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Abstract

There are many crystallographic textures which can be approximated by a small number of texture components [see,

e.g., Int. J. Mech. Sci. 31(7) (1989) 549]. In some cases, such texture components can be described by central distribu-

tions. Central distributions are characterized by a mean orientation and a half width. The classical Taylor model for

viscoplastic polycrystals assumes that a discrete set of single crystals deforms homogeneously. If the viscoplastic version

of the Taylor model is numerically implemented then the crystallite orientation distribution function (codf) is usually

discretized by a set of Dirac distributions, where each of the Dirac distributions represents a single crystal. Due to the

specific discretization of the codf this approach requires usually a large number of discrete crystal orientations even if

the texture can be described by a small number of texture components. In the present work, we consider face-centered

cubic (fcc) polycrystals and compare the classical upper bound model with an approach based on texture components.

The texture components are modeled by Mises–Fischer distributions, which are central distributions. The stress of the

polycrystal is obtained by a numerical integration of the single crystal stress state over the orientation space.
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1. Introduction

If the distribution of crystal orientations is

inhomogeneous in a polycrystal, then the elastic
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and the viscoplastic behavior as well as the
non-mechanical properties of the polycrystal are

generally anisotropic. Such anisotropies have a

significant technological importance since they

can positively and negatively affect the mechanical

properties of the final product.

In many cases crystallographic textures can be

described by a rather small number of texture

components, e.g. [27,10]. Such texture compo-
nents can be modeled by central or noncentral
ed.
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distributions [8]. An example of a central distribu-

tion is the Mises–Fischer distribution on SO(3)

[17], which has similar properties as the normal

distribution in Rn.

The classical Taylor(-Bishop-Hill) model as-
sumes that a polycrystal deforms homogeneously.

Such an approach ensures the fulfillment of the

compatibility condition through the aggregate

but violates the equilibrium condition on grain

boundaries. The Taylor model usually gives rea-

sonable approximations of deformation textures

in aluminum and copper but fails to predict the

texture formation, e.g., in brass.
If the viscoplastic version of the Taylor model is

implemented usually the crystallite orientation dis-

tribution function is discretized by a set of Dirac

distributions, where each distribution represents

a single crystal. This implies that the stress state

of the polycrystal is equal to the arithmetic mean

of the stress states in the single crystals.

A disadvantage of an approach based on Dirac
distributions is that usually a large number

(approximately 500–1000) of discrete crystal orien-

tations is required for a precise prediction of the

effective mechanical properties. This is also the

case if the texture can be described by a small num-

ber of texture components. Therefore, due to the

high numerical costs an application of the Taylor

model at integration points in finite element codes
is of limited applicability. In the present work we

compare the classical Taylor model based on Dirac

distributions with an approach based on texture

components which are described by Mises–Fischer

distributions. It will be shown that such an ap-

proach allows to reduce the number of crystal ori-

entations significantly. In contrast to other texture

component models [28,22], the present approach
takes into account the half-width of the texture

components during the computation of the

stresses.

The outline of the paper is as follows: In Section 2

we summerize the constitutive equations applied

on the grain scale to model the elasto-viscoplastic

behavior of fcc single crystals. In Section 3 the

codf is approximated by a set of Mises–Fischer
distributions, which are specified by a mean crystal

orientation and a half-width describing the scatter-

ing of crystals around the mean orientation. Fur-
thermore, the effective stress state is specified in

terms of an integral of the single crystalline stress

state over the orientation space. Numerical exam-

ples concerning the representation of the codf by

Mises–Fischer distribution functions are presented
in Section 4. Special emphasis is given to the

modeling of the R value (Lankford coefficient)

and the yield stress in textured polycrystals. It is

shown that the suggested texture component mod-

el drastically reduces the number of degrees of

freedom which are necessary to describe crystallo-

graphic textures and to determine the effective

mechanical properties.
Notation. Throughout the text a direct tensor

notation is preferred. The scalar product and the

dyadic product are denoted by A Æ B = tr(ATB)

and A � B. Symmetric and traceless tensors are

designated by a prime, e.g., A 0. The symmetric

and the skew part of a 2nd-order tensor A are

denoted by sym(A) and skw(A), respectively. The

set of proper orthogonal tensors is specified by
SO(3).
2. Constitutive modeling on the microscale

2.1. Elastic law

In the following we adopt the assumption that
dilatations are purely elastic whereas distortions

are purely viscoplastic. Both deformation modes

are assumed to be decoupled. The spherical part

and the deviatoric part of the Kirchhoff stress ten-

sor s are denoted by s� and s 0, respectively. The

first is associated with volume changes and the lat-

ter with shape changes. The spherical and the devi-

atoric part of the stress tensor represent the
equilibrium part and the dynamic part of the stress

tensor, respectively, see e.g., [26].

Due to the aforementioned assumptions, the

strain energy density specifying the equilibrium

part of the stress tensor depends only on the

determinant J of the deformation gradient. The

following form of the strain energy density is

adopted

W ðJÞ ¼ K
4
ðJ 2 � 2 lnðJÞ � 1Þ; ð1Þ
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where K denotes the bulk modulus [21,25]. As a re-

sult, the equilibrium stress is given by

s� ¼ J
oW ðJÞ
oJ

I ¼ K
2
ðJ 2 � 1ÞI : ð2Þ
2.2. Flow rule and lattice spin

The viscoplastic distortions are considered to

result from inelastic deformations in slip systems.

The slip rate is assumed to be driven by the re-

solved shear stress in the corresponding slip sys-
tem. Therefore, it depends only on the deviatoric

part of the stress tensor, which here is equal to

the dynamic part of the stress tensor. Distortions

of viscoplastic single crystals can be modeled by

the following set of equations

0 ¼ D0 �Qsymð eK ðQTs0Q; sC
a ÞÞQ

T;

_QQ�1 ¼ W �Qskwð eK ðQTs0Q; sC
a ÞÞQ

T;
ð3Þ

see, e.g., [11]. D 0 and W are the traceless symmetric

and the skew part of the velocity gradient L = ov/
ox. The internal variables sC

a are the critical re-

solved shear stresses in the different slip systems.

In the present work, fcc single crystals are consid-

ered. For this specific class of materials, it is a rea-

sonable assumption that the slip systems harden in

an isotropic manner, i.e. sC
a ¼ sC [13].

An orthogonal tensor Q is used in order to spec-

ify the single crystal orientation. Q is introduced in
such a way that it maps a reference basis ei onto

the lattice vectors gi at time t P 0: gi(t) = Q(t)ei.
If the two sets of lattice vectors ei and gi(t) are

known, the orthogonal tensor Q can be computed

by Q = gi � ei. For given strain rate tensor D 0 and

crystal orientation Q, Eq. (3)1 is an implicit equa-

tion for the stress deviator s 0. For given s 0, W and

Q, respectively, Eq. (3)2 determines the spin _QQ�1

of the crystal lattice.

The function eK is assumed to be given by

eK ðQTs0Q; sCÞ ¼
XN
a¼1

_caðsa; s
CÞfM a; ð4Þ

_caðsa; s
CÞ ¼ _c0signðsaÞ

sa

sC

��� ���m; ð5Þ

sa ¼ ðQTs0QÞ � fM a ð6Þ
[11]. The Schmid or slip system tensorsfM a ¼ ~da � ~na are rank-one tensors, which are de-

fined in terms of the slip directions ~da and the slip

plane normals ~na. In the case of an fcc single crys-

tal at room temperature, the octahedral slip sys-

tems h11�0i{111} have to be taken into account
(N = 12). sa is the resolved shear stress in the slip

system a. The material parameter m quantifies

the strain rate sensitivity of the material. It is gen-

erally temperature-dependent and can be esti-

mated by strain rate jump experiments. At room

temperature m is usually in the range 50–250. In

the limit m ! 1 a rate-independent behavior is

obtained. Note, that Eq. (4) implies that the rate
of deformation is positively homogeneous of de-

gree m in the stress tensor, whereas the stress is

homogeneous of degree 1/m in the rate of

deformation.

2.3. Hardening: the Kocks–Mecking model

The critical resolved shear stress is usually re-
lated to the mean dislocation density in the crystal

lattice by

sCðqÞ ¼ abG
ffiffiffi
q

p
; ð7Þ

where G is the shear modulus and b is the magni-

tude of the Burgers vector, respectively. The scalar

a is generally only weakly temperature- and strain

rate dependent and is considered constant here.

The Kocks–Mecking model describes the rate of

change of the mean dislocation density in fcc single
crystals in the hardening stages II and III, respec-

tively, over a wide range of strain rates and tem-

peratures [12,9,13]. In the context of finite

deformations the model is given by the following

set of equations

_qðsa; qÞ ¼
ffiffiffi
q

p

bb
� j

_cðsa; qÞ
_c�0

���� �����1
n

q

 !
_cðsa; qÞ; ð8Þ

where

_cðsa; qÞ ¼
XN
a¼1

j _caðsa; s
CðqÞÞj: ð9Þ

The first term in Eq. (8) describes the statistical

storage of dislocations (hardening stage II). The
second term in (8) models the dynamic recovery
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(hardening stage III), which is strain rate and tem-

perature dependent. A combination of (7) and (8)

allows to derive the equivalent formulation of the

Kocks–Mecking model in terms of the critical re-

solved shear stress

_sCðsa; s
CÞ ¼ H0 1 � sC

sC
Vðsa; sCÞ

� 	
_cðsa; s

CÞ; ð10Þ

where the critical Voce stress is

sC
Vðsa; s

CÞ ¼ sC
V0

_cðsa; sCÞ
_c�0

���� ����1=n; ð11Þ

H0 = aG/(2b) and sC
V0 ¼ aG=ðjbÞ. The material

parameters have been determined based on exper-

imental data documented by Brandes and Brook

[4], Les et al. [16], and Mecking [20], respectively:

K = 71.7GPa, _c0 ¼ 9 � 10�3 s�1, m = 133, sC
0 ¼

15MPa (initial value of the critical Schmid stress),

H0 = 37.5MPa, sC
V0 ¼ 51:5MPa, n = 22.5 and _c�0 ¼

107 s�1.
3. Constitutive equations on the macroscale

3.1. Homogenization of the stress field

It is assumed that the material parameters are

homogeneous in the aggregate. The stress field in

the polycrystal can be computed if the fields J,
D, Q, and sC are known. In the following we adopt

the Voigt–Taylor assumption that the polycrystal

deforms homogeneously on the microscale:

J ¼ J , D ¼ D. Within this upper bound approxi-

mation, macroscopic anisotropies are due to

an inhomogeneous distribution of the crystal ori-

entations Q 2 SO(3) and the hardening state

sC 2 Rþ.
The state of the polycrystal will be described by

a distribution function h(Q,sC)

dV
V

ðQ; sCÞ ¼ hðQ; sCÞdQdsC; ð12Þ

which specifies the volume fraction of crystals hav-

ing the orientation Q and the drag stress sC. The

distribution function h(Q,sC) is non-negative

hðQ; sCÞ P 0 8Q 2 SOð3Þ; sC 2 Rþ ð13Þ
and normalized in the sense thatZ
H

hðQ; sCÞdQdsC ¼ 1; ð14Þ

where H ¼ Rþ � SOð3Þ. If SO(3) is parameterized

by Euler angles, the volume element dQ is given by

dQ ¼ sinðUÞ
8p2

du1dUdu2: ð15Þ

The codf f(Q) is obtained by integrating h(Q,sC)

over Rþ

f ðQÞ ¼
Z
Rþ

hðQ; sCÞdsC: ð16Þ

For ergodic sample sets, the ensemble average of
the stress tensor is given by the average of the

Kirchhoff stress tensor over the reference volume

V of an arbitrary sample. Based on the Taylor

assumption and by means of the distribution func-

tion h the macroscopic stress tensor can be com-

puted by

�s ¼ 1

V

Z
V
ðs� þ s0ÞdV ¼ �s� þ �s0; ð17Þ

where

�s� ¼ J
oW ðJÞ
oJ

I ¼ K
2
ðJ 2 � 1ÞI ð18Þ

and

�s0 ¼
Z
H

hðQ; sCÞs0ðD0
;Q; sCÞdQdsC: ð19Þ

If the hardening state is homogeneous in the aggre-

gate, i.e. hðQ; sCÞ � f ðQÞdsC , then the last equation

can be simplified to an orientational average of the

stress tensor

�s0 ¼
Z

SOð3Þ
f ðQÞs0ðD0

;Q; sCÞdQ: ð20Þ
3.2. Texture components

Crystallographic textures can often be described

by a small number of texture components or fibers

[27,5,14]. A texture component is a crystal orienta-

tion for which the codf shows a (local) maximum

in the elementary region. In the neighborhood,

the codf is decreasing in an isotropic or anisotropic
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way. In the present work we exclusively consider

texture components.

The distribution function h(Q,sC) is decom-

posed into an isotropic part hI and an anisotropic

part hA with volume fractions mI and mA, respec-
tively. The anisotropic part is modeled as a super-

position of Nc central distributions g(Q,Qa,ba)

with mean orientations Qa and volume fractions

mA
a (a =1, . . .,Nc). The hardening state of each of

the components is assumed to be homogeneous

and hence can be specified in terms of one drag

stress sC
a . The isotropic part depends on the arith-

metic mean of the drag stresses �sC ¼
PN c

a¼1m
A
a sC

a . As
a result, we have

hðQ; sCÞ ¼ mIhIð�sCÞ þ mAhAðQ;Qa; ba; s
C
a Þ; ð21Þ

where

hIð�sCÞ � d�sC ð22Þ
and

hAðQ;Qa; ba; s
C
a Þ �

XN c

a¼1

mA
a gðQ;Qa; baÞdsC

a
: ð23Þ

The following constraints upon the volume frac-

tions hold:

mI þ mA ¼ 1;
XN c

a¼1

mA
a ¼ 1: ð24Þ

The value of a central distribution g(Q,Qa,ba)

at Q depends only on the distance x between Q
and Qa, which is generally given by

xðQ;QaÞ ¼ arccos
1

2
ðtrðQQ�1

a Þ � 1Þ
� 	

ð25Þ

[5]. A specific central distribution is the Mises–

Fischer distribution

gðQ;Qa; baÞ ¼ NðSaÞeðSa cosðxðQ;QaÞÞÞ; ð26Þ
where

N a ¼
1

I0ðSaÞ � I1ðSaÞ
ð27Þ

and

Sa ¼ SðbaÞ ¼
lnð2Þ

2sin2ðba=4Þ
: ð28Þ
The parameter b represents the half-width of the

distribution. The modified Bessel functions In are

defined by

InðSÞ ¼
1

p

Z p

0

expðS cosðtÞÞ cosðntÞdt: ð29Þ

The Mises–Fischer distribution has the maxi-
mum entropy of all orientation distributions on

SO(3) with expectation value of Q equal to Qa.

This distribution function was introduced by

Mises in a two-dimensional case and by Fischer

in a three-dimensional case [17].

Matthies [18] was the first one who applied the

Mises–Fischer distribution in texture analysis.

Matties called it normal distribution in the orienta-
tion space (see also [19]). The interpretation as a

normal distribution was criticized by Schaeben

[23,24]. An overview on central and noncentral dis-

tribution functions on SO(3) can be found in the

monography by Mardia and Jupp [17]. Eschner

[7,8] used noncentral distribution functions for

the description of experimental crystallographic

textures.
A distribution function h reflects both the sym-

metry of the crystallites forming the aggregate and

the sample symmetry, which results from the

processing history [29]. The crystal symmetry im-

plies the following symmetry relation

hðQ; sCÞ ¼ hðQHC; sCÞ ð30Þ
"HC 2 SC�SO(3). SC denotes the symmetry group

of the single crystal, which is assumed here to have

a cubic symmetry. The sample symmetry implies
the following symmetry relation

hðQ; sCÞ ¼ hðHSQ; sCÞ ð31Þ
"HS 2 SS � SO(3). SS denotes the symmetry group
of the sample. The following modified Mises–

Fischer distribution implies the fulfillment of the

constraint (30) upon the function h

gðQ;Qa; baÞ ¼
1

24

X24

b¼1

N ae
Sa cosðxðQ;HC

b QaÞ; ð32Þ

where the HC
b 2 SOð3Þ are the 24 elements of the

symmetry group of cubic crystals.

Up to now the anisotropic part of the stress

deviator is given by the orientational average



Fig. 1. (100) pole figure of a 2008-T4 sheet.
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�s0A ¼
Z

SOð3Þ

XN c

a¼1

mAmA
a gðQ;Qa; baÞs0ðD

0
;Q; sC

a ÞdQ:

ð33Þ
After defining na by sC

a ¼ na�sC and taking into ac-

count that the stress deviator is homogeneous of

degree 1/m in the rate of deformation, it is possible

to reformulate Eq. (33) by

�s0A ¼
Z

SOð3Þ
f AðQÞs0ðD0

;Q;�sCÞdQ; ð34Þ

where

f AðQÞ ¼
XN c

a¼1

m̂A
a gðQ;Qa; baÞ ð35Þ

and m̂A ¼ mAmA
a nm. It can be seen that an inhomoge-

neous hardening state affects the volume fractions

that occur in the orientation distribution function.

Since the stress deviator is implicitly given, the last

equation makes the numerical determination of

the stress tensor simpler. For a given D
0
the impli-

cit equation has to be solved only once at �sC.
4. Numerical examples

Example 1. (Identification of the model based on

experimental texture data) Lege et al. [15] deter-

mined the volume fractions, the half-widths, and

the Euler angles of four texture components,

which together with a random component, repro-

duce the main features of a crystallographic

texture in a rolled aluminum sheet (see Table 1).

The corresponding (100) pole figure is given in
Fig. 1. Beside the crystallographic texture, the R
Table 1

Main texture components of a 2008-T4 sheet described by

volume fractions, half widths and Euler angles on the condition

that orthotropic sample symmetry is assumed

i bi (�) mi ui
1 Ui ui

2

1 20.18 0.248 1.5532 1.5532 6.2656

2 19.15 0.298 0.2564 1.4347 5.7036

3 22.05 0.153 0.4664 1.5334 6.0412

4 11.72 0.038 1.5549 1.5523 5.9513

Random 0.263
values and the yield stresses were also experimen-
tally determined by tensile tests.

The numerical example presented here shows (i)

how the identification of a phenomenological

model can be avoided in the context of a

viscoplastic modeling, and (ii) that the predictions

based on the Taylor model can be obtained by the

texture component model with much less degrees

of freedom.
For the numerical simulation of the tensile test

the codf is modeled by a superposition of four

Mises–Fischer distributions and a random com-

ponent, the parameters of which are given in Table

1. The half-width parameters are slightly different

to the values determined by Lege et al. which is

due to the application of different model functions

for the components. Here, Mises–Fischer distribu-
tion functions are applied, whereas Lege et al. used

pseudo-Gaussian distribution functions (see, e.g.

[5]). The orthotropic sample symmetry of the

polycrystal requires to use 16 components, which

can be calculated by the components given in

Table 1 and the symmetry transformations of the

orthorhombic symmetry group.

The simulation of a tensile test with the texture
component model requires the iterative search of a

mean deviatoric strain rate which ensures a

uniaxial overall stress state. The computation of

the integrals in Eqs. (33) and (34) has been done

numerically by a multidimensional adaptive inte-

gration algorithm for n-dimensional hyper-rectan-

gles [1,2]. The R value is determined by

R ¼ D � nw � nw

D � nt � nt

ð36Þ



Fig. 2. Normalized yield stress versus tensile direction. Left: Numerical and experimental results taken from [15]. Right: Prediction of

the texture component model and the Taylor model, respectively.
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[14], where nw and nt define the width direction and

the height direction, respectively. Fig. 2 (left)

shows the yield stresses determined experimentally

and numerically by Lege et al. Fig. 2 (right) shows
the predictions of the texture component model,

which are similar to the results obtained by the

Taylor model based on several hundred crystal ori-

entations. In contrast to the classical Taylor model

the component model is based only on 16 different
Fig. 3. R value versus tensile direction. Left: Numerical and experim

component model and the Taylor model, respectively.
crystal orientations. Fig. 2 (right) also shows the

prediction of the Taylor model based on 16 single

crystal orientations. It can be seen that the compo-

nent model predicts a much less pronounced
anisotropy compared to the Taylor model (Fig.

3). This is due to the smoothing caused by

Mises–Fischer distributions, which are used as

weight functions for the stresses.
ental results taken from [15]. Right: Prediction of the texture



Table 2

Half-width, volume fraction, and Euler angles, respectively, for

the four Mises–Fischer components approximating the Taylor

type texture shown in Fig. 4

i bi (�) mi ui
1 Ui ui

2

1 17.8 0.25 1.1740 0.5070 �0.4942

2 17.8 0.25 �1.3009 �0.4910 0.5855

3 17.9 0.27 1.2762 �0.4931 �0.5678

4 18.5 0.23 �1.1476 0.5120 0.4743

Fig. 4. (100) Pole figure of a rolling texture predicted by the Taylor model. Left: Classical Taylor model based on 1000 single crystal

orientations, right: texture component model with four components.
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Example 2. (Ideal rolling texture) Fig. 4 (left)

shows the (100) pole figure predicted by the Tay-

lor model for a plane strain deformation mode

with a final thickness reduction of 90%. The dom-

inant texture component that occurs in this texture
is the Taylor orientation {4411}h11118i. It occurs

two times due to the orthorhombic sample symme-

try induced by the rolling deformation. The tex-

ture simulation has been performed with 1000

single crystals. The final codf fMF
1000ðQÞ has been

estimated by a superposition of 1000 Mises–

Fischer distributions, one for each single crystal,

with a half-width of 15�.
Fig. 4 (right) shows the (100) pole figure of the

codf fMF
4 obtained by four Mises–Fischer distri-

butions. The volume fractions and half-widths of

the four distributions have been obtained by

minimizing the distance d
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of b.
d ¼
Z

SOð3Þ
ðfMF

1000ðQÞ � fMF
4 ðQÞÞ2

dQ ð37Þ

between the fMF
1000ðQÞ and fMF

4 ðQÞ. The parameters,

which are given in Table 2, have been obtained by

an optimization scheme [3,6].
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For both textures the yield stresses and R values

were calculated using the Taylor and the compo-

nent model, respectively. Fig. 5 (left) and Fig. 6

(left) show that the yield stresses and R values

predicted by the Taylor model and the component

model are similar. In Fig. 5 (right) and in Fig. 6

(right) it can be seen that a Taylor simulation
based on only four crystal orientations drastically

over predicts the anisotropy. Furthermore, the

results show that for vanishing half-widths the

results of the component model approach the ones

by the Taylor model.
5. Summary

In the present work we compared the classical

Taylor model with a texture component model.

The first represents the codf by a set of discrete sin-
gle crystal orientations whereas the latter uses

model functions which take into account the scat-

tering of crystal orientations around the center of a

texture component. It was shown that the applica-

tion of square integrable distribution functions al-

lows to reduce the number of single crystal

orientations drastically.
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