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Abstract

This paper considers the problem of approximating a given crystallite orientation distribution function (codf) by a set of texture com-
ponents. Problems of this type arise for example if the codf has to be reconstructed from discrete orientations or if one looks for a phys-
ical interpretation of the codf. The same problem is encountered if crystallographic texture based constitutive models have to be specified.
The equivalence of these tasks to a mixed integer quadratic programming problem (MIQP) – a standard but challenging problem in opti-
mization theory – is shown. Special emphasis is given to the generation of a class of approximations with an increasing number of texture
components. Furthermore, the constraints resulting from the non-negativity, the normalization, and the symmetry of the codf are ana-
lyzed. Finally, a set of approximations of three different experimental textures determined with this solution scheme is presented and
discussed. Based on these hierarchical solutions, the engineer can decide in what detail the microstructure is considered.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Crystallographic texture; One-point correlation function of crystal orientations; Orientation distribution function; Quadratic programming;
Texture components
1. Introduction

Single phase polycrystals are composed of grains of the
same material which differ with respect to their lattice orien-
tations. The simplest statistical description of such micro-
structures is based on the crystallite orientation distribution
function (codf) which specifies the volume fraction of a mate-
rial having a specific lattice orientation. The codf is the one-
point correlation function of lattice orientation and describes
the crystallographic texture in the material. Higher-order
correlation functions allow for a description of the morpho-
logical texture. The correlation functions can be estimated
based on orientation data determined experimentally for
example by X-ray diffraction or by automated electron back-
scatter diffraction orientation measurements. For a review
concerning the representation of microstructures of polycrys-
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tals and the experimental determination of their mesoscale
microstructure see Adams and Olson [1].

Due to the general complexity of a codf it is often nec-
essary to look for simplified, but physical, descriptions
which are essentially low dimensional. In the context of
crystallographic textures this was first done by Wasserman
and Grewen [38], who introduced so called texture compo-
nents to describe textures peculiar to specific processing
histories. A large amount of work has been done to formu-
late isotropic and anisotropic model functions and to iden-
tify the dominant components in experimental textures
[22,17,16]. Texture components are used on the one hand
to obtain a physical interpretation of experimental codfs
and on the other hand to homogenize the mechanical
behavior with an acceptable numerical effort. Taylor type
material models [35,37,25,6,28] allow for a description of
the macroscopic mechanical behavior due to a specific slip
system geometry and orientation distribution. From the
numerical point of view, large scale finite element simula-
tions of metal forming operations based on the Taylor
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model are very time-intensive and storage-consuming if the
crystallographic texture is approximated by several hun-
dred discrete crystals. Therefore, Raabe and Roters [30]
introduced the so called texture component crystal plastic-
ity method which describes crystallographic textures by
small sets of discrete orientations. Due to the discontinuous
approximation of the codf the approach by Raabe and
Roters [30] requires a random variation of the discrete crys-
tal orientation through the sample. In the approach by
Böhlke et al. [4] texture components are described by con-
tinuous model functions. The effective stress is obtained by
integrating the crystal stress – weighted by the codf – over
the orientation space. The two material models mentioned
before require an approximation of the codf by discrete or
continuous texture components. The method suggested in
this paper yields both a discrete (taking only the main ori-
entations into account) and a continuous approximation,
in the last case also giving a rigorous error bound.

In some applications, the codf is already discretized into
a finite set of weighted orientations. If the number of orien-
tations needs to be reduced, the proposed method can be
used to find an optimal set of components to approximate
the initial distribution.

In this paper we restrict our attention to the formulation
as a mixed integer quadratic programming problem
(MIQP) problem and its approximate solution without
considering mechanical properties. These could only be
predicted based on several simplifications and assumptions
which themselves are still a subject under discussion. For
the case of a continuous approximation of the codf a dis-
cussion of effective mechanical properties can be found
for example in Refs. [4,5].

The outline of the paper is as follows. After a short
review of existing approximation techniques in Section 2,
the basic features of the codf and its properties implied
by crystal and sample symmetries are discussed in Sections
3 and 4. The concept of texture components is introduced
in Section 5 and specified for the case of the von Mises–
Fisher–Matthies distribution function, widely used in
texture analysis. Section 6 deals with the problem of
approximating a codf by a set of model functions. Special
emphasis is given to constraints resulting from the require-
ment of an approximation with a small number of texture
components. It is shown that such a problem is equivalent
to a definite mixed integer quadratic programming problem
(MIQP). Optimization problems of such a type arise in
rather different contexts such as chemical process optimiza-
tion and portfolio optimization. Finally, in Section 7 the
approximation of three different experimental textures
based on this solution scheme is considered. It is shown
that the applied solution procedure yields good approxima-
tions in terms of quality and quantity.

2. Previous approaches

The problem of finding approximations for a given tex-
ture has been considered in detail by Kocks et al. [20], Toth
and Van Houtte [36], and Helming et al. [18]. The earliest
approach for discretizing a given codf was to put a nearly
equidistant grid on the Euler space in a 90� · 90� · 90�
region. For each of the so defined boxes the codf is integrated
and the respective volume fraction is determined. Since the
resulting number of boxes is usually too high for a subse-
quent simulation, boxes with a volume fraction above a
specified limit are selected and renormalized as the
approximation of the codf. This cutting technique (CUT)
has been analyzed and criticized by Toth and Van Houtte
[36]. The same authors suggest two new discretization
schemes in order to improve the CUTmethod. The first (sta-
tistical) method (STAT) is based on a cumulative orientation
distribution function which is used to map random numbers
onto the orientation space such that for a large set of these
numbers the texture is reproduced. The cumulative function
is generated again based on a grid with a characteristic reso-
lution. The only parameter of the algorithm (beside the
aforementioned resolution) is the number of random orien-
tations used for the approximation. The second technique –
called the limited orientation distance (LOD) method – is
also based on a grid on the orientation space. Intensities
on grid points are transferred to points with higher intensi-
ties if the distance between the points is smaller than a spe-
cific value. The two parameters of this algorithm are the
mesh size and the distance which governs the transfer. The
authors analyze and compare both methods with respect
to the (i) reproducibility of the codf, (ii) the prediction of
effective mechanical properties, (iii) the prediction of defor-
mation textures based on these discretization, and (iv) the
effect of rediscretizations during deformation texturemodel-
ing. It is shown that both methods are superior to the CUT
method and that the LOD technique works better for the
high intensity regions whereas the STAT method is better
in regions where the intensity is low. The earlier approach
by Kocks et al. [20] used a random grid on the orientations
space and assigns suitable weights in an iterative procedure.

A special approach for the approximation of steel tex-
tures was developed by Delannay et al. [11]. In this
approach the texture is characterized by a set of parame-
ters, describing typical features of industrial steel sheets
by prescribed fibers. The parameters vary the intensities,
the fiber thickness and the position of the knots controlling
the fibers. Another approach with standardized positions
and components is given by Cho et al. [9]. In this paper
the approximation is performed on a set of typical compo-
nents for cubic metals. The components are located at fixed
points and described by von Mises–Fisher distributions
with fixed half-widths. The weight of the component is cal-
culated similar to the LOD technique: the volume fraction
of a component is equal to the sum of all intensities within
a certain acceptance angle. These special approximation
techniques depend strongly on the expertise of the user
and are only suited to a special class of textures.

As an alternative a genetic approach by Tarasiuk et al.
[34] for identifying the texture components may also be
mentioned. However, such methods can by design never



Fig. 1. Elementary regions in a u1-cut for cubic crystals (U, u22[0,p/2])
[15].
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guarantee global optimality of their solution, and do not
provide an error bound which would be of help in evaluat-
ing their quality.

3. The crystallite orientation distribution function

A crystal orientation is described by a proper orthogo-
nal tensor Q = gi�ei2SO(3) which is introduced in such a
way that it maps the fixed reference basis ei onto the lattice
vectors gi.Q can be parameterized by Euler angles /1 = u1,
/2 = U, /3 = u2 [8]

ðQTÞij ¼
C1C3 � S1C2S3 S1C3 þ C1C2S3 S2S3

�C1S3 � S1C2C3 �S1S3 þ C1C2C3 S2C3

S1S2 �C1S2 C2

2
64

3
75;

ð1Þ
where Ci and Si denote the values cosð/iÞ and sinð/iÞ,
respectively. The matrix components refer to the base vec-
tors ei. The transposition is introduced in order to make the
description of crystal orientations by Q = gi�ei compatible
to the one introduced by Bunge [8].

The codf f(Q) specifies the volume fraction dv/v of crys-
tals having the orientation Q [7,31], i.e.

dv
v
ðQÞ ¼ f ðQÞdQ; ð2Þ

dQ is the volume element in SO(3) which ensures an invari-
ant integration over SO(3) [14], i.e.Z
SOð3Þ

f ðQÞdQ ¼
Z
SOð3Þ

f ðQQ0ÞdQ 8Q0 2 SOð3Þ. ð3Þ

If SO(3) is parameterized by Euler angles, the volume ele-
ment dQ is given by

dQ ¼ sinðUÞ
8p2

du1dUdu2. ð4Þ

The function f(Q) is non-negative and normalized such that

f ðQÞ P 0 8Q 2 SOð3Þ;
Z
SOð3Þ

f ðQÞdQ ¼ 1. ð5Þ

The orientation distribution function f(Q) reflects both the
symmetry of the crystallites forming the aggregate and the
sample symmetry, which results from the processing his-
tory. The crystal symmetry implies the following symmetry
relation for f(Q)

f ðQÞ ¼ f ðQHCÞ 8HC 2 SC � SOð3Þ; ð6Þ
where SC denotes the symmetry group of the crystallite.
Similarly, the sample symmetry implies

f ðQÞ ¼ f ðHSQÞ 8HS 2 SS � SOð3Þ. ð7Þ
Here SS denotes the symmetry group of the sample.

4. Elementary regions due to crystal and sample symmetries

The parameterization of the SO(3) with Euler angles
results in a periodic space with a natural period of 2p in
all parameters. This periodic cell consists of two equivalent
asymmetric units, since a glide plane perpendicular to
U = p with glide increments of p in u1 and u2 exists inher-
ently in this parameterization [8]. Therefore a complete pre-
sentation of the Euler space is given by either one of the
asymmetric units, for example

0 6 u1 < 2p; 0 6 U < p; 0 6 u2 < 2p. ð8Þ
The application of the crystal and sample symmetry oper-
ations results in a further reduction of the independent re-
gion. The cubic group consists of 24 proper orthogonal
transformations resulting in 24 equivalent units within
the range given by Eq. (8). In Fig. 1 a typical representation
of three anisotropic regions in a u1-cut for cubic crystals is
shown [15].

These three prismatic regions are the result of the three-
fold symmetry axis at u2 = p/4; U ¼ arccosð

ffiffiffi
3

p
=3Þ of cubic

crystals, which results in a non-linear transformation
within the Euler space. For the evaluation of the codf,
the region 3 can be problematic since the singular plane
with U = 0 is included. Region 2 consists of two prismatic
parts connected only at the location of the threefold sym-
metry axis. Therefore the region 1 of Fig. 1 is favorable
for an identification procedure. This region is given by

0 6 u1 < 2p; Ul 6 U <
p
2
; 0 6 u2 <

p
2
; ð9Þ

where

Ul ¼ arccosmin
cosðu2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2ðu2Þ
p ;

sinðu2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ðu2Þ

q
0
B@

1
CA. ð10Þ

In the case of orthorhombic sample symmetry, which con-
sists of a symmetry group of four elements, a reduction in
the u1-range to one quarter of the cubic case is possible.
Considering the same arguments as before, one elementary
region is given by
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0 6 u1 <
p
2
; Ul 6 U <

p
2
; 0 6 u2 <

p
2
. ð11Þ
5. Texture components

Crystallographic textures can often be described by a
small number of texture components or texture fibers
[38,8,21]. A texture component is a crystal orientation
for which the codf shows a (local) maximum in the elemen-
tary region. In the neighborhood, the codf is decreasing in
an isotropic or anisotropic way. A commonly used model
function, which describes a central distribution, is the
von Mises–Fisher distribution. The von Mises–Fisher dis-
tribution has the maximum entropy of all orientation dis-
tributions on SO(3) with the expectation value of Q equal
to Qa. This distribution function was introduced by von
Mises in a two-dimensional case and by Fisher in a
three-dimensional case [23]. Matthies [26] was the first to
apply the von Mises–Fisher distribution in texture analy-
sis. He called it a normal distribution in the orientation
space see also [27], but this interpretation was criticized
by Schaeben [32,33]. Eschner [12] and Eschner and Fun-
denberger [13] used non-central distribution functions for
the description of experimental crystallographic textures.
An overview of central and non-central distribution func-
tions on SO(3) can be found in the monograph by Mardia
and Jupp [23].

In the following the codf f(Q) is approximated by a set
ofMmodel functions ga(Q) (a2{1,. . .,M}) and an isotropic
background g0(Q) = 1"Q2SO(3). The model functions are
taken to be central distributions ga(Q) = g(Q, Qa, ba) at Qa

with half-widths ba and with weights ma. We can hence
approximate f(Q) by a convex combination of the model
functions ga(Q):

f ðQÞ � �f ðQÞ ¼
XM
a¼0

magðQ;Qa; baÞ ð12Þ

with

XM
a¼0

ma ¼ 1; ma P 0 8a 2 0; . . . ;M . ð13Þ

The value of a central distribution g(Q, Qa, ba) at Q de-
pends only on the distance x between Q and Qa, which
is generally given by

xðQ;QaÞ ¼ arccos 1
2
ðtrðQQ�1

a Þ � 1Þ
� �

ð14Þ

[8]. The von Mises–Fisher distribution is given by

gðQ;Qa; baÞ ¼ NðSaÞ expðSa cosðxðQ;QaÞÞÞ; ð15Þ
where

N a ¼
1

I0ðSaÞ � I1ðSaÞ
ð16Þ

and

Sa ¼ SðbaÞ ¼
lnð2Þ

2 sin2ðba=4Þ
. ð17Þ
The modified Bessel functions In are defined by

InðSÞ ¼
1

p

Z p

0

expðS cosðtÞÞ cosðntÞdt. ð18Þ

As mentioned before, the distribution function f(Q) reflects
both the symmetry of the crystallites forming the aggregate
and the sample symmetry. The following modified von
Mises–Fisher distribution implies the fulfillment of the con-
straint due to the crystal symmetry

gðQ;Qa; baÞ ¼
1

24

X24
b¼1

N a expðSa cosðxðQHC
bQ

�1
a ÞÞÞ; ð19Þ

where the HC
b 2 SOð3Þ are the 24 elements of the symmetry

group of cubic crystals. Considering the sample symmetry
for the orthorhombic case, the model function can be
rewritten as

gðQ;Qa; baÞ ¼
1

96

X24
b¼1

X4

c¼1

N a expðSa cosðxðHS
cQHC

bQ
�1
a ÞÞÞ

ð20Þ

with the four elements of the orthorhombic group
HS

c 2 SOð3Þ.
6. Identification of the model functions

In the following an approximation �f ðQÞ (see Eq. (12)) of
f(Q) is defined based on a set of M grid points on the ele-
mentary region. Each grid point represents the center of a
von Mises–Fisher distribution. To each component a half-
width ba and a volume fraction ma is assigned. The half-
widths ba of the components are assumed to be identical
for all components. The aim is to identify �f ðQÞ in terms
of the volume fractions ma such that �f ðQÞ approximates
the original codf f(Q) with a small number M0 6 M. This
number M0 6M is limited by the computational effort of
the application in which the approximation is used. For
example in the case of finite element simulation of deep
drawing processes the current computational power of
the computers limits the total number of components to
about 100 in the orientation space.

As a definition of the distance between the two functions
f(Q) and �f ðQÞ we define

D ¼
Z
SOð3Þ

ðf ðQÞ � �f ðQÞÞ2 dQ. ð21Þ

The distance D can be reformulated in the following setting

D ¼ I � 2
XM
a¼1

maha þ
XM
a;b¼1

mambGab; ð22Þ

where I denotes the texture index

I ¼
Z
SOð3Þ

f ðQÞ2 dQ. ð23Þ
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The vector ha and the matrix Gab are given by

ha ¼
Z
SOð3Þ

f ðQÞgaðQÞdQ; ð24Þ

Gab ¼
Z
SOð3Þ

gaðQÞgbðQÞdQ. ð25Þ

In order to perform the integration over SO(3) (see Eqs.
(24) and (25)) the parameterization of SO(3) is changed. In-
stead of using {u1, U, u2} the new variable f is introduced
by U = arccos(f). Then the metric becomes homogeneous
and an integral over SO(3) is given byZ
SOð3Þ

f ðQÞwðQÞdQ¼ 1

8p2

Z uu
2

0

Z uu
1

0

Z fu

fl
f ðu1;UðfÞ;u2Þ

�wðu1;UðfÞ;u2Þdu1 dfdu2 ð26Þ
with

uu
1 ¼ 2p fl ¼ �1 fu ¼ þ1 ð27Þ

and

uu
2 ¼ 2p UðfÞ ¼ arccosðfÞ. ð28Þ

Due to the cubic crystal symmetry and the orthorhombic
sample symmetry the range of integration can be reduced
to [0,p/2]3. In that range a Gaussian quadrature scheme
is applied with 36 Gauss points in each direction.

Using these definitions it is apparent that we have to
solve a quadratic programming problem (QP), namely

min �2
XM
a¼1

maha þ
XM
a;b¼1

mambGab

subject to
XM
a¼1

ma ¼ 1 ma P 0 8a 2 M

ð29Þ

with M ¼ f1; . . . ;Mg and the additional restriction that at
most M0 of the variables ma may be positive in the solution.
We can model this requirement by introducing M binary
variables sa which are to be 1 if ma > 0. This can be accom-
plished by the constraints sa P ma. Adding the set packing
constraint

PM
a¼1sa 6 M0 now guarantees that at mostM vol-

ume fractions are positive, i.e. non-zero, in a solution. The
problem of identifying �f ðQÞ is thus solved by the MIQP:

min �2
XM
a¼1

maha þ
XM
a;b¼1

mambGab

subject to sa P ma
XM
a¼1

ma ¼ 1

XM
a¼1

sa 6 M0

ma P 0 8a 2 M

sa 2 f0; 1g 8a 2 M

ð30Þ

Note that the matrix Gab is by its definition positive defi-
nite. The problem (29) as well as its variant with an upper
bound on the number of positive variables (30) is of a
similar structure to the well-known question of evaluating
risk versus reward in the context of a portfolio of financial
assets first described by Markowitz [24]. A successful
computational study of the latter has been performed by
Bienstock [3]. The significant difference of Eq. (30) in com-
parison to the instances arising in portfolio optimization is
that the matrix G has full rank. Therefore the solution of
the problem turns out to be much more difficult than the
typical financial problems: the individual QP problems
are solved slower, and the number of nodes that must be
visited in the branch-and-bound tree is high.

Various reliable methods are available for solving the
quadratic programming problem (29), namely Newton-type
feasible descent methods, Lagrange-multiplier methods,
logarithmic barrier methods, and primal-dual interior point
methods. For an overview see Bertsekas [2]. The latter two
classes are particularly suited to the definite quadratic pro-
gramming problems we are dealing with. The mixed-integer
quadratic programming problems like (30) are in general
much harder to solve than their continuous counterparts,
and one can often only resort to branch-and-bound
methods.

7. Numerical examples

As an illustration of the outlined procedure, a fit of three
typical automotive deep drawing steel grades is performed.
Due to the final steps of the manufacturing process of steel
sheets, which consist of cold rolling and subsequent anneal-
ing, the materials have practically orthorhombic sample
symmetry. The measurement of the codf was performed
by means of a pole figure measurement with X-ray diffrac-
tion on three lattice planes and a subsequent recalculation
of the codf using the series expansion method [8] up to
L = 22.

The first example is DX53, a mild deep drawing steel
grade. This material is dominated by a fiber texture close
to the c-fiber, which is given in Euler angles by
(0� 6 u1 < 90�; U = 54.7�, u2 = 45�). In Fig. 2(a) the mea-
sured codf of the material is shown. The other material is a
high-strength micro-alloyed steel grade, H340LAD. In this
case, the dominant structure is the a-fiber, which is located
at (u1 = 0�; 0� 6 U < 90�, u2 = 45�), whereas the c-fiber is
less pronounced. The measured codf is given in Fig. 3(a).
Beside the differences in the dominant fiber directions,
the materials have significantly different peak values.

Both textures were fitted with a grid of 5� within the ele-
mentary region by components with a half-width of
ba = 6�. For a reduction of the processed data, a prelimin-
ary selection of the ansatz functions is performed. For the
optimization procedure, only grid points are considered,
which have an intensity that is higher than a certain limit
value, similar to the CUT method. This preliminary data
reduction is performed only to reduce the subsequent pro-
cessing time, it is not a mandatory part of the approxima-
tion process. For this example, the limit was set to 50% of
the maximum value of the measured codf. This limits the



Fig. 2. Texture measurement and approximation with 24 components of DX53. (a) Measurement and (b) approximation.

Fig. 3. Texture measurement and approximation with 24 components of H340LAD. (a) Measurement and (b) approximation.
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number of ansatz functions to M = 95 in case of DX53 and
M = 92 in case of H340LAD. Within this set of ansatz
functions, the optimization with respect to an optimum
weight for a given number M0 of functions is performed.

We used the commercial solver software CPLEX [19]
which employs a logarithmic barrier algorithm to solve
the initial quadratic optimization problems within less than
6 s on a 1.2 GHz Ultrasparc-IV processor. In addition, for
each material a sequence of instances of type (30) was gen-
erated, the limit M0 on the number of positive variables
varying between 1 and 24. Solving these instances to opti-
mality using CPLEX within reasonable computation time
was impossible except for the smallest instances. However,
using solver settings that employ heuristics to find good
solutions early in the solution process (mip emphasis 3

and mip strategy variableselect 3), we were able
to identify a series of good solutions together with proven
bounds on their maximum optimality gap. We also tested
the Xpress [10] solver, but found it to be inferior, especially
in application to the MIQP problems.

The result of the optimization process is a number of
components and their respective weights that approximate
the given texture. For these examples, a number of such
representations was selected starting with one component
up to 24 components, given by the model function of Eq.
(20). For a better comparison, cuts along two important
directions, the a-fiber and a cut at (0� 6 u1 < 90�,
u1 = 55�; U = 55�, u2 = 55�) were chosen for the evalua-
tion of the approximated codf. In these cuts, the domi-
nant components of both textures are located or
intersecting. The results are presented in Fig. 4 for the
DX53 and in Fig. 5 for the H340LAD. In both cases
the first component fits the maximum peak of the mea-
sured codf. With every additional component, the approx-
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Fig. 4. Approxima
imation of the measured distribution improves with an
increasing number of ansatz functions. The intensity of
the major components is reduced and secondary features
start to develop, which can be observed especially in the
case of H340LAD.

Using only the identified major components, the result-
ing texture is too anisotropic, therefore the values of the
codf are overestimated in the peak regions. The approxi-
mation improves if the information about the remaining
isotropic part is also used in the fit. The introduction of this
additional component is seamless both in Eqs. (29) and
(30), where no decision variable needs to be introduced
for it. With this ‘‘isotropic’’ component added to the tex-
ture approximation, the dominant values are in the range
of the measured texture. In the Figs. 4 and 5 this result is
plotted for the case of 24 components next to the measured
texture.

In Figs. 2(b) and 3(b) the codf plots for the fitted tex-
tures with 24 components and the isotropic part are pre-
sented. The comparison with the measured codf shows
that not only the dominant components are reproduced
but also that the structure of the secondary regions is
approximated sufficiently, when the isotropic part is
included in the approximation result.

One of the advantages of using MIQP techniques to
solve these problems is that an error bound is available
at any time: during the course of the branch-and-bound
algorithm QP relaxations for the remaining subproblems
are solved. The worst objective value among them is then
a safe lower bound for the original problem. Fig. 6 illus-
trates the development of the gap between the objective
function value for the best known solution (after 100,000
nodes of branch-and-bound) and the lower bound at that
time, for both DX53 and H340. The absolute value of
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Fig. 5. Approximation of H340LAD.
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the slope for the graph of the solutions is smaller for H340,
indicating that the weaker texture is harder to approximate
with few components.

As a last example, the case of H220PD is considered.
This material is a phosphorus-alloyed steel with a good
formability and an intermediate strength. The texture mea-
surement (Fig. 7(a)) shows a dominant fiber structure close
to the c-fiber. A secondary feature is the branching of this
fiber in the vicinity of the a-fiber. For the approximation, a
limit was set to 20% of the maximum intensity, resulting in
M = 250 ansatz functions. The QP problem (Eq. 29) for
this material can be solved within 0.5 s. With varying com-
ponent limit M02{1,. . .,24}, and limited to 100,000 nodes
of branch-and-bound, the MIQP problems took on aver-
age 4500 s. The approximation with 24 components is
given in Fig. 7(b).
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The main components of the fiber structure are repro-
duced well, but the branching is not reproduced. This
effect is caused by the limitation of the number M0 of
ansatz functions. The procedure described above fits the
ansatz functions to the main components of the texture.
The examples above showed that this approximation
improved with an increasing number of components, also
reproducing secondary texture features. To approximate
more complex textures with a small set of functions,
one can introduce an additional requirement: volume
fractions selected in a solution of Eq. (30) should not
be clustered too closely. The criterion selected was that
the spherical angle, given by Eq. (14) between any two
volume fractions present in a solution of Eq. (30) should
be at least 7.5�. Note that this imposes a stable set or
node packing condition on the volume fractions: Define
a graph containing all volume fractions as nodes, with
two nodes a and b connected by an edge if
�ðQa;QbÞ 6 7:5�. Then we can model the additional con-
straints using the edge-node formulation of the stable set
polytope [29]:

sa þ sb 6 1 for each pair ða; bÞ with �ðQa;QbÞ 6 7:5�.

ð31Þ

Introducing this distance criterion, the selected compo-
nents are forced to a wider distribution, resulting in a better
approximation of the secondary features (Fig. 7(c)). The
spread in the weights ma increases to a factor of three be-
tween the smallest and the largest weight in the set. Since
the volume fraction of the isotropic component m0 is dom-
inated by the regions of low intensities, the peak values are
underestimated. The addition of the stable set conditions
increases computation time significantly, to an average
6830 s over the 24 instances considered.



Fig. 7. Texture measurement and approximation of H220PD. (a) Measurement; (b) approximation without distance criterion; (c) approximation with
distance criterion.
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8. Summary

We have presented a method to approximate a texture
with a hierarchical set of texture components using a solu-
tion scheme based on the (semidefinite) mixed integer qua-
dratic programming method. This approach is not limited
to a special texture class nor to a specific sample or crystal
symmetry configuration. The procedure enables the identi-
fication of an optimum combination of ansatz functions for
a prescribed numberM0 of components in a set. If the com-
putation is stopped prematurely, an error bound for the
current state of the approximation is given.

A fitting of typical steel textures with a small number of
components was performed. The approximation repro-
duces the measured textures with a tendency to cluster in
regions of high intensities. If a wider distribution of the
ansatz functions is needed, a distance based discrimination
procedure can be added, which improves the approxima-
tion of secondary texture features.
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