B2 B3 B8 B5 B5 B1 B2 B3 B8 B5
g ∈ BI

B1 B1 B3 B4 B8 B5

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

B1 5 5 17 0 0 0  5 5 20 0 0 0
B2 0 10 10 0 0 0 0 10 10 0 0 0
B3 0 0 15 5 0 0 0 0 15 5 0 0
B4 0 0 0 3 0 0 0 0 0 3 0 0
B5 2 0 0 0 0 0 2 0 0 0 0 0
B6 1 0 0 0 0 0 1 0 0 0 0 0
B7 0 0 0 0 3 1 0 0 0 0 3 1
B8 0 0 0 0 2 1 0 0 0 0 2 1

Bh B5 B2 B1 B3 B7 B8 B5 B2 B1 B3 B7 B8
pV 1 1 13 3 1 0 1 0 13 3 1 0
g ∈ BI B6 B1 B2 B4 B8 B6 B6 B6 B2 B4 B8 B6

Figure 4.8: A numerical example of the different kinds of influences of a stepwise
increase in vij = v13 on prices: pV1 and pV2 increase, pV3 and pV4 decrease,
and pV5 and pV6 are constant.
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Figure 4.9: Illustration of some selected prices of the example in Figure 4.8.

c̃(N,M) + v34 for ṽ13 ≥ 16.
Remember that the outcome (x, pV ) is the bidder-optimal outcome in the core,

which is the worst outcome for all sellers, and that the set of outcomes related to core
payoffs equals the set of competitive equilibria.
We illustrate the set of competitive equilibria of the example in Figure 4.10 with

prices p1 and p2 as axes in Figure 4.11. The lines define the range of prices at which the
bidders prefer the efficient assignment. For example, in the first graph, B3 prefers not
to buy an item whenever both prices are higher than one. This is the area above/to
the right of his lines. B2 prefers to buy item A2 for all price combinations below his
line, and B1 prefers A1 for all prices to the left of his line. The gray area is the set of
competitive equilibria. The set shrinks as B1’s line moves upwards until it is only a
single point. This is when v̂12 = 4 is reached. Then the efficient assignment changes
and B1’s line is reflected. Then it moves upwards again and the set increases. The
outcome (x, pV ) is given by the lower left corner of the set of competitive equilibria.
This price vector is at first not influenced by ṽ12, then it moves upwards, and finally
to the left.
The cores of the example of Figure 4.10, neglecting the seller’s payoffs, are illus-
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A1 A2 A1 A2 A1 A2 A1 A2

B1 2 0  2 1  2 2  2 3  
B2 0 3 0 3 0 3 0 3
B3 1 1 1 1 1 1 1 1

Bh B1 B2 B1 B2 B1 B2 B1 B2
pV 1 1 1 1 1 1 1 2
g ∈ BI B3 B3 B3 B3 B3 B3 B3 B3

B1 2 4  2 5
B2 0 3 0 3
B3 1 1 1 1

B1 B2
Bh

B3 B1 B3 B1
pV 1 3 0 3

B3 B1
g ∈ BI

B1 B2 B1 B2

Figure 4.10: Example of the impact of a stepwise increase in ṽij on prices.

trated in Figure 4.12. The axes give payoffs u1, u2, and u3 of bidders B1, B2, and B3.
Note that for the calculation of bidder B1’s payoff we use the respective valuation
ṽ12, i.e., we compare the core for different levels of B1’s valuation for A2. The core
is the gray area and corresponds to the payoffs determined by the competitive prices
given in Figure 4.11 in the efficient assignment. The bidders’ part of the core shrinks
as ṽ12 increases until it is only a single point at ṽ12 = 4. Since sellers’ payoffs in this
example equal the prices in Figure 4.11, the core at ṽ12 = 4 is a singleton. Then
the core expands but now on the plane spanned by u1 and u3. The bidder-optimal
outcome is the upper right corner in the first three graphs and the equivalent corner
in the other plane in the last two graphs. The core for ṽ12 = 0, which is not depicted,
equals that for ṽ12 = 1. The first increase in the figure from ṽ12 = 1 to ṽ12 = 2

decreases the core but not the bidder-optimal outcome in the core. With a further
increase, the bidder-optimal outcome decreases for B2 until ṽ12 = 4. Then B1’s and
B3’s payoffs increase until ṽ12 = 5. From then on only B1’s payoff increases, which
is caused by the increase in his valuation.

The next proposition considers the remaining case of an increase in vij when i is a
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Figure 4.11: Evolution of the set of competitive prices in the example in Figure 4.10
for values ṽ12 = 0, 1, 2, 3, 4, 4, 5, 6 (axes are prices).

Figure 4.12: Evolution of bidders’ core payoffs in the example in Figure 4.10 for values
ṽ12 = 1, . . . , 6 (axes are payoffs).
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Figure 4.13: A reassignment of i, g, and f at the transition between two efficient
assignments at ṽij = v̂ij.

losing bidder.

Proposition 4.3 If the valuation vij of a bidder i with xil = 0 for all l increases
ceteris paribus to ṽij > vij, we get prices p̃ with

(1) p̃Vj ≥ pVj ,

(2) p̃Vl ≥ pVl for l ∈M\j if x̃ = x, and

(3) three disjoint categories L1, L2, L3 ⊂M\{j} of auctions with prices

• p̃Vl ≤ pVl and p̃Vl < pVl for a high enough value ṽij if l ∈ L1 and x̃ 6= x,

• p̃Vl = pVl for all ṽij > vij if l ∈ L2 and x̃ 6= x, and

• p̃Vl ≥ pVl and p̃Vl > pVl for a high enough value ṽij if l ∈ L3 and x̃ 6= x.

Proof of Proposition 4.3: As in Proposition 4.2, the assignments x and x̃ only
differ if i wins j with ṽij. Otherwise, x is unchanged by the increase in vij.
We prove the current proposition by referring to the proof of Proposition 4.2. The

only difference is that in the current proposition bidder i does not win an auction if his
valuation is vij whereas i wins an auction k in Proposition 4.2. Therefore, equations
(4.8a), (4.8b), (4.8d), and (4.8e) of case 1 also apply here. Equivalently, equations
(4.9a), (4.9b), (4.9e), (4.9g), and (4.9h) of case 2, as well as (4.10a), (4.10d), and
(4.10e) of case 3 remain valid. Thus, paths (P1), (P2), (P5), (P7), and (P8) have to
be considered. The indifference path at ṽij = v̂ij used to prove (P5) is given in Figure
4.6. For x̂ = x, i is indifferent between winning j and not winning j, but i does not
win any auction. In the graph on the right, i wins j at x̂ = x̃. Thus, all bidders g and
f in the proof of Proposition 4.2 are predecessors of i and j on the indifference path

130



Chapter 4 Monotonicity of Vickrey Payoffs and Prices

A1 A2 A3 A1 A2 A3 A1 A2 A3

B1 5 5 0 5 5 0 5 5 0
B2 0 10 10 0 10 10 0 10 10
B3 0 0 15 0 0 15 0 0 15
B4 2 1 1  2 3 1  2 10 1  

B1 B2 B3 B1 B2 B3 B1 B2 B3
Bh

B1 B4 B3
pV 2 2 2 2 3 3 2 10 10

B4 B1 B2 B4 B4 B2 B4 B4 B2
g ∈ BI

B4 B2 B2

B1 5 5 0 5 5 0 5 5 0
B2 0 10 10 0 10 10 0 10 10
B3 0 0 15 0 0 15 0 0 15
B4 2 11 1  2 12 1  2 20 1

Bh B1 B4 B3 B1 B4 B3 B1 B4 B3
pV 1 10 10 0 10 10 0 10 10
g ∈ BI B4 B2 B2 B4 B2 B2 B2 B2 B2

Figure 4.14: Example of Proposition 4.3: i = B4 wins auction j = A2 for values
ṽ42 ≥ v̂42 = 10 and prices finally decrease (pV1 ) or increase (pV2 and pV3 ).

associated with x̂ = x and successors in the graph associated with x̂ = x̃. However,
the argument is the same as before for all relevant paths (P1), (P2), (P5), (P7), and
(P8) and the result follows immediately. �

Note that the results in Propositions 4.2 and 4.3 allow for arbitrary combinations
of price increases, decreases and unchanged prices in the population, depending on
the respective valuation matrix. Compare, for example, the prices for the first and
the last valuation matrix in Figure 4.14. An increase in v42 has lead to a decrease in
pV1 but to an increase in pV2 and pV3 .

In contrast, in Figure 4.15 all prices increase. In this example, Bidder i = B4

displaces B1 as the winner of A1 when ṽ41 < v11, i.e., B4’s valuation for item A1 is
lower than that of the former winner. Note that for all values ṽ41 ≥ v̂41 = 2 there are
no changes in prices. This is because B4 is the last bidder on the only indifference path
in this example (which includes all bidders and auctions) before the reassignment, and
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A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

B1 5 8 0 5 8 0 5 8 0 5 8 0
B2 0 10 20 0 10 20 0 10 20 0 10 20
B3 0 0 15 0 0 15 0 0 15 0 0 15
B4 1 0 0  2 0 0  3 0 0  10 0 0

B1 B2 B3 B1 B2 B3
Bh

B4 B1 B2 B4 B1 B2 B4 B1 B2
pV 1 4 14 2 5 15 2 5 15 2 5 15

B4 B1 B2 B4 B1 B2
BI

B1 B2 B3 B1 B2 B3 B1 B2 B3

Figure 4.15: Example of Proposition 4.3: i = B4 wins auction j = A1 for values
ṽ41 ≥ v̂41 = 2 and all prices increase.

the first bidder on the indifference path afterwards. Thus, for values ṽ41 above v̂41 = 2,
ṽ41 is part of all coalitional values c̃(N\g,M) for g ∈ {B1, B2, B3}.
Keep in mind that in this environment Vickrey prices are the lowest competitive

prices. The intuition behind all of these price decreasing results is that increasing
valuation vij may reduce i’s demand in other auctions if i wins j. Thus, the price
in these auctions may decrease and other bidders may therefore also reduce their
demands in other auctions.19 If i does not win auction j, prices may only increase in
ṽij.
The following results are based on Propositions 4.1–4.3. There, we considered three

starting points for the increase in vij. Now we differentiate the results by the direction
of the impact on individual items’ Vickrey prices. Corollaries 4.1, 4.2, 4.3, and 4.5
contain monotonicity results.

Corollary 4.1 The price pVj is weakly monotone increasing in vij if xij = 0. If
xij = 1, pVj is constant (x being the optimal assignment before the increase).

The first statement of Corollary 4.1 follows from Proposition 4.2(1) and Proposition
4.3(1) by considering arbitrary valuations vij. The second part follows from the
property of a Vickrey auction that a bidder cannot influence the price he pays and

19In the dynamic variant (the multiple-auctions game) i may bid less in other auctions, which
reduces the prices in the other auctions whenever he was the unique price determining bidder or
indirectly influenced the price by being part of an indifference path.
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from the fact that a further increase in vij does not change the assignment, so the
Vickrey price pVj is associated with i’s Vickrey payment (or from Proposition 4.1(1)).

Corollary 4.2 follows directly from Proposition 4.1(2).

Corollary 4.2 Prices pVl for l ∈M\j are weakly monotone decreasing in vij if xij =

1 (x being the optimal assignment before the increase in vij).

As can be seen from Propositions 4.2(5) and 4.3(3) category L1, condition xij = 1

is not a necessary condition but is a sufficient condition for the price to be weakly
monotone increasing.

On the other hand, we also identify a condition that characterizes increasing prices.

Corollary 4.3 Prices pVl for l ∈M are weakly monotone increasing in vij if x̃ij = 0

(x̃ being the optimal assignment after the increase in vij).

From the condition x̃ij = 0 it follows that xij = 0 and, as we know from the proofs
of Propositions 4.2 and 4.3, ṽij ≤ v̂ij and x̃ = x. With this, Corollary 4.3 follows
from Proposition 4.2 (1), (2), (4), and Proposition 4.3 (1) and (2), because these
propositions cover all cases for xij = 0.

From the possibility of decreasing prices and Corollary 4.3, we get Corollary 4.4.

Corollary 4.4 An increase in vij may lead to a decrease in prices pVl for l ∈ M\j
only if x̃ij = 1.

In addition we find limits on the price increases or decreases resulting from an increase
in vij to ṽij.

Proposition 4.4 An increase of vij to ṽij may lead to a maximum increase in the
sum of prices of min{n,m}(ṽij − vij) and a maximum decrease in the sum of prices
of (min{n,m} − 1)(ṽij − vij).

Proof of Proposition 4.4: A price increase is due to an increase in the difference
p̃Vl = c̃(N\g,M) − c̃−g(N,M) for x̃gl = 1. Since both coalitional values weakly
increase in vij, to get an increase in p̃Vl , c̃(N\g,M) has to increase while c̃−g(N,M)

is constant. This is possible if x̃ij = 0. Thus, as all changes in the assignment occur
at ṽij = v̂ij, we do not have to consider a change in the winning bidder in auction l
(see Table 4.1 for the range of ṽij in which prices p̃Vl may increase). But c̃(N\g,M)

cannot increase by more than ṽij increases. Furthermore, if n > m then an increase
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A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3
B1 3 3 0 3 3 0 3 3 0  5 3 0
B2 0 5 5 0 5 5 0 5 5 0 5 5
B3 0 0 10 0 0 10 0 0 10 0 0 10
B4 1 0 0  3 0 0 2 0 0 2 0 0
Bh B1 B2 B3 B4 B2 B3 B1 B2 B3 B1 B2 B3
pV 1 1 1 3 3 3 2 2 2 2 0 0
BI B4 B1 B2 B1 B1 B2 B4 B1 B2 B4 – –

Figure 4.16: Example of the maximum influence of an increase in ṽij on the sum of
prices (see Proposition 4.4).

can only occur in the m auctions and if m > n then prices can only increase in the n
auctions in which items are sold. Thus, the increase is less than min{n,m}(ṽij − vij).
Figure 4.16 shows on the left-hand side an example where the maximum increase of
min{n,m}(ṽij − vij) = 3 · (3− 1) = 6 occurs.
The argument for the maximum decrease is similar. In this case, c̃(N\g,M) has to

stay constant if c̃−g(N,M) increases. Thus, x̃ij = 1. The coalitional value c̃−g(N,M)

increases by weakly less than vij increases. The number of affected prices is restricted
to (min{n,m} − 1) because the price in j does not decrease (Corollary 4.1). An
example of the maximum decrease in the sum of prices is given in Figure 4.16 on the
right-hand side: (min{n,m} − 1)(ṽij − vij) = 2 · (5− 3) = 4. �

The maximum increase occurs if i does not win j at vij and is the last bidder on all
indifference paths that together contain all bidders. The maximum decrease occurs
if i wins j at vij and is the last winning bidder on all indifference paths that together
contain all bidders, the losing bidders valuations are zero for items l 6= j, and the
seller’s reservation values vSj are also zero. The price in j can never decrease.
According to Proposition 4.4, even if there is a single seller who offers all items, his

payoff (the sum of prices) may decrease in vij. It may even decrease by more than
the increase in vij.
The next corollary summarizes the monotonicity results of Propositions 4.1–4.3. It

follows from the impact of the stepwise increase in vij on each price p̃Vl for all values
of ṽij.

Corollary 4.5 (Individual price monotonicity) Every price pVl , l ∈M , is either
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A1 A2 A3 A1 A2 A3 A1 A2 A3

B1 5 8 0 5 8 0 5 8 0
B2 0 10 15  0 10 19  0 10 21
B3 2 0 15 0 0 15 0 0 15
B4 1 0 0 1 0 0 1 0 0

Bh B1 B2 B3 B1 B2 B3 B3 B1 B2
pV 1 4 9 1 4 13 1 3 14
BI B4 B1 B2 B4 B1 B2 B4 B2 B3

Figure 4.17: The Vickrey payment of B3 is not monotone in ṽ23.

weakly monotone increasing or weakly monotone decreasing in vij.

Note, however, that Vickrey payments pVg are not necessarily monotone. That is,
the smooth transition at ṽij = v̂ij, which we used for the argument above, does not
mean that the price a bidder g pays either increases or decreases monotonically in
ṽij. If ṽij is increased stepwise, a reassignment of g may occur at ṽij = v̂ij. Thus,
c̃−g(N,M) may change because it depends on g’s assignment. If g wins k for values
ṽij ≤ v̂ij and he wins l for ṽij ≥ v̂ij, then the associated values of c̃−g(N,M) differ by
vgk − vgl.

An example of such a discontinuity in Vickrey payments is given in Figure 4.17.
B3’s Vickrey payment increases from 9 to 13 if v23 increases from 15 to 19. But if
v23 continues to increase from 19 to 21, B3 wins A1 instead of A3 and his Vickrey
payment decreases from 13 to 1.

We can, however, transfer the individual price monotonicity result, which implies
monotonicity in the sellers’ payoffs, to bidders’ payoffs.

Proposition 4.5 (Individual payoff monotonicity) (1) Every bidder g’s Vick-
rey payoff uVg for g ∈ N\i is either weakly monotone increasing or weakly mono-
tone decreasing in vij.

(2) Every seller k’s Vickrey payoff uVk for k ∈ M is either weakly monotone in-
creasing or weakly monotone decreasing in vij.

Proof of Proposition 4.5: Part (2) follows directly from Corollary 4.5 because a
seller’s payoff is determined by the price he receives, or it is equal to zero and may
then only increase in vij.
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Concerning part (1), remember that uVg = c(N,M) − c(N\g,M). If the stepwise
increased vij is part of c(N,M) or c(N\g,M), it remains part of the coalitional values
for all higher values of vij. Thus, if it enters c(N,M) before it enters c(N\g,M), g’s
payoff weakly increases in vij and it weakly decreases otherwise. Since the payoff only
depends on these two coalitional values and they do not depend on the underlying
assignment, there is no other case to be considered and (1) is proved. �

Notice that bidder i’s payoff uVi = c(N,M) − c(N\i,M) is weakly monotone in-
creasing because c̃(N,M) ≥ c(N,M) and c̃(N\i,M) = c(N\i,M). On the other
hand, if bidder i falsely reported a ṽij above his true valuation vij, then i’s payoff
weakly decreases because submitting vi truthfully is a weakly dominant strategy.
An important implication of Propositions 4.2 and 4.3 is recorded in the following

Corollary 4.6.

Corollary 4.6 In the Vickrey auction with multiple heterogeneous units and unit
demand, profitable collusion may be possible by increasing bids.

The corollary follows directly from the possibility of decreasing prices (see, for exam-
ple, Propositions 4.2 and 4.3). Then, a bidder i may, by increasing his bid, decrease
the price another bidder h has to pay without increasing his own payment (see the
example in Figure 4.18 described below). Note that without side payments only bid-
der h may strictly profit from the deviation. However, if side payments are allowed,
h can transfer some of his gains to i.
Consider the example in Figure 4.18, where the valuation matrix on the left gives

the true valuations of the bidders and the valuation matrix on the right shows a
deviation of B1 by bidding b1 = (15, 10, 10) instead of b1 = (10, 10, 10). The result is
that B2 and B3 pay less. Via side payments, B1 may also profit from his deviation
if he colludes with B2 or B3.
In the single-unit Vickrey auction a profitable joint deviation as described in Corol-

lary 4.6 is clearly not possible. There, every increase in a bid weakly increases the
price.
The contribution of Corollary 4.6 is that profitable collusion is possible by in-

creasing a bid when items are substitutes (with side payments if one requires strict
improvements for all deviating bidders, without side payments if one allows for devi-
ating bidders that do not strictly improve their payoffs). In the Vickrey auction, it is
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A1 A2 A3 A1 A2 A3

B1 10 10 10  15 10 10
B2 0 15 0 0 15 0
B3 0 0 15 0 0 15
B4 5 0 0 5 0 0

Bh B1 B2 B3 B1 B2 B3
pV 5 5 5 5 0 0
g ∈ BI B4 B1 B1 B4 B1 B1

Figure 4.18: Example where profitable collusion by increasing a bid is possible.

of course possible for groups of bidders to deviate profitable by decreasing bids. For
example, in the single-unit second-price auction, the bidder with the second highest
valuation may collude with the winner: he decreases his bid and thereby decreases
the price.

A crucial property of such collusion is that not all colluding bidders’ payoffs strictly
increase. At least one bidder will have the same payoff as before. Therefore, only if
side payments are allowed may all bidders strictly profit from colluding.

Remember that equilibrium payoffs in this Vickrey auction with substitutes are in
the core. That is, no coalition of players may profitably deviate. However, profitable
collusion by bidders is possible (Corollary 4.6). The reason for this difference is
that any profitable deviation in the current game requires that coalitions contain
the seller because the coalitional value of any group of bidders is zero without a
seller. Therefore, it is important to remember that the core considers stability of the
outcome of the auction and excludes profitable renegotiations after the auction (see,
e.g., Milgrom (2004) and Day and Milgrom (2008)) but it does not exclude profitable
deviations by groups of bidders.

Note that our results also hold for a unilateral decrease in a valuation vij. This
may be deduced from the proof of Proposition 4.1 and the use of a stepwise increase
in ṽij in the proofs of Propositions 4.2 and 4.3. This implies that decreasing a bid
in the Vickrey auction with substitutes may increase prices and the sum of prices
(Proposition 4.4): if B1 in Figure 4.18 replaces his bid b1 = (10, 10, 10) by b̃1 =

(0, 10, 10), Vickrey prices change from pV = (5, 5, 5) to p̃V = (0, 10, 10). The sum of
prices increases from 15 to 20.
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4.2 Summary and Relation to the Multiple-Auctions

Game

Summary and Outlook It is well known that if all bidders have substitutes val-
uations adding a bidder can only lead to an increase in prices (see e.g., Shapley and
Shubik (1971) for the case of unit-demand preferences and Milgrom (2004) for general
substitutes). The results of this chapter add the following insights.

• An increase in a bid may cause a decrease in Vickrey prices (e.g., Corollary 4.2).

• Adding a bid (interpreted as increasing a former zero-bid) may cause a decrease
in Vickrey prices (e.g., Figures 4.4, 4.10, and 4.8).

• An increase in a bid may cause a decrease in the sum of Vickrey prices that may
even be larger than the increase in the bid (e.g., Figure 4.18). This implies that
the sum of the sellers’ revenues may decrease. Thus, a single seller’s revenue is
not monotonic in valuations.

• An increase in the bid of a bidder who did not win any item may also cause a
decrease in Vickrey prices. Therefore, adding a bidder really means adding a
new bidder that did not participate before and cannot be loosely interpreted as
increasing the bids of losing bidders (Proposition 4.3(3)).

• If the increased bid causes a price decrease, then bidder i wins item j (Corollary
4.4).

• If i wins j before the bid increases, prices cannot increase (Corollary 4.2).

• Vickrey prices and payments are individually monotone increasing or decreasing
in vij (Corollary 4.5 and Proposition 4.5).

A special case of such an increase is a change from vij = 0 to vij > 0. This special case
is the basis of the analysis in Chapter 5, where we examine incomplete bidder-seller
networks. Trade is restricted to bidder-seller pairs that are linked by an edge in the
graph that represents the network. As in the example in the introductory chapter, we
assume that bidders have to know about auctions to be able to participate. Finding
an item that is considered a substitute means adding a link to the network. Thus,
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the results of the current chapter provide the basis for the analysis of bidder-seller
networks in the following chapter.

Relation to the Multiple-Auctions Game Note that there is a difference be-
tween “bidding higher” in the Vickrey auction and “bidding higher” in the multiple-
auctions game. In the multiple-auctions game, the prices weakly increase if a bidder
submits a higher bid and the other bidders submit the same bids as before. We
also know that a higher bid does not decrease the others’ bids (Lemma 3.7, Section
3.2.3.2). A higher bid ṽij in the Vickrey auction is equivalent to bidding according
to σ∗i , using valuation ṽij (instead of vij) as an input in the multiple-auctions game.
Then, it may be that i bids less in auctions l ∈M\j and, if he is the price determining
bidder in l, the price there may decrease. The results of the current section carry
over in this way to the multiple-auctions game in equilibrium σ∗.

Consider the numerical example in Figure 4.18. Assume that all three items are
offered by the same seller in independent Internet auctions on a platform. Bidder B1

asks the seller for some additional information about the item offered in A1 such as the
exact name of the color, the product code, or information about certain interfaces of
an electronic device and this information changes B1’s valuation for the item. If B1’s
valuation increases to ṽ11 = 15, then this may be a disadvantage for the seller because
the resulting sum of prices in equilibrium is 5 instead of 15. On the other hand, if
the seller’s answer is dissatisfying to B1 and his valuation decreases to ṽ11 = 0, prices
change from p = (5, 5, 5) to p̃ = (0, 10, 10) and the seller’s payoff increases from 15 to
20 due to the negative answer.

If an increase in a valuation occurs before the bidding starts, the results are as just
described. However, if the increase occurs during the bidding process, it may be too
late to lower prices in the auctions where the price should decrease in equilibrium if
the bidder has already submitted his (higher) price determining bids. Such an increase
during the bidding process may be due to uncertain private valuations and the pseudo-
endowment effect (Ehrhart, Ott, and Abele, 2008), uncertain private valuations and
information acquisition (e.g., Rasmusen, 2006; Compte and Jehiel, 2007), or simply
new information that the seller in an online auction adds to the description. Such
an increase in valuations is captured by the current analysis only if it occurs early
enough in the bidding process.
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Bidder-Seller Networks

The previous analysis dealt with complete bidder-seller networks: each bidder was
able to bid in every auction. In this chapter, incomplete networks of bidders and
sellers are examined.

Consider, for example, an online auction market. There are many reasons why the
sets of auctions that bidders know about or consider relevant may differ. Usually,
a seller assigns his item to one or several categories and he gives his item a long
description with pictures as well as a brief description to be displayed on overview
pages. A potential bidder, who is looking for an object, may click through categories
or enter a search term. On many platforms, he can choose whether to search only
the brief descriptions or the long descriptions as well. He may restrict his search to
new articles or include used articles.1 Since sellers sometimes have typos in their
descriptions, a bidder may try to find such items by inserting different search terms
(see, e.g., Sinclair, 2007).2

This description of offering and searching for Internet auctions illustrates why not
all bidders find the same auctions. This motivates our investigation of incomplete
bidder-seller networks. Other models that analyze bipartite networks of buyers and
sellers are those of Kranton and Minehart (2000, 2001) and Corominas-Bosch (2004).
Kranton and Minehart (2000, 2001) investigate an English button auction whereas
Corominas-Bosch (2004) analyze bilateral bargaining.3

We define the network-restricted multiple-auctions game Γa(G) and solve for an
1Remember the example with mountain bikes given in the introduction (Chapter 1).
2Auctions with typos in the description are usually found by fewer bidders. Thus, a bidder may
hope to have an advantage by finding these items.

3The questions considered in the current chapter are close to those posed and answered for the
homogeneous unit-demand case in Kranton and Minehart (2001).
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ε-PBE. Using a comparative statics approach, we compare equilibrium outcomes in
different networks. Specifically, we analyze the impact of additional links in the
network on bidders’ payoffs and prices.

5.1 The Network-Restricted Multiple-Auctions

Game

A bidder-seller network is modeled as a bipartite graph. A bipartite graph is a graph
whose vertices or nodes can be divided into two disjoint sets such that every edge
in the graph connects nodes from different sets. In the following, we use the words
network and graph interchangeably. In the bidder-seller network, the disjoint sets of
vertices are the set of bidders N and the set of sellersM . We describe the bidder-seller
network by a n×m-matrix G of zeros and ones, G := (gij)i∈N,j∈M with gij ∈ {0, 1}.
The entry gij = 1 indicates an edge (also called a link or a connection) between bidder
i and auction j; gij = 0 indicates that i and j have no connection. A bidder-seller
network is incomplete if gij = 0 for at least one pair (i, j) of vertices. If gij = 1 for
all (i, j), the network is complete.
A bidder only knows about auctions to which he is linked. Thus, i cannot bid in

j if gij = 0. For the analysis we use the entry-wise product of V and G, V G :=

V ◦G = (vijgij)i∈N,j∈M .4 We call V G the network-restricted valuation matrix. Since
the entries of G are only zeros and ones, vijgij = vij if gij = 1 (i.e., if i and j are
connected) and vijgij = 0 otherwise.
According to σ∗i , a bidder i with vij = 0 never bids in j in the multiple-auctions

game. Thus, i neither wins j nor is he the price determining bidder in j. If gij = 0,
he cannot bid in j. Even if i has a virtual valuation vij > 0, this is not relevant
for him: he does not know that item j is offered in the market. For the equilibrium
analysis (on the equilibrium path), it does not make a difference whether i does not
bid because vij = 0 or because gij = 0. Note, however, that in general there is a
difference between a valuation vij = 0 and a non-existent link gij = 0: if gij = 0,
i does not have the option to bid in j. Thus, this condition is stronger because it
restricts the strategy space and the set of feasible assignments. We formally define a
network-restricted feasible assignment as follows.

4This operation is also called the Hadamard product.

141



Chapter 5 Bidder-Seller Networks

Definition 5.1 (Network-restricted feasible assignment) An assignment x is
feasible under network G if ∑

j∈M

xij ≤ 1 ∀ i,∑
i∈N

xij ≤ 1 ∀ j,

xij = 1 ⇒ gij = 1.

We denote the set of network-restricted feasible assignments by XG.

A network-restricted efficient assignment is an efficient assignment x in the market
(N,M, V, vS, G) that accounts for the (incomplete) network G (i.e., x ∈ XG). Thus,
the set of efficient assignments in (N,M, V, vS, G) is a subset of the set of efficient
assignments in (N,M, V G, vS).5

Next, consider the network-restricted Vickrey auction. Since i cannot buy j if
gij = 0, it follows that xij = 0 in the efficient assignment x, even if xij = 1 in the
complete network. Assume that i bids zero in j. Then this bid is not contained in
any coalitional value (in the calculation of Vickrey payoffs) and i does not win j.6

Thus, a zero bid results in the same outcome as a non-existent edge.
The network-restricted multiple-auctions game, denoted by Γa(G), equals Γa with

G added to the description. In our interpretation, Γa(G) equals Γa with V replaced
by V G. We neglect the difference between vij = 0 and gij = 0 whenever it does not
matter for our analysis.

To clarify the relation to the model of Kranton and Minehart (2001), we describe
their basic model. Buyers in their market have homogeneous valuations. Several
sellers exist who may sell one unit of the good. Buyers want to buy only one unit of
the good. The market is replaced by an incomplete buyer-seller network so that each
buyer can only buy from a subset of sellers and sellers may only sell to a subset of
potential buyers. Kranton and Minehart implement an ascending auction mechanism
where the price simultaneously and continuously increases in all auctions with at

5In (N,M, V G, vS) additional efficient assignments may exist in which i with vG
ij = 0 is assigned

to j if vG
hj = 0 for all h.

6We neglect the borderline cases in which a bidder with a bid of zero can either win the item at a
price of zero or not win it. In these cases, we assume that the network-restricted feasible efficient
assignment, which then also exists, is chosen.
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Figure 5.1: The incomplete network in the example taken from Kranton and Minehart
(2001).

least two active bidders. Buyers indicate if they are still interested in buying at
the given price from any seller they are connected to, which is very similar to an
English button auction. It is a network-restricted English button auction. Since each
bidder indicates all items in which he is interested at the given prices, this is equal
to announcing demand.

Let us compare this model with the network-restricted multiple-auctions game
Γa(G). In Γa(G), we consider heterogeneous instead of homogeneous unit-demand
preferences, we analyze an (epsilon-) PBE or ex-post (epsilon-) equilibrium, the auc-
tions are asynchronous second-price proxy auctions instead of simultaneous English
button auctions, and sellers’ reservation values and starting prices greater than zero
are allowed.
We show by means of an example from Kranton and Minehart (2001) how the two

models are related. Suppose three items A1, A2, and A3 are offered. Five bidders
B1, . . . , B5 participate in the market. Their valuations are v1 > v2 > v3 > v4 >

v5, where valuation vi of bidder Bi is assumed to be identical for all three items
(homogeneous unit-demand preferences). The incomplete network is illustrated in
Figure 5.1. The efficient assignment is x11 = x42 = x33 = 1. Note that the assignments
x11 = x22 = x33 = 1 and x11 = x22 = x43 = 1, which would yield higher surpluses, are
not feasible in the given network. Equilibrium prices are p1 = v2 and p2 = p3 = v5.
In a complete network, a uniform market price p = v4 would result.
We transfer the example into the context of our model and use the homogeneous

valuations stipulated in the example. The original valuation matrix V is given in
Figure 5.2 on the left, the network G is in the middle, and the network-restricted
valuation matrix V G = V ◦G is on the right. The equilibrium outcomes (which are the
same as the Vickrey outcomes) of the multiple-auctions game for valuation matrices
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V A1 A2 A3 G A1 A2 A3 V G A1 A2 A3
B1 v1 v1 v1 B1 1 0 0 B1 v1 0 0
B2 v2 v2 v2 B2 1 0 0 B2 v2 0 0
B3 v3 v3 v3 B3 1 1 1 B3 v3 v3 v3

B4 v4 v4 v4 B4 0 1 0 B4 0 v4 0
B5 v5 v5 v5 B5 0 0 1 B5 0 0 v5

Bh B1 B2 B3 Bh B1 B4 B3
pV v4 v4 v4 pV v2 v5 v5

Figure 5.2: Adaptation of a valuation matrix V to the network-restricted valuation
matrix V G for the analysis of an incomplete bidder-seller network G.

V and V G are given in the lower two rows (Bh and pV ). Obviously, the outcome
of our network-restricted auctions game corresponds to the equilibrium outcome in
Kranton and Minehart’s example.

5.1.1 Equilibrium Analysis

To transfer the results of Chapters 3 and 4 to the game Γa(G), we first state some
technical notes. The network is an additional element in the multiple-auctions game.
After determining bidders’ valuations, nature selects an n × m-matrix of zeros and
ones. This gives the bidder-seller network G. At the beginning of the game, the
network G is unknown to the bidders. Each bidder has private information about his
links to auctions. During the bidding process, a bidder learns about other bidders’
links by observing the high bidders. He updates his beliefs according to his observa-
tions under the assumption that all bidders follow σ∗. If a bidder observes a bid off
the equilibrium path that contradicts his beliefs, he may either assume that the other
bidder’s valuation is higher or that the network is different from what he believed. We
assume that he forms his beliefs over V G such that he does not distinguish between
vij = 0 and gij = 0.
We denote strategy σ∗ by σ∗(G) when we apply it in the network-restricted multiple-

auctions game Γa(G). Under σ∗i (G), bidder i with gij = 0 for some j orientates his
bids at his network-restricted valuations vGi instead of vi. Thus, σ∗i (G) is equal to σ∗i
if V is replaced by V G.

Proposition 5.1 Given a network G, in the reference outcome (x̄∗,G, p̄∗,G) that re-
sults from playing according to σ∗(G) in a network-restricted multiple-auctions game
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Γa(G), for every realization of valuations V and vS

(1) the assignment x̄∗,G is an optimal assignment in XG and

(2) p̄∗,G = pV for Vickrey prices pV in the market (N,M, V G, vS).

Proof of Proposition 5.1: From Section 3.2.2 we know that the reference out-
come (x̄∗, p̄∗) is a possible outcome if all bidders follow σ∗ with valuations V .7 Thus,
(x̄∗,G, p̄∗,G) is also an outcome of the game Γa(G) when bidders play according to σ∗

using V G to determine bids, i.e., when bidders play according to σ∗(G). According
to σ∗i , a bidder i with valuation vij = 0 submits no bid in j in the game Γa. Thus,
the resulting assignment x̄∗,G is feasible under the network G, x̄∗,G ∈ XG. From
the definition of σ∗i (G), the resulting assignment x̄∗,G and prices p̄∗,G are exactly
those of a game Γa with V = V G. Hence, from Proposition 3.4, x̄∗,G is an optimal
or efficient assignment for (V G, vS). Thus, all improvements to efficiency that are
possible under V are inhibited by the incomplete network. Property (2) follows di-
rectly from Proposition 3.9. The graph G determines, for every feasible realization
of valuations V , a feasible matrix V G. Thus, the results are valid for all V and vS. �

Proposition 5.2 Given a network G, (σ∗(G), µ) is an ε-PBE of Γa(G) for ι <
1/min{n− 1,m− 1}.

Proof of Proposition 5.2: According to Theorem 3.1, (σ∗, µ) is an ε-PBE of Γa

for all V and ι < 1/min{n− 1,m− 1}. Thus, it is an ε-PBE for V = V G. Bidder i is
not allowed to bid in j if gij = 0, even if he has a potential valuation vij > 0. Thus,
the transfer from a valuation matrix V to V G only restricts i’s options but does not
change his incentives. It follows that (σ∗(G), µ) is an ε-PBE of Γa(G).

For beliefs µ, we assume updating consistency to apply the one-shot-deviation prin-
ciple as in Section 3.2.3.2. �

From the argument in Section 3.2.3.2, we conclude that σ∗(G) is also an ex-post
ε-equilibrium.

7And for ι < 1/{min{n − 1,m − 1} all outcomes are close to the reference outcome. For details,
see Section 3.2.2.5.
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5.1.2 Network Analysis

In this section, we analyze the impact of adding links to a given network on the equi-
librium (reference) outcome. We transfer and extend results of Kranton and Minehart
(2001) to our multiple-auctions model and the case of unit-demand preferences for
heterogeneous items.

Firstly, consider the following result of Kranton and Minehart (2001):

“For a buyer, increasing its access to supply by adding a link to another
seller weakly decreases the price it expects to pay, and vice versa for a
seller.” (Kranton and Minehart, 2001, p. 491)

We now investigate whether a similar statement is valid in the general unit-demand
preferences case of the network-restricted multiple-auctions game. We analyze the
bidders’ side (Proposition 5.3) and then the sellers’ side (Proposition 5.4). With
heterogeneous items, the price alone does not decide bidders’ payoffs. Thus, we
consider bidders’ payoffs instead of prices in the propositions. To see why a bidder’s
price (Vickrey payment) is not the relevant factor, consider the example in Figure
5.3. There, the link g̃21 = 1 is added to the network. As a consequence, the price that
B1 pays increases from 1 (in A1) to 3 (in A2) but his payoff increases from 5− 1 = 4

to 8− 3 = 5. Thus, we concentrate on bidders’ payoffs.
Denote the network that results from adding a link from i to j to network G by

G̃. We have V G = V ◦ G and V G̃ = V ◦ G̃. Thus, adding the link g̃ij = 1 results in
a change in the network-restricted valuation matrix: vGij = 0 is replaced by vG̃ij ≥ 0.
Analyzing the impact of an additional link is therefore equivalent to analyzing the
effect of increasing a zero valuation. Hence, the relation to the analysis in Chapter 4
is obvious.
Adding a link to a network has the following consequences for bidders’ equilibrium

payoffs u(x̄∗, p̄∗).

Proposition 5.3 Suppose two bidder-seller networks G 6= G̃ differ only in the entry
gij = 0 and g̃ij = 1 (i.e., a link between bidder i and auction j is added). Then, in
the PBE outcomes (x̄∗,G, p̄∗,G) of Γa(G) and (x̄∗,G̃, p̄∗,G̃) of Γa(G̃),

(1) ui(x̄∗,G̃, p̄∗,G̃) ≥ ui(x̄
∗,G, p̄∗,G), and

(2) ug(x̄∗,G̃, p̄∗,G̃) could be lower, higher, or the same as ug(x̄∗,G, p̄∗,G) for bidders
g ∈ N\i.
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V G A1 A2 A3 V G̃ A1 A2 A3
B1 5 8 0 5 8 0
B2 0 10 19 8 10 19
B3 2 0 15 2 0 15
B4 1 0 0 1 0 0
Bh B1 B2 B3 B2 B1 B3
pV 1 4 13 1 3 12

Figure 5.3: Vickrey outcomes for one valuation matrix V and two networks G and G̃
that differ only in that g21 = 0 while g̃21 = 1 (a link g̃21 is added to the
network G).

The analysis of adding a link is comparable to the analysis in Chapter 4. There, we
considered the change from vij to ṽij > vij both as a real increase and as a deviation
by i from bidding truthfully. Concerning the network game, only the first point is
relevant. Thus, a bidder i who obtains a new link to j, which is modeled as weakly
increasing his valuation from vGij = 0 to vG̃ij ≥ 0, calculates his payoff using vG̃ij .8

Proof of Proposition 5.3: First we prove (1) that an additional link for bidder i
weakly increases his payoff. From Proposition 5.1, the outcome in the PBE of Γa(G̃)

is the Vickrey outcome for bids V G̃. Bidding vG̃i is a weakly dominant strategy in
the Vickrey auction. Thus, for a bidder with valuations vG̃i , bidding vGi instead of vG̃i
results in a weakly lower payoff. From this, i’s payoff under G is weakly lower than
under G̃, i.e., ui(x̄∗,G, p̄∗,G) ≤ ui(x̄

∗,G̃, p̄∗,G̃), which completes the proof of (1).9

8Stated differently, in the Vickrey analysis of a deviation from truthful bidding, a bidder who bids
ṽij instead of his true valuation 0 nevertheless has to calculate his payoff as 0− p̃j if he wins j.
However, in the current analysis, the increase in the valuation represents a new possible profitable
trade for i and, winning j, his payoff equals ṽij − p̃j .

9Alternatively, we can derive (1) from ui(x̄∗,G, p̄∗,G) = cG(N,M) − cG(N\i,M), cG̃(N,M) ≥
cG(N,M), and cG̃(N\i,M) = cG(N\i,M).

147



Chapter 5 Bidder-Seller Networks

V G A1 A2 A3 A4 A5 A6 V G̃ A1 A2 A3 A4 A5 A6
B1 5 5 0 0 0 0 5 5 20 0 0 0
B2 0 10 10 0 0 0 0 10 10 0 0 0
B3 0 0 15 5 0 0 0 0 15 5 0 0
B4 0 0 0 3 0 0 0 0 0 3 0 0
B5 2 0 0 0 0 0 2 0 0 0 0 0
B6 1 0 0 0 0 0 1 0 0 0 0 0
B7 0 0 0 0 3 1 0 0 0 0 3 1
B8 0 0 0 0 2 1 0 0 0 0 2 1
Bh B1 B2 B3 B4 B7 B8 B5 B2 B1 B3 B7 B8
pV 2 2 2 0 1 0 1 0 13 3 1 0

Figure 5.4: Example of Proposition 5.3.

Part (2) follows directly from Proposition 4.5(1) for vij = 0 and ṽij = vG̃ij . �

Figures 5.3 and 5.410 provide examples of result (1) in Proposition 5.3: the payoff
of i = B2 increases from 6 to 7 and that of i = B1 from 3 to 7, respectively.

Moreover, Figure 5.4 illustrates result (2) of Proposition 5.3: the link between B1

and A3 is added and B2 and B5’s payoffs increase from 8 to 10 and from 0 to 1,
respectively. B4’s payoff decreases from 3 to 0 and the payoffs of B6, B7, and B8

are unchanged.11

Note in particular that (2) is valid for a winning bidder h 6= i of auction j in G (j

is where the link is added): in Figure 5.4 the payoff of h = B3 decreases from 13 to
2, but in Figure 5.3 the payoff of h = B1 increases from 4 to 5.
A detailed analysis of this bidder h may be inferred from Corollary 4.1 and Propo-

sition 4.5 (Chapter 4):12 the price pVj in auction j weakly increases when a link is
added to j. From individual payoff monotonicity, either pVj increases weakly and bid-
der h’s payoff decreases,13 or pVj remains constant and h’s payoff weakly increases.14

For values above the critical value v̂ij (as determined in Chapter 4), no further change

10This example replicates the first and last valuation matrices considered in Figure 4.8.
11Note however, that B5’s payoff increases from 0 to 2 − 1 = 1 and his Vickrey payment also

increases from 0 to 1.
12Weakly monotone increasing price pj in vij if xij = 0 (Corollary 4.1) and individual payoff

monotonicity (Proposition 4.5).
13A decrease occurs for values vG̃

ij ≤ v̂ij . For the meaning of v̂ij , see Chapter 4: v̂ij indicates the
minimum valuation such that i wins j and the assignment is altered.

14An increase in h’s payoff may occur for values vG̃
ij ≥ v̂ij .
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in price pVj compared to the situation with vG̃ij = v̂ij occurs because i has no impact
on pVj if the assignment is unaltered (because we consider a Vickrey auction).

Proposition 5.3(1) and (2) imply the respective results in Corollary 5.1. Part (3)
of the corollary is due to the argument for bidder h above (in the corollary, i takes
the former position of h).

Corollary 5.1 Consider a bidder i ∈ N in the network G.

(1) Additional links to bidder i weakly increase his payoff.

(2) Additional links to other bidders in the network may increase or decrease i’s
payoff.

(3) If bidder i wins auction j before and after links to j are added, these additional
links weakly decrease i’s payoff.

The following proposition considers the sellers’ side. It states that additional links
to j weakly increase seller j’s payoff, but additional links to other auctions in the
network may increase or decrease j’s payoff.

Proposition 5.4 Suppose two bidder-seller networks G 6= G̃ differ only in the entry
gij = 0 and g̃ij = 1 (i.e., a link between bidder i and auction j is added). Then, in
the PBE outcomes (x̄∗,G, p̄∗,G) of Γa(G) and (x̄∗,G̃, p̄∗,G̃) of Γa(G̃),

(1) uSj (x̄∗,G̃, p̄∗,G̃) ≥ uSj (x̄∗,G, p̄∗,G) and p̄∗,G̃j ≥ p̄∗,Gj , and

(2) uSk (x̄∗,G̃, p̄∗,G̃) could be lower than, equal to, or higher than uSk (x̄∗,G, p̄∗,G) for
sellers k ∈M\j.

Proof of Proposition 5.4: Remember that p̄∗,Gj and p̄∗,G̃j equal the Vickrey pay-
ments of the winner of j. We use this in the following and denote the respective
prices by pVj and p̃Vj . The weak increase in the price pVj to p̃Vj follows directly from
the result for case xij = 0 in Corollary 4.1. Thus, if j sells his item, we have
uSj (x̄∗,G̃, p̃V ) = p̃Vj − vSj ≥ pVj − vSj = uSj (x̄∗,G, pV ). If j does not sell his item, his
payoff is zero, and therefore may only increase. It is impossible for j to sell his item
before the link is added but not afterwards: whenever x̄∗,G 6= x̄∗,G̃ this implies that
x̄∗,G̃ij = 1.
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Part (2) follows from Proposition 4.5(2) for vij = 0 and ṽij = vG̃ij . �

These results imply that an adaptation of the above-quoted statement of Kranton
and Minehart (2001) applies to our environment: a buyer i’s payoff weakly increases if
his access to supply is increased by adding a link to another seller (Proposition 5.3(1))
and a seller’s payoff weakly increases by adding a link to a bidder (Proposition 5.4(1)).
However, i’s payment may both increase and decrease (even if i is a winning bidder,
i.e., a “buyer” in the quotation, before the link g̃ij = 1 is added; see Figures 5.3 and
5.4).

Our results also refer to the indirect impact of a link on other agents (besides i and
j if link gij = 1 is added) in the network. Before we further illustrate these results
with examples, let us consider the following quote:

“The payoffs of other agents also change in natural ways, e.g., the payoffs of
other buyers linked to the seller with the additional link weakly decrease.”
(Kranton and Minehart, 2001, p. 491)

This claim is not true for the heterogeneous valuations case. For example, we already
showed that the result in Proposition 5.3(2) is also valid for a bidder h who wins j
before g̃ij = 1 is added. The existence of link ghj = 1 is a precondition for winning
j and, thus, h is one of the “buyers linked to the seller with the additional link.” In
Figures 5.3 and 5.5, every bidder’s payoff, independent of being linked to j or not,
weakly increases.

On the other hand, Figure 5.6 shows that adding a link may weakly reduce all
bidders’ payoffs.15 Figure 5.4 exemplifies a mixture of increasing and decreasing
payoffs. Furthermore, these examples illustrate that all prices may strictly increase
(Figure 5.6) and all prices may weakly decrease (Figure 5.5) if a link g̃ij = 1 is
added (weakly because the price pVj may only increase or be unaltered). A mixture of
increasing and decreasing prices may also occur (Figures 5.3 and 5.4). For example,
in Figure 5.3 B1 pays 1 and 3 before and after the link g̃21 = 1 is added, respectively,
whereas B3 pays 13 and 12.
The quotation refers to bidders h 6= i that are connected with j before g̃ij = 1 is

added. From the three examples, we may infer that in our environment all mixtures
15Specifically, in Figure 5.6 two efficient assignments exist. If v41 = 6, then B4’s payoff increases by

one when the link g̃41 = 1 is added.
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V A1 A2 A3
B1 8 10 10
B2 5 10 5
B3 5 5 10
Bh B1 B2 B3
pV 0 2 2

V G A1 A2 A3 V G̃ A1 A2 A3
0 10 10 8 10 10
5 10 0 5 10 0
0 0 10 0 0 10
B2 B1 B3 B1 B2 B3
0 5 5 0 2 2

Figure 5.5: An example where adding link g̃11 = 1 weakly increases all bidders’
payoffs.

V G A1 A2 A3 V G̃ A1 A2 A3
B1 5 8 0 5 8 0
B2 0 10 10 0 10 10
B3 0 0 15 0 0 15
B4 0 4 0 5 4 0
Bh B1 B2 B3 B4 B2 B3
pV 0 3 3 5 8 8

Figure 5.6: An example where adding link g̃41 = 1 weakly decreases all bidders’
payoffs.
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V̂ A1 A2 A3
B1 8 10 10
B2 5 10 0
B3 0 0 10
Bh B1 B2 B3
pV 0 2 2

V̂ G A1 A2 A3 V̂ G̃ A1 A2 A3
0 10 10 8 10 10
5 10 0 5 10 0
0 0 10 0 0 10
B2 B1 B3 B1 B2 B3
0 5 5 0 2 2

Figure 5.7: Adaptation of the example in Figure 5.5.
Left: complete valuation matrix. Right: incomplete networks.

of price impacts may occur even when restricting the analysis to such agents h.
The valuation matrices V G in the examples can be interpreted as valuation matrices
V̂ associated with a complete network. Therefore, the networks in the associated
graphical illustrations may also be adapted to networks where gij is the only non-
existent link. We exemplify this in Figure 5.7 for the example in Figure 5.5.

The results derived from Figures 5.3–5.6 may seem artificial because they are based
on links that connect bidders with items that they do not value. However, we may
complement the example by adding a constant to all valuations in the matrix (see
Figure 5.8). We still get qualitatively the same outcomes. Thus, results that hold

for matrix V̂ , that is based on links associated with zero valuations, matrices ̂̂V with
strictly positive valuations can be constructed such that the result still holds.

From Corollaries 4.3 and 4.4, respectively, we derive a sufficient condition for in-
creasing prices in the network and a necessary condition for decreasing prices.

Corollary 5.2 Suppose that a link between bidder i and seller j is added to the
network.

(1) If bidder i does not win auction j after the link is added, prices pk for all k ∈M
weakly increase.
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̂̂
V A1 A2 A3
B1 10 12 12
B2 7 12 2
B3 2 2 12
Bh B1 B2 B3
pV 0 2 2

̂̂
V
G

A1 A2 A3
̂̂
V
G̃

A1 A2 A3
0 12 12 10 12 12
7 12 2 7 12 2
2 2 12 2 2 12
B2 B1 B3 B1 B2 B3
0 5 5 0 2 2

Figure 5.8: Further adaptation of the examples in Figures 5.5 and 5.8 (all valuations
are 2 units higher).
Left: complete valuation matrix. Right: incomplete networks.

(2) Prices pk for k 6= j ∈M may decrease if i wins j after the link is added.

Let us now consider adding several links sequentially. In Figure 5.5, the underlying
valuation matrix V is presented. The overall efficient assignment associated with V
equals the efficient assignment under V G̃. Thus, adding the three missing links to
V Ĝ does not change the assignment. In this example, prices do not change anymore
when further links are added to V Ĝ.

Note, however, that individual prices are not monotone in the added links. Consider
Figure 5.9. There, the price in A3 increases from 0 to 2 if we add link g̃13. However,
adding another link g̃11 leads to a decrease in pV3 . If we change the order in which we
add links g̃13 and g̃11, prices behave monotonically. Replace matrix V G̃ by V G̃′ and
prices change from pV = (0, 2, 0) to (1, 1, 0) and finally to (1, 1, 1). Thus, all prices
either increase or decrease when links are added in this order.

The same non-monotonicity (or path dependence) in adding links applies to bidders’
payoffs: in Figure 5.9, B3’s payoff decreases from 3 to 1 and then it increases to 2.
Kranton and Minehart (2001) examine a network formation game. In the first

stage, bidders simultaneously decide about forming links at a cost c` > 0 per link. In

153



Chapter 5 Bidder-Seller Networks

V G A1 A2 A3 V G̃ A1 A2 A3 V A1 A2 A3 V G̃′ A1 A2 A3
B1 0 2 0 0 2 2 2 2 2 2 2 0
B2 0 3 0 0 3 0 0 3 0 0 3 0
B3 0 0 3 0 0 3 0 0 3 0 0 3
Bh – B2 B3 – B2 B3 B1 B2 B3 B1 B2 B3
pV 0 2 0 0 2 2 1 1 1 1 1 0

Figure 5.9: Example where prices (pV3 ) and payoffs (u3) do not change monotonically
if links are added sequentially.

stage two, bidders learn their (homogeneous) valuations and play a network button
auction. They find that for any c`, each efficient network is an outcome in a PBE of
the game (Kranton and Minehart, 2001, Proposition 2). Furthermore, they state that
this result also holds for “any competitive process that yields an efficient allocation
of goods and in which buyers’ revenues are the marginal surplus from exchange”
(Kranton and Minehart, 2001, p. 494). Our model fulfills these conditions. Thus,
efficient networks are equilibrium networks of the network formation game combined
with the network-restricted multiple-auctions game Γa(G).
However, in the heterogeneous items environment, it is not straightforward to char-

acterize ex-ante efficient networks. For homogeneous items, Kranton and Minehart
find that least-link allocatively complete (LAC) networks are ex-ante efficient for low
costs c`. LAC networks have the property that the overall efficient assignment is fea-
sible for each realization of valuations. They characterize LAC networks using Hall’s
Theorem (Hall, 1935). Furthermore, using order statistics for prices, they prove that
only LAC networks are equilibrium outcomes if, in the first stage, bidders simulta-
neously build links to sellers (assuming that the button auction takes place in the
second stage of the game and learning about private valuations takes place between
the two stages). However, in our environment the only network that assures the
overall efficient assignment for all realizations of valuations is the complete network.
Thus, this network formation game will have to be analyzed in more detail.

We abstain from doing this but simply state some more results without proof. The
sparsest overall efficient network is defined as the network with the least number of
links that allows for the efficiency level of the complete network. In a game with
given valuation matrix V , it is the network that connects solely those bidders who
win under the optimal assignment with their seller. In other words, only links gij = 1
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with vij being part of c(N,M) exist and gij = 0 otherwise. This can be easily seen
because this network allows for all bidder-seller pairs that are part of the efficient
assignment and no superfluous links exist. The sparsest overall efficient network with
Vickrey prices equal to those of the complete network is the sparsest overall efficient
network with additional links between a bidder in BI(j) and j for each auction j

with BI(j) 6= j. Then, the indifference paths (or, if several piecewise exchangeable
indifference paths exist, choose one of them) are also part of the network and prices
are determined like Vickrey prices in the complete network (cp. Lemma 4.1 in Chapter
4).

Adding a bidder to the network weakly decreases all other bidders’ payoffs and
weakly increases all sellers’ payoffs, whereas adding a seller has the reverse effect.
This result is independent of the number or distribution of the additional bidder’s or
seller’s links. It follows directly from results on the assignment game, where adding
bidders and sellers has these implications (cp. Section 3.3). This means that even
though a bidder does not necessarily prefer less links between other bidders and the
seller he is linked to or less links in the network in general, he does prefer to have less
bidders in the network.

5.2 Discussion

We provide a framework for the analysis of bidder-seller networks. The equilibrium
results of Section 3.2 extend to the case of incomplete networks. Furthermore, results
of a comparative statics analysis investigating the effect of adding links (or analo-
gously deleting links) are given. An informal analysis provides insights into strategic
network formation in our environment.

One of the surprising results in this chapter is that a bidder may profit from an
increase in the number of connections to sellers that he is linked to. Even though
he competes with the additional bidders, his payoff may increase. Thus, a bidder
in an Internet auction may be better off if items that he is interested in are found
by other bidders (if those bidders know about more than these particular auctions).
Furthermore, a seller is not necessarily hurt by bidders who are interested in his item
searching for other items. With homogeneous items, these kinds of counterintuitive
price effects do not occur.
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However, we replicate the result of the homogeneous item case that bidders and
sellers profit from having more connections. That is, executing costless search is
always worthwhile for bidders and improving accessibility and presentation of one’s
own auction is always worthwhile for sellers.
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Chapter 6

Experimental Test of Model
Predictions

We report a laboratory experiment on bidding behavior and outcomes in a multiple-
auctions game. We investigate whether participants bid according to strategy σ∗ and
if the predicted outcome (x∗, p∗) occurs (see Chapter 3).

6.1 Organization of the Experiment

The experiment was run at the University of Karlsruhe, Germany, with students
from various disciplines randomly selected from the database of our experimental
laboratory. Three sessions with 20 subjects per session were conducted. The subjects
were partitioned into four groups of five bidders each. Every subject participated
in three periods. A period consisted of one multiple-auctions game, played within
the respective group. After every period, groups were recomposed. Thus, in total
we have 36 observations of differently composed groups’ results. Independence of
observations is only given for the three session results. Since we do not compare
treatments but analyze individual behavior and equilibrium results descriptively, we
consider this to be unimportant. We assume that subjects consider the three periods
to be independent because they are assured that they play in a different group in
each period.

The experiments are computerized. Each subject is seated at a computer terminal
that is separated from the other subjects’ terminals. The subjects receive written
instructions, which are also read out loud by an experimental assistant. Before the

157



Chapter 6 Experimental Test of Model Predictions

experiment starts, each subject has to answer several questions at her computer
terminal concerning the instructions. After the subjects have answered all questions
correctly, they receive their private information – their valuations for the three goods
to be auctioned off in the first period. Then the experiment starts. Communication
is not permitted. Subjects cannot identify the participants they play against. In each
period, groups are composed of different subjects. At the end of an experimental
session, the subjects are paid in cash according to their profits in all three periods.
The experimental sessions last between 2 hours and 15 minutes and 2 hours and 50
minutes.

6.2 Experimental Design

For the experiment we choose n = 5 and m = 3 so that the multiple-auctions game
consists of five bidders and three sellers. Only the bidders’ roles are assigned to
participants. The sellers are represented by three auctions with given starting prices.
We conduct private value auctions where each bidder has private information about
his three different valuations for the three hypothetical goods. In each period, every
bidder receives new valuations. A total of five different valuation matrices are used inn
the experiment. Our three sessions differ by the order and selection of the valuation
matrices.

The valuations of the five bidders are drawn before the experiment from a uniform
distribution over the even numbers between 40 and 140. We determine several 5×3
valuation matrices of bidders by drawing 15 valuations independently, and then se-
lect five appropriate valuation matrices.1 To have some variation in the valuation
matrices used (different characteristics of the expected results), three of the five se-
lected matrices are used in each session. The five selected valuation matrices V 1–V 5

are shown in Table 6.1. To make the induced preferences (unit-demand preferences)
easier to understand, valuations are described as prices at which the participant can
sell the item after the auction. But he is only able to sell one item, the one with the
highest price of those he owns after the auction.

1Selection criteria applied are the following: valuation matrices differ with respect to the number
and composition of internal and external price determining bidders, winning bidders’ names vary,
the variance of expected payoffs of participants is not too high and the number of participants
that do not win any auction is low.
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Table 6.1: The five valuation matrices V 1–V 5 used in the experiment

V1 A1 A2 A3

B1 70 96 128
B2 134 136 64
B3 42 48 48
B4 76 116 124
B5 72 42 52

V2 A1 A2 A3

B1 104 128 130
B2 46 120 68
B3 114 52 72
B4 118 126 106
B5 58 76 64

V3 A1 A2 A3

B1 80 112 124
B2 98 60 56
B3 76 126 96
B4 84 46 102
B5 60 44 70

V4 A1 A2 A3

B1 66 112 110
B2 128 108 114
B3 118 70 90
B4 58 136 98
B5 134 52 130

V5 A1 A2 A3

B1 130 74 46
B2 90 72 48
B3 92 64 66
B4 96 102 94
B5 112 72 88

The order in which the five different matrices of Table 6.1 are used in the three
periods in Sessions 1–3 is given in Table 6.2. Altogether, the game is played in nine
periods, once with valuation matrix V 2 and twice with valuation matrices V 1, V 3,
V 4, and V 5.

Table 6.2: Order of valuation matrices in the different sessions

Period 1 2 3

Session 1 V 1 V 2 V 3
Session 2 V 5 V 4 V 3
Session 3 V 4 V 1 V 5

After each period, the groups change such that no participant plays two rounds in
the same group. With 20 participants per session, it is not possible to rematch groups
such that no two participants ever meet again. But it is assured that no player ever
plays twice in the same group. The matching protocol can be found in Table B.2
in Appendix B.1. Valuation matrices and group changes are arranged in such a way
that almost each participant wins an auction in at least one round in equilibrium.2

2Only three of the 60 participants do not win in equilibrium – see Table B.4: participants 20, 4,
and 18 in sessions 1, 2, and 3, respectively.
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Next we describe the auction format, which is held as close as possible to the theo-
retical model. For more details, see the original instructions (in German) in Appendix
B.3. Differences between the design and the model in Chapter 3 are discussed below.

The five bidders in a group are denoted by A, B, C, D, and E. Subjects usually
have a different bidder name in each period so that they are reminded that each
game is independent from the previous game. The starting price in all auctions is
b0
j = 40 ExCU and there is a constant increment ι = 1 ExCU. Bidders are allowed to
submit bids in alphabetical order (A–E). When it is a bidder’s turn to bid, he can
choose between all auctions in which he is not the current high bidder (outbidding
oneself is not allowed) or decide not to bid. In the chosen auction he can enter a
bid of his choice that exceeds the current standing bid by at least one increment.
Current standing bids and final prices are determined by the second-price rule. Bid
withdrawal is not allowed.
Participants are always informed about their private valuations, the current stand-

ing bids, the current high bidder in all three auctions, and their high bids when they
are current high bidders. In addition, they can press a button to see the bidding
history in each auction, i.e., the previous high bidders and any previous high bids
that have been outbid. Current high bids of other bidders are not revealed.
The auctions end when all bidders state that they do not want to submit a new bid.

Thus, it is assured that all bidders accept the final outcome. When the auctions end,
winners are paid their maximum valuation out of all goods they won minus the price
plus a lump-sum payment that all subjects receive. After rematching, the next period
begins. Different lump-sum payments per period in the three sessions (16.7, 8, and 8
ExCU3) and exchange ratios (1 ExCU equals e 0.20, e 0.30, and e 0.25, respectively)
are chosen to level out the different predicted payoffs in ExCU. The average expected
payoffs without lump-sum payments in ExCU in the three sessions are 52.0, 43.4, and
58.6, respectively (see Table B.4). With lump-sum payments and exchange ratios this
gives expected average payments of e 20.40, e 20.22, and e 20.65, respectively. The
average, minimum, and maximum realized payments of all subjects are e 18.90, e 0,
and e 39, respectively.

3In the first session, we planned to conduct 5 periods. Since participants in the slowest group
were much slower in submitting their bids than expected, we had to restrict ourselves to three
periods. To get a reasonable payment we increased the lump-sum payment from 5 to 16.7. In the
following, we will deal with this session as if this lump-sum payment was planned beforehand.
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The differences between the design and the model in Chapter 3 are the following.
In the experiment, the valuations are even integers and the increment equals one.
Compared to the theoretical model, this is equivalent to integer valuations and an
increment of 0.5. We use this scaling to avoid decimals. In the model, deciding not
to bid when selected is an exit decision. This activity rule assures finiteness of the
game. We forgo this assumption in the experiment to avoid pressuring the subjects
to bid. In decentralized Internet auctions, a bidder may submit a bid as long as the
auction is offered and he is not forced to bid whenever he checks the current status
of an auction (however, in centralized auctions activity rules are common). Another
difference from the theoretical model is the fixed bidding sequence. Being randomly
selected to bid in the model represents occasional checking of auction sites. For the
experiment, a random bidding order is not adequate. For example, a bidder who does
not want to bid may be selected several times without a change in the standing bids.
Thus, this inadequateness of the random bidding order is also due to the different
consequence of a decision not to bid. For the same reason, a slight change in the
ending rule compared to the model is necessary. In the experiment, a bidder who is
the current high bidder is allowed to bid in auctions where he is not the high bidder.
This allows us to analyze the adequacy of our model assumption (see Hypothesis 1).

6.3 Experimental Hypotheses and Results

We specify three hypotheses on bidding behavior as well as three hypotheses on
outcomes and present a descriptive analysis of the results with respect to these hy-
potheses.

6.3.1 Bidding Behavior

In the analysis of bidding behavior, the last decision not to bid (i.e., the second
subsequent round in which all bidders decide not to bid) is not counted.

First, we ask if our model assumption that current high bidders do not submit
additional bids is justifiable.

Hypothesis 1 A bidder does not submit a bid when it is his turn to bid if he holds
a current high bidder position in an auction.

161



Chapter 6 Experimental Test of Model Predictions

Out of 1,770 situations where a bidder is the current high bidder in at least one
auction he does not bid in 1,668. That is, in 94.2% of the relevant cases, our hypothesis
is confirmed and bidders behave in line with our model assumption. Therefore, we
believe our model assumption is justified.

In the following, we turn to the situation where the selected bidder is not a current
high bidder in any auction. The next hypothesis considers whether and where such
a bidder submits a bid.

Hypothesis 2 A bidder i whose turn it is to bid and who is not the current high
bidder in any auction

(a) bids in an auction that is in his demand set Di if |Di| ≥ 1,

(b) does not bid if Di = ∅.

In the experiment, 1,946 relevant situations, that is, situations in which the bidder
is not a high bidder, occur. Of the decisions in these situations, 71.4% are in line
with the hypothesis. 50.2% of all decisions correspond to Hypothesis 2(a), and 21.2%
correspond to the prediction in 2(b). Looking closer at the result for 2(a), it consists
of 46.2% where |Di| = 1 and 4.0% where |Di| > 1.4

The remaining cases (28.6%) involve the following decisions. In 14.3% of these cases
a bidder i does not bid although ∆i(1) > 0. Notice that a bidder who does not bid in an
early round but plans to bid in later rounds may do so without consequences. This
difference between the experimental design and the theoretical model may explain
part of these decisions. Furthermore, the rules in the experiment require a bidder who
decides not to bid anymore to affirm this decision in each bidding round. Another
3.8% are bids in the auction j where i’s valuation vij is maximal but j is not in i’s
demand set. 9.8% of bids are submitted in auctions j where vij is neither maximal nor
is j contained in Di, and 0.7% are bids when a positive payoff is impossible (Di = ∅).
Table 6.3 contains these results.
Nevertheless, we classify the observation that 71.4% of decisions are consistent with

our predictions as strong support of Hypothesis 2.
Next, we consider the subset of situations of Hypothesis 2(a), where the bidder

who is selected to bid has a non-empty demand set and submits a bid. From above,
4Analyzing Hypothesis 2 for each subcase separately, we find that 2(a) holds in 64% (976 of 1520)
and 2(b) holds in 96.9% (413 of 426) of the relevant cases.
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Table 6.3: Whether and where participants who are not current high bidders bid.

Observation % (of 1946)

In line with Hypothesis 2 71.4 (1389)

H2(a) (|Di| = 1) 46.2 (898)
H2(a) (|Di| > 1) 4.0 (78)
H2(b) (Di = ∅) 21.2 (413)

Not in line with Hypothesis 2 28.6.(557)

No bid when ∆i(1) > 0 14.3 (278)
Bid in j = arg max vij, j /∈ Di 3.8 (74)
Bid in j 6= arg max vij, j /∈ Di 9.8 (191)
Bid unless Di = ∅ 0.7 (14)

this applies to 50.2% of those situations in which the bidder is not a high bidder, or
to 26% of all observed situations.

Hypothesis 3 A bidder i whose turn it is to bid and who is not current the high
bidder in any auction and who bids in an auction j ∈ Di, |Di| ≥ 1, submits a bid that

(a) is less than or equal to b∗ij := vij −∆i(2) if |Di| = 1,

(b) equals b∗ij := bsj + ι if |Di| > 1.

As we mention in the analysis of the theoretical model, besides the bid b∗ij prescribed
by strategy σ∗i , bids between bsj + ι and b∗ij are also possible in equilibrium. Strategy
σ∗i is the strategy that distinguishes itself mainly by minimizing the number of bids
submitted. Thus, we consider all those bids below and equal to b∗ij to be in line
with our model predictions. We nevertheless display the analysis for bids equal to b∗ij
separately.
Table 6.4 contains the results. In the case of Hypothesis 3(a), when the demand

set is a singleton, 64.9% of the bids are consistent with the prediction. A bid that
is below b∗ij deviates on average by 17.2 ExCU from b∗ij. Higher than predicted bids
are 35.1%. They exceed b∗ij on average by 8.2 ExCU. For case 3(b), bidding below
b∗ij = bsj + ι is impossible. The predicted bid is submitted in only 11.5% of the 78
relevant cases. However, the upwards deviation in the other 88.5% of the relevant
cases is on average only 3.6 ExCU. In these cases, the participants seem to prefer
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submitting a slightly higher bid to increasing the bid increment by increment. In
doing this, they risk preferring a different item in the final outcome, so instability
may occur.

Table 6.4: Magnitude of submitted bids (% (abs.); avg. dev. in ExCU).

Hypothesis 3 < b∗ij = b∗ij > b∗ij avg. dev. − avg. dev. +

(a) |Di| = 1 (898) 54.9 (493) 10.0 (90) 35.1 (315) 17.2 8.2
(b) |Di| > 1 (78) – 11.5 (9) 88.5 (69) – 3.6

All (976) 50.5 (493) 10.1 (99) 39.3 (384) 17.2 7.4

In total, 60.6% of the relevant decisions are consistent with Hypothesis 3. This is
again a result in favor of our theory.

Taking into account that a decision not to bid is also in line with the prediction,
we find that participants in 413 (Hypothesis 2(b)) plus 592 (Hypothesis 3) of 1946
situations (where the selected bidder holds no high bidder position) act in line with
the predictions, i.e., in 51.6% of the cases. Combining this with decisions not to bid
when a bidder holds a high bidder position, we have 2,673 of 3,716, or 71.9% predicted
actions.

Recapitulating, our results strongly support all three hypotheses on bidding behav-
ior. Table 6.5 summarizes the results for the relevant subsets of decisions.

Table 6.5: Summary of observed bidding behavior in line with Hypotheses 1–3.

Relevant subset prediction concerns %

i is high bidder decision not to bid 94.2
i is not high bidder selection of auction 71.4
i is not high bidder and submits a bid in j ∈ Di height of bid 60.5

i is not high bidder action chosen 51.6
All decisions action chosen 71.9

6.3.2 Outcomes

The predicted outcomes for valuation matrices V 1–V 5 are given in Table 6.6. A
graphical illustration of the theoretical results is given in Figure B.1 in Appendix
B.2.
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Table 6.6: Expected results with valuation matrices V 1–V 5.5

V1 V2 V3
Auction A1 A2 A3 A1 A2 A3 A1 A2 A3

Winner B2 B4 B1 B3 B4 B1 B2 B3 B1
Price p∗ 72 73–75 80–84 111–113 120 99–101 84 89–91 102
Payoff 62 41–43 44–48 1–3 6 29–31 14 35–37 22
BPD B5 B2 B4 B4 B2 B4 B4 B1 B4

V4 V5
Auction A1 A2 A3 A1 A2 A3

Winner B2 B4 B5 B1 B4 B5
Price p∗ 118 112 110 92 72 66
Payoff 10 24 20 38 30 22
BPD B3 B1 B1 B3 B2 B3

BPD: Price determining bidder

Note that the increment ι = 1 used in the experiment does not assure efficient
outcomes for all possible valuation matrices with three auctions and five bidders and
even valuations.6 However, all expected results are efficient (see Table 6.6), i.e.,
possible deviations in bids following σ∗ do not lead to inefficient outcomes. Prices
are exactly predictable only for valuation matrices V 4 and V 5 because these are the
only cases where all prices are determined by external price determining bidders.
In valuation matrices V 1 to V 3, some prices are predicted to lie in a range, where
the largest price range of 80–84 in A3 in valuation matrix V 1 is due to possible
accumulations of deviations after a deviation in A2 (see Proposition 3.3, Section
3.2.2.2).7

Our three hypotheses regarding outcomes are the following.

5The minimum competitive prices or Vickrey prices for valuations V 1–V 5 are (72,74,82),
(112,120,100), (84,90,102), (118,112,110), and (92,72,66), respectively.

6See Section 3.2.2.4. The constraint that assures efficiency is ι < 1/min{n − 1,m − 1}. In the
experiment, since we have only even valuations, the equivalent restriction is ι < 2/min{n −
1,m− 1}, which is not fulfilled: 1 > 2/3.

7In the proof of Proposition 3.3, we mention that the maximum downward deviation calculated
there may sometimes not apply. In the experiment, a bidder’s decision not to bid does not
change his activity status so the argument from the lemma does not apply to the experiment.
Even though the fixed bidding order prevents a bidder from being selected late in the game
for the first time, he may nevertheless submit his first bid late and, thus, cause the considered
downward deviation. Therefore, we take the whole price range of Proposition 3.3 into account.
However, it does not make a difference for our results.
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Hypothesis 4 The observed assignments are efficient.

31 (86%) of 36 games end with an efficient assignment. From Table 6.7, the number
of efficient outcomes is high in all sessions and for all valuation matrices. The average
degree of efficiency (the sum of the valuations of winning bidders divided by the
maximum sum of valuations) is 98%. We consider these results to be consistent with
Hypothesis 4.

Table 6.7: Results concerning efficiency ordered by session and by valuation matrix.

Session No. of games Games with an efficient outcome

1 12 10 (83%)
2 12 10 (83%)
3 12 11 (92%)

Valuations No. of games Games with an efficient outcome

V 1 8 6 (75%)
V 2 4 4 (100%)
V 3 8 7 (88%)
V 4 8 7 (88%)
V 5 8 7 (88%)

Sum 36 31 (86%)

Analyzing efficient group results with respect to participants, we find that 62%
(37), 35% (21), 3% (2) or 0% of the 60 participants experience efficient group results
in the three periods three times, twice, once, or never, respectively. In two auction
games, a bidder wins two auctions (at prices above zero).

To analyze the outcome, we next consider the prices in the games with efficient
outcomes. First, we investigate if the observed prices are competitive prices. Note
that the outcomes of the five inefficient games cannot include competitive price vec-
tors. Thus, at most 31 competitive equilibrium outcomes may occur. We state the
following hypothesis.

Hypothesis 5 The resulting outcome is a competitive equilibrium.

We compare each bidder’s outcome with his maximum potential outcome at final
prices. In order for the outcome to be a competitive equilibrium, all winning bidders
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Table 6.8: Competitive equilibria (CE), competitive equilibria at minimum compet-
itive prices (mCE), and the relaxed requirements rCE (uB ∈ {uBmax −
3, uBmax}) and its subset rmCE (p∗ ± 1).

Session No. of games CE mCE rCE thereof rmCE

1 12 0 0 4 1
2 12 7 3 8 3
3 12 4 0 8 3

Valuations

V 1 8 1 0 2 0
V 2 4 0 0 1 1
V 3 8 1 0 3 0
V 4 8 5 2 7 4
V 5 8 4 1 7 2

Sum 36 11 (31%) 3 (8%) 20 (56%) 7 (19%)

have to win an auction in their demand set at the final prices and the losing bidders
must have a maximum potential payoff below zero.

In 11 games (31% of all games), the expected competitive equilibrium is observed.
Hence, 35% of the 31 efficient outcomes have competitive prices. If we relax the
requirements and allow each bidder’s payoff to differ by up to three ExCU from his
maximum potential payoff, i.e., losing bidders quit too early and winning bidders
either bid too high in the auction they win or too low in the auction in which they
determine the price, we can classify 20 outcomes as approximate competitive equilib-
ria (56% of all games or 65% of the 31 efficient outcomes). We believe this result is
mainly in line with Hypothesis 5.

Table 6.8 contains the results with respect to competitive equilibria. We attribute
the higher numbers of competitive equilibria in Session 3 and especially Session 2
to the use of valuation matrices V 4 and V 5 (cp. Table 6.2). That is, we assume a
valuation matrix effect rather than a session effect. Remember that matrices V 4 and
V 5 have the property that all prices are determined by external price determining
bidders.

Notice that 11 group results are in the core of the respective associated cooperative
games (Kaneko, 1982; Quinzii, 1984; Shapley and Shubik, 1971).

Since the previous results reveal that the model predicts the experimental results
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rather well, we investigate how many groups exactly replicate the predicted outcome.

Hypothesis 6 The observed outcome is a competitive equilibrium at minimum prices,
i.e., an efficient assignment at prices p∗.

In addition to requiring the outcome to be a competitive equilibrium, we now ask
for minimum competitive prices. From the theoretical analysis in Section 3.2.2.2, we
know that due to the increment the predicted prices in the multiple-auctions game
may deviate a bit from minimum competitive prices p̄∗. In the analysis of Hypothesis
6, we allow for these deviations that may occur with our given bidding order and no
activity rule. Thus, we refer to the price as p∗ instead of p̄∗ = pV . Table 6.6 contains
the predicted price ranges for V 1–V 5.
The results are given in Table 6.8. We find that three outcomes (8% of all out-

comes or 27% of the 11 competitive outcomes) are minimum competitive equilibrium
outcomes. Allowing for a deviation from the maximum potential payoff of one in-
crement, we have five groups (14% or 45%) with minimum competitive prices and
an efficient assignment. Combining this relaxation with that on competitive prices
(realized payoff 3 ExCU less than maximum potential payoff) seven groups (19% of
all groups) are close to a competitive equilibrium at Vickrey prices.

Thus, for the most detailed prediction in Hypothesis 6, the results seem less en-
couraging. Note, however, that one deviating bidder in a group is enough to pre-
vent an efficient assignment, competitive prices, and of course, minimum competitive
prices. This puts our three observations of the most restrictive prediction of min-
imum competitive prices (associated with the bidder-optimal outcome in the core)
into perspective.

The average price of 93.64 ExCU is slightly above the predicted average price of
92.22 ExCU.8 Thus, on average the bidder-optimal prices (of efficient outcomes) are
met rather well. This result is similar if we restrict to the 31 groups with efficient
assignments: the average observed price is 92.83 ExCU.

8Note that in the multiple-auctions game with all valuations drawn independently from a uniform
distribution on integers between zero and 100, a reserve price of zero, ι = 0.5, n = 5 and m = 3,
the average equilibrium auction price is around 58 (by simulation with 5000 instances). In a
comparable auction with homogeneous valuations, the average predicted price is E(W(4:5)) =
33.3, the expected value of the forth order statistic W(4:5) of valuations. Thus, our predicted
average price for our valuation matrices (92.22) for a uniform distribution on even integers
between 40 and 140 is close to the expected value for randomly drawn valuations (58+40=98).
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6.4 Conclusion

Our descriptive analysis of the experimental results reveals that strategy σ∗i and
related equilibrium strategies (lower bids) describe the observed bidding behavior
rather well.
Our result that 71.4% of bidding in an auction occurs in the demand set is similar

to the observation that 70% of bids are submitted in the auction with the lowest
standing bid by Anwar et al. (2006) (for homogeneous items).
The efficiency in the experiment is very high. This suggests that the design of

the multiple-auctions game has advantages over auctions with fixed ending times
(Hoppe, 2008a). In our environment, the high degree of efficiency may even be more
surprising because items are heterogeneous, compared to the homogeneous items in
Hoppe (2008a). As expected, sequential bidding and the open ending rule help to
coordinate the bidders and to avoid inefficiency.
We conclude that the experimental results are broadly in line with the theory of

the multiple-auctions game presented in Chapter 3.
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Summary and Conclusion

A model that has several features that are typical for Internet auctions (second-
price proxy auctions, independent sellers, multiple auctions, heterogeneity of items)
is analyzed. By means of an analysis of all possible outcomes of the auction game,
the range of outcomes is determined. A restriction on the increment allows us to
derive a perfect Bayesian epsilon-equilibrium. The equilibrium outcome is associated
with the minimum competitive equilibrium and the Vickrey outcome. Moreover, it
corresponds to the bidder-optimal payoffs in the core.

Furthermore, new results concerning monotonicity of Vickrey auctions are pre-
sented. A single seller’s revenue in a Vickrey auction is non-monotone in bids. How-
ever, we find a certain kind of monotonicity with respect to single prices and payoffs.
Those either increase or decrease if one single valuation increases. If several valua-
tions increase, this monotonicity does not hold. These results are also relevant for
the application of so-called core-selecting auctions. This term usually refers to auc-
tions that select the bidder-optimal outcome in the core as auction outcome. These
auctions have advantages over Vickrey auctions because they are less vulnerable to
shill bidding (Day and Milgrom, 2008). However, our findings show that they are not
monotone in bids, even in the usually less problematic case of substitutes valuations.
This has to be taken into account when these auctions are applied.

In addition to the multiplicity of auctions, the incomplete network character of
the market is taken into account. The analysis of the bidder-seller network game
is based on the equilibrium analysis and the investigation of Vickrey outcomes in
the previous chapters. A reinterpretation of valuation matrices allows us to analyze
incomplete bidder-seller networks within the framework of the multiple-auctions game
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for heterogeneous items. In contrast to the case of homogeneous items, adding a link
may result in increasing payoffs for bidders linked to the seller who has the new link.

An experimental investigation indicates the practical relevance of the equilibrium
strategy in Chapter 3. Observed outcomes are highly efficient. The phenomena
of multiple-bidding, cross-bidding, and incremental bidding frequently reported in
empirical studies are both predicted by the theoretical analysis and observed in the
experiment.

Thus, we conclude that the results both provide new theoretical insights and are
relevant for the implementation and application of auctions in the considered envi-
ronment.
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Appendix A

Addenda to Chapters 3 and 4

A.1 Example of Proposition 3.3

The tables in Figure A.1 exemplify the bidding that leads to the maximum accumu-
lated price deviation. The example is similar to that in the proof of Proposition 3.3
(Section 3.2.2.2) but a bit simpler. The increment ι equals 0.5. In each table, there is
one block of bh and bs per submitted bid, but the first three bids can be found in the
first entry. The current high bidders Bh are listed whenever a change occurs. From
the third bid on, only one bidder does not hold a high bidder position. Thus, it is
clear who submits the new bids.
From the tables we see that the upwards deviations in prices are the result of

necessary additional bids that resolve the the mis-assignments. Downwards price
deviations are due to early submission of winning bids.
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A1 A2 A3
B1 2 2 0
B2 0 3 3
B3 0 0 10
B4 1 0 0
Bh B4 B2 B3
bh 1 0.5 10
bs 0 0 0
bh 1 0.5 10
bs 0.5 0.5 0
Bh B4 B1 B3
bh 1 1 10
bs 0.5 0.5 0
bh 1 1 10
bs 0.5 0.5 0.5
bh 1 1 10
bs 0.5 1 0.5
bh 1 1 10
bs 0.5 1 1
Bh B4 B2 B3
bh 1 1.5 10
bs 0.5 1 1
bh 1 1.5 10
bs 1 1 1
Bh B1 B2 B3
bh 1.5 1.5 10
bs 1 1 1

A1 A2 A3
B1 2 2 0
B2 0 3 3
B3 0 0 10
B4 1 0 0
Bh B4 B1 B3
bh 1 0.5 10
bs 0 0 0
bh 1 0.5 10
bs 0 0.5 0
bh 1 0.5 10
bs 0 0.5 0.5
Bh B4 B2 B3
bh 1 1 10
bs 0 0.5 0.5
bh 1 1 10
bs 0.5 0.5 0.5
bh 1 1 10
bs 0.5 1 0.5
bh 1 1 10
bs 1 1 0.5
Bh B4 B1 B3
bh 1 1.5 10
bs 1 1 0.5
bh 1 1.5 10
bs 1 1 1
bh 1 1.5 10
bs 1 1 1.5
bh 1 1.5 10
bs 1 1.5 1.5
bh 1 1.5 10
bs 1 1.5 2
Bh B4 B2 B3
bh 1 2 10
bs 1 1.5 2
Bh B1 B2 B3
bh 1.5 2 10
bs 1 1.5 2

A1 A2 A3
B1 2 2 0
B2 0 3 3
B3 0 0 10
B4 1 0 0
Bh B4 B1 B3
bh 1 0.5 10
bs 0 0 0
bh 1 0.5 10
bs 0 0.5 0.5
Bh B4 B2 B3
bh 1 1 10
bs 0 0.5 0.5
bh 1 1 10
bs 0.5 0.5 0.5
bh 1 1 10
bs 1 0.5 0.5
bh 1 1 10
bs 1 1 0.5
Bh B1 B2 B3
bh 1.5 1 10
bs 1 1 0.5

Figure A.1: Evolution of the reference outcome (x̄∗, p̄∗) to the maximum upwards
price deviation and to an accumulated downwards price deviation.
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A.2 Allowing Current High Bidders to Bid

In the main model, the current high bidders are not allowed to submit bids. Clearly,
it is not in their interest to do so. Thus, the assumption does not seem to be crucial.
In this section, we briefly consider the case when such bidding is allowed. We state
the adapted strategy σ̃∗ and provide an example where the new bidding options cause
a problem in the equilibrium analysis.

Most of the analysis of the main model also holds for this extension. In particular,
the best reply property on the equilibrium path is not affected. In fact, the example
that we provide illustrates the only case in which the results from the main model do
not hold.

As a consequence of allowing high bidders to bid, bidders can be assigned to multiple
auctions. Now, an assignment x is feasible if∑

j∈M

xij ≤ 1 ∀ i∑
i∈N

xij ≤ 1 ∀ j.

Accordingly, we have to add a bidding rule to σ∗i by an action for the case when
multiple high bidder positions are held.

Definition A.1 (Strategy σ̃∗i ) The strategy σ̃∗i : Hi → A(Hi)Hi∈Hi
for bidder i ∈ N

specifies that bidder i chooses the following action whenever he is selected to bid (i.e.,
whenever one of his information sets Hi is reached):

(1) If ∆i(1) ≤ 0, then he does not bid (bij = 0 for all j).

(2) If ∆i(1) > 0 and i is the current high bidder in some auctions Ji := {j : Bh(j) =

i} then

a) i does not bid if |Ji ∩Di| > 0.

b) If |Ji ∩Di| = 0 and |Di| = 1, i bids in j′ ∈ Di if vij′ − bsj′ > maxj∈Ji
{vij}1

according to

bij′ = vij′ −max{max
j∈Ji

{vij}, max
j′′∈M\(Ji∪j′)

{vij′′ − bsj′′}}

1This case is relevant only off the equilibrium path.
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or does not bid if such a j′ does not exist.

c) If |Ji∩Di| = 0 and |Di| > 1, i chooses randomly (with uniform probability)
one of the auctions j′ ∈ Di with vij′ > maxj∈Ji

{vij}2 and bids according
to3

bij′ = bsj′ + ι

or does not bid if such a j′ does not exist.

(3) If i is not the current high bidder in any auction j then i bids as follows:

a) If ∆i(1) > 0 and |Di| = 1, then i bids in auction j ∈ Di. He determines
his bid by

bij = vij −max{∆i(2), 0} .

b) If ∆i(1) > 0 and |Di| > 1, then bidder i chooses randomly (with uniform
probability) one of the auctions in Di. In the selected auction j he bids:

bij = bsj + ι .

On the equilibrium path, the strategy σ̃∗i prescribes the same behavior as σ∗i . Thus,
the results when all bidders follow σ̃∗ are identical to those in Section 3.2.3. Further-
more, off the equilibrium path we can make arguments similar to those in Section
3.2.3. However, we have to make adjustments when a bidder is mis-assigned. A
mis-assigned bidder h deviates from his prescribed bidding behavior if he was not
mis-assigned by bidding lower amounts and less often. In Section 3.2.3, such a bidder
does not bid while being mis-assigned. Nevertheless, the idea of the proof is transfer-
able to the current model. A deviation from σ̃∗i that aims to dissolve a mis-assigned
bidder or to prevent a dissolution either directly or indirectly via other bidders does
not increase bidder i’s payoff. However, σ̃∗ is not an ex-post epsilon-equilibrium. We
show this by an example in which deviating from σ̃∗ is profitable for a given valuation
matrix.
If i is himself mis-assigned at Hi, σ̃∗i prescribes him to bid whenever his (possibly

negative) current payoff can be increased. Thus, he does not miss a chance to increase

2This case is relevant only off the equilibrium path.
3In this case, max{maxj∈Ji

{vij},maxj′′∈M\(Ji∪j′){vij′′ − bsj′′}} = maxj′′∈M\(Ji∪j′){vij′′ − bsj′′} =
vij′ − bsj′ .
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his payoff. He has one more factor to consider, namely if his actions can influence the
dissolution of his mis-assignment. This might only be done by bidding more than σ̃∗i
prescribes at the risk of a further mis-assignment. But such a further mis-assignment
may be profitable for i: the resulting higher standing bid may induce another bidder
to dissolve i’s mis-assignment in an auction where the price is high. We illustrate this
case with the following example.

The outcome if all bidders follow σ̃∗ is described in the following Tables A.1 and A.2.
In Table A.1, on the left we find the three bidders’ valuation matrix, in the middle
the situation at information set HB1 is described, and on the right an outcome is
given.

Table A.1: Valuation matrix, situation at HB1, and outcome.

V A1 A2 HB1 A1 A2 A1 A2

B1 50 10 bh 100 5 bh 100 10
B2 105 15 bs 100 5 p 100 5
B3 0 5 Bh B1 B3 Bh B1 B2

The bidding dynamics starting at HB1 are as follows. Bidder B1 does not bid
because v11 = 50 > 10 = v12. Bidder B3 does not submit anymore bids because
bsj ≥ v3j for j = 1, 2. He is the high bidder in his preferred auction A2. Bidder
B2 submits the bid b22 = 10 and becomes the high bidder in auction A2 at bs2 = 5.
Then, the game ends with bidders’ payoffs u1 = −50, u2 = 10, and u3 = 0 and prices
p = (100, 5).

Now consider a deviation of B1 from σ̃∗B1 at HB1 with the result given in Table
A.2. First, B1 bids b12 = 12 in A2 and becomes the high bidder in A2 at bs2 = 5.

Table A.2: The result of a deviation of B1 at HB1.

A1 A2 A1 A2 A1 A2 A1 A2

bh 100 5 100 12 100 12 100+ι 12
bs 100 5 100 5 100 10 100 10
Bh B1 B3 B1 B1 B1 B1 B2 B1

Bidder B3 quits. Bidder B2 bids 10 in A2, does not become the high bidder and the
standing bid bs2 increases to 10. Having both A1 and A2 in his demand set, B2 bids
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one increment above bs1 in A1. With this bid b21 = 100 + ι, B2 becomes the high
bidder in A1 and the game ends with payoffs u1 = 0, u2 = 5, and u3 = 0 at prices
p = (100, 10). Thus, due to his deviation, B1’s payoff increases by 50.

Note that B1’s deviation might also have led to a decrease in his payoff. For
example, if B2’s valuations were v2 = (0, 11), he would have bid 11 in A2 and quit.
B1’s deviation results in a payoff u1 = 50− 100− 11 = −61 < −50. Since bidder B1

does not know B2’s valuations, he does not know how B2 will react to the increased
standing bid in A2. If he knew the valuations, he would not behave according to σ̃∗.

In this example, a profitable deviation from σ̃∗ exists for certain realizations of
valuations. Thus, σ̃∗ does not constitute an ex-post equilibrium in the model where
high bidders are allowed to bid in other auctions. Note, however, having a mis-
assigned bidder i at the information set Hi is the only case in which the strategy σ̃∗i is
not a best reply. The assumption in the main model that a high bidder is not allowed
to submit further bids prevents the occurrence of a bidder with several high bidder
positions, and, thus, solves the considered problem.

A.3 Multiplicity of Efficient Assignments

Suppose two efficient assignments x and y exist. Bidders’ payoffs ui(x, p̄∗,x) and
ui(y, p̄

∗,y) in the associated outcomes equal Vickrey payoffs uV (x, pV,x) = c(N,M) −
c(N\{i},M) = uV (y, pV,y). Vickrey payoffs are calculated using coalitional values
that depend only on the maximum sum of valuations but not on the underlying
assignment. Thus,

ui(x, p̄
∗,x) = ui(y, p̄

∗,y) for all i ∈ N.

In the following, px := p̄∗,x = pV,x and py := p̄∗,y = pV,y. Both assignments are
optimal and thus both are associated with efficient outcomes. Therefore,∑
i∈N

ui(x, p
x)+

∑
j∈M

uSj (x, px) =
∑
i∈N

ui(y, p
y)+

∑
j∈M

uSj (y, py) =
∑
i∈N

ui(x, p
x)+

∑
j∈M

uSj (y, py)

and ∑
j∈M

uSj (x, px) =
∑
j∈M

uSj (y, py).

Both payoff-assignment combinations are stable. We have ui(x, px) + uSj (x, px) ≥ dij
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A1 A2
B1 1 2
B2 2 3
Bh B1 B2
or B2 B1
pV 0 1

Figure A.2: An example where two efficient assignments exist.

for all i and j and ui(x, p
x) + uSj (x, px) = dij for pairs (i, j) with xij = 1, and the

same is valid for (y, pV,y). Hence, for all i and j with xij = 1, we know

ui(x, p
x) + uSj (x, px) = dij ≤ ui(y, p

y) + uSj (y, py) = ui(x, p
x) + uSj (y, py)

and therefore uSj (x, px) ≤ uSj (y, py). The same argument applies for h and j with
yhj = 1, so we find that uSj (x, px) ≥ uSj (y, py) and therefore

uSj (x, px) = uSj (y, py) for all j ∈M.

Because either uSj (x, px) = vSj − pxj = vSj − p
y
j = uSj (y, py) or uSj (x, px) = vSj − pxj =

0 = uSj (y, py) or uSj (x, px) = 0 = vSj − p
y
j = uSj (y, py) and because pj = vSj if an item

is unsold, we get
pxj = pyj for all j ∈M.

We record this in the following lemma.

Lemma A.1 Suppose (x, pV,x) and (y, pV,y) are two efficient outcomes at Vickrey
prices. Then pV,xj = pV,yj for all auctions j ∈M .

Corollary A.1 follows directly from the equality in prices.

Corollary A.1 A bidder who wins j under (x, pV ) and k under (y, pV ) is indifferent
between winning j and k at prices pV .

Thus, the winner i of j under y is a potential price determining bidder in j under x.
An example in which several efficient assignments exist is given in Figure A.2. The

graph illustrates that assignments (x11 = 1, x22 = 1) and (x12 = 1, x21 = 1) are both
efficient. In both cases, the sum of valuations equals 4.
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Figure A.3: The core of the example in Figure A.2 illustrated for both efficient
assignments.

Sotomayor (2003) shows that infinitely many payoffs exist in the core if there is
only one efficient assignment. This implies that when the core is a singleton, more
than one efficient assignment exists. Wako (2006) complements this analysis with
another proof using complementary slackness of the dual linear programs. From the
example in Figure A.2, we can see that the core does not have to be a singleton when
several optimal assignments exist. The prices in the core are given by the convey hull
conv{(0, 1), (1, 2)}, that is, by the bold line in both drawings in Figure A.3.
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Supplements to the Experiment

B.1 Organization of the Experiment

Table B.1 gives the schedule of the sessions.

Table B.1: Timetable of the sessions

Session Date Time

1 Tuesday, June 26, 2007 13.30
2 Thursday, June 28, 2007 10.00
3 Thursday, June 28, 2007 16.30

The participants were seated in two rooms, each room with 10 terminals. Partici-
pants 1–10 were in one room and participants 11–20 in the other room.

Table B.2 shows the composition of the groups in each period. This is internal
information not known to the participants. They knew only their bidder name in
each round but neither their group identifier nor their internal player number. The
information given was identical in all three sessions.

In Table B.3, the last entry in the first row, 4E(1)− 1A(2)− 5D(3), means that in
Session 3, the participant with the internal number 1 had the bidder name E in the
first period and played the game with valuation matrix V 4, in the second period he
was Bidder A in V 1, and in Period 3 he was Bidder D in V 5. The participant with
internal number 1 played the game in groups with internal numbers 1, 2, and 3.
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Table B.2: Group matching: Internal player numbers (1–20) assigned to bidder names
(A–E)

A B C D E

Period 1 Group 1 5 11 20 6 1
Group 2 2 7 10 13 19
Group 3 9 14 18 3 16
Group 4 17 15 4 12 8

Period 2 Group 1 4 20 19 5 10
Group 2 1 6 9 12 18
Group 3 8 13 17 2 15
Group 4 16 14 3 11 7

Period 3 Group 1 3 19 18 4 9
Group 2 10 5 8 11 17
Group 3 7 12 16 1 14
Group 4 15 13 2 20 6
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Table B.3: Valuation matrices, bidder names, and internal group numbers in periods
1–3 of the three sessions (example 2E(1): valuation matrix V 2, bidder E,
group 1)

Part. Session 1 Session 2 Session 3

1 1E(1)− 2A(2)− 3D(3) 5E(1)− 4A(2)− 3D(3) 4E(1)− 1A(2)− 5D(3)
2 1A(2)− 2D(3)− 3C(4) 5A(2)− 4D(3)− 3C(4) 4A(2)− 1D(3)− 5C(4)
3 1D(3)− 2C(4)− 3A(1) 5D(3)− 4C(4)− 3A(1) 4D(3)− 1C(4)− 5A(1)
4 1C(4)− 2A(1)− 3D(1) 5C(4)− 4A(1)− 3D(1) 4C(4)− 1A(1)− 5D(1)
5 1A(1)− 2D(1)− 3B(2) 5A(1)− 4D(1)− 3B(2) 4A(1)− 1D(1)− 5B(2)
6 1D(1)− 2B(2)− 3E(4) 5D(1)− 4B(2)− 3E(4) 4D(1)− 1B(2)− 5E(4)
7 1B(2)− 2E(4)− 3A(3) 5B(2)− 4E(4)− 3A(3) 4B(2)− 1E(4)− 5A(3)
8 1E(4)− 2A(3)− 3C(2) 5E(4)− 4A(3)− 3C(2) 4E(4)− 1A(3)− 5C(2)
9 1A(3)− 2C(2)− 3E(1) 5A(3)− 4C(2)− 3E(1) 4A(3)− 1C(2)− 5E(1)
10 1C(2)− 2E(1)− 3A(2) 5C(2)− 4E(1)− 3A(2) 4C(2)− 1E(1)− 5A(2)
11 1B(1)− 2D(4)− 3D(2) 5B(1)− 4D(4)− 3D(2) 4B(1)− 1D(4)− 5D(2)
12 1D(4)− 2D(2)− 3B(3) 5D(4)− 4D(2)− 3B(3) 4D(4)− 1D(2)− 5B(3)
13 1D(2)− 2B(3)− 3B(4) 5D(2)− 4B(3)− 3B(4) 4D(2)− 1B(3)− 5B(4)
14 1B(3)− 2B(4)− 3E(3) 5B(3)− 4B(4)− 3E(3) 4B(3)− 1B(4)− 5E(3)
15 1B(4)− 2E(3)− 3A(4) 5B(4)− 4E(3)− 3A(4) 4B(4)− 1E(3)− 5A(4)
16 1E(3)− 2A(4)− 3C(3) 5E(3)− 4A(4)− 3C(3) 4E(3)− 1A(4)− 5C(3)
17 1A(4)− 2C(3)− 3E(2) 5A(4)− 4C(3)− 3E(2) 4A(4)− 1C(3)− 5E(2)
18 1C(3)− 2E(2)− 3C(1) 5C(3)− 4E(2)− 3C(1) 4C(3)− 1E(2)− 5C(1)
19 1E(2)− 2C(1)− 3B(1) 5E(2)− 4C(1)− 3B(1) 4E(2)− 1C(1)− 5B(1)
20 1C(1)− 2B(1)− 3D(4) 5C(1)− 4B(1)− 3D(4) 4C(1)− 1B(1)− 5D(4)
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B.2 Details on Predictions and Results of the

Experiment

Table B.4: Expected payoffs of participants over Periods 1–3 without lump-sum
payments.

Part. Session 1 Session 2 Session 3

1 0 + 30 + 0 = 30 22 + 0 + 0 = 22 20 + 45 + 30 = 95
2 45 + 6 + 37 = 88 38 + 24 + 37 = 99 0 + 42 + 0 = 42
3 42 + 2 + 22 = 66 30 + 0 + 22 = 52 24 + 0 + 38 = 62
4 0 + 30 + 0 = 30 0 + 0 + 0 = 0 0 + 45 + 30 = 75
5 45 + 6 + 14 = 65 38 + 24 + 14 = 76 0 + 42 + 0 = 42
6 42 + 0 + 0 = 42 30 + 10 + 0 = 40 24 + 62 + 22 = 108
7 62 + 0 + 22 = 84 0 + 20 + 22 = 42 10 + 0 + 38 = 48
8 0 + 30 + 37 = 67 22 + 0 + 37 = 59 20 + 45 + 0 = 65
9 45 + 2 + 0 = 47 38 + 0 + 0 = 38 0 + 0 + 22 = 22
10 0 + 0 + 22 = 22 0 + 20 + 22 = 42 0 + 0 + 38 = 38
11 62 + 6 + 0 = 68 0 + 24 + 0 = 24 10 + 42 + 30 = 82
12 42 + 6 + 14 = 62 30 + 24 + 14 = 68 24 + 42 + 0 = 66
13 42 + 0 + 14 = 56 30 + 10 + 14 = 54 24 + 62 + 0 = 86
14 62 + 0 + 0 = 62 0 + 10 + 0 = 10 10 + 62 + 22 = 94
15 62 + 0 + 22 = 84 0 + 20 + 22 = 42 10 + 0 + 38 = 48
16 0 + 30 + 37 = 67 22 + 0 + 37 = 59 20 + 45 + 0 = 65
17 45 + 2 + 0 = 47 38 + 0 + 0 = 38 0 + 0 + 22 = 22
18 0 + 0 + 37 = 37 0 + 20 + 37 = 57 0 + 0 + 0 = 0
19 0 + 2 + 14 = 16 22 + 0 + 14 = 36 20 + 0 + 0 = 20
20 0 + 0 + 0 = 0 0 + 10 + 0 = 10 0 + 62 + 30 = 92

Avg. 52.0 43.4 58.6
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(a) (b)

(c) (d)

(e)

Figure B.1: Illustration of the expected results for valuations (a) V 1 – (e) V 5
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B.3 Experimental Instructions

This section contains the original instructions of the experiment in German. In the
three sessions the instructions differ with respect to the calculation of payoffs. We
use lump-sum payments of 16.7, 8, and 8 as well as exchange ratios of 20, 30, and 25
Cents per ExCU, respectively. This corrects for the differences in predicted payoffs
due to the use of the different valuation matrices. The following instructions belong
to Session 1.1 Deviations in sessions 2 and 3 are given in squared brackets, where the
first entry corresponds to Session 2 and the second to Session 3.

Anleitung
Im Folgenden nehmen Sie an einem wirtschaftswissenschaftlichen Experiment teil.
Hierbei treffen Sie Ihre Entscheidungen isoliert von den anderen Teilnehmern an Ih-
rem Computerterminal. In diesem Experiment können Sie bares Geld verdienen. Wie
viel Sie verdienen, hängt von Ihren Entscheidungen und den Entscheidungen der ande-
ren Teilnehmer ab. Die monetären Recheneinheiten im Experiment sind so genannte
Geldeinheiten (GE).

Das Experiment besteht aus mehreren Perioden. In jeder Periode bilden Sie mit vier
weiteren Teilnehmern eine Fünfergruppe. Nach jeder Periode werden die Gruppen
neu gebildet, so dass Sie in jeder Periode mit anderen Teilnehmern eine Gruppe bilden.
Interaktion findet nur innerhalb der Gruppe statt. Es werden 3 Perioden gespielt.
Eine Periode läuft wie folgt ab.

Ausgangssituation

In jeder Periode können Sie an 3 Auktionen teilnehmen in denen je 1 Gut angeboten
wird. Die Auktionen finden gleichzeitig statt. Je nachdem, wie Sie und die anderen
Gruppenmitglieder bieten, können Sie bis zu 3 Auktionen gewinnen.
Wenn die Auktionen beendet sind kauft der Spielleiter Ihnen automatisch genau eines
der Güter zu einem vorgegebenen Weiterverkaufspreis ab, wenn Sie in den Auktionen
mindestens eines ersteigert haben. Güter, die Sie behalten, haben keinerlei
Wert für Sie. Damit endet die Periode.
Im Folgenden werden die einzelnen Teile einer Periode genauer beschrieben, zunächst
der Ablauf und die Regeln der Auktionen, danach der automatische Verkauf an den

1Footnote 3 gives the reason for the lump-sum payment of 16.7 ExCU in Session 1.

195



Appendix B Supplements to the Experiment

Spielleiter und die Berechnung Ihrer Auszahlung. Die Regeln sind für alle 3 Perioden
dieselben. Von Periode zu Periode ändern sich nur die Zusammensetzung der Gruppe
und die vorgegebenen Weiterverkaufspreise an den Spielleiter.

Auktionen

Ablauf

Die 5 Mitglieder Ihrer Gruppe werden mit Bieter A, Bieter B,..., Bieter E bezeichnet.
Ihre eigene Bezeichnung wir Ihnen zu Beginn einer Periode am Bildschirm mitgeteilt
und kann sich von Periode zu Periode unterscheiden.
Die Auktionen, bei denen Sie die Güter erwerben können, besitzen die folgenden
Regeln. Es werden 3 Auktionen angeboten, bei denen die Mitglieder Ihrer Gruppe
bieten können. In jeder Auktion wird ein Gut angeboten, in Auktion 1 Gut 1, in
Auktion 2 Gut 2 und in Auktion 3 Gut 3. Die Bieter bieten immer nacheinander
gemäß Ihrer Bezeichnung A bis E.
Während des Experiments sehen Sie einen Bildschirm, der wie folgt aussieht (die
Zahlen sind nur ein Beispiel):
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Wenn Sie an der Reihe sind, sehen Sie zusätzlich ein Eingabefenster:

Sie können wählen, in welcher Auktion Sie bieten möchten und wie hoch Sie in die-
ser Auktion bieten möchten. Wenn Sie an der Reihe sind können Sie auf maximal
eine Auktion bieten. Wenn Sie bieten, muss Ihr Gebot eine ganze Zahl sein und
mindestens eine Geldeinheit (GE) über dem aktuellen Preis in der jeweiligen
Auktion liegen. In einer Auktion, in der Sie selbst aktueller Höchstbieter sind, dürfen
Sie nicht bieten. Wenn Sie Ihre Entscheidung getroffen haben, ist der nächste Bieter
Ihrer Gruppe an der Reihe. Wenn alle anderen Bieter in Ihrer Gruppe an der Reihe
waren, erscheint bei Ihnen wieder das Eingabefenster.
Wenn Sie in einer Auktion bieten, können zwei Fälle eintreten:
1.) Ihr Gebot ist das höchste bisher abgegebene Gebot in dieser Auktion.
Dann sind Sie der aktuelle Höchstbieter in dieser Auktion. Der angezeigte ak-
tuelle Preis entspricht dem zweithöchsten bisher eingegangenen Gebot in
dieser Auktion. Das heißt, wenn Sie aktueller Höchstbieter werden, wird der ak-
tuelle Preis automatisch auf den Wert des zweithöchsten bisher eingegangen Gebots
festgelegt. Ihr tatsächliches Gebot wird den anderen Bietern nicht angezeigt, solange
Sie nicht überboten werden.
2.) Ihr Gebot liegt über dem bisherigen aktuellen Preis, aber unter dem tatsächlichen
Gebot des aktuellen Höchstbieters. Dann steigt der aktuelle Preis auf den Wert Ihres
Gebots, da dieses dann das zweithöchste bisher eingegangene Gebot ist. In diesem
Fall behält der bisherige Höchstbieter seine Position bei.
Sind höchstes und zweithöchstes Gebot gleich, so ist der Bieter, der es zuerst abge-
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geben hat, aktueller Höchstbieter und der aktuelle Preis entspricht dem Wert dieses
höchsten und gleichzeitig zweithöchsten Gebots. Der aktuelle Preis wird somit nie
durch den aktuellen Höchstbieter selbst, sondern immer durch das Gebot eines ande-
ren Bieters bestimmt.
Wenn die Auktionen enden, gewinnen die Bieter, die zu diesem Zeitpunkt aktuelle
Höchstbieter in den einzelnen Auktionen sind, die Auktionen zum zugehörigen ak-
tuellen Preis. Das heißt, am Ende wird der aktuelle Höchstbieter zum Gewinner der
Auktion und der aktuelle Preis zum Preis, den der Gewinner zahlen muss.
Zu Beginn der Auktion ist der aktuelle Preis gleich dem Startpreis von 40 GE. Wenn
in einer Auktion keine Gebote eingehen, bleibt der Preis auf dem Startpreis und
das Gut wird nicht verkauft. Wenn ein erstes Gebot in einer Auktion eingeht, bleibt
der aktuelle Preis auf dem Startpreis stehen, der in dieser Situation die Rolle des
zweithöchsten eingegangenen Gebots einnimmt.

Informationen

Ihnen und allen anderen Bietern in Ihrer Gruppe werden immer die drei Auktionen
mit aktuellem Höchstbieter und aktuellem Preis angezeigt. Zu jeder Auktion wird
auch Ihr Weiterverkaufspreis an den Spielleiter angezeigt. Zudem können Sie jeder-
zeit über die mit „Bietgeschichte“ bezeichneten Buttons die überbotenen Gebote
in einer Auktion mit den zugehörigen Bietern abrufen. Wenn Sie die Bietgeschichte
einer Auktion aufrufen, sehen Sie eine Tabelle. In dieser stehen die überbotenen Bieter
von unten nach oben geordnet nach der Reihenfolge des Gebotseingangs sowie
ihr jeweiliges tatsächliches Gebot, das mittlerweile ja überboten wurde. Ganz un-
ten steht der Startpreis, darüber das erste abgegebene Gebot, dann das nächste usw.
Darüber werden der aktuelle Höchstbieter und der aktuelle Preis angezeigt. Das tat-
sächliche Gebot des aktuellen Höchstbieters wird dabei nicht gezeigt. Dies erfahren
Sie erst, wenn dieser überboten wurde.
In der Bietgeschichte werden die Informationen zusammengefasst, die Sie auch durch
Beobachtung der Preisentwicklung sammeln können.

Ende der Auktionen

Die Auktionen enden alle gleichzeitig, wenn in Ihrer Gruppe keine Bietaktivi-
tät mehr beobachtet wird. Wenn alle fünf Bieter direkt nacheinander „Nicht bieten“
gewählt haben, bekommt der erste, der nicht geboten hatte und jetzt wieder an der

198



Appendix B Supplements to the Experiment

Reihe ist, einen Hinweis auf mangelnde Bietaktivität. Entscheidet er sich dann wie-
der, nicht zu bieten, bekommt auch der folgende Bieter den Hinweis usw. Wenn alle
fünf Bieter auf den Hinweis hin nacheinander nicht bieten, enden alle Auktionen.
Wenn auf den Hinweis hin einer der Bieter wieder ein Gebot abgibt, gehen alle Auk-
tionen weiter und das Programm registriert die erneute Bietaktivität. Der Hinweis
erscheint später nach den gleichen Regeln, wenn wieder alle fünf Bieter nacheinander
nicht geboten haben. Die Auktionen enden also nur, wenn direkt nach einer
Runde ohne Gebote eine weitere Runde mit dem Hinweis auf mangelnde
Bietaktivität ohne Gebote verläuft. Dies bedeutet, dass die Auktionen nur dann
enden, wenn sich alle Bieter entscheiden, nicht mehr bieten zu wollen und somit die
aktuelle Situation als Endergebnis der Periode akzeptieren.
Für Sie bedeutet das, dass die Auktionen nur dann enden können, wenn Sie auf
den Hinweis hin entscheiden, nicht zu bieten. Wenn Sie zu dem Zeitpunkt aktueller
Höchstbieter in einer Auktion sind und Sie bieten nicht, laufen Sie nicht Gefahr, dass
Sie noch überboten werden, ohne darauf reagieren zu können. Entweder alle Auktio-
nen enden oder jeder kann wieder bieten.
Die Bezahlung der ersteigerten Güter erfolgt nach dem Weiterverkauf automatisch.

Weiterverkauf

Ihre Weiterverkaufspreise an den Spielleiter werden Ihnen während der Aukti-
on immer am Bildschirm angezeigt. Die Weiterverkaufspreise, die Ihnen angezeigt
werden, gelten nur für Sie. Die anderen Bieter haben andere Weiterverkaufs-
preise. Die Weiterverkaufspreise wurden für jedes Gut, für jeden Bieter und
für jede Periode unabhängig voneinander aus einer Gleichverteilung über
den geraden Zahlen aus dem Intervall [40,140] gezogen. Wenn Sie in den drei
Auktionen ein Gut oder mehrere Güter erworben haben, kauft Ihnen der Spielleiter
automatisch genau eines ab. Wenn Sie mehrere Güter ersteigert haben, kauft Ihnen
der Spielleiter automatisch das mit dem höheren Weiterverkaufspreis ab. Dieser
Verkauf ist Ihre einzige Möglichkeit, einen Nutzen aus den ersteigerten Gütern zu
ziehen.
Der Spielleiter kauft Ihnen nur genau ein Gut ab, die anderen Güter ha-
ben daher keinen Wert für Sie.
Beispiel: Nehmen Sie an, Ihre Weiterverkaufspreise wären wie folgt gegeben:

199



Appendix B Supplements to the Experiment

Auktion 1 Auktion 2 Auktion 3
Weiterverkaufspreis 60 GE 40 GE 50 GE

Hätten Sie Auktion 1 gewonnen, würde er Ihnen Gut 1 zum Weiterverkaufspreis 60
GE abkaufen. Hätten Sie Auktion 2 und Auktion 3 gewonnen, würde er Ihnen nur
Gut 3 für 50 GE abkaufen. Dieser Verkauf läuft automatisch ab. Haben Sie kein
Gut gewonnen, so kann Ihnen der Spielleiter auch keines abkaufen.

Berechnung Ihrer Auszahlung

Am Ende der Periode werden der Weiterverkauf und die Bezahlung der Auktionen
automatisch durchgeführt. Daraus ergibt sich Ihr Periodengewinn wie folgt: 1.) Falls
Sie mindestens eine Auktion gewonnen haben:

Periodengewinn = (Ihr Weiterverkaufspreis des Gutes, das der Spielleiter
Ihnen abkauft) - (Preise, die Sie in Ihren gewonnenen Auktionen zahlen

müssen)

2.) Falls Sie keine Auktion gewonnen haben: Periodengewinn = Null
Zusätzlich erhält jeder Teilnehmer in jeder Periode eine sichere Zahlung von 16.7 [8,
8] GE. Somit beträgt Ihre

Periodenauszahlung = 16.7 [8, 8] GE + Periodengewinn.

Ihre Auszahlung am Ende des Experiments ist die Summe Ihrer Periodenauszahlun-
gen.

Beginn einer neuen Periode

Zu Beginn einer Periode werden die Gruppen neu gebildet. Aus programmtechnischen
Gründen müssen Sie sich dazu umsetzen. Bitte bleiben Sie am Ende einer Periode
zunächst ruhig an Ihrem Platz sitzen, bis der Experimentleiter in Ihrem Raum Ihnen
Ihren neuen Platz zuweist. Bitte verhalten Sie sich dabei ruhig und sprechen Sie nicht
mit anderen Teilnehmern. Lassen Sie den letzten Bildschirm der Periode geöffnet, d.h.
drücken Sie nicht den OK-Button, wenn der Bildschirm mit den Hinweisen zum
Umsetzen erscheint. Das Umsetzen erfolgt nur innerhalb Ihres Raums nach einfachen
Regeln.
Nehmen Sie beim Platzwechsel bitte alle Zettel und den Stift mit.
In den Zettel mit der Tabelle für die Auszahlungen tragen Sie bitte nach jeder Periode
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Ihre Auszahlung ein und nehmen ihn an den neuen Platz mit. Dieser Zettel dient nur
der Kontrolle. Ihre Gesamtauszahlung wird unabhängig davon ermittelt.
Nach Periode 3 lassen Sie bitte alles außer der „Erklärung des Vertragnehmers“ und
dem Zettel, den Sie am Eingang gezogen hatten, am Platz.

Auszahlung

Am Ende des Experiments erfolgt die Auszahlung in bar. Ihre Auszahlung wird in
EUR umgerechnet wobei 1 GE einen Gegenwert von 20 [30, 25] Cent hat. Die Aus-
zahlung erfolgt individuell und anonym.

Sollten Sie Fragen haben, melden Sie sich bitte. Der Experimentleiter kommt dann
zu Ihnen an den Platz und beantwortet Ihre Frage dort. Bevor die erste Periode
beginnt, werden Ihnen auf dem Bildschirm einige Fragen zu den Regeln gestellt. Damit
möchten wir sichergehen, dass alle Teilnehmer die Anleitung verstanden haben.



List of Symbols

N Set of bidders, |N | = n

M Set of sellers, |M | = m

I = N ∪M Set of players
g, h, i Indices referring to bidders
j, k, l Indices referring to sellers
vij Bidder i’s valuation for good j (private information)
V = (vij)i∈N,j∈M Matrix of bidders’ valuations
vSj Seller j’s valuation for his item
vS = (vSj )j∈M Vector of sellers’ valuations
dij Maximum gains from trade that a pair (i,j) can generate:

dij = max{0, vij − vSj }
x = (xij)i∈N,j∈M Assignment matrix, xij ∈ {0, 1}
p = (p1, . . . , pm) Price vector
(x, p) Outcome
(x∗, p∗) Outcome resulting from play of σ∗

ui(x, p) Bidder i’s payoff at the outcome (x,p)
uSj (x, p) Seller j’s payoff at the outcome (x,p)
(x̄∗, p̄∗) Reference outcome
xeff Efficient assignment (optimal assignment)
pVi Bidder i’s Vickrey payment
pVj Vickrey price in auction j: pVj = pVi if xeffij = 1
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b0
j Starting price (and reserve price) in auction j: b0

j = vSj for all j ∈M
bij Bidder i’s bid in auction j
bsj Current standing bid in auction j (observable second highest submitted

bid in auction j up to the current stage)
bhj Current high bid in auction j (non-observable highest submitted bid in

j up to the current stage)
Bh(j) Current high bidder in auction j
ι Minimum bid increment
Ba Set of remaining active bidders
BPD(j) Price determining bidder in auction j
BI(j) Bidders i with j ∈ Di and Bh(j) 6= i at (x̄∗, p̄∗)
c(·) Coalitional function, c(S) is the value of coalition S


