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Abstract
In this paper two different texture-dependent material models based on the
Taylor assumption are discussed and applied to the simulation of deep drawing
operations of aluminium. From the numerical point of view, large-scale FE
computations based on the Taylor model are very time-intensive and storage-
consuming if the crystallographic texture is approximated by several hundred
discrete crystals. Furthermore, the Taylor model in its standard form, which is
based on discrete crystal orientations, has the disadvantage that the anisotropy
is significantly overestimated if only a small number of crystal orientations
are used. We quantitatively analyse this overestimation of anisotropy and
suggest two Taylor-type models which allow us to reduce the sharpness of
the crystallite orientation distribution function related to single crystals or
texture components. One model is an elastic-viscoplastic Taylor model based
on discrete orientations. The sharpness is reduced by modelling the isotropic
background texture by an isotropic material law. The other model is a rigid-
viscoplastic material one, which is based on continuous model functions on the
orientation space. This model allows for a direct incorporation of the scattering
around an ideal texture component since the model contains the half-width
as a microstructural parameter which can be biased. These models are used
to compute yield stresses, R values and earing profiles. The predictions are
compared with experimental data.

1. Introduction

Ductile polycrystalline metals subjected to forming processes usually show anisotropic
microstructures. A typical feature of an anisotropic microstructure is that the distributions of
the grain orientation and the grain shape are strongly direction-dependent. These anisotropies
induce direction-dependent yield loci and contraction ratios. Furthermore, the development
of ears during deep drawing processes is commonly observed. Due to prior processing,
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the anisotropy may already exist before the forming operation; otherwise, it is induced
by the mechanical process. In almost all the cases the anisotropy of the microstructure
evolves during deformation. It is this evolution of anisotropy which makes the application of
phenomenological material models questionable since they usually do not take into account this
evolution. In order to perform reliable forming simulations, micromechanically based material
models offer the opportunity to incorporate microstructural information directly into the
material model and to establish a sound physical basis for the model. Taylor-type polycrystal
models (Taylor 1938, van Houtte 1988, Mathur and Dawson 1989, Bronkhorst et al 1992,
Miehe et al 1999) or self-consistent schemes (see, e.g. Molinari et al 1987) belong to this
class of micromechanically based material models. Although computationally much more
expensive than phenomenological models, they are nowadays more and more used in the
integration points of finite elements in order to bridge the gap between the grain-scale and the
macro-scale.

If the two-point statistics of crystal orientations is isotropic then the crystallite orientation
distribution function (codf) represents the dominant aspect of the microstructure. The evolution
of the codf can be modelled most easily by Taylor-type models. From the numerical point
of view, large-scale computations based on the Taylor model are very time-intensive and
storage-consuming if the crystallographic texture is approximated by several hundred discrete
crystals. As an alternative,  Raabe et  al (see, e.g. 2002) or Raabe and Roters (2004) introduced
the so-called texture component crystal plasticity method defined by the simplification that each
texture component is described by only one discrete crystal orientation. If a texture component
is modelled in such a way, the mechanical anisotropy is significantly overestimated. Raabe
et al suggested that in order to reduce this overestimation, the crystal orientations used in the
finite element simulation should—from integration point to integration point—scatter around
the mean orientations of the texture components in order to take into account the scattering
of the crystallites around the ideal components. Such an approach has the disadvantage that
only the scattering is taken into account on average, i.e. if the whole sample is considered.
Locally the mechanical anisotropy is still overestimated. Furthermore, it is noted that an
approach based on discrete random distributions does not generally ensure a reproducibility of
the numerical results. In the present work we suggest two Taylor-type models which allow for
the reduction of this overestimation in different ways. One of the two models discussed here
is an elastic–viscoplastic model based on discrete crystal orientations (discrete Taylor (DT)
model). The model is enhanced by an isotropic constitutive equation modelling the isotropic
part of the texture (discrete Taylor model with isotropic background DT(I) texture). The other
model is an (elastic-)rigid-viscoplastic model based on continuous model functions on the
orientation space (continuous Taylor (CT) model). The model functions permit an explicit
modelling of the scattering around texture components.

The outline of the paper is as follows. In section 2 we summarize the constitutive equations
of the two Taylor models used in this work. In section 3 we discuss the identification of
the material parameters and texture components. In section 4 we discuss several numerical
examples in detail. The first example compares the predictions of the two models DT and
CT in the case of a model texture (rolling) which is approximated by a large number of
crystal orientations by the DT model and by a small number of texture components by the CT
model. In the second example we compare the predictions of the models DT and CT for an
experimental cube texture which is approximated by a small number of crystal orientations
by the DT and CT models. This example clearly shows that the DT model in its formulation,
which is commonly used in the literature, overestimates the mechanical anisotropy by an
unacceptable amount. The CT model is shown to offer a quite natural way of including
the scattering around ideal texture components and, thus, of reducing the overestimation of
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anisotropy, which is an inherent property of the Taylor model. This is done by biasing the half-
width values of the model functions describing the texture components. In the third example we
introduce the aforementioned modification of the DT model which also allows for reducing the
aforementioned overestimation of anisotropy. The basic idea of the modification is to describe
the scattering around the texture components in the case of a discrete approximation of the
codf by an isotropic material model instead of using a large number of crystal orientations. In
the fourth example we analyse the yield stresses, the R values and the earing profiles which are
predicted by the two models for a four-component texture in an Al automotive sheet sample.
The numerical results are compared with experimental data.

Notation. Throughout the text a direct tensor notation is preferred. The scalar product,
the dyadic product and the Frobenius norm are denoted by A · B = tr(ATB), A ⊗ B and
‖A‖ = (A · A)1/2 = (AijAij )

1/2, respectively. Symmetric and traceless tensors are designated
by a prime, e.g. A′. The symmetric and the skew part of a 2nd-order tensor A are denoted by
sym(A) and skw(A), respectively. The set of proper orthogonal tensors is specified by SO(3).
A superimposed dot denotes the material time derivative. A superimposed bar indicates that
the quantity is an effective one on the macroscale.

2. Material models

2.1. Elastic-viscoplastic model

2.1.1. Elastic law. For the formulation of the geometrically non-linear elastic–viscoplastic
material model we introduce the multiplicative decomposition of the deformation gradient F
into an elastic part Fe and a plastic part Fp (see, e.g. Mandel 1974):

F = FeFp. (1)

Plastic deformations are assumed to be volume-preserving (det(Fp) = 1). In the context of rate-
independent behaviour the multiplicative decomposition can be derived based on the concept
of material isomorphisms (Bertram 1999). The multiplicative decomposition is inherently
non-unique. For a discussion of this issue see, for example, Bertram (2005).

The elastic strains are assumed to be small. Therefore, each linear relation between a
conjugate pair of generalized stress and strain measures is applicable for the description of
elastic behaviour. Here we assume a linear relation between the 2nd Piola–Kirchhoff stress
tensor and Green’s strain tensor in the unloaded configuration. In an Eulerian setting this
assumption implies that the Kirchhoff stress tensor τ is given as a linear function of the
Almansi strain tensor EA

e (see, e.g. Böhlke and Bertram 2001, Böhlke 2003):

τ = Ce[EA
e ], EA

e = 1
2 (I − F−T

e F−1
e ), (2)

with I being the unit tensor. The Kirchhoff stress tensor τ is defined by the Cauchy stress
tensor σ and the determinant J of F through τ = Jσ. The Eulerian stiffness operator Ce is
given by the Rayleigh product of Fe and the constant reference stiffness tensor C̃:

Ce = Fe � C̃ = C̃ijkl(Feei ) ⊗ (Feej ) ⊗ (Feek) ⊗ (Feel), (3)

where ei denotes the fixed sample system. Here and in the subsequent sections a tilde
indicates that a quantity is formulated with respect to the unloaded configuration which is
characterized by the fact that corresponding symmetry transformations are elements of SO(3)

(Truesdell and Noll 1965).
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The elasticity tensor can be specified by exploiting the cubic crystal symmetry of
Al. In this case C̃ has the following projector representation (Rychlewski and Zhang 1989,
Bertram and Olschewski 1993):

C̃ =
3∑

α=1

λαP
C
α (4)

with the projectors

P
C
1 = 1

3 I ⊗ I, P
C
2 = D − P

C
1 , P

C
3 = I

S − P
C
2 − P

C
1 . (5)

I
S is the identity on symmetric 2nd-order tensors. The anisotropic part D is given by a dyadic

product of the lattice vectors g̃i ,

D =
3∑

i=1

g̃i ⊗ g̃i ⊗ g̃i ⊗ g̃i . (6)

The eigenvalues λα can be written in terms of components of C̃ with respect to the orthonormal
lattice vectors {g̃i} (i = 1, 2, 3): λ1 = C̃1111 + 2C̃1122, λ2 = C̃1111 − C̃1122 and λ3 = 2C̃1212.
Without loss of generality, the reference lattice vectors g̃i can be identified with the fixed
sample system ei . Such a choice only affects the initial value of Fe or Fp.

2.1.2. Flow rule. Since Al shows a rate-dependent behaviour in the room temperature range,
we adopt a viscoplastic material model. The evolution equation governing Fp is assumed to be

ḞpF−1
p = k̃(T ′

e, τ
C) =

N∑
α=1

γ̇α(T ′
e, τ

C)M̃α, (7)

where Te = Fe
TτFe

−T denotes the Mandel stress tensor. The shear rates γ̇α are related to the
resolved shear stresses τα = T ′

e · M̃α by a power law

γ̇α = γ̇0sgn(τα)

∣∣∣ τα

τC

∣∣∣m . (8)

Note that for the class of fcc materials it is a reasonable approximation that the slip systems
harden in an isotropic manner (Kocks and Mecking 2003) such that only one critical resolved
shear stress τC appears in the equations. The Schmid or slip system tensors M̃α = d̃α ⊗ ñα

are rank-one tensors, which are defined in terms of the slip directions d̃α and the slip plane
normals ñα . In the case of an fcc single crystal at room temperature, the octahedral slip systems
〈11̄0〉{111} have to be taken into account (N = 12). The material parameter m quantifies
the strain rate sensitivity of the material. It is generally temperature-dependent and can be
estimated by strain-rate jump experiments. The flow rule can also be equivalently formulated
in terms of Fe:

ḞeFe
−1 = Le = L − Fek̃(T ′

e, τ
C)Fe

−1. (9)

Here L = ḞF−1 is the velocity gradient. For F(0) = I the initial conditions of differential
equations (7) and (9) are given by Fe(0) = F−1

p (0) = Q ∈ SO(3), where Q = gi (0) ⊗ ei is
the initial orientation of the single crystal. gi (0) are the lattice vectors at time zero.

2.1.3. Hardening law. The critical resolved shear stress τC is usually related to the mean
dislocation density ρ in the crystal lattice by

τC(ρ) = αbG
√

ρ, (10)
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where G is the shear modulus and b is the magnitude of the Burgers vector. As the scalar
α is only weakly temperature- and strain-rate-dependent, it is considered constant here. The
Kocks–Mecking model describes the rate of change in the mean dislocation density in fcc
single crystals over a wide range of strain rates and temperatures (Kocks 1976, Mecking 2001,
Kocks and Mecking 2003). The model is given by the following set of equations:

ρ̇(τα, ρ) =
(√

ρ

βb
− κ

∣∣∣∣ γ̇ (τα, ρ)

γ̇ ∗
0

∣∣∣∣
−1/n

ρ

)
γ̇ (τα, ρ), (11)

where

γ̇ (τα, ρ) =
N∑

α=1

|γ̇α(τα, τC(ρ))|. (12)

The first term in equation (11) describes the statistical storage of dislocations (hardening
stage II). The second term in (11) models the dynamic recovery (hardening stage III), which is
strain-rate- and temperature-dependent. A combination of (10) and (11) allows for deriving an
equivalent formulation of the evolution equation in terms of the critical resolved shear stress

τ̇C(τα, τC) = 	0

(
1 − τC

τC
V (τα, τC)

)
γ̇ (τα, τC), (13)

where the critical Voce stress is

τC
V (τα, τC) = τC

V0

∣∣∣∣ γ̇ (τα, τC)

γ̇ ∗
0

∣∣∣∣
1/n

(14)

with 	0 = αG/(2β) and τC
V0 = αG/(κβ). The initial condition corresponding to (13) is

τC(0) = τC
0 .

2.1.4. Homogenization of the stresses. The relation between the macroscopic and
mesoscopic stress and strain measures can be determined, e.g. based on the Taylor-type
models (Taylor 1938, van Houtte 1988, Mathur and Dawson 1989, Bronkhorst et al 1992,
Miehe et al 1999) or self-consistent schemes (see, e.g. Molinari et al 1987). Taylor-type
models are widely used since they are computationally less expensive compared with self-
consistent schemes. Taylor-type models give a reasonable qualitative approximation of the
crystallographic texture evolution in some single-phase fcc materials with high stacking-fault
energy. They are known to overestimate the sharpness of the crystallographic texture and
the amount of anisotropy. In the following we adopt the (Voigt–)Taylor assumption of a
homogeneous deformation gradient:

F = F̄. (15)

For statistically homogeneous materials without pores and cracks, the effective Kirchhoff stress
tensor is given by the volume average over the reference volume V . If one assumes that the
crystal orientations in the grains are initially homogeneous then one obtains the following
formula for the effective Kirchhoff stress tensor:

τ̄ = 1

V

∫
V

τ dV =
M∑

β=1

νβτ β, (16)

where νβ is the (initial) volume fraction of grain β and τ β is the corresponding Kirchhoff stress
tensor. M is the total number of grains, which is assumed to be finite.
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2.2. Rigid-viscoplastic model

2.2.1. Elastic law. In the following we adopt the assumption that dilatations are purely
elastic whereas distortions are purely viscoplastic. Both deformation modes are assumed to
be decoupled. Although the model contains elastic stresses related to volume changes, it is
called rigid-viscoplastic. The spherical and deviatoric parts of the Kirchhoff stress tensor τ

are denoted by τ ◦ and τ ′, respectively. The first is associated with volume changes and the
latter with shape changes. The spherical and deviatoric parts of the stress tensor represent the
equilibrium and the dynamic part of the stress tensor, respectively (see, e.g. Šilhavý 1997).
Due to the aforementioned assumptions, the strain energy density specifying the equilibrium
part of the stress tensor depends only on the determinant J of the deformation gradient. The
following form of the strain energy density is adopted:

W(J) = K

4
(J 2 − 2 ln(J ) − 1), (17)

where K denotes the bulk modulus (Ogden 1972, Simo and Miehe 1992). As a result, the
equilibrium stress is given by

τ ◦ = J
∂W(J )

∂J
I = K

2
(J 2 − 1)I. (18)

2.2.2. Flow rule and lattice spin. The viscoplastic distortions are assumed to result from
inelastic deformations in slip systems. The slip rate is assumed to be driven by the resolved
shear stress in the corresponding slip system. Therefore, it depends only on the deviatoric part
of the stress tensor, which is equal to its dynamic part here. Distortions of viscoplastic single
crystals can be modelled by the following set of equations:

O = D′ − Q sym(k̃(QTτ ′Q, τC
α ))QT,

Q̇Q−1 = W − Q skw(k̃(QTτ ′Q, τC
α ))QT,

(19)

(see, e.g. Hutchinson (1976)). D′ and W are the traceless symmetric and the skew part of
the velocity gradient L. An orthogonal tensor Q is used in order to specify the single crystal
orientation. Q is introduced in such a way that it maps a reference basis ei onto the lattice
vectors gi at a time t � 0: gi (t) = Q(t)ei . If gi (t) is known, the orthogonal tensor Q can
be computed by Q = gi (t) ⊗ ei . For a given strain rate tensor D′ and a crystal orientation
Q, equation (19)1 is an implicit equation for the stress deviator τ ′. For given τ ′, W and
Q, respectively, equation (19)2 determines the spin Q̇Q−1 of the crystal lattice. Note that
equations (19) can be derived from equation (9). The tensor Q corresponds to the orthogonal
part Re of Fe.

The function k̃ is assumed to be given by

k̃(QTτ ′Q, τC) =
N∑

α=1

γ̇α(τα, τC)M̃α, (20)

with

γ̇α(τα, τC) = γ̇0sgnτα

∣∣∣ τα

τC

∣∣∣m (21)

and

τα = (QTτ ′Q) · M̃α (22)

(Hutchinson 1976). In the limit m → ∞ a rate-independent behaviour is obtained.
Equation (20) implies that the rate of deformation is positively homogeneous of degree m in
the stress tensor, whereas the stress is homogeneous of degree 1/m in the rate of deformation.
The hardening model is the same as in the elastic–viscoplastic model.
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2.2.3. Homogenization of the stresses. It is assumed that the material parameters are
homogeneous in the aggregate. The stress field in the polycrystal can be computed if the
fields J , D′, Q and τC are known. In the following we adopt the (Voigt–)Taylor assumption
that the polycrystal deforms homogeneously on the microscale: J̄ = J , D̄

′ = D′. Within
this upper bound approximation, macroscopic anisotropies exist due to an inhomogeneous
distribution of the crystal orientations Q ∈ SO(3) and the hardening state τC ∈ R

+.
The state of the polycrystal will be described by a distribution function h(Q, τC):

dV

V
(Q, τC) = h(Q, τC) dQ dτC, (23)

which specifies the volume fraction of crystals having the orientation Q and the drag stress τC.
The distribution function h(Q, τC) is non-negative

h(Q, τC) � 0 ∀Q ∈ SO(3), τC ∈ R
+ (24)

and normalized by∫
H

h(Q, τC) dQ dτC = 1, (25)

where H = R
+ × SO(3). If SO(3) is parametrized by Euler angles, the volume element dQ

is given by

dQ = sin(�)

8π2
dϕ1 d� dϕ2. (26)

The codf f (Q) (Bunge 1993, Böhlke 2005) is obtained by integrating h(Q, τC) over R
+

f (Q) =
∫

R+
h(Q, τC) dτC. (27)

The effective stress tensor is given by the average of the Kirchhoff stress tensor over the
reference volume V . Based on the Taylor assumption and by means of the distribution function
h, the macroscopic stress tensor can be computed by

τ̄ = 1

V

∫
V

(τ ◦ + τ ′) dV = τ ◦ + τ ′, (28)

where

τ̄ ◦ = J̄
∂W(J̄ )

∂J̄
I = K

2
(J 2 − 1)I (29)

and

τ̄ ′ =
∫

H
h(Q, τC)τ ′(D̄′

, Q, τC) dQ dτC. (30)

If the hardening state is homogeneous in the aggregate, i.e. h(Q, τC) ∼ f (Q)δτC , then the last
equation can be simplified to an orientational average of the stress tensor

τ̄ ′ =
∫

SO(3)

f (Q)τ ′(D̄′
, Q, τC) dQ. (31)

2.2.4. Texture components. Crystallographic textures can often be described by a small
number of texture components or texture fibres (Wasserman and Grewen 1962, Bunge 1993,
Kocks et al 1998). A texture component is a crystal orientation for which the codf shows
a (local) maximum in the elementary region. In its neighbourhood, the codf decreases
in an isotropic or anisotropic way. A commonly used model function, which describes
a central distribution, is the Mises–Fischer distribution. It has the maximum entropy of
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all orientation distributions on SO(3) with the expectation value of Q equal to Qα . This
distribution function was introduced by von Mises in the two-dimensional case and by Fischer
in the three-dimensional case (Mardia and Jupp 2000). Matthies (1980) was the first to apply
the Mises–Fischer distribution in texture analysis. He called it a normal distribution in
the orientation space (see also Matthies et al 1988), but this interpretation was criticized
by Schaeben (1992, 1994). Eschner (1993) and Eschner and Fundenberger (1997) used non-
central distribution functions for the description of experimental crystallographic textures.
An overview on central and non-central distribution functions on SO(3) can be found in the
monograph by Mardia and Jupp (2000).

The distribution function h(Q, τC) is decomposed into an isotropic part hI and an
anisotropic part hA with volume fractions νI and νA, respectively. The anisotropic part is
modelled by a superposition of Nc central distributions g(Q, Qα, bα) with mean orientations
Qα and volume fractions νA

α (α = 1, . . . , Nc). The hardening state of each of the components
is assumed to be homogeneous and hence can be specified in terms of one drag stress τC

α .
Also by assumption the isotropic part depends on the arithmetic mean of the drag stresses
τ̄C = ∑Nc

α=1 νA
α τC

α . As a result, we have

h(Q, τC) = νIhI(τ̄C) + νAhA(Q, Qα, bα, τC
α ), (32)

where

hI(τ̄C) ∼ δτ̄C (33)

and

hA(Q, Qα, bα, τC
α ) ∼

Nc∑
α=1

νA
α g(Q, Qα, bα)δτC

α
. (34)

The following constraints upon the volume fractions hold:

νI + νA = 1
Nc∑

α=1

νA
α = 1. (35)

The value of a central distribution g(Q, Qα, bα) at Q depends only on the distance ω between
Q and Qα , which is generally given by

ω(Q, Qα) = arccos( 1
2 (tr(QQ−1

α ) − 1)) (36)

(Bunge 1993). A specific central distribution is the Mises–Fischer distribution

g(Q, Qα, bα) = N(Sα)e(Sα cos(ω(Q,Qα))), (37)

where

Nα = 1

I0(Sα) − I1(Sα)
(38)

and

Sα = S(bα) = ln(2)

2 sin2(bα/4)
. (39)

The parameter bα represents the half-width of the distribution. The modified Bessel functions
In are defined by

In(S) = 1

π

∫ π

0
exp(S cos(t)) cos(nt) dt. (40)
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A distribution function h reflects both the symmetry of the crystallites forming
the aggregate and the sample symmetry, which results from the processing history
(Zheng and Fu 2001). The crystal symmetry implies the following symmetry relation:

h(Q, τC) = h(QHC, τC) (41)

∀HC ∈ SC ⊆ SO(3). SC denotes the symmetry group of the single crystal, which is assumed
here to have a cubic symmetry. The sample symmetry implies the following symmetry relation:

h(Q, τC) = h(HSQ, τC) (42)

∀HS ∈ SS ⊆ SO(3). SS denotes the symmetry group of the sample. The following modified
Mises–Fischer distribution implies the fulfilment of constraint (41) upon the function h

g(Q, Qα, bα) = 1

24

24∑
β=1

NαeSα cos(ω(QHC
β Q−1

α )), (43)

where the HC
α ∈ SO(3) are the 24 elements of the symmetry group of cubic crystals.

Up to now the anisotropic part of the stress deviator is given by the orientational average

τ̄ ′A =
∫

SO(3)

Nc∑
α=1

νAνA
α g(Q, Qα, bα)τ ′(D̄′

, Q, τC
α ) dQ. (44)

After defining ξα by τC
α = ξατ̄C and taking into account that the stress deviator is homogeneous

of degree 1/m in the rate of deformation, it is possible to reformulate equation (44) by

τ̄ ′A =
∫

SO(3)

f A(Q)τ ′(D̄, Q, τ̄C) dQ, (45)

where

f A(Q) =
Nc∑

α=1

ν̂A
α g(Q, Qα, bα) (46)

and ν̂A
α = νAνA

α ξm
α . It can be seen that an inhomogeneous hardening state affects the volume

fractions which occur in the orientation distribution function. Since the stress deviator is
implicitly given, the last equation makes the numerical determination of the stress tensor
easier. For a given D′ the implicit equation has to be solved only once at τ̄C.

3. Parameter identification and numerical implementation

3.1. Material parameters

The material parameters of Al have been determined based on experimental data documented
in the literature and are given in table 1. The elastic constants are taken from
Brandes and Brook (1998). The strain rate sensitivity parameter m has been determined
by Les et al (1999). The hardening parameters are computed using experimental data
documented by Mecking (2001). The material parameters of the rigid-viscoplastic model
that occur in the flow rule and the hardening rule coincide with the parameters of the elasto–
viscoplastic model. Due to neglection of elastic distortion only one elastic constant has to
be specified. The bulk modulus is taken as K = 77.3 GPa which corresponds to the elastic
constants of the single crystals. In subsequent examples we will always use identical parameter
sets which qualitatively reflect the main features of the mechanical behaviour of Aluminium at
room temperature. This simplification is introduced since in the referred literature only limited
experimental data are given.



374 T Böhlke et al

Table 1. Material parameters of Al.

Elastic law C̃1111 [GPa] 108

C̃1122 [GPa] 62

C̃1212 [GPa] 28.3

Flow rule γ̇0 [s−1] 9 · 10−3

m [—] 133

M̃α [—] {111}〈110〉
Hardening rule 	0 [MPa] 37.5

τC
V0 [MPa] 51.5

n [—] 22.5
γ̇ ∗

0 [s−1] 107

τC
0 [MPa] 15

3.2. Texture components

If the codf of a polycrystal is known then it is possible to calculate the main components of
the texture of the polycrystal. The texture (reference texture) results from a simulation or
an experiment. The calculated components can be used as the start values for the introduced
component model. The identification procedure of the components is based on the comparison
of the reference texture and a model texture. Here, the model texture consists of a fixed number
of texture components characterized by Mises–Fischer distributions. The comparison of both
textures can be performed by defining a distance between the related codfs:

δ =
∫

SO(3)

(fref(Q) − f (Q))2 dQ, (47)

where fref(Q) describes the reference codf and f (Q) defines a model codf consisting of Nc

components. The Nc components can be computed by minimizing the distance δ

δ(x(Q1, . . . , QNc
), b1, . . . , bNc

, v1, . . . , vNc
, fref) → min. (48)

The list x in equation (48) contains the Euler angles defining the mean orientations of the
components and has dimension 3Nc:

x = [ϕ1
1 , �

1, ϕ1
2 , . . . , ϕ

Nc

1 , �Nc , ϕ
Nc

2 ]. (49)

It is assumed that these Euler angles are variable during the optimization process, while the
volume fractions νi and the half-widths bi of the components are kept constant. Because
of periodicity of the Euler space, the optimization problem is unconstrained. The objective
function has several local minima, but it is of importance to find the global minimum. Therefore
an optimization method is applied (Boender et al 1982, Csendes et al 1986) which is able to
find the global optimum with high probability. In this method a stochastic algorithm is used
which is based on the development of clusters for isolating the global optimum. For the local
search procedure, a quasi-Newton method is applied.

3.3. Numerical implementation

Both material models have been implemented into the finite element code ABAQUS
(ABAQUS/Standard 2003) using the interface UMAT. In the case of the elastic–viscoplastic
material model the internal variables are updated in time using the Euler backward scheme
in an incrementally objective setting. The corresponding algorithmic linearization has been
implemented. The constraint of the plastic incompressibility is ensured by a projection method.
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Figure 1. {111} Pole figure of a rolling texture predicted by the Taylor model (a). Approximation
of the codf by four texture components (b) (horizontal axis: transverse direction, vertical axis:
rolling direction).

In the case of the rigid-viscoplastic material model, the strain rate determines the stress in an
implicit fashion. The equation is solved based on an incrementally objective estimate of the
rate of deformation tensor. After having determined this stress tensor, the lattice rotation is
updated with an explicit exponential map. The numerical integration over the orientation space
is performed by a Gauss point quadrature. Before applying this scheme, the orientation space
has been transformed such that the metric is position-independent.

4. Numerical examples

4.1. Example: rolling texture

In this example we compare the Taylor-type model which is based on discrete crystal
orientations with that formulated by means of continuous model functions for the special
case where the DT model uses a large number of crystal orientations. The aim is to predict the
final earing profile, the yield stress and the R value based on the initial texture.

The initial texture is a model texture given by a Taylor simulation (DT) of a rolling
deformation with 1000 crystals. The thickness reduction is 90%. The {111} pole figure is
shown in figure 1(a). The discrete codf given by the Taylor simulation is taken as the reference
codf for the identification of texture components. The continuous reference codf has been
estimated by a superposition of 1000 Mises–Fischer distributions, one for each single crystal,
with a half-width of 15◦. The identification procedure of texture components has been described
in section 3.2. Four texture components are used to approximate the rolling texture (CT). The
corresponding {111} pole figure is shown in figure 1(b). The half-width values, Euler angles
and volume fractions which are the result of the optimization procedure are given in table 2.

In the continuous model a texture component is described by three orientation variables
and one hardening variable. In the case of the DT model, one single crystal is described by eight
variables specifying the lattice strain and lattice orientation and one hardening variable. As a
result, the continuous model has the advantage that a much smaller number of internal variables
is involved (4 × 4 = 16 versus 1000 × 9 = 9000 in each integration point). One finds that the
calculation times of the CT model are approximately eight times shorter than the corresponding
calculation times of the DT model. Of course, due to the numerical integration over the
orientation space the computational effort of the continuous model with four components
would be larger than the one for the DT model with the same number of crystals.
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Table 2. Half-width, volume fraction and Euler angles of four Mises–Fischer model functions
approximating the rolling texture.

i bi νi ϕi
1 �i ϕi

2

1 17.8◦ 0.25 67.27◦ 29.05◦ −28.32◦

2 17.8◦ 0.25 −74.54◦ −28.13◦ 33.55◦

3 17.9◦ 0.27 73.12◦ −28.25◦ −32.53◦

4 18.5◦ 0.23 −65.75◦ 29.34◦ 27.18◦

Figure 2. Normalized yield stresses (left) and R values (right) versus the angle to the rolling
direction in the sheet plane for the Taylor-type simulations.

The geometrical parameters for the simulation of the deep drawing process are as follows:
blank diameter db = 60 mm, punch diameter dp = 33.3 mm, thickness tb = 0.5 mm, punch
profile radius rpp = 6 mm (see also figure 5). Because of orthotropic sample symmetry of
the codf it is possible to model only a quarter of the sheet. The quarter of the sheet has been
discretized by 960 C3D8H and 132 C3D6H elements. The application of shell elements would
give more accurate results but the aforementioned elements are used for simplicity in this large
strain anisotropic plasticity problem.

In figure 2 the yield stress and the R value in the initial state are shown for both models.
The yield stress and the R value are computed by performing tensile tests with one finite
element. Figure 3 shows the normalized and the total earing profile predicted by the two
models. The numerical results indicate that both models predict almost identical yield stresses
and R values. This is worth mentioning since one model neglects elastic distortions completely.
Also the earing profiles are quite similar indicating that here also the elastic distortions are of
minor importance. In fact, the viscoplastic model is generally unable to predict spring-back
phenomena. Such effects, however, are not considered in this paper.

4.2. Example: cube texture

In the second example we compare the predictions of the two Taylor-type models for a texture
which can be described by a small number of texture components. Engler and Kalz (2004)
determined the crystallographic texture of an aluminium sheet and the corresponding earing
profile resulting from a deep drawing process. The crystallographic texture has been
determined by measuring pole figures in back reflection by means of a standard x-ray texture
goniometer. The codf has been calculated by the series expansion method (lmax = 22)
under the assumption of an orthotropic sample symmetry. The texture is dominated by
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Figure 3. Normalized and absolute earing profiles for the Taylor-type texture shown in figure 1
calculated by the classical Taylor model and the component model.

Figure 4. Section of the orientation space showing the experimental cube texture with a goss
component and an approximation by texture components.

a cube component (ϕ1 = 0◦, � = 0◦, ϕ2 = 0◦) but also shows a weak goss component
(ϕ1 = 0◦, � = 45◦, ϕ2 = 0◦). Figure 4 shows the experimental codf in a section of the
orientation space (ϕ2 = 0◦).

In order to specify the initial texture for the continuous model (CT) the texture is
approximated by a set of six texture components (Mises–Fischer model functions), the
parameters of which are given in table 3. Both the cube and goss components are approximated
by one Mises–Fischer model function. Beside these two components four other components
are used for the approximation. These orientations are obtained by rotating the cube orientation
about the rolling direction by 15◦, 30◦, 60◦, 75◦, respectively. For the discrete model (DT)
the midpoints of the texture components are used for specification of the initial texture. The
geometrical parameters have been taken from Engler and Kalz (2004) which have also been
used in the last example (figure 5). The discretization of the blank is identical to this example.
The deformed mesh is shown in figure 6.

The predictions of the DT and CT models for the earing profile are shown in
figure 7 together with the experimental data by Engler and Kalz (2004). In the paper by
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Table 3. Half-widths, volume fractions and Euler angles, respectively, for the Mises–Fischer
components approximating the texture shown in figure 4.

i bi νi ϕi
1 �i ϕi

2

1 (cube) 32.5◦ 0.6 0 0 0
2 27.5◦ 0.06 0 15◦ 0
3 27.5◦ 0.08 0 30◦ 0
4 (goss) 27.5◦ 0.12 0 45◦ 0
5 27.5◦ 0.08 0 60◦ 0
6 27.5◦ 0.06 0 75◦ 0

Figure 5. Geometry of the deep drawing process.

Engler and Kalz (2004) the relative earing heights are documented. Therefore, the normalized
earing profile is discussed here. It can be seen that the discrete model overestimates the
earing height. This means that the anisotropy is overestimated. The continuous model also
overestimates the earing height if the half-width is chosen in order to fit the experimental codf.
If the half-width b is enlarged by a factor β of 2 then the continuous model accurately predicts
the earing profile. The modification of the half-width allows us to correct the predictions of the
Taylor model which inherently overestimates the sharpness of the texture. In the next example
we will modify the model DT such that the significant overestimation of anisotropy is avoided.

4.3. Example: modification of the discrete model

The second example has confirmed the fact that the Taylor model overestimates the anisotropy
of the sheet metal. This has been seen for both Taylor-type models (DT and CT). The Taylor
model based on continuous model functions allows for a correction of the predicted anisotropy
by modifying the half-width while keeping the number of crystals fixed. In the case of the
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Figure 6. FE mesh of a quarter of the cup (CT model with β = 1).

Figure 7. Comparison of the earing profile calculated by the DT and CT models with experimental
data (Engler and Kalz 2004).

discrete model only an enlargement of the total number of crystals would allow for a better
prediction of the earing profile. The additional crystal orientations have to approximate the
scattering of orientations around the ideal texture components. The second example has also
shown that the scattering should be larger than in the experimental codf due to the inherent
property of the Taylor model to overpredict the anisotropy. Since more ambiguous texture
based material models such as self-consistent schemes require a much higher computational
effort as the Taylor-type models, it is worth looking for a simple modification of the models
discussed here in order to overcome the aforementioned problem.

The isotropic or random background of the codf has been neglected so far in the DT model.
The random part of the crystallographic texture induces an isotropic effective viscoplastic
behaviour. The specific type of isotropic behaviour depends on the slip systems which can
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Figure 8. Earing profile for a cube texture corresponding to different isotropic volume fractions in
the discrete model and different half-widths in the continuous model.

be activated in the grains. In the case of fcc materials the effective isotropic behaviour is not
necessarily of the von Mises type (Böhlke 2004), but it can be assumed that the details of the
isotropic behaviour are of minor importance compared with the anisotropic behaviour.

Therefore, we modify the DT model by decomposing the stress into two parts. One part
describes the isotropic effective viscoplastic behaviour due to the random texture. The other
part is modelled as before by the superposition of the crystal stresses. As a result, we have
two types of volume fractions. One type corresponds to the single crystals, while the other
describes how isotropic the microstructure is. If the volume fraction of the isotropic part is
chosen to be larger than the isotropic part of the codf then the overestimation of anisotropy
can be avoided.

The elasto–viscoplastic isotropic material model is specified as follows. We assume a
linear and isotropic relation between the 2nd Piola–Kirchhoff stress tensor and Green’s strain
tensor in the unloaded configuration. The corresponding Eulerian formulation has the same
form as equation (2), but the isotropy allows for the simplification Ce ≈ C̃ if the elastic strains
are small. For the same reason only the evolution of Be = FeFT

e has to be modelled by an
evolution equation. This evolution equation is specified in a viscoplastic setting with a power
law linking the equivalent von Mises stress to the equivalent viscoplastic strain rate. For
brevity, the details of the formulation are not given here. The general framework can be found
in the work by Simo and Miehe (1992). In the CT model an isotropic part has already been
introduced. Such an approach permits varying the isotropic volume fraction independently of
the half-width values. For the viscoplastic flow rule the validity of the power law will also be
assumed. The material parameters are specified as follows. The exponent in the power law is
taken to be identical in the isotropic and anisotropic models. The yield stress in the isotropic
model is determined based on the critical resolved shear stress and the Taylor factor of 3.06.

The predictions of the modified models are now analysed in the case of a pure cube texture.
In figure 8 the predicted earing profiles are shown for both models. In the case of the discrete
model the volume fraction of the isotropic part has been varied in the range 30–90%. In the case
of the continuous model the half-width has been varied in the range 15◦–60◦. It can be seen
that the isotropic volume fraction of 30% corresponds approximately to a half-width of 15◦.
A volume fraction of 50% corresponds to a half-width of 30◦. As a thumb rule, for half-width
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Table 4. Main texture components of a 2008-T4 sheet described by half widths, volume fractions,
and Euler angles. Note that an orthotropic sample symmetry is assumed.

i bi νi ϕi
1 �i ϕi

2

1 20.2◦ 0.248 89.12◦ 89.12◦ 358.99◦

2 19.2◦ 0.298 14.69◦ 82.20◦ 326.79◦

3 22.1◦ 0.153 26.72◦ 87.86◦ 346.14◦

4 11.7◦ 0.038 89.09◦ 88.94◦ 340.98◦

Random 0.263

Figure 9. Experimental (100) pole figure (Lege et al 1989).

values larger than 10◦, one can use the fact that the isotropic volume fraction in the DT model
is approximately given by (10 + 240b/π)% (b in rad). If one takes into consideration that even
b should be increased by a factor of 2–3 then one has a rough estimate of the isotropic volume
fraction in the DT model directly based on the codf. However, this estimate depends on the
number of crystals involved in the DT model. The estimate given here can be considered as an
upper bound. If more discrete orientations are used, the isotropic volume fraction should be
smaller. Since for a small number of crystal orientations the discrete model is computationally
less expensive compared with the continuous model, the modification of the DT model seems
to be versatile.

4.4. Example: four-component texture

Lege et al (1989) determined the volume fractions, the half-widths and the Euler angles of four
texture components, which together with a random component, reproduce the main features
of a crystallographic texture in a rolled aluminium sheet (see table 4). The experimental (100)
pole figure is shown in figure 9. The corresponding pole figure based on the parameters given
in table 4 is shown in figure 10. In figure 11 the pole figures of the four texture components are
shown separately. The half-width parameters are slightly different from the values determined
by Lege et al which is due to the application of different model functions for the components.
Here, Mises–Fischer distribution functions are applied, whereas Lege et al used pseudo-
Gaussian distribution functions (see, e.g. Bunge 1993). Besides the crystallographic texture,
Lege et al (1989) determined the R values and the yield stresses by tensile tests.
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Figure 10. Approximation of the experimental (100) pole figure.

Figure 11. (100) pole figures of the texture components given in table 4.

Figures 12 and 13 show the experimental and computed yield stresses. Figures 14 and 15
show the corresponding R values. The discrete and continuous models are specified by the
parameters given in table 4.

Lege et al (1989) determined the yield stresses and the R values by two different
testing methods which yield slightly different results. They also computed the yield
stress and the R value based on Taylor–Bishop–Hill theory and also based on a model by
Barlat and Lian (1989). Note that Lege et al performed the Taylor–Bishop–Hill simulation
with a large number of single crystals. The Taylor–Bishop–Hill theory overestimates the



Finite element simulation of metal forming operations 383

Figure 12. Normalized yield stress versus angle to the rolling direction (experimental and numerical
results by Lege et al (1989).

Figure 13. Normalized yield stress versus angle to the rolling direction for the discrete and the CT
model.

relative yield stress and predicts a maximum which cannot be found in the experimental
data. Our texture simulations show the same trend (see figure 13). The simulations with the
discrete model have been performed with isotropic volume fractions 26%, 50%, 60%, 90%,
respectively. For the simulations with the continuous model the β values 1, 2 and 3 have
been used. Neither of the Taylor models is able to predict the directional dependence of the
yield stress qualitatively. This corresponds to the findings of Lege et al. Since the same
homogenization scheme is applied, it cannot be expected that the predictions are better in
our case. Note that Lege et al did not combine the Taylor–Bishop–Hill estimate with an FE
simulation.

In contrast to the yield stress, the predicted R values correspond better to the experimental
findings. Furthermore, the numerical results indicate that the discrete model overestimates the
anisotropy much more than the continuous model. As a result, the variation in R with α is
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Figure 14. R value versus angle to the rolling direction (experimental and numerical results by
Lege et al (1989).

Figure 15. R value versus angle to the rolling direction for the discrete and the CT model.

much less pronounced compared with our predictions based on the discrete model with four
components. If one compares the numerical R values with numerical yield stress then it can
be seen that the R value depends sensitively on the number of crystals. If the isotropic volume
fraction in the discrete model and the half-width in the continuous model are increased, the R

value is smoothed out in both cases as already discussed in the last example.
The geometrical parameters for the simulation of the deep drawing process are the

following: db = 162 mm, dp = 97 mm, tb = 1.24 mm, rpp = 4.95 mm (Lege et al 1989).
A quarter of the sheet has been discretized by 960 C3D8H and 132 C3D6H elements. In
figure 16 the normalized earing profiles calculated by the continuous model for different
half-width parameters are shown. If the half-widths are increased by a factor of 3 then
there is good agreement of the predictions of the continuous model with the experimental
results. If an isotropic volume fraction of 90% is used then the DT model predicts the
experimental results (see figure 17). Figure 18 shows a comparison of the earing profiles
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Figure 16. Comparison of the earing profiles calculated by the continuous model for different half
widths and based on experimental data by Lege et al (1989).

Figure 17. Comparison of the earing profiles calculated by the discrete model for different isotropic
volume fractions and based on experimental data by Lege et al (1989).

calculated by the continuous and discrete models. Here it can be seen that for large half-width
values (CT model) and large volume fractions (DT model), the solutions for both models are
similar.

5. Summary and conclusions

In the present paper two Taylor models have been used to simulate the mechanical behaviour
of aluminium under large plastic deformations. One Taylor model (DT) is based on a discrete
representation of the codf. The other Taylor model (CT) represents the codf by a number of
continuous model functions on the orientation space. The numerical examples indicate the
following: (1) Both models give almost the same predictions of the viscoplastic behaviour
if the DT model is applied with a large number of crystals. (2) If an approximation of the
experimental codf is used to specify the orientational data of the two models then both models
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Figure 18. Comparison of the earing profiles calculated by the discrete model for different isotropic
volume fractions and the continuous model for different half widths.

overestimate the plastic anisotropy. (3) In the case of the CT model this overestimation of
anisotropy can be reduced by increasing the half-widths of the model functions. (4) In the
case of the DT model the overestimation can be eliminated by modelling an isotropic ‘single
crystal’ with specific volume fraction. The effective stress of the aggregate is the weighted
arithmetic mean of the conventional stress tensor predicted by the Taylor model and of the
isotropic material. (5) There is a simple relationship between the half-width in the continuous
model and the volume fraction of the isotropic ‘single crystal’ in the discrete model.
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