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1 Preface

For many classes of correlated electron systems the electronic spin plays a major role
as the correlations mediated by it lead to a variety and novelty of collective quantum
phenomena. Even one single magnetic moment which interacts with a continuum of
electrons is able to produce a complex, correlated many body quantum state.
Such a situation can be prepared by connecting a small semiconductor box to two elec-
tronic reservoirs - a so-called quantum dot. A gate voltage applied to the quantum
dot can tune the system into a regime where effectively only one single electron with
a non-zero magnetic moment remains as a degree of freedom on the dot. Without the
electronic spin, electron transport would be prohibited by the Coulomb blockade. How-
ever, the effective spin on the dot interacts locally with the surrounding spins of the
lead electrons and thereby generates a coherent quantum many body state, a state built
by coherent spin flip processes. This resonance state enhances the density of states of
the quantum dot near the Fermi level of the leads, which in turn leads directly to an
increase of the conductance, a phenomenon known as the Kondo effect. Due to the
Kondo resonance state the local spin forms a spin singlet with the lead electrons, which
effectively screens the local spin and subsequently makes the dot fully transparent, i.e.
the Coulomb Blockade is completely overcome and the maximal value of conductance
allowed by quantum mechanics, the so called unitary limit, is reached. Applying a finite
bias voltage between the two leads destroys this quantum coherent state again and hence
leads to a suppression of the Kondo effect.
Theoretically this physics is captured by the Kondo model which results as a certain
limit from the single impurity Anderson model. Both models play prominent roles when
dealing with quantum dot devices and have a long history in the physics of quantum
impurity systems. In this work we will treat the Kondo model theoretically in and out of
equilibrium using the functional renormalization group (fRG) method. The fRG—as a
powerful, microscopic and first principle method when dealing with correlated systems—
allows us to substantiate and improve previous renormalization group schemes for the
Kondo model. In particular, we shall first of all extend the fRG to a nonequilibrium
situation and give a detailed derivation of the corresponding, approximated flow equa-
tions for the Kondo model. One of the major subjects is addressed by the question
how decoherence rates which especially out of equilibrium serves as a cutoff for the fRG
equations are generated by the fRG. We will thus be able to strengthen and substantiate
previous proposed RG schemes and find excellent accordance with known results in the
weak coupling regime. We shall further analyze the breakdown of our approximated set
of fRG equations as we enter the strong coupling regime and give an outlook how the
latter may be approached.
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1 Preface

Another fascinating class of materials where spin correlations take center stage are high
temperature superconductivity compounds, the conventional example of which is com-
posed of two dimensional CuO planes. Without any doping and at zero temperature
these planes represent a perfect realization of a two dimensional antiferromagnet on a
square lattice which is described by a standard Heisenberg Hamiltonian having magnons
as its elementary excitations. Upon doping and varying the temperature, a rich phase
diagram emerges. Most notably in a certain range of doping degree these materials be-
come superconducting. However, at a certain value inside this superconducting dome,
superconductivity is suppressed and the CuO planes are seen to arrange themselves in
spin and charge stripes with a spin modulation of eight and charge modulation of four
lattice sites, respectively. Recent neutron scattering experiments have focused on this
regime of doping degree and measured the magnetic scattering from which a dispersion
of the magnetic excitations is extracted.
Theoretically at this doping degree the material is believed to be best described by the
t–J Hamiltonian which, besides the antiferromagnetic spin correlation, includes the mo-
bility of the holes as a kinetic degree of freedom. We will, however, first of all map
the system onto a spin only Heisenberg type model as we antiferromagnetically couple
three leg ladders. We thus neglect the kinetic degree of freedom of the holes and replace
them by an effective, antiferromagnetic exchange coupling of neighboring spin ladders.
Contrary to this so called site-centered model people studied a bond-centered model pre-
viously, corresponding to ferromagnetically coupled two leg ladders to be appropriate to
capture the physics at this doping level.
In this thesis we will show that there is evidence for site- rather than bond-centered
stripes and hence answer one of the basic questions in this regard. We also shall numer-
ically estimate the induced inter-ladder coupling—which in case of the bond-centered
model has so far been taken as a fitting parameter or chosen such that the required Gold-
stone modes just emerge—for the site-centered as well as for the bond-centered model
and show that only the site-centered stripes exhibit magnetic order. Furthermore, we
present a fully consistent spin wave analysis of coupled three leg ladders and compare
various observables, like the magnetic excitation spectrum or the dynamical structure
factor with recent neutron scattering experiments. We find excellent agreement.
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Part I

Kondo Dot Model in and out of
Equilibrium: Functional RG Approach
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2 Introduction

The Kondo effect—a physical phenomenon already discovered in the early 1930s, ex-
plained in the 1960s and since then has been the subject of numerous reviews—is still in
the center of interest of both experimental and theoretical physics. In the past decade it
even experienced a revival [1]. Besides the fact that the Kondo effect in its own manner
is an intriguing phenomenon as it displays a beautiful example of a correlated, complex
many body quantum state, it entailed a variety of research areas and challenges to over-
come.

It was observed [2, 3] that if magnetic ions are added to a metal, the resistance no longer
monotonically decreases down to a residual value, but starts to increase again below a
certain temperature, which became known as the Kondo effect. Jun Kondo [4] in 1964
first explained this scenario by means of perturbation theory. Although he was able to
predict the logarithmic increase of the resistivity his result diverged at a temperature
TK , the Kondo temperature. This breakdown of the perturbative result is known as the
Kondo problem. In the subsequent years no effort has been spared in various attempts
to obtain a solution for the Kondo problem, as for instance by parquet approximation,
a resummation of certain classes of diagrams [5, 6, 7] or using self-consistent perturba-
tion theory [8, 9]. Although this methods turned out to be adequate for temperatures
larger than TK and gave a finite result as T → 0 the crossover regime T ≈ TK and the
initial slope turned out to be incorrect when comparing to experiment and to the strong
coupling solution for T ≪ TK , that was provided by P. Nozieres [10] by means of a local
Fermi liquid picture. For the understanding of the physics below TK more sophisticated
theoretical approaches were necessary. A first successful step was made half a decade
after Kondo’s theory by P.W. Anderson [11] with a method known as “poor man’s scal-
ing” or perturbative renormalization group. The breakthrough with a non-perturbative
method was given by K.G. Wilson [12, 13] via the numerical renormalization group. In
the early 80s interest was again attracted to the Kondo model due to the discovery of
an exact solution using the Bethe ansatz [14, 15].

An immense progress in nanotechnology made it possible to create little semiconductor
boxes that can hold a small number of electrons, so called quantum dots, which are,
as they resemble the properties of real atoms, sometimes referred to artificial atoms.
An odd number of electrons thereby corresponds to a non zero total localized spin S
on the dot with a minimum value of S = 1

2
. To study the Kondo problem—i.e. to

mimic a cobalt-in-copper system—this localized spin is pinched between two electronic
leads which became known as the Kondo dot model. If a gate voltage is applied to this
quantum dot device the dot levels can be tuned in a way that effectively only one single

9



2 Introduction

electron with a non-zero magnetic moment remains as a degree of freedom on the quan-
tum dot. This local effective spin now interacts with the surrounding lead electron spins
and thereby generates a coherent quantum many body state, which has far reaching
consequences: To begin with, it enhances the density of states of the quantum dot near
the Fermi level of the leads, which in turn leads directly to an increase of the conduc-
tance, i.e. it produces the Kondo effect. Hence, due to this Kondo resonance state the
local spin forms a singlet with the spins of the lead electrons, which effectively screens
the local spin and thereby makes the dot fully transparent, i.e. the Coulomb Blockade
is completely overcome. While in the case of an impurity embedded in a bulk material
the Kondo effect manifests itself in the increase of the resistance due to scattering of
plane wave electronic states from the impurity and the transfer of momentum, which is
thereby generated, the situation for a quantum dot is quite different. Since in this case
all the electrons have to travel through the dot, the Kondo resonance affirms the mixing
of electrons between different leads and hence leads to an increase of the conductivity. If,
however, in the two lead setup a finite bias is applied between the two electronic leads
the situation changes again as the voltage destroys the Kondo correlation and hence
diminishes the conductance again.

In the present work we apply the functional renormalization group (FRG) method to
study the Kondo dot model in and out of equilibrium. The fermionic FRG is a powerful
method for the treatment of correlated electron systems. The basic idea is to track
the evolution of all one-particle irreducible (1PI) diagrams when an infrared cutoff Λ
is lowered. Technically this leads to an infinite system of coupled differential equations
for the 1PI vertex functions, which are—in principle—fully dressed and frequency (and/
or momentum) dependent, giving rise to the name FRG. For any realistic, interacting
physical system, however, appropriate simplifications of these equations have to per-
formed. As the equation for each n-point vertex function involves the n+ 1-point vertex
function the major approximation, in order to close the differential equation system, is a
truncation at a certain order. As in all present examples in the literature we will perform
the truncation at order n = 2, i.e. we shall only deal with the self energy of the dot spin
and the two particle vertex or coupling function. The setup of the FRG equations for
the Kondo model and the subsequent calculations will be performed in Keldysh space
[16] which provides the fundamental basis when dealing with systems out of equilibrium.
As in a theoretical description the Kondo effect derives from logarithmic contributions
which are resummed by renormalization group we shall begin our analysis by extracting
these leading components in Keldysh space and show that upon keeping track only of
these components one is allowed to deal with a single amplitude in Keldysh space. In
contrast to previous RG works the FRG naturally includes the effect of the decoherence
rate which in particular in nonequilibrium is seen to be instrumental as a cutoff for the
frequency dependent coupling function. We are thus able to strengthen and substantiate
a previously proposed RG scheme [17, 18] which included this effect on a self-consistent
basis. We shall further investigate the behavior of the decoherence rate and the leading
component of the coupling function as the temperature or the bias voltage enter the
strong coupling regime, i.e. T, V . TK . As a physical observable we focus mainly on the
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2 Introduction

conductance G as a function of the temperature T and bias voltage V which is obtained
from an expression in terms of the renormalized coupling function which is seen to agree
very well with known results in the weak coupling regime T, V ≫ TK . Finally we analyze
and give an outlook to the approach to strong coupling.

This thesis is organized as follows: In Chapter 3 we introduce the single impurity An-
derson model (SIAM) and the Kondo model and show how these two models are related,
in particular how the latter may be obtained from the former. For the Kondo model
we will distinguish between the one-lead model, i.e. a single impurity spin embedded in
bulk of conduction electrons and the two-lead model, where the impurity spin is pinched
between two fermionic leads. Furthermore, we shall give a short overview about the mile-
stone works in the chronology of the Kondo model, i.e. the Kondo’s explanation of the
resistance minimum [4], Anderson’s poor man scaling approach [11], Wilson’s numerical
renormalization group approach [12, 13] and Noziere’s local Fermi liquid description of
the Kondo model [10].
Chapter 4 contains the introduction to the fermionic FRG in and out of equilibrium.
After a short summary of functional formalism and path integrals we shall begin with a
review of the equilibrium FRG. Towards our main goal—the treatment of the nonequi-
librium Kondo model—using FRG we state the Keldysh formalism [16] which is the
fundamental technique when dealing with systems out of equilibrium. Furthermore,
we give the corresponding Green and vertex functions for the Kondo model. Having
this technique at hand we subsequently extend the FRG to nonequilibrium situations
and give a detailed derivation of the set of coupled differential equations for the Kondo
model, in particular for the pseudo fermion self energy and the vertex function.
Chapter 5 contains the main body of this work, the treatment of the Kondo model
using the FRG in and out of equilibrium, i.e. the analysis of the FRG equation derived
in Section 3. In a short prelude on the Kondo dot model we start with a summary
of second order perturbative results for the pseudo fermion self energy and show how
these expressions are reobtained via the FRG. We also show how Anderson’s poor man
scaling equation [11] is contained as a certain limit in the FRG equations. Moreover we
will review a perturbative renormalization group by Rosch et. al. [17, 18], which was
proposed to capture the physics of a finite bias voltage or the inclusion of a magnetic
field and likewise illuminate this theory in the framework of FRG. We then pass on to
the main subject of this thesis, the analysis of the FRG equations for the Kondo model
in and out of equilibrium. As a first step we will simplify the FRG insofar as we ex-
tract the leading components for the vertex function and—upon keeping track only of
these components—find that the Keldysh structure of the corresponding vertex function
reduces to the one of the bare vertex and hence we are allowed to deal with a single
amplitude in Keldysh space only. This is seen to simplify the FRG equations for the
imaginary part of the self energy and vertex function substantially. We solve the FRG
equations in the weak coupling regime T, V ≫ TK and find excellent accordance with
known results. We then focus our attention mainly on the decoherence rate which in par-
ticular in nonequilibrium is instrumental to cutoff the otherwise logarithmic divergent
coupling function. We shall analyze the behavior and breakdown of our approximated
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2 Introduction

set of FRG equations as the strong coupling regime T, V . TK is entered. Finally we
show under which conditions the strong coupling regime may be approached via the
FRG.
In Chapter 6 we shall give an overview of experiments regarding our theoretical re-
search. In the past decades much progress has been achieved to mimic the Kondo
situation by means of quantum dot devices coupled to fermion reservoirs which serve
as conduction leads. After a few attempts where only a weak Kondo effect has been
observed [19, 20, 21] the breakthrough came in 2000 by van der Wiel et. al. [22] where
“The Kondo effect in the unitary limit” has been achieved. We shall first of all review
these experiments in equilibrium before we finally pass on to a recent experiment of the
Kondo model out of equilibrium [23].
We close this part of the thesis with a short conclusion in Chapter 7.

To enhance readability of the thesis we shall postpone some of the technical details in
the appendices. A description of Abrikosov’s pseudo fermion representation [24, 25] and
the spin algebra and spin summations in this regard are given in Appendix A. In Ap-
pendix B we briefly summarize basic properties of and rules for Grassman variables and
list some integral formulas. Appendix C provides a derivation of the non-equilibrium
path integral representation for the Kondo dot model according to [26]. Technical details
of Chapter 3 that occur during the derivation of the FRG equation for for the Kondo dot
model in Keldysh space are presented in Appendix D. Appendix E finally contains
some useful formulas and relations for the Bose- and Fermi-functions and integrations
in this regard.

12



3 Introduction to the Kondo Model

3.1 Introduction

This chapter introduces the elementary models in the framework of local moment physics
where an impurity is either located in a bulk of conduction electrons or is pinched be-
tween to fermionic leads, respectively. In Section 3.2 we begin with the single impurity
Anderson model (SIAM) [27] which plays the key role when dealing with impurity sys-
tems as it allows for charge fluctuations and incorporates Coulomb interaction on the
impurity site. In the limit, where the impurity site is occupied just by one electron, leav-
ing effectively only the electronic spin as a degree of freedom the SIAM can be mapped
onto the Kondo model, which is introduced in Section 3.3. The Kondo model describes a
bulk of conduction electrons which interact locally via an antiferromagnetic Heisenberg
exchange with the impurity spin. If the bulk of electrons is replaced by two fermionic
leads and the impurity spin is pinched between it becomes the Kondo dot or two lead
Kondo model, which is discussed in Section 3.4. This model will be studied throughout
the thesis. In Section 3.5 we shall give a summary of the keystones in the history of
the Kondo model: To begin with we give a short outline on Kondo’s explanation of the
resistance minimum [4], followed by Anderson’s poor man scaling approach [11]. Fur-
thermore we state Wilson’s numerical renormalization group procedure [12, 13] (for a
review see [28]) and finally the local Fermi liquid picture by Nozieres [10].

3.2 Single Impurity Anderson Model

The SIAM is given by the following Hamiltonian

H =
∑
kσ

ǫkc
†
kσckσ +

∑
σ

ǫdd
†
σdσ + Un↑n↓ +

∑
kσ

V
(
c†kσdσ + d†σckσ

)
. (3.1)

The first term represents the free electrons of the metallic host. c†kσ and ckσ are creation
and anhilation operators of conduction electrons with momentum k and spin σ. The
second term describes a local orbital which can be empty, single or double occupied.
Each electron occupying the impurity site thereby gains an energy of ǫd. The third term
emerges from the coulomb repulsion if two electrons simultaneously occupy the d-level.
These three possible configurations are depicted in Fig. 3.2. The last term describes the
hybridization, i.e. the hopping of the conduction electrons onto and out of the impurity
site.
Depending on the parameters ǫd and U the SIAM exhibits different phases: for vanishing

13



3 Introduction to the Kondo Model

h
hǫd + U

ǫd (a)
x
hǫd + U

ǫd (b)
x
xǫd + U

ǫd (c)

Figure 3.1: Possible configurations for the impurity state with energies (a) E = 0,
(b) E = ǫd, (c) E = 2ǫd + U .

hybridization strength V = 0 the ground state of the SIAM can either be magnetic or
non-magnetic as shown in Fig. 3.2. If the Fermi level is pinched between the upper
and lower impurity level the SIAM is in the magnetic phase, whereas if it is completely
above or below of the two impurity levels the SIAM becomes non-magnetic. The two
cases (not depicted in Fig. 3.2 ) where either the top or the low level coincides with—or
is at least close to— the Fermi level are referred to as the mixed valence regimes.
The model becomes particle-hole symmetric if its parameters are subject to the condition
ǫF − ǫd = ǫd + U − ǫF or ǫd = −U/2 if we take ǫF = 0. For sufficiently large values
of U the conditions are now such that the d level contains only a single electron, which
behaves as a magnetic spin 1/2 impurity. However, on lowering the temperature T below
a certain crossover value, which is referred to as the Kondo temperature TK , coherent
virtual transitions between the d level and the conduction band begin to ”screen” the
spin of the d level. The most spectacular consequence is that the impurity density of
states develops a so called Kondo or Abrikosov-Suhl resonance, a sharp peak at the
Fermi level (depicted in Fig. 3.3 ). This Kondo resonance reaches its maximal value,
which is known as the ”unitarity limit,” when the ground state wave function is a spin
singlet which in turn indicates that the local spin is completely screened. As shown in
the next Section in this regime the Anderson model may be described by an effective
model, the Kondo model.

EF

(a)

EF

(b)

EF

(c)

Figure 3.2: Without hybridization (i.e. V = 0) the ground state of the SIAM can
either be (a), (b) non-magnetic or (c) magnetic.
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3.3 Kondo Model

ε

εd

F

ω

Α(ω)

Tk

Γ

Figure 3.3: Sketch of an effective spin
flip. A coherent superposition of such
processes leads to a narrow resonance of
width TK in the in the impurity density
of states at the Fermi level ǫF . The
impurity level ǫd is broadened on a scale
Γ = π|V |2.

3.3 Kondo Model

As already marked out in the previous chapter for ǫd ≪ ǫF ≪ ǫd + U the SIAM en-
ters the so called Kondo regime and can be mapped onto the Kondo (or s–d) model.
Technically this is achieved by a Schrieffer-Wolff [29] transformation. The corresponding
Hamiltonian takes the form

H =
∑
kσ

ǫkc
†
kσckσ +

∑
kk′

JSskk′ =
∑
kσ

ǫkc
†
kσckσ +

J

2

∑
k′k,σ′σ

Sc†k′σ′~τσ′σckσ , (3.2)

where S is the impurity spin and ~τ = (σx, σy, σz)
T denotes the vector formed by the

three Pauli matrices. The exchange coupling J may either be ferromagnetic (J < 0) or
antiferromagnetic (J > 0). The Kondo model describes a bulk of conduction electrons
which interact locally via an antiferromagnetic Heisenberg exchange with the impurity
spin. If the Kondo model is derived from the SIAM the effective exchange coupling J is
related to its parameters via

J = V 2

(
1

|ǫd| +
1

U + ǫd

)
. (3.3)

From there the coupling J is seen to be always antiferromagnetic.

3.4 Kondo Dot Model

The relevant model for the theoretical consideration of this thesis is the so called Kondo
dot model where the impurity spin (also known as the Kondo dot) is pinched between
two fermionic leads, which are assumed to be thermally equilibrated. However, a finite
bias voltage V may be applied between these two leads, which drives the system out of
equilibrium and leads to a difference in the chemical potentials µα = ±V/2 (α = L,R) of
the leads. The occupation distribution of each lead is given by the usual Fermi function
fα(ǫ) = 1/(e(ǫ−µα)/T + 1). Additionally the impurity spin may as well be subject to a
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3 Introduction to the Kondo Model

finite magnetic field B. Hence, the corresponding Hamiltonian takes the form

H =
∑
αkσ

(ǫk − µα)c†αkσcαkσ − gµBBSz +
1

2

∑
α′ασ′σk′k

Jα′α S c†α′k′σ′~τσ′σcαkσ . (3.4)

where S denotes again the impurity (or Kondo) spin on the quantum dot. As we wish
to derive functional renormalization group equations for this model which are based on
a diagrammatic calculus we need a representation in terms of fermionic operators for the
Kondo spin. Throughout this thesis we shall work in the pseudofermion representation
which was introduced by Abrikosov [24, 25]

S =
1

2

∑
γ′γ

f †γ′~τγ′γfγ with Q =
∑
γ

f †γfγ = 1 . (3.5)

This representation of a spin 1/2 in terms of fermionic operators is further discussed in
App. A. The constraint of the pseudo fermion number operator Q = 1 originates from
the fact, that only the singly occupied fermion states have any physical relevance. Hence,
this representation must be supplemented by a projection onto the physical subspace,
where double and empty occupied states are excluded. To this end, we introduce a chem-
ical potential λ, whereupon the physically relevant expectation value of an observable
O is obtained as the limiting value

〈O〉Q=1 = lim
λ→∞

〈OQ〉λ
〈Q〉λ . (3.6)

Since λ enters as a chemical potential, thermal averages taken with a finite λ contain
various powers of e−λ/T . In particular, 〈Q〉λ ∼ e−Λ/T and hence the limit of λ →
∞ in equ.(3.6) picks out the terms in 〈OQ〉λ which are also proportional to e−λ/T .
Consequently, when calculating any thermal average at finite λ, one is allowed to retain
only terms of lowest order in e−λ/T . In the pseudofermion representation the Kondo dot
Hamiltonian takes the form

H =
∑
αkσ

(ǫk − µα)c†αkσcαkσ +
∑
γ

(λ− γ
B

2
)f †γfγ

+
1

4

∑
α′ασ′σ

Jα′α~τσ′σ~τγ′γf
†
γ′fγc

†
α′σ′cασ , (3.7)

where we made use of the relation
∑

k cαkσ = cα,x=0,σ ≡ cασ. The interaction is local
in space (x = 0) and consists of bare interaction processes where a conduction electron
is transported either between different leads α 6= α′ or the same lead α = α′. Coin-
stantaneously the lead electrons spin is changed from σ′ to σ and the spin on the dot
is transferred from a state γ′ to γ. Such a process conserves spin and furthermore the
energy of the “incoming” and “outgoing” particles

σ + γ = σ′ + γ′ (3.8)

ωe + ωf = ωe′ + ωf ′ . (3.9)
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(a) (b) (c)

T V B

Figure 3.4: Different mechanism leading to an attenuation of the Kondo effect:
(a) temperature T destroys the resonance by smearing out the Fermi surface. (b)
A voltage V induces induces a splitting of the Fermi energy of the left and the
right lead, which influences either directly or via a voltage induced current-noise the
resonant electron scattering. (c) A magnetic field B lifts the degeneracy of the levels
on the dot and thus prohibits resonant scattering.

From a total of 16 addends in the spin sum of (3.7) only 6 possibilities remain, which
we list for illustration in the subsequent table

σ γ → σ′ γ′ ~τσ′σ~τγ′γ

↑↑→↑↑ 1
Non Spin ↓↓→↓↓ 1

Flip ↑↓→↑↓ −1
↓↑→↓↑ −1

Spin ↑↓→↓↑ 2
Flip ↓↑→↑↓ 2

As described in the previous Section the Kondo effect is most pronounced for vanishing
temperature, bias voltage and magnetic field. Whereas each of these three quantities
will reduce the Kondo effect the mechanisms are quite different. The temperature T
will destroy the Kondo resonance as it smears out the Fermi surface. In case of a finite
bias voltage V a splitting of the Fermi energy of the left and the right lead is induced
which influences the resonant electron scattering either directly or via a voltage induced
current-noise . Finally a magnetic field B will lift the degeneracy of the levels on the
Kondo dot which prohibits resonant scattering and thus the emergence of a Kondo
resonance. For illumination we have depicted these mechanism in Fig. 3.4.

3.5 Brief History of the Kondo Model

In this subsection we shall give a brief summary of the most important theoretical steps
in the long history of the Kondo model. The subsequent sections may be reviewed in
[30, 31, 32]. We start from Kondo’s second order calculation [4] to find the resistance
minimum in dilute magnetic alloys and quote the Kondo problem, i.e. the divergence of
his result below the Kondo temperature TK . Subsequently we explain Anderson’s poor
man’s scaling approach [11] and state the conjectures, that arose from his considerations.
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3 Introduction to the Kondo Model

The latter where confirmed by Wilson using the numerical renormaization group [12, 13].
At last we give a synopsis on the effective, analytical low temperature description of the
Kondo model by means of a local Fermi liquid originally invented by P. Nozieres [10].

3.5.1 Kondo Effect and Kondo Problem

In dilute magnetic alloys (e.g. Fe in Au or Mo−Nb) the resistivity as a function of the
temperature T shows anomalous behavior. Instead of decreasing monotonically down
to a residual value ρ0 (caused by scattering on non-magnetic impurities) the resistivity
shows a minimum at a certain temperature which has become known as the Kondo tem-
perature TK . This behavior is exemplified in Fig. 3.5 for various Mo−Nb alloys, which
contain 1% Fe. In order to calculate the contribution from the spin-spin interaction in

Figure 3.5:
Resistivity as a func-
tion of temperature
for different kinds of
Mo − Nb alloys con-
taining 1% Fe. At
4.2 K the resistivities
are normalized [3].

perturbation theory one needs to find the matrix elements T γγ
′

kσ,k′σ′ of the T -matrix

T = V + V
1

ǫk −H0 + i0
V + . . . (3.10)

with respect to the basis build up by the states |kσ, γ〉 ≡ |kσ〉⊗|γ〉, i.e. 〈kσ, γ|T |k′σ′, γ′〉.
This matrix elements in turn enter the relaxation time τ(k) via

1

τ(k)
= 2πcimp

∫
d3k′

(2π)3
δ(ǫk − ǫk′)|Tkk′ |2(1− cos Θ′) , (3.11)

with cimp being the impurity concentration. From there the conductivity is found to be

σ = −2e2

3

∫
d3k

(2π)3
v2
kτ(k)

∂f

∂ǫk
, (3.12)

which yields a third order (second order in the T matrix) contribution to the resistivity

RKondo(T ) ∝ − ln(kBT/D) . (3.13)

Obviously this results becomes invalid as it diverges as T → 0, a phenomenon known as
the Kondo problem.
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3.5 Brief History of the Kondo Model

3.5.2 Anderson’s Poor Man Scaling

The terms leading to a breakdown of the perturbative results come as ln(D), which
signals that the high energy states are important for calculating the low energy exci-
tations and physics. The key idea of Anderson’s poor man scaling approach [11] is to
successively lower the conduction bandwidth D (at each step by a small amount δD),
i.e. to integrate out the high energy states and absorb these in a renormalization of
the couplings. A sketch of this renormalization process is depicted in Fig. 3.6. For the

EF

δD

δD

Figure 3.6: Anderson’s
poor man scaling approach:
In each step of the renor-
malization procedure a
small amount of high energy
states is removed - thereby
the bandwidth reduced by
δD - and absorbed in the
coupling J(D).

isotropic Kondo model (3.2) the following scaling equation is obtained for g = N0J

∂g(D)

∂ lnD
= −2g2(D) with g(D0) = g (3.14)

with the solution

g(D) =
g

1− 2g ln(D0/D)
=

1

2 ln(D/TK)
(3.15)

where the Kondo temperature

TK = D0 e
−1/(2g) (3.16)

has been defined. To begin with this result tells us, that the perturbative method
becomes invalid as D reaches TK from above, signaling a breakdown of this scaling
approach. However, the solution equ. (3.15) is obtained in the zero temperature limit.
If we deal with a finite temperature T ≫ TK the renormalization group flow is cut off at
this temperature leading to a renormalized coupling g(T ) = 1/(2 ln(T/TK)). Hence, in
the regime T ≫ TK this is the leading term and physical quantities may be calculated
by replacing the bare interaction vertex by this renormalized coupling. In Section 5.2.3
we will reconsider this problem and illuminate it in the framework of the functional
renormalization group.
However, Anderson suggested that the coupling g(D) even for T = 0 should diverge only
in the limit D → 0, i.e. giving a finite result for 0 < D ≤ TK , a conjecture that was
verified by Kenneth G. Wilson using the numerical renormalization group.
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J Λ0 Λ− 1
2 Λ− 3

2 Λ− 5
2 Λ− 7

2 Λ− 9
2

Figure 3.7: Sketch of the approximated form of the tight binding form for the
Kondo model (“Wilson-chain”). The impurity spin S is located to left (open circle)
and coupled to the zeroth side in the real space configuration. The sloping hopping
elements are shown.

3.5.3 Numerical Renormalization Group

Kenneth G. Wilson [12, 13] was able to affirm the conjecture, that the Kondo model
has two fixed points: A stable one for J = ∞ and an instable one for J = 0. Wil-
son started from the Kondo model (3.2) which is rewritten by means of a tight bind-
ing Hamiltonian where the impurity spin S is located at one end of the tight bind-
ing chain. Mathematically this is achieved by a Lanczos procedure whereupon the
conduction electron Hamiltonian is transfered from diagonal to tridiagonal form, i.e.
Hc =

∑∞
n=0σ ǫnc

†
nσcnσ + (γnc

†
n+1σcnσ + h.c.). The first approximation is to choose a

particular form of ǫn and γn (see below). Secondly—as a starting point for the renor-
malization group procedure—the chain is kept finite, i.e. it consists of N conduction
electrons. The corresponding Hamiltonian takes the following form

HN =
D(1 + Λ−1)

2

N−1∑
n=0,σ

Λ−n/2
(
c†nσcn+1σ + c†n+1σcnσ

)
+ J

∑
σ′σ

Sc†0σ′~τσ′σc0σ (3.17)

and is illustrated in Fig. 3.7. Based on the Hamiltonian HN Wilson sets up the following
iterative scheme

H̃N ≡ 2

D(1 + Λ−1)
Λ(N−1)/2HN (3.18)

H̃N+1 = Λ1/2H̃N +
∑
σ

c†NσcN+1σ + c†N+1σcNσ ≡ R(H̃N ) (3.19)

Equ. (3.19) defines a sequence of renormalization group transformations (denoted by
R). The successive stages in the iterative diagonalization are:

(i) Diagonalize, i.e. find the energy levels of H̃N , starting from a single side coupled
to the local spin (N=0).

(ii) Rescale the energy levels by multiplying with Λ1/2 (according to equ. (3.19))

(iii) Add one more side to the chain, i.e. a set of states {|0, 0〉, | ↑, 0〉, |0, ↓〉, | ↑, ↓〉}.
These steps are repeated while only a certain number N0 corresponding to the lowest
levels of H̃N+1 is kept at each stage.
How did Wilson confirm the conjecture of the two fixed points named above? First off
all one has to note that for J = 0 the impurity is completely uncoupled from the dot and
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3.5 Brief History of the Kondo Model

the excitations are therefore given by the ones of a tight binding chain (ranging from 0
to N). On contrary for J = ∞ the impurity is indefinitely strong coupled to the first
side, effectively removing it from the chain. The excitations in this case are then given
by the ones of a tight binding chain ranging from 1 toN . Hence, the conjecture turns
into the statement that the low energy excitations of H̃N (J = ∞) are the same as for
H̃N−1(J = 0). Wilson was able to show that the values of the lowest excitation energies
for Λ = 2 and small J = 0.009 for even and large N approach the values corresponding
to the J = ∞ fixed point.

3.5.4 Local Fermi Liquid Picture

Regarding physical quantities like the resistivity or conductance (according to which
Kondo system is under consideration) the physics for T ≫ TK was well understood.
For the properties well below TK Nozieres [10] provided a description by means of a
local Fermi liquid. The key idea was to take as granted that for low temperature the
coupling between the conduction electrons and the impurity spin is infinitely strong,
leaving effectively a non-magnetic and repulsive impurity. In other words at T = 0 the
local spin binds one electron from the band into a singlet whereupon the other electrons
form a Fermi liquid for which the impurity acts as a potential scatterer, inducing phase
shifts only, i.e. causing only elastic scattering of bulk electrons. Due to this point like,
momentum independent coupling it is sufficient to consider s-wave scattering only. At
zero temperature the corresponding phase shift δ(ǫF ) is at resonance, i.e. δ(ǫF ) = π/2.
Hence the resistivity or conductance, respectively reaches the unitarity limit

G = G0 =
2e2

h
for T = 0. (3.20)

If we reside near by zero temperature, i.e. for T 6= 0 but still T ≪ TK the coupling
between the impurity and the lead electrons is still huge but finite, thus allowing also
for inelastic collisions. The corresponding inelastic relaxation rate has to be added in
delicate way (i.e. one has to take care of a diminishment of the elastic scattering rate
since inelastic scattering processes remove particles from the elastic channel) and gives
finally rise to a temperature dependence of the following form

G(T ) = G0

(
1− π4w

16

(
T

TK

)2
)

for T ≪ TK , (3.21)

with the Wilson number w ≈ 0.4107. The quadratic temperature dependence of equ.
(3.21) is characteristic for Fermi liquid results. Here the Kondo temperature TK is
defined by the zero temperature susceptibility χ0 = 1

4TK
. The form equ. (3.21) has

nowadays been well established by experiment [22] and is discussed in more detail in
Chapter 6.
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4 Equilibrium and Nonequilibrium
Functional Renormalization Group
Method

4.1 Introduction

The functional renormalization group is an ideal tool when dealing with the diversity
of energy scales and the interplay of correlations in interacting fermionic systems such
as the Kondo model where the bandwidth D and the correlation induced Kondo tem-
perature TK differ by orders of magnitude. Via a field theoretical approach an exact
infinite hierarchy of flow equations is obtained, which yields the gradual evolution from
a microscopic model Hamiltonian to the effective action as a function of a continuously
decreasing energy cutoff. Practically one modifies the bare propagator by cutting off
frequencies smaller then some infrared cutoff Λ. As this cutoff is progressively lowered
more and more low-energy degrees of freedom are included, until the original model is
recovered for Λ → 0. In applications the main approximation consists of a suitable
truncation of the hierarchy.
Starting from a small introduction to the basic notion of path integrals in Section 4.2
we introduce the equilibrium FRG and give a detailed derivation of the FRG flow equa-
tions in Section 4.3. In the literature there exist quite a number of publications which
review and deepen this Section. From purely technical and conceptual introductions
[33, 34], various correlated electrons systems have been studied using the equilibrium
FRG formalism such as the two-dimensional Hubbard model [34, 35], Luttinger liquids
with impurities [34, 36, 37, 38], the single-impurity Anderson model [39] and electron
transport through correlated quantum dots [37, 40, 41]. In the subsequent Section 4.4
we review the Keldysh formalism, a real-time technique introduced by L. Keldysh [16]
for the treatment of physical systems out of equilibrium. The main difference compared
to equilibrium diagrammatic techniques, like the T = 0 or the Matsubara formalism
manifests itself in the matrix or tensor structure for the Green or the vertex functions,
respectively. We introduce the two common representations when dealing with Keldysh
diagrams, the contour ordered and the Keldysh rotated representation. A general anal-
ysis of the properties of multi-particle Green and vertex functions within the Keldysh
formalism can be found in [42]. Especially for the Kondo model we state the bare propa-
gators for the lead electrons and the pseudo fermions and relate their various components
and self-energy parts. Furthermore we give a short abstract on the structure of the bare
interaction vertex at the end of this Section. Having these two ingredients—the equi-
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librium FRG and the Keldysh technique—at hand in Section 4.5 we then briefly extend
in a first step the FRG to nonequilibrium. The extension of the FRG concept to non
equilibrium systems can be as well found either by Gezzi et. al. [43] where the authors
use a path integral formulation and study the single two lead impurity Anderson model
out equilibrium or by Jakobs et. al.[44, 45], where they use a diagrammatic approach to
obtain FRG flow equations and apply it to a quantum wire with contact barriers. In a
second step we give a rather detailed derivation of the nonequilibrium flow equations for
the particular case of the Kondo dot model. We choose to build in the cutoff function
in the bare propagator for the lead electrons and neglect the self energy part of those
completely. The corresponding differential equation system is stated up to second order
in the 1PI vertex functions, i.e. it contains flow equations for the pseudo fermion self
energy and the two particle vertex function.

4.2 Functional Formalism and Generating Functionals

Path integrals have a long history in quantum mechanics and quantum field theory. As a
starting point one may consider the question to find the transition probability for a single
particle in one dimension, governed by a time independent Hamiltonian H = p2

2m
+ V (r)

to propagate from (xi, ti) to (xf , tf) which is given by

U(xf tf ; xiti) = 〈xf |e−iH(tf−ti)|xi〉 . (4.1)

Following standard textbook techniques [46, 47] the key steps to obtain the path integral
representation for the transition probability U(xf tf ; xiti) may be summarized as follows:

To begin with one divides the time interval (tf − ti) in M equal steps ǫ =
tf−ti
M

and then
inserts (M − 1) times the closure relation 1 =

∫ |xj〉〈xj| (j = 1, . . . ,M − 1). Next one
finds an appropriate approximation for the matrix element 〈xj |e−iǫH|xj−1〉 and finally
takes the limit M →∞. As a result one is left with the expression

U(xf tf ; xiti) =

∫ (xf ,tf )

(xi,ti)

D[x(t)]eiS[x(t)] , (4.2)

where ∫ (xf ,tf )

(xi,ti)

D[x(t)] = lim
M→∞

∫ M−1∏
j=1

dxj

( m

2πiǫ

) 3M
2

(4.3)

represents the sum over all trajectories that start at (xi, ti) and end at (xf , tf). In
the path integral representation (4.2) the action S[x(t)] is given by the time integrated
Lagrangian of the system

S[x(t)] =

∫ tf

ti

dtL[x(t)] with L[x(t)] =
m

2

(
dx

dt

)2

− V (x(t)) . (4.4)
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Hence the transition probability U may be interpreted as the sum over all trajectories
from the initial (xi, ti) to the end point (xf , tf), weighted with the exponential eiS. (Re-
mark: The classical trajectory xcl(t) would minimize the action S. Even in the quantum
situation the main contributions stems from this classical path, all other trajectories
x(t) = xcl(t) + δx(t) interfere and cancel each other.)
This setup scheme for the simple Feynman path integral is a common feature as well for
more sophisticated path integral representations as for interacting quantum many body
systems. In this context the first observation towards a path integral representation is
that the the partition function Z = Tre−βH =

∫ 〈x|e−βH|x〉 with β = 1/T has a func-
tional integral representation, which can be either derived in a straightforward way by
setting β = i(tf − ti) ≡ τf − τi and performing the same steps as described above or by
performing an analytic continuation of ((4.2)) to the imaginary time by setting t = −iτ ,
which is known as Wick rotation.

For a fermionic quantum many body system the partition function can be written as
[46]

Z =
1

Z0

∫
D[ψ̄, ψ] exp{(ψ̄, G−1

0 ψ)− V (ψ̄, ψ)} (4.5)

with the interaction part

V (ψ̄, ψ) =
∑

k′1,k
′
2,k1,k2

vk′1,k′2,k1,k2ψ̄k′1ψ̄k′2ψk2ψk1 (4.6)

and the non-interacting partition function

Z0 =

∫
D[ψ̄, ψ] exp{(ψ̄, G−1

0 ψ)} . (4.7)

The combined indices k
(′)
i represent the quantum numbers of the considered one particle

basis (e.g. momenta, frequency, spin, lead index, etc.). ψ̄ and ψ denote Grassmann
fields (cf. App. B). Furthermore the following short hand notation(

ψ̄, G−1
0 ψ

)
=
∑
k′,k

ψ̄k′
[
G−1

0

]
k′,k ψk (4.8)

has been introduced. This may again be interpreted as follows: The integration over all
possible field configurations weighted with a Boltzmann factor (e−S) redisplays the trace
over the Boltzmann weight e−β(H−µN). That fact, that we are dealing with a fermionic
system is contained in the algebra of the Grassmann fields which is discussed in App.
B. By adding source fields in the exponent one obtains the generating functional for the
n-particle Green functions

G(η̄, η) =
1

Z0

∫
D[ψ̄, ψ] exp{(ψ̄, G−1

0 ψ)− V (ψ̄, ψ)− ( ¯ψ, η)− (η̄, ψ)}. (4.9)

Singling out the connected Green functions is achieved by taking the logarithm

W(η̄, η) = ln [G(η̄, η)] . (4.10)
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By taking functional derivatives with respect to the source fields one obtains the fully
dressed connected Green functions

Gn(k′1, . . . , k
′
n; k1, . . . , kn) =

∂n

∂η̄k′1 · · ·∂η̄k′n
∂n

∂ηkn · · ·∂ηk1
W(η̄, η)

∣∣∣
η̄=η=0

. (4.11)

If we introduce the Grassmann fields

χ = −∂W(η̄, η)

∂η̄
and χ̄ =

∂W(η̄, η)

∂η
(4.12)

and subsequently perform a Legendre transformation

Γ(χ̄, χ) = −W (η̄, η)− (χ̄, η)− (η̄, χ) + (χ̄, G−1
0 χ) (4.13)

we finally arrive at the generating functional for the one-particle irreducible n-particle
vertex functions γn, which are again obtained by taking derivatives with respect the
source fields

γn(k′1, . . . , k
′
m; k1, . . . , km) =

∂n

∂χ̄k′1 . . . ∂χ̄k′n

∂n

∂χ̄kn . . . ∂χ̄k1
Γ(χ̄, χ)

∣∣∣
χ̄=χ=0

. (4.14)

There exists an important relation between the second functional derivatives of Γ and W
with respect to particular source fields [46], which will proof to be an essential ingredient
for deriving the FRG flow equations(

∂2Γ
∂χ̄∂χ

+G−1
0

∂2Γ
∂χ̄∂χ̄

∂2Γ
∂χ∂χ

∂2Γ
∂χ∂χ̄

−G−1
0

)(
∂2W
∂η̄∂η

− ∂2W
∂η̄∂η̄

− ∂2W
∂η∂η

∂2W
∂η∂η̄

)
= 1 . (4.15)

If we now put the source fields to zero and furthermore assume that the physical system
under consideration is not in any symmetry-breaking phase, i.e. the off diagonals in
both matrices in equ. (4.15) vanish, we obtain

G1 =
∂W
∂η̄∂η

∣∣∣
η̄=η=0

=

(
∂2Γ

∂χ̄∂χ
+G−1

0

)−1

=
(
G−1

0 + γ1

)−1
. (4.16)

If we compare this with the usual Dyson equation G = (G−1
0 − Σ)−1 we conclude

Σ = −γ1 . (4.17)

4.3 Equilibrium Functional Renormalization Group

In this chapter we will give a detailed derivation of the FRG flow equations. For the
purpose of our work on the Kondo dot model it is sufficient to consider propagators
which only depend on frequency. The setup of the FRG flow equations is based on the
following modification of the bare propagator G0: It is replaced by a cutoff dependent
propagator GΛ

0 , such that for some Λ0 the bare Green function GΛ0
0 vanishes, whereas

26



4.3 Equilibrium Functional Renormalization Group

for Λ = 0 one obtains GΛ=0
0 = G0. To put this modification in words, one might say that

for Λ = Λ0 no degrees of freedom or modes are turned on while at Λ = 0 one recovers
the cutoff independent problem. One particular choice is a sharp frequency cutoff of the
form

GΛ
0 (ω) = G0(ω)Θ(|ω| − Λ) . (4.18)

Another possible choice is a smooth cutoff which might be chosen as

GΛ
0 (ω) = G0(ω)

(
1

2
+

1

π
arctan

( |ω| − Λ

b

))
. (4.19)

In this choice the Θ function of equ. (4.18) is broadened on a scale b.
Both of these two particular cutoff choices turn out to have advantages and disadvan-
tages. The sharp cutoff is seen to simplify matters insofar, as it leaves no internal
integration in the diagrams appearing on the r.h.s. of the FRG flow equation, but it
might lead to instabilities, e.g. by neglecting self energy effects (especially the imaginary
part) or dealing with small self energy contributions one faces the treatment of sharp
and peaked functions. This deficiency can be repaired—at least to some extent—by
choosing a smooth cutoff and paying the price of an extra integration, i.e. a numerically
more expensive treatment of the FRG equations.
By choosing a cutoff dependent bare propagator in the action of the generating func-
tionals these (i.e. equ. (4.9), (4.10) and (4.13) )become functions of the cutoff Λ as
well. The first step towards the FRG flow equation hierarchy is obtained by taking the
derivative of WΛ with respect to Λ. This yields

d

dΛ
WΛ = −Tr

(
QΛGΛ

0

)
+ Tr

(
QΛ∂WΛ

∂η̄η

)
−
(
∂WΛ

∂η
,QΛ∂WΛ

∂η̄

)
, (4.20)

where we introduced the Λ-derivative of the free inverse propagator

QΛ =
d

dΛ

(
GΛ

0

)−1
. (4.21)

With the aid of equ. (4.20) we may no proceed differentiating the Λ-dependent functional
for the 1PI vertex functions ΓΛ (cf. equ. (4.13)) to obtain

d

dΛ
ΓΛ = Tr

(
QΛGΛ

0

)− Tr
(
GΛQΛR11

)
, (4.22)

where R11 denotes the upper left block of the matrix

R =

∞∑
n=0

(−GΛ 0
0 GΛ

)( ∂2Γ
∂χ̄∂χ

∂2Γ
∂χ̄∂χ̄

∂2Γ
∂χ∂χ

∂2Γ
∂χ∂χ̄

)
. (4.23)

If we finally expand the ΓΛ in the external sources with the 1PI vertex functions as
expansion coefficients

ΓΛ(χ̄, χ) =

∞∑
n=0

(−1)n

(n!)2
γΛ(k′1, . . . , k

′
n; k1, . . . , kn)χ̄k′1 · · · χ̄k′nχkn · · ·χk1 (4.24)
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Figure 4.1: Graphical representation of the FRG flow equations for the first three
1PI vertex functions. The dot on the left hand side denotes the derivate with respect
to the cutoff Λ. Propagatos containing a stroke on the right hand side represent the
single scale propagator SΛ as defined in equ. 4.27.

we arrive at the desired hierarchy of coupled flow equations. The first three of these flow
equations are depicted graphically in Fig. 4.1. Only for the two lowest orders n = 1 and
n = 2, i.e. for the self energy and the vertex function, which is often referred to as the
effective interaction we write down these flow equations explicitly.

∂ΛΣΛ(k′1k1) = − 1

β

∑
k2,k′2

SΛ(k2, k
′
2)γ

Λ
2 (k′1, k

′
2; k1, k2) (4.25)

∂Λγ
Λ
2 (k′1, k

′
2; k1, k2) =

1

β

∑
k3,k′3

∑
k4,k′4

GΛ(k3, k
′
3)S

Λ(k4, k
′
4)
[
γΛ

2 (k′1, k
′
2; k3, k4)γ

Λ
2 (k′3, k

′
4; k1, k2)

− γΛ
2 (k′1, k

′
4; k1, k3)γ

Λ
2 (k′3, k

′
2; k4, k2) + γΛ

2 (k′2, k
′
4; k1, k3)γ

Λ
2 (k′3, k

′
1; k4, k2)

+ (k3 ↔ k4, k
′
3 ↔ k′4)] (4.26)

where the first term on the right hand side of the equation for the vertex function
represents the particle-particle channel and the following two the particle-hole channels,
respectively. The last bracket indicates that the two two previous terms have to be
repeated with changes of indices as declared. Furthermore we have introduced the so-
called single-scale propagator

SΛ = GΛQΛGΛ . (4.27)

There is a technical detail and a significantly simplification of the FRG flow equations
regarding this object: if we choose the sharp frequency cutoff (4.18) the integrals on the
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4.4 Keldysh Formalism and Propagators for the Kondo Dot Model

right hand side of the flow equations can be performed analytically. The propagators
contain both Θ(|ω| − Λ) and δ(|ω| − Λ) = −∂ΛΘ(|ω| − Λ) functions, which at a first
look seems to be ambiguous, because the Θ-function has a discontinuity precisely where
the δ-function has support. This ambiguity, however, becomes well defined and unique
if the sharp cutoff is implemented as a limit of increasingly broadened cutoff function
Θb(ω) (cf. equ. (4.19)), with the broadening parameter b tending to zero. Using the
following relation introduced by Morris [48]

δb(x− Λ)f(Θb(x− Λ)) → δ(x− Λ)

∫ 1

0

f(t)dt (4.28)

which is valid for an arbitrary continuous function f , the expression on the right hand
of the FRG equation may be conventionally evaluated. For the establishment of the
boundary conditions we may either use the relation

ΓΛ0(χ̄, χ) = V (χ̄, χ) , (4.29)

which is proved in a lengthly but straightforward calculation or by the following dia-
grammatic and less systematic argument: For Λ = Λ0 no modes are “turned on”, i.e.
GΛ0

0 = 0, such that in the diagrammatic expressions for the n-particle vertex functions
only the bare interaction vertices remain. Thus for Λ = Λ0 we have the conditions

γ1(k
′, k) = −Σ(k′, k) = vpk′,k (4.30)

γ2(k
′
1, k

′
2; k1, k2) = vk′1,k′2;k1,k2 (4.31)

γn(k′1, . . . , k
′
n; k1, . . . , kn) = 0 for m ≥ 3 , (4.32)

where vp denotes a bare single-particle potential scattering term, possibly present in the
Hamiltonian under consideration. The bare, antisymmetrized two-particle interaction v
was introduced in equ. (4.6). In the absence of any higher order bare interaction vertices
(e.g. three-particle interaction) the flow of the vertex functions γn with n ≥ 3 starts at
zero.

4.4 Keldysh Formalism and Propagators for the Kondo
Dot Model

The whole equilibrium and T = 0 diagrammatic apparatus is inter alia based on the
adiabatic hypothesis: Starting from the ground state of the non-interacting system at
t = −∞ and then switching on and off the perturbation (external potential, two-body
interaction) adiabatically the systems is supposed to reach at t = ∞ again–up to some
phase factor–its ground state, eiα|0〉.
In a nonequilibrium situation, as well as for T 6= 0 this assumption is no longer justified,
since the final state consists of some superposition of excited states, i.e. the system
evolves to some unpredictable state. To avoid this problem Schwinger suggested to take
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4 Equilibrium and Nonequilibrium Functional Renormalization Group Method

the final state to be exactly the same as the initial one. That is one first let the the quan-
tum system evolve in the forward direction in time and then reverses its time evolution,
opposing its time direction. In other words, one extends the time contour, which—in the
T = 0 formalism— consists of a simple forward branch, to a two-branch time contour C,
consisting of a forward branch C1 and a backward branch C2. This contour C is most of-
ten called Schwinger-, Keldysh- oder Keldysh-Schwinger-contour and is depicted in Fig.
4.2. This suggestion overcomes the above stated problem with the adiabatic hypothesis

t

C1

C2
0

Figure 4.2: The Schwinger-contour consisting of a forward branch C1 and a back-
ward branch C2.

and allows for a usual diagrammatic treatment [49, 50, 51, 52, 46, 53, 54] of interacting
quantum systems in the common sense. This advantage, however comes with a certain
price: By doubling the time contour one automatically doubles the degrees of freedom.
As shown subsequently the Green (and also higher correlation function) acquire an ad-
ditional index structure, i.e. become matrices (or tensors) in the Keldysh-space.

4.4.1 Green Functions

The Green function within the Keldysh formalism is defined as usual by

G(r, t; r′, t′) = −i〈TCψ(r, t)ψ†(r′, t′)〉 , (4.33)

where TC is the time-ordering operator with respect to the contour C. There are four
possibilities for the pair (t, t′) to reside on the two branches of the Keldysh contour C,
which are explicitly given by

G(r, t; r′, t′) =


−i〈Tψ(r, t)ψ†(r′, t′)〉 t ∈ C1, t

′ ∈ C1

i〈ψ†(r′, t′)ψ(r, t)〉 t ∈ C1, t
′ ∈ C2

−i〈ψ(r, t)ψ†(r′, t′)〉 t ∈ C2, t
′ ∈ C1

−i〈T̃ ψ(r, t)ψ†(r′, t′)〉 t ∈ C2, t
′ ∈ C2

. (4.34)

If both time arguments lie on the the forward branch C1 one obtains the usual time-
ordered Green function GT (t, t′), whereas if both time arguments lie on the backward
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branch C2 one deals with the anti-time-ordered Green function GT̃ (t, t′). In the case
where t ∈ C1 and t′ ∈ C2, then always t < t′ and one obtains the lesser Green function
G<(t, t′), whereas in the case t ∈ C2 and t′ ∈ C1, then always t > t′ and one ends up with
the greater Green function G>(t, t′).
This structure of the Green function regarding the Keldysh contour suggests to introduce
indices i, j ∈ {1, 2} with t ∈ Ci and t′ ∈ Cj and to arrange the various components of the
Green function in a matrix form

G(t, t′) =

(
GT (t, t′) G<(t, t′)
G>(t, t′) GT̃ (t, t′)

)
ij

. (4.35)

Furthermore it is convenient and will subsequently turn out to be an useful representation
to introduce the advanced, the retarded and in addition the Keldysh Green function by

GR(t, t′) = −iΘ(t− t′)〈{ψ(t), ψ†(t′)
}〉

GA(t, t′) = +iΘ(t′ − t)〈{ψ(t), ψ†(t′)
}〉 (4.36)

GK(t, t′) = −i〈[ψ(t), ψ†(t′)
]〉 .

This functions are related to the contour Keldysh Green function via

GR = GT −G< = G> −GT̃

GA = GT −G> = G< −GT̃ (4.37)

GK = G< +G> = GT +GT̃ .

One of the major properties of the four contour Green functions is, that they are not
independent. For t 6= t′ one may simply prove, that the following relation holds:

GT (t, t′) +GT̃ (t, t′) = G<(t, t′) +G>(t, t′) . (4.38)

Due to the relation equ. ((4.38)) one component of Gij is redundant. This redundancy
can be removed by a appropriate transformation, which was introduced by L. Keldysh
[16] and its named after its originator Keldysh rotation. We will actually follow the
notation and convention by Rammer and Smith [53] and deal with the following rotation
matrices

L =
1√
2

(
1 1
1 −1

)
and L† =

1√
2

(
1 1
−1 1

)
. (4.39)

Performing the rotation we obtain a new representation of the Keldysh matrix given by

GK = (LGL†) =

(
GR GK

0 GA

)
ij

. (4.40)

Apart from the fact that the Green function is a matrix in the present formalism the
relation to its 1PI part, i.e. the self energy part is identical to the equilibrium case and
given by the usual Dyson equation

G =
(
(G0)−1 − Σ

)−1
. (4.41)
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Here G denotes the fully dressed and G0 the bare Green function. The self energy part
Σ has—in the contour representation—the same structure as the Green function itself
and a similar redundancy-equation as equ. (4.38) holds

Σ =

(
ΣT Σ<

Σ> ΣT̃

)
, ΣT + Σ< + Σ> + ΣT̃ = 0 . (4.42)

After performing the Keldysh rotation the self energy matrix takes the same form as
equ. (4.40) for the Green function

Σ =

(
ΣR ΣK

0 ΣA

)
. (4.43)

Again we state the relations of the self energy components in the contour and the Keldysh
rotated representation

ΣR = ΣT + Σ< (4.44)

ΣA = ΣT + Σ> (4.45)

ΣK = ΣT + ΣT̃ . (4.46)

In the Keldysh rotated representation the Dyson equation may be written in the following
component-wise form

GR =
(
(G0,R)−1 − ΣR

)−1
(4.47)

GA =
(
(G0,A)−1 − ΣA

)−1
(4.48)

GK = GRΣKGA . (4.49)

Further useful rules, which will be used in the following chapters of this work are(
ΣR
)∗

= ΣA,
(
ΣK
)∗

= −ΣK (4.50)

(Σ<)
∗

= −Σ<, (Σ>)
∗

= −Σ>,
(
ΣT
)∗

= −ΣT̃ . (4.51)

For later use we state at this point the bare propagators of the lead electrons and the
pseudo fermion for the Kondo dot model. For the leads, which we assume to be in thermal
equilibrium the bare Green function carries a lead index α = L,R and is only dependent
on frequency, since the interaction is local and thus all momentum dependence can be
integrated out. We assume a constant density of states in a band of width 2D = N−1

0 ,
i.e.

N(ω) = N0Θ(D − ω) . (4.52)

Furthermore (if the leads are not subject to any magnetic field) the lead electron Green
functions do not depend on spin. The various components in the contour representation
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are given by

G0,<
α (ω) = 2πifα(ω)N0Θ(D0 − |ω|) (4.53)

G0,>
α (ω) = −2πi(1− fα(ω))N0Θ(D0 − |ω|) (4.54)

G0,T
α (ω) =

N0

2
ln

∣∣∣∣ω +D0

ω −D0

∣∣∣∣− iπ tanh

(
ω − µα

2T

)
N0Θ(D0 − |ω|) (4.55)

G0,T̃
α (ω) = −N0

2
ln

∣∣∣∣ω +D0

ω −D0

∣∣∣∣− iπ tanh

(
ω − µα

2T

)
N0Θ(D0 − |ω|) . (4.56)

Here fα(ω) = 1
exp((ω−µα)/T )+1

denotes the Fermi-function. Performing the Keldysh rota-
tion one is led to the components

G0,R
α (ω) =

N0

2
ln

∣∣∣∣ω +D0

ω −D0

∣∣∣∣− iπN0Θ(D0 − |ω|) (4.57)

G0,A
α (ω) =

N0

2
ln

∣∣∣∣ω +D0

ω −D0

∣∣∣∣ + iπN0Θ(D0 − |ω|) (4.58)

G0,K
α (ω) = −2πi tanh

(
ω − µα

2T

)
N0Θ(D0 − |ω|) . (4.59)

Note that in the Keldysh rotated representation only the Keldysh component depends
on the occupation number (tanh(ω/(2T )) = 1− 2f(ω)).
For the pseudo fermions, which serve as a fermionic representation of the Kondo impurity
spin the Green function depends (supposed the impurity is subject to a magnetic field
B) on spin and in addition on frequency. The contour ordered components read

F 0,<
γ (ω) = 2πinγλδ(ω + γ

B

2
) (4.60)

F 0,>
γ (ω) = −2πi(1− nγλ)δ(ω + γ

B

2
) (4.61)

F 0,T
γ (ω) = P 1

ω + γB
2

+ iπ(2nγ,λ − 1)δ(ω + γ
B

2
) (4.62)

F 0,T̃
γ (ω) = −P 1

ω + γB
2

+ iπ(2nγ,λ − 1)δ(ω + γ
B

2
) . (4.63)

After Keldysh rotation the various components take the form

F 0,R
γ =

1

ω + γB
2

+ i0
= P 1

ω + γB
2

− iπδ(ω + γ
B

2
) (4.64)

F 0,A
γ =

1

ω + γB
2
− i0

= P 1

ω + γB
2

+ iπδ(ω + γ
B

2
) (4.65)

F 0,K
γ = −2πi(1− 2nγ,λ(ω))δ(ω + γ

B

2
) . (4.66)

Note that here nγ is the Fermi function if and only if the whole system is in equilibrium.
An important quantity to be defined is the spectral function Aγ(ω) for the pseudo
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fermions

Aγ(ω) = i(FR
γ (ω)− FA

γ (ω)) . (4.67)

The bare pseudo fermion spectral functions reduces to a δ-function, peaked at the Zee-
mann splitting ±B/2

A0
γ(ω) = 2πδ(ω + γ

B

2
) . (4.68)

The imaginary part of the retarded or advanced self energy, which will later on serve as
a cutoff in the FRG equations is given by

Γγ(ω) = i(ΣR
γ (ω)− ΣA

γ (ω)) = 2ImΣγ(ω) . (4.69)

4.4.2 Interaction Vertices

How does the Keldysh diagrammatic language influence the structure of the bare vertex?
In the following we will assume a two-body interaction of the type V =

∑
kk′q

vkk′qc
†
k′+qc

†
k−qck′ck.

In the setup of the diagrammatic rules this expression appears in the exponential of the
time evolution operator whereas all the c(†)(t) operators possess equal time arguments.
Consequently, in the contour representation the only two out of 16 possibilities are the
ones, where all four Keldysh indices are identical. Due to a change of the time inte-
gration limits the vertex with all Keldysh indices on the lower branch of the Schwinger
contour acquires an extra minus sign

Λcd
ab = δa=b=c=d(−1)a−1 . (4.70)

Transferring to the Keldysh rotated representation the structure of the bare interaction
vertex becomes

Λcd
ab =

1

2
(δabτ

x
cd + δcdτ

x
ab) . (4.71)

Which of the two—contour or Keldysh—representation should be favored depends on
the particular problem and the order of the perturbative expression under consideration.
Whereas the interaction vertex is clearly seen to have a simply structure in the contour
representation, giving rise to only a few Keldysh contractions when evaluating Feynman
diagrams, in the Keldysh representation the number of Green function is reduced and
obeys a much simpler structure. For instance, while performing bare perturbation the-
ory [55] or higher order resummation of diagrams [56] for the Kondo dot model it turns
out that for second-order calculations the contour representation is the the best choice,
whereas for third- and higher-order calculation the Keldysh matrix structure is more
convenient.
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4.5 Nonequilibrium Functional Renormalization Group -
Flow Equations for the Kondo Model

In this section we will first off all generalize the concept of the FRG, which was introduced
in Section 4.3 to nonequilibrium situations. To this end we need a formulation that
allows us to express the n-particle Keldysh vertex functions as functional derivatives of
a generating functional. We will follow the approach introduced by Kamenev [26].
The setup of the path integral is analogous to the equilibrium case with the difference
that the time integration changes from the finite integral over the imaginary time interval
[0, β] to an infinite real time integral along the Keldysh contour. On a formal level this
leads to an additional Keldysh index structure as shown in Section 4.4. It it convenient
to introduce the spinor field

ψ =

(
ψ1

ψ2

)
,

where the ψi (i = 1, 2) are Grassmann variables residing on the forward or backward
branch, respectively. Another formal change in the nonequilibrium case are additional
factors of i that arise from the real time formulation. The generalization of the functional
integral representation of the partition function (c.f. equ. (4.5)) to nonequilibrium is

Z =
1

Z0

∫
D[ψ̄, ψ]ei{(ψ̄,G−1

0 ψ))−V (ψ̄,ψ)} (4.72)

where G0 denotes the contour or Keldysh matrix propagator. From there we may now
construct the generating functionals for the various kinds of correlation function and—
apart from the above named differences—subject it to the apparatus introduced in Sec-
tion 4.3 which leads to the FRG flow equation. The resulting equations formally differ
from the equilibrium equations by the additional Keldysh index structure, i.e. an en-
larged and modified structure of the propagators, self energy parts and vertex functions.
We shall not present this straightforward derivation here in detail but refer the reader
to Ref. [43], where the technical details in this regard may be found.
However, since we are interested in the Kondo dot model we will give a profound deriva-
tion of the flow equation in this particular case. In this case the action S takes the
form

S = (ψ̄, G−1
0 ψ) + (φ̄, F−1

0 φ)− V [ψ̄, ψ, φ̄, φ] , (4.73)

with the free inverse matrix propagators for the conduction electrons G−1
0 and pseudo

fermions F−1
0 respectively. For later purposes we introduce multi-indices for the lead

electrons and the pseudo fermions by

leadelectrons : e = (α, σ, ωe, ce) (4.74)

pseudofermions : f = (γ, ωf , cf) , (4.75)

where α = L,R is the lead index, σ, γ =↑, ↓ denote the z-component of the spin, ωe and
ωf are the corresponding frequencies and ce, cf represent the Keldysh index.

35



4 Equilibrium and Nonequilibrium Functional Renormalization Group Method

Apart from the fact that the Kondo model contains two kinds of particles, i.e. the lead
electrons and the pseudo fermions, which causes the introduction of two flavors of source
fields for the generation of correlation functions, which will be denoted by η̄, η for the
conduction electrons and by ξ̄, ξ for the pseudo fermions, respectively, the apparatus
to obtain the FRG flow equations stays unchanged. The generating functional for the
n-particle Green functions takes the following form

Z[η̄, η, ξ̄, ξ] =
1

Z0

∫
D[ψ̄, ψ]D[φ̄, φ]eiS+(η,ψ̄)+(ψ,η̄)+(ξ,φ̄)+(φ,ξ̄) . (4.76)

Via the generating functional for the connected Green function

W[η̄, η, ξ̄, ξ] = lnG[η̄, η, ξ̄, ξ] , (4.77)

subject to a Legendre transformation finally leads to desired functional for the generation
of the 1PI vertex functions

Γ[χ̄, χ, θ̄, θ] = −W[η̄, η, ξ̄, ξ]− (η̄, χ)− (χ̄, η)− (ξ̄, θ)− (θ̄, ξ)

+i(χ̄, G−1
0 χ) + i(θ̄, F−1

0 θ) . (4.78)

To enhance readability most of the subsequent derivation of the FRG flow equations,
which is of purely technical matter, is moved to Appendix D.
We choose to renormalize the lead electrons, i.e. to replace G0 by a cutoff dependent
propagator GΛ

0 . We shall use a sharp cutoff

GΛ
0 (ω) = G0(ω) ΘΛ(ω), where ΘΛ(ω) = Θ(|ω| − Λ) . (4.79)

Performing the steps described previously in Section 4.3 one obtains an equation for the
flow of ΓΛ

dΓΛ

dΛ
= Tr

(
d(GΛ

0 )−1

dΛ
GΛ

0

)
− Tr

(
GΛd(GΛ

0 )−1

dΛ
R1,1

)
, (4.80)

where R1,1 is given by equ. (D.15). An expansion of ΓΛ in the fields

ΓΛ[χ̄, χ, ϑ̄, ϑ] =
∞∑
m=1

m∑
l=0

(−i)l
(l!)2

(−i)m−l
((m− l)!)2

∑
e1...el

∑
e′1...e

′
l

∑
f1...fm−l

∑
f ′1...f

′
m−l

×

×γΛ
m(e′1 . . . e

′
l, f

′
1 . . . f

′
m−l|e1 . . . el, f1 . . . fm−l)

l∏
i=1

χ̄e′iχei

m−l∏
j=1

ϑ̄f ′iϑfi
(4.81)

where

γΛ
m(e′1 . . . e

′
l, f

′
1 . . . f

′
m−l|e1 . . . el, f1 . . . fm−l)

= im
∂2l

∂χ̄e′1∂χe1 · · ·∂χ̄e′l∂χel

∂2(m−l)

∂θ̄f ′1∂θf1 · · ·∂θ̄f ′m−l
∂θfm−l

ΓΛ[χ̄, χ, ϑ̄, ϑ] (4.82)
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Figure 4.3: Graphical flow equation for the self energy γ1, the vertex function
γΛ

2 and the one particle irreducible six point function γΛ
3 . Solid lines represent the

lead electrons, whereas the dotted lines refer to the pseudo fermion propagator.
Propagators containing a stroke symbolyze the single scale propagator: since we
have furnished the bare lead electron propagator with a cutoff function only this can
turn into the single scale propagator

finally leads to an exact infinite hierarchy of flow equations for 1PI m-particle vertex
functions γm, which appear as expansion coefficients in (4.81). A graphic representation
of the resulting equations is depicted in Fig. 4.3. Therein solid lines represent the
bare lead electron propagator, whereas the dotted lines refer to the fully dressed pseudo
fermion propagator. Propagators containing a stroke symbol the single scale propagator:
since we have furnished the bare lead electron propagator with a cutoff function only
this can turn into the single scale propagator.
In order to write down the FRG equations in a practical form we impose the following
notation: since we include self energy effects only for the pseudo fermions we suppress a
particular index which would declare that. Thus Σab,Λ

γ (ω) = −γab,Λγ,1 denotes the spin γ
and frequency ω dependent pseudo fermion self energy obeying the Keldysh indices a, b
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at scale Λ. This notation can be transferred to the full pseudo fermion Green function
F ab,Λ
γ (ω). Similar the bare lead electron propagator G0,cd

α (ω) depends on the lead index α
and not on spin (as long as the leads are not subject to a magnetic field), analogous for the
single scale propagator Scd,Λα (ω) = ĊΛ(ω)G0,cd

α (ω). For the two-particle vertex function

we shall suppress the index 2 and use γ instead of γ2. Hence γασc,α
′σ′d,Λ

γa,γ′b (ωe, ωf ;ω
′
eω

′
f)

denotes the effective interaction at scale Λ where an electron from lead α with energy
ωe, spin σ and Keldysh index c interacts with a pseudo fermion with energy ωf , spin
γ and Keldysh index a and passes into an electron of lead α′ with energy ω′e, spin σ′

and Keldysh index d and a pseudo fermion with energy ω′f , spin γ′ and Keldysh index
b. Note that Kondo Hamiltonian implies energy and spin conservation, i.e.

ωe + ωf = ω′e + ω′f (4.83)

σ + γ = σ′ + γ′ . (4.84)

With this nomenclature at hand we are ready to write down the flow equations for the
first two 1PI vertex functions. Explicitly these read

∂ΛΣba,Λ
γ (ω) = − 1

2π

∑
α,σ,c,d,ǫ

Scd,Λα (ǫ)γασc,ασd,Λγa,γb (ǫ, ω, ǫ, ω) (4.85)

∂Λγ
ασc,α′σ′d,Λ
γa,γ′b (ωe, ωf ;ω

′
e, ω

′
f) = − 1

2π

∑
ǫ

γασc,ᾱσ̄c
′,Λ

γa,γ̄a′ Sd
′c′,Λ
ᾱ (ǫ)F b′a′,Λ

γ̄ (ωe + ωf − ǫ)γᾱσ̄d
′,α′σ′d,Λ

γ̄b′,γ′b

+ γᾱσ̄d
′,α′σ′d,Λ

γa,γ̄a′ Sd
′c′,Λ
ᾱ (ǫ)F b′a′,Λ

γ̄ (ωf − ω′e + ǫ)γασc,ᾱσ̄c
′,Λ

ᾱb′,α′b (4.86)

with the corresponding boundary conditions at Λ0 = D

Σba,Λ0
γ (ω) = 0 (4.87)

γασc,α
′σ′d,Λ0

γa,γ′b (ωe, ωf ;ω
′
e, ω

′
f) = i

J

4
~τσσ′~τγγ′Λ

cd
ab . (4.88)

For sake of simplicity and readability we have occasionally omitted the frequency de-
pendence of the two-particle vertex functions on the right hand side of equ. (4.86).
Furthermore, since in this equation all repeated indices are summed over (in contrast to
equ. (4.86) where γ on the right hand side—as the outer spin variable—is not summed
over) we have implied the Einstein summation convention. Additionally

∑
ǫ denotes

the internal frequency integration. Here and in the following we will refer the first
term on the right hand side of equ. (4.86) as the Cooper channel and the second term
as the Peierls channel. The forms equ. (4.85) and (4.86) may be used for any cut-
off function CΛ(ω) or, respectively, corresponding single scale propagator SΛ(ω). In
the particular case of a sharp cutoff CΛ(ω) = Θ(|ω| − Λ) the single scale propaga-
tor SΛ(ω) = ĊΛ(ω)G0(ω) = −δ(|ω| − Λ)G0(ω) singles out precisely the frequencies at
ω = ±Λ which involves the following replacement∑

ǫ

SΛ(ǫ) →
∑
ǫ=±Λ

G0(ǫ) . (4.89)
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=

=

Figure 4.4: Graphical representation of the FRG equations for the self energy γ1

and the vertex function γΛ
2 that correspond to the integral forms (4.93) and (4.94).

The digram on the right hand side of the equation for ΣΛ contains one single scale
propagator at scale Λ at another one at scale Λ′. This can be—as we do not include
self energy corrections to the lead electron Green function—circumvented as stated
in equ. (4.93)

Hence, by choosing a sharp cutoff no internal frequency integration is left on the right
hand side of equ. (4.85) and (4.86).
In the case of a smooth cutoff function as for instance given by equ. (4.18) this set of
equations may be rewritten in a more suitable form. To this end we first of all suppress,
expect for the Λ-scale dependence, all prefactors, indices, internal frequency integrations
and index summations. To begin with we integrate the flow equation for the two-particle
vertex function (4.86) from Λ0 = D to Λ to obtain

γΛ =

∫ Λ

Λ0

dΛ′ γΛ′
SΛ′

FΛ′
γΛ′

. (4.90)

Here and in the following the right hand side of this equation acts as a short hand rep-
resentative for the sum of the Cooper and the Peierls channel. If we plug this expression
in the equation for the pseudo fermion self energy (4.86) and integrate it from Λ0 to 0
we obtain

ΣΛ=0 =

∫ 0

Λ0

dΛSΛ

∫ Λ

Λ0

dΛ′ γΛ′
SΛ′

FΛ′
γΛ′

=

∫ 0

Λ0

dΛĊΛ

∫ Λ

Λ0

dΛ′G0γΛ′
SΛ′

FΛ′
γΛ′

(4.91)

=

∫ 0

Λ0

dΛĊΛ

∫ Λ

Λ0

dΛ′RΛ′
with RΛ′

= G0γΛ′
SΛ′

FΛ′
γΛ′

.
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Since the only Λ dependence is contained in the derivative of the cutoff function we may
subject the last line of equ. (4.91) to a partial integration [57]∫ 0

Λ0

dΛĊΛ

∫ Λ

Λ0

dΛ′RΛ′
= CΛ

∫ Λ

Λ0

dΛ′RΛ′
∣∣∣0
Λ0

−
∫ 0

Λ0

dΛCΛRΛ (4.92)

= C0

∫ 0

Λ0

dΛ′RΛ′ −
∫ 0

Λ0

dΛCΛRΛ

and circumvent the double Λ integral of the previous form. Hence the final expression
for Σ at the end of the flow

ΣΛ=0 =

∫ 0

Λ0

dΛ′[C0 − CΛ′
]G0γΛ′

SΛ′
FΛ′

γΛ′
(4.93)

contains the two vertex functions and the pseudo fermion propagator at scale Λ and
may be integrated along with the vertex function which we also write for completeness
in a short hand and integral form as

γΛ=0 =

∫ 0

Λ0

dΛ′ γΛ′
SΛ′

FΛ′
γΛ′

. (4.94)

Again we want to stress that the expression (4.93) and (4.94) are most suitable when
dealing with a soft cutoff since this forms reduces the numerical effort drastically, also
when dealing with a frequency dependent pseudo fermion self energy.
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5 The FRG to the Kondo Dot Model

5.1 Introduction

In this chapter we present the main body of our work, the application of the FRG to
the Kondo dot model in and out of equilibrium. To begin with, however, we start this
chapter with a prelude 5.2 where in Section 5.2.1 we review second order perturbative
expressions for the self energy and the vertex function, respectively. These perturbative
expressions serve on the one hand as a guide to the FRG equations for large values of
Λ, on the other hand they may be taken as a check of the FRG equations as discussed
in Section 5.2.2. In the subsequent Section 5.2.3 we show how Anderson’s poor man
scaling equations [27] are obtained from the FRG equations. In Section 5.2.4 we briefly
summarize an perturbative renormalization group formalism by Rosch et. al [17, 18]
which applies as well to the inclusion of a finite bias voltage (nonequilibrium) or a finite
magnetic field. We shall later (at the end of Section 5.3.1) show how this scheme is
reobtained or included, respectively within the FRG formalism.
In Section 5.3 we then turn towards the application of the FRG to the Kondo dot model.
Initially in Section 5.3.1 we extract leading logarithmic terms from the vertex function
and show that the resulting vertex function obeys upon keeping track only of the leading
components the structure of the bare vertex. This is seen to simplify the FRG equations,
i.e. the flow equations for the imaginary part of the pseudo fermion self energy and the
effective interaction, substantially. In Section 5.3.2 we give approximated flow equation
for Γ and a frequency independent g. In the following two Sections 5.3.3 and 5.3.4 we
focus on a solution of the FRG equations in the weak coupling regime T, V ≫ TK . First,
we solve the equations in the case of a frequency independent vertex and extract the
(linear) conductance and the imaginary part of the self energy as function of temperature
or voltage, respectively. In both cases Γ is seen to be not crucial as a cutoff for the FRG
flow as in the weak coupling regime the temperature or the voltage serve as a cutoff for
the frequency independent coupling. In a second step we determine the flow of the the
frequency dependent vertex function g(ω). Whereas the imaginary part of the pseudo
fermion self energy is again not crucial for the equilibrium case even for zero frequency it
is instrumental to cut off the divergencies at the resonance frequencies ω = ±V

2
. We shall

furthermore analyze the behavior and the breakdown of our approximated set of FRG
equation as the strong coupling regime T, V . TK is reached. In Section 5.4 we address
the question under which conditions the strong coupling regime may be approached an
give preliminary results in case of equilibrium and in case of nonequilibrium.
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5 The FRG to the Kondo Dot Model

(b)(a)

Figure 5.1: Second order perturbative expressions for (a) the vertex function and
(b) the self energy part of the pseudo fermions.

5.2 Prelude

5.2.1 Perturbative Expressions

In this chapter we provide a short overview of second order perturbative expressions for
the vertex function and the real- and imaginary part of the pseudo fermion self energy.
A detailed derivation and discussion may be found in [55]. The corresponding unlabeled
Feynman diagrams are depicted in Fig. 5.1. The digram for the vertex function Fig. 5.1
(a) contributes with both directions on the pseudo fermion loop, which are referred to as
the Cooper (parallel) and Peierls (anti-parallel) channel, respectively. The logarithmic
terms stem from the convolution of the real part of the retarded or advanced component
of the pseudo fermion propagator with the Keldysh Green function of the lead electrons.
The resulting analytical expression reads

g
σσ′,(2)
γγ′ = −i g

2

16

(
τ iσσ′τ

i
γγ′ ± 3τ 0

σσ′τ
0
γγ′
)∑
α,γ

ln
D2

(ǫ− µα − γB/2)2 + T 2
, (5.1)

where the upper sign refers to the Peierls and the lower one to the Cooper channel,
respectively. The first non vanishing contribution to the pseudo fermion self energy is
the second order diagram shown in Fig. 5.1 (b). Its frequency dependent imaginary part
may for B = V = 0 and symmetric couplings be written as

Γ(2)(ω) = 3πg2ω (1 +N(ω)) , (5.2)

with N(ω) being the Bose function. For the zero frequency case we obtain

Γ(2) =

{
3π
4
g2V for B = T = 0

3πg2T for B = V = 0
and Γ(2)

γ =

{
2πg2B for T = V = 0, γ =↓
0 for T = V = 0, γ =↑

(5.3)
Note that in the presence of a finite magnetic field (i.e. V = T = 0) only the upper

spin level γ =↓ is broadened, whereas broadening of the lower spin level γ =↑ occurs in
higher order in g.
The second order real part of the self energy, which we will denote by R(ω) may be
written as

Rγ(ω) = −g
2
αα′

32
Θγγ′

D∫
−D

dǫ tanh

(
ǫ+ ω − µα′

2T

)
ln

(
D2

(ǫ− µα − γ′B
2

)2 + T 2

)
, (5.4)

42



5.2 Prelude

with the spin tensor Θγγ′ = δγγ′ + 2τxγγ′ . For later application we will need the wave-
function renormalization factor or Z-factor Zγ = (1−∂ωR(ω = 0))−1. To obtain ∂ωR(ω =
0) we take the derivative of equ. (5.4) with respect to ω and obtain for B = V = 0

∂ωR(ω = 0) ≈ −3

2
g2 ln

(
D

T

)
(5.5)

valid for T ≪ D (note: 1/(2T )1/ cosh2(ǫ/(2T )) ≈ 2δ(ǫ)).

5.2.2 Recovering Second Order Perturbation Theory

To exemplify the rederivation of the perturbative results from Section 5.2.1 from the
FRG flow equations (4.85) and (4.86) we focus on the second order imaginary part of
the self energy Γ(2)(ω) for V = B = 0. The corresponding analytical expressions are
given by equ. (5.2) and equ. (5.3). We shall work in the contour representation and use
the Θ cutoff function. We start form equ. (4.93) and take on the right hand side bare
propagators for the lead electrons as well as for the pseudo fermions. Furthermore we use
bare vertices Jαα′~τσσ′~τγγ′ for the two vertex functions. Assuming symmetric couplings
and performing the spin sums we obtain

Γ(ω) = iΣ>(ω) =
−i6g2

8π2

D∫
−D

dǫ

D∫
−D

dǭ

0∫
Λ0

dΛ Θ(Λ− |ǫ|)G<
0 (ǫ)F>

0 (ω + ǫ− ǫ̃)SΛ(ǭ)

=
−i6g2

8π2

D∫
−D

dΛ

Λ∫
−Λ

dǫG<(ǫ)G>(Λ)F>
0 (ω + ǫ− Λ)

=
−i3g2

8π2

D∫
−D

dǭ

D∫
−D

dǫG<(ǫ)G>(ǭ)F>
0 (ω + ǫ− ǭ)

=
3g2

4π

D∫
−D

dǫG<(ǫ)G>(ω + ǫ) = 3πg2

D∫
−D

dǫ f(ǫ)(1− f(ω + ǫ)) . (5.6)

With the help of equ. (E.2) one finally obtains the second order result equ. (5.2) or,
putting ω to zero equ. (5.3). The second order real part of the self energy (equ. (5.4))
may be obtained in complete analogy but this time working in the Keldysh representation
and noting that R(ω) = Re[ΣR/A(ω)]. For illustration in Fig. 5.2 we show results where
we have solved the FRG equations numerically with the above named simplifications
and compare it to the exact analytical expression.

5.2.3 Poor Man’s Scaling Limit

At zero temperature, in the absence of a magnetic field and a bias voltage Anderson’s
scaling equation [11] for the bandwidth-dependent coupling function described in Section
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Figure 5.2: Rederivation of the perturbative results via the FRG flow equations: (a)
shows the ω-dependence of the second order imaginary part of the self energy Γ(ω)
for B = V = 0 and T/TK = 20, whereas (b) depicts the temperature dependence of
Γ at zero frequency and B = V = 0 for several values of T/TK . In each figure the
analytical expression are represented by the solid lines whereas the numerical values
(obtained by solving the FRG equations as stated in the text) are given by the dots.

3.5.2 may be derived as a certain limit from the FRG equations by means of the following
simplifications: to begin with we neglect the influence of the three-particle and all higher
order vertex functions. Further we do not take into account any self energy effects, i.e.
we use bare propagators for both the pseudo fermions and the lead electrons. Hence, the
set of equations (4.85) and (4.86) reduces to the one (4.86) for the vertex function only
which we take as fully frequency independent. Most importantly the leading logarithmic
(i.e. scale dependent) terms in Keldysh space stem from the convolution of the Keldysh
lead electron propagator with the retarded advanced component of the pseudo fermion
Green function. In this case the Peierls and Cooper bubble reduce to

CΛ =
∑
ǫ=±Λ

−2πi sign(ǫ)

−ǫ = i4π
1

Λ
= −ΠΛ . (5.7)

If we parameterize the residual Keldysh component of the vertex function as

N0γ
σσ′Λ
γγ′ (0, 0; 0, 0) ≡ gΛ~τσσ′~τγγ′ (5.8)

we are left with a single flow equation for gΛ

∂gΛ~τσσ′~τγγ′

∂Λ
= −i 4

Λ

(
gΛ
)2∑

σ̄γ̄

[(~τσσ̄~τγγ̄)(~τσ̄σ′~τγ̄γ′)− (~τσ̄σ′~τγγ̄)(~τσσ̄~τγ̄γ′)]

= −i 8

Λ

(
gΛ
)2

(5.9)
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5.2 Prelude

where we performed the spin sums with the aid of (A.8) and (A.9). If we additionally

perform the transformation gΛ → ig
Λ

4
we finally recover the scaling equation

∂gΛ

∂ ln(Λ)
= −2(gΛ)2 with gΛ0=D = g , (5.10)

with the solution

gΛ =
1

2

1

ln (Λ/TK)
, TK = D e−1/(2g) . (5.11)

Keeping the temperature T in (5.7), which is achieved by the replacement sign(ǫ) →
tanh(ǫ/2T ) the RG equation (5.10) passes into the equation ∂Λg

Λ = −2(gΛ)2 tanh(Λ/2T )/Λ
which, with the aid of the basic integral∫ D

−D
dx

tanh
(
x
2T

)
x

= 2 ln (D/T ) (5.12)

can for T > TK be integrated down to Λ = 0 to yield

g(T ) =
1

2

1

ln (T/TK)
. (5.13)

Hence, for T ≫ TK we stay in the weak coupling regime where g(T ) ≪ 1 and we may
calculate physical quantities of interest by replacing the bare interaction vertices with
the renormalized vertex (5.13). For instance the conductance of the Kondo dot model
turns into

G(T ) =
3π2

16

1

ln2 (T/TK)
. (5.14)

5.2.4 Perturbative Renormalization Group

A more refined version of a perturbative renormalization group scheme in the spirit of
Anderson’s poor man scaling but generalized to the case of a finite bias voltage V or
the inclusion of a magnetic field was invented by Rosch et. al. [17, 18] by investigating
directly the scaling properties of second order diagrams. All leading logarithmic terms
in perturbation theory stem from the vertex renormalization, when the real part of
the pseudo fermions Green’s function (∼ 1/(ω ± B/2)) is convoluted with the Keldysh
component of the electronic line (∼ N0 tanh[(ω ± V/2)/(2T )]). Using the simplification

∂

∂ lnD

D∫
−D

signω

ω −∆ω
≈ 2Θ(D − |∆ω|) (5.15)

and arguing that within this approximation it is sufficient to keep track only of the
real parts of the coupling functions on one Keldysh contour, which shell be denoted by
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5 The FRG to the Kondo Dot Model

g
ασωe;α′σ′ω′e
γωf ;γ′ω′f

in the following, the RG flow equations take the form

∂g
ασωe;α′σ′ω′e
γωf ;γ′ω′

f

∂ lnD
=

1

8

∑
β;τ,δ;λ=±

[
g
ασωe;βτµβ+λD

γωf ;δ∗ g
βτµβ+λD;α′σ′ω′e
δ∗;γ′ω′f Θωe+ωf−µβ+δB

2

− g
ασωe;βτµβ+λD

δ∗;γ′ω′f g
βτµβ+λD;α′σ′ω′e
γωf ;δ∗ Θω′f−ωe+µβ+δB

2

]
, (5.16)

with the short hand notation Θω = Θ(D − |ω|). This form of the perturbative RG
equations is readily derived from the FRG flow equations in the same manner as we
have demonstrated it in the previous section 5.2.3, i.e. by taking into account the
flow equation for the vertex function only and neglecting self energy effects completely.
Further simplifications of equ. (5.16) towards a smooth solution is achieved by using
on-shell frequencies for the pseudo fermions (i.e. ωf is assumed to be given by −γB

2
)

and separating spin-flip processes g⊥ from non-flip processes gz. The resulting equations
are in detail presented and discussed in [17, 18].
Since no self energy effects have been taken into account so far the resulting coupling
functions (i.e. the solutions for the RG equations in the limit D → 0) show divergences
for resonance frequencies ω = ±V/2 ± B/2 or ω = ±V/2 ± B. It is argued that the
RG flow will be cut off and controlled by the dephasing of coherent spin flips. This spin
relaxation rate Γ = 1

T2
is calculated by a second order expression using renormalized

couplings

Γ = 1
T2

=
π

8~
∑
γσαα′

∫
dωfαω (1− fα

′
ω )[gαα

′
zσ ]2

+ fαω (1− fα
′

ω−γB)

[
gαα

′
⊥,−γ

(
ω − γB

2

)]2

,

which a posteriori is incorporated in the RG equations by replacing

Θω → Θ(D −
√
ω2 + Γ2) .

These equations for the coupling function and the decoherence rate are solved iteratively
until convergence it reached.

5.3 Weak Coupling Regime

5.3.1 Vertex Function Structure

One basic ingredient of the perturbative RG by Rosch et. al. [17, 18] is the use of
one single component in Keldysh space which we will analyze in the following. First of
all we extract the leading components of the vertex function γ in Keldysh space and
will see that upon keeping track only of these components there are no other Keldysh
components generated such that we are allowed to deal with only one single amplitude.
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Starting point for the following considerations is equation (4.86) in the Keldysh rotated
form. To begin with we again note that the leading logarithmic terms in the FRG
equation for γ originate from the product of the Keldysh component of the lead electron
GK with the real part of the retarded or advanced pseudo fermion propagator FR,A. If
we keep only these two terms in the sum over Keldysh indices on the right hand side of
equ. (4.86) and neglect the Λ dependence that appears in the energy arguments of the
vertex function we may write this equation in a short hand notation as

∂Λγ
cd
ab =

∑
a′=1,2

ΠK
R,Aγ

1d
aa′γ

c2
a′b +

∑
a′=1,2

CK
R,Aγ

c2
aa′γ

1d
a′b. (5.17)

Here Π and C denote the Peierls and the Cooper bubble, respectively, and the leading
components stem from its imaginary part. However, for completeness we state both the
imaginary as well as the real part. To this end we decompose the individual channels as

CK
R,A = ±Cr + iCi (5.18)

ΠK
R,A = ±Πr + iΠi , (5.19)

where the single contributions are explicitly given by

Ci ≡ −2πN0

∑
ǫ=±Λ

tanh( ǫ−µᾱ

2T
)(ωf + ωe − ǫ + γ̄B

2
)

(ωf + ωe − ǫ + γ̄B
2

)2 +
(

Γγ

2

)2 (5.20)

Πi ≡ −2πN0

∑
ǫ=±Λ

tanh( ǫ−µᾱ

2T
)(ω′f − ωe + ǫ + γ̄B

2
)

(ω′f − ωe + ǫ + γ̄B
2

)2 +
(

Γγ

2

)2 (5.21)

and

Cr ≡ −πN0

∑
ǫ=±Λ

tanh( ǫ−µᾱ

2T
)Γγ

(ωf + ωe − ǫ+ γ̄B
2

)2 +
(

Γγ

2

)2 (5.22)

Πr ≡ −πN0

∑
ǫ=±Λ

tanh( ǫ−µᾱ

2T
)Γγ

(ω′f − ωe + ǫ+ γ̄B
2

)2 +
(

Γγ

2

)2 . (5.23)

To simplify matters we have already assumed a energy independent imaginary part of
the pseudo fermion self energy Γγ and furthermore dropped the real part of the self
energy. Again we want to emphasize that Ci,Πi ∝ 1

Λ
and hence produce the leading

components, whereas Cr,Πr ∝ 1
Λ2 give rise to subleading corrections. In the following

we neglect contributions from Cr and Πr and focus on the leading components only.
Hence, we are let to the equation

∂Λγ
cd
ab = Πi

∑
a′=1,2

γ1d
aa′γ

c2
a′b + Ci

∑
a′=1,2

γc2aa′γ
1d
a′b . (5.24)

To examine the behavior under the FRG we perform a Picard-Lindelöf like iteration,
i.e. we start with the bare vertex structure γcdab = Λcd

ab = 1
2
(δabτ

1
cd + τ 1

abδcd) on the right
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hand side of equ. (5.24). By performing the sum over Keldysh indices we can infer that
in the Cooper channel this structure is reproduced∑

a′=1,2

γc2aa′γ
1d
a′b =

1

4
{(δa1τ 1

c2 + τ 1
a1δc2)(δ1bτ

1
1d + τ 1

1bδ1d)

+ (δa2τ
1
c2 + τ 1

a2δc2)(δ2bτ
1
1d + τ 1

2bδ1d)}
=

1

4
{τ 1
c2τ

1
1d[δa1δ1b + δa2δ2b] + δc2δ1d[τ

1
a1τ

1
1b + τ 1

a2τ
1
2b]

+ τ 1
c2δ1d[δa1τ

1
1b + δa2τ

1
2b] + δc2τ

1
1d[τ

1
a1δ1b + τ 1

a2δ2b]}
=

1

4
{τ 1
c2τ

1
1dδab + δc2δ1dδab + τ 1

c2δ1dτ
1
ab + δc2τ

1
1dτ

1
ab}

=
1

4
{τ 1
cdδab + δcdτ

1
ab} . (5.25)

Likewise for the Peierls channel where a similar calculation gives∑
a′=1,2

γ1d
aa′γ

c2
a′b =

1

4
{(δa1τ 1

1d + τ 1
a1δ1d)(δ1bτ

1
c2 + τ 1

1bδc2)

+ (δa2τ
1
1d + τ 1

a2δ1d)(δ2bτ
1
c2 + τ 1

2bδc2)}
=

1

4
{τ 1
c2τ

1
1d[δa1δ1b + δa2δ2b] + δc2δ1d[τ

1
a1τ

1
1b + τ 1

a2τ
1
2b]

+ τ 1
c2δ1d[τ

1
a1δ1b + τ 1

a2δ2b] + δc2τ
1
1d[δa1τ

1
1b + δa2τ

1
2b]}

=
1

4
{τ 1
c2τ

1
1dδab + δc2δ1dδab + τ 1

c2δ1dτ
1
ab + δc2τ

1
1dτ

1
ab}

=
1

4
{τ 1
cdδab + δcdτ

1
ab} . (5.26)

Hence, by considering only the leading components in Keldysh space, we conclude that
there is only one invariant amplitude, with the structure of the bare vertex

γcdab ∼ γΛcd
ab . (5.27)

To reobtain the perturbative RG scheme [17, 18] from the FRG equation (4.86) the
following additional steps would have to be performed: To begin with the imaginary
part of the pseudo fermion self energy is dropped from the denominator of equ. (5.20)
and (5.21). Moreover the energies of the pseudo fermions are put on-shell, i.e. ωf =
−γB/2. Hence, the coupling function becomes dependent only on a single frequency,
the frequency of the incoming electron, which simplifies matters substantially. Finally
the cutoff dependence of the Cooper and Peierls channel (equ. (5.20) and (5.21)) are
approximated by a window function∑

ǫ=±Λ

sign(ǫ)

ǫ−∆ω
= 2

Λ

Λ2 − (∆ω)2
≈ 2

Λ
Θ(Λ− |∆ω|) (5.28)

as more detailed described in [17, 18]. Here ∆ω depends on V,B and the incoming and
outgoing frequencies. Finally, in order to incorporate decoherence effects, which serve
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as a cutoff for the RG flow, a mixture of both self energy and vertex correction Γ is
built in a posteriori in equ. (5.28) by replacing Θ(Λ−|∆ω|) with Θ(Λ−√(∆ω)2 + Γ2),
where Γ in turn is calculated by a second order golden rule expression with renormalized
vertices. These two equations (i.e. for the coupling function and the decoherence rate
Γ) are then solved iteratively, until one reaches convergence.
In the following chapters the incorporation or generation of this decoherence rate (to
be more precise the imaginary part of the pseudo fermion self energy which is part of
the decoherence rate) in a systematic way will play a major role. To this end we first
approximate the coupled equations (4.85) and (4.86) in an appropriate way and then
solve these equations for different parameter regimes.

5.3.2 Approximated Flow Equations with Frequency Independent
Couplings

In this chapter we will derive a set of coupled differential equations for the imaginary
part of the pseudo fermion self energy Γ and the effective interaction γ. To begin with
we neglect the frequency dependence of the leading component of the vertex function
completely and hence are let to the following equation

∂Λγ
ασ;α′σ′
γ;γ′ = − 1

2π

∑
ᾱγ̄σ̄

[
γασ,ᾱσ̄γ;γ̄ γᾱσ̄;α′σ′

γ̄,γ′ C ᾱ
γ̄ (Λ) + γᾱσ̄,ασγ;γ̄ γασ;ᾱσ̄

γ̄,γ′ Πᾱ
γ̄ (Λ)

]
, (5.29)

where

C ᾱ
γ̄ (Λ) = −2πN0

∑
ǫ=±Λ

tanh( ǫ−µᾱ

2T
)(−ǫ+ γ̄B

2
)

(−ǫ + γ̄B
2

)2 +
(

Γγ

2

)2 (5.30)

Πᾱ
γ̄ (Λ) = −2πN0

∑
ǫ=±Λ

tanh( ǫ−µᾱ

2T
)(ǫ+ γ̄B

2
)

(ǫ + γ̄B
2

)2 +
(

Γγ

2

)2 . (5.31)

For the imaginary part of the pseudo fermion self energy Γ = i(ΣR − ΣA) = iΣ>

we need from equ. (4.85) the vertex function γα,σc;ασdγa,γb (ǫ, 0; ǫ, 0) with ǫ = ±Λ. Note
that if we simply substitute this vertex function by an energy independent one of the
form (5.27) the imaginary part of the pseudo fermion self energy turns out to vanish
identically. However, on the right hand side of the equation for γ(ǫ, 0; ǫ, 0) we use the
leading components, i.e. the form equ. (5.27). To distinguish γ(ǫ, 0; ǫ, 0) from the
leading component γ we shell define γ(ǫ, 0; ǫ, 0) = γ̃(ǫ). Hence, the equation for γ̃(ǫ)
takes the form

∂Λγ̃
ασc;ασd
γa;γb (ǫ) = − 1

2π

∑
ᾱσ̄γ̄

∑
a′b′c′d′

[
γασ,ᾱσ̄γ;γ̄ γᾱσ̄;ασ

γ̄;γ Λcc′
aa′Λ

d′d
b′b C̃

c′d′ᾱ
a′b′γ̄ (Λ, ǫ)

+ γᾱσ̄,ασγ;γ̄ γασ;ᾱσ̄
γ̄;γ Λd′d

aa′Λ
cc′
b′bΠ̃

c′d′ᾱ
a′b′γ̄ (Λ, ǫ)

]
(5.32)
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5 The FRG to the Kondo Dot Model

where the Cooper and Peierls bubble read

C̃c′d′ᾱ
a′b′γ̄ (Λ, ǫ) =

∑
ǫ̃=±Λ

Gd′c′
ᾱ (ǫ̃)F b′a′

γ̄ (ǫ− ǫ̃) (5.33)

Π̃c′d′ᾱ
a′b′γ̄ (Λ, ǫ) =

∑
ǫ̃=±Λ

Gd′c′
ᾱ (ǫ̃)F b′a′

γ̄ (ǫ+ ǫ̃) . (5.34)

With the aid of (5.32) the equation for the imaginary part of the pseudo fermion self
energy may be cast in the form

∂ΛΓγ = − i

2π

∑
ǫ=±Λ

(
γ̃ασc;ασdγ1;γ1 (ǫ)− γ̃ασc;ασdγ2;γ2 (ǫ)

)
Gcd
α (ǫ) (5.35)

Hence equ. (5.29), (5.32) and (5.35) provide the desired system of coupled differential
equations for the vertex function and the imaginary part of the pseudo fermion self
energy. Note that all these equations are given in the Keldysh rotated representation.
Optionally we may switch to use contour ordered representation for equ. (5.32) and
(5.35). In this case equ. (5.32) keeps it structure but with the replacement of the bare
vertex structure from the Keldysh rotated form (4.71) to the contour ordered one (4.70).
Additionally the propagators have to be changed. The equation for the imaginary part
of the self energy changes according to

∂ΛΓγ = iΣ̇>
γ = − i

2π

∑
ǫ=±Λ

γ̃ασc;ασdγ1;γ2 (ǫ)Gcd
α (ǫ) (5.36)

Starting from these equation we will in the following sub-chapters consider different
parameter regimes, in particular for the temperature T and the bias voltage V .
Alternatively we could have also made use of equ. (4.93). If we for each of the two
vertex functions on the right hand side of this equation plug in the leading component
obeying the form (5.27) then, together with the flow equation (5.29), we obtain directly
a coupled system of two equations for the imaginary part Γ and the vertex function γ.
As already stated in Section 4.5 in case of a soft cutoff the latter turns out to be more
suitable whereas in case of a sharp cutoff the above proposed set of three equations is
more appropriate.

5.3.3 Weak Coupling and Linear Response at Finite Temperature

Frequency Independent Couplings

To begin with a quantitative analysis we focus on the weak coupling regime T/TK ≫ 1
and B = V = 0. In this case the Cooper and Peierls channel (5.30) and (5.31) simplify
to

C(Λ) = 2πN0

∑
ǫ=±Λ

ǫ tanh( ǫ
2T

)

ǫ2 + (Γγ/2)2 = 4πN0

Λ tanh( Λ
2T

)

Λ2 + (Γγ/2)2 = −Π(Λ) . (5.37)

For the following analysis we introduce the dimensionless quantity g = N0γ and param-
eterize the coupling g as gασ;α′σ′

γ;γ′ = gαα′~τσσ′~τγγ′ . We furthermore assume the couplings
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5.3 Weak Coupling Regime

to be equal and perform the internal spins sums with the aid of (A.8) and (A.9). Then
equ. (5.29) turns into

∂Λg = −2g2 tanh

(
Λ

2T

)
Λ

Λ2 + (Γ/2)2
, (5.38)

with the initial condition gΛ0=D = g0 = N0J . For the imaginary part of the pseudo
fermion self energy we make use of equ. (5.36) together with (5.32). Due to the bare
vertex structure (4.70) equ. (5.32) for the Cooper and the Peierls channel in each
case picks out just a single contribution with regard to the Keldysh structure. These
contributions, however, in combination with equ. (5.36) produce equal results and may
be simply added up. Additionally, as we do not include a magnetic field, we may already
perform the internal spin sum both for γ̃ and Γ and hence we are let to the following
simplified set of FRG equations

∂Λg̃(ǫ) = 3g2
∑
ǫ̃=±Λ

f(−ǫ̃) Γ

(ǫ− ǫ̃)2 + (Γ/2)2 (5.39)

∂ΛΓ =
∑
ǫ=±Λ

f(ǫ)g̃(ǫ) . (5.40)

In this case the corresponding initial conditions read

γ̃Λ0=D(ǫ) = 0 and ΓΛ0=D = 0 . (5.41)

For the numerical treatment of these equations, however, we have to take a small but
finite value for ΓΛ0 initially since otherwise no finite Γ would be generated along the FRG
flow. This fact may be substantiated by the following reasoning: In order to rederive
the perturbative, second order results as depicted in Section 5.2.2 we have inter alia
to use bare propagators. Consequently the decoherence broadened spectral functions
Γ/(ω2 + Γ2) would pass into the bare one, given by A(ω) = δ(ω). For a numerical
treatment, however, we have to broaden the δ-functions , i.e. we again bring it into the
form Γ0/(ω

2 + Γ2
0) with a small but finite Γ0. It turns out that the solution of the FRG

equations does not depend crucially on the choice of the initial value of ΓΛ0 as long as
it is taken to be sufficiently small. We will render this statement more precisely in a
moment.
We now solve the FRG equations for values of T/TK ≫ 1 and obtain results as shown in
Fig. 5.3. The left panel displays the conductance as a function of T/TK which is obtained
via the leading component by the relation G = 3π2

4
g2. Hence, this curve resembles the

behavior of the leading component g as a function of T/TK . The dots represent the
results from the numerical evaluation of the FRG equations which perfectly agree with
the solid line, corresponding to the expected analytical result (5.14). In the right panel
we show the imaginary part of the pseudo fermion self energy in units of TK as a function
of T/TK . The solid line corresponds to the analytical form Γ = 3πT 1

(2 ln(T/TK ))2
. The

FRG result shows a small discrepancy compared to the analytical result. We shall discuss
this at the end of Section 5.3.4.
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Figure 5.3: (a) Conductance in units of G0 = 2e2/h as a function of T/TK . Dots
denote the result obtained by solving the FRG equations numerically. The solid line
corresponds to the weak coupling form G/G0 = 3π2

16
1

ln2(T/TK)
. (b) Imaginary part of

the self energy Γ as a function of T/TK . Dots represent again the results from the
FRG, the solid line is given by Γ = 3πT 1

(2 ln(T/TK ))2
. In both cases we can report

good agreement with the expected analytical behavior.

Let us at this point return to the above statement for the initial value of Γ: For the
present examples we took an initial value ΓΛ0=D = 0.1 TK . The lowest value of Γ in Fig.
5.3 amounts approximately to 2.5 TK . At a fixed temperature T/TK any larger initial
value would roughly speaking simply add on the present value of Γ (likewise any smaller
value would have to be subtracted). In other words the curve of Γ(T/TK) is shifted by
the initial value. From this arguments we may infer the quantitative statement: as long
as ΓΛ0=D/TK ≪ 1 and hence is much smaller then the smallest occurring value for Γ
the solution of the FRG equations in the regime T/TK does not depend crucially on the
initial value ΓΛ0=D.

Finally we will turn our attention to the region T/TK & 1. In the left panel of Fig.
5.4 we show the imaginary part of the pseudo fermion self energy for values of T/TK
down to ≈ 0.7. In contrast to the analytical form the result obtained from the numerical
evaluation of the FRG equations does not diverge as T/TK → 1. Likewise from Fig. 5.5
(a) for T/TK & 1 the leading component of the coupling function g is seen to stay finite,
it leaves, however, the weak coupling regime where g ≪ 1 as soon as the temperature
crosses TK . In Fig. 5.5 (b) we show the flow of g for various values of T/TK . As long
as T/TK is still large compared to unity the temperature serves as a cutoff for the flow
of the coupling function. For values of the order of the Kondo temperature, however,
the effect of the imaginary part of the pseudo fermion self energy is crucial to maintain
a weak coupling behavior of the vertex function. On the basis of this lifetime effect the
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Figure 5.4: (a) Imaginary part of the self energy Γ as a function of T/TK for values
down to T/TK ≈ 1. Dots represent the results from the numerical evaluation of the
FRG, the solid line is given by Γ = 3πT 1

(2 ln(T/TK ))2
. (b) Flow of the imaginary part

of the self energy for various values of T/TK .

coupling function with regard to its Λ dependence is suspected to behave as

gΛ ≈ 1

2 ln

(√
Λ2+T 2+(Γ/2)2

TK

) (5.42)

which implies the form

g ≈ 1

2 ln

(√
(Γ/2)2+T 2

TK

) (5.43)

at the end of the flow. We shall take this both approximated forms for the vertex
part to exemplify our subsequent reasoning. The crucial point in equ. (5.42) is the Λ
dependence of the imaginary part and the question how, in terms of at which scale, it is
generated. To begin with we direct our attention to Fig. 5.4 (b) where we display the
flow of the imaginary part of the pseudo fermion self energy for the same set of values
for T/TK as above for the vertex function. It can be seen that the growth of ΓΛ in each
case sets in significantly not until Λ reaches ≈ T . This behavior follows from the form
of the kernel on the r.h.s. of (5.39) together with (5.40):

f(ǫ)(1− f(ǫ̃))AΓ(ǫ− ǫ̃) (5.44)

Here AΓ denotes again the decoherence broadened spectral function. In each case ΓΛ0

is initially much smaller than temperature, which renders the spectral function to pass
approximately into a δ-function. Hence, equ. (5.44) reduces to f(ǫ)(1−f(ǫ)). From equ.
(5.42) we can infer that for temperatures of the order of TK we need a sufficiently large
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Figure 5.5: (a) Leading component of the coupling function g as a function of
T/TK for values down to T/TK ≈ 1. Dots represent the results from the numerical
evaluation of the FRG, the solid line is given by g = 1

2 ln(T/TK )
. (b) Flow of the

leading component of the vertex function for various values of T/TK .

Γ, to be more accurate of the order of TK , as the cutoff Λ reaches TK in order to prevent
the flow towards the strong coupling regime. This would, however, imply that we have
already generated such a coupling which, by means of equation (5.44), is not possible
as soon as the cutoff resides at values above T/TK . This behavior could be entitled as
a “delayed growth of the decoherence rate”.

Frequency Dependent Couplings

In this part we shall implement the frequency dependence of the vertex function. To
this end we follow Rosch et. al. [17, 18] and we keep track only of a single frequency, the
one of the incoming electron which will be denoted by ω. Further we put the external
pseudo fermion energies on shell, i.e. ωf = 0 in case of zero magnetic field. Finally
we approximate the Cooper and Peierls channel equ. (5.20) and (5.21) by a window
function, i.e.

∑
ǫ=±Λ

tanh( ǫ
2T

)(ω − ǫ)

(ω − ǫ)2 +
(

Γ
2

)2 ≈ tanh( Λ
2T

)

Λ
Θ(Λ−

√
ω2 + (Γ/2)2) (5.45)

Hence, we obtain the following equation for the leading component

∂Λg(ω) = −2g2(0)
tanh

(
Λ
2T

)
Λ

Θ(Λ−
√
ω2 + (Γ/2)2) . (5.46)
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Figure 5.6: (a) Vertex function g(ω) for various temperatures which shows a pro-
nounced peak at the resonance frequency ω = 0. (b) Imaginary part of the pseudo
fermion self energy as a function of T/TK .

For the imaginary part of the pseudo fermion self energy we obtain

∂Λg̃(ǫ) = 3g2(0)
∑
ǫ̃=±Λ

f(−ǫ̃) Γ

(ǫ− ǫ̃)2 + (Γ/2)2 (5.47)

∂ΛΓ =
∑
ǫ=±Λ

f(ǫ)g̃(ǫ) . (5.48)

In Fig. 5.6 (a) we show the vertex function for various values of the temperature
as a function of ω. As expected around the resonance frequency ω = 0 the vertex
function shows a pronounced peak which increases in height and decreases in width as
the temperature is lowered. Due to the structure of equ. 5.46 the vertex function is
cut off for all frequencies by the frequency itself or by temperature in the weak coupling
regime. In nonequilibrium this changes drastically (c.f. Section 5.3.4).

5.3.4 Weak Coupling at Finite Bias Voltage

In case of a finite bias voltage it is known [17, 18] that the frequency dependence of
the vertex function is crucial as it—provided that one keeps track of the lead electron
energy—exhibits pronounced peaks at the resonance frequencies ω = ±V/2. However, in
this Section we shall begin with a brief discussion of the case of a frequency independent
coupling before we turn to the frequency dependent vertex.

Frequency Independent Couplings

In the case of zero temperature and magnetic field but a finite bias voltage with V/TK ≫
1 we discuss the calculations and results more briefly then in the last chapter, since the
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5 The FRG to the Kondo Dot Model

reasoning presented in the finite temperature case can be transferred to the present case
by simply replacing T ↔ V . To begin with we state analogous to equations (5.38),
(5.39) and (5.40) the set of three equations for the leading component component of the
vertex function, the imaginary part of the pseudo fermion self energy and g̃. This time
we likewise assume equal couplings and already perform the spin sums. Hence, we are
led to the equations

∂Λg = −
∑
α

g2 tanh

(
Λ− µα

2T

)
Λ

Λ2 + Γ2
(5.49)

∂Λg̃(ǫ) =
3

2
g2
∑
ǫ̃=±Λ

∑
α

fα(−ǫ̃) Γ

(ǫ− ǫ̃)2 + (Γ/2)2 (5.50)

∂ΛΓ =
∑
ǫ=±Λ

∑
α

fα(ǫ)g̃(ǫ) , (5.51)

with the voltage shifted Fermi function

fα(ǫ) =
1

exp
(
ǫ−µα

T

)
+ 1

, µα = ±V/2 . (5.52)

In Fig. 5.7(a) we display the conductance G/G0 as a function of V/TK . Again, the
dots represent the numerical evaluation of the FRG equation, whereas the solid line
represents the expected analytical form G/G0 = 3π2

16
1

2 ln2(V/2TK )
. In Fig. 5.7 (b) we show

the imaginary part of the pseudo fermion self energy as a function of V/TK . In both
cases we obtain perfect agreement with the analytical forms. As already noted, by further
considerations towards the regime V/TK ≈ 1 we would encounter the same reasoning
argued in Section 5.3.3. Hence, we will refrain from it and turn towards another domain
of the weak coupling regime, namely, where we assume a sufficiently large temperature
T/TK ≫ 1. For temperatures T/TK = 50, 10, 5 we show the corresponding conductance
G/G0 in each case as a function of V/TK in Fig. 10.1 (a). Dots are the FRG results,
whereas the solid line represents the form G/G0 = 3π2

4
g2 with the vertex function

g ≈ 1

2 ln

√
(V/2)2+T 2

TK

. (5.53)

As one would have expected the best agreement with the FRG solution is found for
large temperatures. The dependence on V/TK of the imaginary part of the self energy
Γ is depicted in Fig. 10.1 (b). As can be seen Γ saturates to a value of the order of TK
as soon as the voltage falls below the present temperature.
Let us at the end of this section return to the discrepancies of the imaginary part of
the pseudo fermion self energy in case of a vanishing and in case of a finite bias voltage.
As already pointed out in Section 5.3.3 in case of a finite temperature T and vanishing
bias voltage the result from the solution of the FRG equations differs slightly from the
expected analytical behavior (cf. Fig. 5.3 (b)). However, in case of a finite bias voltage V
and vanishing temperature the result from FRG agrees perfectly well with the expected
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Figure 5.7: (a) Conductance in units of G0 = 2e2/h as a function of V/TK . Dots
denote the result obtained by solving the FRG equations numerically. The solid line
corresponds to the weak coupling form G/G0 = 3π2
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. (b) Imaginary part of

the self energy Γ as a function of V/TK . Dots represent again the results from the
FRG, the solid line is given by Γ = 3

4
πV 1

(2 ln(V/2TK ))2
. In both cases we can report

good agreement with the expected analytical behavior.
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Figure 5.8: (a) Conductance in units of G0 = 2e2/h as a function of V/TK . Dots
denote the result obtained by solving the FRG equations numerically. The solid

line corresponds to the weak coupling form G/G0 = 3π21/16 ln2

(√
(V/2)2+T 2
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)
. (b)

Imaginary part of the self energy Γ as a function of V/TK . Dots represent again the
results from the FRG.
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Figure 5.9: (a) Flow of the leading component g and the imaginary part of the
pseudo fermion self energy for T = 0 and V/TK = 100. (b)Flow of the leading
component g and the imaginary part of the pseudo fermion self energy for V = 0
and T/TK = 100.

analytical form (cf. Fig 5.7 (b)). To understand and illustrate this different behavior in
Fig. 5.9 we show the flow of the leading component g and Γ as functions of the cutoff
Λ for a finite bias V/TK = 100 (Fig. 5.9 (a)) and a finite temperature T/TK = 100
(Fig. 5.9 (b)). As a reminder we quote the analytical result for the imaginary part of
the pseudo fermion self energy

Γ ∝ β
1

(2 ln(β/TK))2
, with β = T, V/2 ,

and note again, that 1
(2 ln(β/TK))2

derives from the renormalized vertex function whereas

the prefactor β arises from the integration over the Fermi functions (cf. equ. (5.44)).
In case of a finite bias voltage the coupling function is seen to be cutoff sharply at
Λ = V/2—representing the sharpness of the sign-function—and the imaginary part of
the pseudo fermion self energy is seen to start growing not until Λ raches V/2. Hence,
at Λ = V/2 the factor 1/(2 ln(V/2TK))2 has been already produced and the prefactor V
is generated as Λ → 0, thus leading precisely to the analytical form.
In case of a finite temperature this behavior appears to be different. As tanh(Λ/2T ) is
a smooth function the growths of Γ sets in already before Λ crosses T and the cutoff of
the coupling function is no longer sharp. Hence, the final result appears to be smaller
than the expected analytical form as during the growth of Γ the leading function is still
increasing and has not yet reached its final value 1/(2 ln(T/TK)).

Frequency Dependent Couplings

In the following analysis we shall follow [17, 18] and maintain the frequency of the lead
electron for the vertex function. Performing the internal spin sums equ. (5.20) and
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(5.21) combine and are—according to equ. (5.28)—approximated as

∑
ǫ=±Λ

tanh(
ǫ

2T
)

ǫ−∆ω

(ǫ−∆ω)2 + (Γ/2)2
≈ 2 tanh(

Λ

2T
)Θ(Λ−

√
(∆ω)2 + (Γ/2)2) (5.54)

where ∆ω = ω − µα. Hence, the equations for the leading component of the vertex
function, g(ω) , the imaginary part of the pseudo fermion self energy Γ and the subleading
vertex component g̃ take the form

∂Λg(ω) = −g2(ω)
1

Λ

∑
α

Θ(Λ−
√

(ω − µα)2 + (Γ/2)2) (5.55)

∂Λg̃(ǫ) =
3

2
g2(0)

∑
ǫ̃=±Λ

∑
α

fα(−ǫ̃) Γ

(ǫ− ǫ̃)2 + (Γ/2)2 (5.56)

∂ΛΓ =
1

2

∑
ǫ=±Λ

∑
α

fα(ǫ)g̃(ǫ) , (5.57)

where

fα(ǫ) =
1

exp
(
ǫ−µα

T

)
+ 1

, µα = ±eV/2 .

Results of a numerical solution of these RG equations are shown in Fig. 5.10 and Fig.
5.11. In Fig. 5.10 we display g(ω) for various values of V/TK . Fig. 5.11 shows the
imaginary part of the pseudo fermion self energy Γ (dots) with the analytical behaviour
Γ = 3π

4
V 1

log2(V/2TK )
(solid line), which is seen to agree very well in the regime V ≫ TK .

At finite voltage the charge current Ic is approximately given by

Ic =
3π2e

2~

∫
dω

2π

∫
dω′
2π

∫
dǫ

2π
|g(ω, ǫ;ω′, ǫ+ ω − ω′)|2[fL(ω)− fR(ω)]A(ǫ)A(ǫ + ω − ω′) .

(5.58)
In the approximation of vanishing relaxation rate Γ , the above expression simplifies to

Ic =
3πe

4~

∫
dω|g(ω, 0;ω, 0)|2[fL(ω)− fR(ω)] . (5.59)

In Fig. 5.12 we show the conductance G = Ic/V in units of G0 as obtained from
equ. (5.59) versus V/TK . Again, dots represent the numerical evaluation of the FRG
equations, whereas the solid line represents an approximate analytical form G/G0 =
3π2

16
1

ln2(V/2TK )
. We would obtain this analytical result if we consider only g(ω = 0) in

equ. (5.55). However, due to the distinctive form of g(ω) which exhibits pronounced
peaks at the resonance frequencies ω = ±V/2 the resulting G(V )/G0 is slightly enlarged
compared to the analytical form. In Fig. 5.14 results on the conductance G/G0 versus
V/TK are presented for temperatures T/TK = 50, 10, 5 , such that one remains in the
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Figure 5.10: Leading compo-
nent of the coupling function
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perturbative regime even in the limit V → 0. Dots are the FRG results, whereas the
solid line represents G/G0 = 3π2

4
g2 with the approximate vertex function

g(ω = 0) ≈ 1

2 ln

√
(V/2)2+T 2

TK

. (5.60)

The frequency dependence of g(ω) together with the integration over the difference of
the Fermi functions in the left and right lead in equ. (5.59) lead to a distinct discrepancy
between the FRG result and the analytical form for V . T . In Fig. 5.15 results on Γ
versus V/TK in the same temperature regime as in Fig. 5.14 are shown. As can be seen,
in the temperature range 3K . T . 10K Γ saturates to a value of the order of TK when
the voltage falls below the corresponding temperature.

5.4 Towards the Strong Coupling Regime

From the previous considerations, i.e. the analysis and the solution of the approximated
set of FRG equations (5.29), (5.32) and (5.35) it can be inferred that this set of equations
in its present form is not appropriate to capture the physics in the strong coupling
regime, i.e. values of T, V ≪ TK . There are two major deficiencies in the approximate
RG equations

(i) the unitarity limit on the conductance G 6 G0 is not respected since the frequency
independent leading component g diverges and therewith G being proportional to
g2

(ii) the spin relaxation rate Γ is found to rise with decreasing temperature/voltage in
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Figure 5.13: Flow of g(ω) for
various values of the cutoff Λ
reaching from D to 0 at V/TK =
30.

the strong coupling regime, whereas Γ is expected to saturate to a value of order
TK

We shall begin our discussion by quoting an example in the literature [58, 9, 59] where
the authors propose a strong coupling solution for the Kondo model in equilibrium
using self-consistently renormalized pseudo fermion propagators and vertices. To this
end the imaginary part of the pseudo fermion self energy ∆ = Γ/2 and the frequency
independent coupling function g are calculated in second order with dressed pseudo
fermion propagators and renormalized vertices by means of a so called reduced graph
expansion [9, 59]. The following two equations are obtained

∆ =
3

8
∆

[
πT
∆

+ Ψ
(

1
2

+ ∆
2πT

)−Ψ
(
1 + ∆

2πT

)][
ln
(

2πT
TK

)
+ Ψ

(
1
2

+ ∆
2πT

)]2 , g =
1

2

1[
ln
(

2πT
TK

)
+ Ψ

(
1
2

+ ∆
2πT

)]
where Ψ(x) denotes the digamma function. In the weak coupling regime T/TK ≫ 1
the solutions of these self-consistent equations have the correct analytical asymptotics
Γ ∝ T/ ln2(T/TK) and g ∝ 1/ ln(T/TK). In the strong coupling regime the following
solutions are obtained

∆ ≈ Tk +
π
√

3

4
T and g ≈ 4∆

π
√

3

1

T
for T/TK ≪ 1 .

Whereas the imaginary part of the pseudo fermion self energy ∆ drops down to a value of
TK , the leading logarithmic coupling constant diverges as 1/T as T → 0, i.e. it exhibits
a strong coupling form. However, when calculating the resistivity this divergency is
cancelled by the pseudo fermion loop integration in the second order diagram for the
conduction electron T-matrix and the low temperature Fermi-liquid result R/R0 ≈ 1−
π2

4
( T
TK

)2 is recovered and hence the unitarity limit reached as T → 0.
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results from the fRG.

A generalization of this procedure to nonequilibrium using the Keldysh technique may
seem straightforward. However, in this case we would go astray as we aim for generating
our results, in particular the imaginary part of the pseudo fermion self energy from a
first principal method by the FRG. Nonetheless we have done such a calculation in equi-
librium by means of the following self-consistent iteration: Starting point are equations
(5.38), (5.39) and (5.40). We begin with a finite decoherence rate ∆ = Γ/2 and solve
equ. (5.38) to obtain a renormalized coupling constant g. With this coupling constant
(and the initially assumed ∆) we enter equ. (5.39) and (5.39) and, on integrating, obtain
a new ∆n

∆n =
3

2
g2

∫ D

−D

∫ D

−D
dǫdǫ̃f(ǫ)(1− f(ǫ̃))

∆

(ǫ− ǫ̃)2 + ∆2
.

We then iterate until convergence is reached. The results are shown in Fig. 5.16.
The imaginary part of the pseudo fermion self energy is seen to saturate to a value of
(Γ/2)/TK ≈ 3.4 after it passed through a minimum at T/TK ≈ 6. The leading compo-
nent g and therewith the conductance saturate to values which are close to the unitarity
limit.

Returning to the FRG we shall now focus on the effect of higher order correlation
functions which is neglected in the approximation scheme discussed so far. The addi-
tional terms in the RG equation for the coupling function g(ω = 0) generated thereby
are similar, but not identical, to the higher order loop corrections to the poor man’s
scaling approach and may be expected to slow down the growth of the coupling near
the energy scale TK . A quantitative control of these terms within FRG appears to be
out of reach. Nonetheless, in the following we shall explore the consequences of a model
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Figure 5.16: Results for the self-consistent solution as described in the text: (a)
Leading component g (dots) and the weak coupling solution g = 1/(2 ln(T/TK)).
The inset shows the conductance as a function of T/TK . (b) Imaginary part of the
pseudo fermion self energy Γ/TK as functions of T/TK .

assumption including higher order terms. To this end on the right hand side of equation
for the vertex function (cf. equ. (5.38) or (5.55)) we replace g2 by

g2(1− αg − βg2 − . . .) . (5.61)

with coefficients α, β to be determined by requiring that the unitarity limit be satisfied
and that the resulting conductance fits the corresponding NRG result [60] best. We
find that taking α = 0 and putting β = g2

u = 4/(3π) , in equ. (5.61) leads to the
best agreement with the NRG data on the linear response conductance [60]. The FRG
equations (cf. 5.29, 5.32 and 5.35) then take the following form

∂Λg = −g2
[
1− (g/gu)

2
] Λ

Λ2 + Γ2(Λ)

∑
α

tanh

(
Λ− µα

2T

)
(5.62)

∂ΛΓ(ω) =
1

2

∑
ǫ=±Λ

∑
α

[fα(ǫ)g̃>(ǫ, ω) + (1− fα(ǫ))g̃<(ǫ, ω)] (5.63)

∂Λg̃
>(ǫ, ω) =

3

4
g2
∑

˜ǫ=±Λ

∑
α

Γ(ω + ǫ− ǫ̃)

(ω + ǫ− ǫ̃)2 + Γ2(ω + ǫ− ǫ̃)
(1− fα(ǫ̃)) (5.64)

∂Λg̃
<(ǫ, ω) =

3

4
g2
∑

˜ǫ=±Λ

∑
α

Γ(ω + ǫ− ǫ̃)

(ω + ǫ− ǫ̃)2 + Γ2(ω + ǫ− ǫ̃)
fα(ǫ̃) . (5.65)

Here we keep the frequency dependence of Γ(ω) . Within the pseudo fermion projection
scheme using the limit λ → ∞ the self energy acquires a highly asymmetric form,
which causes problems in the numerical solution. We therefore choose an alternative
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Figure 5.17: (a) Comparison of the linear conductance G(T ) from FRG (dots)
with the result obtained via the NRG [60]. Here, the Kondo temperature is defined
by G(TK) = G0/2. (b) Imaginary part of the pseudo fermion self energy at ω = 0 as
a function of T/TK on a logarithmic scale. Inset: Region near T/TK = 0 on a linear
scale.

projection with λ = 0,which requires to introduce normalization factors accounting for
the difference in the impurity partition function with and without projection. In the
calculation of Γ(ω) in the absence of a magnetic field these factors are not necessary.
This choice has the advantage of particle-hole symmetry, i.e. Γ(ω) = Γ(−ω).
Fig. 5.17(a) shows a comparison of the linear conductance from FRG (dots) with the

NRG data [60]. For the purpose of this comparison we adopted the definition of a Kondo
temperature T ∗K used in [60] : G(T ∗K) = G0/2. This differs from our previous definition
of TK = D0 exp(−1/(2g0)) by a factor T ∗K/TK ≈ 2.76. We find excellent agreement
between the FRG and NRG results. In Fig. 5.17(b) we show the imaginary part of the
pseudo fermion self energy Γ(ω = 0) as a function of T/TK . The inset shows the region
T ≪ TK , where Γ again decreases almost linearly with decreasing temperature, down to
a similar residual value of Γ/TK ≈ 0.002 as found from the weak coupling FRG equation
above.
We now turn to the nonequilibrium situation: In Fig. 5.18(a) we show the conductance

as a function of the voltage. The lines indicate the half width at half maximum which
amounts to ∆V = 1.93TK . Fig. 5.18(b) shows Γ(ω = 0) as a function of V/TK . In the
inset Γ is seen to drop linearly with decreasing voltage at V ≪ TK , down to a residual
value of Γ/TK ≈ 0.002.
To summarize, adding a fourth order term with adjusted coefficient to the β-function of
the RG equation for the coupling g(ω = 0) leads to good agreement with the exactly
known conductance in the limit V → 0 . The relaxation rate Γ(ω = 0),however, comes
out three orders of magnitude too small. We conclude that higher order terms in the
β-function are not sufficient to cure the problem with Γ . In addition, the frequency
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Figure 5.18: (a) Conductance G(V ) at zero temperature obtained from FRG. The
lines indicate the half width at half maximum which amounts to ∆V = 1.93TK. (b)
Imaginary part of the pseudo fermion self energy at ω = 0 as a function of V/TK on
a logarithmic scale. Inset: Region near V/TK = 0 on a linear scale.

dependence of both, g and Γ is essential in reaching the Fermi liquid regime, as we now
sketch.
First we note that unitarity does not require g(ω) to be bounded at all frequencies. It
appears possible to have g(ω = 0) growing large or even diverging at strong coupling,
while the conductance G remains finite. This is because G = dIc/dV with the charge
current Ic as given by equ. (5.58) is given by integrating the product of two g′s over
energy. The energy integration removes any singular behavior of g(ω) at ω = 0 provided
the singularity is not too strong. Secondly, a sufficiently strong relaxation rate Γ might
suppress the unphysical growth of G . As discussed in detail in Section 5.3.3 and 5.3.4
the RG equations in the approximation of taking all energies on shell do not generate a
sufficiently strong Γ(ω = 0) at the scale Λ ≃ TK , where it would be needed to cut off
the growth of g , for the reasons discussed above. On the other hand, Γ at Λ = 0 turned
out to grow too large at T ≪ TK . This deficient behavior may also be remedied by
taking the energy dependence of Γ and g into account. Qualitatively one expects that
the smearing of the sharp singular structures in g(ω) and Γ(ω) by integrations over ω
within the width Γ specified by the pseudofermion spectral functions will be equivalent
to replacing g(ω = 0) and Γ(ω = 0) by g(ω ≃ Γ) and Γ(ω ≃ Γ) , which are both finite
quantities of O(1) and O(TK), respectively, not only at the end of the RG process (at
Λ = 0 ), but already at Λ ≈ TK .
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6 Experimental Overview

6.1 Introduction

Due to an immense progress in nanotechnology the Kondo effect experienced a “revival”
[1, 32] during the last decade. It became possible to create so called quantum dots which
confine a small droplet of electrons in a finite, tiny region of space. Contrary to the
Kondo effect in metals, where a magnetic impurity is embedded in a bulk of conduction
electrons the foundation of all experiments in the past few years was the imitation of
the Kondo situation by pinching the impurity between two fermionic reservoirs, i.e.
the spin of an unpaired electron on such a quantum dot device acts as the magnetic
impurity. Depending on if these leads are subject to a finite bias voltage or if only
the limit of vanishing bias voltage, the so called linear response regime, is considered
the system represents either the nonequilibrium or the equilibrium Kondo dot model,
respectively. In these quantum dot systems the Kondo effect manifests itself in an
enhancement of the conductance as the temperature is decreased. Several attempts,
where the experimentalists [19, 20, 21] found a weak Kondo effect, i.e. an enhancement
of the conductivity of about 20% , were necessary until the strong Kondo effect, where
the conductance reaches the unitary limit, was finally observed in 2000 by van der Wiel
et. al. [22].
In this section we shall first give a short introduction about the mode of operation of such
quantum dot devices and additionally provide a short overview of recent experiments
[19, 22, 21, 20] in equilibrium in Section 6.2 before we turn to the nonequilibrium system
[23] in Section 6.3.

6.2 Kondo Quantum Dots in Equilibrium

To begin with we consider a typical experimental setup [19, 20] as shown in Fig. 6.2.
The fermionic leads, reservoirs of two-dimensional electron gases, which are located at
top and bottom are referred to as source (S) and drain (V). As a finite bias voltage
drives the system out of equilibrium, the limit of a vanishing bias voltage represents the
equilibrium situation.
Three gate electrodes, the one on the right and the upper and lower ones on the left,
control the tunnel amplitude Γ of electronic states on the dot to those in the leads. The
middle electrode on the left is used as a gate to change the energy of the dot region
relative to the leads. Hence, this gate voltage Vg controls the number of electrons N
on the quantum dot (QD) as it shifts the corresponding energy levels of the dot region.
This is illustrated in Fig. 6.2 (a). In Fig. 6.2 (b) we show the occupancy nd of the lowest
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6 Experimental Overview

Figure 6.1: Experimental setup [19, 20] for a quantum dot (QD) with applied
gate voltage (VG) and a dc bias voltage between source (S) and drain (V). A set of
electrodes, on the surface of a GaAs/AlGaAs heterostructure is used to to confine
the electrons and create the tunnel barriers. The dot region itself has dimension of
100nm square.

(a) (b)

Vg

∆

µL µR

Vg

nd

odd

even

odd

U U + ∆ U

Figure 6.2: (a) Sketch of a quantum dot coupled to fermionic leads in the linear
response regime where µL−µR ≈ 0. The gate voltage Vg controls the position of the
dot levels with respect to the Fermi energy of the lead electrons. The level spacing
amounts to ∆. (b) Occupancy of the quantum dot nd as a function of the gate
voltage Vg.

occupied level of the quantum dot as a function of the gate voltage. As a variation of the
gate voltage results in adding an electron to the dot each time Vg is increased by a fixed
increment proportional to U and as current through the dot can flow only if the island
is free to fluctuate between N and N + 1 electrons a plot of the conductance against the
gate voltage shows periodically spaced peaks (cf. red curve of Fig. 6.3(a)) which are
referred to as Coulomb oscillations. The regions between enhanced conductance peaks
are known as Coulomb valleys. Hence, the peaks appear each time when the number of
electrons on the dot changes from N to N ± 1. The spacing between two peaks, which
inclose a valley corresponding to an odd number of electrons, is given by U as the two
electrons corresponding to this pair of peaks are added to the same spatial state. On
the contrary, when the number of electrons is even the next electron must be placed in a
different spatial state giving raise to a spacing of U+∆. If a spin-degenerate filling of the
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6.2 Kondo Quantum Dots in Equilibrium

(a) (b)

Figure 6.3: Measurements from [22] of the dependence of (a) the conductance G
on the gate voltage Vg and (b) differential conductance dI

dV
on voltage V between

source and drain. In both cases a temperature regime from T ≈ 15mK (black curve)
up to T = 900mK (red curve). The inset in (a) shows G(T ) for fixed Vg = −413mV.

levels is assumed the total spin on the dot is zero and the dot is non-magnetic when N
is even, whereas it is ±1/2 for odd N and the dot possess a net spin magnetic moment.
Hence, one may use these “Quantum Dots as Tunable Kondo Impurities” [61, 21].
Let us return to Fig. 6.3(a), where the differential conductance G = dI

dV
is shown as a

function of the gate voltage. For high temperatures (900mK, red curve) again there is
a clear evidence of Coulomb oscillations. Decreasing the temperature down to the base
temperature (15mK, black curve) manifests itself completely different in valleys with
an even number of electrons and those with an odd number of electrons. If N is even
the conductivity decreases as the temperature is lowered as one might have expected.
However, if N is odd the unpaired electron with a free spin forms a singlet with electrons
at the Fermi level of the leads. This results from effective spin flip processes which
effectively screen the local spin and in turn lead to a macroscopically correlated state
which gives rise to the Kondo effect. In a quantum dot, the Kondo effect derives from
this correlation mediated narrow peak in the density of states at the Fermi level of the
leads. This Kondo resonance gives rise to enhanced conductance through the dot.

Fixing the gate voltage at the middle of a Kondo plateau (inset of Fig. 6.3(a) at
−413mV) one can extract the G(T ) dependence which shows a logarithmic behavior
before it saturates to the unitary limit G0 = 2e2/h. This is further investigated in Fig.
6.4(a) and Fig. 6.4(b). The upper panel of Fig. 6.4(a) shows a enlarged cutout of the
G(Vg) dependence within one Coulomb valley with an odd number of electrons. The
lower panel shows the Kondo temperature versus Vg. For each gate voltage one obtains
TK by fitting G to the empirical Kondo form

G(T ) =
G0[

1 +
(

T
T ′K

)2
]s , (6.1)

69



6 Experimental Overview

(a) (b)

Figure 6.4: (a) Upper panel: Differential conductance G(Vg) for T ranging from
15mK (black curve) up to 900mK (red curve). Lower panel: Kondo temperature TK
versus gate voltage. (b) Conductance G(T ) at fixed gate voltage for several values of
Vg. The inset shows that G versus normalized temperature T/TK scales to a single
curve.

which in turn is a result of a fit to numerical renormalization group calculations [20, 62].
In this formula T ′K = TK/(2

1/s − 1)1/2 is defined such that TK is given as the tempera-
ture at which the Kondo conductance is half of its extrapolated zero-temperature value
G(TK) = G0/2. The parameter s, which determines the steepness of the conductance
drop with increasing temperature amounts to s ≈ 0.2. Fig. 6.4(b) finally contains the
conductance versus temperature for various fixed values of the gate voltage (i.e. the
temperature dependence along the thin vertical lines of Fig. 6.4(a)). If these functions
are scaled by the Kondo temperature TK as obtained from the lower panel of Fig. 6.4(a)
the various curves are seen (cf. inlet of Fig. 6.4(b)) to follow a universal form.

6.3 Kondo Quantum Dots out of Equilibrium

So far we have restricted our considerations to the the linear response regime, i.e. the
limit of a vanishing external bias voltage. The experiments in [19, 22, 21, 20] already
analyzed the case of a finite bias voltage (cf. also Fig. 6.3(b)) but could not provide
any reliable low-energy scaling behavior as these existing experiments have focused on
higher energies (eV ∼ kTK). A first close examination of the transport properties in
the low bias and low temperature regime were performed in 2008 by Grobis et. al. [23].
It is found that the conductance at low energies is consistent with universality between
temperature and bias and is characterized by a quadratic dependence. In Fig. 6.5(c)
the dependence of the differential conductance G(V ) is shown as a function of the bias
voltage for temperatures ranging from 205mK down to 13mK (the measurements have
been performed in the middle of the Kondo plateau at VG = −213mV, cf. Fig.6.5(d)).
For low temperatures (13mK, black curve) the differential conductance has a pronounced
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6.3 Kondo Quantum Dots out of Equilibrium

Figure 6.5: (a)Quantum dot device
with an overlaid measurement schematic.
(b) Differential conductance (G) mea-
surements as a function of the gate volt-
age VG and source-drain bias V at T =
13mK. (c) Temperature dependence of
the Kondo peak in the conductance for
T = 13− 205mK at VG = −203mV. (d)
Temperature dependence of the Kondo
plateau for T = 13−205mK at V = 0µV.

peak around V = 0, which is referred to as the “zero bias anomaly”. The following low
bias expansion is found to be applicable over a wide temperature range [63, 64]

G(T, V ) = G(T )

(
1− cTα

1 + cT (γ/α− 1) (T/TK)2

(
V

TK

)2
)

(6.2)

where G(T ) is given by the empirical Kondo form equ. (6.1) and the parameter cT ≈
5.49 is determined from the low temperature expansion of this equation: G(T ) ≈ (1 −
cT (T/TK)2). The form equ. (6.2) is chosen such that it reduces for small temperatures
to the universal scaling function expansion which was suggested by Schiller et. al. [65]

G(T, 0)−G(T, V )

cTG0
≈ α

(
V

TK

)2

− cTγ

(
T

TK

)2(
V

TK

)2

(6.3)

The coefficients α and γ characterize the zero-temperature curvature and the broadening
of the Kondo peak respectively. The authors find α ≈ 0.1 and γ ≈ 0.5.
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7 Conclusion and Outlook

In the first part of this thesis we have extended the functional renormalization group
method to nonequilibrium and have applied it to the Kondo dot model. As a first step
we derived a set of coupled differential equations for the imaginary part of the pseudo
fermion self energy and the two particle vertex function both obeying the full frequency
dependence and Keldysh matrix structure. From this general set of equations we have
in a second step extracted an approximated set of equations as we have focused on the
leading logarithmic terms of the vertex function which eventually lead to the Kondo
effect. Upon keeping track of the leading components only the Keldysh matrix structure
of the coupling function was seen to reduce to the structure of the bare vertex which
caused an enormous simplification of the FRG equations.
We then passed on to the solution and analysis of the approximated set of FRG equations
in and out of equilibrium in the weak coupling regime T, V ≫ TK . In particular we have
focussed on how the decoherence rate is generated and build in by the FRG. For a
frequency dependent coupling in nonequilibrium this rate is instrumental as the couling
function is not for all frequencies cutoff by the voltage or the frequency itself, respectively.
However, for frequency independent couplings the decoherence rate is not crucial since
the flow of the leading component of the coupling function is cutoff by the voltage or,
respectively, temperature. As a physical observable we have focused on the conductance
which derives as an expression in terms of the renormalized coupling function. We
obtain perfect agreement compared to known results for the conductance and—though
not crucial as a cutoff—decoherence rate.
Towards the strong coupling regime we have first focused on the regime T, V ≈ TK ,
investigated the behavior and analyzed the breakdown of the present, approximated set
of differential equations. The major problem hereby was caused by the decoherence rate
which reveals some kind of “delayed growth” in order to cutoff the RG flow before the
strong coupling regime is entered. We have discussed the approach to the strong coupling
regime, that is under which condition the latter may be reached. Finally, we gave
some preliminary results for the strong coupling regime which show a rather impressive
accordance with numerical renormalization group results for the linear conductance.
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8 Introduction

Since its discovery in 1986 [66], high-transition-temperature superconducting compounds
like lanthanum barium copper oxide (LBCO) have been in the focus of theoretical as well
as experimental analysis. The main constituent of all these compounds are the CuO2-
planes from which the interesting physics originates, leading to a rich phase diagram
and possessing an extremely rich phenomonelogy. Starting from a perfect realization of
a two dimensional antiferromagnet at zero doping and temperature [67, 68], the system
enters a superconducting regime, whereas at a narrow region around x = 1/8 supercon-
ductivity is anomalously surpressed [69].
The present work refers to a neutron scattering experiment by Tranquada et al. [70] on
the stripe ordered compound La2−xBaxCuO4 at a doping level of x = 1/8, finding that
the excitation at energies near the magnetic resonance peak, and in particular for the
entire region up to almost 200meV above, are quite similar to compounds without stripe
order. This was a highly surprising result, since the spectrum for a stripe compound
was predicted to look different, but even more though because it suddenly offered an
explanation for the spectrum of YBaCuO in terms of stripes. This result has far reaching
consequences: To begin with, it suggests that the stripes are bond-centered rather than
site-centered, which is a long standing open question for the striped cuprates and sug-
gests a possible relation to the fundamental mechanism of superconductivity in general
[70]. The role of stripes in the framework of superconductivity and their characteristics
has been discussed intensively [71, 72, 73, 74, 75].
More refined calculations showing that Tranquada’s interpretation of the spectrum in
terms of bond-centred stripes is fully consistent with the data were provided indepen-
dently by Vojta et al. [76] and Uhrig et al. [77], performing a bond operator based spin
wave analysis of ferromagnetically coupled two leg ladders. Extending this perspective,
subsequent works addressed various issues related to the implications and characteristics
of stripe phenomena in the cuprate compounds [78, 79, 80, 81, 82, 83, 84, 85, 86]. The
fact that this apparently tentative explanation is consistent with the data, however, does
not render it to be the only possible one. In fact, as we will show in our subsequent
analysis, the data are equally well explained by assuming site-centred stripes and even
more we shall show that there is a clear evidence for site- rather than bond-centered
stripes (cf. Fig. 8.1).
In particular, in this work we perform a spin-wave analysis of coupled three-leg ladders
through a bond operator representation of the rungs containing three spins each. Be-
sides the conclusion of our study that there is evidence for site-centered stripes, which
diplayed one of the main open question ever since the discovery of the stripe phenomenol-
ogy in general, even more importantly our result puts a question mark behind the
second conclusion by Tranquada that stripe correlations are essential to high-transition-
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Figure 8.1: Bond- vs. site-centered stripe models: (a) Bond-centered stripes
are modeled by ferromagnetically coupled two leg ladders whereas (b) site-centered
stripes correspond to antiferromagnetically coupled three-leg spin ladders.

temperature superconductivity. If the spectrum observed can be explained with such
widely different models - a model of ferromagnetically coupled, gapped two-leg spin lad-
ders vs. a model of antiferromagnetically coupled, gapless three-leg ladder - it may just
as well be that the spectrum, and in particular the high energy spectrum above 50 meV
which was previously interpreted as evidence for two-leg ladders, is a generic property
of the doped square-lattice antiferromagnet, and does not rely on stripe correlations at
all.
This part of the work is organized as follows: In Chapter 7 we introduce a bond-
operator formalism for a single rung of a three leg spin ladder, i.e. three antiferro-
magnetically coupled S = 1/2 spins. The description of excitations out of the two-fold
degenerate ground state, which we take to be an interpolation of the quantum ground
state of the rung and the classically Néel ordered state is implemented by a set of bosonic
creation and annihilation operators. By coupling these single rungs to form a three-leg
spin ladder and then coupling these spin ladders antiferromagnetically we generate our
spin model (cf. Fig. 8.1 (b)) and adjust the ground state in an appropriate way. We
then perform a harmonic approximation of our model, i.e. we only keep bilinear terms
in the expansion of the model via the bosonic operators, followed by a Fourier transform
of the Hamiltonian. Subsequently, the excitation spectrum is obtained via a Bogoliubov
transformation. Chapter 8 contains the main body of the second part of this thesis, the
analysis and discussion of the results. To begin with we present a method to estimate the
antiferromgnetic coupling J ′ between the individual three-leg ladders. Additionaly, we

78



8 Introduction

estimate the ferromagnetic coupling for the case of coupled two-leg ladders, i.e. in case
of the bond-centered model, and find that only the site-centered model orders. We then
compare our calculated results for the lowest eigenmode and constant energy cuts for
the spin susceptibilty to the experimental data by Tranquada. Furthermore, we focus on
the dependence of the saddle point energy at the antiferromagnetic wave vector ω(π, π)
on the inter-ladder coupling J ′ This part is finally closed by a conclusion in Chapter 9.

As in the first part of this thesis we shall postpone most of the technical and elobarate
calculations and the formalism in the appendices. Appendix F provides a list of matrix
elements of the spin operators on single rungs. Appendix G contains an analysis of the
parts of the Hamiltonian which do not influence the low energy part of the excitation
spectrum we are interested in. However, these parts are essential for the evaluation of
the ground state energy. A detailed calculation of the neutron scattering intensity can
be found in Appendix H. Finally Appendix I details how we calculate the staggered
magnetization.
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9 Theory and Method

9.1 Introduction

In this Chapter we provide the theoretical framework towards our main goal, the de-
scribtion of magnetic excitations from site-centered stripes in the CuO planes of high
temperature superconductors. To begin with we introduce a bond operator formalism
for three-leg ladders in Section 9.2. It is based on a set of bosonic operators that specify
the excitations out of the doubly degenerate groundstate of a bipartite lattice which
consists of single three-leg rungs. The ground state of the rungs is taken to be a super-
position of the quantum ground state and the classical Néel state. In the subsequent
Section 9.3 we couple the single rungs to form a spin ladder and afterwards link these
individual ladders to produce our desired model, a two-dimensional array of antiferro-
magnetically coupled three-leg ladders. The ground state is thereby adjusted in a way
such that terms linear in the bosonic operators, which occur as we expand the Hamil-
tonian, identically vanish. In Section 9.4, we expand the Hamiltonian in terms of the
bosonic creation and anhilation operators and perform a harmonic approximatin as we
keep only terms which are biliniear in these operators. After a Fourier transformation
we solve this Hamiltonian via a Bogoliubov transformation in Section 9.5.

9.2 Basis States for Three-Site Rungs

Consider a single rung of a three leg ladder, consisting of spins which are antiferromag-
netically coupled with a coupling J we set to unity (see Fig. 9.1). For later purposes, let

t t t6 6
?

ŝ1 ŝ2 ŝ3

Figure 9.1: Single rung on sublattice A

us assume this rung belongs to sublattice A, i.e. set up conventions the rungs belonging
to sublattice A will inherit in the following sections. If we denoting the SU(2) spin
operators for the three spin 1

2
’s on the sites by s1,s2, and s3, the Hamiltonian for the

rung takes the form

ĤA = ŝ1ŝ2 + ŝ2ŝ3. (9.1)
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Diagonalization yields the following eigenvalues and eigenvectors:

E = −1

{
|b−1/2〉 = − 1√

6

(|↑↓↓〉 − 2|↓↑↓〉+ |↓↓↑〉)
|b1/2〉 = − 1√

6

(|↓↑↑〉 − 2|↑↓↑〉+ |↑↑↓〉)
E = 0

{
|a−1/2〉 = 1√

2

(|↑↓↓〉 − |↓↓↑〉)
|a1/2〉 = 1√

2

(|↓↑↑〉 − |↑↑↓〉) (9.2)

E = 1
2


|c−3/2〉 = |↓↓↓〉
|c−1/2〉 = 1√

3

(|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉)
|c1/2〉 = 1√

3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)
|c3/2〉 = |↑↑↑〉 .

Note that the two states |a−1/2〉 and |a−1/2〉 are antisymmetric under spacial reflections
interchanging sites 1 and 3 on the rung, while all other states are symmetric. This
distinction will prove useful when expanding the Hamiltonian for the coupled ladders in
Section 9.4 below. We denote the orthonormal basis formed by these eight states by

M = {|b−1/2〉, |b1/2〉, |a−1/2〉, |a1/2〉, |c−3/2〉, |c−1/2〉, |c1/2〉, |c3/2〉}. (9.3)

In this basis, the Hamiltonian matrix is trivially given by

ĤA = −
(
|b−1/2〉〈b−1/2|+ |b1/2〉〈b1/2|

)
+

1

2

(
|c−3/2〉〈c−3/2|+ |c−1/2〉〈c−1/2|+ |c−1/2〉〈c−1/2|+ |c3/2〉〈c3/2|

)
. (9.4)

Neither of these exact eigenstates, however, is suited as a fiducial state for spin wave
theory. We are hence led to define a vacuum state

|b̃−1/2〉 ≡ |b−1/2〉 cosφ+ |c−1/2〉 sin φ (9.5)

=
(|↑↓↓〉+ |↓↓↑〉)(− 1√

6
cosφ+ 1√

3
sin φ

)
+ |↓↑↓〉(√2

3
cosφ+ 1√

3
sinφ

)
,

which interpolates between the quantum ground state |b−1/2〉 of the isolated rung with
Sz = −1

2
for φ = 0 and the classically Néel ordered state |↑↓↑〉 for φ = arctan( 1√

2
) =

0.6155. The parameter φ will depend on the coupling between the rungs and the ladders.
The motivation for introducing the state |b̃−1/2〉 will become clear as we determine φ

self-consistently below. Since we wish |b̃−1/2〉 to be one of our basis states, we replace
(9.3) by

MA = {|µ〉A ;µ = 1, . . . , 8}
= {|b̃−1/2〉, |b1/2〉, |a−1/2〉, |a1/2〉, |c−3/2〉, |c̃−1/2〉, |c1/2〉, |c3/2〉}, (9.6)

with (
|b−1/2〉
|c−1/2〉

)
=

(
u −v
v u

)(
|b̃−1/2〉
|c̃−1/2〉

)
(9.7)
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9.2 Basis States for Three-Site Rungs

and u = cosφ, v = sinφ. The relevant terms in the Hamiltonian (9.4) transform into

(|b−1/2〉, |c−1/2〉
)(−1 0

0 1
2

)(
〈b−1/2|
〈c−1/2|

)
(9.8)

=
(|b̃−1/2〉, |c̃−1/2〉

)(1
2
− 3

2
u2 3

2
uv

3
2
uv −1 + 3

2
u2

)(
〈b̃−1/2|
〈c̃−1/2|

)
.

As a next step, we introduce bosonic creation and annihilation operators
a†0 ≡ |a−1/2〉〈b̃−1/2| etc., as indicated in Fig. 9.2(a). The subscripts of these operators
refer to the change in the z-component of the total spin on the rung. Note that these
operators do not obey the commutation relations of independent ladder operators, as we
can create only one “particle” with either a†0 or a†1 or any other creation operator from
the “vacuum” state |b̃−1/2〉. Completeness and orthonormality of the basis (9.6) implies

|b̃−1/2〉〈b̃−1/2| =
(
1− b†1b1 − a†0a0 − a†1a1 − c†−1c−1 − c†0c0 − c†1c1 − c†2c2

)
. (9.9)

With (9.7) and (9.9), the rung Hamiltonian (9.4) may be rewritten in terms of the
bosonic operators:

ĤA =

(
1

2
− 3

2
u2

)
+

(
−1

2
+

3

2
u2

)(
a†0a0 + a†1a1

)
(9.10)

+
3

2
uv
(
c†0 + c0

)
+

3

2

(
u2 − v2

)
c†0c0 −

3

2
v2b†1b1 +

3

2
u2
(
c†−1c−1 + c†1c1 + c†2c2

)
.

On sublattice B, we introduce a similar basis MB, with the only difference that the
fiducial state |b̃1/2〉 has Sz = 1

2
instead of sz = −1

2
for |b̃−1/2〉 on sublattice A:

MB = {|µ〉B ;µ = 1, . . . , 8}
= {|b̃1/2〉, |b−1/2〉, |a1/2〉, |a−1/2〉, |c3/2〉, |c̃1/2〉, |c−1/2〉, |c−3/2〉},

with (
|b1/2〉
|c1/2〉

)
=

(
u −v
v u

)(
|b̃1/2〉
|c̃1/2〉

)
. (9.11)

We introduce a second set of bosonic creation and annihilation operatorsA†0 ≡ |a1/2〉〈b̃1/2|
etc., as indicated in Fig. 9.2(b). The Hamiltonian HB for a single rung belonging to
sublattice B is in analogy to (9.10) given by

ĤB =

(
1

2
− 3

2
u2

)
+

(
−1

2
+

3

2
u2

)(
A†−1A−1 + A†0A0

)
+

3

2
uv
(
C†

0 + C0

)
+

3

2

(
u2 − v2

)
C†

0C0

− 3

2
v2B†

−1B−1 +
3

2
u2
(
C†
−2C−2 + C†

−1C−1 + C†
1C1

)
. (9.12)
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|c−3/2〉

|a−1/2〉 |b̃−1/2〉 |c̃−1/2〉

|a1/2〉 |b1/2〉 |c1/2〉

|c3/2〉

−3
2

−1
2

+1
2

+3
2

a†0 c†0

b†1
a†1 c†1

c†−1

c†2

S = 1
2

S = 1
2

S = 3
2

antisym. sym. sym.
Sz

(a)

|c3/2〉

|a1/2〉 |b̃1/2〉 |c̃1/2〉

|a−1/2〉 |b−1/2〉 |c−1/2〉

|c−3/2〉

+3
2

+1
2

−1
2

−3
2

A†
0 C†

0

B†
−1

A†
−1

C†
−1

C†
1

C†
−2

S = 1
2

S = 1
2

S = 3
2

antisym. sym. sym.
Sz

(b)

Figure 9.2: Description of the excitations out of the ground state on a particular
rung via bosonic operators. (a) On sublatticeA the ground state is |b̃−1/2〉 and we use
small letters for the corresponding creation operators, whereas (b) On sublattice B
the ground state is |b̃1/2〉 and capitel letters denote the the corresponding operators.

For later purposes, we write the spin operators ŝ±α = ŝxα ± iŝyα and ŝzα for the individual
sites α = 1, 2, 3 on rungs belonging to sublattice A in terms of our bosonic creation and
annihilation operators:

ŝ+
α = s+

α,21b
†
1 + s+

α,41a
†
1 + s+

α,71c
†
1 + s+

α,15c−1

+ s+
α,82c

†
2b1 + s+

α,23b
†
1a0 + s+

α,43a
†
1a0

+ s+
α,73c

†
1a0 + s+

α,84c
†
2a1 + s+

α,35a
†
0c−1

+ s+
α,65c

†
0c−1 + s+

α,26b
†
1c0 + s+

α,46a
†
1c0

+ s+
α,76c

†
1c0 + s+

α,87c
†
2c1,

ŝ−α =
(
ŝ+
α

)†
, (9.13)

ŝzα = szα,11
(
1− b†1b1 − a†0a0 − a†1a1 − c†0c0 − c†1c1 − c†−1c−1 − c†2c2

)
+ szα,22b

†
1b1 + szα,55c

†
−1c−1 + szα,66c

†
0c0

+ szα,77c
†
1c1 + szα,88c

†
2c2

+ szα,13
(
a†0 + a0

)
+ szα,16

(
c†0 + c0

)
+ szα,27

(
b†1c1 + c†1b1

)
+ szα,24

(
b†1a1 + a†1b1

)
+ szα,36

(
a†0c0 + c†0a0

)
+ szα,47

(
a†1c1 + c†1a1

)
.

The matrix elements

sτα,µν = 〈µ|ŝτα |ν〉A with τ = +,−, z, (9.14)
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Figure 9.3: The microscopic model for
site centered spin stripes, with intra-rung
couplings set to unity, inter-rung-intra-
ladder couplings J , and inter-ladder cou-
plings J ′. The real space unit cell con-
tains two rungs and is indicated by the
shaded area in gray.

and |µ〉A as defined in (9.6) are written out explicitly in Appendix F. Similarly, the
individual spin-operators Ŝ±α and Ŝz on rungs belonging to sublattice B are given by:

Ŝ−α = S−α,21B
†
−1 + S−α,41A

†
−1 + S−α,71C

†
−1 + S−α,15C1

+ S−α,82C
†
−2B−1 + S−α,23B

†
−1A0 + S−α,43A

†
−1A0

+ S−α,73C
†
−1A0 + S−α,84C

†
−2A−1 + S−α,35A

†
0C1

+ S−α,65C
†
0C1 + S−α,26B

†
−1C0 + S−α,46A

†
−1C0

+ S−α,76C
†
−1C0 + S−α,87C

†
−2C−1,

Ŝ+
α =

(
Ŝ−α
)†
, (9.15)

Ŝzα = Szα,11
(
1−B†

−1B−1 − A†0A0 − A†−1A−1 − C†
0C0 − C†

−1C−1 − C†
1C1 − C†

−2C−2

)
+ Szα,22B

†
−1B−1 + Szα,55C

†
1C1 + Szα,66C

†
0C0

+ Szα,77C
†
−1C−1 + Szα,88C

†
−2C−2

+ Szα,13
(
A†0 + A0

)
+ Szα,16

(
C†

0 + C0

)
+ Szα,27

(
B†
−1C−1 + C†

−1B−1

)
+ Szα,24

(
B†
−1A−1 + A†−1B−1

)
+ Szα,36

(
A†0C0 + C†

0A0

)
+ Szα,47

(
A†−1C−1 + C†

−1A−1

)
,

with Sτα,µν = 〈µ|Ŝτα |ν〉B likewise given in Appendix F.

9.3 Coupling the Rungs

As a microscopic model for site centered spin stripes, we couple the three-site rungs into
three-leg ladders, with the spins coupled antiferromagnetically with J along the ladders
and with J ′ between neighboring ladders, as shown in Fig. 9.3. The sublattice indices
assigned to each rung alternate in both directions, i.e., under translation by either of
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the primitive lattice vectors x̂ = (4a, 0) or ŷ = (0, a), where a is the lattice constant we
herewith set to unity. The microscopic model is hence given by the Hamiltonian

Ĥ =
∑
i∈A

(
ĤA
i + J

3∑
α=1

ŝαiŜαi+ŷ + J ′ŝ3iŜ1i+x̂

)

+
∑
j∈B

(
ĤB
j + J

3∑
α=1

Ŝαj ŝαj+ŷ + J ′Ŝ3j ŝ1j+x̂

)
(9.16)

When evaluating the spectrum of (9.16) below, we will set J = 1 (and thereby equal to
the intra-rung couplings). The estimation of the inter-ladder coupling J ′ is presented in
Section 10.2. We find J ′ = 0.07. For the moment, however, we keep the inter-rung and
inter-ladder couplings J and J ′ as free parameter, as this makes it easier to trace the
individual terms in the expansion below. The next step is to expand (9.16) in terms of
our bosonic creation and annihilation operators, using (9.13), (9.15), and

sαSβ =
1

2

(
ŝ+
α Ŝ

−
β + ŝ−α Ŝ

+
β

)
+ ŝzαŜ

z
β . (9.17)

We keep only terms up to second order in the operators. Since ŝzα (and Ŝzα) contains a
constant term with coefficient szα,11 as well as the linear terms

szα,13
(
a†0 + a0

)
+ szα,16

(
c†0 + c0

)
,

the expanded Hamiltonian will contain the linear term(
2J

3∑
α=1

Szα,11s
z
α,16 + J ′

(
Sz1,11s

z
3,16 + Sz3,11s

z
1,16

))(
c†0 + c0

)
(9.18)

in addition to the linear term

3

2
uv
(
c†0 + c0

)
(9.19)

already contained in (9.10) for each rung i on sublattice A. The terms proportional to(
a†0 + a0

)
cancel since sz1,13 = −sz3,13 and sz2,13 = 0. This cancellation can also be inferred

from symmetry considerations, as elaborated in the following section. We eliminate the
linear terms (9.18) and (9.19) by adjusting the parameter φ, i.e., by solving

3

2
uv + 2J

3∑
α=1

Szα,11s
z
α,16 + 2J ′Sz1,11s

z
3,16 = 0 (9.20)

with J = 1, J ′ = 0.07, u = cosφ, v = sinφ, and the matrix elements szα,µν as given in
Appendix F in terms of u and v. This yields

√
2
v

u
≈ 0.5019 or φ = 0.3410. (9.21)
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π/2
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kx
0 2π
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0

Figure 9.4: The reduced Brillouin
zone corresponding to the real space
unit cell indicated in Fig. 9.3 contains
only 1/8th of the full Brillouin zone and
is indicated by the shaded area.

On a formal level, the reason for rotating our basis states via (9.5), (9.7) and (9.11) to
begin with was that this created the linear term (9.19) in HA. Without this term, there
would have been no way to eliminate (9.18), and the basis set would have been highly
impractical for further analysis. On a physical level, the spontaneous breakdown of the
SU(2) spin rotation symmetry leads us to expect that the fiducial state of the rungs is
much closer to the classically ordered Néel state | ↑↓↑〉 than |b−1/2〉. Not surprisingly,
the spectrum evaluated below is gapless at some point in the Brillouin zone, as required
by Goldstone’s theorem for a state with a spontaneously broken continuous symmetry,
if and only if φ assumes the value (9.21).

9.4 Expanding the Hamiltonian

To evaluate the spectrum of (9.16), we first define momentum space operators on sub-
lattice A according to

a0,k =

√
2

N

∑
i∈A

eikRia0,i,

a0,i =

√
2

N

∑
k

e−ikRia0,k, (9.22)

where where N denotes the number of rungs and the sums over k are taken over the
reduced Brillouin zone indicated in gray in Fig. 9.4. Similarly, for the creation and
annihilation operators on sublattice B we introduce

A0,k =

√
2

N

∑
j∈B

e−ikRjA0,j ,

A0,j =

√
2

N

∑
k

eikRjA0,k, (9.23)
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which differ from (9.22) only in that the sign of the phases is reversed. Since we are
only interested in the one-particle spin wave spectrum, we neglect the effect of the
Hilbert space restrictions for the real space creation and annihilation operators (i.e., that
we could create only one “particle” per rung) on the momentum space operators. As
mentioned above, we only keep terms up to second order in the creation and annihilation
operators in the Hamiltonian. When substituting the explicit expressions (9.13) and
(9.15) into (9.16), we see immediately that many terms yield only higher orders, while
others cancel. To begin with, since the spin flip operators only contain terms of first and
second order in the creation and annihilation operators and are always multiplied with
another spin-flip operator, we only need to keep terms of first order in the expressions for
ŝ+
α and Ŝ−α . The expansions of the ŝzαŜ

z
β terms are slightly more complicated, as ŝzα and Ŝzβ

contain constant terms in addition to terms of first and second order in the creation and
annihilation operators. We have adjusted the parameter φ such that the linear terms in
the expansion cancel. Most of the quadratic terms result from multiplying the constant
term Szα,11 in the expansion of Ŝzα with the quadratic terms in ŝzα and multiplying szα,11
with quadratic terms in Ŝzα. This yields seven diagonal terms (like b†1b1) and four off-
diagonal terms (like b†1c1 + c†1b1) for each sublattice. Three of the off-diagonal terms,
those linear in the antisymmetric operators a†1 or a1, vanish. This can be seen either
from the explicit coefficients written out in Appendix F (e.g. sz1,24 = −sz3,24 and sz2,24 = 0
while Sz1,11 = Sz3,11) or from a symmetry consideration. As the Hamiltonian is invariant
under reflection symmetry interchanging the outer chains of each three-leg ladder (i.e.,
sites 1 and 3 on each rung), there can only be terms containing an even number of
the antisymmetric operators a†0, a0, a

†
1, a1, A†0, A0, A

†
−1, or A−1 in the expansion. In

addition to this reflection symmetry, we have the SU(2) spin rotation symmetry of the
Hamiltonian (9.16). The spin symmetry implies that the z-component of the total spin,

Ŝztot =
∑
i∈A

ŝzαi +
∑
j∈B

Ŝzαj , (9.24)

must be conserved. This means that to second order in the creation and annihilation
operators, only operators which change ŝz or Ŝz by the same integer can appear in each
term. For example, we can have a term b†1c1 or b†1c

†
−1, but not b†1c0. Both symmetries

together imply that to second order, the Hamiltonian (9.16) decomposes into terms
which contain only operators belonging to one particular group,

Ĥ = Ẽ0 + Ĥa0 + Ĥc0 + Ĥa1 + Ĥc2 + Ĥb1,c1,c−1, (9.25)

where Ẽ0 is a contribution to the ground state energy, Ĥa0 contains only the operators
a†0, a0, A

†
0, and A0, and so on. The low energy physics we are interested in is contained

in Ĥb1,c1,c−1, which we will analyze in detail below. As for the other terms, explicit
expressions and expansions in terms of creation and annihilation operators are given in
Appendix G. Ĥa0 and Ĥc0 describe almost dispersionless modes with energies of around
2.1 and 2.7 (in units of Jexp which we eventually set to Jexp = 140 meV). Ĥa1 describes

a weakly dispersing mode of energy of about 2.0, with a bandwidth of about 0.2. Ĥc2

describes a completely dispersionless mode with energy 3.12. Cuts of the dispersions of
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these modes are shown in Fig. G.1 in Appendix G. Since these modes occur at energies
at which we consider our spin wave theory no longer reliable, we will not discuss them
further. To evaluate the spectrum of Ĥb1,c1,c−1, we write

Ĥb1,c1,c−1 =
∑
k

(
Ψ̂†

kHkΨ̂k −
1

2
tr(Hk)

)
, (9.26)

where

Ψ̂†
k =

(
B†
−1,k, b1,k, C

†
−1,k, c1,k, C1,−k, c

†
−1,−k

)
,

Ψ̂k =
(
B−1,k, b

†
1,k, C−1,k, c

†
1,k, C

†
1,−k, c−1,−k

)T
. (9.27)

The 6× 6 matrix Hk consists of the k-independent diagonal terms

Hk,11 = Hk,22 = −3

2
v2 + 2J

3∑
α=1

szα,11(Szα,22 − Szα,11) +2J ′ sz3,11(S
z
1,22 − Sz1,11),

Hk,33 = Hk,44 =
3

2
u2 + 2J

3∑
α=1

szα,11(Szα,77 − Szα,11) +2J ′ sz3,11(Sz1,77 − Sz1,11),

Hk,55 = Hk,66 =
3

2
u2 + 2J

3∑
α=1

szα,11(Szα,55 − Szα,11) +2J ′ sz3,11(Sz1,55 − Sz1,11). (9.28)

The off-diagonal terms are of the general form

Hk,ij = Hk,ji = H0
ij +Hx

ij cos(4kx) +Hy
ij cos(ky).

The k-independent coefficients

H0
13 = H0

24 = 2J

3∑
α=1

szα,11S
z
α,27 + 2J ′sz3,11S

z
1,27 (9.29)

result from the ŝzαŜ
z
β terms. Expansion of the ŝ+

α Ŝ
−
β terms yields the coefficients

Hx
12 = J ′s+

3,21S
−
1,21, Hx

14 =J ′s+
3,71S

−
1,21,

Hx
16 = J ′s+

3,15S
−
1,21, Hx

23 =J ′s−3,21S
+
1,71,

Hx
25 = J ′s−3,21S

+
1,51, Hx

34 =J ′s+
3,71S

−
1,71,

Hx
36 = J ′s+

3,15S
−
1,71, Hx

45 =J ′s−3,71S
+
1,51,

Hx
56 = J ′s+

3,15S
−
1,15,

(9.30)
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and

Hy
12 =J

3∑
α=1

s+
α,21S

−
α,21, Hy

14 = J
3∑

α=1

s+
α,71S

−
α,21,

Hy
16 =J

3∑
α=1

s+
α,15S

−
α,21, Hy

23 = J
3∑

α=1

s−α,12S
+
α,17,

Hy
25 =J

3∑
α=1

s+
α,21S

−
α,15, Hy

34 = J
3∑

α=1

s+
α,71S

−
α,71,

Hy
36 =J

3∑
α=1

s+
α,15S

−
α,71, Hy

45 = J
3∑

α=1

s−α,17S
+
α,51,

Hy
56 =J

3∑
α=1

s+
α,15S

−
α,15.

(9.31)

All other off-diagonal elements of Hk,ij vanish.

9.5 Solution by Bogoliubov Transformation

The Hamiltonian (9.26) can be diagonalized with a 2n dimensional Bogoliubov transfor-
mation [87]. We begin with a brief review of the formalism. At each point in k-space,
we wish to write the Hamiltonian in terms of a diagonal matrix Ω,

Ĥ = Ψ̂†HΨ̂ = Γ̂†ΩΓ̂, (9.32)

with
Ψ̂ = M Γ̂, Ω = M †HM. (9.33)

The components of Γ̂ satisfy the same commutation relations as the components of Ψ̂:[
Ψ̂i, Ψ̂

†
j

]
=
[
Γ̂i, Γ̂

†
j

]
= Tij (9.34)

with
T = diag (1,−1, 1,−1,−1, 1) . (9.35)

This implies

Tij =
[
Ψ̂i, Ψ̂

†
j

]
=
∑
l,m

[
MilΓ̂l, Γ̂

†
m(M †)mj

]
=
∑
l,m

Mil

[
Γ̂l, Γ̂

†
m

]
M †

mj =
∑
l,m

MilTlmM
†
mj ,

or
T = MTM †. (9.36)

Multiplying (9.36) from the right by HM yields with (9.33)

THM = MTΩ, (9.37)

or in components ∑
l

(TH)ilMlj = Mij(TΩ)jj, (9.38)
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Figure 9.5: Modes described by

Ĥb1,c1,c−1 plotted as cuts (a) along
(kx, π) and (b) along (π, ky) using
Jexp = 140 meV.

i.e., the j-th column of M is given by an eigenvector of TH with eigenvalue TjjΩjj. This
specifies M up to the normalization of the eigenvectors. To obtain the normalization, it
is propitious to rewrite (9.36) as

T = M †TM. (9.39)

(To obtain (9.39), multiply (9.36) by TM−1 from the left and by TM from the right and
use T 2 = 1.) Each column j of Mij must hence be normalized such that

Tjj =
∑
i

Tii|Mij |2. (9.40)

Diagonalization of (9.26) using this formalism at each point in k space with

Γ̂†k =
(
γ†1,k, γ2,k, γ

†
3,k, γ4,k, γ5,k, γ

†
6,k

)
,

Γ̂k =
(
γ1,k, γ

†
2,k, γ3,k, γ

†
4,k, γ

†
5,k, γ6,k

)T
, (9.41)

yields

Ĥb1,c1,c−1 =
∑
k,i

[
ωk,i γ

†
i,kγi,k +

1

2

(
ωk,i −Hk,ii

)]
. (9.42)

This Hamiltonian describes three two-fold degenerate modes ωk,i, which we have plotted
assuming Jexp. = 140 meV as cuts along (kx, π) and (π, ky) in Fig. 9.5. The two-fold
degeneracy of each mode corresponds to spin waves with Sz = ±1. Since we expect our
spin wave theory to be reliable only for energies up to Jexp., we will disregard the higher
modes along with those analyzed in Appendix G. The lowest mode ωk,1 = ωk,2 := ω(k)
is shown as a 3D plot for half of the reduced Brillouin zone in Fig. 10.3. The Hamiltonian
(9.42) further contains a contribution

Eb1,c1,c−1 =
∑
k,i

1

2

(
ωk,i −Hk,ii

)
= −0.22116N (9.43)

to the ground state energy. (Here N denotes the number of rungs, which implies that
the sum extends over N

2
values for k.)
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10 Results and Discussion

10.1 Introduction

In this chapter we shall present the main body of the second part, the presentation and
the comparison with experiment of our results. To begin with we shall give a detailed
description how we estimate the interladder coupling in case of the bond- as well as in
case of the site-centered model in Section 10.2. We will find the resulting couplings give
rise to magnetic order only in case of the site-centered model. In Section 10.3 we then
present and compare our results to the experimental data by Tranquada et. al.. We
shall begin with the dispersion of the magnetic excitations for the lowest lying eigenmode
and will find perfect agreement with the experiment. Likewise we calculate the magnetic
scattering intensity which we also compare and find best accordance to the experimental
data. Finally, though not important for our studies and conclusions, we focus on the
dependence of the saddle point energy ω(π, π) as a function of the inter-ladder coupling
J ′ which we find to be given by a square-root dependence as long as J ′ is not comparable
to the intra-ladder coupling J . We shall argue that this may be understood in terms of
spinons in a confining potential.

10.2 Estimating the Interladder Coupling

To determine the effective coupling J ′ between the two- and three-leg ladders repre-
senting bond- or site-centred stripes, respectively, we have exactly diagonalised 16 site
clusters of itinerant spin 1/2 antiferromagnets described by the t–J model[88, 89] with
J = 0.4t, two holes, and periodic boundary conditions (PBCs), in which the stripes
are localised through a staggered magnetic field B as shown in Figs. 10.2a and 10.2b.
We then compare the ground state energies we obtain for clusters with the unfrustrated
PBCs shown in Fig. 10.2 with the ground state energies we obtain for clusters with
frustrated PBCs, in which the 16-site unit cells shown on the right are shifted by one
lattice spacing to the top, such that sites 15 and 1, 16 and 2, etc. are nearest neighbours.
We then consider spin-only Heisenberg models of two- and three-leg ladders (consisting
of only the sites in the on-shaded areas in Figs. 10.2a and 10.2b) subject to the same
staggered field B and couple them ferromagnetically or antiferromagnetically by J ′, re-
spectively, as indicated. We again compare the ground state energies for unfrustrated
PBCs, where J ′ couples sites 6 and 1, 7 and 2, etc. for the two leg ladders shown in
Fig. 10.2a, with frustrated PBCs, where J ′ couples sites 7 and 1, 8 and 2, etc. Finally,
we determine J ′ such that the difference in the ground state energies between frustrated
and unfrustrated PBCs in the t–J clusters matches this difference in the spin-only ladder
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Figure 10.1: Generic phase diagram for coupled even- and odd-leg ladders. (a) In
case of a odd leg ladder the quantum critical point is J ′crit = 0, where the systems
breaks into independent odd leg ladders. (b) In case of an even-leg ladder a quantum
phase transition from the ordered into the disordered regime occurs at a finite value
|J ′crit| for ferromagnetic as well a for ferromagnetic J ′. For two leg ladders it holds
|J ′crit| ≈ 0.25

models. With B = 0.225J and B = 0.170J for the bond- or site-centred stripe models
we obtain J ′ = −0.051J and J ′ = 0.071J , respectively. The values for B are chosen such
that the magnetic localisation energy Emag. = −B∑i(−1)iSzi is equal for both types of
stripes, and such that the mean value of the staggered magnetisation 〈−Sz1 + Sz5〉 in the
t–J cluster for the site-centred stripe matches the value we obtain in the fully consistent
SWT of three-leg ladders described above.

10.3 Results

The significance of our results emerges in the context of a comparison of our spectrum
with the experimental data obtained by Tranquada et al. [70] through inelastic neutron
scattering on the stripe ordered compound La1.875Ba0.125CuO4. The data points with
corresponding error bars are shown as black or blue crosses in Figs. 10.4a and 10.4b,
respectively. In Fig. 10.4b, which is directly reproduced from Tranquada et al.[70], the
neutron data are superposed with the spectrum of the triplet excitation of an isotropic
two-leg Heisenberg ladder, which models bond-centered stripes at accordingly high en-
ergies. To compare the data to a model of bond-centered stripes at all energies, Vojta et
al. [76] and Uhrig et al. [77] have analyzed models of weakly, ferromagnetically coupled
two-leg ladders, and find good agreement with the experimental data over the entire
energy range from 0 to about 200meV. Vojta and Ulbricht [76] have analyzed the model
through spin wave theory using a bond-operator formalism similar to the one we employ
here, while Uhrig, Schmidt, and Grüninger [77] employ a method of continuous unitary
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Figure 10.2: Finite size geometries
with unfrustrated periodic boundaries
for a, bond- and b, site-centred stripe
models. The spin stripes are localised by
a staggered magnetic field B as indicated
by the signs.

transformations perfected by this group.
As for the calculations of both groups there appeared to be no systematic way to

estimate the effective, ferromagnetic coupling J ′ induced by the likewise bond-centered
charge stripe between two neighboring two-leg ladders, both groups resort to assuming
values which yield good quantitative agreement of their spectra with the data. This,
however, is only a minor inadequacy of their model, as the saddle-point energy is deter-
mined primarily by the triplet gap of the two-leg ladder and hence by the intra-ladder
coupling J . The range of values they use depend on the approach and in the work of
Uhrig et al. [77] also on the magnitude of the cyclic exchange term they impose, but
all in all both studies provide as good a description as any one could get. Both groups
independently conclude that the data are fully consistent with models of bond-centered
stripes, and strengthen Tranquada’s interpretation of the data as pointing towards bond-
centered stripes.

To compare our results directly with the experimental data, we have superposed cuts of
the lowest mode ω(k) along (kx, π) and (π, ky) with the experimental data in Fig. 10.4a.
(The superposition of cuts of our spectrum in the x and y direction reflects the as-
sumption that a superposition of domains with stripes along the two principal lattice
directions has been observed in the experiment.) We believe it is fair to say that up to
energies of about 175meV, the agreement is perfectly well and no worse than that of the
bond-centered stripe models. Likewise, the constant energy slices of the neutron scat-
tering intensities χ+−(k, ω) obtained with the matrix elements calculated in Appendix
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Figure 10.3: The dispersion ω(kx, ky)

of the lowest eigenmode of Ĥb1,c1,c−1 in
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H shown in Fig. 10.5 agree as well as those obtained through analysis of two-leg ladder
models (shown in Figs. 3 of Tranquada et al.[70], Vojta et al.[76], and Uhrig et al.[77])
with the experimentally measured constant-energy slices of the magnetic scattering in
La1.875Ba0.125CuO4 shown in Fig. 2 of Tranquada et al.[70]. The good agreement of
our results with the experimental data up to energies even larger than J = 140 meV
(where we would expect that the perturbative spin wave analysis becomes unreliable)
is somewhat surprising. While any explanation in terms of bond-centered stripes, or
coupled two-leg ladders, immediately gives a roughly adequate estimate for the saddle-
point energy in terms of the triplet energy gap of the individual two-leg ladders, it is far
from obvious that a model of coupled three-leg ladders, which are individually gapless,
should give a saddle-point energy consistent with the data. In our model, the saddle-
point energy depends significantly on the coupling J ′ between the ladders (cf. (10.1)).
Fortunately, however, as already presented in Section 10.2 we are able to determine J ′

rather accurately through numerical comparison of a t–J model with a site centered spin
and a site centered charge stripe to a model with three-leg Heisenberg ladders coupled
by J ′. This analysis does not only provide us with the value J ′ ≈ 0.07J , but also shows
that this value is rather robust in the sense that it does not significantly depend on the
details of how we localize the stripe. To obtain a better understanding of the depen-
dence of our final results on this coupling, we have obtained the spectrum for a number
of different values of J ′ by solving (9.20) numerically for each value, and proceeding
with the Bogoliubov transformation with the resulting values for u(J ′) and v(J ′). The
results for the saddle-point energies ω(π, π) are shown in Fig. 10.6 (black dots). Fitting
the data yields

ω(π, π) ≈ 1.47
√
J ′J (10.1)

to an excellent approximation up to values where J ′ becomes comparable to J .
The square root dependence of ω(π, π) on J ′ can be understood by considering a model

of two three-leg ladders, which are weakly coupled by J ′, as shown in Fig. 10.7a. The
lowest energy excitations of the individual three-leg ladders are spin 1

2
spinons, which

are gapless. The coupling J ′ induces a linear confinement potential

V (y) = F |y| (10.2)

between pairs of spinons, since the links coupling the chains effectively become decor-

96



10.3 Results

a

 50

 100

 150

 200

 250

 0

E
n

er
gy

/m
eV

0 π
2 π 3π

2 2π

Figure 10.4: (a) Superpositions of cuts along (kx, π) and (π, ky) for the lowest

mode ω(k) described by Ĥb1,c1,c−1 (red) superimposed with the experimental data
obtained by inelastic neutron scattering by Tranquada et al. [70] (black). (b) The
neutron data as originally presented, with a triplon dispersion of a two-leg ladder
superimposed (red line). (Figure (b) reproduced with permission.)

related in the region between them. The situation here is similar to a system of two
coupled spin 1

2
chains shown in Fig. 10.7b, where a weak coupling J⊥ between the chains

is known to induce a linear confinement potential between pairs of spinons [90]. In the
model of coupled chains, the force between the spinons is proportional to

F ≈ 〈SS〉⊥J⊥ ∝ J2
⊥/J. (10.3)

For the model of two coupled three-leg ladders we consider here in the context of un-
derstanding the dependence (10.1) of our spin wave analysis, however, we assume that
the spin correlation 〈SS〉 between the sites coupled by J ′ is to lowest order indepen-
dent of J ′/J . Therewith we account for the static correlations present due to the long
range order we assume. For the confinement force in our auxiliary model of two coupled
three-leg ladders we hence assume

F ∝ J ′. (10.4)

The spinon confinement will then induce a gap ∆, which corresponds to the the ground
state or zero-point energy of the linear potential oscillator for the relative motion of the
spinons. The dispersion of the spinons is linear for both the individual spin chains and
the individual three-leg ladders[91],

ε(ky) ≈ v|ky|, (10.5)

with v ∝ J as J is the only energy scale is these models. (In (10.5), we have shifted
both spinon branches to the origin.) The ground state energy E0 of a constant force
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Figure 10.5: (a) Constant energy slices of the neutron scattering intensity
χ+−(k, ω) (see Appendix H below) for Jexp = 140 meV and J ′ = 0.07 Jexp in the
magnetic Brillouin zone. In the indicated energy range, only the lowest mode shown
in Figs. 10.3 and 10.4a contributes. We have replaced the δ-functions in frequency by
Lorentzians with half-width ∆ = 0.05 Jexp and averaged over both stripe orientations
(i.e., horizontal and vertical). (b) For direct comparison we show the experimental
data from Tranquadaet al.[70].
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F oscillator of linearly dispersing particles with velocity v, however, is proportional
to
√
Fv. (To see this, note that the spectrum must be invariant under the scaling

(gauge) transformation y → λy, ky → λ−1ky, F → λ−1F , v → λv, which reflects its
independence on the scale we use to measure lengths in our description. The spectrum
can hence only depend on the invariant Fv, which has units of energy squared.) This
implies ∆ ∝ J⊥ for the two weakly coupled chains and ∆ ∝ √

J ′J for the two weakly
coupled three-leg ladders with the additional assumption of static correlations stemming
from long range order.

To see why this gap ∆ corresponds to the saddle point energy ω(π, π) in the spin
wave analysis above, consider the transformation properties of our auxiliary model of
the two weakly coupled three-leg ladders shown in Fig. 10.7a under the parity reflection
x→ −x. The gapped spinon-spinon bound state is odd under this symmetry, which in
the language of momenta kx of the site centered stripe model corresponds to a shift of
π
4
. Since the ground state of the stripe model has order with kx = π ± π

4
, the gapped

excitation will correspond to kx = π. Following this line of reasoning, we can hence
understand the square root dependence (10.1) of ω(π, π) depicted in Fig. 10.6.

These considerations, however, are rather irrelevant to the ultimate goal of our studies,
which is to deepen our understanding of and to broaden our perspective on the intriguing
experimental results by Tranquada et al.[70].
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Figure 10.7: Auxiliary models of (a) two weakly coupled three-leg ladders and (b)
two weakly coupled spin 1

2
chains used in the discussion to understand the square

root dependence of ω(π, π) on J ′ depicted in Fig. 10.6.
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11 Conclusion

The second part of this thesis dealt with the high temperature superconducting com-
pound La2−xBaxCuO4 at a doping level of x = 1/8. In a narrow region about this doping
an anamolous suppression of superconductivity was observed and shown to be associ-
ated with charge and stripe order. Recent neutron scattering experiments focused on
the quantum magnetic excitations in this striped phase. The results were subsequently
interpreted in terms of a bond-centered stripe model, i.e. ferromegnetically coupled two
leg spin ladders.
In this thesis we proposed a site-centered spin model which consists of antiferromag-
netically coupled three-leg ladders. Whereas in both models the intra-ladder coupling
is determined by experiment and amounts to about J = 140meV, the crucial point ap-
pears to be the inter-ladder coupling J ′, which exhbibits different behaviour in case of
the bond-centered and site-centered spin model. Whereas in the site-cented stripe phase
each small but finite coupling J ′ leads to magnetic order in case of the bond-sitered
stripe phase a sufficiently large value is required to induce magnetic order. For the
bond-centered model studied previously by other groups this coupling was choosen in
a way to either establish accordance with the experimental data or, in other words, to
close the spin gap, which individual two-leg ladders obey.
The first question we have adressed in our work was whether the key assumption that
J ′ is large enough to induce magnetic order in case of the bond-centered stripe model
is valid. To this end we estimated the inter-ladder coupling as we compared small
clusters with frustrated and unfrustrated boundary conditions. We find that only the
site-centered model orders and hence conclude in favor of site- rather than bond-centered
stripes. The main part of the work consists of the developement of a fully consistent spin
wave theory of bond-operators describing the magnetically orderd three-leg ladders. As
far as physical observables are concerned, we focused on the magnetic excitations spec-
trum and the magnetic scattering intensity. In both cases we report excellent agreement
with the experiment.
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A The Pseudo-Fermion Representation

This appendix addresses the representation of a spin operator S in terms of fermionic
operators following Abrikosov [24, 25]. We restrict ourself to the case of S = 1/2. For
each eigenstate of Sz | ↑〉 and | ↓〉 one introduces a pair of fermionc operators f †γ and fγ
where γ =↑, ↓. These operators obey the usual fermionic anti-commutation relations

{fγ , f †γ′} = δγγ′ . (A.1)

The eigenstates of Sz are then obtained by acting with the creation operator f †γ on the
vacuum sate |0〉: |γ〉 = f †γ |0〉.
The components of the spin operator S is expressed as follows in the pseudo fermion
representation

S+ = f †↑f↓ , S− = f †↓f↑ , Sz =
1

2

(
f †↑f↑ − f †↓f↓

)
. (A.2)

Hence, Sx and Sy are given by

Sx =
1

2
(S− + S+) =

1

2

(
f †↓f↑ + f †↑f↓

)
(A.3)

Sy =
i

2
(S− − S+) =

i

2

(
f †↓f↑ − f †↑f↓

)
. (A.4)

In a compact form the spin operator S may thus be written as

S =
1

2

∑
γγ′

f †γ~τγγ′fγ′ (A.5)

with τ being the vector build by the three Pauli matrices

~τ =

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))T
. (A.6)

However, this representation has the disadvantage, that it provides four possibilities of
occupancy |0〉, | ↑〉, | ↓〉 and | ↑↓〉. Avoiding this displeasing circumstance is achieved by
adding a chemical potential λ to the Hamiltonian, i.e. a term

Hλ = λ
∑
γ

f †γfγ (A.7)

and then take the limit λ→∞ as described in more detail in Section 3.4.
Finally we list expressions for spin sums which occur during the analysis of the FRG
equations

τ iσσ′′τ
i
γγ′′τ

j
σ′′σ′τ

j
γ′′γ′ = τkσσ′τ

k
γγ′ + 3τ 0

σσ′τ
0
γγ′ (A.8)

τ iσσ′′τ
i
γ′′γ′τ

j
σ′′σ′τ

j
γγ′′ = −τkσσ′τkγγ′ + 3τ 0

σσ′τ
0
γγ′ . (A.9)
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B Grassmann Algebra

Grassman fields occur naturally while setting up a functional integral representation
for the partition function of a fermionic many particle system. This appendix deals
with the basic features of Grassman fields and integrations in this regard. Let ψk and
ψ̄k Grassman fields and ck, c

†
k be the corresponding fermionic destruction and creation

operators. The Grassmann fields obey the usual fermionic commutation relations

{ψk, ψk′} = δk,k′ . (B.1)

A fermion coherent state is defined via

ck|ψk〉 = ψk|ψk〉 = |0〉 − ψk|1〉 . (B.2)

The basic Grassmann integrals are given by∫
dψk1 = 0 (B.3)∫
dψkψk = 1 (B.4)∫

dψ̄kdψkψ̄kψk = −1 (B.5)∫
dψ̄kdψkψkψ̄k = 1 . (B.6)

Let Akk′ be an arbitrary but invertible complex matrix. Then the following Gaussian
identity is valid∫ (∏

k

dψ̄kdψk

)
e−ψ̄kAkk′ψk′eψ̄kηk+η̄kψk = det(A)eη̄kA

−1
kk′ηk′ . (B.7)

The following identity for the integral of a product of a polynomial with a Gaussian
directly corresponds to Wick’s theorem∫

D[ψ̄, ψ]ψi1 · · ·ψinψ̄jn · · · ψ̄j1e−(ψ̄,Aψ)∫
D[ψ̄, ψ]e−(ψ̄,Aψ)

=
∑
P

(−1)PA−1
iPn ,jn

· · ·A−1
iP1

,j1
(B.8)

where (ψ̄, Aψ) = ψ̄iAijψj . The proof of (B.8) may be obtained via the related formula

Z[η̄, η] =

∫
D[ψ̄, ψ]e−(ψ̄,Aψ)e(η̄,ψ)+(ψ̄,η)∫

D[ψ̄, ψ]e−(ψ̄,Aψ)
= e(η̄,A

−1η) (B.9)
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B Grassmann Algebra

by differentiating the left hand side and the right hand side of (B.9) separately and then
equating the two resulting expressions.
Finally we list the rule for a Grassmann delta function

δ(ψ̄1 − ψ̄2) =

∫
dψe(ψ̄1−ψ̄2)ψ . (B.10)
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C Derivation of the Functional Integral

This appendix gives a detailed derivation of the path integral representation of the Kondo
dot model in nonequilibrium, following the path integral representation for the Keldysh
contour in [26]. We start from the Kondo dot Hamiltonian equ. (3.7), which we write
in the following form

H =
∑
ασ x

c†ασx(−
∂2
x

2m
− µα)cασx − B

∑
σ

σf †σfσ + λ
∑
σ

f †σfσ

+
1

4

∑
αα′ σ σ′ γ γ′

Jα,α′~τσσ′~τγγ′c
†
ασ0cα′σ′0f

†
γfγ′ . (C.1)

For abbreviation we shall define

Vσσ′γγ′ =
1

4
~τσσ′~τγγ′ (C.2)

At time t = −∞ we take Hamiltonian to be

H =
∑
ασ x

c†ασx(−
∂2
x

2m
− µα)cασx +

∑
σ

(λ−Bσ) f †σfσ (C.3)

which is composed of two noninteracting leads and an uncoupled local spin. To setup
the functional integral we as usual coherent states for both the lead electron and the
pseudo fermion operators

cασx|ψ〉 = ψασx|ψ〉 (C.4)

fσ|φ〉 = φσ|φ〉 . (C.5)

The ψασk and φσ are Grassmann numbers (cf. App. B) and fulfill the closure relation

1 =

∫ ∏
ασx

dψ̄ασxdψασxe
− P

ασx
ψ̄ασxψασx|ψ〉〈ψ| (C.6)

1 =

∫ ∏
σ

dφ̄σdφσe
−P

σ
φ̄σφσ |φ〉〈φ| . (C.7)

The Lagrangian density in terms of the Grassmann fields reads

L(t) =
∑
ασx

ψ̄ασx(i∂t +
∂2
x

2m
+ µα)ψασx +

∑
σ

φ̄σ (i∂t − λ+Bσ)φσ (C.8)

−
∑

αα′ σ σ′ γ γ′
Jα,α′Vσσ′γγ′ψ̄ασ0φ̄γφγ′ψασ0 , (C.9)
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C Derivation of the Functional Integral

and the corresponding action S is obtained by integrating L over the Keldysh contour
CK

S[ψ̄, ψ; φ̄, φ] =

∫
CK

L(ψ̄, ψ; φ̄, φ, t)dt (C.10)

Therewith the partition function is given by

Z =

∫ (∏
ασxt

dψ̄ασx(t)dψασx(t)

)(∏
γt

dφ̄γ(t)dφγ(t)

)
eiS[ψ̄,ψ;φ̄,φ] . (C.11)

As a next step we split the action S into a free, quadratic part S0 and a quartic term
S1 which contains interactions

S0 =

∫
CK

dt

(∑
ασx

ψ̄ασx(t)(i∂t +
∂2
x

2m
+ µα)ψασx(t) +

∑
σ

φ̄σ(t) (i∂t − λ+Bσ)φσ(t)

)
= S0c + S0f (C.12)

S1 = −
∫
CK

dt

( ∑
αα′ σ σ′ γ γ′

Jα,α′Vσσ′γγ′ψ̄ασ0(t)φ̄γ(t)φγ′(t)ψα′σ′0(t)

)
(C.13)

The free part has been divided into a term for the lead electrons S0c and a term for the
pseudo fermions S0f . To avoid integration along the Keldysh contour we introduce the
following vector fields

ψ̄ασx(t) → (ψ̄+
ασx(t), ψ̄

−
ασx(t)) ψασx(t) →

(
ψ+
ασx(t)
ψ−ασx(t)

)
(C.14)

φ̄γ(t) → (φ̄+
γ (t), φ̄−γ (t)) φγ(t) →

(
φ+
γ (t)
φ−γ (t)

)
, (C.15)

where ψ+, φ+ resides on the upper and ψ−, φ− on the lower Keldysh contour, respectively
(cf. Fig. 4.2). That followed we perform a Fourier transformation which yields for the
electronic part S0c:

S0c =
∑
ασωk

ψ̄+
ασk(ω)(ω − ǫk + µα)ψ+

ασk(ω)−
∑
ασωk

ψ̄−ασk(ω)(ω − ǫk + µα)ψ−ασk(ω)

=
∑
ασωk

~̄ψασk(ω)(ω − ǫk + µα)τ3 ~ψασk(ω) (C.16)

with the abbreviation ∑
ασωk

=
∑
ασk

∫
dω . (C.17)

Since the action is local in space we may integrate out the spatial electronic degrees of
freedom. To this end we define the new fields

ψ̄±ασ(ω) := ψ̄±ασx=0(ω) =
∑
k

ψ̄±ασk(ω) ψ±ασ(ω) := ψ±ασx=0(ω) =
∑
k

ψ±ασk(ω) (C.18)
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C Derivation of the Functional Integral

and drone fields

ξ̄±ασ(ω) and ξ±ασ(ω) . (C.19)

With the allows us to write down a Grassmann delta function (cf. equ. (B.10))∫ (∏
ασω

dξ̄±ασ(ω)dξ±ασ(ω)
)
ei

P
ασω(ξ̄ασ(ω)(ψασ(ω)−P

k ψασk(ω))ei
P

ασω(ψ̄ασ(ω)−P
k ψ̄ασk(ω))ξασ (ω)

We now insert an integration over ψ̄ασ(ω), ψασ(ω) and ξ̄ασ(ω), ξασ(ω) and the Grassmann
delta function as a unity to obtain with the aid of equ. (B.7) (first integrate over
ψ̄ασk(ω), ψασk(ω) and then over the drone fields ξ̄ασ(ω), ξασ(ω)) the following effective
partition function

Z =

∫ (∏
ασω

dψ̄+
ασ(ω)dψ+

as(ω)dψ̄−ασ(ω)dψ−as(ω)
)(∏

γω

dφ̄+
γ (ω)dφ+

γ (ω)dφ̄−γ (ω)dφ−γ (ω)
)
ei(S0+S1) .

The crucial point is to find the correct inverse matrix of(
(ω − ǫk + µα) 0

0 −(ω − ǫk + µα) .

)
(C.20)

To this end we have to remind ourself that the continuous functional formulation is
an abbreviate notation, which represents a discrete version by means of discrete time
steps. Finally the continuous version is recovered as for the number of time steps on the
Keldysh contour 2N the limit N →∞ is taken [26, 46]. However, since one would face
the displeasure of inverting a 2N × 2N matrix in the discrete case, its easier to recall
that Green function are traces of time-ordered (with respect to the Schwinger-contour)
products of field operators, i.e. equ. (4.34) or (4.35), respectively. Finally we quote the
result for the interacting part S1 after Fourier transforming

S1 = −
∫ ∞

∞
dt

( ∑
αα′ σ σ′ γ γ′

Jα,α′Vσσ′γγ′ψ̄
+
ασ(t)φ̄+

γ (t)φ+
γ′(t)ψ

+
α′σ′(t)

)

+

∫ ∞

∞
dt

( ∑
αα′ σ σ′ γ γ′

Jα,α′Vσσ′γγ′ψ̄
−
ασ(t)φ̄−γ (t)φ+

γ′(t)ψ
−
α′σ′(t)

)

= − 1

2π

∫ ∞

∞
dωcdω

′
cdωfdω

′
fδ(ωc + ωf − ω′f − ω′c)× (C.21)

×
∑

αα′ σ σ′ γ γ′
Jα,α′Vσσ′γγ′ψ̄

+
ασ(ωc)φ̄

+
γ (ωf )φ+

γ′(ω
′
f)ψ

+
α′σ′(ω

′
c)

+
1

2π

∫ ∞

∞
dωcdω

′
cdωfdω

′
fδ(ωc + ωf − ω′f − ω′c)×

×
∑

αα′ σ σ′ γ γ′
Jα,α′Vσσ′γγ′ψ̄

−
ασ(ωc)φ̄

−
γ (ωf )φ−γ′(ω

′
f)ψ

−
α′σ′(ω

′
c)
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D Details on the Nonequilibrium FRG
for the Kondo Model

In this appendix provides the technical details and steps of the derivation of the fRG flow
equations for the Kondo dot model. In order to perform a Legendre transformation to
obtain the generating functional for the 1PI vertex function we again introduce the fields

χ̄ =
∂W
∂η

χ = −∂W
∂η̄

(D.1)

θ̄ =
∂W
∂ξ

θ = −∂W
∂ξ̄

, (D.2)

or after inverting

∂Γ

∂χ̄
= −η +G−1

0 χ
∂Γ

∂χ
= η̄ − χ̄G−1

0 (D.3)

∂Γ

∂θ̄
= −ξ + F−1

0 θ
∂Γ

∂θ
= ξ̄ − θ̄F−1

0 . (D.4)

By introducing the cutoff dependent bare lead electron propagator

GΛ
0 (ω) = G0(ω)Θ(|ω| − Λ) (D.5)

the quantities WΛ and ΓΛ acquire a Λ dependence. To begin with we take the derivate
of eW

Λ
= Gλ with respect to Λ and obtain after some straightforward algebra

dWΛ

dΛ
= −Tr

(
d(GΛ

0 )−1

dΛ
GΛ

0

)
+ iTr

(
d(GΛ

0 )−1

dΛ

∂2WΛ

∂η̄∂η

)
+ i

(
∂WΛ

∂η
,
d(GΛ

0 )−1

dΛ

∂WΛ

∂η̄

)
.(D.6)

From there the flow equation for the generating functional

ΓΛ is obtained as

dΓΛ

dΛ
= Tr

(
d(GΛ

0 )−1

dΛ
GΛ

0

)
− iTr

(
d(GΛ

0 )−1

dΛ

∂2WΛ

∂η̄η

)
. (D.7)
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The derivative ∂2WΛ

∂η̄η
can now again be expressed in terms of ΓΛ using textbook relations

[46]. If we denote

Γ̃Λ[χ̄, χ, θ̄, θ] = Γ[χ̄, χ, θ̄, θ]− i (χ̄, G−1
0 χ)− i (θ̄, F−1

0 θ)

= −W[η̄, η, ξ̄, ξ]− (η̄, χ)− (χ̄, η)− (ξ̄, θ)− (θ̄, ξ) , (D.8)

this relation becomes the following statement


Wη̄η −Wηη Wξ̄η −Wξη

−Wη̄η̄ Wηη̄ −Wξ̄η̄ Wξη̄

Wη̄ξ −Wηξ Wξ̄ξ −Wξξ

−Wη̄ξ̄ Wηξ̄ −Wξ̄ξ̄ Wξξ̄




Γ̃χ̄χ Γ̃χχ Γ̃θ̄χ Γ̃θχ
Γ̃χ̄χ̄ Γ̃χχ̄ Γ̃θ̄χ̄ Γ̃θχ̄
Γ̃χ̄θ Γ̃χθ Γ̃θ̄θ Γ̃θθ
Γ̃χ̄θ̄ Γ̃χθ̄ Γ̃θ̄θ̄ Γ̃θθ̄

 = 1 . (D.9)

Since the off diagonals of Γ̃ coincide with that of Γ one is let to

∂2WΛ

∂η̄η
=


Γ̃χ̄χ Γχχ Γθ̄χ Γθχ
Γχ̄χ̄ Γ̃χχ̄ Γθ̄χ̄ Γθχ̄
Γχ̄θ Γχθ Γ̃θ̄θ Γθθ
Γχ̄θ̄ Γχθ̄ Γθ̄θ̄ Γ̃θθ̄


−1

1,1

≡ (ΓΛ
∂2

)−1

1,1
. (D.10)

With the aid of the well known Dyson equations for the lead electrons and the pseudo
fermions

(GΛ)−1 = (GΛ
0 )−1 + γΛ

1,le (D.11)

(FΛ)−1 = (FΛ
0 )−1 + γΛ

1,pf , (D.12)
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D Details on the Nonequilibrium FRG for the Kondo Model

where γ1,le = −Σle and γ1,pf = −Σpf denote the proper self energy parts of the lead
electrons and the pseudofermions, respectively, equ. D.10 may be rewritten as

(ΓΛ
∂2)−1 =



i(GΛ)−1 0 0 0

0 −i(GΛ)−1 0 0
0 0 i(FΛ)−1 0
0 0 0 −i(FΛ)−1



+


Γχ̄χ − iγΛ

1,le Γχχ Γθ̄χ Γθχ
Γχ̄χ̄ Γχχ̄ + iγΛ

1,le Γθ̄χ̄ Γθχ̄
Γχ̄θ Γχθ Γθ̄θ − iγΛ

1,pf Γθθ
Γχ̄θ̄ Γχθ̄ Γθ̄θ̄ Γθθ̄ + iγΛ

1,pf



−1

=



i(GΛ)−1 0 0 0

0 −i(GΛ)−1 0 0
0 0 i(FΛ)−1 0
0 0 0 −i(FΛ)−1


1−


−iGΛ 0 0 0

0 iGΛ 0 0
0 0 −iFΛ 0
0 0 0 iFΛ

×

×


Γχ̄χ − iγΛ

1,le Γχχ Γθ̄χ Γθχ
Γχ̄χ̄ Γχχ̄ + iγΛ

1,le Γθ̄χ̄ Γθχ̄
Γχ̄θ Γχθ Γθ̄θ − iγΛ

1,pf Γθθ
Γχ̄θ̄ Γχθ̄ Γθ̄θ̄ Γθθ̄ + iγΛ

1,pf




−1

(D.13)

=

∞∑
n=0



−iGΛ 0 0 0

0 iGΛ 0 0
0 0 −iFΛ 0
0 0 0 iFΛ




Γχ̄χ − iγΛ
1,le Γχχ Γθ̄χ Γθχ

Γχ̄χ̄ Γχχ̄ + iγΛ
1,le Γθ̄χ̄ Γθχ̄

Γχ̄θ Γχθ Γθ̄θ − iγΛ
1,pf Γθθ

Γχ̄θ̄ Γχθ̄ Γθ̄θ̄ Γθθ̄ + iγΛ
1,pf



n

×

×


iGΛ 0 0 0

0 −iGΛ 0 0
0 0 iFΛ 0
0 0 0 −iFΛ

 .

Therewith the flow for ΓΛ can be rewritten as

dΓΛ

dΛ
= Tr

(
d(GΛ

0 )−1

dΛ
GΛ

0

)
− Tr

(
GΛd(GΛ

0 )−1

dΛ
R1,1

)
(D.14)

where R1,1 denotes the upper left corner of the matrix

R =
∞∑
n=0



−iGΛ 0 0 0

0 iGΛ 0 0
0 0 −iFΛ 0
0 0 0 iFΛ




Γχ̄χ − iγΛ
1,le Γχχ Γθ̄χ Γθχ

Γχ̄χ̄ Γχχ̄ + iγΛ
1,le Γθ̄χ̄ Γθχ̄

Γχ̄θ Γχθ Γθ̄θ − iγΛ
1,pf Γθθ

Γχ̄θ̄ Γχθ̄ Γθ̄θ̄ Γθθ̄ + iγΛ
1,pf



n

(D.15)
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E Useful Relations and Formulas

This Appendix contains a collection of helpful relations for the Bose and the Fermi
functions and integrals in this regard. To begin with first recall the Fermi and Bose
functions

nF (x) =
1

eβx + 1
, nB(x) =

1

eβx − 1
. (E.1)

where β = 1/T0. For a, b ∈ R it holds∫ ∞

−∞
nF (x+ a) (1− nF (x + b)) dx = (a− b)

1

eβ(a−b) − 1
(E.2)

= (a− b)nB(a− b) .

If a− b ≡ ∆ < 0 this may be written as |∆| (1 + nB(|∆|)).
For a− b = 0 equ. (E.2) reduces to

∞∫
−∞

nF (x) (1− nF (x)) dx =

∞∫
−∞

nF (x)nF (−x) dx =
1

β
(E.3)

Further useful relation for the Fermi and Bose functions.

1− 2nF (x) = tanh(βx/2) (E.4)

1 + nB(−x) = −nB(x) (E.5)

nB(x)− nB(−x) = coth(βx/2) (E.6)

nF (x) + nF (−x) = 1 (E.7)

Finally we list some limits

lim
x→0

x coth
(x
a

)
= a (E.8)

lim
x→0

xnB(x) = T (E.9)

(E.10)
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F Matrix Elements of the Individual
Spin Operators on Rungs

In Sec. 9.2 we have written out the spin operators ŝτα and Ŝτα with τ = +,−, z on the
individual sites α = 1, 2, 3 on rungs belonging to sublattice A and B, respectively,

ŝτα =
∑
µ,ν

sτα,µν |µ〉 〈ν|A, Ŝτα =
∑
µ,ν

Sτα,µν |µ〉 〈ν|B, (F.1)

in the basis sets MA and MB specified in (9.6) and (9.11). The matrix elements

sτα,µν = 〈µ|ŝτα |ν〉A Sτα,µν = 〈µ|Ŝτα |ν〉B , (F.2)

are explicitly given by:

s+
1 =



0 0 0 0 −u+
√

2v√
6

0 0 0
−2
√

2u+v
3
√

2
0 − 1√

3
0 0 u+

√
2v

3
√

2
0 0

0 0 0 0 1√
2

0 0 0

−
√

2u+v√
6

0 0 0 0 −u+
√

2v√
6

0 0

0 0 0 0 0 0 0 0

0 0 0 0
√

2u+v√
6

0 0 0
u+2

√
2v

3
√

2
0 − 1√

6
0 0 2

√
2u−v

3
√

2
0 0

0 − 1√
6

0 1√
2

0 0 1√
3

0


=
(
s−1
)†

= S−1 =
(
S+

1

)†
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s+
2 =



0 0 0 0
√

2u+v√
3

0 0 0
u−√2v

3
0 0 0 0 −

√
2u+v
3

0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 u−√2v√
3

0 0 0
−√2u+2v

3
0 0 0 0 2u+

√
2v

3
0 0

0
√

2
3

0 0 0 0 1√
3

0


=
(
s−2
)†

= S−2 =
(
S+

2

)†

s+
3 =



0 0 0 0 −u+
√

2v√
6

0 0 0
−2
√

2u+v
3
√

2
0 1√

3
0 0 u+

√
2v

3
√

2
0 0

0 0 0 0 − 1√
2

0 0 0√
2u+v√

6
0 0 0 0 u−√2v√

6
0 0

0 0 0 0 0 0 0 0

0 0 0 0
√

2u+v√
6

0 0 0
u+2

√
2v

3
√

2
0 1√

6
0 0 2

√
2u−v

3
√

2
0 0

0 − 1√
6

0 − 1√
2

0 0 1√
3

0


=
(
s−3
)†

= S−3 =
(
S+

3

)†

sz1 =



−(
√

2u+v)
2

6
0 −u+

√
2v

2
√

3
0 0 −√2u2+uv+

√
2v2

6
0 0

0 1
3

0 1
2
√

3
0 0 1

3
√

2
0

−u+
√

2v
2
√

3
0 0 0 0

√
2u+v
2
√

3
0 0

0 1
3
√

2
0 0 0 0 − 1√

6
0

0 0 0 0 −1
2

0 0 0

−√2u2+uv+
√

2v2

6
0

√
2u+v
2
√

3
0 0 −(u−

√
2v)

2

6
0 0

0 1
3
√

2
0 − 1√

6
0 0 1

6
0

0 0 0 0 0 0 0 1
2


= −Sz1

sz2 =



u2+4
√

2uv−v2
6

0 0 0 0
√

2u2−uv−√2v2

3
0 0

0 −1
6

0 0 0 0 −
√

2
3

0
0 0 −1

2
0 0 0 0 0

0 0 0 1
2

0 0 0 0
0 0 0 0 −1

2
0 0 0√

2u2−uv−√2v2

3
0 0 0 0 −u2−4

√
2uv+v2

6
0 0

0 −
√

2
3

0 0 0 0 1
6

0
0 0 0 0 0 0 0 1

2


= −Sz2
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sz3 =



−(
√

2u+v)
2

6
0 u−√2v

2
√

3
0 0 −√2u2+uv+

√
2v2

6
0 0

0 1
3

0 − 1
2
√

3
0 0 1

3
√

2
0

u−√2v
2
√

3
0 0 0 0 −

√
2u+v
2
√

3
0 0

0 − 1
3
√

2
0 0 0 0 1√

6
0

0 0 0 0 −1
2

0 0 0

−√2u2+uv+
√

2v2

6
0 −

√
2u+v
2
√

3
0 0 −(u−

√
2v)

2

6
0 0

0 1
3
√

2
0 1√

6
0 0 1

6
0

0 0 0 0 0 0 0 1
2


= −Sz3
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G Analysis of Ẽ0, Ĥa0, Ĥc0, Ĥa1, and
Ĥc2

In this appendix, we expand and analyze the terms in the Hamiltonian (9.25) which
have no influence on the low energy spectrum in this appendix. These terms, however,
are required for the evaluation of the ground state energy.

The Bare Ground State Energy Ẽ0

The bare ground state energy Ẽ0 accounts for the constant terms in the Hamiltonian
(9.16). It is given by Ẽ0 =

∑
k 2ε̃0 = Nε̃0 with

ε̃0 =
1

2
− 3

2
u2 + J

3∑
α=1

szα,11S
z
α,11 + J ′ sz3,11S

z
1,11

= −1.45842. (G.1)

Evaluation of the Spectrum of Ĥa0

The term Ĥa0 is given by

Ĥa0 =
∑
k

[
εa0
(
a†0,ka0,k + A†0,kA0,k

)
+ ξa0,k

(
a†0,k + a0,k

)(
A†0,k + A0,k

)]
, (G.2)

with

εa0 = −1

2
+

3

2
u2 − 2J

3∑
α=1

szα,11S
z
α,11 − 2J ′sz3,11S

z
1,11,

(G.3)

ξa0,k = J ′ cos(4kx) s
z
3,13S

z
1,13 + J cos ky

3∑
α=1

szα,13S
z
α,13.

(G.4)

To a reasonable approximation, we obtain low energy modes described by Ĥa0 by diag-
onalizing (G.2) at each point in k space in the reduced Hilbert space spanned by

|0̃〉, a†0|0̃〉, A†0|0̃〉, and a†0A
†
0|0̃〉,
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Figure G.1: Modes described by Ĥa0 (blue), Ĥc0 (green), Ĥa1 (red), Ĥc−2 (black)
plotted as cuts (a) along (kx, π) and (b) along (π, ky) using Jexp = 140 meV.

where

|0̃〉 ≡
∏
i∈A

|b̃−1/2〉i ·
∏
j∈B

|b̃1/2〉j (G.5)

is the bare vacuum unrenormalized by spin wave theory. This yields two almost disper-
sionless modes

(ωa0,k)1/2 =
√
ε2
a0 + ξ2

a0,k ± ξa0,k, (G.6)

with energies of about εa0 = 2.07, or 290 meV if we assume Jexp. = 140 meV. Cuts of

the dispersions of these two modes are shown in blue (color online) in Fig. G.1. Ĥa0 also
gives rise to a contribution

Ea0 =
∑
k

(
εa0 −

√
ε2
a0 + ξ2

a0,k

)
= −0.00008N (G.7)

to the ground state energy. (Here N denotes the number of rungs, which implies that
the sum extends over N

2
values for k.)

Evaluation of the Spectrum of Ĥc0

A similar analysis of

Ĥc0 =
∑
k

[
εc0
(
c†0,kc0,k + C†

0,kC0,k

)
+ ξc0,k

(
c†0,k + c0,k

)(
C†

0,k + C0,k

)]
, (G.8)
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with

εc0 =
3

2

(
u2 − v2

)
+ 2J

3∑
α=1

szα,11(Szα,66 − Szα,11)

+ 2J ′ sz3,11(Sz1,66 − Sz1,11), (G.9)

ξc0,k = J ′ cos(4kx) s
z
3,16S

z
1,16 + J cos ky

3∑
α=1

szα,16S
z
α,16,

(G.10)

yields two additional, almost dispersionless modes

(ωc0,k)1/2 =
√
ε2
c0 + ξ2

c0,k ± ξc0,k, (G.11)

with energies of about εc0 = 2.71, or 380 meV, which is shown in green (color online) in
Fig. G.1. Ĥc0 also gives rise to a contribution

Ec0 =
∑
k

(
εc0 −

√
ε2
c0 + ξ2

c0,k

)
= −0.00048N (G.12)

to the ground state energy.

Evaluation of the Spectrum of Ĥa1

The term

Ĥa1 =
∑
k

[
εa1
(
a†1,ka1,k + A†−1,kA−1,k

)
+ ξa1,k

(
a†1,kA

†
−1,k + a1,kA−1,k

)]
, (G.13)

with εa1 = εa0 as given in (G.3) and

ξa1,k = J ′ cos(4kx)s
+
3,41S

−
1,41 + J cos ky

3∑
α=1

s+
α,41S

−
α,41,

(G.14)

can be diagonalized by a Bogoliubov transformation. We obtain

Ĥa1 =
∑
k

[
ωa1,k

(
α†1,kα1,k + α†2,kα2,k

)
+ ωa1,k − εa1

]
(G.15)

with

ωa1,k =
√
ε2
a1 − ξ2

a1,k. (G.16)

It yields a two-fold degenerate, weakly dispersing mode with an energy of about 1.95,
or 273 meV, which is shown in red (color online) in Fig. G.1, as well as a contribution

Ea1 =
∑
k

(
ωa1,k − εa1

)
= −0.05363N (G.17)

to the ground state energy.
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Evaluation of the Spectrum of Ĥc2

Finally,

Ĥc2 =
∑
k

ωc2
(
c†2,kc2,k + C†

−2,kC−2,k

)
(G.18)

with

ωc2 =
3

2
u2 + 2J

3∑
α=1

szα,11(S
z
α,88 − Szα,11)

+ 2J ′ sz3,11(S
z
1,88 − Sz1,11), (G.19)

describes a two-fold degenerate, completely dispersionless mode with an energy of ωc2 =
3.12, or 436 meV.

Ground State Energy

To evaluate the ground state energy E0, we collect the contributions from (G.1), (G.7),
(G.12), (G.17), and (9.42). This yields

E0 = −1.73378N, (G.20)

where N is the number of rungs. This number is in excellent agreement with what we
would expect from the results for small clusters of 12, 18 and 24 sites with unfrustrated
boundary conditions.
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H Matrix Elements

The dynamical structure factor measured in neutron scattering is given by

χ+−(k, ω) =
∑
n

|〈0|Ŝ+
k |n〉 |2δ(ω − ωn), (H.1)

where |0〉 is the ground state and the sum extends over all excited states |n〉 with energy
ωn, and

Ŝ+
k =

∑
l

e−ikrlŜ+
l (H.2)

is the Fourier transform of the spin raising operator Ŝl at lattice site l with respect to
original lattice, i.e., the sum runs over all lattice sites. This implies

ri,α = Ri +

(
α− 2

0

)
, rj,α = Rj +

(
α− 2

0

)
, (H.3)

with Ri and Rj as indicated in Fig. 9.3 for sublattices A and B, respectively. In
analogy to Fourier transforms of the bosonic creation and annihilation operators (9.22)
and (9.23), we further Fourier transforms of the spin operators with respect to the rung
sublattices A and B according to

ŝ+
k,α =

√
2

N

∑
i∈A

e−ikRi ŝ+
i,α, Ŝ+

k,α =

√
2

N

∑
j∈B

e−ikRj Ŝ+
j,α, (H.4)

and express the operator (H.2) in terms of them:

Ŝ+
k =

√
2

N

{∑
i∈A

∑
α

e−ikri,α ŝ+
i,α +

∑
j∈B

∑
α

e−ikrj,αŜ+
j,α

}
=
∑
α

e−ikx(α−2)s+
k,α +

∑
α

e−ikx(α−2)S+
k,α

=
∑
α

e−ikx(α−2)
(
ŝ+

k,α + Ŝ+
k,α

)
(H.5)

As we are interested only in the contribution of the low-energy mode ωk,1 to χ+−(k, ω),
the only matrix element we need to evaluate is∣∣〈0|Ŝ+

k |γ1,k〉
∣∣2 =

∣∣〈0|Ŝ+
k γ

†
1,k|0〉

∣∣2 (H.6)
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Figure H.1: Numerical evaluation of the matrix elements |〈0|Ŝ+
k |γ1,k〉|2 for the

entire Brillouin zone k ∈ [0, 2π]× [0, 2π]. Note the strong enhancement aground the
antiferromagnetic ordering wave vectors k = (π ± π/4, π).

for all values of k. (The second low-energy mode ωk,2, which is degenerate with the first,
does not contribute to (H.6) and hence to χ+−(k, ω), but instead yields a contribution
to χ−+(k, ω) which is identical to the one we calculate below.) Keeping only terms
which contribute to this mode and are linear in the expansion (9.13) of ŝ+

α , we obtain
for sublattice A

ŝ+
α = s+

α,21b
†
1 + s+

α,71c
†
1 + s+

α,15c−1

or in Fourier space with (H.4), (9.22), and (9.27)

ŝ+
k,α = s+

α,21b
†
1,k + s+

α,71c
†
1,k + s+

α,15c−1,−k =
(
0, s+

α,21, 0, s
+
α,71, 0, s

+
α,15

) ·Ψk (H.7)

and similarly with (9.15) and (9.23) for B

Ŝ+
k,α = S+

α,12B−1,k + S+
α,17C−1,k + S+

α,51C
†
1,−k =

(
S+
α,12, 0, S

+
α,17, 0, S

+
α,51, 0

) ·Ψk. (H.8)

We then use Ψk = MkΓk and (9.41) to express ŝ+
k,α and Ŝ+

k,α in terms of γi,k and γ†i,k,

recall S+
α,ji = s+

α,ij, and finally obtain

∣∣〈0|Ŝ+
k |γ1,k〉

∣∣2 =
∣∣∣ 3∑
α=1

e−ikx(α−2)
{
s+
α,21(Mk,11 + Mk,21)

+ s+
α,71(Mk,31+Mk,41) + s+

α,15(Mk,51 + Mk,61)
}∣∣∣2

(H.9)

Note that χzz(k, ω) = 0 as there is no term linear in b†1, c†1, or c−1 in the expansion (9.13)
for ŝzα.
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I Staggered Magnetization

The staggered magnetizations on the outer and inner chains of our three-leg ladders,
−〈ŝz1〉 = −〈ŝz3〉 = 〈Ŝz1〉 =〉Ŝz3〈 and 〈ŝz2〉 = −〈Ŝz2〉, respectively, are given in by the the
bare values szα,11 = −Szα,11 with α = 1, 2, 3 minus corrections from the individual terms
in (9.25). The bare expectation values are explicitly given by

〈ŝz2〉bare = sz2,11 = 0.4265 (I.1)

〈ŝz3〉bare = sz3,11 = −0.4633 (I.2)

To begin with we focus on corrections of these bare values due to the part Ĥb1,c1,c−1 of
the Hamiltonian. From equ. 9.13 the relevant part of ŝzα belonging the this subspace is
singled out as

ŝzα = b†1b1
(
szα,22 − szα,11

)
+ c†1c1

(
szα,77 − szα,11

)
(I.3)

+ c†−1c−1

(
szα,55 − szα,11

)
+
(
b†1c1 + c†1b1

)
szα,27 .

If we define

ρα,1 =
(
szα,22 − szα,11

)
ρα,2 =

(
szα,77 − szα,11

)
(I.4)

ρα,3 =
(
szα,55 − szα,11

)
,

and then express the operators b1, c1, c−1 via Ψ = MΓ through the γ operators and
furthermore note that γj |0〉 = 〈0|γ†j = 0 and 〈0|γiγ†j |0〉 = δij the corrections from

Ĥb1,c1,c−1 to the bare value are written as

〈ŝzα〉corr,Ĥb1,c1,c−1
=

2

N

∑
k

{(
ρα,1Mk,21M

T
k,12 + ρα,2Mk,41M

T
k,14 + ρα,3Mk,62M

T
k,26

+ szα,27
[
Mk,21M

T
k,14 +Mk,41M

T
k,12

] )
+
(
ρα,1Mk,23M

T
k,32 + ρα,2Mk,43M

T
k,34 + ρα,3Mk,64M

T
k,46

+ szα,27
[
Mk,23M

T
k,34 +Mk,43M

T
k,32

] )
+
(
ρα,1Mk,26M

T
k,62 + ρα,2Mk,46M

T
k,64 + ρα,3Mk,65M

T
k,56

+ szα,27
[
Mk,26M

T
k,64 +Mk,46M

T
k,62

] )}
.
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I Staggered Magnetization

This expression is arranged such that the first line corresponds to corrections originating
from the lowest eigenmodes γ1, γ2, whereas the second line refers to corrections from the
modes γ3, γ4 followed by corrections from modes generated by γ5, γ6 in the third line. In
total the corrections amount out

〈ŝz2〉corr,Ĥb1,c1,c−1
= −0.1075 (I.5)

〈ŝz3〉corr,Ĥb1,c1,c−1
= 0.1773 (I.6)

For completeness we single out these individual correction contributions

〈ŝz2〉corr,γ1,γ2 = −0.0864 〈ŝz3〉corr,γ1,γ2 = 0.1752

〈ŝz2〉corr,γ3,γ4 = −0.0210 〈ŝz3〉corr,γ3,γ4 = 0.0018

〈ŝz2〉corr,γ5,γ6 = −0.0001 〈ŝz3〉corr,γ5,γ6 = 0.0003 .

For sake of simplicity we have left out the subscript Ĥb1,c1,c−1. As expected the major
contributions stem from the lowest mode.
An analogous consideration may be achieved for the sector Ĥa1. In this case we have
to subject the operators to a Bogoliubov transformation as in case of Ĥb1,c1,c−1 with

Ψa = (A−1, a
†
1)T . The corresponding transformation matrix Ma is two dimensional. The

only relevant term in this subspace to ŝzα is −szα,11a†1a1 (no contribution from the mixed
terms a1b1 and a1c1) which gives rise to the correction

〈ŝzα〉corr,Ĥa1
= − 2

N

∑
k

szα,11Ma,k,21M
T
a,k,12 (I.7)

Hence we obtain the corrections

〈ŝz2〉corr,Ĥa1
= −0.0117 〈ŝz3〉corr,Ĥa1

= 0.0127 .

Finally we have a negligible correction from the Ĥa0 and Ĥc0 sectors which are given by

〈ŝzα〉corr,Ĥa0
=

(−szα,11) 2

N

∑
k

1

N2
a0,k

(I.8)

〈ŝzα〉corr,Ĥc0
=

(
sα,66 − szα,11

) 2

N

∑
k

1

N2
c0,k

(I.9)

where

N2
ao,k =

ǫa0 +
√
ǫ2a0 + ξ2

a0,k

ξa0,k

2

+ 1 (I.10)

N2
ao,k =

ǫc0 +
√
ǫ2c0 + ξ2

c0,k

ξc0,k

2

+ 1 (I.11)
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with ǫa0 and ξa0,k as given in (G.3) and ǫc0 and ξc0,k as given in (G.9). These corrections
explicitly read

〈ŝz2〉corr,Ĥa0
= −0.000033 (I.12)

〈ŝz3〉corr,Ĥa0
= 0.000017 (I.13)

〈ŝz2〉corr,Ĥc0
= −0.000076 (I.14)

〈ŝz3〉corr,Ĥc0
= 0.000082 (I.15)

and may be safely neglected. Hence, in total we obtain

〈ŝz2〉 = 0.3073 〈ŝz3〉 = −0.2733 . (I.16)
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Kondo dot: Decoherence effects. Phys. Rev. B, 70:155301, 2004.

[57] C. Honerkamp. Electron-doping versus hole-doping in the 2d t-t′ hubbard model.
The European Physical Journal B, 21:81, 2001.

[58] U. Larsen. Impurity Spin Lifetime and Electrical Resistivity in Dilute Magnetic
Alloys. In Proceedings of the International Conference of Magnetism ICM-73, vol-
ume V, page 88, 1974.

[59] U. Larsen. Resistance maximum in spin glasses. Phys. Rev. B, 14:4356, 1976.

[60] R. Bulla, Th. Pruschke, and T. Costi. Numerical renormalization group method for
quantum impurity systems. Rev. Mod. Phys., 80:395, 2008.

[61] J. von Delft. Quantum dots as tunable kondo impurities. Science, 289:2064, 2000.

[62] T.A. Costi, A. C. Hewson, and V. Zlatic. Transport coefficients of the anderson
model via the numerical renormalization group. Journal of Physics: Condensed
Matter, 6:2519, 1994.

136



Bibliography

[63] L. H. Yu, Z. K. Keane, J. W. Ciszek, L. Cheng, J. M. Tour, T. Baruah, M. R. Ped-
erson, and D. Natelson. Kondo resonances and anomalous gate dependence in the
electrical conductivity of single-molecule transistors. Phys. Rev. Lett., 95:256803,
2005.

[64] K. Nagaoka, T. Jamneala, M. Grobis, and M. F. Crommie. Temperature dependence
of a single kondo impurity. Phys. Rev. Lett., 88:077205, 2002.

[65] A. Schiller and S. Hershfield. Exactly solvable nonequilibrium kondo problem. Phys.
Rev. B, 51:12896, 1995.

[66] J. G. Bednorz and K. A. Müller. Possible high-tc superconductivity in the Ba-La-
Cu-O system. Zeitschrift für Physik B Condensed Matter, 64(2):189, 1986.

[67] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S.-W.
Cheong, and Z. Fisk. Spin waves and electronic interactions in La2CuO4. Phys.
Rev. Lett., 86:5377, 2001.

[68] Sudip Chakravarty, Bertrand I. Halperin, and David R. Nelson. Low-temperature
behavior of two-dimensional quantum antiferromagnets. Phys. Rev. Lett., 60:1057,
1988.

[69] A. R. Moodenbaugh, Youwen Xu, M. Suenaga, T. J. Folkerts, and R. N. Shelton.
Superconducting properties of La2−xBaxCuO4. Phys. Rev. B, 38:4596, 1988.

[70] J. Tranquada, H. Woo, T. Perring, H. Goka, G. Gu, G. Xu, M. Fujita, and K. Ya-
mada. Quantum magnetic excitations from stripes in copper oxide superconducters.
Nature, 429:534, 2004.

[71] V. J. Emery, S. A. Kivelson, and O. Zachar. Spin-gap proximity effect mechanism
of high-temperature superconductivity. Phys. Rev. B, 56:6120, 1997.

[72] V. J. Emery, S.A. Kivelson, and J.M. Tranquada. Stripe phases in high-temperature
superconductors. Proc. Natl. Acad. Sci. U.S.A., 96:8814, 1999.

[73] Jakub Tworzyd lo, Osman Y. Osman, Coen N. A. van Duin, and Jan Zaanen. Quan-
tum magnetism in the stripe phase: Bond versus site order. Phys. Rev. B, 59:115,
1999.

[74] Subir Sachdev. Colloquium: Order and quantum phase transitions in the cuprate
superconductors. Rev. Mod. Phys., 75(3):913, 2003.

[75] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Ka-
pitulnik, and C. Howald. How to detect fluctuating stripes in the high-temperature
superconductors. Rev. Mod. Phys., 75:1201, 2003.

[76] M. Vojta and T. Ulbricht. Magnetic excitations in a bond-centered stripe phase:
Spin waves far from the semiclassical limit. Phys. Rev. Lett, 93:127002, 2004.

137



Bibliography

[77] G. S. Uhrig, K. Schmidt, and M. Grüninger. Unifying magnons and triplons in
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