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Abstract

The asymptotic values of elastic anisotropy, induced in OFHC copper by uniaxial tension and compression, are

determined by a phenomenological model and compared with the predictions of Taylor type texture simulations. The

evolution equation for the texture-dependent anisotropic part of the effective elasticity tensor consists of two parts. The

first term depends only on inelastic rate of deformation and represents the driving term for the evolving anisotropy.

The second term governs the saturation of anisotropy and is linear in the anisotropic portion of the effective elasticity

tensor. In the present paper it is shown that such an evolution equation implies a reasonable prediction of the

asymptotic elastic anisotropy for uniaxial tension and uniaxial compression.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Materials consisting of single crystals with a

strong elastic anisotropy, such as copper, show

evolving elastic properties when submitted to large

inelastic deformations. E.g., in a sheet of cold

rolled copper with a thickness reduction of 95%,

the maximum variation of Young�s modulus
equals about 30% in the cold-rolled case and about

66% in the recrystallized case [19]. It has been

shown that in sheet materials a statistical correla-

tion can be detected between the elastic and plastic

properties. Stickels and Mould [18] have shown

that the angular variation of Young�s modulus can
be used to characterize empirically the formability

of the sheet with respect to both the deep draw-

ability and the earing behavior. Therefore, the

anisotropy of the (visco) plastic behavior can be

inferred not only from destructive tests but also

from non-destructive measurements of the elastic

anisotropy.
In the present paper we consider the fourth-

order coefficient of a tensorial Fourier expansion

of the crystal orientation distribution function

[15]. This coefficient governs the effective elastic

properties of the polycrystal [9]. An evolution

equation for the fourth-order coefficient has been

suggested by B€oohlke [3] (see also [7,10]). In the
present paper the asymptotic solutions, which are
implied by the evolution equation, are derived

analytically for the special case of axisymmetric
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deformations. The predictions of the phenomeno-

logical model are compared with the predictions of

the Taylor polycrystal model.

The outline of the present paper is as follows. In

Section 2 the effective elasticity tensor of aggregates
of cubic crystallites is decomposed into a texture-

independent isotropic part and a texture-depen-

dent anisotropic part. The evolution equation for

the anisotropic part is formulated based on two

assumptions: first, the direction of the driving term

of the evolution equation depends only on the di-

rection of the inelastic rate of deformation, and

second, the saturation is proportional to the cur-
rent state of anisotropy. An advantage of the pre-

sent approach is that asymptotic values for the

elasticity tensors can be analytically determined for

axisymmetric deformations as shown in the present

paper. Furthermore, it can be shown that axial

effects observed in torsion experiments can be de-

scribed by the model presented here [3,10]. In

Section 3 the transition from an elastically isotropic
initial state to a path-dependent final anisotropic

state is discussed for the case of polycrystalline

copper and axisymmetric deformation paths. The

asymptotic elastic properties, as they are predicted

by the suggested material model, are compared

with Taylor type texture simulations.

Notation. Throughout the text a direct tensor

notation is preferred. In order to avoid additional
formal definitions, the index notation is applied in

some cases using the summation convention. A

linear mapping of a second-order tensor is written

as A ¼ C½B�. The scalar product, the dyadic

product, and the Frobenius norm are denoted by

A � B ¼ trðATBÞ, A� B, and kAk ¼ ðA � AÞ1=2, re-
spectively. Completely symmetric and traceless

tensors of any order are designated by a prime,
e.g., A0 and C0. I and I denote the second-order

identity and the identity on symmetric second-

order tensors, respectively. The Rayleigh product

of a second-order tensorA ¼ Aijei � ej and a fourth-

order tensor C ¼ Cijklei � ej � ek � el is defined by

AHC ¼ CijklðAeiÞ � ðAejÞ � ðAekÞ � ðAelÞ; ð1Þ

where feig is an arbitrary but fixed orthonormal
basis. A tilde indicates that a quantity is formu-

lated with respect to the undistorted configuration.

2. Description of the model

Hooke’s Law. The stress–strain relation applied
here is equivalent to the standard formulation of
the theory of multiplicative elasto-plasticity based

on a linear hyperelastic law of the St. Venant–

Kirchhoff type. The Kirchhoff stress tensor s is

given as a linear map of the elastic Almansi strain

tensor (see, e.g., [7])

s ¼ Ce½EA
e �; EA

e ¼ 1
2
ðI� F�T

e F�1
e Þ; Fe ¼ FF�1

p :

ð2Þ
The Kirchhoff stress s is defined by the Cauchy

stress r and the determinant J of F: s ¼ Jr. The

tensor Fe represents the elastic portion of the de-

formation gradient F ¼ FeFp. The multiplicative

decomposition of the deformation gradient into an
elastic and an inelastic portion can be consistently

derived by the concept of isomorphic elastic ranges

Bertram [1]. The stiffness operator Ce is given by

the Rayleigh product of Fe and the reference

stiffness tensor eCC with respect to the undistorted

configuration

Ce ¼ FeHeCC
¼ eCCijklðFeeiÞ � ðFeejÞ � ðFeekÞ � ðFeelÞ: ð3Þ

Within the standard formulation of the theory of
elasto-plasticity, i.e. without deformation induced

elastic anisotropy, eCC is assumed to be constant.

Eq. (3) indicates that the tensor Ce is generally

non-constant, even in the case if eCC is constant

and isotropic. In the present paper eCC depends

on the crystallographic texture in the aggre-

gate, which evolves for large inelastic deforma-

tions. The rate of change of eCC is specified by an
evolution equation.

Decomposition of Hooke’s tensor. Volume or

orientational averages of stiffness tensors with

cubic symmetry generally allow for the following

unique decomposition of the effective properties

into three different partseCC ¼ 3KPI
1 þ 2GPI

2 þ f eAA0;

PI
1 ¼ 1

3
I� I; PI

2 ¼ I� PI
1: ð4Þ

This result holds, if the arithmetic, the harmonic

mean, or the geometric mean of stiffness tensors is

14 T. B€oohlke, A. Bertram / Computational Materials Science 26 (2003) 13–19



determined [5,6]. The two fourth-order projectors

PI
1 and P

I
2 represent the isotropic part of the elastic

law, which is independent of the crystallographic

texture in the aggregate. K is the bulk modulus and
G is the shear modulus.

The tensor eAA 0 represents the purely anisotropic

part of the stiffness tensor eCC. If there is no crys-
tallographic texture in the aggregate, then eAA 0 ¼ O

holds and eCC is isotropic. For the above mentioned

orientation averages and aggregates of cubic crys-

tals, the anisotropic part eAA 0 is independent of the

special type of averaging and is given by

eAA0 ¼
ffiffiffiffiffi
30

p

30
I

 
� Iþ 2I�

Z
g
f ðgÞ

X3
i¼1

~ggiðgÞ

� ~ggiðgÞ � ~ggiðgÞ � ~ggiðgÞdg
!
; ð5Þ

where f~ggig denotes the lattice vectors of the single
crystals on the microscale [5,6]. f ðgÞ represents the
crystal orientation distribution function. The

function f specifies the volume fraction of crystals
having an orientation g, i.e. dV ðgÞ=V ¼ f ðgÞdg.
From (5) one concludes that the Frobenius norm

of eAA 0 is equal to one for a single crystal orienta-

tion. Furthermore, from (5) one deduces that the

tensor eAA0 is irreducible [12,14], i.e. symmetric and

traceless with respect to all pairs of indices

eAA0
ijkl ¼ eAA0

jikl ¼ eAA0
klij ¼ eAA0

kjil ¼ � � � ; eAA0
iikl ¼ 0 ð6Þ

Ref. [7]. Because of the aforementioned con-

straints, eAA 0 contains only nine independent com-

ponents, and this property leads to a rigorous

simplification of the evolution equation for eCC0.

The reduction of the number of independent

elastic constants on the macroscale from 21 (gen-

eral triclinic) to 11 (reduced triclinic) is caused by
the cubic crystal symmetry on the microscale. The

equation eAA0 ¼ O represents the isotropy condition

for elasticity in terms of crystal orientations. This

equation can be solved exactly for all even integers

N P 4 [2,8]. The tensor eAA 0 represents the fourth-

order coefficient of a tensorial Fourier expansion

of the crystal orientation distribution function of

an aggregate of cubic crystals [9]. In the subse-
quent considerations the components of fourth-

order tensors refer to the orthonormal basis Ba of

symmetric second-order tensors [13].

B1 ¼ e1 � e1; B4 ¼
ffiffiffi
2

p

2
ðe2 � e3 þ e3 � e2Þ;

B2 ¼ e2 � e2; B5 ¼
ffiffiffi
2

p

2
ðe1 � e3 þ e3 � e1Þ;

B3 ¼ e3 � e3; B6 ¼
ffiffiffi
2

p

2
ðe1 � e2 þ e2 � e1Þ:

ð7Þ

Evolution equation of eAA 0. For the evolution ofeAA 0 the following ansatz is applied

_eAAeAA 0
¼ keDD0

pkð eGG 0ðeNN 0
pÞ � dðIIIpÞ eAA 0Þ; IIIp ¼ detðeNN0

pÞ:
ð8Þ

The driving term eGG0ðeNN0
pÞ depends only on the di-

rection eNN0
p of the inelastic rate of deformation

eDD 0
p,

which is the symmetric part of _FFpF
�1
p . The ansatz

(8) takes into account that for constant strain rates

the crystallographic texture tends to saturate for

large deformations. The saturation behavior is

controlled by the term dðIIIpÞ eAA 0. The function

dðIIIpÞ depends on the only non-constant principal
invariant of eNN0

p, i.e., its determinant.
The general form of the function eGG0 can be

determined by the theory of isotropic tensor

functions [7]. Due to the constraint that, similar toeAA 0, the function eGG 0 has to be symmetric and

traceless with respect to all pairs of indices, the

function eGG 0 is given by three fourth-order tensor

generators eGG0
a, and corresponding scalar functions

GaeGG 0ðeNN 0
pÞ ¼ G1ðIIIpÞ eGG 0

1ðeNN0
pÞ þ G2ðIIIpÞ eGG0

2ðeNN 0
pÞ

þ G3ðIIIpÞ eGG 0
3ðeNN 0

pÞ: ð9Þ

The tensor generators are given by

G0
1ðAÞ ¼ hA� Ai � 2

7
ðtrðAÞhA� Ii þ 2hA2 � IiÞ

þ 1
35
ðtrðAÞ2 þ 2trðA2ÞÞhI� Ii; ð10Þ

G0
2ðAÞ ¼ G0

1ðA
2Þ; ð11Þ

G0
3ðAÞ ¼ hA2 � Ai � 2

7
ðtrðA2ÞhA� Ii

þ trðAÞhA2 � Ii þ 4hA3 � IiÞ
þ 2

35
ðtrðAÞtrðA2Þ þ 2trðA3ÞÞhI� Ii: ð12Þ
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The bracket formula h�i is defined by ðA;B 2
SymÞ
hAijBkli ¼ 1

6
ðAijBkl þ AikBjl þ AilBkj þ BijAkl

þ BikAjl þ BilAkjÞ: ð13Þ

Asymptotic solutions for eAA 0. The stretching

tensor, which is assumed to be traceless, can gen-

erally be decomposed as

D ¼ kDkQDNDQ
T
D; ð14Þ

where kDk is the magnitude of D, and QD is an

orthogonal tensor that rotates an arbitrary but

fixed orthonormal reference basis feig onto the

eigenvectors of D. The constraints, i.e., that ND is

traceless and has a magnitude equal to one, are
identically fulfilled by the following parameter-

ization of ND

ND ¼
X3
a¼1

naea � ea; n1;3 ¼ �
ffiffiffi
6

p

6
n �

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
;

n2 ¼
ffiffiffi
6

p

3
n; ð15Þ

n 2 ½�1=2;þ1=2�. The n-values )0.5, 0, and þ0.5
belong to the uniaxial tension, plane strain com-

pression, and simple compression, respectively.

Based on Eq. (8), the asymptotic values eAA 0
1 ofeAA0 for a constant plastic flow can be determined.

The elastic strains are small in the case of metal
elasticity. Furthermore, texture simulations indi-

cate that uniaxial macroscopic deformations do

not induce rotations of the symmetry axes of the

effective elasticity tensor [3]. Hence, eFF � I, F � Fp,

and eDDp � D hold. Because of the last approxi-

mation, a flow rule has not been considered in this

paper. For a flow rule, which includes the aniso-

tropy in terms of eAA 0, see, e.g., [10].
With the aforementioned assumptions Eq. (8) is

_eAAeAA0
¼ kD0k

X3
i¼1

GiðIIIÞG0
iðN0Þ

 
� dðIIIÞ eAA 0

!
; ð16Þ

where III ¼ detðN0Þ and N0 ¼ D0=kD0k. If _eAAeAA 0
van-

ishes we have

eAA0
1 ¼ 1

dðIIIÞ
X3
i¼1

GiðIIIÞG0
iðN0Þ: ð17Þ

Inspection of the tensors G0
i shows that for the

special values n ¼ �0:5, i.e. for simple tension and
simple compression, the tensors G0

1, G
0
2, and G0

3

are linearly dependent. Hence for these axisym-

metric deformation modes the directions of the
asymptotic values eAA0

1 are independent of the

scalar functions G1;2;3. For the tension mode

ðn ¼ �0:5Þ one obtains with (15) and (16)eAA0
1

¼ k
840

þ8:0 �4:0 �4:0 0 0 0

� þ3:0 þ1:0 0 0 0

� � þ3:0 0 0 0

� � � þ2:0 0 0

� � � � �8:0 0

� � � � � �8:0

26666666664

37777777775
� Ba � Bb ð18Þ

with k¼
ffiffiffi
6

p
ð6

ffiffiffi
6

p
G1ðIIIÞþ

ffiffiffi
6

p
G2ðIIIÞþ12G3ðIIIÞÞ=

dðIIIÞ and III¼
ffiffiffiffiffi
16

p
=8. For the compression mode

ðn¼þ0:5Þ one obtains with (15) and (16)eAA0
1

¼ k
840

þ3:0 þ1:0 �4:0 0 0 0

� þ3:0 �4:0 0 0 0

� � þ8:0 0 0 0

� � � �8:0 0 0

� � � � �8:0 0

� � � � � þ2:0

26666666664

37777777775
� Ba � Bb ð19Þ

with k ¼
ffiffiffi
6

p
ð6

ffiffiffi
6

p
G1ðIIIÞþ

ffiffiffi
6

p
G2ðIIIÞ� 12G3ðIIIÞÞ=

dðIIIÞ and III ¼�
ffiffiffiffiffi
16

p
=8. The G1;2;3 and d should

satisfy the condition k 6¼ 0 and k 6¼1. One can
conclude that the growth law (8) allows for an

explicit determination of the asymptotic values of

the elastic anisotropy in the case of axisymmetric

deformations. The asymptotic values (18) and (19)

have a transverse isotropic symmetry.

3. Numerical results

The Taylor–Lin model. For an investigation of
the monotonic stress–strain response and the re-

spective texture development, usually four types of

16 T. B€oohlke, A. Bertram / Computational Materials Science 26 (2003) 13–19



experiments are used: uniaxial extension, channel-

die compression, uniaxial compression, and simple

shear [16]. [11] evaluated the Taylor model for the

aforementioned types of deformation by compar-

ing the predictions of the stress–strain curves and
the evolution of crystallographic textures in ini-

tially isotropic OFHC copper. The agreement be-

tween experimental and simulated pole figures is

shown to be good or reasonable.

For the Taylor type texture simulations a linear

elastic law with cubic symmetry and a flow rule

with 12 octahedral slip systems is applied. In the

slip systems an overstress model is used. The ma-
terial equations and parameters are given in [3].

The texture simulations discussed in subsequent

paragraphs have been performed with 1000 filtered

random orientations [4]. For the subsequent con-

siderations the amount of deformation is quanti-

fied by the v.Mises equivalent strain /ðtÞ ¼ffiffiffiffiffiffiffiffi
2=3

p R t
0
kDð~ttÞkd~tt.

Uniaxial tension. The direction of the velocity
gradient (denoted by k) is given by Lðn ¼ �0:5Þk
0:8e1 � e1 � 0:4ðe2 � e2 þ e3 � e3Þ. For initially

non-textured aggregates, such a deformation in-

duces an axisymmetric texture. In agreement with

the experiments, the Taylor type simulations in-

dicate that in uniaxial tension there are two

dominant texture components. Either the {1 1 1}

planes or the {1 0 0} planes become perpendicular
to the loading axis. In the case of uniaxial tension,

the components of A0
e ¼ eFFH eAA 0 are approximately

constant for equivalent strain values / larger than
2. The maximum amount of anisotropy is given by

kA0
ek � 0:2. The effective Eulerian stiffness tensor

for an equivalent strain of / ¼ 2:5, as it is pre-
dicted by the Taylor–Lin model, is given by

C
Taylor

eðn¼�0:5;/¼2:5Þ

¼

220:0 95:37 95:38 0:01 �0:05 0:10

� 213:6 101:9 0:17 �0:06 0:25

� � 213:6 0:15 0:11 �0:35
� � � 111:7 �0:50 �0:09
� � � � 98:76 0:01

� � � � � 98:74

266666666664

377777777775
�GPaBa � Bb; ð20Þ

If the anisotropic portion of C
Taylor

eðn¼�0:5;/¼2:5Þ is

normalized by a factor a such that it has the same
magnitude as 840 eAA 0

1=k in Eq. (18) then one obtains

aA0Taylor
eðn¼�0:5;/¼2:5Þ

¼

7:9 �4:0 �4:0 0:01 �0:04 0:08

� 3:0 1:0 �0:13 �0:05 0:19

� � 3:0 0:12 0:09 �0:28
� � � 2:0 �0:39 �0:07
� � � � �8:0 0:01

� � � � � �8:0

2666666664

3777777775
� Ba � Bb: ð21Þ

Note that the components of the stiffness ten-

sors refer to the orthonormal basis Ba. With re-
spect to this basis, e.g., the C44 component is equal
to 2C2323, which differs from Voigt�s original no-
tation by the factor of 2. As shown above for

n ¼ �0:5 the direction of the asymptotic value eAA 0
1

depends on the functions Ga only through a scalar

factor (see Eq. (18)). This implication of the phe-

nomenological model is verified in the context of a

Taylor type approach.
Uniaxial compression ðn ¼ þ0:50Þ. The di-

rection of the velocity gradient is given by

Lðn ¼ 0:5Þk0:4ðe1 � e1 þ e2 � e2Þ � 0:8e3 � e3. Ex-

perimental textures indicate that in the simple bulk

mode there is one dominant component of texture.

The grains of the polycrystal are aligned such that

{1 1 0} planes become perpendicular to the loading

axis. The Taylor–Lin model reproduces these
findings. The texture is axisymmetric with respect

to the loading axis. The elastic anisotropy satu-

rates for equivalent strains of / � 5. The amount

of anisotropy is then given by kA0
ek � 0:185. The

effective Eulerian stiffness tensor according to the

Taylor type model is

C
Taylor

eðn¼0:5;/¼5Þ

¼

212:8 101:1 96:9 �0:04 0:0 0:19

� 212:5 97:2 �0:39 0:06 �0:11
� � 216:8 0:44 �0:07 �0:07
� � � 102:3 �0:10 0:09

� � � � 101:7 �0:06
� � � � � 110:2

2666666664

3777777775
�GPaBa � Bb: ð22Þ
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If the anisotropic portion of C
Taylor

eðn¼0:5;/¼5Þ is

normalized by a factor a such that it has the same
magnitude as 840 eAA0

1=k in Eq. (19) then one ob-
tains

a eAA0Taylor
eðn¼0:5;/¼5Þ

¼

3:50 0:60 �4:14 �0:04 0:0 0:21

� 3:16 �3:80 �0:44 0:07 �0:12

� � 7:98 0:5 �0:08 �0:08

� � � �7:65 �0:11 0:10

� � � � �8:32 �0:07

� � � � � 1:21

2666666666664

3777777777775
� Ba � Bb: ð23Þ

In contrast to the case n ¼ �0:5 the Taylor–Lin
model reaches the theoretical value at a large

equivalent strain. The agreement of the predictions

of the phenomenological model and the Taylor

model are less pronounced compared to the case of

uniaxial tension. This can be explained as follows.

The textures predicted by the Taylor polycrystal
model differ for both deformation modes. The

phenomenological model predicts identical tenso-

rial directions for the tensor eAA 0 for uniaxial ten-

sion and compression. It can be concluded that the

phenomenological model needs some improve-

ment in order to describe the effective elasticity for

the case of uniaxial compression as accurately as in

case of uniaxial tension.
As already mentioned, the tensor eAA0 represents

the fourth-order coefficient of a tensorial Fourier

expansion of the crystal orientation distribution

function of an aggregate of cubic crystals [9]. A

material model, which aims to describe the an-

isotropy caused by a crystallographic texture,

should at least be able to model the fourth-order

coefficient, which governs the effective elastic
properties. The comparison of the predictions of

the Taylor model for axisymmetric deformations

with the analytical results derived from the phe-

nomenological evolution Eq. (8) shows a good or

reasonable agreement. Therefore, the ansatz for

the evolution equation of the fourth-order coeffi-

cient eAA 0 of the crystal orientation distribution

function is supported by the Taylor simulations.

4. Summary

The asymptotic values of elastic anisotropy

of polycrystalline copper have been analyzed for
axisymmetric deformations processes. A phenom-

enological model for the evolution of the texture-

dependent effective elastic properties has been used

to predict the corresponding saturation values.

The predictions are in accordance with the values

given by a Taylor type polycrystal simulation.

References

[1] A. Bertram, Description of finite inelastic deformations, in:

In: A. Benallal, R. Billardon, D. Marquis (Eds.), Proceed-

ings of MECAMAT�92, International Seminar on Multi-
axial Plasticity, 1992.

[2] A. Bertram, T. B€oohlke, N. Gaffke, B. Heiligers, R.

Offinger, On the generation of discrete isotropic orientation

distributions for linear elastic cubic crystals, J. Elast. 58

(2001) 233–248.

[3] T. B€oohlke, Crystallographic Texture Evolution and Elastic

Anisotropy: Simulation, Modeling, and Applications,

Shaker Verlag, Dissertation, Fakult€aat f€uur Maschinenbau,

Otto-von-Guericke-Universit€aat Magdeburg, 2001.

[4] T. B€oohlke, A. Bertram, Simulation of texture development

and induced anisotropy of polycrystals, in: S. Atluri, P.

O�Donoghue (Eds.), Proceedings of ICES�98, Modelling
and Simulation Based Engineering, 1998.

[5] T. B€oohlke, A. Bertram, A minimum problem defining

effective isotropic elastic properties, Z. Angew. Math.

Mech. 80 (S2) (2000) S419–S420.

[6] T. B€oohlke, A. Bertram, Bounds for the geometric mean

of 4th-order elasticity tensors with cubic symmetry, Z.

Angew. Math. Mech. 81 (S2) (2001) S333–S334.

[7] T. B€oohlke, A. Bertram, The evolution of Hooke�s law due
to texture development in polycrystals, Int. J. Solids Struct.

38 (52) (2001) 9437–9459.

[8] T. B€oohlke, A. Bertram, On isotropic orientation distribu-

tions of cubic crystals, J. Mech. Phys. Solids 49 (11) (2001)

2459–2470.

[9] T. B€oohlke, A. Bertram, Crystallographic texture induced
anisotropy in copper: An approach based on a tensorial

Fourier expansion of the codf, Proceedings of the Sixth

European Mechanics of Materials Conference (EMMC6),

2002, pp. 273–280.

[10] T. B€oohlke, A. Bertram, E. Krempl, Modeling nonlinear

effects in free-end torsion. Int. J. Plast. (2003), in press.

[11] C. Bronkhorst, S. Kalidindi, L. Anand, Polycrystalline

plasticity and the evolution of crystallographic texture in

fcc metals, R. Soc. Lond. A 341 (1992) 443–477.

[12] H. Ehrentraut, W. Muschik, On symmetric irreducible

tensors in d-dimensions, ARI 51 (1998) 149–159.

18 T. B€oohlke, A. Bertram / Computational Materials Science 26 (2003) 13–19



[13] F. Federov, Theory of Elastic Waves in Crystals, Plenum

Press, New York, 1968.

[14] S. Forte, M. Vianello, Symmetry classes for elasticity

tensors, J. Elast. 43 (1996) 81–108.

[15] M. Guidi, B.L. Adams, E.T. Onat, Tensorial repre-

sentation of the orientation distribution function in

cubic polycrystals, Textures Microstruct. 19 (1992)

147–167.

[16] U. Kocks, C. Tome, H. Wenk, Texture and Anisotropy:

Preferred Orientations in Polycrystals and Their Effect on

Materials Properties, Cambridge University Press, 1998.

[18] C. Stickels, P. Mould, The use of Young�s modulus for
predicting the plastic-strain ratio of low-carbon steel

sheets, Met. Trans. 1 (1970) 1303–1312.

[19] J. Weerts, Elastizit€aat von Kupferblechen, Z. Metallk. 5

(1933) 101–103.

T. B€oohlke, A. Bertram / Computational Materials Science 26 (2003) 13–19 19


	Asymptotic values of elastic anisotropy in polycrystalline copper for uniaxial tension and compression
	Introduction
	Description of the model
	Numerical results
	Summary
	References




