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Tobias Küchel geb. Ulbricht
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1 Introduction

‘‘The chances of finding out what really is going on are so absurdly

remote that the only thing to do is to say hang the sense of it and keep

yourself occupied. Look at me: I design coastlines. [...] I’d far

rather be happy than right any day.’’

(Slartibartfast in The Hitchhiker’s Guide to the Galaxy, Douglas Adams)

An estimated 4.4 billion people on the planet (2/3 of the world’s population) use
mobile phones for their every day lifes, as of August 20091, with the fastest growth
coming from newly industrialised and developing countries. These two facts (mass and
growth) show that the miniaturisation reaching from yesterday’s micro-electronics (as in
mobile phones) via nano-technology of today down to the atomic scale has a huge social
and economical impact on the world. For example, every shrinking step in the CMOS
microchip technology up to now resulted in an enhanced performance and capacity
together with a reduced energy consumption per operation.

At the atomic level of ∼ 0.1nm, (quasi-)one- and two-dimensional objects become the
building blocks for technological structures. Besides the scientific curiosity there is a
global demand to understand how electronics (or spintronics, photonics) work in these
low-dimensional systems. Due to the domination of quantum-mechanics over electro-
mechanics at this scale, the physical challenges here are incredibly manifold and physi-
cists explore, among many more, the effects of interaction, single impurities or disorder,
frustration, temperature and external fields. We concentrate in this thesis on strictly
one dimension (one-dimensional atomic chains), where we investigate mainly the effect
of interaction on the dynamics of electrons.

Why electrons in one dimension? The geometry of electron systems in one dimension
is less complex than in higher dimensions, which allows us to employ numerical tools that
can solve the full many-body problem. Equally important, the step to one dimension
involves a change of paradigms. While metals in geometries of dimension larger than
two are well described by a Fermi liquid of effectively free fermions with renormalised
parameters, metals in one dimension may be Luttinger liquids with inherently different
properties: Most notably, the quasi-particle description breaks down and all low-energy
excitations are of a collective and bosonic nature. This has far reaching consequences.
For instance, if we put an electron into an interacting chain of electrons, it fractionalises,
i.e. gets decomposed into spin “spinon” and charge “holon” degrees of freedom. This so-
called spin-charge separation is one of the major theoretical and most counter-intuitive
predictions that still awaits to be clearly experimentally verified. Other peculiarities
in one-dimensional strongly correlated systems are non-universal power-law decays of

1http://www.eito.com/pressinformation_20090807.htm
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1 Introduction

correlation functions, the Anderson localisation and the unresolved interplay between
disorder and interaction.

This work The strongest emphasis within this thesis lies on spin-charge separation.
We ask the following question: What happens to an electron, when it is injected into an
interacting one-dimensional structure? One is usually interested in transport properties
and as a first step towards non-equilibrium transport, we compute the exact time evolu-
tion of an electronic wave packet as it moves through a non-interacting or an interacting
metal.

In analogy to the SU(2) spin-symmetric case of interacting electrons, we take the
excursion to investigate the more artificial case of SU(3) symmetric particles. While
SU(3) symmetry is rather known from quantum-chromodynamics (the colour property
of quarks), using the technology of ultra-cold atomic gases, realisations of artificial SU(3)
“colour” particles are already work in progress. In similar time evolution simulations,
we show how colour and charge, too, separate as soon as interaction comes into play.

Back in the familiar domain of real electrons, we ask further: How does the fraction-
alisation of the electron take place? In frequency and momentum domain, the dynamic
response of an electronic excitation – the spectral function – gives much more informa-
tion about the underlying physics and it is experimentally much better accessible. We
compute the trajectory of the electron response as it decomposes into the spinon and
holon responses along a parameter as simple as an external magnetic field. Along the
way, we find that these questions are also rich in new and unexplained physics.

As mentioned first, one dimension is not only an undesirable restriction, it turns out to
be an advantage, too. Our main tool, the density matrix renormalisation group (DMRG)
is best suited for these kinds of problems. There is no other numerical software so far
that can accomplish in higher dimensions what the DMRG does in one dimension. Since
reality is far too complex to simulate, we have to reduce the complexity. On the one
hand, DMRG projects the problem onto a smaller subspace of the Hilbert space and
this projection is optimal for the quantity we aim to calculate. On the other hand,
we simulate reality by using the simplest non-trivial models. In particular, we use
the single-band Hubbard model as a prototypical model of interacting electrons in one
dimension. The Hubbard model is exactly solvable in one dimension by the Bethe ansatz
and thus serves as an optimal playground to benchmark numerical results. In the low-
energy regime close to half-filling the Hubbard model is well described by a Luttinger
liquid and we can always compare our results in that limit to analytical predictions of
Luttinger liquid theory. But as a major benefit of DMRG, we can access the full energy
and momentum range and work at any interaction strength of the Hubbard model.

Finally, although we speak of modelling and simplification, there are real materials
that carry a clear one-dimensional character. These are certain polymers, some or-
ganic molecules and fabricated nano-structures like single-wall carbon nano-tubes or
even nano-wires, where atoms are placed in a chain on edges of a substrate, which comes
very close to what we model. The reason is that in these materials the intra-chain cou-
pling is magnitudes stronger than the inter-chain coupling in the other two dimensions.

2



1.1 Structure of the manuscript

They are invaluable for the verification or falsification of theoretical predictions. Last
but not least, ultra-cold atomic gases are already now a standard environment to imi-
tate solid state physics. To accommodate this fact, we examined cases that include an
additional trap potential which is sometimes found in the optical lattices.

1.1 Structure of the manuscript

This thesis is divided into six parts. While chapter 1 and 2 are introductory material
only, chapter 3 introduces the numerical method (DMRG) and chapter 4 presents various
aspects of the spin and charge separation and our research on the dynamics of electrons
within the subject. In Chapter 5, we investigate the effect of a magnetic field on the
observability of the specific nature of one dimension. Finally, chapter 6 shortly discusses
that the one-dimensional physical peculiarities are not restricted to the usual SU(2)
spin-1

2
physics and can be extended to the SU(3) case. The appendix extends some of

the error analysis of chapter 2 and introduces the novelty of graphics card numerics for
physical simulation.

For quick reading, we provide a short introduction at the beginning of each chapter
and a summary at the end of each chapter. The main results and outlooks are thus
comprised in the summaries of chapter 4, 5 & 6.

1.2 Publication list

Parts of section 4.4 are published in

• Is spin charge separation observable in a transport experiment? [1]
T. Ulbricht, P. Schmitteckert
EPL 86, 57006 (2009).

• Signal transport in and conductance of correlated nanostructures. [2]
Tobias Ulbricht and Peter Schmitteckert.
In Wolfgang E. Nagel, Dietmar B. Kröner, and Michael Resch, editors, High Perfor-
mance Computing in Science and Engineering ’08, pages 71–82. Springer, Berlin,
2008.

The benchmarking of appendix A.2 and parts of section 3.2.1 are part of the publication

• Conductance of correlated nanostructures. [2]
Alexander Branschädel, Tobias Ulbricht and Peter Schmitteckert.
to be published in High Performance Computing in Science and Engineering ’09

Parts of chapter 5 are in preparation to be published in

• Tracking spin and charge with spectroscopy in polarised systems
T. Ulbricht, P. Schmitteckert
submitted to Europhysics Letters (EPL)
preprint: arXiv:0910.1827v1
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1 Introduction

Scientific work of chapter 6 is prepared to be published in

• Colour-charge separation in trapped SU(3) fermionic atoms
T. Ulbricht, R. Molina, R. Thomale, P. Schmitteckert
in preparation

Other publications:

• Magnetic excitations in a bond-centered stripe phase: Spin waves far from the
semi-classical limit [3]
Matthias Vojta and Tobias Ulbricht
Phys. Rev. Lett. 93, 127002–127006 (2004).

Conference contributions:

• Is Spin-charge Separation observable in transport experiments?
Oral presentation
72. Jahrestagung der DPG und DPG Frühjahrstagung des Arbeitskreises Festkörper-
physik, Berlin 2008

• Wave Packet Dynamics in Disordered Quantum Systems
Poster presentation
384. Wilhelm and Else Heraeus Seminar, Nonequilibrium Transport of Strongly
Correlated Systems, Bad Honnef 2007
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2 Methods: Theory

There is a theory which states that if ever anyone discovers exactly what

the Universe is for and why it is here, it will instantly disappear and

be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

(from The Restaurant at the End of the Universe, Douglas Adams)

This chapter shortly presents the underlying models which we will investi-
gate in later chapters. We derive the dynamics of excitations caused by an
external potential or by an addition of an electron in a tight-binding chain.
Further, we investigate the extraction of real-time variables as well as the
single particle spectral function and how the finite-sized lattice effects them.

2.1 One-dimensional models

We assume that the reader is familiar with Quantum mechanics and the formalism of
second quantisation and the basics of solid state theory. Further, the knowledge of
Fermi liquid theory in chapter 4 makes it easier to see a difference to the Luttinger
liquid concept sketched there.

We will only consider lattice models in this work. This is a major restriction, since
most analytic models are based on the continuum “thermodynamic” limit. However,
considering finite lattice models are closer to experimental realisation than their contin-
uum counterpart when it comes to nano-technological fabrication of, especially, purely
one-dimensional arrays.

2.1.1 The tight-binding model

We use the common simplest approach to a solid state crystal, the tight-binding method,
where the band structure of conducting electrons is constructed by overlapping atomic
orbitals and restricting to nearest neighbour hopping between the localised states. On a
lattice with M sites, N spinless fermions, the simplest tight-binding Hamilton operator
is defined (in second quantisation) as

Htb = −ttb
M∑
x=1

(c†xcx−1 + c†x−1cx), (2.1)

where cx are annihilation operators at position x and ttb is the hopping matrix element,
which is constant and set to 1 in all our treatments. Above Hamiltonian represents a

5



2 Methods: Theory

tridiagonal matrix in the single particle basis {cx}. The analytical solution by Fourier
transformation leads to the diagonal Hamiltonian

Htb =
∑
k

ε(k)c†kck, (2.2)

where ε(k) = −2ttb cos(k) defines the dispersion relation of single particle states k.
The system is very sensitive to the boundary conditions. The M levels are discretely
distributed over the cosine band, but while for hard-wall boundary conditions (HWBC,
omit c0 term) one has k = nπ/(M+1), n ∈ {1, . . . ,M}, the periodic boundary conditions

(PBC, c0 = cM) yield k = 2π(n−1)
M
−π and the anti-periodic (twisted) boundary conditions

(APBC, c0 = −cM) fit on the cosine with k = π(2n−1)
M

− π, see Fig. 2.1. The choice of

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

−π −π/2 0 π/2 π

ε(
k
)

k

HWBC
PBC

APBC

Figure 2.1: Energy levels of the tight-binding Hamiltonian for different boundary
conditions placed on the cosine band dispersion.

boundary conditions is crucial for the calculation of ground state properties. As seen in
Fig. 2.1, for 10 sites, the Fermi energy was drawn at ε(k) = 0 corresponding to 5 fermions
occupying the lowest levels for HWBC or PBC. However, APBC are unsuitable for this
combination of sites and particles, since the ground state would be degenerate. APBC
should be used whenever M/2 is even.

2.1.2 The Hubbard model

Allowing more than one particle type on each site in a lattice, one writes down a tight-
binding model for each type. The simplest interaction that connects the particle types,
is an on-site interaction between the densities. One immediately arrives at the famous
Hubbard model, which is for electrons having two possible spin orientations in Sz given

6



2.2 Time-evolution of a Gaussian potential

by

HHubbard =
∑
σ=↑,↓

Htb,σ + U
M∑
x=1

(
n̂x,↑ − 1

2

)(
n̂x,↓ − 1

2

)
. (2.3)

Here, nx,σ = c†x,σcx,σ and we have written the interacting term Un↑n↓ already in a
particle-hole symmetric way by adding corresponding chemical potentials −1

2
U
∑

σ nσ
and 1

4
U at each site.

Although being simple to write down, the Hubbard model is yet far from being com-
pletely understood, even in one dimension [4]. The most prominent property is the
metallic character for any filling, except for the commensurate filling ν = 0.5 (= “half-
filling” with M particles on M sites), where the system becomes a Mott insulator where
the elementary excitations in the charge sector acquire a gap. One major advantage is
the exact solvability of the model within the Bethe ansatz. In section 4.2 we will sketch
how the notion of “spinons” and “holons” are established using the exact solution.

Further, particle numbers of both spin types are conserved separately and the SU(2)
symmetry yields the conservation of spin. Beyond that, the Hubbard model has more
subtle symmetries. For example, the reversal of all spins leaves the Hubbard Hamilto-
nian invariant. Also, when particles and holes are exchanged for both spin species with
a factor of (−1) on every second site, then, together with a switch of sign in the inter-
action U , the Hubbard Hamiltonian with appropriate boundary conditions is invariant
under this so-called “Shiba transformation”. It allows for the construction of so-called
“η-pairing” operators that generate a second SU(2) symmetry, which is hidden in the
Hubbard Hamiltonian at first sight. This symmetry allows to exploit mappings between
the attractive and the repulsive Hubbard model.

In the strong coupling limit, the Hubbard model prohibits double occupation and
upon this projection from 4 to three possible states at each site, the Hubbard model
transforms into the t-J-model and for half-filling into the antiferromagnetic Heisenberg
model. Then only the spin interaction J = (4t2)/U governs the dynamics.

2.2 Time-evolution of a Gaussian potential

Let us look at a lattice with M sites and N spinless fermions. Our time evolution
Hamiltonian will be called H0 and for now let us use the tight-binding Hamilton operator

H0 = Htb = −ttb
M∑
x=1

(c†xcx−1 + h.c.) (2.4)

7



2 Methods: Theory

with arbitrary boundary conditions. This Hamiltonian is distorted in the density at time
t = 0 by a Gaussian potential of width σx, height 1

σx
√

2π
around the position x0

H1 = H0 +
M∑
x=1

G(x)c†xcx,

G(x) =
1

σx
√

2π
e−

(x−x0)2

2σx .

At time t = 0, the Hamiltonian is diagonalised by some unitary matrix UG, defined by
UG†H1U

G = diag. and the local operator basis transforms as

c = UGd, d = UG†c,

c† = d†UG†, d† = c†UG.

The ground state of H1 is made of the N single particle states {|dp〉} with the lowest
energy ε(p):

|φ〉 =
∏
p≤pF

d†p |0〉 (2.5)

=
∏
p≤pF

∑
x

c†xU
G
xp |0〉 . (2.6)

At time zero the unevolved local fermion density is simply

n̂(x) = 〈φ| c†xcx |φ〉 =
∑
l,k

UG†
lx U

G
xkδl,kΘ(pF − k) =

∑
k≤pF

UG?
xk U

G
xk =

∑
k≤pF

|UG
xk|2 (2.7)

Time evolution

At times t > 0, the Gaussian distortion is turned off. Thus, the system evolves with
the undistorted Hamiltonian H0 and the time evolution operator A = e−iH0t. For our
convenience, we do not use the Heisenberg picture, instead, we follow the evolution of the
single particle states |dp〉, given by |t〉 = A |dp〉. This defines us a basis set of operators
t that create the state |t〉 at time t. In matrix notation the operators transform as

d = At, t = A†d,

d† = t†A†, t† = d†A.

H0 and thus A are usually given in the space representation basis set {|cx〉}. However,
we need them in {|dp〉} basis.

A = e−iH0t =
∑
x,x′

[A(x)]x,x′c
†
xcx′ = e−it

P
k,l[H

(d)
0 ]k,ld

†
kdl =

∑
k,l

[A(p)]kld
†
kdl (2.8)

8



2.2 Time-evolution of a Gaussian potential

where the basis transformations are given by

[H
(p)
0 ]k,l =

∑
x,x′

UG†
kx [H

(x)
0 ]x,x′U

G
x′,l and [A(p)]k,l =

∑
x,x′

UG†
kx [A(x)]x,x′U

G
x′,l. (2.9)

The matrices A(p) and A(x) are matrix exponentials of the Hamiltonian −iH0t in the
corresponding basis. Additionally, to calculate the matrix exponentials it might be
sometimes helpful to go into the diagonal basis of H0, exponentiate the diagonal entries
and transform back.

At arbitrary times t the time-evolved initial state can now be constructed using the
single particle states at that time

|φ(t)〉 ≡
∏
a≤nF

t†a |0〉 , (2.10)

and since we can express now the old operators in terms of the new t†a =
∑

l d
†
l

[
e−iH0t

]
la

,
the local fermion density can now be expressed as

n̂(x, t) = 〈nx〉(t) = 〈φ(t)| c†xcx |φ(t)〉 (2.11)

=
∑
p,q

UG†
px U

G
xq 〈φ(t)| d†pdq |φ(t)〉 (2.12)

=
∑
l,l′

∑
p

A†lpU
G†
px

∑
q

UG
xqAql′ 〈φ(t)| t†l tl′ |φ(t)〉 (2.13)

= δl,l′Θ(nF − l) · · · =
∑
l≤lF

Ṽ †lx(t)Ṽxl(t) (2.14)

with Ṽxl(t) =
∑

q U
G
xq[A

(p)]ql or equivalently Ṽxl(t) =
∑

x′ [A
(x)]xx′U

G
x′l.

Real-time simulations We want to estimate the finite-size effects for simulations on
a lattice. To compare to systems with interaction later, we will here use (2.14) to
calculate the evolution of the velocity of an initial Gaussian density distribution in
a non-interacting environment. We use a system of M sites with periodic boundary
conditions and choose the centre of the potential x0 = M/2.

When we plot the density at time steps t = 0 and t = 2.5, we see (Fig. 2.2) that the
initial peak has split and symmetrically travelled to the right and left. What happened?
Our initial Gaussian potential is small and we expect a Gaussian density distribution
in linear response. Further, in momentum space the small perturbation invokes a low-
energy response, i.e. only low-lying states of width σ = 1

2πσx
around the Fermi surface

points |kF | are excited. More explicitly, states around +kF and −kF are excited on
the same footing and lead in turn to Gaussian density distributions travelling in both
directions.

The analysis also shows that the broader the peak is in real space, the narrower the
excitations will be distributed and the closer they will lie to the Fermi surface points.

9



2 Methods: Theory
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Figure 2.2: Wave packets at initial and a finite time step of a M = 18 sized system
and an initial Gaussian distortion of width σx = 1.5 around x0 = M/2.

We can visualise this by extracting the velocity of the peak by tracking the maximum
of one of the peaks and calculating the difference quotient for each time step

v(t) =
maxx〈n̂(x, t)〉 − x0

t
. (2.15)

We extract the maximum at each time step in two ways: in the first way by resampling
the data points using cubic splines and taking the maximum value and second, by fitting
two Gaussians over the dataset and taking the centre of the Gaussian as the maximum.
The velocity is plotted in figure 2.3 for several system sizes and peak widths σx using
Gaussian fits. The prefactor of the potential is adjusted to normalise the Gaussian
perturbation, which implies a lower height (a smaller displacement) for broader packets.

At first, it takes some time for the two peaks to become clearly separated. Only
then the Gaussian fit procedure finds a clear centre. We will take a separation time of
ti = 2σx/v, where we assume v ≈ 2. After that there is a plateau of constant velocity for
as long as the peak is far enough from the boundary, where it meets with the opposite
peak when using periodic boundary conditions. Thus, the end of the plateau is given by
tf = (M − x0)/v − 2σx/v. Clearly, a clean plateau for ti . t . tf limits the width of the
peak for a given system size. Figure 2.3 shows that σx = 1.5 is the maximum sensible
width for an M = 18 sites system. On the other hand, for a given width the value of
the velocity plateau does not change when increasing the system size, c.f. σx = 4.0 for
M = 42, 102 in figure 2.3. Finally, the inset in figure 2.3 shows how the average velocity,
fitted between ti and tf, approaches the asymptotic value of 2 (in units of ttb = 1) with
increasing widths of the wave packet. This is the expected behaviour for non-interacting
fermions on a lattice within a half-filled tight-binding system, where the Fermi velocity

at kF = ±π/2 is vF = ∂ε(k)
∂k

∣∣∣
kF

= 2ttb sin(kF ) = ±2ttb. The asymptotic velocity will

be reached for an infinitely broad peak (infinitely small perturbation). The difference
between the spline-fit and the Gaussian fit velocity shows there is some inaccuracy of
defining the centre of a peak. For interacting systems, the Fermi velocities for different

10



2.3 Time-evolution of an additional electron
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Figure 2.3: Wave packet velocities for different initial Gaussian potential widths
and system sizes as a function of time using periodic boundary conditions. The inset
shows the extracted velocity averaged over the plateaus as a function of the real-
space Gaussian potential width when using splines over the dataset (black curve)
and when fitting a Gaussian shape to the datasets (blue curve).

excitations will differ from |vF | = 2ttb. The main message of figure 2.3 is that for the
interacting system one can estimate the deviation of a finite sized excitation from an
ideal excitation as one already knows the deviation in the corresponding non-interacting
system.

Note that using hard-wall boundary conditions induce Friedel oscillations in the den-
sity depending on the filling, which complicates the tracking of the density peak, espe-
cially on small systems. The uncertainty in the extraction of a velocity coming with it
will add to the deviation from the infinite system.

2.3 Time-evolution of an additional electron

In contrast to the previous section, we want to do time evolution on an excited state,
more precisely, on a state, where the ground state has one additional electron (or hole).
We take again a lattice with M sites, N spinless fermions, use the free fermion tight-

11



2 Methods: Theory

binding Hamilton operator as H0 to be able to extract the observables analytically:

H0 = −ttb
M∑
x=1

(c†xcx−1 + h.c.) (2.16)

The Hamiltonian is again diagonalised by U0 into the eigenbasis {|d〉}. In matrix nota-
tion we have

c = U0d, d = U0†c,

c† = d†U0†, d† = c†U0.

The ground state |Ψ〉 is given by

|Ψ〉 =
∏
p≤pF

d†p |0〉 (2.17)

=
∏
p≤pF

∑
x

c†xU
0
xp |0〉 , (2.18)

where p enumerates the eigenstates with the energies ε(p). E.g. for the tight-binding
model with periodic boundary conditions, [U0]xk is the Fourier transformation e−ikx

with the eigenstates being Bloch states enumerated by the wave vector k with ε(k) =
−2ttb cos (k) and k ∈ {0,±π/M,±2π/M, . . . , π}. For the following discussion, let us
assume this situation, although different transformations also occur, e.g. when using
different boundary conditions.

Single electron excitation We create a single electron excitation upon the ground
state. The simplest case would be to create an excitation using one of the diagonal
operators defined by U0. Within our example, we take momentum k0 (only a right or
left mover) with k0 ∈ {0,±π/M,±2π/M, . . . , π}

f †k0 =
1√
M

M∑
x=1

eik0xc†x (2.19)

However, creating a state f †k0 |Ψ〉 would be another eigenstate of the system and thus
static in time evolution. On the other hand, using a local operator c†x, the resulting
excited state c†x |Ψ〉 cannot be associated with a definite momentum k.

Therefore, let us create one electron using several single level creation operators with
momenta k, which are Gaussian centred around a single momentum k0. For convenience,
we will enumerate the single particle levels l ∈ {0, 1, . . . ,M − 1}. This maps linearly
enumerated levels to momenta by k = 2π

M
(1 −M/2 + l), such that the occupied levels

are within (M −N)/2 ≤ l < (M +N)/2. Now we can define the Gaussian wave packet
with the operator

g†(k0) =
∑
l

f †l e
− (l−l0)2

2σ2 =
M∑
x=1

(
e(−2σ2π2x2)

)(
e

2πix
M

(1−M/2+l0)
)
c†x, (2.20)

12



2.3 Time-evolution of an additional electron

which we will define in matrix and vector notation

g†(k0) = ugc† = ug(d†U0†) (2.21)

We still have the freedom in the sum to shift the Gaussian packet to be centred in real
space about x0, which gives up to a normalisation constant C

ugx =
1√
C

(
e(−2σ2π2(x−x0)2)

)(
e

2πix
M

(1−M/2+l0)
)
. (2.22)

For a tight-binding model the dispersion relation for the single particle states and the

Figure 2.4: Visualisation of the creation of an electron (left) or a hole (right) by
indicating the occupation of single particle levels in the dispersion relation of the
non-interacting problem. The dashed line represents the Fermi energy.

creation of an excited state using a Gaussian distribution of levels is depicted in figure
2.4.

Excited state We will call the excited state with one additional electron |Ψ+1〉. With
the definition of the transformation matrix U0 and the vector ug and observing that
d†l |Ψ〉 = Θ(pF − l)d†l |Ψ〉 at zero temperature, we have∣∣Ψ+1

〉
= g†(k0) |Ψ〉 =

M∑
l>pF

M∑
x=1

ugxd
†
lU

0†
lx |Ψ〉 ≡

M∑
l>pF

d†lBl(k0) |Ψ〉 (2.23)

with Bl(k0) =
∑

x U
0†
lx u

g
x. We normalise the state by 〈Ψ+1|Ψ+1〉 =

∑
l>pF
|Bl(k0)|2,

which normalises ug with C =
∑

x |ugx|2.

Real-space density The t = 0 local fermion density of the excitation results by plug-
ging in all transformations to

n(x) =
〈
Ψ+1

∣∣ c†xcx ∣∣Ψ+1
〉

=

(∑
l>pF

|Bl(k0)|2
)(∑

m≤pF

|U0
xm|2

)
+

∣∣∣∣∣∑
l>pF

U0
xlBl(k0)

∣∣∣∣∣
2

. (2.24)

Note that the creation of a hole state |Ψ−1〉 is completely analogous, with only the
inequality signs swapped.

13



2 Methods: Theory

Time evolution

The time evolution will be defined with operators as in the case of a Gaussian pertur-
bation. The only difference is that here the dynamics does not result from turning off a
perturbation at t > 0, but starting from an excited system. Note that |Ψ+1〉 was created
using eigenstates of the Hamiltonian, which are on its own static in time evolution. The
dynamics results solemnly from the different phases of the single particle states given by
the different weights to form the wave packet.

We define again A = e−iH0t and transform the operators as, e.g. d† = t†A† and in the
diagonal basis of H0 we have again t†a =

∑
l d
†
l

[
e−iH0t

]
la

. The new many particle state
at time t > 0 is constructed from the time evolved single particle states including the
time evolved excitation g†(k0):∣∣Ψ+1(t)

〉 ≡∑
l>pF

t†lBl(k0) |Ψ(t)〉 =
∑
l>pF

t†lBl(k0)
∏
p≤pF

t†p |0〉 (2.25)

Now the local density evolves as

n(x, t) =
〈
Ψ+1(t)

∣∣ c†xcx ∣∣Ψ+1(t)
〉

=
∑
p,q

U0†
pxU

0
xq

〈
Ψ+1(t)

∣∣ d†pdq ∣∣Ψ+1(t)
〉

=
∑
m,n

(∑
p

A†mpU
0†
px

)(∑
q

U0
xqAqn

)〈
Ψ+1(t)

∣∣ t†mtn ∣∣Ψ+1(t)
〉

=
∑
m,n

V †mxVxn
∑
l>pF

∑
l′>pF

Bl(k0)Bl′(k0) 〈Ψ(t)| tlt†mtnt†l′ |Ψ(t)〉

=

(∑
l>pF

|Bl(k0)|2
)(∑

m≤pF

|Vxm|2
)

+

∣∣∣∣∣∑
l>pF

VxlBl(k0)

∣∣∣∣∣
2

,

where we have used the intermediate matrices

V †mx =
∑
p

A†mpU
0†
px and Bl(k0) =

∑
x

U0†
lx u

g
x(k0) (2.26)

and used the fact that in the second last equation the zero temperature expectation
value resolves to

〈Ψ(t)| tlt†mtnt†l′ |Ψ(t)〉 = δl,l′Θ(l − (pF + 1))δm,nΘ(pF −m)

+ δl′,nΘ(l′ − (pF + 1))δl,mΘ(l − (pF + 1)). (2.27)

In the derivation we assumed to have no degeneracy of the ground state, which can be
arranged by the proper choice of boundary conditions.

14



2.3 Time-evolution of an additional electron

Generalisation and implementation The above derivation can be implemented for
arbitrary shapes of the excitation and arbitrary Hamiltonians. However, one has to be
able to

• diagonalise the Hamiltonian to find U0,

• define a useful combination of operators as an excitation to find Bl, e.g. define u
in the real space basis,

• and calculate the matrix exponential in the diagonal basis of the Hamiltonian
e−iH0t =

∑
k,l[A

(p)]kld
†
kdl to find V .

Also, a generalisation to finite temperatures would be straight forward, however, an
efficient algorithm within the DMRG framework for small finite temperatures is still
lacking.

Real-time simulations As in the case of a Gaussian potential distortion, we simulate
non-interacting, small system using as background knowledge for comparison with the
interacting cases calculated with the DMRG later. The major differences to a Gaussian
potential excitation are that the density 〈Ψ+1|n |Ψ+1〉 displays a Gaussian peak on
top of the homogeneously filled density (in our examples 〈Ψ|n |Ψ〉 = 0.5 in the half-
filled system) and that the average momentum k0 can be freely chosen above the Fermi
surface. This also implies that the resulting wave packet only moves in one direction
with a velocity corresponding to this momentum k0. In figure 2.5 a density peak of

0.5

0.52

0.54

0.56

0.58

20 40 60 80 100

〈n̂
(x

,t
)〉

x

t = 0 t = 25

Figure 2.5: Wave packets at initial and a finite time step of a M = 102 sized system
with width σx = 4.0, with a momentum Gaussian centred around k0 = π/2 + 0.1.

width σx = 4.0, centered around x0 = 12 at the beginning has moved to the right. The
central momentum in this figure is k0 = π/2 + 0.1. Due to the finite width σ ≈ 0.04
of the momentum distribution in reciprocal space, the wave packet has dispersed at the
later position. Clearly, an extraction of velocities depends on k0 directly through the
dispersion relation of the single particle states and on the width σ, which smears the ideal
δ-like excitation. As can be seen in figure 2.6, instead of a plateau of constant velocity,
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2 Methods: Theory

a wave packet of one additional electron monotonously increases in velocity over time
when measured at the centre of a fitted Gaussian. The main diagram shows the velocity
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Figure 2.6: Velocities of wave packet of an additional electron with momentum
k0 = kF on a M = 102 lattice with periodic boundary conditions for different widths
in real-space σx. The inset shows the velocity at t = 13 as a function of the width for
different momenta of the electron. For widths larger than 10, a system of M = 302
sites was used.

development for different widths and accordingly chosen initial positions x0 = 3σx on a
lattice with M = 102 sites, periodic boundary conditions and k0 = π/2. While there
is almost no irregularity at the start of the simulation, around t = 25 ≈ M/(2v) very
small oppositely running contributions can interfere with the main peak and degrade
a velocity extraction. At this stage, using Gaussian fits at every time step smooths
out these irregularities. Since the analytic behaviour of the velocity is unknown in the
interacting case, we will choose the velocity at a certain time t ∼ M/(4v) and compare
it for different widths σx and different momenta k0. The inset in figure 2.6 shows there
is asymptotic behaviour with increasing width. An ideal excitation in an infinite system
would have the velocities vk0 = 2 sin k0 = 2.0, ≈ 1.990, ≈ 1.902 for excitations with
momenta k0 = 0.5π, 0.5π + 0.1, 0.6π.

Note that in finite systems, the distribution of excited levels in momentum space is
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2.4 Dynamical correlation functions

cut of by the band edges at |k| = π and the Fermi momentum k = kF , since we can only
excite unoccupied states above the Fermi points. This implies an inherent skewness of the
excitations which has a big influence for small system sizes, e.g. figure 2.6 was calculated
for k0 = kF = π/2, but the effect of the skewness is negligible at this system size, at
least for the non-interacting system. Again, hard-wall boundary conditions imply Friedel
oscillations, which make it much harder to properly extract smooth velocity curves. The
result for hard-wall boundary conditions are shown in appendix A.1 and compared to
DMRG results, which are used in section 4.4.1.

2.4 Dynamical correlation functions

We define the retarded and advanced Greens function in time domain for the fermionic
time dependent operators A(t) and B(t′)

Gr
A,B(t, t′) = −iΘ(t− t′) 〈{A(t), B(t′)}〉 . (2.28)

We will assume translational invariance in time and with out loss of generality set t′ = 0.
Furthermore, we will define two helper functions

G+
A,B(t) = −iΘ(t) 〈A(t)B(0)〉 , (2.29)

G−B,A(t) = iΘ(t) 〈B(0)A(t)〉 . (2.30)

These helper functions differ, beside the minus sign, only in that forG+ the right operator
acts at time t = 0, while for G− the right operator acts at the measurement time t. Now
the retarded Greens function can be written as

Gr
A,B(t) = −iΘ(t) 〈A(t)B(0) +B(0)A(t)〉 = G+

A,B(t)−G−B,A(t). (2.31)

Going into frequency domain by Fourier transformation, we derive the helper func-
tion G+

A,B(ω), using H |Ψ0〉 = E |Ψ0〉 and the Heisenberg representation of the operator

A(t) = eiHtAe−iHt,

G+
A,B(ω) =

∫ ∞
−∞

dt eiωtG+
A,B(t)

= −i
∫ ∞

0

dt eiωt 〈Ψ0|A(t)B(0) |Ψ0〉

= −i
∫ ∞

0

dt eiωt 〈Ψ0| eiHtAe−iHtB |Ψ0〉

= −i
∫ ∞

0

dt ei(ω+E0)t 〈Ψ0|Ae−iHtB |Ψ0〉 .
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2 Methods: Theory

Introducing a small imaginary iη with η = 0+, we have

= −i
∫ ∞

0

dt 〈Ψ0|Aei(ω+E0−H+iη)tB |Ψ0〉

= −〈Ψ0|A ei(ω+E0−H+iη)t

(ω + E0 −H + iη)

∣∣∣∣∞
0

B |Ψ0〉

= 〈Ψ0|A 1

(ω + E0 −H + iη)
B |Ψ0〉 . (2.32)

The fraction between the operators A and B is called the resolvent operator. Equiva-
lently, with the helper function

G−B,A(ω) =

∫ ∞
−∞

dt eiωtG−B,A(t) = i

∫ ∞
0

dt eiωt 〈Ψ0|BeiHtAe−iHt |Ψ0〉

= i

∫ ∞
0

dt ei(ω−E0+iη)t 〈Ψ0|BeiHtA |Ψ0〉

= −〈Ψ0|B 1

(ω − E0 +H + iη)
A |Ψ0〉 (2.33)

we find that G−B,A(ω + iη) = G+
B,A(−ω − iη) (dragging the imaginary part iη into the

argument) and we get the Fourier transformed retarded Greens function

GrA,B(ω) = G+
A,B(ω)− G−B,A(ω) (2.34)

= 〈Ψ0|A 1

(ω + E0 −H + iη)
B |Ψ0〉+ 〈Ψ0|B 1

(ω − E0 +H + iη)
A |Ψ0〉

= G+
A,B(ω + iη)− G+

B,A(−ω − iη) (2.35)

= 〈Ψ0|A 1

(E0 −H + ω + iη)
B |Ψ0〉 − 〈Ψ0|B 1

(E0 −H − ω − iη)
A |Ψ0〉 .

Finally, the spectral density function is defined by

A(ω) = − 1

π
Im(GrA,B(ω)) (2.36)

where Im() takes the imaginary part of its argument. If B = c† is a creation and A = c an
annihilation operator, the naming of G± contains a convenient to remember convention:
G+ is the propagator corresponding to creating a particle (c†), measuring the response of
the system before another one (c) is taken out again. G− can be interpreted analogous as
the “particle destroyed” response. Note that this convention is not meant in a time-like
order as in the definition of Gr

A,B(t, t′).
We are also interested in the lesser and greater Greens functions, defined by

G>
A,B(t) ≡ −i〈A(t)B(0)〉.

G<
B,A(t) ≡ i〈B(0)A(t)〉
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2.4 Dynamical correlation functions

By analogous Fourier transformation (splitting
∫ +∞
−∞ =

∫ 0

−∞+
∫∞

0
) we find

G<B,A(ω) = G−B,A(ω)− G+
B,A(−ω)

= G−B,A(ω + iη)− G−B,A(ω − iη) (2.37)

G>A,B(ω) = G+
A,B(ω)− G−A,B(−ω)

= G+
A,B(ω + iη)− G+

A,B(ω − iη) (2.38)

One can see at these expressions that the real part of the lesser and greater Greens
function vanish, while the imaginary parts are identical and add up. When defining the
lesser and greater spectral functions analogously to be positive quantities, we have

πA<(ω) ≡ Im(G<B,A(ω + iη)) = 2Im(G−B,A(ω + iη))

−πA>(ω) ≡ Im(G>A,B(ω + iη)) = 2Im(G+
A,B(ω + iη)).

(2.39)

and finally from (2.36) and (2.34), we find

A(ω) =
1

2
(A>(ω) +A<(ω)) .

Indeed A<(ω) is the response below the Fermi surface, since it is proportional to the
removal of a particle with annihilation operator A and A>(ω) is the response from above
the Fermi surface, since it is proportional to the addition of a particle. We will use this
definition to determine the Fermi surface in interacting many-body ground states.

Example: free fermions

Take A = cx and B = c†y, the annihilation and creation operators of a spinless fermion
at position x and y in a lattice. The single particle Greens function now reads

Gr
cx,c
†
y
(ω) = 〈Ψ0| cx

1

(ω + E0 −H + iη)
c†y |Ψ0〉 − 〈Ψ0| c†y

1

(ω − E0 +H + iη)
cx |Ψ0〉 (2.40)

We can diagonalise free fermion Hamiltonian with U †HU = diag, where the operators
transform into the diagonal basis {|d〉}

c = Ud, d = U †c, c† = d†U †, d† = c†U. (2.41)

Within the diagonal basis the Hamiltonian in the resolvent of the Greens function can
be replaced by its eigenvalues Hd†l |Ψ〉 = (E0 + εl) |Ψ〉. For the helper function G+, we

19



2 Methods: Theory

have

G+

cx,c
†
y
(ω) = 〈Ψ0| cx

1

(ω + E0 −H + iη)
c†y |Ψ0〉

=
∑
k,l

〈Ψ0| dk
UxkU

†
ly

(ω + E0 − (E0 + εl) + iη)
d†l |Ψ0〉

=
∑
k,l

(δl,k − 〈Ψ0| d†ldk |Ψ0〉)×
UxkU

†
ly

(ω − εl + iη)

=
∑
l

(1− 〈Ψ0| d†ldl |Ψ0〉)×
UxlU

?
yl

(ω − εl + iη)
(2.42)

For the other helper function, we have, similarly,

G−
c†y ,cx

(ω) = −〈Ψ0| c†y
1

(ω − E0 +H + iη)
cx |Ψ0〉

= −
∑
k,l

〈Ψ0| d†l
U †lyUxk

(ω − E0 + (E0 − εl) + iη)
dk |Ψ0〉

= −
∑
l

〈Ψ0| d†ldl |Ψ0〉 ×
UxlU

?
yl

(ω − εl + iη)
. (2.43)

Our interpretation of the helper Greens function G+ is expressed by the weight (1−〈n̂l〉),
allowing only states above the Fermi surface to contribute to the sum, while the prefactor
〈n̂l〉 allows only states below the Fermi surface to contribute to G−. The retarded Greens
function adds up to

Gr
cx,c
†
y
(ω) =

∑
l

UxlU
?
yl

(ω − εl + iη)
(2.44)

This gives us the real-space spectral function A(x, y, ω). To get the momentum-resolved
spectral function, one further Fourier transformation is necessary

A(k, ω) = − 1

π
Im

(
1√
M

∫
dx e−ikxGr

cx,c
†
y
(ω)

)
. (2.45)

Bloch states However, for the free fermion system, we can also work directly with
momentum operators, like the Bloch states on a ring. Let us use the operators, in which
the Hamiltonian is diagonal {|d〉}. The corresponding Greens function relaxes to the
free fermion propagator

Gr
dk,d

†
k

(ω) =
1

(ω − εk + iη)
, (2.46)

whose spectral function is a Lorentz function with width η centred around εk

A(k, ω) = − 1

π
Im(Gr

dk,d
†
k

(ω)) =
1

π

η

(ω − εk)2 + η2
, (2.47)
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2.4 Dynamical correlation functions

which is correctly always positive. Accordingly, the lesser and greater spectral functions
are the spectral function dressed by the weights given by the occupation of states above
1− 〈nk〉 and below 〈nk〉 the Fermi surface.

Usually, the single particle spectral function in the Lehmann representation is defined
by

A(k, ω) =
∑
f

∣∣∣〈f,N + 1| c†k |0, N〉
∣∣∣2 δ(ω − EN

0 + EN+1
f ), (2.48)

where f denotes the final states, the system can be in. This definition is equivalent to
(2.47) for η → 0.

Free fermions and general operators The Greens function for a general operator,
which can be expressed in terms of local operators involves another transformation. Let
us label the operators with m and their representation in real space be g†m =

∑
x c
†
xVxm,

which defines the transformation V , in matrix notation

c = V g, g = V †c, c† = g†V †, g† = c†V. (2.49)

Then

Gr
gn,g

†
m

(ω) = G+

gn,g
†
m

(ω)− G−
g†m,gn

(ω)

= 〈Ψ0|
∑
x

V †nxcx
1

(ω + E0 −H + iη)

∑
y

c†yVym |Ψ0〉 − G−

=
∑
x,y

V †nxVym
∑
l

(1− 〈Ψ0| d†ldl |Ψ0〉)×
UxlU

?
yl

(ω − εl + iη)

+
∑
x,y

VymV
†
nx

∑
l

〈Ψ0| d†ldl |Ψ0〉 ×
UxlU

?
yl

(ω − εl + iη)

=
∑
l

(∑
x[V

†]nxUxl
) (∑

y[U
†]lyVym

)
(ω − εl + iη)

(2.50)

=
∑
l

[V †U ]nl[U
†V ]lm

(ω − εl + iη)
=
∑
l

[U †V ]?ln[U †V ]lm
(ω − εl + iη)

and for the case, when n = m, we have

Gr
gm,g

†
m

(ω) =
∑
l

∣∣[U †V ]lm
∣∣2

(ω − εl + iη)
. (2.51)

This allows us to choose operators, e.g. gm ∼
∑

x sin (mx)cx, where m is in a sense a
crystal momentum, even if the underlying model does not obey translational symmetry
and the diagonal operators d do not define a crystal momentum.
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Finite size effects

Due to finite lattices, the limit of the broadening limη→0+ A(k, ω) can not be achieved.
Rather, η has to be larger than the smallest level splitting or the finite size structure
can be seen in the spectral response. Dyson’s equation for the fully interacting retarded
propagator Gr derived from the bare propagator Gr,0 defines the self-energy Σ(k, ω) via

Gr = Gr,0 + Gr,0ΣGr =
1

(Gr,0)−1 − Σ
(2.52)

=
1

ω − (H − E0) + i0+ − Σ
=

1

ω − (H − E0)− Σ′ + i(0+ − Σ′′)
(2.53)

=
ω − (H − E0)− Σ′

(ω − (H − E0)− Σ′)2 − (0+ − Σ′′)2
− i(0+ − Σ′′)

(ω − (H − E0)− Σ′)2 − (0+ − Σ′′)2

(2.54)

Thus, for an interacting system the imaginary part of the self-energy, Σ′′, gives a broad-
ening in addition 0+ to the spectral function ImG, while Σ′ only shifts the energy. In
the continuum limit 0+ is sent to zero. For our finite systems, the η remains finite, but
one can extract the η → 0 limit. One way is to see that the imaginary part in (2.54) is
a convolution of the continuum limit with a Lorentz-function of width η and thus a nu-
merical deconvolution of the data is possible. However, this turns out to be numerically
unstable.

Manual deconvolution A more straight forward possibility is to subtract η from the
inverse of the Greens function. If we denote the data we get from the numerical calcu-
lation with a finite width η with D = (ω − (H −E0) + i(0+ + η)−Σ)−1 and we aim for
G (dropping the index r), we see from Dyson’s equation (2.52) that

[G−1] = [D−1]− iη =
D′
|D|2 + i

(−D′′
|D|2 − η

)
(2.55)

and

G =
[G−1]′ − i[G−1]′′

|G−1|2 =
D′ + i(D′′ + η|D|2)
1 + 2ηD′′ + η2|D|2 (2.56)

Since for non-interacting particles the self-energy is zero, ImGr becomes a delta-function.
This shows that we can manually deconvolute the data from the Lorentz distribution of
width η. To avoid a numerical divergence at the resonance frequency, it makes sense in
above procedure to fine-tune the subtracted η and subtract only (η − ηres), especially if
the data is near the non-interacting delta-function limit.

2.5 Summary

In this chapter we have exactly derived the time evolution of a perturbation in a spinless
fermionic tight-binding chain. Using an exact diagonalisation simulation, we tracked
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2.5 Summary

a density peak formed by a Gaussian excitation in finite systems. We showed how an
extracted excitation velocity depends on the width of the initial perturbation and not so
much on the system size itself as long as the systems are large compared to the width.
The results can be used as a benchmark and for comparison with interacting systems.

Further, we derived the equations for the time evolution of a density excitation, which
is caused by an addition or removal of an electron put into the many particle ground
state. Analogous to the perturbation, we used exact numerics to show, how real-time
variables like the excitation velocity depend on the width and momentum of the injected
electron and how small system sizes hamper the analysis.

Finally, we presented the Greens functions that are needed to calculate the spectral
function of an electron addition or removal. By writing down explicit expression for
a single particle problem, we emphasised the influence of finite systems introducing a
non-vanishing broadening η. The broadening can be subtracted from the data using
a simpler transformation than a numerically unstable deconvolution, if both real and
imaginary part of the Greens function are known.
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Marvin: ‘‘I’ve been talking to the main computer.’’

Arthur: ‘‘And?’’

Marvin: ‘‘It hates me.’’

(Marvin the Paranoid Android and Arthur Dent in The

Hitchhiker’s Guide to the Galaxy, Douglas Adams)

In this chapter we will introduce and motivate the numerical method we
use. Since there are already several useful and recent reviews on the subject
[5, 6, 7, 8], this chapter will not exhaustively cover all details of the DMRG
approach, rather we will try to pedagogically introduce the basic algorithm
and the extensions necessary for our calculations.

We are investigating quantum many-body problems. The simplest problems in con-
densed matter physics are the ones where the problem reduces to a single particle prob-
lem or can be described by an effective single particle description as in the Fermi liquid
theory. Among others, strong correlation between the particles under investigation usu-
ally prohibits this reduction and the full quantum many-body problem has to be solved.
Since some of these problems are not fully solvable by analytical means, numerical ap-
proaches are justified. However, even numerical simulation quickly meet limitations.
The obvious first choice is the exact diagonalisation of the problem.

3.1 Exact diagonalisation

We consider a real-space lattice model of M sites, where each site j can be described by a
finite number d of basis states {∣∣αdj〉}. We will later look at interacting electrons, where
the basis states allowed by the Pauli principle are: empty |0〉, occupied by either spin
orientation |↑〉 , |↓〉 or double occupation |↑↓〉. All combinations of the direct product of
such basis states for each site compound a basis for the full system with M lattice sites.
Any state can be expressed in that basis,

|Ψ〉 =
∑
{αdj }

f(αd1, . . . , α
d
M)
∣∣αd1〉⊗ · · · ⊗ ∣∣αdM〉 . (3.1)

Solving the time-independent Schrödinger equation H |Ψ〉 = E |Ψ〉 means solving the
eigenvalue equation of the Hamiltonian H, which is a matrix in the site-basis represen-
tation above with dM × dM entries. This size exponentially increases with system size
M , which is the key limitation in computing resources. For comparison, a usual desktop
computer of 2009 with a memory of 4 GB = 4 ∗ 230 bytes can only hold one vector of
(3.1) |Ψ〉 of a system with M = 30 lattice sites, when d = 2 (e.g. spinless particles).
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3 Methods: Simulation

In the worst case problem, the Hamiltonian matrix H is full, i.e. all entries are non-zero
and one is restricted to small system sizes. However, if the system obeys symmetries,
one can write H in a block diagonal structure, grouped by the conserved quantity that
correspond to the symmetry. Typical examples are particle number conservation, spin
symmetries or lattice symmetries. Each block can then be diagonalised within its own
subspace.

Beside the symmetries, entries of the Hamiltonian matrix might be already zero by
construction, because the basis states do not get entangled by H, e.g. if there is no
hopping between all the sites. This allows for the usage of more efficient diagonalisation
techniques, which are adapted to the shape of the matrix, e.g. hermitian matrices, sparse
matrices, tridiagonal matrices etc. In the simplest example of non-interacting spinless
fermions (l = 2) with only nearest neighbour hopping (tight-binding model) and hard-
wall boundary conditions, the matrix does not need the to be written in the many-body
basis and is tridiagonal in the single particle basis.

Iterative algorithms In the up-coming DMRG framework, only a small number of
the smallest eigenvalues of H are needed. In this case, there exist specialised iterative
algorithms which can then handle larger systems. The two most common algorithms
for an iterative solution of the eigenvalue problem should be mentioned. The Lanczos
method iteratively builds up the Krylov subspace onto which the Hamiltonian is pro-
jected. The feature is that the smallest (and the largest) eigenvalues converge faster
than others, such that the dimension of the subspace is a lot smaller than the original
Hilbert space. Within the subspace the Hamiltonian becomes tridiagonal and can be
diagonalised quickly. The Jacobi-Davidson algorithm similarly features the fastest
convergence of the extremal eigenvalues in a linearly growing subspace. Depending on
the problem, it converges faster and is more stable than the Lanczos procedure, but has
a higher memory fingerprint. Both algorithms are well described in Ref. [5, 6].

Non-interacting particles In the models we use, the non-interacting system is usually
the tight-binding model of spinless fermions. In that case, the Hamiltonian matrix in
the single particle picture is only of size M ×M . Thus, the problem scales only with
some power (M2 for the matrix size and at most M3 for the diagonalisation) and we
used higher level numerical tools (octave, python + numpy) or own implementations
in C/C++, which all use standard linear algebra subroutine implementations (BLAS) for
solving the eigenvalue problem.
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3.2 The Density Matrix Renormalisation Group

3.2 The Density Matrix Renormalisation Group

The exponential growth of the size of the Hilbert space with system size M limits exact
diagonalisation routines for strongly correlated systems to small system sizes. The only
way to proceed is to truncate the Hilbert space in some way.

One example: the Numerical Renormalisation Group (NRG) method keeps the size
of the Hilbert space constant by using only the Ncut smallest eigenvalues and -vectors of
the Hamiltonian in its procedure (see [5] for an introduction). Even though the Hilbert
space is hugely restricted, the single-impurity Kondo problem was solved by Wilson [9]
using this method (especially, due to the clever choice of a logarithmic discretization).

In contrast, in the Density Matrix Renormalisation Group (DMRG) one chooses to
truncate the Hilbert space by the Ncut highest eigenvalues of the density matrix of the
system and uses the corresponding eigenstates as a basis. It turns out that this choice
of basis states is optimal for a representation of the ground state wave function.

Our approach is to give a short overview that explains the basic algorithm, followed
by answering naturally arising questions how the procedure can be extended and errors
are controlled. The following sections 3.3 and 3.4 are then simply extensions to this
framework. For many optimisation and further extensions, we refer to the reviews.

3.2.1 Infinite lattice algorithm

We outline how the density matrix is constructed, how the truncation of the Hilbert
space is performed and how the optimal basis for the ground state is thereby obtained.
All of this is embedded in a standard blocking scheme procedure, which iteratively builds
up a system in real-space. While the true Hilbert space of this procedure is exponentially
growing, the optimised truncated Hilbert space stays manageably small.

DMRG in words Before sketching the DMRG algorithm, which can be found in any of
the mentioned reviews, we find it useful to compress the basic (infinite lattice) algorithm
loop in a minimal verbal version.

... we add the degrees of freedom d of one site σ to a system A with m basis
states {|m〉}, embedded in a larger (known) system B. The aim is to find
the global ground state defined over A+ σ +B, which we find by a Lanczos
procedure, but sustainability1 requires us to get rid of the gained factor of
d states. When we ask: What are the best m basis states within A + σ to
describe the local part of the global ground state? It turns out to be those
m basis states with the highest weight in the reduced density matrix, formed
in the local basis with B as a statistical bath. Now set A = A+ σ and ...

1We may lend this term from environmental science and socio-economics, meaning not to be able to
exceed limiting resources.
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3 Methods: Simulation

DMRG: Infinite lattice algorithm

Initially, we set up block A with l = a0 sites. Since each site-basis is
A B

∣∣MA
〉 ∣∣MB

〉
0〉

d-dimensional, the product basis
{∣∣MA

〉}
of all l sites is (d)l-dimensional.

Analogously, we set up a block B, creating the product basis
{∣∣MB

〉}
.

Step 1. To the block A of length l we add one new site by constructing
A B1.

σ τ∣∣mA
〉 ∣∣mB

〉

∣∣∣
0〉

a new basis with the dσ-dimensional local site-basis {|σ〉}, which we call{∣∣mA
〉}

=
{∣∣MA

〉} ⊗ {|σ〉}. This basis’ dimension is mA = MA · dσ.

The Hamilton operator on block A + σ: ĤA+σ is a matrix of dimension
mA×mA. Analogously, we add to block B of length l the site τ and create
a new basis with dim

{∣∣mB
〉}

= MB · dτ .
Step 2. We form a superblock of length L = 2l + 2 by joining blocks

A B2.
σ τ

∣∣mA
〉⊗ ∣∣mB

〉

∣∣∣
0〉

2.

∣∣∣∣

|ψ0〉 , E0

A+ σ and τ +B,

{|D〉} =
{∣∣MA

〉}⊗ {|σ〉} ⊗ {|τ〉} ⊗ {∣∣MB
〉}

dim {|D〉} = MA · dσ · dτ ·MB = D

The full Hamiltonian of the superblock ĤL is a D ×D sized matrix and
its smallest eigenvalues are determined using the Lanczos or Davidson
algorithm. This leads to the ground state via ĤL |ψ0〉 = E0 |ψ0〉. The
ground state has the representation

|ψ0〉 =
mA∑
i=1

mB∑
j=1

cij
∣∣mA

i

〉⊗ ∣∣mB
j

〉
Step 3. Instead of the full density matrix ρ = |ψ0〉 〈ψ0|, we 3.

∣∣∣∣m
|mA〉

|mA〉

∣∣∣∣
〉

Ncut

form the reduced density matrix of block A+ σ by tracing over
all states of the B + τ block

ρA+σ = Tr [ρ]B+τ =
∑
j

∑
i,i′

cijc
?
i′j

∣∣mA
i

〉 〈
mA
i′

∣∣ .
This matrix is of size mA ×mA. We fully diagonalise ρA+σ and
keep the mA = Ncut highest eigenvalues and the corresponding eigenvectors

{∣∣mA
〉}

,
which form the (mA ×mA) sized transformation matrix U .

Analogously, the block A + σ is traced out for ρB+τ , which is diago-
A B5.

∣∣MA
〉 ∣∣MB

〉
〉

nalised keeping also Ncut DMRG states.

Step 4. Now we transform the Hamiltonian on block A + σ to this

new basis Ĥ
A+σ

= U †ĤA+σU and on block B + τ respectively using the
corresponding transformation matrix.

Step 5. Finally, we set
{∣∣MA

〉}
=
{∣∣mA

〉}
(so that MA = mA),

{∣∣MB
〉}

=
{∣∣mB

〉}
,

set l = l+ 1, view block A+ σ as the new block A and B + τ as the new block B. Now
one “DMRG step” is finished an we continue with step 1.
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3.2 The Density Matrix Renormalisation Group

Numerical effort The most time-consuming computation is in the iterative diagonal-
isation of the superblock Hamiltonian in step 2. However, symmetries obeyed by the
superblock Hamiltonian HL can be used to simplify the book-keeping and to choose
only the necessary calculations. For example, given particle number conservation in the
Hamiltonian and given a fixed number of N particles in the system, we only need to
search for the ground state of ĤL within those product states {∣∣mA

〉} ⊗ {∣∣mB
〉} which

are restricted to N total particles.

Furthermore, the reduced density matrix becomes block-diagonal and these internal
blocks are labelled by the conserved quantity. Thus, the dense (mA × mA) diagonal-
isation simplifies to several smaller matrix sizes, provided the book-keeping of which
basis state maps to which quantum number is ensured during the cutoff procedure in
step 3. Following above example, the density matrix for block A + σ decomposes into
internal blocks of with particle number Ni = 0, 1, 2, 3, . . . , N . Each internal block Ni is
constructed from those basis states

∣∣mA
i

〉
,
∣∣mA

i′

〉
, which carry all exactly Ni particles. Of

the then newly diagonalised basis states
∣∣mA

i

〉
, the corresponding particle number has

to be remembered, when after truncating only Ncut of all basis states are selected.

Whenever we truncate in our numerics to “Ncut DMRG states”, this means, the num-
ber of basis states kept when summed over all internal density matrix blocks will not
exceed Ncut.

There are several more standard optimisations to be considered for an implementation,
which we will not elaborate on here [5].

Observables At the end of step 2, the ground state |ψ0〉 is available. A physical
observable can now be measured as the expectation value in the ground state. Therefore,
a local operator, e.g. the local particle density c†ycy should be expressed in the correct
basis. If the added site σ is at position y, the local density operator can immediately
be formed in the basis of the block A+ σ,

〈
mA
∣∣ n̂(y)

∣∣mA
〉
. However, at step 4 the basis

transformation
∣∣mA

〉→ ∣∣mA
〉

has to be done for all operators, such that a measurement
can be done at any DMRG step. Operators on different sites (for equal-time correlation
functions) have to be treated with more care and require a better book-keeping, but can
be evaluated just as well.

All other observables, like time-, energy- or momentum-dependent correlation func-
tions or temperature dependent quantities are possible to evaluate in principle within the
DMRG framework. They require extensions or reformulations of the DMRG procedure
and will not be presented here [5, 7], except for the time evolution and the dynamical
correlation function approach.

Optimally projected Hilbert space It can be argued [8] that choosing to reduce and
project the Hilbert space by the Ncut most important eigenstates of the density matrix
is an “optimal [approximation] in the sense of a least-squares minimisation of the dif-
ferences between the exact |Ψ〉 and the approximate one” ([5, 10]). Less formally, one
understands that the eigenstates of the density matrix, formed by the ground state are
the weight for the system to be in the corresponding eigenstate. Therefore, using these
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3 Methods: Simulation

eigenstates as a basis to express the ground state (and expectation values in the ground
state) ought to be a good approximation.

As will be essential in the time evolution algorithm, one can form a density matrix
of a mixed state, if one wants to optimise the Hilbert space for more than one state
simultaneously. In general, the mixed ensemble density matrix is composed of a sum of
states,

ρ =
∑
α

|Ψα〉 〈Ψα| . (3.2)

For example, if the time evolution requires the state |Ψ(ti)〉 at time ti, then the appro-
priate density matrix will be ρ = |ψ0〉 〈ψ0| + |Ψ(ti)〉 〈Ψ(ti)|. Of course, the accuracy or
the rate of convergence to the individual state will suffer and it might be necessary to
increase Ncut, but it also enables us to calculate non-ground state expectation values of
observables.

Truncation error In step 4 of the procedure, the mA = Ncut highest eigenvalues of
the reduced density matrix ρA+σ are kept, while (mA −mA) eigenvalues and -states are
discarded at this truncation. If we label the ordered eigenvalues (weights) wα, the sum
over all weights, the discarded weight

εdisc =
mA∑
mA

wα (3.3)

is a measure for the error of the truncation. If the weight distribution falls off quickly
with increasing α, DMRG is a very good approximation. In the worst case, all weights
are equal ( 1

mA
). This represents a maximally entangled state and the DMRG truncation

scheme is useless.
Another commonly defined measure of the error of the truncation procedure is the

discarded entropy, defined by

Sdisc = −
mA∑
mA

wα logwα (3.4)

The complete truncation error involves the error of the discarded weights of block A+σ,
but also the error made by having only a finite environment block B + τ to trace out.

Cutoff schemes There are other cutoff schemes imaginable. While in the canonical
procedure the system is projected onto a Hilbert subspace of constant size Ncut (“fixed-
size cutoff”), this is not the only and best solution for every problem.

Another possibility is to keep the discarded weight εdisc below a constant cutoff and
to include as many eigenstates of the reduced density matrix as necessary to reach
that. This procedure has many disadvantages, e.g. the number of necessary states can
unpredictably vary from DMRG step to DMRG step leading to an unpredictably or
unfeasible large memory consumption. However, if the system is known to behave well
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3.3 Time development DMRG

and is known to require only a few states to converge sufficiently for some DMRG steps,
one can combine both cutoff schemes and considerably reduce computational resources
without losing accuracy. We will call it the “fixed-discarded-entropy” cutoff scheme.

3.2.2 Finite lattice algorithm

The infinite lattice algorithm works well for some systems, especially if the true ground
state wave function is so well-behaved in the real-space lattice that a iterative build-up
of the approximate ground state wave function from few sites can succeed in converging
to the true ground state. However, for other systems, the infinite lattice algorithm is
not enough and is only used as a warm-up cycle followed by the finite lattice algorithm.

The finite lattice algorithm is not fundamentally different in terms of forming a su-
perblock, tracing to a reduced density matrix, and transforming to the newly reduced
basis states. But instead of increasing both blocks A and B, in the DMRG sweep from
left to right, the block A is increased at the expense of block B, which is decreased.
Since there is fundamentally [11] no obvious procedure how to remove a site from block
B (the reverse operation of the tensor product for all operators and the Hamiltonian),
one uses the basis states of an earlier step from the infinite lattice sweep to construct
the superblock. This requires all operators and wave functions representations in each
basis states at the corresponding DMRG step to be saved to disk.

When one repeats this procedure, one will end up with a minimal block B and a
large block A, where the size of the superblock is kept constant at all steps. At this
point the direction is switched and one sweeps from the right to the left, by increasing
block B and reusing a decreased block A from the hard disk. After two full sweeps one
returns to a balanced system with equal-sized blocks A and B. All measurements and
optimisation apply identically as in the infinite lattice algorithm, except that an efficient
book-keeping of basis states is necessary.

3.3 Time development DMRG

The formal solution of the time dependent Schrödinger equation(
i~
∂

∂t
−H

)
|ψ0〉 = 0 (3.5)

for a time-independent Hamilton-operator H is |Ψ(t)〉 = e−iHt |ψ0〉. Numerically, the
exponentiation of the Hamiltonian matrix is the key difficulty. While there are several
methods to tackle the problem of a matrix exponential [12], their success heavily depend
on the type of the matrix and if the exponentiation of the matrix eH =? or only the
matrix exponential operating on a state vector eH |·〉 =? is needed. If the appropriate
method is used, this enables us to calculate the time evolution of observables, like the
local density n(x, t) = 〈Ψ(t)| n̂ |Ψ(t)〉, or in general any correlation function C(t) =
〈Ψ|O1(t

′)O2(t) |Ψ〉 (in the Heisenberg picture).
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We present two methods that we use to obtain the results in this thesis. Both are
defined as extensions to the standard DMRG procedure and referred to as time devel-
opment DMRG (td-DMRG).

3.3.1 Full td-DMRG

This extension to the DMRG framework as introduced in 2004 [13] divides the time
into discrete time steps 0 = t0 < t1 < t2 · · · < T . For each time step ti, the matrix
exponential operating on the state at the previous time ti−1 is explicitly calculated using

|Ψ(ti)〉 = e−iH(ti−ti−1) |Ψ(ti−1)〉 , (3.6)

starting with the action on the ground state at step 2 of the algorithm in 3.2.1. The
reduced density matrix in step 3 of the infinite lattice procedure is constructed using
all these state vectors, ρA+σ = Tr [

∑
i |Ψ(ti)〉 〈Ψ(ti)|]B+τ . As discussed previously, this

means that the basis states selected from the reduced density matrix try to optimise all
time evolution states (including the t = 0 ground state) simultaneously. The method is
called “full” td-DMRG, since in every DMRG step the full time evolution is calculated
(in discrete steps) up to the time T . The procedure carries over to the finite lattice
algorithm without modification.

This method is computational intensive, since a.) the more time steps are wanted, the
larger the reduced Hilbert space has to be chosen, such that the approximation to the
individual state vectors maintains its accuracy and b.) the additional matrix exponential
calculation (3.6) scales with the number of time steps wanted. The full td-DMRG also
allows to add more time steps during the procedure and in our actual implementation,
we first calculate the ground state using the infinite lattice algorithm and add time steps
only in the finite lattice sweeps.

The matrix exponential on a state vector (3.6) is efficiently [14, 12, 13] calculated by
creating a Krylov space, expressing the exponent (−iH∆t) in this subspace and using a
Padé-approximation [15, 12] to calculate the full matrix exponentiation for this smaller
matrix.

3.3.2 Adaptive td-DMRG

An alternative approach, also developed in 2004 [16, 17, 18], is based on a Suzuki-Trotter
decomposition of the time evolution exponential and leaves the usual DMRG framework
by introducing approximations that cannot be controlled only by Ncut.

One starts with an infinite lattice algorithm, creating a highly accurate ground state
|Ψ(t = 0)〉 = |ψ0〉. The main idea is to decompose the exponential into terms adjusted
to the DMRG sweeping procedure of the finite lattice algorithm. At each DMRG step
the (infinitesimal) time evolution at the sites σ and τ can be applied exactly. Instead
of a sparse matrix diagonalisation of HL to determine |ψ0〉, a wave function prediction
for the blocks A and B and the local time evolution at σ and τ is used to create the
wave function at the current time step |Ψ(t+ δt)〉. An extra error is introduced by the
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3.4 Dynamical correlation functions: DMRG

decomposition of the order of (δt)2 for each DMRG sweep. To keep this Trotter-error
small, the time has to be divided into many small steps n of size δt. As a downside, the
DMRG truncation error accumulates with every DMRG step D and every sweep S as
(1 − εdisc)

DSn ∼ en for large n, giving rise to an exponential runaway-time, after which
the results of the procedure become unreliable.

3.4 Dynamical correlation functions: DMRG

Many dynamical quantities are expressed as functions of energy/frequency and some-
times also resolved in momentum space. In principle, switching to the frequency domain
can be done using numerical Fourier transformation on the td-DMRG results.

However, two finite size limits prohibit accurate results in practice for certain fre-
quency domains. On the one hand, the chosen finite time step size ∆t bounds the
accessible frequency range ω . Ω ∼ 1/∆t from above, due to the Nyquist sampling
theorem. Therefore, the calculation of quantities in the high-energy range requires a
high resolution in the time domain. On the other hand, the long term limit of time
evolution is bounded to some time T . The range [0, T ] restricts the Fourier frequencies
to ω > ωT ∼ 1/T . Or, in other words, any frequency ω < ωT corresponds to a mode
with a wave length of the order & T . Thus, e.g. a correlation function C(t) that does
not fall off quickly to 0 within [0, T ], will have some weight at t > T , which is then
wrongly represented in the low-energy range of the corresponding frequency-dependent
correlation function C(ω).

As shown in section 2.4, correlation functions defined in the frequency domain allow
for a direct calculation of frequency-dependent quantities

C(ω) = 〈ψ0| Ô†1
1

(E0 − ĤL − ω + iη)
Ô2 |ψ0〉 . (3.7)

At step 2 of the infinite lattice algorithm and equivalently in the finite lattice algo-
rithm, the operator Ô1 and the resolvent acting with Ô2 on the ground state have to be
calculated and the following states are included into the density matrix

|ψ0〉 , Ô1 |ψ0〉 , 1

E0 − ĤL − ω + iη
Ô2 |ψ0〉 , (3.8)

which yields a truncated Hilbert space that simultaneously optimises the representa-
tion of these target states within the block A + σ. We calculate the vector |ξ〉 =

1

(E0−ĤL−ω+iη)
Ô2 |ψ0〉 by solving the equivalent linear system of equations

(E0 − ĤL − ω + iη) |ξ〉 = Ô2 |ψ0〉 (3.9)

for the so-called correction vector |ξ〉. In our implementation a Krylov subspace based
solver is used, which is pre-conditioned by a solution of some simplified set of equations.
Depending on the observable calculated, one needs only the real or the imaginary part
of |ξ〉 and this fact can be exploited in the method. The correction vector method, as
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well as two additional methods, the continued-fraction method and the so-call “dynam-
ical DMRG” (DDMRG) [19] are discussed in the reviews about DMRG. Especially the
DDMRG, a variational approach to calculate the correction vector, is well described in
[20].

The correction vector method directly evaluates C(ω) and gives an estimate for only
one energy ω and the DMRG has to be done for each wanted frequency. Momentum-
dependent quantities can also be handled by choosing the correct operators Ôn in mo-
mentum space. In section 4.5 we will show and use examples of such operators for
hardwall or periodic boundary conditions and even for non-homogeneous systems.

3.5 Summary

This chapter introduced into the numerical tools that are common in handling quantum
many-body problems, especially when modelling one-dimensional strongly correlated
systems. While exact diagonalisation quickly reaches a limit in the size of the system,
it is invaluable for benchmarking further, approximative tools. We introduced the ba-
sic density matrix renormalisation group algorithm that allows to comprehend in what
sense it is optimal for the calculation of the ground state. Further, we presented how the
DMRG can be extended to calculate arbitrary observables, especially as a function of
time and sketched the two most common variants of time development DMRG. Exploit-
ing the knowledge of chapter 2, we finally outline the algorithm to calculate correlation
functions within the DMRG framework.
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4 Spin-charge separation

Mhmm. Crucifixion party. ’Morning. Now, we will be on a show as we go

through the town, so let’s not let the side down. Keep in a good,

straight line, three lengths between you and the man in front, and a

good, steady pace.

(Nexus Wettus in Life of Brian, Monty Python)

The experimental observation of spin-charge separation is on the verge of
success. We propose a real-time transport setup as being another possibility
for experimental verification. Furthermore, calculating the spectral function
of an electronic excitation, we investigate the dynamics of various Hubbard
model setups.

In one dimension the low energy picture of a Fermi liquid is not appropriate. Fermi
liquid theory with its quasi-particle description gets replaced by Luttinger liquid theory
whose elementary excitations are collective ones and are bosonic in nature. Especially,
there are excitations that carry spin ±1/2 and no charge (spinon) and ones that carry
charge with spin 0 (holon). Within exactly solvable models like the Hubbard model, the
splitting of electronic degrees of freedom is explicit. We first try to sketch some of the
theoretical concepts but the Luttinger liquid theory [21, 22], the bosonisation technique
[23] and the Hubbard model in one dimension [4] are complex topics covered with in
textbooks of their own.

4.1 Luttinger liquid

Breakdown of Fermi liquid theory The screening of long-range Coulomb interaction
is an essential ingredient for the success of a Fermi liquid as a low-energy effective
theory for interacting electrons. In 1D, this screening is greatly reduced to a screening
cloud from the right and the left. Thus, the Coulomb interaction is more effective
here. Furthermore, rearrangement is completely suppressed in 1D. In a classical picture,
electrons can not pass each other, so that individual motion is gone and only collective
excitations are possible. Taken both together, one dimension prevents a quasi-particle
as an electron moving in a surrounding screening cloud, which has electronic properties,
except for renormalised mass and energy.

More formally, a one dimensional system has only two Fermi ’points’ ±kF and this is
the root of the Peierls instability, namely a singular response in a particle-hole pertur-
bation at the wave vector 2kF . In other words, unlike in higher dimensions, there is no
continuous spectrum at low energy which would allow particle-hole excitations to decay.
Due to this singularity, a quasi-particle with electronic quantum numbers is impossible.
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4 Spin-charge separation

As it turns out, the jump of Z in the momentum distribution function nk when k → kF ,
associated with the weight of a quasi-particle peak in the spectral function, goes to zero
in one dimensional systems.

Bosonisation It was found that in one dimension fermions can be represented by
bosonic degrees of freedom. The bosonic fields that are related to fluctuations of the
density, allow an (almost) completely general interacting Hamiltonian to be written
down quadratic in the bosons. The paradigmatic Tomonaga-Luttinger model [24, 25]
only requires a strictly linear dispersion which extends to ±∞. The continuum version
of the Luttinger model Hamiltonian for one fermionic degree of freedom (spin-less) is
then given by [21]

HLL =
1

2π

∫
dx
(
uKπ2(Π(x))2 +

u

K
(∇rφ(x))2

)
, (4.1)

where πΠ(x) = ∇rθ(x) and θ(x) and φ(x) are the bosonic fields, u has the dimensions of
a velocity and K is a dimensionless parameter which incorporates all interactions of the
original Hamiltonian. When introducing spin, it turns out in the bosonisation procedure
that the bosonic field combinations φρ,σ(x) ∼ φ↑(x)±φ↓(x) lead to a Hamiltonian which
splits into a charge and a spin sector, each with a Luttinger model type structure.

H = HLL,ρ +HLL,σ +O(cos(
√

8φσ)) (4.2)

This is called the spin-charge separation. The Hamiltonian describes collective bosonic
charge and spin excitations instead of a fermionic quasi-single-particle picture as in the
Fermi liquid theory. See [26], [21] and [23] for details.

Haldane’s conjecture: Luttinger liquid Haldane’s conjecture denotes that for each
gap-less degree of freedom, there is an asymptotic low-energy mapping to an effective
Luttinger model with only renormalised coupling constant K and renormalised velocity
v. Thus, even if the prerequisites of a Luttinger model are not strictly fulfilled and
one has a non-linear dispersion, a finite band width, but the excitation spectrum is still
gap-less, the low-energy properties of such a system are universal and can be described
by an effective Luttinger model.

This universal behaviour was called “Luttinger liquid” by Haldane [27] and the term
indicates that in the low-energy and long-wavelength description of certain models it
refers to a renormalised Luttinger model in analogy to “Fermi liquids” being two- and
three-dimensional models which refer to a renormalised free Fermi gas.

Haldane’s conjecture has been shown to be correct for many models, including the
Hubbard model away from half-filling. This will be relevant in the following, when we
measure spin and charge velocities. These velocities can be determined for a “bosonised”
Hubbard model and even compared to the exact solution of the Hubbard model of the
following section.
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4.2 Hubbard model in one dimension

4.2 Hubbard model in one dimension

In the Hubbard model the kinetic part, i.e. the hopping terms on their own would
describe delocalised states but the Hubbard interaction term between spins of opposite
orientation tends to localise the systems eigenstates. This leads to a manifold of ground
states and phases depending on occupation numbers and interaction strengths. For small
interaction around the half-filled system the ground state is a Luttinger liquid for the
charge and the spin sector, since linear dispersion is approximately given and a finite
band width can be neglected. We will compare our numerical results to the exact results
provided by the Bethe ansatz, which we sketch roughly in the following.

Exact solution

The Schrödinger equation of the one-dimensional Hubbard model can be solved ana-
lytically by the (nested) Bethe ansatz. The resulting Lieb-Wu equations [28] (notation
following [4])

eikjL =
M∏
l=1

λl − sin kj − iu
λl − sin kj + iu

, j = 1, . . . , N,

N∏
j=1

λl − sin kj − iu
λl − sin kj + iu

=
M∏
m=1
m 6=l

λl − λm − 2iu

λl − λm + 2iu
, l = 1, . . . ,M,

(4.3)

are the focal point for analytic treatments. Here N is the number of electrons (particles),
M the number of down spins and L the size of the lattice. The solutions to these equa-
tions, the complex roots {kj} and {λl} are called spectral parameters. Many physical
quantities, like energy and momenta (and thus dispersion and velocities) of elementary
excitations of the many-body system are given in terms of them. In the continuum
limit, these roots arrange in a regular pattern (“string hypothesis”) in the complex
plane. This allows to classify the solutions into three sets {kj}, {Λα}, {Λ′α}, which lie
dense in the large L limit and one defines root densities. Analogous to non-interacting
electrons, certain combinations of solutions define particle densities or hole densities for
each class of solution. These characterise the elementary excitations of the many-body
system. The so-called Thermodynamic Bethe Ansatz (TBA) equations for these root
distribution functions can be derived and they give rise to the state of thermodynamic
equilibrium [29]. Dressed energies and dressed momenta of the elementary excitations
follow directly from the TBA equations. The complete, quite complex derivation can be
followed in the book by F. Essler et al.[4].

For zero magnetic field, the exact solutions show that there are two different types of
elementary excitations: gapped or gap-less holons (antiholons) with quantum numbers
charge ±e and spin S = 0, corresponding to solutions of the spectral parameter kj and
gap-less spinons with spin S = ±1

2
and charge 0, corresponding to Λ-solutions. The

holons and antiholons are gapped in the special case of half-filling, where the Hubbard
model is a so-called Mott-Hubbard insulator, otherwise the holons are gap-less and the
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4 Spin-charge separation

system is metallic. The physical excitations, however, like the removal or addition of an
electron or the flip of a spin decompose in combinations of above elementary excitations
and are the permitted combinations of them.

Weak coupling

In the weak coupling limit away from half-filling, the Hubbard model can be mapped
onto a Luttinger liquid in the spin and the charge sector. The explicit expressions for
the interaction parameters Kσ and Kρ of the spin and charge sector are given in terms
of the Hubbard interaction U by

Kσ =

(
1− U

πvF

)− 1
2

,

Kρ =

(
1 +

U

πvF

)− 1
2

,

(4.4)

while the corresponding velocities are given by

vσ = vF

(
1− U

πvF

) 1
2

,

vρ = vF

(
1 +

U

πvF

) 1
2

.

In contrast to the non-interacting system, where K = 1, for repulsive interaction U > 0
the spin velocity decreases while the charge velocity increases. We will use these results
in the transport setup later in this chapter and recapitulate them in chapter 6 in the
context of the SU(3) Hubbard model.

4.3 Observation of spin-charge separation

From the previous two sections, we see that spin-charge separation is manifest from
various points of view or theoretical descriptions. We will now summarise these.

Manifestations of spin-charge separation

• On the level of a cartoon picture Fig. 4.1, the mechanism of spin-charge separation
is explained the easiest. In a Néel ordered half-filled chain of electrons, we take
out one electron. The created hole can be viewed as a charge excitation, which
hops from site to site with energy t (first to second chain in Fig. 4.1). Once the
hole is gone, the remaining misaligned spins can be interpreted as a spin excitation.
Such a local spin deformation (compared to the antiferromagnetic background) can
travel completely independent of the movement of the hole via spin-flips between
neighbouring electrons, since the spin-flip process occurs with exchange energy J
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...

...

Figure 4.1: Cartoon picture of the mechanism of spin-charge separation. In
the second spin chain the hole hopped two sites, while in the third chain the
neighbouring down spins hopped two sites via one spin flip.

(second to third chain). Thus, spin and charge move with separate velocities due
to separate energy scales on which movements occur. This picture is too simplified,
since the real elementary excitations are collective, non-local ones, e.g. as described
by Luttinger liquid theory or microscopic models. Also, the effect of spin-charge
separation does not depend on a specific ordering, like the antiferromagnet shown
in the cartoon.

• For the Luttinger model as well as in the framework of a Luttinger liquid the spin-
charge separation occurs already on the level of the Hamiltonian. Spin and charge
velocities are generic independent parameters of the spinful theory. The single
particle spectral function displays instabilities at the energies of the corresponding
spinon or holon excitation, but not at the energies and momenta of a single hole or
single electron. Also, transport experiments have been considered in this theory.
However, we need to go to a semi-classical description of the bosonic fields in
terms of density distributions to identify a particle creation or annihilation in the
framework.

• In exactly solvable microscopic models, like the Hubbard model, spin and charge
degrees of freedom decouple on the level of elementary excitations. The cartoon
picture of local electron or spin-flip excitations translates directly to holons and
spinons despite the fact that the latter are collective non-local excitations. When
looking at the single particle spectral function or the spin or charge susceptibilities,
one can directly identify holon and spinon excitations, the holon-spinon excitation
continuum and their spectrum. One defines spin and charge velocities as the
group velocities of wave packets in the low-energy limit close to the Fermi surface.
Therefore, the density distribution of a fermionic wave packet should split up into
a charge density and a spin density and a transport setup could be realized.
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4 Spin-charge separation

No spin-charge separation The counterintuitive fractionalisation of the electronic de-
grees of freedom in one dimension leads sometimes to views that deserve closer attention.

• One can manage to have excitations moving with two different speeds in a non-
interacting system. For example, if a magnetic field is applied to a system with
spinful non-interacting fermions, up and down spins display different dispersion
curvatures at their shifted Fermi surfaces. This is not a sign of spin-charge sepa-
ration.

• One can also achieve density and spin excitations moving with different velocities
in a non-interacting system, if one superimposes the right combination of several
electron excitations, e.g. if one excites several eigenstates with different momenta
and energies. Instead, it is crucial that spin-charge separation occurs already at
the level of a single electronic excitation.

4.3.1 Experimental evidence

Halperin [30] summarises the experimental systems that might exhibit physics peculiar
to one dimension and, in particular, spin-charge separation.

Certain organic and inorganic bulk materials are said to be quasi-one-dimensional in
a certain temperature window. Lorenz et al.[31] deduced separate charge and spin ve-
locities from thermal conductance measurements in the organic crystal (TMTTF)2PF6.
However, since the publication was retracted later, it shows how far experiments are still
from a clear signature of spin-charge separation. Other techniques use ARPES on the
organic conductor TTF-TCNQ [32] or on SrCuO2 [33] to find evidence of spinon and
holon resonances in the spectral function.

On the contrary, single-wall carbon nano-tubes in their metallic configuration
are examples of isolated wires. Most promising results come from single point tun-
nelling experiments [34], while other techniques try to measure spin accumulation in
non-local geometries on single wall nano-tubes [35]. Furthermore, quantum wires
can be constructed from cleaved-edge overgrown two-dimensional electron gases as in
GaAs/AlGaAs. Here momentum-conserved tunnelling between parallel nano-tubes by
Auslaender et al.[36] seems to allow the extraction of spin and charge velocities. But
also here, Halperin states [30] that earlier results, using Raman spectroscopy on simi-
lar systems and claiming to see different spin and charge velocities (Ref. 7,8 in [30]),
are doubted to be reliably explainable by the Luttinger liquid theory. Then there are
metallic atom chains, like e.g. gold deposited on the edges of suitable crystallographic
directions, e.g. on Si(111) [37] or more recently on Ge(001) [38]. These objects are very
close to strict one dimension and ARPES as well as scanning tunnelling microscopy is
used to find one-dimensional physics. Finally, where edge states of fractional quantised
Hall systems can be found in nature, a chiral version of Luttinger liquid is used in the
description. However, spin does not play a significant role and it is thus unsuitable for
detecting spin-charge separation.

It is notable that even in two dimensions, especially for high-temperature super-
conductors, one-dimensional physics is probed for and believed to exist [39].
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4.4 Spin-charge separation of one electron in the Hubbard model

This list is not comprehensive and beside the experimental realisations, there are
also propositions to find signatures of spin-charge separation, which are likely to be
experimentally realized in the near future. For example, reaching the low dimensionality
in cold bosonic atomic gases [40, 41]. Further, there is a proposition to use magneto-
tunnelling [42] on a quantum wire. Also, we left out any works on pure spin-systems. As
we show in the following section, we add a proposal to measure spin-charge separation
in a transport setup [1] similar to a sketch within Luttinger liquid description earlier by
Safi and Schulz [43].

4.3.2 Numerical simulation evidence

Approaching spin-charge separation by looking at the dynamics of wave packets, the first
numerical simulations were performed by Jagla et al.[44] using exact diagonalisation for
16 sites. They constructed an additional electron with a Gaussian distribution of crystal
momenta, identically to our setup in section 2.3. Preuss et al.[45] and Zacher et al.[46]
used various methods in Quantum Monte Carlo simulations to study the spin and charge
susceptibilities of the Hubbard model with varying resulting accuracies.

Kollath et al.[40, 41] presented the first spin-charge separation calculations in the
framework of adaptive time dependent DMRG (td-DMRG). This calculation was redone
by Schmitteckert [47], keeping up to 5000 states per DMRG block showing that the
adaptive time evolution scheme in [40] suffered a large numerical error. Additionally
Schmitteckert and Schneider [48] used at least 10,000 states per DMRG block to show
spin-charge separation in a 33 site system with periodic boundary conditions. Both
Kollath and Schmitteckert followed the time evolution of a Gaussian potential switched
off at T = 0, identically to the setup in chapter 2.2. The following section 4.4 of this
thesis will treat the case of a transport setup with two non-interacting leads, where
the system was prepared with an additional electron as in the work of Jagla et al.[44].
In order to avoid the numerical problem associated with the adaptive time evolution
scheme as discussed above and to avoid the numerical costs of a pure full td-DMRG we
apply a hybrid of both methods, see [47, 49]. To a large extend this is published in [1].

4.4 Spin-charge separation of one electron in the
Hubbard model

We want to illustrate the spin-charge separation at first qualitatively by looking at den-
sity distributions evolving over time. The complete simulation described in this section is
encoded in a video under http://www.tkm.uni-karlsruhe.de/~ulbricht/scs which
allows to have a real experience of the time dimensionality of the setup.

We use the particle-hole symmetric repulsive Hubbard model on a lattice of size M
for spin-1

2
fermions, given by

Hbulk =
∑
σ=↑,↓

Htb,σ + U

M∑
x=1

(
nx,↑ − 1

2

)(
nx,↓ − 1

2

)
(4.5)
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4 Spin-charge separation

where the Hubbard interaction strength U is positive. Since we set the hopping matrix
element between neighbouring sites to 1, we are free to denote the time variable by t.
If we put N↑ up-spin electrons and N↓ down-spin electrons into the system, we have a
filling of

n =
N↑ +N↓

2M
(4.6)

and a spin polarisation of

p =
|N↑ −N↓|
N↑ +N↓

(4.7)

in favour of one spin species or the other.
Using DMRG (chapter 3) we aim for the calculation of the ground state |Ψ0〉. Ad-

ditionally, we construct the normalised state |Ψ+1〉 where we have added one electron
(or hole) in the ground state. This excited state is created using the creation (or an-
nihilation) operators in momentum space with a Gaussian distribution around some k0

as described in detail in section 2.3. Time evolution on these states with exp(−iHbulkt)
will finally allow us to calculate observables at any simulated time step t. We will look
at the density of each spin type σ

nσ(x, t) =
〈
Ψ+1(t)

∣∣ c†x,σcx,σ ∣∣Ψ+1(t)
〉

(4.8)

The sum of both nc(x, t) = n↑(x, t) + n↓(x, t) is the local particle (or charge) density,
while the difference gives us the local spin density ns(x, t) = 1

2
(n↑(x, t) − n↓(x, t)).

We also calculate the static ground state density in the original ground state n0
σ(x) =

〈Ψ0| c†x,σcx,σ |Ψ0〉 at time t = 0 and form the corresponding charge and spin densities
n0
c , n

0
s. |Ψ0〉 is in all cases we consider an eigenstate of the Hamilton operator so that it

is invariant under time evolution and the time index can be dropped. Then we will plot
the quantities ns(x, t) − n0

s(x) and nc(x, t) − n0
c(x). This trick evens out all stationary

oscillations already present in the ground state, like the Friedel oscillations resulting
from using hard-wall boundary conditions.

4.4.1 Non-interacting case

In the case U = 0 the Hamiltonian (4.5) reduces to one tight-binding Hamiltonian
for the dynamics of each spin orientation. There is no spin-flip possible and the only
implicit interaction is the Pauli principle. Nevertheless, this is the reference system for
all following simulations.

Our example is a system of size M = 102, which is at half-filling plus one electronic
excitation, so N↑ = 51+1. The N↓ = 51 down-spins are irrelevant in the non-interacting
case and constant in the time evolution. The additional up-spin electron is created at the
real space position x0 = 15 ( Fig. 4.2, upper diagram). The excitation’s momentum is
centred around k0 = π/2+0.1 and thus the packet travels to the right. With the width of
σ0 = 0.03 we ensure that the momentum distribution is far away (compared to the width)
from the Fermi surface k0 ∼ kF + 3σ0 but still as close as possible to the linear regime
of the cosine band at kF . Fig. 4.2 shows snapshots of the spin density ns − n0

s (solid,
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Figure 4.2: (Colour online)
Spin (solid,red) and charge
(dashed, blue) densities of a td-
DMRG simulation of one addi-
tional up-electron over the back-
ground of a half-filled tight-
binding model for each spin
species. The Gaussian excita-
tion on the left at time t = 0
(upper diagram) moving to the
right at t = 36 (lower diagram)
retains its shape. Averaging is
described in the text.

red lines) and the particle (charge) density nc − n0
c at t = 0 and t = 36 subtracted from

the corresponding original ground state density (at half-filling). Additionally, to even
out Friedel oscillations with wave vector 2kF = π resulting from the density distortion,
a three-point average of the data was performed. This system was calculated using
constant Ncut = 1000 states per DMRG block, applying 10 time steps in the full td-
DMRG and also keeping 1000 states for the consecutive adaptive T-DMRG.

Analysis In the non-interacting case, the densities of the original ground state |Ψ0〉
are constants n0

c = 1, n0
s = 0.5 in space and time. This we find also numerically.

Since we created a spin-up excitation, the spin-down channel is, as expected, completely
uncoupled from the spin-up channel and we find numerically n↓ = 0.5 being independent
of x and t. Although spin and charge densities now basically reduce to the data coming
from the dynamics of the spin-up channel only nc = 2ns = n↑, we analyse the Gaussian
charge density profile nc(x, t) for direct comparison with the following sections. Further,
it is instructive to note that although |Ψ+1〉 is not an eigenstate of the Hamiltonian, it
was constructed from the ground state only with single particle operators which alone
create eigenstates of the Hamiltonian.

The accuracy of our calculation can be checked against an exact diagonalisation, which
implements the time evolution matrix exponential function in the diagonal basis. We
define the peak relative error between DMRG and exact diagonalisation results (ED) in
the densities by

δnp(t) ≡ max
x

∣∣∣∣nED(x, t)− nDMRG(x, t)

nDMRG(x, t)

∣∣∣∣ (4.9)

This quantity reaches from initial δnp(0) = 7 · 10−5 to δnp(36) = 7 · 10−3 peak relative
error at t = 36, see appendix A.1. This striking accuracy of DMRG is achieved with the
discarded entropy never exceeding 10−5 during the simulation.

Finally the group velocity of the packet as the velocity of the peak maximum can be
extracted from the simulation. In appendix A.1, we show that the extracted velocity
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4 Spin-charge separation

of the DMRG calculation is about 0.3 % slower than an exact calculation. Comparing
to the excellent accuracy in the density, the velocity is a much more sensitive quantity.
The expected group velocity for the momentum k0 = π/2 + 0.1 is about vc ∼ 1.990.
And, as indicated in section 2.3 and Fig. 2.6, finite size scaling suggests this value is
reached asymptotically. Here we find, for systems of about 100 sites, the finite size effect
is such that both DMRG and exact calculation are about 2-3 % slower than the expected
group velocity. In principle both the DMRG error and the finite size error can be made
arbitrarily small by increasing the number of DMRG states and by increasing the system
size, respectively, with computing resources being the only restriction.

4.4.2 Strongly interacting case

In the case U 6= 0, the dynamics of both spin species are interwoven and spin-flip
processes completely destroy a single particle description. We repeat the previous setup
and simulation now for U = 4 (in units of the hopping energy ttb = 1). While the
previous excitation was a superposition of well-defined eigenstates in the tight-binding
model, it is not clear which eigenmodes are excited by adding/removing an electron

from an interacting system. Nevertheless, using the same c
(†)
σx in equation 2.23 to create

an excited state |Ψ+1〉 still results in a Gaussian shape in spin and charge densities (see

Fig. 4.3), although the corresponding Fourier transformed operators c
(†)
σk no longer create

an eigenstate of the system.

This time we insert an excitation corresponding to one (up-spin) hole into the ground
state of a repulsive particle-hole symmetric Hubbard model (4.5) with U = 4 at a
filling of 41

90
≈ 0.46 with a central momentum k0 = π/2 − 0.5 ∼ kF − 7σ0 and a width

of σ0 ∼ 0.053. The calculations were carried out with Ncut = 2500 states kept per
DMRG block in the full and adaptive td-DMRG. Fig. 4.3 clearly shows that during time
evolution between t = 0 (upper diagram) and t = 25 (lower diagram) the peaks split
up, basically retain Gaussian shape but broaden and melt down. In this respect, the
spin peak changes less than the charge peak. There is also a distinct second charge peak
running in the opposite direction, being reflected on the right wall, located at around
x = 60 at t = 25.

Analysis The splitting of the charge and density peaks shows genuine SCS, driven by
the Hubbard interaction. Accounting for the slow-down resulting from the finite size
discussed in the previous section of about 3%, we can estimate a systematic error to the
extracted group velocities from the main peaks: vS = 1.12 + 0.03 and vC = 2.02 + 0.06.
The one dimensional Hubbard model can be solved exactly [28]. From the analytic
expression by Coll [50], the spin and charge velocity of the low energy spinons and holons
can be derived as done, e.g. by Schulz [26] and [51]. Surprisingly, we can compare to the
thermodynamic limit exact result of charge and spin velocities, which are taken from the
long wavelength limit k → 0. In Fig. 4.4, the charge and spin velocities for the filling
corresponding to the central momentum nc = k0/

π
2
≈ 0.68 are about vone holon = 2.05

and vone spinon = 1.15 as can be read off from the figure from Schulz. Although we
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Figure 4.3: (Colour online) Spin and charge density (see legend of fig. Fig. 4.2) in
a Hubbard model at time t = 0 (upper diagram) and t = 25 (lower diagram) show
spin-charge separation. This is data from a td-DMRG simulation on 90 sites system
with N↑ = 41− 1, N↓ = 41 electrons and a Hubbard interaction of U = 4.

are with 90 sites far from simulating the thermodynamic limit and despite our finite
excitation width, the group velocities of our spin and charge density fit remarkably well
to the Bethe ansatz results for the velocity of one spinon and one holon. A similar good
agreement was found for a spinless Luttinger liquid simulation [13] using a perturbing
potential as excitation.

The second charge peak with opposite momentum can be traced back to interaction
effects of the underlying elementary excitations. First of all, we cannot claim to excite
one holon and one spinon of a Luttinger liquid, since we are on a lattice of finite band-
width, have a finite initial electronic momentum width, and use single particle states for
our initial excitation. Nonetheless, in the Luttinger framework it is known that interac-
tion mixes left and right moving elementary excitations in the charge sector but not in
the spin sector. Therefore, we deduce that our excitation using ck0 on the ground state
creates right and left moving parts only in the charge sector.

The broadening and decrease in height of peaks has two sources. One is the finite
size of the system (including the non-linear band). Comparing to the U = 0 case,
we can estimate the decrease and broadening from the finiteness of our system to be
small. Instead, we expect that our initial configuration excites complicated many particle
states in the system which all might interact, especially as long as the densities are not
completely spatially separated. Finally, there is charge density accumulation trailing the
main charge peak and at the location of the spin peak. These might be more complicated
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4 Spin-charge separation

Figure 4.4: Spinon and holon velocities of the exactly solvable Hubbard model
for different electron densities. n = 1.0 corresponds to half-filling. The solid lines
correspond to the charge velocity uρ for interaction U = 16, 8, 4, 2, 1 from top to
bottom in the left part, the dashed lines correspond to the spin velocity uσ for
interactions U = 1, 2, 4, 8, 16 from top to bottom. Reprinted with permission from
Int J. Mod. Phys. B, 5 (1-2), 57-74, 1991, World Scientific Publishing [51, 26].

features of the interaction or result from the finite size effects that are more pronounced
than in the non-interacting example.

4.4.3 Spin-charge separation in a transport setup

A transport setup is a setup where a probe is connected to two or more leads so that
applying a voltage (sometimes called source-drain voltage VSD) results in a possible
measurement of transport properties like the current, the full or differential conductance
or stochastic features like shot noise. For the purpose of spin-charge separation, we model
a transport setup with a one-dimensional interacting region, which is connected to non-
interacting leads on both sides each by a single contact. The underlying exemplary
microscopic models for electrons on a lattice are the tight-binding model for the leads
and the Hubbard model for the structure. The main idea is to prepare a groundstate
where an additional electron with an average momentum k0 is placed into one of the
leads. The excitation passes through the interacting region, where it undergoes the spin-
charge separation and ends up in the other non-interacting lead, where a spin-resolved
and time-resolved measurement of charge density is carried out.

This setup poses the following questions: If one injects an electron with definite mo-
mentum at some time t0 into an interacting system, where the separation of spin and
charge is known to happen. What happens to the electronic excitation within the inter-
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4.4 Spin-charge separation of one electron in the Hubbard model

acting region? And what kind of excitation emerges from the interacting area at a later
time? Will we see distinct excitations in spin and charge density, will we find spin and
charge density to be recombined to one full electronic excitation, or will we obtain an
incoherent superposition of many excitations?

The complete Hamiltonian for SU(2)-fermions (like electrons) with total spin s = 1
2

used for our setup is

Htransport =
∑
σ=↑,↓

Htb,σ + U
∑

x=x1..x2

(
nx,↑ − 1

2

)(
nx,↓ − 1

2

)
+ Vgate

∑
x=x1..x2

(nx,↑ + nx,↓)

(4.10)
where Htb,σ is the nearest neighbour hopping tight-binding operator discussed in section
2.1 for each spin species. U is the Hubbard interaction strength and Vgate the strength of
an additional chemical potential, both acting only on the central region enclosed by the
sites x1 and x2. Since the repulsive Hubbard interaction tries to avoid double occupation
in the system, the average particle density (the filling) will be different on the central
region than in the leads. The gate voltage thus serves two purposes. It is used to tune
the local average density on the central region to a value less than half-filling. We also
choose it to level the Fermi surface to a half-integer number of up and down electrons
on the structure. This minimises reflections into and out of the area (see Fig. 4.5). This
local chemical potential was pre-calculated in a self-consistent way.

We use a system of M = 100 sites, split into 41, 29 and 30 sites for the different areas
(x1 = 41, x2 = 70) and a total of N↑ = 48−1, N↓ = 48 electrons. The gate voltage levels
the Fermi surface on the interacting structure is such that we have N↑ = N↓ = 12.5
electrons there, leaving N↑ = 35.5 − 1, N↓ = 35.5 electrons for remaining 71 lead sites.
Thus, we have a Hubbard model at ∼ 0.43-filling in the central (black bar) area and
half-filled tight-binding leads. We also choose parameters k0 = 0.43π−2σ0, σ0 = 0.03 to
maximise tunnelling while staying as close as possible to a quasi-linear dispersion. The
number of DMRG states kept was Ncut = 2500.

Fig. 4.5 shows the time evolution of spin and charge densities for several times. The
majority of spin and charge density transmits through the nano-structure. SCS clearly
happens inside the interacting region (central diagram at t = 17) and SCS remains
intact after leaving the interacting area into the opposite lead (lower diagram at t = 35
and t = 40). Here spin and charge now travel along separately but again with identical
constant velocity.

There are also reflections of charge and spin density at both edges of the structure.
They are suppressed by the choice of the chemical potential as discussed above, however,
these reflections are no artefact and understood in a Luttinger liquid descripton [43].
Safi and Schulz sketch such a transport setup and give a reflection coefficient of two
Luttinger liquids with K1 and K2 at an interface of

γ =
K1 −K2

K1 +K2

The reflection coefficient can become negative for K2 > K1, leading to an enhanced
transmission while the reflected wave is of opposite amplitude. Since we are close to the
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4 Spin-charge separation

Figure 4.5: (Colour online)
Excitation in a transport exper-
iment: a created hole in the
right lead (upper diagram, at
t = 0) passes the interacting
nano-structure (black bar) un-
dergoing SCS (central diagram,
at t = 17). At t = 35, 40 (lower
diagram) spin and charge den-
sities travel independently with
equal velocity in the left lead.
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Fermi surface, our interaction is not too strong, we can relate to that work. Indeed, fol-
lowing the complete time evolution (e.g. the video1), one identifies the several reflections.
First of all, Kσ = Kρ = 1 in the non-interacting leads, while Kσ > 1 and Kρ < 1 in the
interacting region following (4.4) in section 4.2. Correspondingly, at the first interface
the spin packet has a negative back-reflection (γ < 0, slightly visible at t = 17), while
the charge peak gets positively reflected (γ > 0, well visible at t = 17). The transmitted
excitations now change roles at the second interface, going from Kσ > 1, Kρ < 1 into
Kρ,σ = 1 with a positive reflection of the spin wave (γ > 0, barely visible peak at x ≈ 50
for t = 35) and a negative reflection of the charge wave (γ > 0, well visible as a peak at
x ≈ 63 for t = 35).

Analysis In our simulation of a microscopic experiment on an interacting nano-structure
we see that the spin and charge excitation of an injected electron can be separated as it
is known to happen in one-dimensional interacting systems. We confirm for the Hubbard
model, what Safi and Schulz [43] sketched for a low-energy Luttinger liquid transport
setup with restricted interaction: The spin and charge separation can be directly ob-
served by a time-resolved measurement of the spin-polarised density. There is no need
for spin and charge to recombine to a complete electron (hole) for a measurement of a
single electron (hole). Note that the charge and spin excitations in the non-interacting
leads are valid excitations of the Fermi liquid. They are not elementary excitations

1http://www.tkm.uni-karlsruhe.de/~ulbricht/scs
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4.5 Spectral function in the Hubbard model

of the Fermi liquid, instead they are a composition of (at least) two excitations of the
Fermi liquid. However, the resulting distribution of separated densities originated from
a single particle injection into the Fermi sea.

One may ask, how the electrons travel from a battery through this system and end up
again in a battery or pass a voltmeter, where only unfractionalised electrons are counted.
A simple answer is that as in the case of Andreev reflection of electrons and holes on
the boundary to superconducting material, a single electron in the proper energy level
can always be created by also creating an antiparticle (hole) that propagates in the
different direction or in our case, by creating the appropriate composition of elementary
excitations and their counterpart that add up to a single electron or hole.

Outlook Experimentally, the measurement of the densities would have to happen on a
time scale which is set by the Fermi velocity and the length of the interacting system. For
nano-scale systems and metallic excitation velocities tens of Terahertz resolution would
be required, which might be achieved using optical techniques. It is of general interest
to know whether a series of quantum dots or any other strongly correlated system with
a much smaller Fermi velocity can provide the ingredients for the realisation of such
a transport setup. Lowering the Fermi, holon and spinon velocities would enhance
the detection possibilities. It is interesting that our small system already shows the
fingerprint of Luttinger liquid description expected in the thermodynamic limit. Also
note that even for highly energetic incoming electrons we find the spin-charge separation,
albeit obscured by band effects. With the td-DMRG method even more realistic models,
like the extended Hubbard model with a finite next-nearest neighbour interaction could
be investigated.

4.5 Spectral function in the Hubbard model

In this section we investigate spectral functions for various setups within the Hubbard
model. Since the single particle spectral density function A(k, ω) reveals important
properties of the elementary excitation spectrum, we can identify the separated spin and
charge sector’s excitations of the underlying microscopic model. A major advantage is
the fact that with photoelectron spectroscopy there is also an experimental tool available
which allows for comparison between experiment, model and numerical simulation.

4.5.1 Spectral function

Our starting point is the single particle spectral function being the imaginary part of
the single particle propagator (as in section 2.4, equation (2.36))

A(ω) = − 1

π
Im(GrA,B(ω)).

Taking the operators B = A† = cxσ, Gc†xσ ,cxσ(ω) corresponds to the annihilation of an
electronic state localised at position x with spin σ and the spectral function tells us how
the system reacts on that perturbation.
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4 Spin-charge separation

More generally, we will take B = A† = ck,σ, where k denotes a state, e.g. a Bloch state.
The actual sensible choice of operators ck,σ depends on the system under investigation.
For lattices with periodic or anti-periodic boundary conditions and translationally in-
variant Hamiltonians, like the tight-binding model, we can choose the Bloch states

ck,σ =
1√
M

M∑
x=1

e−ikxcx,σ, (4.11)

with k = 2πl/M − π for l ∈ {1, . . . ,M}. This allows us to calculate momentum depen-
dent correlation and spectral functions. In the following sections on the Hubbard model
on a lattice, we use hard-wall boundary conditions. Under these conditions, the better
choice of operators are given by the solution of the particle in a box problem

ck,σ =

√
2

M + 1

M∑
x=1

sin (kx)cx,σ, (4.12)

where k = πl/(M + 1) for l ∈ {1, . . . ,M}. Note that the M different solutions of
ks are defined in the halved Brillouin zone, due to the symmetry restrictions on the
solutions. It was numerically verified by Benthien, Gebhard and Jeckelmann [52, 53]
that in the thermodynamic limit M → ∞ both expansions are equivalent. We verify
this equivalence very easily for the case of non-interacting fermions. Furthermore, we
will find in section 4.5.4 that the Hermite polynomials are a sufficiently good choice of
operators to calculate single particle correlation functions in a low-filled Hubbard model
with a quadratic trap potential.

A good recent overview for using DMRG to calculate correlation functions is given
by Jeckelmann [20]. We use the correction vector method embedded in the DMRG
framework as described in section 3.4 to calculate the resolvent for the spectral function
in the interacting systems or when recovering the non-interacting case of (2.47).

The non-interacting case Let us look at the single particle spectral function of the
tight-binding chain. With hard-wall boundary conditions, we know the creation opera-
tors equivalent to (4.12) to be the exact single particle states that build up the ground
state |Ψ0〉 =

∏
c†k,σ |0〉. The momentum-resolved spectral function, broadened by the

imaginary shift η, is a Lorentz function given by (2.47). We check our numerical ap-
proach using operators (4.12) in the expression of the Greens function for a general pair
of operators (2.51). Fig. 4.6 shows that this works for a system of M = 30 sites, a
broadening of η = 0.1 and a resolution of ∆ω = 0.1, since for each quasi-momentum
k, we get a perfect Lorentz function (colour coded) with an intensity maximum of η.
While the left panel shows πA(k, ω) obtained from the retarded Greens function, on the
right panel we plot only πA<(k, ω) (see (2.39)), showing that we only have a response
below the Fermi surface, which was here defined by putting only N = 13 fermions into
the system. Fig. 4.6 depicts the one-particle excitation spectrum which results from the
removal of one electron below the Fermi surface or the addition of one electron above
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Figure 4.6: Spectral function of the tight-binding chain with hard-wall boundary
conditions, lattice size M = 30 and N = 13 fermions and a broadening η = 0.1. Left
plot shows πAr and the right plot shows πA<. Note that the white area (above the
Fermi momentum) is numerically 0.

the Fermi surface with the excitation energy

εN−1(k ≤ kF ) = E(N)− E(N − 1)

εN+1(k > kF ) = E(N + 1)− E(N)

}
= −2t cos (kx). (4.13)

The same result can be found for the periodic boundary condition system using the
Bloch plane wave solutions, albeit now with k extending over the full Brillouin zone.

We repeat a few textbook results about the spectral function in finite systems:

• In general, many features of elementary excitations can be read off the single par-
ticle spectral function. An η-broadened peak indicates a particle/hole excitation
and an additional finite width (beside the η) indicates a finite lifetime of a quasi-
particle.

• In higher dimensions, where Fermi liquid behaviour is appropriate, the picture
remains still valid for short range interaction and η-broadened peaks indicate
quasi-particles. Furthermore, a continuum of excitations will manifest itself in
continuous, incoherent structures in the spectral function.

• In the thermodynamic limit M,N → ∞, n = N/M = const. the Lorentz func-
tion becomes a δ-function. Since we are restricted to finite systems and therefore
require a finite broadening, a deconvolution of the underlying Lorentz-function is
sometimes useful in our simulations.

In the exact diagonalisation of the non-interacting system, we can, of course, make η
arbitrarily small from the beginning, or check that our manual deconvolution of this
finite size effect described in section 2.4 works.

The interacting case Let us come back to the Hubbard model. Correlation functions
of the Hubbard model can not directly be derived from the Bethe ansatz solutions as
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4 Spin-charge separation

one can for the ground state [28] or excited state energies [54, 50]. Conformal field
theory (CFT) provides a relation between finite-size corrections of the spectrum and
the critical exponents governing the power-law decay of correlation functions. Since the
Hubbard model away from half-filling is conformally invariant in the low energy limit
(excitations close to kF and the long-range behaviour), correlation functions can be
derived in this regime for all values of U . At half-filling, where the conformal approach
is not applicable, only in the weak coupling limit U/t � 1 and in the scaling limit of
infinite system size, correlation functions could be analysed. Only recent developments
using a pseudofermion dynamical theory (PDT, see Ref. [55] and references therein)
facilitate the calculation of the spectral function in the Hubbard model [56] without the
limitation of being perturbative in large or small interaction or the restriction to a low
energy effective theory. There is a wide regime of the parameter space, which is explored
only very recently or not yet at all by analytical means.

Therefore, numerical methods have been used a lot to examine correlation functions.
Beside exact diagonalisation on small systems, Quantum Monte Carlo methods [45, 46]
have been applied on Hubbard models. However, especially DMRG has become the
most successful tool to investigate correlation functions for such interacting systems.
Even within the DMRG, there are several approaches for different problems concerning
correlations [57].

In the following subsections, we examine the Hubbard model in some known and some
yet unexplored configurations.

4.5.2 Half-filled band

The half-filled Hubbard model n = N↑/M = N↓/M = 1 was analysed, e.g. using DMRG
by Jeckelmann et al.[52] (and Benthien et al.[57] in the limit of V = 0). For a lattice with
M = 30 sites, a Hubbard interaction of U = 2.5 and a broadening of η = 0.1, we calculate
the momentum and frequency resolved spectral function in a frequency resolution of
∆ω = 0.1. We kept 400 states DMRG in the density matrix using the constant matrix
size cut-off scheme, described in section 3.2.1. For about 2400 data points, about 4000
CPU hours were used. The numerical accuracy depends strongly on the Greens function
(A> or A<) and the frequency. We employed our manual deconvolution of section 2.4
and subtracted η = 0.1 from the data. Fig. 4.7 shows the positive k Brillouin zone.
Instead of a one particle excitation response, we have weight distributed over a wide
range in the diagram. The main features can be explained by a spinon-holon excitation
from Bethe ansatz.

The excitation spectrum in the right panel of Fig. 4.7 is the one of a removal of
an electron from the system (A<). Within the Bethe ansatz this is the so-called spin-
charge scattering state [4], which breaks up into excitations of spinon-holon pairs. While
the elementary holon and spinon dispersions (Fig. 4.8) and the combined spinon-holon
excitation continuum (Fig. 4.9) are known exactly in the thermodynamic limit, the
spectral weight is only known in limiting cases or numerically.

However, the elementary holon and elementary spinon spectra sketched in Fig. 4.8
re-emerge in the scattering state as depicted in Fig. 4.9. Firstly, the spinon lives in half
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Figure 4.7: Spectral function of the Hubbard chain with U = 2.5 and hard-wall
boundary conditions. Lattice size M = 30 and broadening η = 0.1. Zero spectral
weight is white, while the onset of dark colouring is at about 0.5 % of the maximum.
Left plot shows πAr and the right plot shows πA<.

Figure 4.8: Sketched spectrum of
spinon (solid) and holon (dashed)
dressed energy as a function of their
dressed momenta as can be calcu-
lated from Bethe ansatz.

of the Brillouin zone with a range of 2kF in [−kF , kF ] with kF = π/2 and contributes
to the highest weighted feature in Fig. 4.7 for [0, π]. Secondly, the holon lives on the
full Brillouin zone with a range of 4kF in [−kF , 3kF (mod2π)] and [−3kF , kF ] for the
anti-holon. This contributes in weights from −kF to 3kF as well as weight from kF to
5kF . When this is folded back into the frame we are looking at in Fig. 4.7, we recover the
holon and anti-holon spectra to contribute the second highest weighted feature in the
spectral function. All other weight thus stems from spinon-holon continuum excitations.
Especially the lower onset of the spectrum below −5t in [kF , π] is given by the spinon-
holon continuum. To make the very weak weight visible, the onset of the dark colouring
is chosen at about 0.5 % of the maximum.

The Bethe ansatz also reveals that due to a gap in the holon dispersion, the spin-charge
scattering state has also a gap at ±kF = ±π/2. The existence of the gap is better seen
in the left panel of Fig. 4.7, where the high weight feature at π/2 of A< displays a gap
to the high weight feature of A>. This is the qualitative difference between this Mott
insulator and the metallic state off half-filling.

4.5.3 Below half-filling

The Hubbard model off half-filling n =
N↑+N↓

2M
6= 1 is completely different from the half-

filled case. The ground state is now a conductor in that the charge excitations are now
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4 Spin-charge separation

Figure 4.9: Sketch of the spin-charge scattering state excitation spectrum. Com-
pare with Fig. 4.7.

gap-less as well as the spin excitations. This case was extensively dealt with by Benthien
et al.[53] for n = 0.6 and a Hubbard interaction of U = 4.9t using dynamical DMRG
keeping up to 400 DMRG states.

Nevertheless, to have direct comparison to the Mott insulator at half-filling of the
previous section, we calculate the spectral function for U = 2.5 at a filling of n = 26/30 =
0.86̄, using N↑ = N↓ = 13 electrons on M = 30 sites. Once more, the broadening is
η = 0.1, the resolution ∆ω = 0.1 and we keep also up to 400 DMRG states of the density
matrix blocks with a similar numerical effort (3400 CPU hours) and accuracy.
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Figure 4.10: Spectral function of the Hubbard chain as in Fig. 4.7 except for
the filling of n = 0.86̄. Striking differences are the missing gap at kF and the
incommensurability effects, e.g. the so-called “shadow bands”.

Again, the origin of the most prominent features in the spectral function can be found
in the elementary excitations of holon and spinon and the sketch of Fig. 4.8 is still
qualitatively valid, except that the holon mode is now gap-less at ±kF , too. Thus,
also the gap in sketch of Fig. 4.9 vanishes, which is one striking difference in Fig. 4.10
compared to the Mott insulator case. The description of the sketches in the last section
also applies here with the modification that now kF = nπ/2. This has the effect for the
observables being incommensurate with the lattice. In the spectral function this appears
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4.5 Spectral function in the Hubbard model

as another zero mode identical to the one at kF . This is just the mode at 3kF in the
extended Brillouin zone, which lies at π − (3nπ/2− π) ≈ 2.18 when one folds 3kF back
into the first zone. These features are usually called “shadow bands” in the literature.
Similarly, the remaining spectrum outside of the first Brillouin zone should be folded
back into the first. However, due to the very small weight, most of it is overshadowed
by the features original to the first zone.

Note that we have used the particle-hole symmetric version of the Hubbard model for
the half-filling case and thus the Fermi energy is shifted by the extra terms by at least
MU(n− 0.5)2 ≈ 0.34.

4.5.4 Trapped Hubbard model

The recent success with cold atomic gases that can be directly manipulated into forming
those microscopic models which we use to describe condensed matter, leads us to examine
a typical optical setup: a harmonic trap potential additional to our interacting system.
We newly introduce a certain choice of operators that allow a partial evaluation of single
particle correlation functions.

We use the bulk Hubbard model and add a harmonic potential Vpot > 0

H =
∑
σ

Htb,σ + U
∑
i

ni,↑ni,↓ + Vpot

∑
i,σ

ni,σ(xi − x0)
2, (4.14)

which traps the electrons around x0. We will choose x0 = M/2 to be in the centre of the
system. The density of the ground state will be distributed with a maximum at x0 and,
for a strong enough potential, fall off to zero at some finite value |xv − x0|. In Fig. 4.11
we plot the density distribution for Vpot = 0.01,M = 50, U = 0 and N = 11 together
with the interacting density distribution described below.
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Figure 4.11: Density distri-
bution in a trapped Hubbard
model for M = 50, N = 11 for
the non-interacting U = 0 case
and N↑ = 11 and N↓ = 11 in
M = 50 in the interacting case
U = 4. The curve showing the
dip is where the lowest energy
↑-spin state was removed from
the N↑ = 11 ground state.

For the calculation of the single particle spectral function, neither the Bloch states
(4.11) nor the solution of the hard wall problem (4.12) are appropriate single particle
operators. This is obvious, since the system lacks now the corresponding symmetries.
The true analytic solution of (4.14) will not be considered. However, a self-evident and
convenient choice is a construction from the solutions of the harmonic oscillator. The
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(infinite) quantum harmonic oscillator problem is solved by the Hermite functions, which
are Hermite polynomials normed with a Gaussian

ψm(x− x0) = π−
1
4

√
c

2mm!
Hm(c(x− x0))e

− 1
2
c2(x−x0)2 (4.15)

where c is an arbitrary constant, m ∈ Z+, and Hm(x) in the recursive formulation is

Hm+1(x) = 2xHm(x)− 2mHm−1(x) with H0(x) = 1, H1(x) = 2x. (4.16)

We know that (4.15) will not be exact in some limits due to the lattice and its finite
extent. However, we will find a range of validity for these functions to be a very good
approximation for the true wave functions.

Non-interacting case

We need to take a closer look on the U = 0 (numerically easily accessible) eigenstates
of (4.14) to determine the range of validity of (4.15) as trial wave functions. The reason
is a competition between the delocalised solution of the (hard-wall) tight-binding chain
and the localised Hermite function solutions of a harmonic potential. Comparing the
maximal energy of the potential (at the boundary) Vmax = Vpot ∗ (M/2)2 to the kinetic
energy t gives an estimate for what solutions dominate.

If the trap potential is small (Vmax � t), the wave functions are quasi the sinusoidal
solutions of the hard-wall tight-binding chain Htb. Then the Hermite functions are not
a good approximation at the boundaries, since they do not fall off to zero within the
system size, while the sinus solutions linearly go to zero at the boundary.

If the trap is larger, Vmax & t, the mth wave function (m small) is localised to a small
area (depending on Vpot and m) within the system and a Hermite function of grade m
is the best approximation to the wave function. For these m the spectrum is linear
and resembles the quantum harmonic oscillator energy levels. With increasing wave
number m the confining area increases and when this reaches the boundary, Hermite
functions are again a bad approximation, since the wave function has to be strictly 0 at
the boundary. The solutions “see” the finiteness of the system. This defines an upper
bound on the number of Hermite functions m that can be used for a single particle
description.

One might want to increase the trap strength Vmax � t such that all M wave functions
are well localised in a smaller region M ′ < M , i.e. fall off to zero well before the boundary.
However, the mth Hermite function has m + 1 nodes and m lobes. Since we are now
restricted to M ′ sites, the sampling resolution is far too small to represent the higher
Hermite functions. The solutions “feel” the lattice spacing. This defines another upper
bound on the number of Hermite functions m that can be fitted and used for a single
particle description. Thus, it depends on the trap potential strength which m is the
upper bound on the number of usable Hermite functions.

We use the following scheme: we fix the system size and the trap potential, solve the
non-interacting Hamiltonian exactly and fit the first few eigenfunctions to the corre-
sponding Hermite function, with fit parameter c which depends on the trap potential.
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4.5 Spectral function in the Hubbard model

From the fit of a Lorentz function with width η on the calculated spectral function for
the excited states, we extract the range of valid Hermite function operators. We find
empirically that for Vmax & t only the ∼ M/4 lowest lying states can be acceptably
represented by Hermite functions of degree m.

Interacting case

Turning to the U 6= 0 case, we use the re-
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Figure 4.12: Spectral function of
a Hubbard model in a trap for dif-
ferent values of the interaction.

striction on the number of usable Hermite func-
tions as single particle operators which we get
from the U = 0 comparison above. However,
if we assume the lowest numbers of Hermite
functions to be exact for our purpose, we can
calculate the spectral response as a function of
the energy ω and those levels m. The density
distribution for U = 4 is shown in Fig. 4.11,
where we plot for M = 50, N↑ = 11, N↓ =
11 the ground state density and the excited
state density, where the lowest energy ↑-spin
state was removed from the ground state. This
corresponds to the action of the operator in
A<(m = 0, ω) on the ground state. The only
effect of a finite interaction here is the broad-
ening of the density distribution due to the re-
pulsive nature of U > 0.

In the spectral function, however, we expect
the single particle excitation response to give
way for a more complicated response. The fun-
damental difference to the Hubbard model is
the lack of translational invariance. Therefore,
no quasi-momentum exists and the typical ter-
minology of holons and spinon as collective ex-
citations must be redefined, if at all possible. Also, we have no one particle spectrum from
a Bethe ansatz solution for the trapped case. Nevertheless, we have a one-dimensional
interacting system with linearly dispersing levels. We assume Haldane’s conjecture to
hold for the trapped system as well and thus interpret the spectral function A(m,ω)
as we did before for the usual Hubbard model. We can then assume to have separate
underlying Luttinger liquids for the charge and the spin sector.

At first, we compare the effect of U on the spectral function A(m,ω) in the long
wavelength limit, i.e. for the excitation with the smallest quasi-momentum m = 0 in
a system of M = 50 sites, a potential of V = 0.01 and a broadening of η = 0.1. In
Fig. 4.12, the broadening for the case U = 0 was retained but manually deconvoluted
for the other two cases. We see a distinct peak at high energies which broadens with
increasing interaction. This would correspond to the spinon excitation in the usual
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4 Spin-charge separation

Hubbard model away from half-filling. In the range between the energy of the non-
interacting delta-response and the high energy peak, there is significant weight, but
this is too unspecific. The systems are still too small to determine whether this weight
corresponds to an incoherent continuum or if single elementary excitations, similar to
the holon, can be identified.
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Figure 4.13: Spectral function of the single particle propagator of the Hubbard
model in a trap of V = 0.01. We compare the U = 0 case (left) with a broadening
of η = 0.1 with the U = 2.5 case (centre). The right panel shows only πA< of the
U = 2.5 case.

Higher momenta For the system of M = 50 sites, an interaction of U = 2.5 and a
potential V = 0.01, we calculated for the first 9 levels m the spectral function A(m,ω)
with a broadening of η = 0.1, which was removed using manual deconvolution of section
2.4. Ncut = 700 DMRG states were kept and about 10, 000 CPU hours where consumed.
In Fig. 4.13 we compare the non-interacting response in the left panel (with remaining
broadening of η = 0.1 with the interacting response for U = 2.5 in the centre and right
panel. The centre panel shows πA while the right panel shows only πA<.

Three prominent features occur in the interacting system. The single particle response
gets replaced by a shifted sharp response at higher energies with an additional weight
at lower energies with a broad energy range. Secondly, within this continuum there are
dispersive feature not dissimilar to the holon-like dispersion found in other Hubbard
models. Finally, there are some dispersive features for higher energies, coming only from
the contribution of A>, when comparing the centre and right panel.

The main spectral weight is on a feature that clearly is not only the shifted single
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4.6 Summary

electron response of the non-interacting system. It displays a dispersion with a different
slope and has less weight and what’s more, in the next section the spin polarisation will
show this feature disappearing with increasing dispersion, just as the spinon response
of the plain Hubbard model does. Even if the terminology of spinons and holons are
inappropriate in the trapped Hubbard model, there are clear indications of a separation
of scales that can, when compared to the Hubbard model, be interpreted as spin and
charge sectors.

4.6 Summary

The spin-charge separation is a phenomenon manifest in the Luttinger liquid description
as well as in explicit exact solutions of e.g. the Hubbard model. After giving a short
introduction to these theoretical approaches, we summarised the experiments on quasi-
one dimensional materials. None of the many different experimental projects may claim
to see clearly the spin-charge separation.

We added another proposal to directly measure spin and charge wave packets in a
transport setup as they emerge from an interacting nano-structure, fed by an incident
electron wave packet. Current materials and detectors do not allow a direct observation.
Thus, while awaiting a feasible experimental realisation, e.g. a chain of quantum dots,
our calculations may serve three purposes. Firstly, they answer our question, what
happens to an electron in one dimension, in a very didactical manner. We could also
reproduce spin and charge velocities of the analytical Bethe ansatz results in a time
domain calculation. Finally, our calculations are a vantage point for the exploration of
non-equilibrium transport properties, either in the time or the energy domain. Like all
numerical tools, time development DMRG is restricted by finite computing resources.
Depending on the problem, up to several hundred sites and up to one hundred time
steps are the order of magnitude that is realistic in future calculations of this kind.

In the frequency domain, we calculated the single particle spectral function A(k, ω)
in the full energy and momentum range. Using the correction vector method to target
the appropriate states in the density matrix, we were able to determine this quantity
for the Hubbard model at and off half-filling and extract information about the major
responses, which can be related to the holon and spinon spectra available exactly through
the Bethe ansatz. Encouraged by the recent rise of cold atom experiments, we checked
that the Hubbard model in a harmonic trap possesses similar spinon-holon properties in
the spectral response. To this end, we newly proposed to use Hermite polynomials in
the single particle propagator and investigated their range of validity. This turns out
to work well for a few lowest “momenta”. At least the spinon-like peak can be clearly
identified and anticipating the results of the next chapter, we can conclude that even in
the Hubbard model with a trap, typical one-dimensional physics can be found.
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5 Spin polarisation

‘‘Oh no! Not the magnet!’’

(Bender in Futurama, Matt Groening)

We find the magnetic field to be a valuable tool for the identification and
classification of spin-charge separation when calculating the spectral func-
tion, which is experimentally provided by ARPES measurements. There is
signature for new physical modes at energies and momenta unexplored by
analytical or numerical approaches.

In the spectral function of a one particle (hole) excitation the constituent elementary
excitations can be identified in the special case of exactly soluble models. For the SU(2)
Hubbard model, this is the spin-charge scattering state of one holon and one spinon as
was shown in the previous sections. The identification is possible because the elementary
spinon and holon excitation dispersions are represented with a pronounced spectral
weight within A(k, ω), at least within the range of the spinon spectrum [−kF , kF ], while
the spinon-holon continuum only contributes as a weak background. We have seen that
even in the Hubbard model with a confining trap this notion of spin-charge separation
is present.

When comparing the spectral function of the non-interacting and the interacting Hub-
bard model, as e.g. comparing Fig. 4.6 with Fig. 4.7 or within Fig. 4.13 the left and centre
panel, the spin and charge features can be quickly identified. However, for more com-
plicated models and for ARPES experiments on yet poorly understood materials this
identification is impossible or at least debatable. Models may have no analytic solution
that would give a meaning to spin and charge excitation and experiments usually can not
turn off the electron-electron interaction to distinguish interacting and non-interacting
1d physics, especially, if there is spin-charge separation or not. This motivates us to in-
vestigate the effect of an additional homogeneous magnetic field, which can be (usually
very simply) tuned experimentally.

Effect of a magnetic field We assume to have a (quasi-)one-dimensional system with
predominant antiferromagnetic, finite-ranged, exchange interaction of the spin degrees
of freedom. A homogeneous magnetic field will influence only the spin degrees of free-
dom and favour ferromagnetic correlations via spin flips. For such a system, there is a
saturating “critical” field Bcr, above which only one spin kind remains — all spins are
aligned. In this ferromagnetic state, the spin-independent dynamics can be represented
by a spinless non-interacting fermion model (not considering collective magnon excita-
tions). Then we are able to distinguish two phases: one that has spin-correlations and
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5 Spin polarisation

might exhibit spin-charge separation and one that is a Fermi liquid. This represents
an experimentally easily accessible way to examine a transition from a Luttinger liq-
uid to a Fermi liquid behaviour without deeper knowledge — except for above stated
assumptions — of the underlying interactions or models that represent the system.

Method We will turn back to Hubbard models on a finite lattice, to learn more about
this transition. Usually, a magnetic field is incorporated as a spin-dependent chemical
potential. Since a static magnetic field does not change the total particle number, we
will instead look at spin-polarised systems, where the spin-imbalance is explicitly given
by integer numbers, such that N↑+N↓ = const. Thus, exact knowledge of the magnetic
field is not necessary. This shifts the Fermi surface of each spin type differently. The
polarisation (4.7) can be varied from p = 0 (corresponding to N↑ = N↓ and B = 0)
to p = 1, where the system is fully polarised and the field exceeds a critical value Bcr,
e.g. N↓ = 0, N↑ = 2N .

We know the spectral function for both limits. Perfectly balanced systems (B → 0)
show the distinct holon and spinon features of section 4.5.2 and 4.5.3. Fully polarised
systems (B > Bcr), however, behave like (spinless) non-interacting fermions and show a
single particle response (in the majority spins) as shown in section 4.5.1. The interme-
diate regime has not been looked at to our knowledge. We are curious to know, how the
transition from strongly non-interacting spectral features will occur. Somehow, smooth
or abrupt, the holon and spinon peaks will have to vanish and the single-electron-peak
will have to appear.

We note that a photo-emitted electron could be of either spin orientation in the time-
reversal invariant case of B = 0. Now, with B 6= 0 we need to distinguish two cases
of spin orientation, if the electron measurement can be done spin-polarised. However,
we assume that measurements that can not determine the emitted electron’s spin and
calculate the full spectral function from the superposition of the polarised spectral func-
tions

A(k, ω) =
1

2
A↑(k, ω) +

1

2
A↓(k, ω) (5.1)

where Aσ(k, ω) = − 1
π
Im[Gc†kσ ,ckσ(k, ω)] from (2.36).

From the ground state energy for each polarisation we can derive the magnetic field
energy contribution γSzBz = EGS(p) − EGS(p = 0). Using Sz = 1

2
pN , we show the

dependence of Bz on the polarisation in Fig. 5.1 as a step function indicating the range
of possible magnetic field strengths for each polarisation.

Works in literature The Hubbard model in a magnetic field was analysed in 1990 by
Frahm and Korepin [58, 59] with the focus on the asymptotics of the Greens functions
in time and space. We know of no exhaustive treatment for A(k, ω) for the polarised
Hubbard model, but there are theories for the low-energy behaviour, examining various
limits [60] and the Mott metal-insulator transition [61]. Also in the low-energy regime
Carmelo et al.[62, 63] use a pseudofermion formulation to access all momenta (basically
corresponding to a momentum distribution curve), and Ref. [59] estimated the behaviour
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Figure 5.1: Dependence of Bz in units of the gyromagnetic ratio γ on the polari-
sation in the U = 4 Hubbard model for density n = 1.0.

in the large U limit for special values of ω and k. They find an additional singularity at
finite B, which they argue survives for all finite U .

The idea of detecting spin-charge separation by splitting the spectral response with
a magnetic field was also formulated by Rabello and Si [64]. However, being restricted
to low-lying excitations, their proposal requires an extreme resolution to resolve the
splitting of spectral features.

5.1 Tracking spin and charge

In the following paragraphs, we use a Hubbard chain with U = 4 without particle-hole
symmetry U

∑
x n̂x↑n̂x↓. All energies are in units of hopping element ttb = 1.

Below half-filling In the case away from half-filling, we choose a lattice with M = 32
sites and N = N↑ + N↓ = 26 electrons. Keeping the filling of n = 26/32 = 0.8125
constant, the polarisation (4.7) is therefore varied in steps of 2/26 by increasing the
number of up-spins.

p =
N↑ −N↓
N↑ +N↓

∈
{

13− 13

26
,
14− 12

26
, . . . ,

26− 0

26

}
(5.2)

The spin and charge identification is very easy for k → 0, since here the gap between
holon and spinon excitation energy is sufficiently large for sufficiently large interaction
U and the right choice of band filling, while the spectral weight has also a high contrast.
For each polarisation we calculate the spectral function A(k0, ω) with a broadening
of η = 0.1 and with the sinusoidal operators (4.12), since we use hard-wall boundary
conditions. Since all coefficients in the sinus series would be zero for k0 = 0, we choose
the smallest possible momentum in this discretization k0 = π/(M + 1) ≈ 0.095. We
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5 Spin polarisation

employ the fixed-discarded-entropy cutoff scheme of section 3.2.1 aiming for a discarded
entropy of 10−3 and using up to Ncut = 1400 states in the DMRG truncation. The
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Figure 5.2: Single particle spectral function in the U = 4 Hubbard model for
n = 26/32 for different polarisations as a profile plot (left) and an intensity plot
(right).

results in Fig. 5.2 show 100 data points for each of the 14 values of polarisation which
consumed about 12,000 CPU hours. The finite size broadening η can be deconvoluted
from the data using the technique presented in 2.4. However, since in the limit p → 1
the spectral function is a pure Lorentz function, broadened by η, a removal would result
in a delta-function. Thus, in the data the broadening is reduced from η = 0.1 to only
0.02, sharpening the Lorentz-peak to a maximum of 1/(2η) in the fully polarised limit,
where the factor of 2 stems from the average in eq. (5.1).
We summarise the important features of the results shown in Fig. 5.2.

• For p = 0, we see the spinon peak at about ω = −0.3 and the holon peak at about
ω = −1.7. To higher negative energies, one finds a shoulder to the holon peak.
This corresponds to the holon-spinon continuum, which defines the onset of the
spectral response. (If we could evaluate A(k0 = 0, ω), there would be no shoulder).
There is also finite spectral weight coming from the spinon-holon continuum for
−2 . ω . −0.5

• Along the polarisation, the holon peak gradually moves to ω → −2.0 (precisely,
ω = −2 cos ( π

M+1
)). Along this trajectory, it gains weight and transforms into the

electron-hole peak at p = 1, where it has all the weight.

• The spinon peak loses gradually all its weight going to full polarisation. Note
that at p = 1 there is no weight left. There are, however, two spectral features
bifurcating from the spinon peak.

One feature, with less spectral weight, shifts to about ω = −0.7 with a roughly
constant distance (“parallel”) to the holon-like peak. It vanishes faster than the
second spectral feature, which is another peak with higher amplitude. This peak
moves from ω = −0.3 to ω ∼ 0 for p→ 1.
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5.1 Tracking spin and charge

Before drawing conclusions, we repeat the procedure for the half-filled case and the
Hubbard model in a trap.

At half-filling Analogously, for the half-filled we choose a system with the parameters
M = 30, N↑ = N↓ = 15. The filling n = n↑+n↓ = 1 will be kept constant while increasing
the polarisation by increasing the spin-up density. Note that for the B = 0 Hubbard
model n = 1 corresponds to half-filling, while for full polarisation this corresponds
to a completely filled non-interacting band. Again, we calculate for each polarisation
the spectral function A(k0, ω) with a broadening of η = 0.1 and with the sinusoidal
operators (4.12) and we choose the smallest possible momentum in this discretization
k0 = π/(M+1) ≈ 0.101. We employ the fixed-discarded-entropy cut-off scheme with the
same parameters and the broadening was also reduced from η = 0.1 to 0.02. Although
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Figure 5.3: Single particle spectral function in the U = 4 Hubbard model for
n = 15/30 for different polarisations as a profile plot (left) and an intensity plot
(right).

the half-filled Hubbard model being a Mott insulator is qualitatively completely different
from the Hubbard model off of half-filling, we see in Fig. 5.3 a qualitatively analogous
behaviour of the spectral function. We identify the same holon-like and spinon-like
features which go to the ω = −2.0 single particle peak or vanish, respectively.

Results for a trapped Hubbard model Without prior knowledge of the underlying
elementary excitations, we can also extract spectral information for the trapped Hubbard
model, described earlier in section 4.5.4. We use a similar system with M = 50, N↑ =
N↓ = 11, Vpot = 0.01 and now U = 4.0. We employ the cut-off scheme using up to
Ncut = 1400 states in the DMRG truncation and aim for a discarded entropy of 10−3.
The results in Fig. 5.4 were obtained with the fixed-discarded-entropy cut-off scheme
using up to Ncut = 1300 DMRG states and about 3000 CPU hours were consumed. The
four calculated polarisations indicate that there is a low-lying excitation or excitation
continuum which transforms into the single particle excitation at full polarisation. And
there is an excitation at higher energies, which splits up and loses weight in the full
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Figure 5.4: Single particle spectral function in the U = 4 Hubbard model in a trap
for strength Vpot = 0.01 for density n = 11/50 for different polarisations as a profile
plot (left) and an intensity plot (right).

polarised medium. The single particle excitation which is reached at full polarisation is
the lowest energy single particle state, whose wave function corresponds to very good
approximation to the first Hermite function and the response is again a Lorentzian with
width η = 0.1, sharpened to 0.05. Note that indeed the lowest energy single particle
state has an energy of ∼ −1.90 and not −2.0 as in the case without a trap.

Discussion First of all, the fact that the basic spinon and holon structure stays intact
at finite magnetic field is known [62, 63]. The transition from the one-dimensional
interacting physics to the non-interacting physics occurs only trivially at the critical
field when no particles are left to interact. This means we do not generally destroy the
ability to detect separate spin and charge degrees of freedom at a finite magnetic field.

Secondly, it seems more surprising how the single holon and spinon features develop in
a magnetic field. One might have expected that the spinon and holon excitation energies
would merge at some polarisation value and together form the electronic response or that
even more complicated scattering states with several spinons and holons would smear
out the picture. This behaviour would make it less favourable to distinguish and detect
the peaks experimentally. Looking at the bare energy scales t and J = − t2

4U
of the charge

and spin sector, respectively, there is no reason, why these should merge at the long wave
limit point k → 0. Indeed, we find that the effective scales stay clearly separate. Our
main statement is that the holon peak develops into the electronic charge excitation,
while the spinon peak vanishes.

Is there an intuitive way to understand the many-particle behaviour? The holon peak,
interpreted in the cartoon picture as a vacancy moving in a background of antiferromag-
netically ordered spins, transforms into the hole moving in the background of a fully
polarised ensemble of electrons (upon applying a uniform magnetic field). This simple
picture suggests that a holon is unimpressed about what background it is moving in and
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5.2 Spin imbalance: A closer look

one accepts this part of the trajectory easily.
For the spinon peak, the cartoon picture suggests that fewer and fewer neighbouring

spins can flip (since most are aligned), when turning up the magnetic field. At some
point, spin flips are rare, just because there are less spins to flip with. The phase
space for spinon-like excitations vanishes and so does the spectral weight of this branch.
However, we have no simple cartoon pictured explanation for the shift in energies of
the responses nor for the bifurcation of the spinon-like feature. The bifurcation of the
spinon-like spectral response warrants a closer look into the full momentum and energy
dependency of the spectral function and we will continue the discussion at the end of
the next section.

5.2 Spin imbalance: A closer look

In this section, we first rule out finite size effects of the most interesting features, then
we calculate the spectral function in the full spectral range, broken down into contribu-
tions from up and down spin channels and from above and below the individual Fermi
momenta. Finally, the combination that mimicks an ARPES measurement is presented.

Finite size check To check, whether the main features outlined above do not originate
from subtle finite-size effects, we double and triple the system size for the system away
from half-filling. Thus, we calculate the spectral function for M = 64, N = 52 and
M = 96, N = 78 for one polarisation only: p = 14/26. As will later become more
evident, the up-channel spectral function A↑(k0, ω) shows a pronounced double peak
spinon-like structure and is more suitable for a finite size check. The larger systems are
computationally harder to calculate. Therefore, we allow to aim for a higher discarded
entropy of 0.01, instead of 0.001 for M = 32 and allow up to Ncut = 1200 states to be
kept in one DMRG block. With the resolution of ω = 0.1 in Fig. 5.5 and within the
expected accuracy of the procedure, we find no dependence of the general features on
the system size.

Polarised spectra In this chapter we calculated up to now the spectral function of
the one-electron removal, which is measured by photoelectron spectroscopy (PES). The
reverse measurement, the inverse photoelectron spectroscopy (IPES) corresponds to the
switching of annihilation and creation operators in the Greens function, which leads to
a different spectral function A>σ (k, ω). Thus, A> measures the one-electron creation
and the analytic behaviour of A<σ (ω) and A>σ (ω) defines the Fermi energy. In a spin-
imbalanced system, the spin orientations have different Fermi energies.

We investigate now the system away from half-filling with M = 32, N = 26 for the
two polarisations p1 = 8/26 ≈ 0.31 and p2 = 16/26 ≈ 0.62. Fig. 5.6 and Fig. 5.7
show the separate components of Aτσ(k, ω) for τ =<,>, σ =↑, ↓ for each polarisation,
respectively. Between the upper A> and lower A< panels the Fermi energy can be
identified at the momenta kFσ. For example, for the polarisation p = (17 − 9)/26,
kF↑ = (17/32)π, kF↓ = (9/32)π, etc. The calculation with varying resolution down to
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5 Spin polarisation

Figure 5.5: Finite
size check: The spec-
tral function A↑(k0, ω)
for the polarisation
p ≈ 0.54 does not
change significantly
with M = 32, 64, 96
sized systems.
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∆ω = 0.05 consumed about 10,000 CPU hours for each polarisation. All parameters
(accuracy, cutoff scheme) are identical to the corresponding k0 ≈ 0 calculations. Note
that due to the non-symmetric Hubbard interaction we used, the Fermi energy is not at
ω = 0. But, we reproduce the fact that the excitation spectrum is gap-less in the system
away from half-filling, even in a magnetic field. This gives a good guide to the eye to
locate the Fermi energy for each spin channel separately.

Beside the apparent separated “Fermi surfaces”, the response is asymmetric between
the majority and the minority spin channel (compare, e.g. the lower left and right panel
of Fig. 5.7). First, we identify a major spinon-like contribution and no holon-like contri-
bution in the spectral response of the down-channel. In contrast, there is the holon-like
branch and some weight at the spinon-like branches in the spectral response of the up-
channel. This asymmetry, originating in the breaking of time-reversal symmetry, should
be noted, since it is inconsistent with the naive cartoon picture where, e.g., the removal
of either spin type creates a charge excitation without spin, i.e. the holon branch at
zero field is symmetric with respect to the spin quantisation but the holon-like branch
at finite field only emanates from the majority spin response.

The spinon-like modes are also unequally distributed. The higher energetic mode re-
sults primarily from the down-channel, but there is also some weight from the up-channel
yielding an upper branch in the total response (Fig. 5.8). The additional unexpected
branch, giving rise to the bifurcation, appears only in the up-channel. More details
thereof will be discussed below.

ARPES measurement To complete the picture simulating an ARPES measurement,
we plot the spin-averaged A<-component for both polarisations in Fig. 5.8 and Fig. 5.9,
i.e. we plot 1

2
(A<↑ +A<↓ ). This corresponds to unpolarised light shining on a sample and

measuring the energy of an electron leaving the sample. Fig. 5.8 and Fig. 5.9 compare
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Figure 5.6: Spectral function separated in the different up and down spin and A<
and A> components for the polarisation p = 8/26.

directly to the limiting cases at zero magnetic field (right panel of Fig. 4.10, albeit for
U = 2.5) and the non-interacting limit above full polarisation (right panel of Fig. 4.6).
The main effects of the magnetic field show up again in comparison of all four figures.

• When the magnetic field is increased from 0 to full polarisation, the separated
Fermi surfaces for each spin orientation become visible.

• Also, an overall redistribution of weight from the spinon-like branch at 0 magnetic
field to the holon-like branch and finally into the single-particle branch is observed.

Discussion Extending the discussion of the last section, we recover the bifurcation seen
at k ≈ 0 now in the whole Brillouin zone. It manifests as an additional spinon-like
mode at energies lower than the spinon-like mode that evolved from the spinon mode
at zero field. This additional mode is best visible at the polarisation p = 16/26 in
Fig. 5.7 in the up-channel spectral function (indicated by a small arrow in the lower left
panel), and just noticeable at the polarisation p = 8/26 when looking at the combined
function in Fig. 5.8. In Fig. 5.6 and Fig. 5.7 we also notice four facts: the additional
mode appears only in the majority spin channel, it is stronger for smaller polarisation
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Figure 5.7: Spectral function separated in the different up and down spin and A<
and A> components for the polarisation p = 16/26. The small arrow in the lower
left panel indicates the unexpected second spinon-like branch.

but less well separated from the upper spinon-like mode and it disperses only up to a
momentum, identified as the Fermi momentum of the minority spin channel.

Taking an even closer look, there is a minor redistribution of weight from the
spinon-like energy region to the holon-like (shadow band) energy region. This feature
occurs solely in the spectral response of the majority spin, but it occurs at the Fermi
energy of the minority spin kF↓. It can best be seen in Fig. 5.7 in the lower left panel,
but it also carries through to the total spectral function in Fig. 5.9. Note that it is a
high energy effect and thus may not be in the reach of Luttinger liquid description.

These two features are genuinely unexpected results and suggest so far unseen physical
excitations, especially since they are closely connected to the symmetry breaking by the
magnetic field.

5.3 Summary

Extending the previous research into the spectral function, we looked at the effect of
spin-polarisation, which is easily tuned by an external magnetic field. This turned out
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Figure 5.8: Spectral function 1
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(A<↑ +A<↓ ) for the polarisation p = (17− 9)/26 =

8/26.

to be a tool that can map out the separated spin and charge sectors over the full range of
polarisation. We first investigated the spectral function at k = 0 and we found that the
separated response peaks do not merge at any polarisation value, rather what is the holon
at zero magnetic field becomes the electronic charge peak at the critical magnetic field,
while the spinon feature disappears along the way. This was shown for the commensurate
and the incommensurate case of the Hubbard model and for the Hubbard model in a
trap. While it is possible to tackle the bare Hubbard model analytically with the Bethe
ansatz, our findings for a trapped system and early tests on an extended Hubbard
model (not presented) indicate that this behaviour extends to non-solvable models and
is general for one-dimensional electron systems with a finite-range interaction.

We imagine magnetic fields to be valuable in ARPES studies, where the nature of
spectral features are controversial. In cases where it is argued to have one-dimensional
physics and spin-charge separation, using the spin polarisation to track the claimed
spinon and holon responses will help to justify these claims.

We exploited the advantage over analytical approaches to be unrestricted in energy,
momentum and interaction strength and took a closer look on intermediate polarisa-
tions. To this end, we computed the separate spectral functions of up and down spin,
corresponding to removal or addition of an Sz = ±1

2
electron in the full Brillouin zone.

The spectral weight distribution found in this set of quantities would be reproduced by
spin-polarised (inverse) photoelectron spectroscopy.
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Figure 5.9: Spectral function 1
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(A<↑ +A<↓ ) for the polarisation p = (21− 5)/26 =
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We found that the response of the minority spin orientation does not contribute to the
holon-like branch in a finite magnetic field. Furthermore, we identified the previously
detected bifurcation at k ≈ 0 in the full Brillouin zone where it corresponds to two
spinon-like branches rooted in the majority spin response albeit entangled to the minority
spin. There was an unexpected redistribution of weight which occurred in the majority
spin channel but at the Fermi momentum of the minority spin channel.

This asymmetry of the excitation spectrum between majority and minority spin chan-
nel suggests a different underlying microscopic picture than the spinon-holon picture of
the spin-charge scattering state in the half-filled Hubbard model at zero field. The spin-
charge scattering state from Bethe ansatz is spin-rotation invariant in that the spinon
and holon description treats spin-up and spin-down on the same footing. Although the
spectrum gradually evolves from that spinon and holon description at finite magnetic
field, our results clearly verify the symmetry-breaking nature of the elementary exci-
tations. Further insight into the nature and the microscopic picture of the elementary
excitations might be gained by finite-field Bethe ansatz calculations.
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6 SU(3) colour-charge separation

Flag of Eritrea

There are recent experiments in ultra-cold atomic gases that resemble one-
dimensional, strongly correlated SU(3) particles and warrant a numerical
investigation of their dynamics.

Motivation So far, we have analysed the spin-charge separation of electronic one-
dimensional systems where the electron carries a spin. The corresponding symmetry
group is SU(2) and the electron’s spin-1

2
is its fundamental representation. The next

higher dimensional group SU(3) is also common in physics, especially for the global (ap-
proximate) symmetry for quark flavours where up, down and strange quarks constitute
a triplet of the SU(3) and for the local gauge symmetry of quantum chromodynamics
(QCD). In the latter, quarks carry beside the SU(2)-spin and the electric charge a so-
called SU(3) colour1. The fundamental representation of quarks under latter symmetry
is the triplet (red, green, blue).

In condensed matter physics, there are no elementary SU(3) particles, like electrons for
SU(2). Nevertheless, if one has three energy levels and direct transitions between these
levels one may artificially create a particle in the fundamental representation of SU(3).
This can be done in ultra-cold atomic gases. Although again not strictly condensed
matter, ultra-cold gases present a highly flexible playground [65, 66]. One can restrict
the dimensionality and create a crystal structure by trapping atoms in optical lattices,
where they form a tight-binding chain. Additionally, an effective interaction can be
tuned by the optical lattice and by the means of an atomic Feshbach resonance and
finally, temperatures down to 5% of the Fermi temperature can be achieved.

At least the two alkali atoms 6Li and 40K seem to be possible candidates for the
experimental realisation of an SU(3) fermionic lattice with attractive interactions [67].
In the case of 6Li the scattering lengths for the three possible channels of the three
lowest lying hyperfine levels (|F,m〉 = |1/2, 1/2〉, |1/2,−1/2〉, and |3/2,−3/2〉) at large
magnetic fields become similar for the three of them as ≈ −2500a0 [68]. The realisation
of a stable and balanced three-component Fermi gas has been recently reported [69].
The scattering lengths of the different channels for the three lowest hyperfine states of
40K near the Feshbach resonance was also measured and the possibility of trapping them
optically was demonstrated [66].

1Confusingly the quantum number is sometimes called “colour charge”.
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6 SU(3) colour-charge separation

We will explore the phenomenology of colour-charge separation in lattice systems with
three different kinds of fermions.

6.1 Colour-charge separation in the Hubbard model

Analogous to the SU(2) spin-charge separation, we will analyse an additional SU(3)
particle in a partially filled SU(3) Hubbard model, after introducing the basics of SU(3),
but we also explore the dynamics of a Gaussian distortion.

6.1.1 Introduction to SU(3)

In the following table 6.1.1, we summarise the major properties of the SU(n) symmetry
group and their corresponding usage in the physical context of the SU(2) spin symme-
try and the SU(3) colour (gauge) symmetry. Note that for the flavour SU(3) quark

SU(n) physical corre-
spondence

SU(2)-spin SU(3)-colour

number
of gen-
erators

n2− 1 generators in
fundamental

representation

3 Pauli matrices 8 Gell-Mann matrices

operators Ŝz, Ŝ± Ĵ3,Ĵ8,Î±,Û±,V̂ ±

rank n− 1 characterising
operators

Ŝz Ĵ3, Ĵ8

dimen-
sion

n fundamental
representation

spin-up :Sz = 1
2

spin-down:Sz = −1
2

red :J3 = 1
2

J8 = 1
3

green:J3 = 0 J8 = −2
3

blue :J3 = −1
2
J8 = 1

3

Table 6.1: Table of properties of the SU(n) symmetry groups for n = 2, 3

symmetry, the characterising operator Ĵ3 is identified with the isospin I and Ĵ8 has
the meaning of the hypercharge Y . There is no such identification for the QCD colour
symmetry, however the notation I, Y is sometimes kept. The major difference to SU(2)
is the appearance of a second quantum number for each object. Conveniently one draws
a two-dimensional diagram spanned by the quantum number operators J3, J8. Then the
red, green and blue particle lie on a triangle whose connections are the ladder operators
I±, U±, V ± transforming each of the colour particles into the another (see Fig. 6.1).2

2Even if a SU(2) spin S=1 object is a completely different object, it has also three different states
and the most obvious difference to a SU(3) fundamental particle is that there is no direct operation
between the Sz = 1 and the Sz = −1 quantum number.
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6.1 Colour-charge separation in the Hubbard model

Figure 6.1: Diagram for the fun-
damental representation of SU(3).
Possible states are labelled red (R),
green (G) and blue (B) fixed by two
quantum numbers J3 and J8. The
arrow-headed sides of the triangle
represent the ladder operators be-
tween the states.

6.1.2 Hubbard model

We setup the SU(3) symmetric one-dimensional Hubbard model with three types of

particles with operators c
(†)
σ,x (σ = r, g, b) and corresponding densities nσ = c†σ,xcσ,x

H =
∑

x,σ=r,g,b

(
c†σ,x−1cσ,x + h.c.

)
+
∑
x

(Urgnrng + Ugbngnb + Ubrnbnr) , (6.1)

where we will distinguish the isotropic case Urg = Ugb = Ubr = U and the anisotropic
case of on-site interaction. In the thermodynamic limit the SU(3) Hubbard model has
similar phases as the SU(2) Hubbard model. We will consider isotropic interaction for
now and identical particle number for all colour degrees of freedom.

While the SU(2) Hubbard model has two phases at U > 0, a metallic phase with
gap-less charge excitations and a Mott-insulator phase in the commensurate half-filled
band with a gap in the charge excitations, the SU(3) Hubbard model is different. For
small interactions 0 ≤ U < Ucr the system is metallic, regardless of the filling [70]. But
above a finite Ucr there is a phase transition to a Mott-insulator state for commensurate
fillings, i.e. ν = 1/3 (or ν = 2/3), when there is one (or two) particle on each site
on average. In terms of electron-electron interaction the umklapp-processes lead to a
gap in the charge excitations. However, bosonisation shows [70] that umklapp-processes
are irrelevant for U < Ucr. The critical value was estimated to Ucr ∼ 2.2 in Quantum
Monte-Carlo simulations.

6.1.3 Additional fermion

Completely analogous to the SU(2), we perform time evolution using the full td-DMRG
extension on an excited state, in which one (green) fermion was added to the ground
state.

Again, a Gaussian distribution of quasi-momenta centred around k0 = 0.55π with
width 4.0 in real space ensures a wave packet with energy close to the Fermi surface.
The ground state of the system with M = 42 sites and N = 42∗3/2 fermions is half-filled
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6 SU(3) colour-charge separation

(ν = 0.5), i.e. the average particle density is n = 1.5. The charge density is given by

nch(x, t) = nr(x, t) + ng(x, t) + nb(x, t) (6.2)

while the density for the two colour quantum numbers are given by

nj3 =
1

2
(nb − nr),

nj8 =
1

3
(nb + nr − 2ng).

(6.3)

We employ a three-point average to even Friedel oscillations occurring at this filling due
to the hard-wall conditions. We keep up to Ncut = 4000 states in the density matrix and
let the time evolve 32 time steps of step size ∆t = 0.25. Further we extract the velocity
at each time step by fitting one or two Gaussian distribution on the separating peaks.
The result is summarised in Fig. 6.2. The density of J3 is not plotted, since we added
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Figure 6.2: Propagation of an added green fermion for the Hubbard interactions
U = −0.5 (a), U = 0 (b), U = 0.5 (c) and U = 2.0 (d) with hard-wall boundary
conditions. The charge density (black) and the density of Ĵ8 (purple, dashed) is
plotted for times T = 0 (lines) and T = 8.0 (lines+points).

a green particle, which has the quantum numbers j3 = 0, j8 = −2/3 and the density
nj3 is constant in time. The analogon to spin-charge separation is detected: the colour
density is faster for attractive U and slower for repulsive Hubbard U .

We checked if the commensurate case of 1/3 filling has a qualitative influence on the
wave packet propagation, but the systems are too small to be able to see the Mott-
insulator-metal phase transition in density propagation or in the bond entropy.
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6.1 Colour-charge separation in the Hubbard model

6.1.4 Gaussian perturbation

Despite the enormous resource utilisation of up to 64 GB RAM and months of CPU
hours, the inaccuracy of an additional fermion propagation can be seen in the figures.
Thus, we choose take a different path and evaluate the propagation of a Gaussian per-
turbation. With similar parameters, M = 48, half-filling n = 1.5 but with more than
7000 states in the density matrix, we measure the propagation induced by a distortion
with the shape of the derivative of a Gaussian present only at time T = 0, see section
2.2. Using this method, a much smoother velocity extraction is possible. To minimise
the inaccuracy of fitting and extracting the maximum at each time step, we first look
at the function v(xmax) instead of v(T ). Due to the different velocities of the colour
and the charge, we extract a velocity around a site that every density peak has passed
(at different times). Finally, the velocity is determined as a Gaussian weighted average
around this position.
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Figure 6.3: Packet velocities in the Hubbard model for different interaction
strengths. Indicated by the legend, the solid and long-dashed line correspond to
Luttinger liquid results (see text). While the connected points result from an initial
perturbation potential, the unconnected points display velocities of an additional
particle.

The velocities extracted in this way are plotted in Fig. 6.3. Three sets of velocities are
included. The velocities of an additional fermion of the last chapter have to be examined
carefully, since we cannot ensure they have reached convergence to the correct states.
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6 SU(3) colour-charge separation

However, the velocities extracted from a Gaussian perturbation fit well for a greater
range on an analytical curve, which is extracted from a Luttinger liquid description. For
attractive interactions U < −1, the extraction of the wave packets becomes doubtful,
since the shape of the excitation changes, which might be due to many-body excitations
that are extremely sensitive to finite-size effects, i.e. the width of the initial perturbation
or this indicates the transition into a new physical phase.

As discussed in 2.2 and 2.3, the theoretical velocity at U = 0 of v = 2 sin k0 ≈ 1.975
for the added fermion and v = 2.0 for the Gaussian perturbation can only be achieved
for infinitely broad packets. If we assume that this finite-size slow-down is interaction
independent, we can scale all velocities down by the factor given by the extracted velocity
at U = 0. This was done in Fig. 6.3, were the data and the analytical curve were scaled
to match the velocity at U = 0 of the Gaussian perturbation.

Bosonisation approach In the bosonisation approach, valid in the weak-coupling limit,
the low-energy effective theory of the model can be expressed in terms of the collective
fluctuations of the densities of the three species. Introducing three bosonic fields for each
colour and combining these as in (6.2) and (6.3) yielding bosonic fields for the charge
density and the two colour densities φch(x), φj3(x), φj8(x), the SU(3) symmetric Hubbard
model can be separated within the Luttinger approach into two parts, charge Hch and
colour Hcol. The velocity parameter of each Luttinger liquid can be approximated for
small U as

vch = vFK
−1
ch = vF

(
1 +

2U

πvF

) 1
2

vcol = vFK
−1
col = vF

(
1− U

πvF

) 1
2

(6.4)

Note the factor of (n− 1) = 2 for the SU(3) case in the charge sector compared to the
SU(2) case in (4.4). The analytical curves in Fig. 6.3 are given by the right-hand side
of these relations. This is valid for small U , where non-linear terms in the Hamiltonians
can be neglected and the right-hand side of (6.4) could well be linearised which would
not change when comparing with the simulation in Fig. 6.3. For larger |U |, the cosine
terms in Hcol lead to deviations, which we can already see in our simulation.

6.2 Summary

In this final chapter, we extended our previously gained knowledge about the SU(2)
Hubbard model to the SU(3) case. Motivated by the recent developments in ultra-cold
atomic gases, where approximate SU(3) particles can be realised, we showed that the
separation of colour and charge in one dimension is manifest in the Hubbard model.
Using time evolution DMRG, we simulated both, explicitly added particles and initial
perturbation potentials, to extract the colour and charge velocity. Comparing to the an-
alytic Luttinger liquid results, we find excellent agreement of the perturbation potential
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over a wide range of interaction and over a smaller range of interactions for the added
particle.
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A.1 Error analysis for time evolution with DMRG

In section 2.3 we have shown the finite size scaling of the time evolution of an electron
above the ground state moving in a non-interacting system. We used periodic boundary
conditions, which do not lead to Friedel oscillations and ease the extraction of the wave
packet propagation in real space.

In this appendix, we analogously investigate the hard-wall boundary case. Then we are
able to compare the wave packet velocities from the exact diagonalisation with the U = 0
result of our DMRG simulation of the Hubbard model of section 4.4.1. Analogously to
figure 2.6, we first extract the evolution of the wave packet velocity, but now for hard-
wall boundary conditions. We fit a Gaussian shape for every time step and plot the
difference quotient of the fitted centres c(t) at time step t and 0

v(t) =
c(t)− c(0)

t
. (A.1)

The data of the wave packet density in real space (subtracted from the ground state
stationary density) is shown exemplarily for the two time steps t = 0 and t = 36 in
figure A.1 (left axis). Figure A.2 shows the extracted velocities for the M = 102 site

Figure A.1: The
time evolved wave
packet density at two
time steps (left axis)
from a DMRG simu-
lation. The absolute
error in the density of
the DMRG simulation
compared to the exact
simulation plotted for
the same two time
steps (right axis).
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system with an electronic excitation of momentum k0 = π/2 + 0.1 over the half-filled
ground state for different widths of the Gaussian. Also analogously to section 2.3, there
is a settling time at the beginning, followed by a monotonously increasing window before
the packet hits the end of the system and turns around. It was already shown in 2.3 that
if the system is large enough, the velocity curve does not depend on the system size,
but only on the width of the excitation. The inset shows the scaling behaviour of the
velocity with the width of the packet at one fixed time in the window after the settling
time (here t = 13). We find that the hard-wall boundary condition give the same results
as periodic boundary conditions, thus asymptotically approaching the single momentum
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Figure A.2: Wave packet velocity for ED with hardwall boundary conditions on
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excitation result (the ideal limit of an infinitely narrow packet in momentum space),

which would travel with velocity vδ = ∂ε(k)
∂k

∣∣∣
k0

= 2 sin(π/2 + 0.1) ∼ 1.990.

Next, the absolute error in the density |nED(t) − nDMRG| of the DMRG simulation
compared to the exact diagonalisation (ED) is also plotted in figure A.1. While at t = 0
(dark grey) the worst error is at the area of the excitation, at t = 36 (light grey) the
worst error comes from the boundary and there is also discrepancy between DMRG and
ED trailing behind the peak. However, the relative error has only increased from about
10−5 to 10−3 during the simulation time. The peak relative error as defined in (4.9) is
δnp(0) = 7 · 10−5 and δnp(36) = 7 · 10−3.

The quite accurate results of DMRG in the density is, however, not reflected in the
extracted velocity. The reason is that a fitting of the peak centre bears the uncertainty in
x-direction, which is not related to inaccuracy in the density, which is orthogonal to the
x-direction. Figure A.2 also displays the wave packet velocity of the DMRG simulation
(black curve) and the difference between the DMRG result and the exact diagonalisation
of the same width σx = 5 is apparent. The error between both is for maximally about
3 · 10−3 in the velocity. This is not a large error, considering that a fitting procedure is
used, but it shows that care has to be taken of an additional source of inaccuracy, when
measuring velocities.
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A.2 Towards numerics on graphics cards

In our DMRG code we use Posix threads to parallelise the code which is described in
detail in [48]. The advantage of this approach lies in the flexibility of choosing worker
threads. Here we present first steps to make use of this flexibility by evaluating the pos-
sibility to offload workload to acceleration or graphics cards. Within this parallelisation
scheme we are not restricted to a single type of worker, but we can schedule different
types of workers. We report first benchmark results where we use our threading facil-
ity to distribute matrix-matrix multiplications over different worker types, namely one
worker that makes use of the GPU on a graphics card to increase throughput.

Single precision

For first benchmarks, we use an older graphics card with single precision hardware
(Radeon HD 2400 XT, GPU RV 610), which we can only feed with sgemm calls. For
compilation we used gcc 4.3.2 (Debian 4.3.2-1.1). In Fig. A.3 we compare ACML (acml-
4.2.0), MKL (10.1.1.019/em64t), GotoBLAS [71] (r1.26/penryn) and ACML-GPU (CAL
RT & CL v. 1.3.158, acmlg v0.7). Looking at the CPU performance alone one notices
that ACML, Goto, and ATLAS give approximately the same performance, with ACML
being the fastest of these three libraries. However, MKL gives a factor of two in per-
formance, demonstrating that the choice of BLAS implementation is very important.

The platform used was a quad core Intel-based system (“Intel”) with 8 GB of RAM
(See the “highend” version with an upgrade to 8 GB RAM and an Intel Core2 Quad
Q9300 processor of http://portal.uni-freiburg.de/bw-pc/bwpcII). Next, we use
one worker thread that calls the ACML-GPU version of sgemm while in the remaining
threads we employed the ATLAS (gcc-atlas-acmlg) or MKL (gcc-mkl-acmlg). This ver-
sion of the ACML-GPU library does not allow to take full control over the distribution
of sgemm calls to CPU or GPU. Thus, we had problems in linking simultaneously against
the ACML-GPU and the normal ACML which stems from namespace clashes in these
libraries, since they are not supposed to be used at the same time. Also note, that in
the ACML-GPU documentation it is stated that the library is not thread safe and must
not be used simultaneously by two different programmes or threads. However, since
we have only one GPU worker, while the other workers are not accessing the GPU we
are in compliance with this restriction albeit running a multi-threaded code. While at
first sight these results do not look very encouraging, it is important to note that these
benchmarks are only a proof of concept. Note that within our approach we are not
restricted to offload work to a single GPU board. We could even utilise a mixture of
acceleration boards.

Double precision

Recently we got access to a machine with a floating point capable graphic card (Radeon
HD 4870, GPU RV770). This platform (“AMD”) contains an Phenom(tm) II X4 920
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Figure A.3: sgemm performance within our multi-threaded testing code on the
“Intel” platform (see text) for different BLAS libraries and in two cases with an
additional graphics processor unit running one thread of ACML-GPU sgemm calls.
All data are relative to the gcc-acml data serial run at number of threads = 0.

Processor (Quadcore 2.8GHz) with 16 GB RAM. Our benchmark is presented in Fig. A.3.
It shows the pure CPU performance (“AMD”) starting from a serial run (number of
threads=0) and continuing with up to 10 threads on the CPUs. The scaling up to the
4 CPU cores and the stagnation for more than 4 threads is evident. In contrast, the
additional GPU thread result (“+GPU”) shows again a serial CPU run at zero number of
threads. The first thread is started on the GPU alone, while more threads are thereafter
started on the CPU cores. Thus, a scaling up to 5 threads could be expected, which is
not seen. In the compilation, we used MKL (10.1.1.019/em64t) and the GPU libraries
CAL RT & CL version: 1.4.227, acmlg v1.0.

With this newer hardware the performance boost for the largest matrices due to
the graphics card is clearly visible. However, already for the 1000x1000 matrices the
quad Intel CPU is of comparable performance. While this benchmark does now look
encouraging, the total gain in performance for our DMRG code was marginal. This is
to be expected from the benchmark, since the matrices involved were typically smaller
than 1000x1000. However, from this benchmark we expect that the use of graphics
card is getting interesting for us, if the typical matrix size is at least of the order of
4000x4000. Since we can employ a scheduling depending on the matrix size this will
be an interesting option for the future, especially if the BLAS support of the graphics
cards improves in the next versions of the ACML. Finally we would like to note that we
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also tested an NVIDIA based card. However the library “cublas” is conflicting with our
“pthreads”-library leading to spurious deadlocks.
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Figure A.4: dgemm performance on an AMD platform using only CPUs (AMD), the
same platform with one CPU thread replace by a GPU thread (+GPU), compared
to the gcc-mkl data of Fig. A.3 (“Intel”)
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Resch, editors, High Performance Computing in Science and Engineering ’08, pages
71–82. Springer, Berlin, 2008.

[3] Matthias Vojta and Tobias Ulbricht. Magnetic excitations in a bond-centered stripe
phase: Spin waves far from the semi-classical limit. Phys. Rev. Lett., 93(12):127002–
127006, Sep 2004.

[4] Fabian H. L. Essler, Holger Frahm, Frank Göhmann, Andreas Klümper, and
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[67] Ákos Rapp, Gergely Zaránd, Carsten Honerkamp, and Walter Hofstetter. Color
superfluidity and “baryon” formation in ultracold fermions. Physical Review Letters,
98(16):160405, 2007.

[68] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, Hecker J.
Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne.
Precise determination of $li6$ cold collision parameters by radio-frequency spec-
troscopy on weakly bound molecules. Physical Review Letters, 94(10):103201+,
Mar 2005.

[69] T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim. Colli-
sional stability of a three-component degenerate fermi gas. Physical Review Letters,
101(20):203202+, 2008.

[70] Roland Assaraf, Patrick Azaria, Michel Caffarel, and Philippe Lecheminant. Metal-
insulator transition in the one-dimensional $su(n)$ hubbard model. Physical Review
B, 60(4):2299–2318, Jul 1999.

[71] Kazushige Goto and Robert Van De Geijn. High-performance implementation of
the level-3 blas. ACM Trans. Math. Softw., 35(1):1–14, 2008.

92



Revision: r875


	Title
	Contents
	Introduction
	Structure of the manuscript
	Publication list

	Methods: Theory
	One-dimensional models
	The tight-binding model
	The Hubbard model

	Time-evolution of a Gaussian potential
	Time-evolution of an additional electron
	Dynamical correlation functions
	Summary

	Methods: Simulation
	Exact diagonalisation
	The Density Matrix Renormalisation Group
	Infinite lattice algorithm
	Finite lattice algorithm

	Time development DMRG
	Full td-DMRG
	Adaptive td-DMRG

	Dynamical correlation functions: DMRG
	Summary

	Spin-charge separation
	Luttinger liquid
	Hubbard model in one dimension
	Observation of spin-charge separation
	Experimental evidence
	Numerical simulation evidence

	Spin-charge separation of one electron in the Hubbard model
	Non-interacting case
	Strongly interacting case
	Spin-charge separation in a transport setup

	Spectral function in the Hubbard model
	Spectral function
	Half-filled band
	Below half-filling
	Trapped Hubbard model

	Summary

	Spin polarisation
	Tracking spin and charge
	Spin imbalance: A closer look
	Summary

	SU(3) colour-charge separation
	Colour-charge separation in the Hubbard model
	Introduction to SU(3)
	Hubbard model
	Additional fermion
	Gaussian perturbation

	Summary

	Appendix
	Error analysis for time evolution with DMRG
	Towards numerics on graphics cards

	Bibliography

