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Abstract

The main purpose of this work is to develop a phenomenological model, which accounts for
the evolution of the elastic and plastic properties of fcc polycrystals due to a crystallographic
texture development and predicts the axial effects in torsion experiments. The anisotropic
portion of the effective elasticity tensor is modeled by a growth law. The flow rule depends on

the anisotropic part of the elasticity tensor. The normalized anisotropic part of the effective
elasticity tensor is equal to the 4th-order coefficient of a tensorial Fourier expansion of the
crystal orientation distribution function. Hence, the evolution of elastic and viscoplastic

properties is modeled by an evolution equation for the 4th-order moment tensor of the
orientation distribution function of an aggregate of cubic crystals. It is shown that the model
is able to predict the plastic anisotropy that leads to the monotonic and cyclic Swift effect. The

predictions are compared to those of the Taylor–Lin polycrystal model and to experimental
data. In contrast to other phenomenological models proposed in the literature, the present
model predicts the axial effects even if the initial state of the material is isotropic.
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1. Introduction

If polycrystals consisting of cubic single crystals are subjected to finite, monotonic
free-end torsion, an axial strain of about one hundredth the shear strain evolves.
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The effect was first described by Swift (1947), who assumed that hardening
mechanisms are responsible for the axial effects. It is now called the Swift effect. If
the direction of shear is reversed, then the shear-strain vs. axial-strain curves form
a cusp and reach a minimum before axial growth occurs again. This phenomenon
is called cyclic Swift effect. A fixed-end torsion results in a development of axial
forces.
Swift (1947) performed his experiments to check whether straight radial lines

remain straight. The observations on mild steel showed a change of the external
dimensions under plastic torsion, which was not in accordance with any known
plasticity theory. Therefore, similar tests were performed with 70–30 brass, stainless
steel, aluminum, 0.5% carbon steel, copper, and cupro-nickel and different specimen
geometries. All materials and all specimen geometries tended to elongate under
severe torsional strain. The elongation was therefore not confined to solid circular
specimens. Furthermore, the extension effect was found not to be reversible
upon reversal of shear. Only a transient tendency to reverse the axial strain was
found. This tendency is soon overcome and the tensile straining is re-established.
The axial strain accumulation is not dependent on the direction of torsion. Swift
also investigated the influence of prior strain and heat treatment. Similar results
have been obtained by Stüwe and Turck (1964) and Gil-Sevillano et al. (1975).
Swift assumed that the strain hardening causes the axial effects. Billington (1976)
contradicted this assumption by experiments. He observed continuous elonga-
tions in iron independent of hardening. Nowadays, it has been accepted that the
axial effects are due to the crystallographic texture (Montheillet et al., 1985;
Harren et al., 1989).
Axial effects are more complex at elevated temperatures. Montheillet et al. (1984)

tested polycrystalline samples of Al, Cu, and a-Fe in fixed-end torsion over the
temperature range 20–400, 500, and 800 �C. At low temperatures the axial forces
were compressive in all three metals. At high temperature the axial forces either
changed to small compressive (Al) or to tensile loading (Cu and a-Fe).
Simulations of the torsional deformation provide a suitable means for assessing

the adequacy of phenomenological constitutive models. Here the main problem of a
constitutive model is the representing of the axial deformation behavior in a cyclic
torsion test at large shear strains. Montheillet et al. (1985) have shown that, if the
ellipsoidal yield surface, proposed by von Mises (1928) and Hill (1948), is specified
by the ideal orientations found in torsion textures, then the monotonic Swift effect
can be reproduced. But there is no evolution equation given that describes the
evolving anisotropy. Harren et al. (1989) simulated Swift’s reverse torsion test using
a rate-dependent Taylor type polycrystal model. In this simulation, performed with
500 single crystals, the cyclic Swift effect has been reproduced. The magnitude of the
axial strains is overestimated by the Taylor type model by approximately a factor of
three. Van der Giessen et al. (1992) considered two different phenomenological
models for the plastic spin. The influence on the predicted torque response and the
axial strain effects in a large strain torsion of a solid circular bar was investigated. It
is found that the differences in the predicted axial effects are more pronounced in the
fixed-end case whereas the differences in the torque response is more pronounced in
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the free-end case. In the free-end case the simulation shows a monotonically
increasing lengthening. Van der Giessen et al. (1992) do not investigate a cyclic
torsion test. Other approaches considering the monotonic Swift effect or torsional
deformations are given by Pan (1996, 1997); Wu et al. (1997); Ishikawa (1999); Xiao
et al. (2001); Barlat et al. (2002); Wu (2003). The coupling between texture and
macroscopic material response is studied by Cho and Dafalias (1996); Miller and
McDowell (1996); Man (2002).
Hahne (1993) provides a complete review of papers on the Swift effect. Further-

more, Hahne models the cyclic Swift effect macroscopically. He postulates a quad-
ratic yield condition in terms of the stress deviator. The evolution equation of the
4th-order tensor, which occurs in the quadratic form, is specified by a corotational
rate. The rate of change of the 4th-order tensor is assumed to be proportional to the
dyadic product of the stress deviator. The identification of the material parameters
requires the application of an optimization procedure.
Majors and Krempl (1994) discussed two classes of phenomenological models

qualitatively. The first class is given by models based on a 2nd-order backstress
tensor. The plastic flow is assumed to have the same direction as the difference of the
Cauchy stress and the backstress. In contrast to experiments, the model predicts that
the axial growth continues immediately after reversal. The second class is given by
models in which the plastic rate of deformation is given as a (generally anisotropic)
map of the difference of the Cauchy stress and the backstress. It is found that both
classes are able to reproduce the monotonic Swift effect. It is furthermore shown
that the first class is not able to model the cyclic Swift effect (see also, Portier et al.,
2000).
Kuroda (1997) developed a phenomenological viscoplastic model in order to

describe the cyclic Swift effect. An orthotropic yield surface is introduced. The
orthotropic axes are assumed to rotate with the elastic portion of the spin tensor.
This elastic portion is given by the difference of the spin tensor and the Eulerian
form of the plastic spin. The plastic spin is modeled by the assumption that it is
driven by the non-coaxiality of the stress tensor and the inelastic rate of deforma-
tion. The cyclic Swift effect can be reproduced by this approach. The strain hard-
ening is found to be of minor importance. Kuroda (1999) compared the predictions
of the aforementioned phenomenological model with Taylor type simulations. He
showed that both models predict similar yield loci and reproduce the cyclic Swift
effect, but overestimate the axial strains. In Kuroda’s model only the directions of
the orthotropic axes are changed by inelastic deformations. The parameters with
respect to the orthotropic axes are constant. This implies that the material must
already be anisotropic in the initial state in order to make the approach successful.
Hence this approach is of limited applicability.

1.1. Outline of the paper

In Section 2 we introduce two models for the description of polycrystals: a phe-
nomenological model and a polycrystal model. The phenomenological model has
been discussed in detail by Böhlke and Bertram (2001) for the special case of
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deformations which can be described by a symmetric velocity gradient. In the pre-
sent paper we apply an extension of this model which includes the plastic spin and
allows for a modeling of the axial behavior in torsion experiments of fcc polycrystals
at room temperature. The phenomenological approach models the growth of the
anisotropic part of the effective elasticity tensor. The flow rule depends on the ani-
sotropic part of the elasticity tensor. This type of a coupling is substantiated by
experimental and theoretical findings (Stickels and Mould, 1970; Man, 1995). It can
be shown, that the normalized anisotropic part of the effective elasticity tensor is
equal to a 4th-order coefficient of a tensorial Fourier expansion of the crystal
orientation distribution function (Böhlke and Bertram, 2002). Hence, the evolution
of elastic and viscoplastic properties is modeled by an evolution equation for the
4th-order moment tensor of the orientation distribution function of an aggregate
of cubic crystals. The polycrystal model is the Taylor–Lin model (Taylor, 1938;
Lin, 1957; Harren et al., 1989) which has been applied often in the context of tex-
ture simulations. In Section 3 the phenomenological model and the polycrystal
model are compared with respect to the predictions of axial effects in free-end
torsion experiments with polycrystalline copper. Both the monotonic and the cyclic
Swift effect are investigated. The phenomenological model reproduces the axial
effects. The numerical results are compared with experimental data presented by
Swift (1947).

1.2. Notation

Throughout the text a direct tensor notation is preferred. To avoid additional
formal definitions, the index notation is applied in some cases using the summation
convention. A linear mapping of a 2nd-order tensor is written as A=C[B]. The sca-
lar product, the dyadic product, and the Frobenius norm are denoted by
A.B=tr(ATB), A�B, and kAk=(A.A)1/2, respectively. I=ei�ei and I=ei�ej
�(ei�ej+ej�ei)/2 denote the 2nd-order identity and the identity on symmetric 2nd-
order tensors. Irreducible, i.e., completely symmetric and traceless tensors are
designated by a prime, e.g., A0 and C0. The symmetric and the skew-symmetric part
of a 2nd-order tensor A are denoted by sym(A) and skw(A), respectively. The Ray-
leigh product A*C of a 4th-order tensor C=Cijklei�ej�ek�el and a 2nd-order tensor
A=Aij ei�ej is defined by
A � C ¼ Cijkl Aeið Þ � Aej
� �

� Aekð Þ � Aelð Þ; ð1Þ
where {ei} is an orthonormal basis. If C exhibits a symmetry in the first or second
pair of indices (e.g., Cijkl=Cjikl) or the major symmetry (Cijkl=Cklij), A�C shows
the same symmetry properties for all A. The associativity A�(B�C)=(AB)�C
holds for all 2nd-order tensors A and B. The bracket formula {.} is defined by
(A, B2Sym)
AijBkl

� �
¼

1
AijBkl þ AikBjl þ AilBkj þ BijAkl þ BikAjl þ BilAkj

� �
ð2Þ
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phenomenological and a polycrystal model
2. A

2.1. The phenomenological model

2.1.1. Elastic law

2.1.1.1. Anisotropic hyperelastic stress–strain relation. The stress–strain relation
applied here is equivalent to the standard formulation of the theory of elasto-plas-
ticity based on a linear elastic law of the St. Venant type. The Kirchhoff stress tensor
� e is given as a linear map of the elastic Almansi strain tensor (e.g., Böhlke and
Bertram, 2001)
� e ¼ Ce E
A
e

� �
; EA

e ¼
1

2
I� F�T

e F�1
e

� �
; Fe ¼ FF�1

p : ð3Þ
The Kirchhoff stress � e is defined by the Cauchy stress � and the determinant Je of
Fe through � e=Je�. The tensor Fe represents the elastic portion of the deformation
gradient F=FeFp. The multiplicative decomposition of the deformation gradient
into elastic and plastic parts can be derived by the assumption of isomorphic elastic
ranges (Bertram, 1992, 1999). In the present work it is assumed that the decom-
position holds even if the elastic properties evolve with crystallographic texture
(Böhlke, 2001).
The stiffness operator Ce is given by the Rayleigh product of Fe and the reference

stiffness tensor C~
Ce ¼ Fe � C~ ¼ C~ ijkl Feeið Þ � Feej
� �

� Feekð Þ � Feelð Þ: ð4Þ
Note, that the tensor Ce is generally non-constant even in the case that C~ is con-
stant and isotropic. Within the standard formulation of the theory of elasto-plasti-
city, i.e. without induced elastic anisotropy, C~ is assumed to be constant. Here and
in the subsequent sections a tilde indicates that the quantities are formulated with
respect to the undistorted configuration, which is characterized by the fact that
corresponding symmetry transformations are elements of the orthogonal group.

2.1.1.2. Decomposition of Hooke’s tensor. Volume averages of stiffnesses or com-
pliances with a cubic symmetry generally allow for the following unique decom-
position of the effective properties into three different parts, e.g., in terms of
stiffnesses
C~ ¼ 3KPI
1 þ 2GPI

2 þ �A~ 0; PI
1 ¼

1

3
I� I; PI

2 ¼ I� PI
1: ð5Þ
This result holds for the arithmetic, the harmonic mean, or the geometric mean of
stiffness tensors (Böhlke and Bertram, 2000, 2001). The two 4th-order tensors PI

1

and PI
2 represent the isotropic part of the elastic law, which is independent of the

crystallographic texture in the aggregate. The constants K, G, � depend on the type
of averaging. K is the bulk modulus and G is the shear modulus. � quantities the
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amount of anisotropy of the cubic crystals forming the aggregate and also depends
on the type of averaging.

2.1.1.3. Micromechanical interpretation of the decomposition. The tensor A0 specifies
the direction of the purely anisotropic part of the stiffness tensor C~ . A property
which is characteristic for aggregates of cubic crystals is that the anisotropic part A0

is independent of the special type of averaging (Böhlke and Bertram, 2001). It is
given in terms of a mean value
A~ 0 ¼

ffiffiffiffiffi
30

p

30
I� Iþ 2I� 5

ð
g

f gð Þ
X3
i¼1

g~ i gð Þ � g~ i gð Þ � g~ i gð Þ � g~ i gð Þdg

 !
; ð6Þ
where {g~ i} denotes the lattice vectors of the single crystals on the microscale. f(g)
represents the crystal orientation distribution function. The function f specifies the
volume fraction of crystals having an orientation between g and g+dg, i.e. dV/
V=f(g)dg. If there is no crystallographic texture in the aggregate, then A~ 0=0 holds
and C~ is isotropic. By definition the Frobenius norm of A~ 0 is equal to one for a single
crystal orientation. The tensor A~ 0 is symmetric and traceless with respect to all pairs
of indices
A~ 0ijkl ¼ A~ 0jikl ¼ A~ 0klij ¼ A~ 0kjil ¼ :::; A~ 0iikl ¼ 0: ð7Þ
As a result, A~ 0 contains only nine independent components, and this property
leads to a rigorous simplification of the evolution equation of A~ 0. The tensor A~ 0

represents the 4th-order coefficient of a tensorial Fourier expansion of the crystal
orientation distribution function of an aggregate of cubic crystals (Böhlke and
Bertram, 2002).

2.1.2. Flow rule
2.1.2.1. The coupling of elastic and plastic anisotropy. There is experimental evidence
that for textured polycrystals the effective elastic and (visco)plastic properties are
correlated (Bunge and Roberts, 1969; Stickels and Mould, 1970; Kallend and
Davies, 1971; Davies et al., 1972). Therefore, the anisotropy of the (visco)plastic
behavior can be inferred not only from destructive tests but also from non-destruc-
tive measurements of the elastic anisotropy parameters. Based on these findings,
Man (1995, 1998) formulated a quadratic yield function which assumes that the
elastic and plastic properties are correlated linearly. As a result, the anisotropic part
of the effective elasticity tensors specifies the anisotropic part of the quadratic yield
condition. The introduction of a quadratic yield function goes back to von Mises
(1928) who used a general 4th-order tensor to formulate a quadratic yield condition
in terms of stresses.

2.1.2.2. Flow rule. In the following it is convenient to decompose the flow rule into
its symmetric D̃p and skew part W̃p
F
:
pF

�1 ¼ D~ p þW~ p: ð8Þ
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e directions of D~ p andW~ p are denoted by N~ p ¼ D~ p=
��D~ p�� andM~ p ¼ W~ p=

��W~ p

��,
Th
respectively. The viscoplastic flow is assumed to be driven by an overstress. The
direction of D~ p is specified by the stress tensor and the anisotropic portion of the
effective elasticity tensor
D~ p ¼
�
:
0��S~0��

ffiffi
3
2

q ��S~0��
a
� �F

�D

* +1
m

N~ �;A~ 0
� �

S~0
h i

; N~ �;A~ 0
� �

¼ PI
2 þ �A~ 0: ð9Þ
The bracket hxi is defined by (x+jxj)/2. The flow rule is rate-dependent and this
rate-dependence is specified by the scalar m. The scalars �F and �D represent a cri-
tical flow stress and a drag stress, respectively. The scalar �

:
0 is a referential inelastic

rate. With
��S~0��

a
we denote an anisotropic norm of the deviator S~0
��S~0��

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S~0 �N~ �;A~ 0

� �
S~0
h ir

; S~ ¼ F�1
e � eF

�T
e : ð10Þ
The anisotropic part of the norm is governed by the scalar � and the tensor A~ 0.
Keeping in mind that P~ I2 is the identity on symmetric and traceless 2nd-order ten-
sors, then it is not hard to see, that for the elastically isotropic case a rate-dependent
J2-theory is obtained.
The constitutive relation for the non-symmetric part of the flow rule, i.e. the

plastic spin, is formulated close to a suggestion by Kuroda (1997) (see also Kuroda,
1999) which is based on papers by Zbib and Aifantis (1988) and Zbib (1991). The
plastic spin W̃p is assumed to be proportional to the noncoaxiality of the stress and
the inelastic rate of deformation
W~ p ¼ �
:
0

ffiffi
3
2

q ��S~0��
a
� �F

�D

* +1
m

S~0D~ 0
p �D~ 0

pS~
0��S~0D~ 0

p �D~ 0
pS~0
�� : ð11Þ
2.1.3. Growth law for the elasticity tensor
2.1.3.1. Symmetric velocity gradients. For the modeling of the evolution of A~ 0 for
deformations which can be described by symmetric velocity gradients the following
ansatz has been applied by Böhlke (2001) and Böhlke and Bertram (2001)
A~
:
0 ¼

��D~ 0
p

�� G~ 0 N~ 0
p

� �
� d Ip1

� �
A~ 0

� �
; Ip1 ¼ det N~ 0

p

� �
: ð12Þ
This ansatz is formally similar to kinematic hardening models based on 2nd-order
tensors (see, e.g., Armstrong and Frederick, 1966). Krempl (1994) proposed such
type of an evolution equation for a 4th-order plastic compliance tensor. The growth
law for A~ 0 has to be isotropic since the anisotropy is taken explicitly into account by
the tensor A~ 0. The driving term G~ 0(N~ 0

p) depends only on the direction N~ 0
p of the

inelastic rate of deformation D~ 0
p which is the symmetric part of F

:
pF

�1
p . The ansatz

(12) takes into account that for constant strain rates the crystallographic texture
tends to saturate for large deformations. The saturation behavior is controlled by
T. Böhlke et al. / International Journal of Plasticity 19 (2003) 1867–1884 1873



d(Ip1) A~
0. The function d(Ip1) depends on the only non-constant principal invariant

of N~ 0
p, i.e., its determinant.

Due to the constraint that, similar to A~ 0, the function G~ 0 has to be symmetric and
traceless with respect to all pairs of indices, the function G~ 0 is generally given by
three 4th-order tensor generators G~ 0a and corresponding scalar functions Ga (Böhlke
and Bertram, 2001)
G~ 0 N~ 0
p

� �
¼ G1 Ip1

� �
G~ 01 N~ 0

p

� �
þ G2 Ip1

� �
G~ 02 N~ 0

p

� �
þ G3 Ip1

� �
G~ 03 N~ 0

p

� �
: ð13Þ
The tensor generators are
G1 N
0ð Þ ¼ N0 �N0

� �
�
4

7
N02 � I
� �

þ
2

35
tr N02
� �

I� If g;

G2 N
0ð Þ ¼ N02 �N02

� �
�
2

7

�
tr N02
� �

N02 � I
� �

þ 2 N04 � I
� ��

þ
1

35
tr N02
� �2

þ2tr N04
� �� �

I� If g;

G3 N
0ð Þ ¼ N02 �N0

� �
�
2

7
tr N02
� �

N02 � I
� �

þ 4 N03 � I
� �� �

þ
4

35
tr N03
� �

I� If g: ð14Þ
In Table 1 the material functions are summarized.
Table 1

Material functions on the macroscale (symmetric velocity gradients)
Elastic law
 � e ¼ Ce E
A
e

� �
Ce ¼ Fe � C~
 (3)
Stiffness tensor
 C~ ¼ 3KPI
1 þ 2GPI

2 þ �A~ 0
 (5)
Interpretation
 A~ 0 ¼

ffiffiffiffiffi
30

p

30
I� I þ 2I� 5

ð
g

f gð Þ
X3

i¼1
g~i gð Þ � g~ i gð Þ � g~i gð Þ � g~i gð Þdg

� �

(6)
Properties
 A~ 0ijkl ¼ A~ 0jikl ¼ A~ 0klij ¼ A~ 0kjil ¼ :::; A~ 0iikl ¼ 0
 (7)
Flow rule
 D~ p ¼ sym F
:
pF

�1
p

� �
¼

�
:
0��S~0��
a

ffiffi
3
2

q ��S~0��
a
� �F

�D

* +1
m

N~ S0~
h i
(9)
W~ p ¼ skw F
:
pF

�1
p

� �
¼ 0
Inelastic compliance
 N~ ¼ P~ I2 þ �A~ 0
 (9)
Anisotropic norm

��S~0��

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S~0 �N~ S~0

h ir

(10)
Growth law
 A~
:
0 ¼

��D~ 0
p

�� G~ 0 N~ 0
p

� �
� d Ip1

� �
A~ 0

� �

(12)
N~ 0
p ¼ D~ p=

��D~ p�� Ip1 ¼ det N~ 0
p

� �
Tensor valued function
 G0
N~ 0

p

� �
¼ G1 Ip1

� �
G0

1 N~ 0
p

� �
þ G2 Ip1

� �
G0

2 N~ 0
p

� �
þ G3 Ip1

� �
G0

3 N~ 0
p

� �

(13)
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2.1.3.2. Non-symmetric velocity gradients. In order to describe deformations which
have to be described by non-symmetric and non-skew velocity gradients, Eq. (12)
has to be extended to include the plastic spin. A simple extension of the ansatz (12)
is given by
A~
:
0 ¼

��F: pF�1
p

�� G~ 0 N~ 0
p;M

0~
p

� �
� d N~ 0

p;M
0~
p

� �
A~ 0

� �
: ð15Þ� �
In contrast to (12) the driving term G~ 0 N~ 0
p;M~ p depends on the directions N~ 0

p of
D~ 0

p and M~ p of W~ p. Furthermore, the function d, which governs the saturation
behavior, is a function of N~ 0

p and M~ p. The 4th-order tensor function G~ 0 N~ 0
p;M~ p

� �
and the scalar function d N~ 0

p;M~ p

� �
can be determined by means of the theory of

isotropic tensor functions. The general representation of the tensor function G0 has
been given by Böhlke (2001). The function G0 depends on three tensor generators
which depend only on N~ 0

p, on one tensor generator, which depends only onM~ p, and
23 generators, which depend simultaneously on N~ 0

p and M~ p.
It can be shown that the induced anisotropy caused by shear deformations can be

described using tensor generators which depend only on D~ p or W~ p but not simulta-
neously on D~ 0

p and W~ p (Böhlke, 2001). The tensor generator depending only on W~ p

is given by G0
2ðM~ pÞ. Hence a simple extension of the evolution Eq. (12) is given by
A~
:
0 ¼

��F: pF�1
p

�� G1 Ip1
� �

G
0
1 N~ 0

p

� �
þ G2 Ip1

� �
G

0
2 N~ 0

p

� �
þ G3 Ip1

� �
G

0
3 N~ 0

p

� ��

þG4 Ip2
� �

G0
2 M~ p

� �
� d N~ 0

p;M~
0
p

� �
A~ 0
� ð16Þ
Note that Ip1 and Ip2=tr(M~ 2
p) are the only non-constant invariants of N~ p and M~ p,

respectively. In Table 2 the modified set of material functions is given. The identifi-

cation of the material functions and parameters is discussed in detail by Böhlke
(2001). There it is shown that texture simulations indicate constraints between
between the functions Gi (see, Tables 3 and 4). In Table 5 all material parameters are
summarized.
If the elastic anisotropy of the single crystals is small, e.g. in the case of Alumi-

num, the same phenomenological model can be applied as suggested in the preced-
ing sections. Note that in the case of aluminum, the scalar factor � is much smaller
than for copper. Hence the anisotropic part of the effective stiffness may be neglec-
ted. But nevertheless the texture evolution is taken into account by modeling the
anisotropy of the flow rule in terms of the tensor A0.

2.2. The Taylor–Lin polycrystal model

2.2.1. Micro–macro transition
In contrast to Taylor’s (1938) original rigid-plastic approach here the Taylor–Lin

model (Lin, 1957) is applied, which allows for elastic deformations of the crystal
lattices. Similar to the Taylor approach the Taylor–Lin model treats compatibility
constraints as paramount. Hence, the aggregate is assumed to deform homo-
geneously. The equilibrium conditions are violated on the grain boundaries. The
T. Böhlke et al. / International Journal of Plasticity 19 (2003) 1867–1884 1875



Table 2

Material functions on the macroscale (non-symmetric velocity gradients)
Flow rule
 D~ p ¼ sym
�
F
:
pF

�1
p

�
¼

�
:
0��S~0��
a

ffiffi
3
2

q ��S~0��
a
� �F

�D

* +1
m

N~
�
S0~ �
 (9)
W~ p ¼ skw
�
F
:
pF

�1
p

�
¼ �

:
0

ffiffi
3
2

q ��S~0��
a
� �F

�D

* +1
m

S~0D~ 0
p �D~ 0

pS~
0��S~0D~ 0

p �D~ 0
pS~0
�� :
 (11)
Inelastic compliance
 N~ ¼ P~ I2 þ �A~ 0
 (9)
Anisotropic norm

��S~0��

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S~0 �N~

�
S~0
�q
(10)
Growth law
 A~
:
0 ¼

��D0~
p

���G0
�
N~ 0

p;M~ p

�
� d

�
N~ 0

p;M~ p

�
A~ 0
�

(16)
N~ 0
p ¼ D~ 0

p=
��D~ 0

p

�� Ip1 ¼ det
�
N0~

p

�
M~ p ¼W~ p=

��W~ p

�� Ip2 ¼ tr
�
M~ 2

p

�

Tensor valued function
 G0

�
N0~

p

�
¼ G1

�
Ip1
�
G0

1

�
N~ 0

p

�
þ G2

�
Ip1
�
G0

2

�
N~ 0

p

�
þ G3

�
Ip1
�
G0

3

�
N~ 0

p

�
þG4

�
Ip2
�
G0

2

�
M~ p

�
 (16)
Table 3

Material functions on the macroscale I
G1 (Ip1)
 G2 (Ip1)
 G3 (Ip1)
 G4 (Ip1)
ffiffiffi
2

p

14
1þ

497
ffiffiffi
6

p

66
Ip1

� �
G Ip1
� �
 17

ffiffiffi
2

p

7
G Ip1
� �
1�
629

ffiffiffi
3

p

483
� 4

� �
3
ffiffiffi
6

p

2
G Ip1
� �
�1.5
Table 5

Material parameters on the macroscale
K
 G
 �
 �D
 �
:
0
 m
 �
 d
136.93 GPa
 54.56 GPa
 114.14 GPa
 46.5 MPa
 0.001 s�1
 0.0125
 0.9
 0.44
Table 4

Material functions on the macroscale II (x��3
ffiffiffi
6

p
Ip1=2)
�=�0.50
 �=�0.25
 �=0.0
 �=0.25
 �=0.50
G(Ip1)
 0.25
 0.50
 0.38
 0.26
 2.50
d(Ip1)
 2.35
 2.05
 0.44
 0.04
 2.00
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simulations discussed in the present work have been performed with 1000 different
crystal orientations. The initial orientations are filtered random orientations (Böhlke
and Bertram, 1998). Between every pair of initial orientations there is a minimum
distance of dG=1.5� guaranteed. The deformation is prescribed in terms of a velo-
city gradient.

2.2.2. Elastic law
In contrast to the macroscale the reference stiffness C~ is constant on the micro-

scale. In the case of a cubic symmetry, the elasticity tensors have three distinct
eigenvalues. The stiffness tensor can be written in terms of eigenvalues and corre-
sponding eigenprojections (e.g., Böhlke and Bertram, 2001)
C~ ¼
X3
	¼1

l	P
C
	 : ð17Þ
The projectors PC
	 are idempotent PC

	P
C
	 ¼ PC

	 , biorthogonal P
C
	P

C

 ¼ O 	 6¼ 
ð Þ,

and complete
P


	¼1P
C
	 ¼ I. The cubic projectors are
PC
1 ¼ PI

1; PC
2 ¼ D� PC

1 ; PC
3 ¼ I� PC

2 � PC
1 : ð18Þ
The anisotropic part D is given by a dyadic product of lattice vectors g~ i
D ¼
X3
i¼1

g~ i � g~ i � g~ i � g~ i: ð19Þ
The eigenvalues l	 can be written in terms of the components of C with respect to
the orthonormal lattice vectors {gi} (i=1, 2, 3): l1=C1111+2C1122, l2=C1111�C1122,
and l3=2C1212.

2.2.3. Flow rule
Inelastic deformations in single crystals at room temperature are dominated by

slip mechanisms on specific crystallographic planes. For the description of copper, a
slip system theory with the twelve octahedral slip systems is applicable. The flow rule
is specified by slip directions d~	, slip plane normals n~	, and corresponding slip sys-
tem shear rates �

:
	

F
:
pF

�1
p ¼

X12
	¼1

�
:
	d~	 � n~	; �

:
	 ¼ �

:
	 �	; z	ð Þ; �	 ¼ C~S~ � d~	 � n~	: ð20Þ
C~ ¼ F~TF~ denotes the right Cauchy-Green tensor with respect to F~ .
A viscoplastic relation for the �

:
	 is applied in the present paper
�
:
0 ¼ �

:
0sign �	ð Þ

���	

��� �C
	

�D
	

� �1
m

ð21Þ
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ric and Cailletaud, 1992; Méric et al., 1994). The variable �C is a critical resolved
(Mé 	

shear stress. The model (21) ensures elastic ranges in all slip systems. The inelastic
deformation is forced by overstresses in the slip systems. For a physical and experi-
mental motivation of overstress models see, e.g., Krempl (1995, 1996). The viscoplastic
flow rule (21) combines the assumption of elastic ranges and a rate-dependent inelastic
flow which is typical for copper. In order to avoid an interference of different phy-
sical mechanisms, hardening effects are neglected in the present paper. Therefore,
the critical resolved shear stresses �C

	 and the drag stresses �D
	 are constant during

deformation. The material functions and parameters are presented in Tables 6 and 7.
3. Numerical results

3.1. Kinematics of simple and pure shear

The simulation of the free-end or fixed-end torsion generally implies the solution
of boundary value problems. But the modes of pure and simple shear approximate
the deformations which occur locally in free-end and fixed-end torsion experiments
of a thin-walled specimen. In the present work the free-end torsion experiment is
approximated by pure shear stress conditions with the shear component of the
velocity gradient prescribed by L12=K

:
=const. Based on this assumption the mod-

eling of the Swift effect is reduced to a constitutive problem. The axial effects
observed in experiments are assumed to be caused by the local texture development.
As a result of the aforementioned assumptions, the predictions of the polycrystal

and the phenomenological model are restricted to comparisons with torsion experi-
ments of thin-walled tubes. The stress state in solid bars differs from the pure shear
state described above and the lengthening is much more pronounced in the case of
thin-walled specimen compared to solid bars.
Table 6

Material functions on the microscale
Elastic law
 �e ¼ Ce E
A
e

� �
Ce ¼ Fe � C~
 (3)
Stiffness tensor
 C~ ¼ 3KPI
1 þ 2GPI

2 þ &

ffiffiffiffiffi
30

p

30
I� I þ 2I� 5

X3

i¼1
g~ i � g~i � g~i � g~i

� �

(17)
Flow rule
 F
:
pF

�1
p ¼

P
	�
:
	d~	 � n~	
 (20)
Kinetic equation
 �
:
	 ¼ �

:
0sign �	ð Þ

���	��� �C	
�D	

� �1
m

(21)
Table 7

Material parameters on the microscale
K
 G
 �
 �
:
0
 �D	
 �C	
 m
136.93 GPa
 54.56 GPa
 114.14 GPa
 0.001 s�1
 4 MPa
 12 MPa
 0.0125
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The shear direction is denoted by e1 and the shear plane normal by e2. The base
vector e3 represents the mirror plane normal. A simple shear deformation is defined
kinematically by the deformation gradient F=I+Ke1�e2. The scalar K=F12 is
called shear number. A pure shear stress deformation is defined dynamically and is
specified by the Cauchy stress tensor T=t(e1�e2+e2�e1). Note that in the pure
shear mode generally all diagonal components of the deformation gradient are dif-
ferent from one.
In torsion tests with cylindrical specimen the shear number is given by K=RD,

where R denotes the radius of the material point and D the twist. The twist can be
determined by D=�/Z where Z is the initial z coordinate of the cross section and �
the respective angle of torsion. The shear direction e1 represents the tangent of the
circumference of the cylinder whereas the shear plane normal e2 is aligned with the
longitudinal axis of the specimen. The mirror plane normal e3 is equal to the outer
normal of the cylinder. With the aforementioned settings, the axial elongation of the
cylinder corresponds to a growth of the F22 component of the deformation gradient.
In a strain driven algorithm the shear stress is caused by the prescribed shear

number K. The other components of the deformation gradient have to be chosen
such that the Cauchy stress tensor has the aforementioned form. In order to find
these components of the deformation gradient in each time increment a Newton
procedure is applied. The components of the velocity gradient are specified such that
the constraints upon the stress components are fulfilled. Then the velocity gradient is
integrated over the increment by an exponential map. This approach is applied to
both the phenomenological model and the Taylor–Lin model.

3.2. Monotonic Swift effect

In Fig. 1 the monotonic Swift effect is shown as it is predicted by different values
of � that appears in Eq. (9) of the phenomenological model. For �=0 there is almost
no axial strain. For �=0.95 there are two stages. The first shows a decreasing slope
Fig. 1. Monotonic Swift effect: percentages extension " vs. shear number K for different values of �

(phenomenological model).
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of the axial strain curve. The second shows a linear growth of the axial strain, which
corresponds to measurements by Toth et al. (1992). For �=1 the axial strains satu-
rate as it can also be observed in experiments (Grewe and Kappler, 1964; Witzel,
1981). For �=1.05 the axial strain decreases after passing a maximum. This beha-
vior has also been observed (Stüwe and Turck, 1964).

3.3. Cyclic Swift effect

In Fig. 2 the predictions of the phenomenological model for polycrystalline copper
are shown together with experimental data published by Swift (1947). Swift labeled
the curves describing the response of the copper specimen H25 and H37. For the test
H25 the shear number is increased from 0.0 to 1.3 and then decreased to �3.0. The
corresponding equivalent strain � is equal to 3.29. For the test H37 the shear
Fig. 2. Cyclic Swift effect: percentage extension " vs. shear number K, phenomenological model with

�=0.9 (left), experimental data Swift (1947) (right).
Fig. 3. Cyclic Swift effect: percentage extension ". shear number K; Taylor–Lin simulation with 1000

single crystals.
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number is increased from 0.0 to 2.5 and then decreased to �1.0. The corresponding
equivalent strain � is equal to 3.39. The phenomenological model predicts the cyclic
Swift effect qualitatively. But there are quantitative differences with respect to the
amount and the location of the minima of axial strain. As mentioned before Swift’s
data are based on solid bar experiments whereas thin-walled tubes are considered
here. In Fig. 3 the predictions of the Taylor–Lin model are given which overestimate
the axial elongation as already mentioned by Harren et al. (1989).
In Fig. 4 the norm of the tensor A0 is shown for reversed torsion tests with a shear

number range equal to the aforementioned experiments H25 and H37. The aniso-
tropy in terms of the norm kA0k saturates for a shear number equal to 2. If the tor-
sion is reversed then the anisotropy decreases but is not reversible. The minimum of
kA0k is the same for both deformation paths. Before the shear number becomes zero
Fig. 4. Cyclic Swift effect: �=kA0
Ek (A0

E ¼ F~ � A~ 0 vs. shear number with �=0.9 (phenomenological

model).
Fig. 5. Cyclic Swift effect: percentage extension " vs. shear number K predicted by the phenomenological

model for different values of � (left: H25, right: H37).
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the anisotropy increases again and saturates at the same order of magnitude as for
the forward torsion.
In Fig. 5 the cyclic Swift effect is shown as it is predicted by different values of �

and the deformation paths H25 and H37. For �=0 there is almost no axial strain.
For �=0.5 there is a linear growth of the axial strain for large shear numbers for
both shear directions. For �=1 the axial strains saturate in both shear directions.
4. Conclusions

The phenomenological model for the induced elastic anisotropy has been applied
to estimate the plastic anisotropy of the polycrystal. The anisotropic portion of the
elasticity tensor is used to formulate an anisotropic norm in terms of the stress
deviator, which specifies the flow rule. This ansatz is motivated by experimental and
theoretical findings which show that the elastic and plastic anisotropy are correlated.
It has been shown that the model predicts the monotonic and cyclic Swift effect. The
phenomenological model reproduced the cyclic Swift effect qualitatively. In contrast
to other phenomenological models suggested in the literature the present model
predicts the axial effect even if the initial state of the material is isotropic.
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1884 T. Böhlke et al. / International Journal of Plasticity 19 (2003) 1867–1884


	Modeling of deformation induced anisotropy in free-end torsion
	Introduction
	Outline of the paper
	Notation

	A phenomenological and a polycrystal model
	The phenomenological model
	Elastic law
	Anisotropic hyperelastic stress-strain relation
	Decomposition of Hooke‘s tensor
	Micromechanical interpretation of the decomposition

	Flow rule
	The coupling of elastic and plastic anisotropy
	Flow rule

	Growth law for the elasticity tensor
	Symmetric velocity gradients
	Non-symmetric velocity gradients


	The Taylor-Lin polycrystal model
	Micro-macro transition
	Elastic law
	Flow rule


	Numerical results
	Kinematics of simple and pure shear
	Monotonic swift effect
	Cyclic swift effect

	Conclusions
	References




