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Abstract. In the present work the texture component model developed in [2] is used to predict
the plastic anisotropy of a textured aluminum sheet in terms of the yield stress, the R value, and
the earing profile resulting from a cup drawing operation. The model which is formulated in a
viscoplastic setting, has been implemented in the commercial finite element code ABAQUS. The
stress deviator is computed directly from the crystallite orientation distribution function which
is approximated by a set of Gauss type model functions. The model is particularly suitable
for the description of crystallographic textures which can be described by a small number of
texture components. The numerical results are compared with experimental data and numerical
results by Lege et al. [8].

Introduction

An inhomogeneous distribution of crystal orientations induces anisotropies of the macroscopic
mechanical behavior. Therefore an accurate description of this distribution plays a significant
role if the anisotropy of sheet metals has to be taken into account in finite element simulations.
The relation between the macroscopic stress and strain measures and the crystallographic tex-
ture can be determined, e.g., based on Taylor type models or self-consistent schemes. The
former group of models is widely used [7] because it is computationally less expensive. Taylor
type models give a reasonable qualitative approximation of the crystallographic texture evolu-
tion in single-phase face-centered cubic materials with high stacking-fault energy such as copper
and aluminum. One of the most significant shortcoming of this model class is the overestimation
of the sharpness of the texture and hence of the mechanical anisotropy. This overestimation is
very pronounced if the codf is discretized by a small set of discrete crystal orientations. In the
present paper we consider a Taylor type model based on texture components, each of which is
approximated by a central distribution. The effective stress tensor is determined by an integra-
tion of the single crystal stress state over the orientation space. It is shown that the texture
component model allows for an accurate description of the yield stress, the R value, and the
earing profile even if only a small number of crystal orientations is taken into account.

Homogenization of the Stress Tensor

For the homogenization of the Kirchhoff stress tensor 7 it is assumed that the polycrystal
deforms homogeneously, i.e. J = J, D = D, where J and D’ denote the determinant of the
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deformation gradient and the strain rate deviator, respectively. In the following we adopt the
assumption that dilatations are purely elastic, whereas distortions are purely viscoplastic. Both
deformation modes are assumed to be decoupled. A detailed description of the model can be
found in [2]. The spherical part and the deviatoric part of the stress tensor T are denoted by
7° and 7/, respectively. For the volume averages over the initial placement we have

f'z”l‘/(T°+T')dV=‘T'°+‘7". (1)
Vv

The spherical part 7° is associated with volume changes and is modeled by the following finite
elastic law [10]

K , -
=7 (J2-1)1I, (2)
where K denotes the bulk modulus. The deviatoric part of the stress tensor 7 is associated
with shape changes and is assumed to depend on the distribution of the crystal orientations
Q € SO(3) and on the distribution of the critical resolved shear stresses 7¢ € R*. The state of
the polycrystal is described by a distribution function h(Q, 7€)

@70 = h(Q,7) dQar ®)

which specifies the volume fraction of crystals having the orientation @ and the critical resolved
yield stress 7¢. The distribution function h(Q, 7°) is non-negative and normalized in the sense
of

r(Q,°) >0 VQ € SO(3), ¢ € RY, / r(Q,7¢)dQdr¢ =1, (4)
H

where H = Rt x SO(3). The stress tensor 7' is computed by means of an integration over H

7 = /H nMQ, %) (D', Q,7°)dQ drC. (5)
The stress state 7/ and the lattice spin QQ ™! can be computed by the following equations
0 =D - QwmEQTQ)Q",
QR = W - Qskw(K(Q'7'Q,9))QT o
[5], where the function K is defined by
K(QT'Q ) = X falra )Wy Falray7%) = fosign (7o) | 76 | 7)

To = (QTT’ Q) M, denotes the resolved shear stress in the a-th slip system. M, is the Schmid
tensor. The evolution of the hardening variable 7€ is specified by the Kocks-Mecking model
[6, 2].
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Approximation of the CODF by Texture Components

There are many crystallographic textures which can be described by a small number of texture
components or fibers [11, 3, 4, 7]. In this work only texture components are considered. A
texture component is a crystal orientation for which the codf shows a (local) maximum in the
elementary region. In the neighborhood, the codf is decreasing in an isotropic or anisotropic
way. In the following the distribution function h(Q, 7¢) is decomposed into an isotropic part h’
and an anisotropic part A4 with volume fractions v/ and v4. The anisotropic part is modeled as

a superposition of N, central distributions g(Q, Q,, b,) with mean orientations @, and volume

fractions v2 (a =1,..., N,). The hardening state of each of the components is assumed to be
homogeneous and hence can be specified in terms of one drag stress 7¢. The isotropic part

depends on the arithmetic mean of the drag stresses 7¢ = Zivc vaArC. As a result, we have

WQ,7°) = VR (7°) + v h4(Q, Qu b 75), (8)
where

RI(T) ~ be, W Q Qarbar 7)) ~ Loty v9(Q, Qs ba)brg (9)
The constraints upon the volume fractions are

Vievti=1, TN ouA=1 (10)

The value of a central distribution g(Q, Q,,b.) at Q only depends on the distance w between
Q and Q. The distance between two crystal orientations is generally defined as

w(Q,Q,) = arccos (3(tr(QQ;") — 1)) (11)
[3]. A specific central distribution is the Mises-Fischer distribution

9(Q, Quba) = N(Sp)elS= @ Q), (12)
where

N, = ! Su= S(b) = 22 __ (13)

Io(Sa) — 1(Sa)’ 2sin? ( bo/4)
The parameter b, represents the half-width of the distribution. The modified Bessel functions
I, are defined by I,(S) = = [" exp(S cos(t)) cos(nt) dt. Matthies [9] used this model function
in the context of texture analysis. The following modification of the Mises-Fischer distribution
takes into account the cubic crystal symmetry

9(Q, Qq, Sa) ZN ¢Sacos@(Q.QH)). (14)

The H g € SO(3) specify the 24 elements of the symmetry group of cubic crystals. Now we
define &, by ¢ = £,7° and take into account that the stress deviator is homogeneous of degree
1/m in the rate of deformation. As a result the isotropic and the anisotropic part of the stress
deviator 7/ = 7'f + 7'4 are given by

—1 _ 1R _C _1A = o
7 _/SO(3 (D,Q,77)dQ, T /50(3); 9(Q,Q,,b,)T'(D',Q,7°)dQ  (15)

with 24 = vAvA¢™. Tt can be seen that the weights in the orientational average of the stress
tensor depend on the hardening state in the aggregate.
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Fig. 1: Normalized yield stress versus tensile direction. Left: Numerical and experimental results

by Lege et al. [8]. Right: Predictions of the texture component model and the Taylor model.

Numerical Examples

Lege et al. [8] determined the volume fractions, the half-widths, and the Euler angles of four
texture components, which together with a random component, reproduce the main features
of a crystallographic texture in a rolled aluminum sheet. Here we consider the problem of
computing the sheet anisotropy for this set of texture components. Note that the orthotropic
sample symmetry of the polycrystal requires to use 16 components. The texture component
model and a Taylor type model based on discrete crystal orientations have been implemented
into the commercial finite element code ABAQUS [1]. It is known that an application of the
Taylor model with discrete crystal orientations would drastically overestimate the amount of
anisotropy if each texture component would be modeled by only one crystal orientation. This
has been shown in [2] for the yield stresses and the R values. There it has also been shown
that the anisotropy is also overestimated by the texture component model if the half-width
is determined by the codf. This is due to the fact that the model represents an upper bound
estimate of the viscoplastic behavior. These findings motivate the introduction of corrected
half-width values b, = (b, where 3 € [1,3]. The implications of this approach are analyzed in
this paper for the yield stress, the R value, and the earing profile. The results are compared
with the experimental data taken from [8].

In Figure 1 (right) the yield stress is shown as it is predicted by the component model
and by the Taylor model. Figure 2 (right) shows the corresponding R value. In the case of
an application of the component model, the anisotropies are less pronounced compared to the
Taylor model. If the half-width is increased, the anisotropy in terms of the yield stresses and
the R values decreases. In addition, if factors § ~ 3 are used, the predictions of the component
model are close to the experimental results (see Figure 1 and Figure 2, left). For 8 = 1, the
results of the component model are similar to those of the Taylor-Bishop-Hill model (see Figure
1, left).

The deep drawing of cylindrical cups is another mechanical process for which the plastic
anisotropy of a sheet metal is of significant importance. For the simulations of the deep drawing
test, the same components are used as in the examples discussed before. The geometry of the
sheet and of the punch are taken from [8]. The orthotropic sample symmetry in the sheet
plane implies that only a quarter of the sheet has to be modeled. In the calculation with
ABAQUS, C3D8H elements are used. The computations have been performed for both the
texture component model and the Taylor model based on discrete crystal orientations. In the
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Fig. 2: R values versus tensile direction. Left: Numerical and experimental results by Lege et
al. [8]. Right: Prediction of the texture component model and the Taylor model.

Fig. 3: Deformed finite element mesh of a quarter of a cylindrical cup. Left: Taylor model.
Right: Texture component model (N, =4, = 1).

case of the component model (Figure 3, right), the maximum height of the drawn cup is smaller
than in the case of the classical Taylor model (Figure 3, left). In Figure 4 (right) the influence
of the parameter G on the height of the cup is shown. If 3 is increased, then the maximum
height of the cup decreases.

Conclusions

A texture component based model [2] has been used to simulate the plastic anisotropy of
a textured aluminum sheet by the finite element method. Special emphasis is given to the
quantitatively correct modeling of the earing profile. The conclusions are the following:

e The texture component model overestimates the mechanical anisotropy of the sheet metal
if the shape parameters (half-width) of the model functions are identified by an experimental
codf. This is due to the fact that the component model assumes a homogeneous deformation
and hence represents an upper bound estimate.

o If adjusted values of shape parameters are used then the overestimation of the anisotropy
can be eliminated. It is important to note that the half-width is varied for a fixed number of
model functions. This is a specific feature of an approach based on continuous model functions.
If the Taylor model would be applied based on an approximation of the codf by a set of discrete
crystal orientations, then the number of crystals would have to be increased in order to weaken
the anisotropy.
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Fig. 4: Left: Deformed finite element mesh of a quarter of a cylindrical cup (texture component

model with § = 3). Right: Cup heights predicted by the texture component model and the
Taylor model based on discrete crystal orientations.
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