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Introduction

The mathematical problem concerning scattering from a perfectly

conducting obstacle in an unbounded two-layered medium has been

approached by various authors using different methods. First and

foremost, there were the results by P.-M. Cutzach and C. Hazard [5]

in 1998: They were able to prove the existence and uniqueness of so-

lutions to the time-harmonic Maxwell’s equations in the two-layered

lossless setup and the Silver-Müller radiation condition by reduction

to a bounded scenario. This thesis presents several aspects regarding

the weak formulation of electromagnetic scattering by reduction to an

unbounded and dissipative half-space, such as a generalization to the

Lax–Milgram Lemma, singular weighted Sobolev spaces, and coerciv-

ity of the sesquilinear form for the three-dimensional problem using

a detailed analysis of the Calderon operator on an unbounded inter-

face. An alternate approach was published by A. Kirsch [17] in 2007,

cf. A. Kirsch and N. Grinberg [18] in 2008, without an artificial re-

duction of the domain using a new integral equation formulation.

The setup of a lossless half-space above a dissipative half-space with

an infinite interface has been accepted as a suitable description for the

medium in the discussion of the propagation of electromagnetic waves

in air and earth [26] with a modern application to mine detection [13].

Besides this direct application, which will be the model problem in

this text, the general approach presented here of using a Dirichlet-

to-Neumann or Calderon operator to mask a layer is fundamental to

rough surface scattering such as in [10, 7, 24] with its wide area of

applications.
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6 INTRODUCTION

The general approach of using a Calderon operator in a non-local

boundary condition for a weak formulation of unbounded electromag-

netic scattering problems for bounded obstacles was introduced by

A. Kirsch and P. Monk [19] in 1995. A reference for this general

approach is the very helpful book of P. Monk [26] from 2003 which

also discusses layered media following the line of P.-M. Cutzach and

C. Hazard [5], where the unbounded problem is reduced to a bounded

domain and important properties are deduced from the Green tensor.

Green tensors were also discussed by M. Petry [27] in 1993 for dis-

sipative multiple layers, and in two dimensions by J. Coyle [3] in

1998, cf. [4] in 2000, where he also considered the inverse problem for

which there are many recent results, such as F. Delbary et al. [11] in

2008, and already mentioned [13, 17, 18]. An alternative approach

to the layered medium using semigroups is presented in the book

by M. Cessenat [2] from 1996, and in the case of dissipative media,

C. H. Wilcox [33] obtained a coercive formulation in 1963.

Chapter 1 defines various concepts such as Sobolev spaces and trace

theorems as they are needed throughout this text, as well as an impor-

tant extension to the Lax-Milgram Lemma which presents new con-

ditions for coercivity that are shown to be applicable to the regarded

problems. Chapter 2 is devoted to the derivation of the mathematical

models with an analysis of the conditions which allow the reduction

to two-dimensional models. In Chapter 3, the two-dimensional prob-

lems are presented in the classical sense, and in weak formulations

reduced to an unbounded half-space using a non-local boundary con-

dition. They are proven to be uniquely solvable using the extended

Lax-Milgram Lemma, followed by regularity results, and an addi-

tional weak formulation proves exponential decay of the solutions.

Based on the observations in the derivation of two-dimensional mod-

els and the mapping properties of Dirichlet-to-Neumann maps, Chap-

ter 4 then introduces singular weighted Sobolev spaces with all prop-

erties necessary for the analysis of the non-local boundary condition

for the full three-dimensional Maxwell’s system. Chapter 5 presents

classical definitions of the full three-dimensional scattering problems
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and combines the traditional setup with the results of the previous

chapters to form the required framework. It introduces the Calderon

map on the unbounded interface and proves its mapping properties

using the weighted Sobolev spaces. The weak formulation is pre-

sented and proven to be coercive, and uniquely solvable, by detailed

analysis of the Calderon operator and the new conditions that were

introduced before. This text ends with regularity results that directly

follow from the coercivity of the sesquilinear form.

Finally, I would like to express my deepest gratitude to my advisor

Prof. Dr. Andreas Kirsch for guidance and helpful advice through-

out my doctoral work, and to PD Dr. Frank Hettlich for sharing

his thoughts and being the co-examiner of this thesis. I am much

obliged to Prof. Dr. Simon Chandler-Wilde and his colleagues at the

University of Reading for their support and hospitality during my

two visits in the past years. Special thanks go to all current and

former members of our workgroup, namely Dr. Tilo Arens, Monika

Behrens, PD Dr. Natalia Grinberg, Andreas Helfrich-Schkarbanenko,

Sven Heumann, Dr. Karsten Kremer, Dr. Armin Lechleiter, Dr. Wag-

ner Muniz, Kai Sandfort, Susanne Schmitt, and Dr. Henning Schon,

for their valuable help and fruitful discussions. Last but not least, it

is a pleasure to thank Dr. Carsten Brockmann for his linguistic ad-

vice and, of course, my wife Sabine for her endless patience, support,

and encouragement.





CHAPTER 1

Mathematical Foundations

1.1. Function Spaces

This part establishes notations and states results which will be needed

later. See [22, 32, 15] for proofs and further detail. Here, we use

the notation established by Schwartz [29], E(Rn) := C∞(Rn), to de-

note the space of infinitely continuously differentiable complex-valued

functions over Rn and the subspace D(Rn) := C∞
0 (Rn) of functions

which additionally have compact support. Corresponding spaces of

vector valued functions are denoted as E(R2,C2).

The topology and the concept of convergence on the Fréchet space

E(Rn), i.e., a complete, metrizable, locally convex topological vector

space, is based on the countable family of semi-norms

|u|E,α,β := sup
|x|≤α

∣∣∣∣∣

(
∂

∂x

)β
u(x)

∣∣∣∣∣ , α ∈ N, β ∈ Nn0

where convergence is defined as convergence with respect to all semi-

norms, or uniform convergence on all compact sets in Rn. The trans-

lation invariant metric

dE(Rn)(x, y) :=
∑

α,β

vα,β
|x− y|E,α,β

1 + |x− y|E,α,β

for some fixed positive sequence (vα,β)α∈N,β∈Nn
0
⊂ R>0 with converg-

ing sum defines the same concept of convergence and the correspond-

ing topology. Sequences in D(Rn) are convergent if there is a compact

set in which the supports of all elements are contained and the se-

quence converges in E(Rn).

9



10 1. MATHEMATICAL FOUNDATIONS

The Schwartz space of rapidly decreasing, C∞(Rn) functions is re-

ferred to by

S(Rn) := {u ∈ E(Rn) : |u|S,α,β <∞ for all α ∈ N0, β ∈ Nn0}
where |u|S,α,β := supx∈Rn |(1 + |x|)α

(
∂
∂x

)β
u(x)| .

This space with its semi-norms also is a Fréchet space and a corre-

sponding translation invariant metric on S(Rn) is given by

dS(Rn)(x, y) :=
∑

α,β

vα,β
|x− y|S,α,β

1 + |x− y|S,α,β
,

where (vα,β)α∈N0,β∈Nn
0
⊂ R>0 is a fixed positive sequence with con-

verging sum, which again defines the topology and convergence in

S(Rn).

Above spaces are contained in each other by D(Rn) ⊂ S(Rn) ⊂
E(Rn), and since they are metrizable, completion and continuity co-

incides with sequential completion and sequential continuity.

For each of these spaces we define their dual spaces of continuous

linear functionals D∗(Rn), S∗(Rn), E∗(Rn)1 equipped with the dual

or weak topology, which are contained in each other as E∗(Rn) ⊂
S∗(Rn) ⊂ D∗(Rn) as restrictions of the functionals to smaller func-

tion spaces. Of course, these spaces may also be defined on open

subsets D ⊂ Rn, such as D(D) or D∗(D), accordingly. Note, that

D∗(Rn) ⊂ D∗(D) since functions in D(D) may always be extended

by zero to functions in D(Rn).

Convergence in these dual spaces is defined as point-wise convergence,

and with respect to which they are complete, or, in other words, they

are weakly sequentially complete.

For functions and functionals from corresponding dual spaces, e.g.,

u ∈ S(Rn) and ϕ ∈ S∗(Rn), the bilinear dual pairing is denoted by

1In this text the notation E(R) is preferred to C∞(R) due to the notation E∗(R) for
its dual. All dual spaces are understood to be the spaces of continuous functionals,
there are no algebraic duals in this text.
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〈u, ϕ〉 = 〈ϕ, u〉 := ϕ(u) ∈ C, which we identify with

〈ϕ, u〉 =

∫

Rn

ϕ(t)u(t) dt = (ϕ, ū)L2(Rn)

when u ∈ S(Rn) and ϕ ∈ S(Rn) or ϕ ∈ L1(Rn).

We define the Fourier transform by

û(τ) = Fu(τ) :=
1

(2π)n/2

∫

Rn

u(t) e−i(τ ·t) dt , τ ∈ Rn

for n ∈ N. The transform and its inverse, are continuous linear

operators F : S(Rn) → S(Rn), F−1 : S(Rn) → S(Rn) and F :

L1(Rn) → BC(Rn). On the dual space S∗(Rn), the Fourier transform

is also continuous and continuously invertible, when defined using the

dual pairing, i.e. if ϕ ∈ S∗(Rn) and u ∈ S(Rn), then 〈Fϕ, u〉 :=

〈ϕ,Fu〉.

As the dual pairing is not sesquilinear, we have Fu on the right hand

side, which can be seen as an extension of the Fourier transform

to generalized functions, as far as the definition coincides with the

original definition for functions in S(Rn) or L1(Rn).

Based on the properties of the Fourier transform, we may introduce

the Bessel potential as a Fourier multiplier for functions in S(Rn):

Definition 1.1.1. (Bessel Potential)

J su := F−1(ψsû) , where ψs(τ) =
(
1 + |τ |2

)s/2
, s ∈ R, τ ∈ Rn

as a continuous and continuously invertible linear mapping

J s : S(Rn) → S(Rn) .

On dual spaces J s : S∗(Rn) → S∗(Rn) the mapping is defined by

the dual pairing: For ϕ ∈ S∗(Rn) and u ∈ S(Rn), let 〈J sϕ, u〉 :=

〈ϕ,J su〉.

Again, the latter definition may also be seen as an extension to

S∗(Rn), as the two definitions coincide for functions in S(Rn). This

leads to the



12 1. MATHEMATICAL FOUNDATIONS

Definition 1.1.2. (Sobolev Spaces)

Hs(Rn) := {u ∈ S∗(Rn) : J su ∈ L2(Rn)}, s ∈ R.

Using the natural scalar product (u, v)Hs(Rn) := (J su,J sv)L2(Rn)

and the induced norm ||u||2Hs(Rn) := (u, u)Hs(Rn) the spaces Hs(Rn)

are Hilbert spaces and this extends to Sobolev spaces on subsets,

most importantly based on Rn± and Γ denoting the upper and lower

half space Rn± := {x ∈ Rn : xn ≷ 0} and their associated boundary

line Γ = {x ∈ Rn : xn = 0}:

Definition 1.1.3. Let D ⊂ Rn and s ∈ R, then

Hs(D) := {u ∈ D∗(D) : u = U |D , for some U ∈ Hs(Rn)}.

The associated scalar product is defined with the help of a projection

operator, see [22], leading to ||u||Hs(D) = inf
U|D=u, U∈Hs(Rn)

||U ||Hs(Rn).

Note that the Bessel potential is self-adjoint with respect to the above

scalar products, so as an example for ϕ ∈ S∗(Rn) ∩Hs(Rn) and test

functions u ∈ S(Rn) it holds that (J sϕ, u)L2(Rn) = (ϕ,J su)L2(Rn).

Since the Sobolev spaces were defined using S∗(Rn), we have a con-

tinuous extension of the Fourier transform to these spaces.

1.2. Traces and Extensions

The existence of traces and estimates for them are very significant

for the derivation of weak formulations, in fact a large part of this

text is devoted to appropriate function spaces for the traces on the

unbounded interface. The general theory of Sobolev spaces and their

traces are thoroughly presented in the book of R. Adams and J.

Fournier [1] but succinct in the discussion of Bessel potentials where

this text follows the concepts of W. McLean [22] and W. Walter

[32]. The concept of traces goes hand in hand with the notion of

bounded extension of functions on boundaries or subsets to functions

in sets with appropriate regularity. In the following are some of the

results that will be needed later. The following theorem is a direct

consequence of the Lemma 3.35 from [22]:
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Theorem 1.2.1. (Trace Theorem) Let S be a strip S = {(x1, x2) ∈
R2 : −h < x2 < 0} and Γ = {(x1, x2) ∈ R2 : x2 = 0} be a boundary

line, then ||u||H1/2(Γ) ≤ CT ||u||H1(S) for some CT > 0.

A more general estimate is presented in the following Lemma which

shows that the trace is mainly dependent on the gradient of the func-

tion in the set. First, we regard an unbounded rectangluar shaped

set:

Lemma 1.2.2. Let I ⊆ R be a not necessarily bounded interval and

Γa = I×{a} the upper boundary of Da = I×(−∞, a) for some a ∈ R.

If u ∈ H1(Da), then for any ε > 0 there is an estimate

||u||2H1/2(Γa) ≤ ε||u||2L2(Da) +

(
C2

ε
+ C

)
||∇u||2L2(Da)

with some C > 0 independent of u and ε.

Proof. For this result it suffices to prove the estimate for u ∈
H1(Da) ∩ C∞

0 (Da) since C∞
0 (Da) is dense in H1(Da). Using the

estimate

|u(x1, x2)|2 = |u(x1, b)|2 +

∫ x2

b

∂

∂x2
|u(x1, t)|2 dt

= |u(x1, b)|2 + 2 Re

∫ x2

b

u(x1, t)
∂

∂x2
u(x1, t) dt

≤ |u(x1, b)|2

+2

√∫ x2

b

|u(x1, t)|2 dt
√∫ x2

b

| ∂
∂x2

u(x1, t)|2 dt

for fixed x1 ∈ I and since u(x1, b) → 0 for b→ −∞ we obtain

|u(x1, x2)|2 ≤ 2

√∫ x2

−∞
|u(x1, t)|2 dt

√∫ x2

−∞
| ∂
∂x2

u(x1, t)|2 dt .

By the estimate

0 ≤
(
√
δα−

√
β

δ

)2

= δα− 2
√
αβ +

β

δ
, i.e. 2

√
α
√
β ≤ δα+

β

δ
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this yields

|u(x1, x2)|2 ≤ δ

∫ x2

−∞
|u(x1, t)|2 dt+

1

δ

∫ x2

−∞
| ∂
∂x2

u(x1, t)|2 dt .

We integrate over the rectangle R = I × (a − h, a) of height h > 0

and gain

||u||2L2(R) ≤ hδ||u||2L2(Da)+
h

δ
|| ∂u
∂x2

||2L2(Da) ≤ hδ||u||2L2(Da)+
h

δ
||∇u||2L2(Da).

Since Γa is part of ∂R the Trace Theorem 1.2.1 finally yields

||u||2H1/2(Γa) ≤ C||u||2H1(Da) = C||u||2L2(Da) + C||∇u||2L2(Da)

≤ Chδ||u||2L2(Da) + (C + C
h

δ
)||∇u||2L2(Da) .

Choosing h = 1 and δ = ε
C results in the desired assertion. �

The next Lemma discusses a corresponding estimate for the H1-norm

on an arbitrary but bounded set.

Lemma 1.2.3. Let D ⊂ R2 be bounded and Γ ⊂ ∂D, then there exists

C > 0 such that

||u||2H1(D) ≤ C

(
ε||u||2L2(D) +

1

ε
||∇u||2L2(D) + |

∫

Γ

u ds|2
)

for all u ∈ H1(D) and ε ∈ (0, 1].

Proof. Otherwise there exists a sequence εj > 0, uj ∈ H1(D)

with

||uj ||2H1(D) > j

(
εj||uj ||2L2(D) +

1

εj
||∇uj ||2L2(D) + |

∫

Γ

uj ds|2
)

for all j ∈ N. We set ũj = 1
||uj ||H1(D)

uj . Then

1 > j

(
εj ||ũj||2L2(D) +

1

εj
||∇ũj ||2L2(D) + |

∫

Γ

ũj ds|2
)
, i.e.

1

j
> εj||ũj ||2L2(D) +

1

εj
||∇ũj ||2L2(D) + |

∫

Γ

ũj ds|2

≥ ||∇ũj ||2L2(D) + |
∫

Γ

ũj ds|2 .
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Thus ∇ũj → 0 and
∫
Γ ũj ds → 0. There exists a convergent subse-

quence ũjk → ũ, and as we have seen ∇ũ ≡ 0, so ũ is constant and

since
∫
Γ ũ ds = 0 it is zero which is a contradiction to the definition

of the sequence (ũj). �

Only with the help of above estimates and the Trace Theorem we

will be able to verify uniqueness of the weak problem by proving

coercivity of the sesquilinear form, called a, of the weak formulation

which will be introduced in Problems 3.3.1 and 3.3.2: The difficult

part will be to find an estimate to a(u, u) from below, because this

term does not only contain terms related to the norm of u, but also

terms of the trace of u which need to be estimated.

The detailed discussion of a(u, u) will show that the trace component

can be of opposite sign to the contribution of the L2 norm of u in the

lower half-space. Under some additional assumptions on the wave

number it is possible to estimate the contribution of the trace by the

L2 norm of u, and therefore disregard the perturbation by the trace

component and prove coercivity by the Lax Milgram Lemma 1.3.1.

But by virtue of Lemma 1.3.3 we will prove coercivity of the sesquilin-

ear form even without additional assumptions on the wave number.

This is made possible by the following estimate of the trace primarily

using the L2 norm of the gradient of u in D by combining above

results:

Lemma 1.2.4. Let D = R2
−\Ω̄ for a bounded Ω̄ ⊂ R2

−, u ∈ H1(D)

and ε ∈ (0, 1]. Then there exist C1, C2 > 0 independent of ε and u

such that

||u||2H1/2(Γ) ≤ C1

(
ε||u||2L2(D) +

(
C2

2

ε
+ C2

)
||∇u||2L2(D)

)

for Γ = {(x1, x2) ∈ R2 : x2 = 0}.

Proof. Choose I = (a1, a2) and h such that Ω̄ ⊂ I × (0, h). We

split D into four rectangles D1 = D∩ (I × (0, h)), D2 = I × (−∞, h),

D3 = (−∞, a1) × (−∞, 0), D4 = (a2,∞) × (−∞, 0) and with upper
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borders Γ1 = I × {0}, Γ2 = I × {h}, Γ3 = (−∞, a1) × {0} and

Γ4 = (a2,∞) × {0}.

D1

D2

D3 D4

Γ1

Γ2

Γ3 Γ4

Ω

We may apply Lemma 1.2.2 on set D2, as well as D3 and D4 later

on, yielding

||u||2H1/2(Γ2) ≤ ε||u||2L2(D2) +

(
C2

ε
+ C

)
||∇u||2L2(D2) .

Since |
∫
Γ2
u ds|2 ≤ ||u||2L2(Γ2)

≤ ||u||2
H1/2(Γ2)

, using Lemma 1.2.3 on

set D1 results in

||u||2H1(D1)
≤ C̃

(
ε||u||2L2(D1∪D2) +

(
C2

ε
+ C

)
||∇u||2L2(D1∪D2)

)

and by the Trace Theorem 1.2.1

||u||2H1/2(Γ1) ≤ CT C̃

(
ε||u||2L2(D1∪D2)

+

(
C2

ε
+ C

)
||∇u||2L2(D1∪D2)

)
.

Putting it all together we have

||u||2H1/2(Γ) = ||u||2H1/2(Γ1)
+ ||u||2H1/2(Γ3) + ||u||2H1/2(Γ4)

≤ C1

(
ε||u||2L2(D) +

(
C2

2

ε
+ C2

)
||∇u||2L2(D)

)
,

where C1 = max{1, CT C̃} and C2 the maximum value of the con-

stants C occurring for D2, D3 and D4. �
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1.3. Functional Analytic Results

Lemma 1.3.1. (Lax-Milgram) Let H be a Hilbert space, a ∈ H∗ and

b : H × H → C a sesquilinear function, which is continuous, i.e.,

there exists a constant C1 ∈ R such that for all u, v ∈ H

|b(u, v)| ≤ C1||u||H · ||v||H ,

and coercive, i.e., there exist ϕ ∈ R, C2 > 0 such that for all u ∈ H

Re
(
e−iϕb(u, u)

)
≥ C2||u||2H .

Then the equation

b(u, v) = a(v)

for all v ∈ H has a unique solution u ∈ H.

Proof. This proof follows [14] but has an extension for the

phase multiplication and restriction to the real part in the coercivity

condition.

By the Riesz representation theorem there exists a linear bounded

mapping T : H → H such that for all u, v ∈ H

e−iϕb(u, v) = (Tu, v)H and ||Tu||H ≤ C1||u||H .

By coercivity on the other hand, we have

C2||u||2H ≤ Re
(
e−iϕb(u, u)

)
= Re (Tu, u)H

≤ | (Tu, u)H | ≤ ||u||H · ||Tu||H .

This leads to C2||u||H ≤ ||Tu||H ≤ C1||u||H for all u ∈ H , which

implies that T is injective, has closed range and its inverse is bounded.

Let z ∈ H such that (Tu, z)H = 0 for all u ∈ H . Then (Tz, z)H =

e−iϕb(z, z) = 0 and therefore z = 0, and this yields that T maps onto

H . So T−1 is a bounded linear mapping on H . By Riesz there exists

a unique w ∈ H such that

e−iϕa(v) = (w, v)H
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for all v ∈ H . Then the unique solution is u = T−1w, as for all v ∈ H

e−iϕb(T−1w, v) = (w, v)H = e−iϕa(v) .

�

Remark 1.3.2. If the square of the norm of a Hilbert space H is

representable as the sum of two (or more) half norms such as ||u||2H =

|u|2A + |u|2B for all u ∈ H , then all bounded sesquilinear forms with

b(u, u) = ξ|u|2A + ζ|u|2B , ξ, ζ ∈ C\{0}

are coercive if ξ and ζ are on one side of a straight line through the

origin in the complex plane.

For two half norms this is the case if and only if arg ξ 6= arg(−ζ),
as then there exists an angle ϕ such that both Re(e−iϕξ) > 0 and

Re(e−iϕζ) > 0 and then

Re
(
e−iϕ b(u, u)

)
≥ min{Re(e−iϕξ),Re(e−iϕζ)} ||u||2H .

ζ

eiϕ

ξ

C

i

1

+
−

The optimal value of ϕ with respect to the largest coercivity constant

for the case |ξ| = |ζ| is given by the angle bisector between ξ and ζ:

ϕ =
1

2
Arg

(
ξ

ζ

)
+ Arg(ζ) ,

where Arg : C → (−π, π] denotes the principal value of the argument

to determine the angle bisector of the enclosed (or smaller) angle

between ξ and ζ. In general, any angle within the smaller angle of

the arguments of ξ and ζ will do.
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Of course the same concept holds if the bounded sesquilinear form

has additional summands which are all on one side of a straight line

through the origin. But it even applies to special cases, when an

additional summand is opposite in the complex plane to the factor

of the one semi-norm in the form, but is somehow bounded by the

other semi-norm:

Lemma 1.3.3. Consider a Hilbert space H with a norm || · ||H , the

square of which is representable as the sum of the squares of two half

norms | · |A and | · |B , so ||u||2H = |u|2A + |u|2B for all u ∈ H. Also, let

a be a bounded sesquilinear function such that

b(u, u) = ξ|u|2A − ξf(u) + ζ|u|2B, ξ, ζ ∈ C\{0}, arg ξ 6= arg(±ζ)

with f : H → R for which there is a constant D > 0 such that

f(u) ≤ D|u|2B for all u ∈ H. Then b is coercive, i.e., there exist

ϕ ∈ R and C > 0, such that

Re
(
e−iϕb(u, u)

)
≥ C

(
|u|2A + |u|2B

)
= C||u||2H .

Proof. Define ζ̃ = ζ −Dξ 6= 0 and consider

b̃(u) := b(u, u) + ξ
(
f(u) −D|u|2B

)
= ξ|u|2A + ζ̃|u|2B . (1.1)

ζ|u|2B

eiϕ

ξ|u|2A

C
i

1

−ξf(u) ζ̃|u|2B

Since ξ and ζ are linearly independent, the same is true for ξ and

ζ̃. As in remark 1.3.2 one thus can find ϕ with Re(e−iϕξ) > 0,

Re(e−iϕζ̃) > 0 and a constant C = min{Re(e−iϕξ),Re(e−iϕζ̃)} > 0

such that

Re
(
e−iϕb̃(u)

)
≥ C

(
|u|2A + |u|2B

)
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Due to the choice of ϕ we have Re(e−iϕξ) > 0, and therefore

Re
(
e−iϕb(u, u)

)
= Re

(
e−iϕb̃(u)

)
+ Re

(
e−iϕξ

) (
D|u|2B − f(u)

)

≥ Re
(
e−iϕb̃(u)

)
≥ C

(
|u|2A + |u|2B

)
.

Note, that

Re(e−ϕζ) = Re(e−ϕ(ζ̃ +Dξ)) = Re(e−iϕζ̃) +DRe(e−iϕξ) > 0 .

�

Conclusion 1.3.4. Let H be a Hilbert space with norm ||u||H , the

square of which is representable as the sum of the squares of two half

norms | · |A and | · |B, so ||u||2H = |u|2A + |u|2B for all u ∈ H . Let

a ∈ H∗ and b : H × H → C a continuous sesquilinear form which

has a representation

b(u, u) = ξ|u|2A + ζ|u|2B + g(u)

on its diagonal for some ξ, ζ ∈ C\{0}, arg ξ 6= arg(±ζ) and a complex

valued function g : H → C which is bounded by

|g(u)| ≤ D1|u|2A +D2|u|2B
for all u ∈ H with some D2 > 0 and 0 ≤ D1 < |ξ|, and its argument

is limited to the half circle

arg(g(u)) ∈ {arg(a1ξ + a2ζ) : a1 ∈ R2\{0}, a2 ≥ 0} .

Then the equation b(u, v) = a(v) for all v ∈ H has a unique solution

u ∈ H .

Proof. The function

b̃(u) = ξ

(
1 − D1

|ξ|

)

︸ ︷︷ ︸
>0

|u|2A +

(
ζ − ξ

D2

|ξ|

)
|u|2B

is “coercive” by the proof of Lemma 1.3.3 Equation 1.1 for f(u) =
D2

|ξ| |u|2B, i.e., there exists ϕ such that

Re
(
e−iϕb̃(u)

)
≥ C||u||2H .
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For such ϕ we have Re(e−iϕξ) ≥ 0 as well as Re(e−iϕζ) ≥ 0, as noted

above, and for g(u) = a1ξ + a2ζ, a1 6= 0, a2 ≥ 0,

Re
(
e−iϕg(u)

)
= Re(e−iϕa1ξ) + a2 Re(e−iϕζ)︸ ︷︷ ︸

≥0

≥ −|a1|Re(e−iϕξ)

≥ −Re

(
e−iϕ

ξ

|ξ| |g(u)|
)

≥ −Re

(
e−iϕD1

ξ

|ξ| |u|
2
A

)
− Re

(
e−iϕD2

ξ

|ξ| |u|
2
B

)
.

Accordingly,

Re
(
e−iϕb(u, u)

)
= Re

(
e−iϕ

(
ξ|u|2A + ζ|u|2B

))
+ Re

(
e−iϕg(u)

)

≥ Re
(
e−iϕã(u)

)
≥ C||u||2H ,

therefore the Lax-Milgram Lemma 1.3.1 is applicable. �

Remark 1.3.5. It should be mentioned that above conclusion, be-

sides additional summands, can be generalized to sesquilinear forms

with a diagonal

b(u, u) = fA(u) + fB(u) + g(u)

where fA(u) and fB(u) are generalizations in modulus and phase of

the squares of the half-norms |·|A and |·|B: There should be constants

nA, nB and NA, NB independent of u ∈ H such that

nA|u|2A ≤ |fA(u)| ≤ NA|u|2A , nB|u|2B ≤ |fB(u)| ≤ NB|u|2A ,

and the support of the arguments of fA and fB should be sufficiently

small intervals, such that the conditions on the arguments in above

conclusion are satisfied for any ξ ∈ arg(fA(H)) and ζ ∈ arg(fB(H))

at the same time. If finally |g(u)| ≤ D1|u|2A+D2|u|2B for some D2 > 0

and 0 ≤ D1 < nA, then the weak problem is uniquely solvable as well.





CHAPTER 2

Modeling

2.1. General Geometry

The considered geometry is a two-layered background medium with a

flat interface and a perfectly conducting scatterer buried in the lower

half-space. The upper half-space is assumed to be homogeneous and

lossless, while the lower half is dissipative. This geometry is a model

for scattering problems at an air–sand interface.

x1

x2

x3

2.2. Maxwell’s Equations

The electromagnetic fields are modeled by time dependent vector

functions in space, denoted by E and H, which represent the electric

and magnetic field intensities, and D and B, the electric displacement

and magnetic induction. These fields are put in relation to each other

by Maxwell’s equations:

curlE = −∂B
∂t , curlH = ∂D

∂t + J ,

divD = ρ , divB = 0 .

Here, ρ denotes the scalar electric charge density and J the electric

current density in space, which are in relation by divJ = −∂ρ
∂t if

charge is conserved.

23
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Following [26], in this text the fields E ,H,D,B,J and ρ are assumed

to be time harmonic with frequency ω, such as

E(x, t) = Re (exp(−iωt)E(x))

H(x, t) = Re (exp(−iωt)H(x)) ,

which leads to the time harmonic Maxwell’s equations:

curlE = iωB , curlH = −iωD + J

divD = ̺ , divB = 0 .

The next assumption is that we have linear isotropic materials, such

that D = εE and B = µH , where the electric permittivity ε and the

magnetic permeability µ are scalar valued functions of space, actu-

ally constant in two homogeneous half-spaces with the exception of

a perfectly conducting scattering object in the lower layer.

Also, we assume that Ohm’s law holds, and that there are no currents

applied, as then J = σE, where σ denotes the conductivity, which is

also assumed to be isotropic and constant in each layer.

Then, the remaining first-order Maxwell system is

curlE = iωµH , curlH = −iωεE + σE . (2.1)

Note that these two equations also include the divergence equations,

since ω, µ, ε > 0 and div J = iω̺ by charge conservation.

Elimination of E orH yields the two alternative second-order differen-

tial equations for the problem, which will both be discussed through-

out the text, as they result in differing boundary and transmission

conditions:

curl curlH = k2H , or curl curlE = k2E , (2.2)

where k2 := ω2εµ + iωσµ is the so called wave number. Be aware

that this is a slightly different definition as compared to [26], where

the material properties are proper functions in space.

Here, they are constant, in both the upper layer and the lower layer

by above assumptions, so we introduce the notation of two wave

numbers k+ and k− for the wave numbers of the upper and lower
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layer, just as generally in this text the index + and − correspond to

variables and fields of the upper or lower half-space.

Furthermore, we make the following approximations to the material

properties of the two layers representing air and soil, where µ0 and

ε0 represent the permeability and permittivity of free space:

Air : ε+ = ε0, σ+ = 0, µ+ = µ0

Soil : ε− = εrε0, σ− = σs > 0, µ− = µ0

For illustration, here are some approximate values for the physical

constants and properties, mainly taken from [30]:

ε0 ≈ 8.854 · 10−12 As

V m
, µ0 = 4π · 10−7 V s

Am

εr σs in
A

V m

air 1 0

wet ground 10 10−3

dry ground 5 10−5

fresh water 81 10−3

copper 1 6 · 10 7

Therefore, in this model

k2
+ = ω2ε0µ0

is a positive real number, and

k2
− = ω2εrε0µ0 + iωσsµ0 =

(
εr + i

σs
ωε0

)
k2
+ (2.3)

is a complex number with an argument of 0 < arg(k2
−) < π

2 .

The transmission conditions for a surface with normal n are given by

[n× E]± = [n×H ]± = 0 ,

which means that the tangential field components are continuous

across the boundary. In terms of the E and H fields alone, this
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results in the transmission conditions

[n× E]Γ = [n× curlE]Γ = 0 ,

as H = − i
ωµ0

curlE has no jump in the coefficients at the vicinity of

the interface Γ, and

[n×H ]Γ = [n× k2
∓curlH ]Γ = 0

by E = i
ωε±+iσ±

curlH and Equation (2.3). Since there is no elec-

trical field in a perfectly conducting object, this finally leads to the

boundary condition at a perfectly conducting scatterer Ω with normal

n at its boundary ∂Ω of

n× E|∂Ω = 0

or

n× curlH |∂Ω = 0

in terms of H .

2.3. Reduction to Two-Dimensional Models

In order to reduce the problem by one dimension, we assume that the

geometry is invariant in one coordinate direction.

x1

x2

x3

Please note the change in the spatial coordinate system in this section.

In three dimensions it is most common to have the soil at x3 = 0, in

two dimensions it is expected to be x2 = 0. In this, and only this

section, the latter is assumed to determine the differential equation

and boundary and transmission conditions for the two dimensional

setup.
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Let the geometry be invariant in the x3 coordinate axis. We apply

method of separation for the magnetic and electric field such as

E(x1, x2, x3) =




Ẽ1(x1, x2)Ψ1(x3)

Ẽ2(x1, x2)Ψ2(x3)

Ẽ3(x1, x2)Ψ3(x3)


 .

The divergence condition divE = 0 leads to
(
∂Ẽ1

∂x1
(x1, x2)

)
Ψ1(x3) +

(
∂Ẽ2

∂x2
(x1, x2)

)
Ψ2(x3)

+Ẽ3(x1, x2)Ψ′
3(x3) = 0 ,

this determines Ẽ3 once Ẽ1, Ẽ2, and Ψ are known. On the other hand,

the second order time harmonic Maxwell’s Equation (2.2), using the

divergence condition divE = 0 and noting that ∆E+k2E = 0, results

in:(
∂2Ẽ

∂x2
1

(x1, x2) +
∂2Ẽ

∂x2
2

(x1, x2)

)
Ψ(x3) + Ψ′′(x3)Ẽ(x1, x2)

+k2Ẽ(x1, x2)Ψ(x3) = 0

Since Ẽ(x1, x2) and Ψ(x3) are functions of independent variables, by

separation this results in two coupled differential equations:




∂2Ẽ
∂x2

1
(x1, x2) + ∂2Ẽ

∂x2
2
(x1, x2) + κ2Ẽ(x1, x2) = 0

Ψ′′(x3) − k2
ΨΨ(x3) = 0

κ2 − k2
Ψ = k2

The solutions to

Ψ′′(x3) = k2
ΨΨ(x3) (2.4)

are linear combinations of e±kΨx3 in each component. Although kΨ

may be any complex number, we will discuss later why only kΨ = 0

is considered. Until then, the wave number for the two dimensional

model will be denoted as κ2 = k2 + k2
Ψ.

So far, Ẽ and Ψ are two vector valued functions, but it turns out

that just two scalar functions are sufficient: To see this, we have to
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introduce an additional step of spatial decomposition. The represen-

tation of the electrical and magnetic fields, which we just separated

as functions of (x1, x2) and x3, are now represented as the sum of

tangential and normal parts with respect to p = (0, 0, 1)⊤, the so

called propagation direction,

E(x) =




E1(x)

E2(x)

0




︸ ︷︷ ︸
:=E⊥(x)

+




0

0

E3(x)




︸ ︷︷ ︸
:=E||(x)

,

H(x) =




H1(x)

H2(x)

0




︸ ︷︷ ︸
:=H⊥(x)

+




0

0

H3(x)




︸ ︷︷ ︸
:=H||(x)

.

By Maxwell’s equations (2.1) we then have

H(x) = − i

ωµ

(
curlE⊥(x) + curlE||(x)

)

= − i

ωµ







−∂E2

∂x3
(x)

∂E1

∂x3
(x)

∂E2

∂x1
(x) − ∂E1

∂x2
(x)


+




∂E3

∂x2
(x)

−∂E3

∂x1
(x)

0





 ,

E(x) =
1

σ − iωε

(
curlH⊥(x) + curlH||(x)

)

=
1

σ − iωε







−∂H2

∂x3
(x)

∂H1

∂x3
(x)

∂H2

∂x1
(x) − ∂H1

∂x2
(x)


+




∂H3

∂x2
(x)

−∂H3

∂x1
(x)

0





 ,

so the normal parts of the fields satisfy

H⊥(x) = − i

ωµ

(
∂

∂x3
(p× E⊥(x)) + curlE||(x)

)
,

E⊥(x) =
1

σ − iωε

(
∂

∂x3
(p×H⊥(x)) + curlH||(x)

)
.

Application of both formulae into each other, using (2.4) and

p× (p×H⊥(x)) = −H⊥(x)
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as well as

p× (p× E⊥(x)) = −E⊥(x)

is leading to

(1 +
k2
Ψ

k2
)H⊥(x) = − i

ωµ
curlE||(x) +

1

k2

∂

∂x3
(p×curlH||(x)) ,(2.5)

(1 +
k2
Ψ

k2
)E⊥(x) =

1

σ − iωε
curlH||(x) +

1

k2

∂

∂x3
(p×curlE||(x))(2.6)

where we see that under above assumptions the fields are completely

determined by the field components E|| and H|| in the direction of

propagation, if k2
Ψ 6= −k2. Therefore we may split the total field into

two components, the so called transverse electric (TE) mode defined

by H|| and the transverse magnetic (TM) mode defined by E||.

The nomenclature of the modes is based on the observation that for

example the electric field induced by H|| has only components in the

plane orthogonal (transverse) to the direction of propagation, see also

[16]. The circumstances under which the two modes may be treated

separately in this setup are discussed in the following:

2.3.1. Boundary and Transmission Conditions. To ana-

lyze the boundary and transmission condition let u represent the

transverse magnetic and v the transverse electric potential:

E||(x) =




0

0

u(x1, x2)ψu(x3)


 , H||(x) =




0

0

v(x1, x2)ψv(x3)


 .

Using (2.6) the total electric field intensity is then given by

E(x) =




1
κ2

(
iωµ ∂v

∂x2
(x1, x2)ψv(x3) + ∂u

∂x1
(x1, x2)ψ

′
u(x3)

)

1
κ2

(
−iωµ ∂v

∂x1
(x1, x2)ψv(x3) + ∂u

∂x2
(x1, x2)ψ

′
u(x3)

)

u(x1, x2)ψu(x3)


 .

Consider a perfectly conducting object Ω ⊂ R3
− with normal vector

n = (n1, n2, 0)⊤ and tangential τ = (−τ2, τ1, 0)⊤ at its boundary ∂Ω.
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To compute the boundary conditions for u and v we regard

n× E(x) =




n2u(x1, x2)ψu(x3)

−n1u(x1, x2)ψu(x3)
1
κ2

(
− ∂v
∂n (x1, x2)ψv(x3) + ∂u

∂τ (x1, x2)ψ
′
u(x3)

)




to satisfy n × E|∂Ω = 0: First of all, this leads to the boundary

condition u|∂Ω = 0, which implies ∂u
∂τ |∂Ω = 0. Therefore, the second

condition is ∂v
∂n |∂Ω = 0.

By equation (2.5) the total magnetic field intensity is

H(x) =




1
κ2

(
(σ − iωε) ∂u∂x2

(x1, x2)ψu(x3) + ∂v
∂x1

(x1, x2)ψ
′
v(x3)

)

1
κ2

(
−(σ − iωε) ∂u∂x1

(x1, x2)ψu(x3) + ∂v
∂x2

(x1, x2)ψ
′
v(x3)

)

v(x1, x2)ψv(x3)


 .

To discuss the transmission conditions for u and v at a surface Γ =

{x ∈ R3 : x2 = 0} with normal vector (0, 1, 0)⊤, mind the change of

spatial coordinates in this section, we compute




0

1

0


× E(x) =




u(x1, x2)ψu(x3)

0

− 1
κ2

(
iωµ ∂v

∂x2
(x1, x2)ψv(x3)

+ ∂u
∂x1

(x1, x2)ψ
′
u(x3)

)



,




0

1

0


×H(x) =




v(x1, x2)ψv(x3)

0

− 1
κ2

(
(σ − iωε) ∂u∂x2

(x1, x2)ψu(x3)

+ ∂v
∂x1

(x1, x2)ψ
′
v(x3)

)



.

It turns out that in contrast to the boundary conditions the trans-

mission conditions for u and v are not separable if ψ′
u or ψ′

v do not

vanish.

Thus, only due to the transmission condition in the regarded geome-

try, no separate discussion of the two modes will be possible if kΨ 6= 0.

Therefore, we set kΨ = 0 and ψu = ψv = 1 to uncouple the two

modes. Nevertheless, the general case of k2 6= κ2 is included in the

three dimensional setup, but of course with a bounded scatterer.
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In both modes, the fields are then expressed by scalar potentials

R2 → C, and Maxwell’s equations reduce to a Helmholtz equation

with corresponding transmission and boundary conditions dependent

on the mode, which are presented in detail in the following.

2.3.2. The Transverse Magnetic Mode. Let H||(x) = 0,

E||(x) = (0, 0, u(x1, x2))
⊤ and kΨ = 0 as discussed, then the elec-

tric field given by Equation (2.6) is

E(x) =




0

0

u(x1, x2)


 .

The boundary condition for u at a perfectly conducting object Ω with

outward normal n = (n1, n2, 0)⊤ is n× E|∂Ω = 0: As



n1

n2

0


×




0

0

u(x1, x2)


 =




n2u(x1, x2)

−n1u(x1, x2)

0


 ,

this results in u|∂Ω = 0, as seen before. The corresponding H field is

given by Equation (2.5) as

H(x) = − i

ωµ




∂u
∂x2

(x1, x2)

− ∂u
∂x1

(x1, x2)

0


 .

Therefore, the transmission conditions for u at a surface Γ = {x ∈
R3 : x2 = 0} with a normal vector (0, 1, 0)⊤ are







0

1

0


× E(x)




Γ

=







u(x1, x2)

0

0







Γ

= 0 ,







0

1

0


×H(x)




Γ

=



i

ωµ




0

0
∂u
∂x2

(x1, x2)







Γ

= 0 .
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Since µ+ = µ− = µ0, they reduce to

[u]Γ =

[
∂u

∂x2

]

Γ

= 0 .

Due to

curl curlE(x) =




0

0

−∂2u
∂x2

1
(x1, x2) − ∂2u

∂x2
2
(x1, x2)


 ,

Maxwell’s equation yields the Helmholtz equation for u : R2 → C in

the TM Mode:

∆u+ k2u = 0

2.3.3. The Transverse Electric Mode. Assume E||(x) = 0,

H||(x) = (0, 0, v(x1, x2))
⊤, and kΨ = 0. Then the magnetic field

given by equation (2.5) is

H(x) =




0

0

v(x1, x2)


 ,

and the corresponding field E is given by equation (2.6) as

E(x) =
1

σ − iωε




∂v
∂x2

(x1, x2)

− ∂v
∂x1

(x1, x2)

0


 .

The boundary condition for u at a perfectly conducting object Ω with

outward normal n = (n1, n2, 0)⊤ is n× E|∂Ω = 0: As



n1

n2

0


×




∂v
∂x2

(x1, x2)

− ∂v
∂x1

(x1, x2)

0


 =




0

0

− ∂v
∂n (x1, x2)




this results in ∂v
∂n |∂Ω = 0.
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The transmission conditions for u at a surface Γ = {x ∈ R3 : x2 = 0}
with a normal vector (0, 1, 0)⊤ are







0

1

0


×H(x)




Γ

=







v(x1, x2)

0

0







Γ

= 0 ,







0

1

0


× E(x)




Γ

=




1

σ± − iωε±




0

0
∂v
∂x2

(x1, x2)







Γ

= 0 .

Since −iωε0 k
2
+

k2
−

= (σ− − iε−ω)−1, by (2.3) they reduce to

[v]Γ =

[
k2
∓
∂v

∂x2

]

Γ

= 0 .

Due to

curl curlE(x) =




0

0

− ∂2v
∂x2

1
(x1, x2) − ∂2v

∂x2
2
(x1, x2)


 ,

Maxwell’s equation yields the Helmholtz equation for v : R2 → C in

the TM Mode:

∆v + k2v = 0

2.4. Radiation Conditions

The traditional radiation condition to characterize the physically rel-

evant solutions for Maxwell’s equations is the Silver-Müller radiation

condition:

Definition 2.4.1. A scattered field (E,H) satisfies the Silver-Müller

radiation condition, if the limit

lim
|x|→∞

(H × x− |x|E) = 0

holds uniformly in all directions x/|x|.

This condition is generally used for homogeneous media, but it also

applies to lossless two-layered media: P. M. Cutzach and C. Hazard
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[5] prove uniqueness when the Silver-Müller radiation condition is re-

quired in each layer separately. If one layer is dissipative F. Delbary

et al. [11] propose to demand the radiation condition for the loss-

less medium and an exponential decay condition in the dissipative

medium.

Definition 2.4.2. [11] A scattered field (E,H) satisfies the expo-

nential decay condition in a dissipative half space with wave number

k ∈ C if

|E(x)| + |H(x)| ≤M exp (−(Im k)|x|)
for some constant M > 0.

For solutions to Maxwell’s equations, the Silver-Müller radiation con-

dition is equivalent to the Sommerfeld radiation condition in the

Cartesian components [6], a standard radiation condition for Helm-

holtz problems:

Definition 2.4.3. A scattered field u satisfies the Sommerfeld ra-

diation condition in Rd, d = 2, 3 with respect to wave number k,

if

lim
r→∞

r
d−1
2

(
∂u

∂r
− iku

)
= 0 , r = |x|

uniformly in all directions x/|x|.

Again, this condition was traditionally used for homogeneous media,

but F. M. Odeh [23] was able to prove uniqueness of the Helmholtz

problem in lossless half-spaces when the Sommerfeld radiation con-

dition is required in each layer separately. In the case of one dis-

sipative layer, it was demonstrated by J. Coyle [3] that uniqueness

for the two-dimensional Helmholtz equation is established, when the

following radiation condition for R2 is used:

Definition 2.4.4. (cf. [3], Theorem 3.3.1) A scattered field u sat-

isfies the two-layer radiation condition, if u satisfies the Sommerfeld

radiation condition in the lossless layer, and

lim
r→∞

∫

Ωr

(
ū
∂u

∂ν
− u

∂ū

∂ν

)
ds = 0
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in the dissipative layer where Ωr is the part of the boundary ∂Br(0)

located in this layer.

In the lower half-space, this radiation condition seems considerably

than the Silver-Müller radiation condition for the two-layered medium

in the three-dimensional case and clearly the radiation condition of

exponential decay proposed by F. Delbary et al. [11]. Even the condi-

tion of integrability, as it is used later, turns out to be stronger. Yet

there is an even weaker condition for dissipative media proposed by

Chandler-Wilde and Ross in [9] that should be sufficient and is well

worth noting: It demands that the solution must not grow stronger

than exponentially as C exp(θ|x|), where θ < Im k−. This condition

is certainly met for bounded solutions.

Another more general radiation condition than the Sommerfeld radia-

tion condition is the upward propagating radiation condition (UPRC)

as proposed in [10]:

Definition 2.4.5. The function u : R2
+ → C satisfies the upward

propagating radiation condition (UPRC) in R2
+ if, for some h ≥ 0,

ϕ ∈ L∞(Γh) and Γh := {x ∈ R2 : x2 = h}, there holds

u(x) = 2

∫

Γh

∂Φ(x, y)

∂y2
ϕ(y) ds(y) , x ∈ R2 , x2 > h . (2.7)

Here, Φ(x, y) denotes the free-space Green’s function for the Helm-

holtz equation, and in two dimensions it is given by

Φ(x, y) =
i

4
H

(1)
0 (k+|x− y|) , x, y ∈ R2 , x 6= y ,

or for x2 > y2 in a plane-wave spectral representation also by

Φ(x, y) =
i

4π

∫

R

exp

(
i(x− y) ·

(
−τ1,

√
k2
+ − τ2

)⊤)

√
k2
+ − τ2

dτ , (2.8)

where the imaginary part of the square root is chosen to be non-

negative as generally throughout this text. This also ensures integra-

bility for large |τ |, and since the root singularity for τ around ±k+ is

sufficiently weak, this representation is well defined.
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In three dimensions the Green’s function is

Φ(x, y) =
1

4π

eik+|x−y|

|x− y| , x, y ∈ R3 , x 6= y ,

or, for x3 > y3, it is also representable by

Φ(x, y) =
i

8π2

∫

R2

exp

(
i(x− y) ·

(
−τ1,−τ2,

√
k2
+ − |τ |2

)⊤)

√
k2
+ − |τ |2

dτ .

(2.9)

You can find the details of derivation of above plane-wave spectral

representations, or Weyl representations, in [28].

The definition of the UPRC for two dimensions is well defined due to

the following estimates for the Hankel function. Also, these estimates

will be very important for the derivation of the Dirichlet-to-Neumann

operator and the Calderon operator.

Lemma 2.4.6. For x 6= y the following estimates for the fundamental

solution in two dimensions hold for some constants C1, C2 > 0 only

dependent on the wave number k+:
∣∣∣∣
∂Φ(x, y)

∂y2

∣∣∣∣ ≤ C1|x2 − y2|
(
|x− y|−2 + |x− y|−3/2

)

∣∣∣∣
∂2Φ(x, y)

∂x2 ∂y2

∣∣∣∣ ≤ C2(|x− y|−2 + |x2 − y2|2 |x− y|−5/2

+ |x1 − y1|2 |x− y|−7/2)

And, as functions of y1
∣∣∣∣
∂Φ(x, y)

∂y2

∣∣∣∣ ≤ C3 (1 + |y1|)−3/2 , (2.10)

∣∣∣∣
∂2Φ(x, y)

∂x2 ∂y2

∣∣∣∣ ≤ C4 (1 + |y1|)−3/2 , (2.11)

where the constants are dependent of the remaining variables

C3 = 23/4C1|x2 − y2|
(
1 + |x2 − y2|−2

)

·
(

1 − 1

1 + |x2 − y2|2
)− 3

4
(

1

2 + x2
1

)− 3
4

,
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C4 = 23/4 C2

(
1 + |x2 − y2|−2 + |x2 − y2|−1/2

)

·
(

1 − 1

1 + |x2 − y2|2
)− 7

4
(

1

2 + x2
1

)− 3
4

.

Proof. These estimates are based on the following asymptotic

behavior of the Hankel functions for small and large positive argu-

ments: For small z > 0

d

dz
H

(1)
0 (z) = −H(1)

1 (z) = O
(
z−1

)
,

d2

dz2
H

(1)
0 (z) = H

(1)
0 (z) − 1

z
H

(1)
1 (z) = O

(
z−2

)

and for large z → ∞ we have
∣∣∣∣
d

dz
H

(1)
0 (z)

∣∣∣∣ = O
(
z−1/2

)
,

∣∣∣∣
d2

dz2
H

(1)
0 (z)

∣∣∣∣ = O
(
z−1/2

)
.

Therefore,

∂Φ(x, y)

∂y2
=

ik+

4

d

dz
H

(1)
0 (k+|x− y|) y2 − x2

|x− y|

=





O
(

|x2−y2|
|x−y|2

)
if |x− y| → 0 ,

O
(

|x2−y2|
|x−y|3/2

)
if |x− y| → ∞

and

∂Φ(x, y)

∂x2 ∂y2
= − ik

2
+

4

d2

dz2
H

(1)
0 (k+|x− y|) (x2 − y2)

2

|x− y|2

− ik+

4

d

dz
H

(1)
0 (k+|x− y|) (x1 − y1)

2

|x− y|3

=





O
(

1
|x−y|2

)
if |x− y| → 0 ,

O
(

|x2−y2|2
|x−y|5/2 + |x1−y1|2

|x−y|7/2

)
if |x− y| → ∞ .

For the reduction to a function in y1 the following estimates were

used: First, |1 + y2
1 |−3/4 ≤ 23/4(1 + |y1|)−3/2 holds since

(
1 + y2

1

1 + 2|y1| + y2
1

)−3/4

=

(
1 +

2|y1|
y2
1 + 1

)3/4

≤ 23/4 .
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Then note, that the inequality |x1 − y1|2 ≥ 1
a (1 + y2

1) is fulfilled for

a > 0, if a(x1−y1)2−1−y2
1 = (

√
a− 1y1− a√

a−1
x1)

2− a
a−1x

2
1+a−1 ≥

0. This leads to the condition a − 2 + 1
a ≥ x2

1, which is satisfied by

a = 2 + x2
1. Next,

|x1 − y1|2 + |x2 − y2|2 ≥ min{1, |x2 − y2|2}(1 + |x1 − y1|2)

≥ |x2 − y2|2
1 + |x2 − y2|2

(1 + |x1 − y1|2)

=

(
1 − 1

1 + |x2 − y2|2
)

(1 + |x1 − y1|2)

and as |x − y|−2 ≤ |x2 − y2|−2 and (a + b) ≤ max{1, |a|}(1 + |b|) ≤
(1 + |a|)(1 + |b|) we finally gain

|x− y|−2 + |x− y|− 3
2 ≤

(
1 + |x2 − y2|−2

)(
1 − 1

1 + |x2 − y2|2
)− 3

4

·
(

1

2 + x2
1

)− 3
4

23/4(1 + |y1|)−
3
2 .

The second estimate follows accordingly, additionally using

|x2 − y2|2|x− y|−5/2 ≤ |x2 − y2|2 |x2 − y2|−5/2 = |x2 − y2|−1/2 .

�

Straightforward computations yield the corresponding estimates for

three dimensions:

Lemma 2.4.7. For x 6= y the following estimates for the fundamental

solution in three dimensions hold for some constants C1, C2 > 0 only

dependent on the wave number k+:
∣∣∣∣
∂Φ(x, y)

∂y3

∣∣∣∣ ≤ C1|x3 − y3| |x− y|−3

∣∣∣∣
∂2Φ(x, y)

∂x3 ∂y3

∣∣∣∣ ≤ C2(|x− y|−3 + |x3 − y3|2 |x− y|−5)
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Or, as functions of ỹ = (y1, y2)
⊤ and constants C3, C4 depending on

x ∈ R3, y3 ∈ R, x3 6= y3, and wave number k+:
∣∣∣∣
∂Φ(x, y)

∂y3

∣∣∣∣ ≤ C3 (1 + |ỹ|)−3

∣∣∣∣
∂2Φ(x, y)

∂x3 ∂y3

∣∣∣∣ ≤ C4 (1 + |ỹ|)−3

The choice of h in (2.7) is arbitrary and we may very well choose

h = 0, as the following Theorem will show:

Theorem 2.4.8. (cf. [10], Theorem 2.9) Given u : R2
+ → C, the

following statements are equivalent:

(1) u ∈ C2(R2
+), u ∈ L∞(Ea) for all Ea = {x ∈ R2

+ : 0 < x2 <

a}, a > 0, ∆u + k2
+u = 0 in R2

+ and u satisfies the UPRC,

Definition 2.4.5.

(2) u satisfies Equation (2.7) for h = 0 and some ϕ ∈ L∞(Γ).

(3) u ∈ L∞(Ea) for some a > 0 and u satisfies Equation (2.7)

for each h > 0 with ϕ = u|Γh
.

Please note that even if h = 0, Equation (2.7) is still only valid for

x2 > h. But since it is given as a double layer potential, it may be

extended continuously from above to x2 = 0 if ϕ is continuous.

2.5. Valid Incident Fields

For illustration, we present two examples of valid incident fields for

the TE mode: The Green’s function represents a point source field,

then the field of a plane wave in the two-layered medium is computed.

2.5.1. The Green’s Function for a Layered Medium. We

have seen that the fundamental solution of the Helmholtz equation

in free space can be expressed using its Fourier transform:

u(x) =
i

4
H

(1)
0 (k|x|) =

i

4π

∫ ∞

−∞

1√
k2 − t2

ei|x2|
√
k2−t2+ix1t dt

=
i

2π

∫ ∞

0

1√
k2 − t2

ei|x2|
√
k2−t2 cos(t|x1|) dt .
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This motivates an Ansatz for the Green’s function in the layered me-

dium for y2 < 0, as proposed by [25]:

G(x, y) =
i

2π

∫ ∞

0

cos(t|x1 − y1|)

·


 1√

k2
+ − t2

ei|x2−y2|
√
k2
−−t2

+ α(t)e−i(x2+y2)
√
k2
−−t2

]
dt for x2 < 0

and

G(x, y) =
i

2π

∫ ∞

0

cos(t|x1 − y1|)


 1√

k2
+ − t2

+ α(t)




· eix2

√
k2
+−t2−iy2

√
k2
−−t2 dt for x2 > 0

This approach is already continuous at x2 = 0, continuity of the

normal derivative is achieved for

α(t) =
1√

k2
− − t2

√
k2
− − t2 −

√
k2
+ − t2

√
k2
− − t2 +

√
k2
+ − t2

=
1√

k2
− − t2

k2
− − k2

+(√
k2
− − t2 +

√
k2
+ − t2

)2 .

An important property of this Green’s function in the lower layer was

proven in [3]:

Lemma 2.5.1. (cf. [3], Lemma 3.4.10)

Let both the source point x = (x1, x2)
⊤ and the observation point

y = (y1, y2)
⊤ be located in the dissipative layer R2

−, such that |y2| =

r sin(θ) and y1 = r cos(θ) for θ ∈ [0, π]. Then,

G(x, y) = o
(
e−Im(k−)r

)

as r → ∞ uniformly in θ.
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Furthermore it was shown that classical scattering solutions to the

two-layered medium problem satisfying the two-layer radiation con-

dition with an analytic incoming field, as it will be considered here,

can be bound by the Green’s function and will therefore be integrable

in the lower half-space.

For the derivation of the Green tensor for Maxwell’s equations, please

see [11, 5, 26, 27].

2.5.2. The Plane Wave in the Layered Medium. An in-

coming plane wave vi(x) = eik+(d·x) with direction d = (d1, d2),

d2 < 0, |d| = 1 in R2
+ will yield a plane wave reflection vr(x) =

reik+(d1x1−d2x2) in R2
+ and in R2

− a transmitted plane wave vi(x) =

teik−(e·x), |e| = 1, e2 < 0 with a reflection factor r ∈ C and a trans-

mission factor t ∈ C. Demanding continuity for

ui(x) =

{
vi(x) + vr(x) , x ∈ R2

+

vt(x) , x ∈ R2
−

at Γ illustrates the representation of the reflection and transmission,

as well as the equations 1+r = t and Snell’s law of refraction k−e1 =

k+d1. Therefore the direction of the transmitted plane wave is

e =


k+

k−
d1,−

√

1 −
(
k+

k−

)2

d2
1




⊤

.

Continuity of the normal derivative at Γ additionally yields k+d2 −
k+d2r = k−e2t. Using the conditions on the directions this results in

the linear system

t − r = 1√(
k−
k+

)
− d2

1 t − d2 r = −d2

with the solutions for the transmission and reflection factors

t =
2

1 − 1
d2

√(
k−
k+

)2

− d2
1

and r =
d2 +

√(
k−
k+

)2

− d2
1

d2 −
√(

k−
k+

)2

− d2
1

.





CHAPTER 3

Two-Dimensional Problems

In this chapter we will discuss the two-dimensional reductions of the

time-harmonic Maxwell’s equations. The two-layered space is de-

noted as R2 = R2
+ ∪ Γ ∪ R2

− with the interface Γ = R × {0} and

half-spaces R2
± := {(x1, x2) ∈ R2 : x2 ≷ 0}. In this setup we seek the

solution to the Helmholtz equation ∆u+k2
±u = 0 with wave numbers

k2 = k2
+ > 0 for x2 > 0 and k2

− ∈ C, arg k2
− ∈ (0, π2 ) for x2 < 0. A

bounded perfect electrically conducting obstacle Ω ⊂ R2
− is located

in the lower half-space, and dependent on the mode, the transmission

condition at the interface, and boundary condition on the obstacle

are given.

We will split the total field ut into the incoming field ui, which itself

is a solution to the Helmholtz equations in the two-layered space

without the scatterer Ω, and the scattering field u. As the problem

will be modeled by weak formulation, it is natural to discuss the fields

in Sobolev spaces. Finally, the radiation condition on u will ensure

physically relevant solutions to the problem; we will use the two-layer

radiation condition, Definition 2.4.4, discussed in [3], and the Upward

Propagating Radiation Condition (UPRC), Definition 2.4.5, which is

discussed in [10].

First the classical problems in the transverse electric (TE) and trans-

verse magnetic (TM) mode are defined on the whole plane, then cor-

responding weak formulations are presented on the reduced scenario

of a half plane with the help of a non-local Dirichlet-to-Neumann

boundary condition. By application of the Lax Milgram Lemma,

and the extensions presented before, we will then be able to prove

existence and uniqueness of the weak problems. Next, regularity of

43
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the weak solutions is shown and, finally, equivalence of the weak and

classical formulations for both modes with the additional condition

of integrability. Thanks to the results in [3] this additional condition

is negligible, as already the classical problem was uniquely solvable.

3.1. Classical Problem Definitions

In all following problem definitions the total field ut is the sum of

the assumed to be known incoming field ui and unknown scattering

field u. The incoming field is assumed to be a solution the Helmholtz

equation with transmission conditions, but does not necessarily need

to fulfill a radiation condition. The discussion of the physical model

in the previous chapter resulted in the boundary and transmission

conditions summarized below:

TM mode TE mode

Transmission [ut]Γ =
[
∂ut

∂x2

]
Γ

= 0 [ut]Γ =
[
k2
∓
∂ut

∂x2

]
Γ

= 0

Boundary ut|∂Ω = 0 ∂ut

∂n

∣∣∣
∂Ω

= 0

Since ui satisfies the transmission condition and ut = ui + u the

transmission and boundary conditions, we may now state the com-

plete problem definition of the first Dirichlet boundary value problem

(DBVP1) for the two dimensional TM mode setting:

Problem 3.1.1. (DBVP1) Given a bounded scatterer Ω ⊂ R2
− with

boundary ∂Ω ∈ C2 and an analytic incoming field ui defined on some

region G in the lower half plane around the scatterer, i.e. Ω̄ ⊂ G ⊂
R2

−, the problem is to find the scattering field

(i) u ∈ C2(R2\(Γ0 ∪ Ω̄)) ∩BC(R2\Ω) such that

(ii) ∆u+ k2
±u = 0 in R2

±,

(iii) u|∂Ω = −ui|∂Ω,

(iv) [u]Γ = [ ∂u∂x2
]Γ = 0 and

(v) u satisfies the two-layer radiation condition (Definition 2.4.4).

The corresponding definition for the TE mode is the first Neumann

boundary value problem:
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Problem 3.1.2. (NBVP1) Given a bounded scatterer Ω ⊂ R2
− with

boundary ∂Ω ∈ C2 and an analytic incoming field ui defined on some

region G in the lower half plane around the scatterer, i.e. Ω̄ ⊂ G ⊂
R2

−, the problem is to find the scattering field

(i) u ∈ C2(R2\(Γ0 ∪ Ω̄)) ∩BC(R2\Ω) such that

(ii) ∆u+ k2
±u = 0 in R2

±,

(iii) ∂u
∂n |∂Ω = −∂ui

∂n |∂Ω,

(iv) [u]Γ = [k2
∓
∂u
∂x2

]Γ = 0 and

(v) u satisfies the two-layer radiation condition (Definition 2.4.4).

See the following diagram for illustration of Problems 3.1.1 (DBVP1)

and 3.1.2 (NBVP1):

Ω

R2
+

R2
−

ui

u

Radiation
condition

Radiation
condition

k+ > 0

k− ∈ C

Re k2
− > 0

Im k2
− > 0

∆ut + k2ut = 0

ut = ui + u

TM: [ut]
Γ
=0,

h
∂ut

∂x2

i
Γ
=0

TE: [ut]Γ=0,
h
k2
∓

∂ut

∂x2

i

Γ
=0

TM: ut|∂Ω≡0

TE: ∂ut

∂ν |
∂Ω

≡0

Γ

3.2. The Dirichlet-to-Neumann Map

Both full space problems will now be transformed to corresponding

weak half-space problems using a Dirichlet-to-Neumann operator on

the interface. One can derive the map in the form of a Fourier mul-

tiplier:

Lemma 3.2.1. The Dirichlet-to-Neumann map

Λ : H1/2(R) → H−1/2(R)

Λ̂ϕ (τ) = i
√
k2 − τ2 ϕ̂(τ)
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is well defined and has an operator norm of ||Λ|| = max{1, |k|}. Note

that
√
k2 − τ2 := i

√
τ2 − k2 for k < |τ | and k > 0.

Remark 3.2.2. Note, that the Fourier transform in above Lemma

was defined for functions in Sobolev spaces in a distributional sense,

and that this map is not only linear, but also translation invariant

because it is in the form of a Fourier multiplier. This means that it

will commute with a difference quotient, as needed later. Also note

that if ϕ ∈ S(R), above definition corresponds to

Λϕ (t) =
i√
2π

∫

R

√
k2 − τ2 ϕ̂(τ) eiτt dτ .

Proof. By the definition of fractional order Sobolev spaces us-

ing Bessel potentials ψs(τ) =
(
1 + |τ |2

)s/2
and Parseval’s identity,

||Λϕ||2H−1/2(R) =

∫

R

∣∣∣ψ−1/2(τ) Λ̂ϕ(τ)
∣∣∣
2

dτ

=

∫

R

|k2 − τ2|
(1 + τ2)1/2

|ϕ̂(τ)|2 dτ

≤ max{1, |k|2}
∫

R

1 + τ2

(1 + τ2)1/2
|ϕ̂(τ)|2 dτ

= max{1, |k|2} ||ϕ||2H1/2(R) .

�

Remark 3.2.3. In the case of |k| > 1, the operator norm max{1, |k|}
is obtained for sequences of functions whose the support of the corre-

sponding Fourier transforms collapse to ±k, or, in the case of |k| ≤ 1,

the operator norm is obtained for sequences of functions whose sup-

port of Fourier transforms have lower bounds growing to infinity— in

both cases the sequences are vanishing if they are convergent.

The following Lemma establishes its fundamental property of map-

ping Dirichlet data onto Neumann data on Γ.
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Lemma 3.2.4. Let u be a solution to Problem 3.1.1 (DBVP1) with

boundary data u|Γ ∈ H1/2(R). Then the Dirichlet-to-Neumann oper-

ator Λ satisfies Λu|Γ = ∂u
∂x2

|Γ.

Proof. Since u is bounded and radiating, it will also satisfy the

(UPRC), and the solution u will take the representation

u(x) = 2

∫

R

∂Φ(x1, x2, y1, h)

∂y2
u(y1, h) dy1

for all x2 > h > 0 by Theorem 2.4.8 (3), which in this case extends to

h = 0 by dominated convergence as u is bounded and the constant C3

in (2.10) of Lemma 2.4.6 remains bounded for h→ 0. By exchanging

differentiation and integration, which is again justified by dominated

convergence since u is bounded and by the estimate (2.11) for Φ in

Lemma 2.4.6, the partial derivative of u with respect to x2 is given

by
∂u(x)

∂x2
= 2

∫

R

∂2Φ(x1, x2, y1, 0)

∂x2 ∂y2
u0(y1) dy1 ,

where u0(y1) := u(y1, 0). Using (2.8) we can compute the partial

derivatives for x2 > y2

∂Φ(x, y)

∂x2
= − 1

4π

∫

R

ei(x2−y2)
√
k2
+−τ2+i(x1−y1)τ dτ ,

∂2Φ(x, y)

∂x2 ∂y2
=

i

4π

∫

R

√
k2
+ − τ2 ei(x2−y2)

√
k2
+−τ2+i(x1−y1)τ dτ ,

both justified by dominated convergence, as the integrand is expo-

nentially decreasing for large |τ | since
√
k2
+ − τ2 := i

√
τ2 − k2

+ for

|τ | > |k+|. Therefore, we gain the following representation valid for

x2 > 0:

∂u(x)

∂x2
=

i

2π

∫

R

∫

R

u0(y1)
√
k2
+ − τ2 ·

eix2

√
k2
+−τ2+i(x1−y1)τ dτ dy1 (3.1)
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To justify the change of the order of integration regard some positive

increasing sequence (cn), i.e., cn → ∞ and cn+1 > cn > 0 for all

n ∈ N, and apply Fubini’s Theorem for fixed n as the absolute integral

over u is bound by
∫ cn

−cn
|u0(y1)|dy1 ≤ 2cn||u||∞

lim
n→∞

cn∫

−cn

∫

R

u0(y1)
√
k2
+ − τ2 eix2

√
k2
+−τ2+i(x1−y1)τ dτ dy1

= lim
n→∞

∫

R

cn∫

−cn

u0(y1)e
−iy1τ dy1

√
k2
+ − τ2 eix2

√
k2
+−τ2+ix1τ dτ .

The inner integral is a truncated Fourier transform and results in a

sequence of L2 functions converging to the Fourier transform in L2

sense, so that the sequence (fn)

fn(τ) :=

cn∫

−cn

u0(y1)e
−iy1τ dy1

√
k2
+ − τ2eix2

√
k2
+−τ2+ix1τ ∈ L1(R)

converges to f(τ) =
√

2π û0(τ)
√
k2
+ − τ2eix2

√
k2
+−τ2+ix1τ ∈ L1(R).

We may now choose (cn) (or a sub-sequence thereof) such that

||fn − f ||L1(R) < 2−n ,

and define

g = |f | +
∞∑

n=1

|fn − f |

which converges to an L1(R) function as ||g||L1(R) ≤ ||f ||L1(R) + 1 by

triangle inequality, which dominates the function sequence for all n.

Therefore the theorem of dominated convergence applies and

∂u(x)

∂x2
=

i√
2π

∫

R

û0(τ)
√
k2
+ − τ2eix2

√
k2
+−τ2+ix1τ dτ .

Since u0 is in H1/2(R) and therefore û0(τ)
√
k2
+ − τ2 in L2(R). Fi-

nally, we may now let x2 → 0 for the desired result

∂u(x1, 0)

∂x2
=

i√
2π

∫

R

û0(τ)
√
k2
+ − τ2eix1τ dτ .
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Note that this proof is closely related to the proof of Theorem 3.2 in

[7] which applies convergence results on Fourier transforms of convo-

lutions. �

So far we established the mapping properties of the Dirichlet-to-Neu-

mann map, and its relationship to classical solutions: As expected, it

maps Dirichlet trace data on Γ of a solution onto its Neumann trace.

Since this map will be pivotal for reduction to the half-space, the

next step is to derive properties of the mapping which will play an

important role to prove solvability and uniqueness of the solutions to

the weak formulation. The following property will be a key feature

in discussion of the sesquilinear forms throughout this text, and will

be illustrated below.

Lemma 3.2.5. For u ∈ H1(R2) the dual pairing

I =

∫

R

ū|Γ Λu|Γ dx1 satisfies Re I ≤ 0 and Im I ≥ 0 .

Proof.∫

R

ū|Γ Λu|Γ dx1 =

∫

R

̂̄u|Γ Λ̂u|Γ dt = i

∫

R

√
k2
+ − t2|û|Γ|2 dt

= i

∫

|t|<k+

√
k2
+ − t2|û|Γ|2 dt

−
∫

|t|>k+

√
t2 − k2

+|û|Γ|2 dt

�

Remark 3.2.6. This result can be seen as a phase property in the

frequency domain: In the right hand side of the equation in the proof,

we see that I can be expressed as the sum of two half norms of u with
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different complex factors:

I = i ||u||2L + (−1) ||u||2H , where

||u||2L =

∫

|t|<k+

√
k2
+ − t2|û|2 dt , and

||u||2H =

∫

|t|>k+

√
t2 − k2

+|û|2 dt .

This fits exactly into the setup of Lemma 1.3.3, for which we will

need to analyze the arguments or phases of the factors. To visualize

this analysis, the arguments are illustrated as arrows in the complex

plane, as you can see below:
∞∫

−∞
ūΛu dx1

|t|>k+
|t|<k+

The visualization of the two discrete phases of the factors −1 and i

in the expression for the term depending on the frequency domain

instead of the intermediate phase of the sum will be most useful

for the treatment of the Calderon operator. Please note that the

illustrations will show arg(k2
−) ≈ π

4 for clarity and simplicity, but of

course any permissible value for arg(k2
−) ∈ (0, π2 ) will yield the same

results.

3.3. Variational Approach

Since the lower half-space is dissipative, we may seek the solutions in

the Sobolev space H1 and formulate the weak problem definition:

Problem 3.3.1. (NBVP2) For D = R2
−\Ω̄ find u ∈ H1(D) such that

for all test functions ϕ ∈ H1(D) the equation bTE(u, ϕ) = aTE(ϕ)
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holds, where

bTE(u, ϕ) :=

∫

D

(
∇ϕ̄∇u− k2

−ϕ̄u
)
dx− k2

−
k2
+

∫

Γ

ϕ̄Λu ds ,

aTE(ϕ) :=

∫

∂Ω

ϕ̄
∂ui

∂ν
ds ,

and ui represents an analytic incoming field at least defined around

and on ∂Ω. Note, that the second integral of bTE exists in the sense

of dual pairing.

See this diagram for an illustration of Problem 3.3.1 (NBVP2):

Ω

R2
−

Γ

k− ∈ C

Re k2
− > 0

Im k2
− > 0

∂u
∂x2

|Γ =
k2
−

k2
+

Λ(u|Γ)

∂u
∂ν

∣∣
∂Ω

= −∂ui

∂ν

∣∣∣
∂Ω

u

∆u+ k2
−u = 0

Since the variational formulation cannot yield Dirichlet boundary con-

ditions natively, the idea is to express the solution as a sum us = u+g

using a function g which satisfies the boundary condition and to seek
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u with a homogeneous boundary condition on ∂Ω:

∆u+ k2
−u = −∆g − k2

−g in D

u = 0 on ∂Ω

Problem 3.3.2. (DBVP2) For D = R2
−\Ω̄ find u ∈ H1

0 (D), where

H1
0 (D) := {u ∈ H1(D) : u|∂Ω = 0}

such that for all test functions ϕ ∈ H1
0 (D) the equation bTM (u, ϕ) =

aTM (ϕ) holds, where

bTM(u, ϕ) :=

∫

D

(
∇ϕ̄∇u− k2

−ϕ̄u
)
dx−

∫

Γ

ϕ̄Λu ds

aTM(ϕ) := −
∫

G

(
∇ϕ̄∇g − k2

−ϕ̄g
)
ds ,

and G ⊂ R2
− is the support around ∂Ω of a smooth rapidly decaying

function g, for which g|∂Ω = −ui|∂Ω, and ui represents an analytic

incoming field at least defined on Ḡ. Note, that the second integral

of bTM exists in the sense of dual pairing.

This figure illustrates Problem 3.3.2 (DBVP2):

Ω

R2
−

Γ

k− ∈ C

Re k2
− > 0

Im k2
− > 0

∂u
∂x2

|Γ = Λ(u|Γ)

supp g = Gu|∂Ω ≡ 0

g|∂Ω ≡ −ui
∣∣
∂Ω

us

∆us + k2
−u

s = 0

us = u+ g
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3.4. Existence, Uniqueness, and Equivalence

Using the variational formulation we may now prove existence and

uniqueness of solutions of the variational problems. Since the varia-

tional and classical problems turn out to be equivalent this also proves

the unique solvability of classical problems. First, we discuss the TE

mode:

Lemma 3.4.1. The sesquilinear form bTE is bounded and coercive,

therefore the Problem 3.3.1 (NBVP2) is uniquely solvable for for all
∂ui

∂ν |∂Ω ∈ H−1/2(∂Ω).

Proof. Let u, v ∈ H1(D), then the sesquilinear form is bounded

by

bTE(u, v) ≤ ||∇u||L2(D)||∇v||L2(D)

+|k−|2 ||u||L2(D)||v||L2(D)

+
|k2

−|
k2
+

max{1, k+} ||u||H1/2(Γ)||v||H1/2(Γ)

≤ C ||u||H1(D)||v||H1(D)

for C = 1+ |k−|2 +C2
T |k2

−| min{1, k−1
+ }. Conclusion 1.3.4 then yields

coercivity and uniqueness: The expression

bTE(u, u) =

∫

D

(
|∇u|2 − k2

−|u|2
)
dx− k2

−
k2
+

∫

Γ

ūΛu ds

has three terms, and the phases are illustrated in the following dia-

gram:
∫
D

|∇u|2 dx −k2
−
∫
D

|u|2 dx −k2
−

k2
+

∫
Γ

ūΛu ds

|t|>k+

|t|<k+

The dashed line represents a coercivity line in the spirit of Lemma

1.3.3 and remember that we assumed arg k2
− ∈ (0, π/2) and the find-

ings of Remark 3.2.6.
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Since k2
− 6∈ R and

∣∣∣∣∣∣
k2
−
k2
+

∫

Γ

ūΛu ds

∣∣∣∣∣∣
≤
∣∣∣∣
k2
−
k2
+

∣∣∣∣max{1, k+} ||u||2H1/2(Γ) ,

which is bounded by ε||u||L2(D) and Cε ||∇u||2L2(D) for some Cε > 0

just as needed using Lemma 1.2.4, the conclusion is applicable and

therefore bTE is coercive. �

Remark 3.4.2. As mentioned earlier, we may prove coercivity di-

rectly if k+ is large: When max{1, k+} > C2
T is satisfied

||u||2L2(D) −

∣∣∣∣∣∣
1

k2
+

∫

Γ

ūΛu ds

∣∣∣∣∣∣
>

(
1 − C2

T

max{1, k+}

)
||u||2L2(D)

holds, and the Lax-Milgram Lemma 1.3.1 may be applied directly.

The equivalence of Problems 3.1.2 (NBVP1) and 3.3.1 (NBVP2) is

discussed in the following two Lemmata:

Lemma 3.4.3. The restriction u|D of a solution u to Problem 3.1.2

(NBVP1) with u|D ∈ H1(D) is a solution to Problem 3.3.1 (NBVP2).

Proof. Let u be a solution to (NBVP1) and u|D ∈ H1(D), then

u|Γ ∈ H1/2(Γ) by trace theorems, so Λu is well defined. By Green’s

theorem, Lemma 3.2.4, and test functions ϕ ∈ C∞
0 (R2) we have

0 = −
∫

D

(
∆uϕ̄+ k2

−uϕ̄
)
dx

=

∫

D

(
∇u∇ϕ̄− k2

−uϕ̄
)
dx− k2

−
k2
+

∫

Γ

ϕ̄Λu ds−
∫

∂Ω

ϕ̄
∂ui

∂ν
ds ,

thus u satisfies NBVP2, as the test function space is dense in H1(D).

�

The main part in proving the converse result will be to prove regular-

ity of the weak solution using the coercivity of the sesquilinear form

as in [22].
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Lemma 3.4.4. The extension v of a solution u to the Problem 3.3.1

(NBVP2) defined by

v(x) :=





2k2
−

k2
+

∫
R

∂Φ(x1,x2,y1,h)
∂y2

u(y1, 0) dy1 for x2 > 0

u(x) for x2 ∈ D̄

is a solution to Problem 3.1.2 (NBVP1).

Proof. We denote the difference quotient into the j-th coordi-

nate for functions in H1(D) as

(
∆h
j u
)

(x) :=
1

h
(u(x+ hej) − u(x)) ∈ H1(D) .

Since (∆h
j u, v)L2(Rn) = −(u,∆−h

j v)L2(Rn) for u, v ∈ L2(Rn), and Λ

commutes with the difference quotient ∆h
1∫

Γ

ϕ̄Λ∆h
1u ds =

i

h
√

2π

∫

R

ˆ̄ϕ(τ)
√
k2
+ − τ2(eihτ − 1)û(τ) dτ

=
i

h
√

2π

∫

R

ϕ̂(τ) (e−ihτ − 1)
√
k2
+ − τ2û(τ) dτ

= −
∫

Γ

∆−h
1 ϕΛu ds ,

as noted earlier for u, ϕ ∈ H1(D) in Remark 3.2.2, thus it holds that

bTE(∆h
1u, ϕ) = −bTE(u,∆−h

1 ϕ) = −aTE(∆−h
1 ϕ) (3.2)

for solutions u of (NBVP2).

Let u be a solution and f ∈ H2(D) denote a smooth rapidly decaying

function with compact support G around Ω̄, f |∂Ω = ui|∂Ω, ∂f
∂ν |∂Ω =

∂ui

∂ν |∂Ω, and satisfying the condition ||f ||H2(D) ≤ C||ui||H3/2(∂Ω), then

we are able to prove regularity of ũ := u− f , because it satisfies the

variational equation with the modified but bounded right hand side
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ãTE for all ϕ ∈ H1(D):

bTE(u− f, ϕ) = −
∫

∂Ω

ϕ̄
∂ui

∂ν
ds+

∫

G

(−∇ϕ̄∇f + k2
−ϕ̄f) dx

=

∫

G

ϕ̄(∆f + k2
−f) dx =: ãTE(ϕ) .

Therefore, Equation (3.2) holds for ũ,

bTE(∆h
1 ũ, ϕ) = −bTE(ũ,∆−h

1 ϕ) = −ãTE(∆−h
1 ϕ) ,

and by coercivity of bTE and estimation of the difference quotient

exploiting the compact support of f ,

C||∆h
1 ũ||2H1(D) ≤ |bTE(∆h

1 ũ,∆
h
1 ũ)|

≤ C2||∆−h
1 ũ||L2(D)||f ||H2(G) ≤ C2||ũ||H1(D)||f ||H2(D)

where C2 = max{1, |k2
−|} for all h > 0, and thus ∂

∂x1
ũ and ∂

∂x1
u are

in H1(D) by Theorem 3 in Chapter 5 in [12].

Since ũ satisfies bTE(ũ, ϕ) = ãTE(ϕ) for all ϕ ∈ H1(D), we may now

express the second weak derivative as a functional of ϕ:

−
∫

D

∂ϕ̄

∂x2

∂ũ

∂x2
dx =

∫

D

(
∂ϕ̄

∂x1

∂ũ

∂x1
− k2

−ϕ̄ũ) dx

− k2
−
k2
+

∫

Γ

ϕ̄Λũ ds− ãTE(ϕ)

= −
∫

D

(ϕ̄
∂2ũ

∂x2
1

+ k2
−ϕ̄ũ) dx

− k2
−
k2
+

∫

Γ

ϕ̄Λũ ds− ãTE(ϕ)

where the last equation is due to an integration by parts with respect

to the integral of x1 over R, where both ϕ and ũ and derivatives

vanish towards ±∞ due to their integrability.
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Thus ∂2ũ
∂x2

2
and ∂2u

∂x2
2

are in L2(D) by definition with bound

||∂
2ũ

∂x2
2

||L2(D) ≤ ||∂
2ũ

∂x2
1

||L2(D) + ||f ||H2(D)

+|k−|2
(
||ũ||L2(D) +

CT
k2
+

max{1, k+}||ũ||H1(D)

)
.

So u ∈ H2(D) ⊂ C(D), and by smoothness of ui and ∂Ω the same

argumentation extends to u ∈ C2(D), solving (NBVP1) in R2
−.

As a double layer potential in the upper half space with continuous

density u|Γ, also the extension v is twice continuously differentiable

and solving the (NBVP1) in R2
+, satisfying the transmission condition

as well. �

This concludes the discussion of the TE mode. Since the variational

problem is uniquely solvable and both the variational and classical

problems are equivalent, we have shown the unique solvability of the

classical problem. Next, we discuss the TM mode:

Lemma 3.4.5. The sesquilinear form bTM is bounded and coercive,

therefore the Problem 3.3.2 (DBVP2) is uniquely solvable for all

ui|∂Ω ∈ H1/2(∂Ω).

Proof. For u, v ∈ H1(D) the sesquilinear form is bounded by

bTM(u, v) ≤ ||∇u||L2(D)||∇v||L2(D)

+|k−|2 ||u||L2(D)||v||L2(D)

+ max{1, k+} ||u||H1/2(D)||v||H1/2(D)

≤ (1 + |k2
−| + C2

T max{1, k+}) ||u||H1(D)||v||H1(D) .

Conclusion 1.3.4 then yields coercivity and uniqueness:

The expression

bTM(u, u) =

∫

D

(
|∇u|2 − k2

−|u|2
)
dx−

∫

Γ

ūΛu ds ,
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has three terms, and the phases are illustrated in the following dia-

gram:u

∫
D

|∇u|2 dx −k2
−
∫
D

|u|2 dx −
∫
Γ

ūΛu ds

|t|>k+

|t|<k+

Since k2
− 6∈ R and

∣∣∣∣∣∣

∫

Γ

ūΛu ds

∣∣∣∣∣∣
≤ max{1, k2

+} ||u||2H1/2(Γ)

which is bound by ε||u||L2(D) and Cε||∇u||2L2(D) for some Cε > 0 as

needed, using Lemma 1.2.4, the conclusion is applicable and therefore

bTM is coercive. Note that in this case, one can apply Remark 1.3.2

directly, since the phase of the third term is inside the coercivity half

plane of the two semi-norms in the first two terms. �

The equivalence of Problems 3.1.1 (DBVP1) and 3.3.2 (DBVP2) is

discussed in the following two Lemmata: The first lemma proves that

an integrable classical solution will satisfy the weak formulation as

well. The second lemma proves regularity of weak solutions, and that

they therefore will be classical solutions as well.

Lemma 3.4.6. Let u be a solution of Problem 3.1.1 (DBVP1) with

u|D ∈ H1(D). Then u|D−g is a solution to Problem 3.3.2 (DBVP2).

Proof. Let u be a solution to (DBVP1) and g be smooth, rapidly

decreasing, with a support G around Ω̄ such that u|D − g ∈ H1
0 (D),

then u|Γ ∈ H1/2(Γ) by the trace theorem, so Λu is well defined.
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By Green’s theorem, Lemma 3.2.4, and test functions ϕ ∈ C∞(D),

ϕ|∂Ω = 0 we have

0 = −
∫

D

(
(∆u+ k2

−u)ϕ̄
)
dx

=

∫

D

(
∇(u − g)∇ϕ̄− k2

−(u− g)ϕ̄
)
dx−

∫

Γ

ϕ̄Λu ds

+

∫

G

(
∇ϕ̄∇g − k2

−ϕ̄g
)
dx ,

thus u satisfies (DBVP2) as the test function space is dense in H1
0 (D).

�

Lemma 3.4.7. The extension ũ of a solution u to Problem 3.3.2

(DBVP2) defined by

ũ(x) :=





2
∫
R

∂Φ(x1,x2,y1,h)
∂y2

u(y1, 0) dy1 for x2 > 0

u(x) for x2 ∈ D̄

is a solution to Problem 3.1.1 (DBVP1).

Proof. For u, ϕ ∈ H1
0 (D), it holds that

bTM(∆h
1u, ϕ) = −bTM(u,∆−h

1 ϕ) = −aTM(∆−h
1 ϕ)

for solutions u of (DBVP2).

By coercivity of bTM and estimation of the difference quotient

C||∆h
1u||2H1(D) ≤ |bTM(∆h

1u,∆
h
1u)|

≤ C2||∆−h
1 u||L2(D)||g||H2(G)

≤ C2||u||H1(D)||g||H2(D)

for all h > 0 and thus ∂
∂x1

u ∈ H1
0 (D).
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Since u satisfies bTM(u, ϕ) = aTM(ϕ) for all ϕ ∈ H1
0 (D), we may now

express the second weak derivative as a functional of ϕ:

−
∫

D

∂ϕ̄

∂x2

∂u

∂x2
dx =

∫

D

(
∂ϕ̄

∂x1

∂u

∂x1
− k2

−ϕ̄u) dx

−
∫

Γ

ϕ̄Λu ds− aTM(ϕ) ,

= −
∫

D

(ϕ̄
∂2u

∂x2
1

+ k2
−ϕ̄u) dx

−
∫

Γ

ϕ̄Λu ds− aTM(ϕ) ,

thus by definition ∂2u
∂x2

2
∈ L2(D) with bound

||∂
2u

∂x2
2

||L2(D) ≤ ||∂
2u

∂x2
1

||L2(D) + |k−|2||u||L2(D)

+CT max{1, k+}||u||H1(D) + ||g||H2(D) .

So u ∈ H2(D) ⊂ C(D), and by smoothness of ui and ∂Ω the same

argumentation extends to u ∈ C2(D), solving (DBVP1) in R2
−.

As a double layer potential with continuous density, also the extension

ũ is twice continuously differentiable and solving the (DBVP1) in R2
+,

satisfying the transmission condition as well. �

We have proven existence and uniqueness of solutions to the weak

problem formulations representing the TE and TM mode, and the

equivalence of the weak formulations to the classical formulations in

the whole space for solutions integrable in the lower half-space.

In [3] it was shown, that the classical problem as above is uniquely

solvable and the solution in the lower half-space was found to be

integrable by Lemma 2.5.1. So the radiation condition of H1 integra-

bility is no restriction to the statements. In fact, for x2 → −∞ we can

prove exponential decay of the solution using a coercive sesquilinear

form, as it will be shown in the following section. It should be noted

that the integrability condition is indeed stronger than the radiation
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condition of the two-layer radiation condition in the lower half space,

since

lim
r→∞

∣∣∣∣∣∣

∫

Ωr

(
ū
∂u

∂ν
− u

∂ū

∂ν

)
ds

∣∣∣∣∣∣
= 2 lim

r→∞

∣∣∣∣∣∣

∫

Ωr

Im

(
ū
∂u

∂ν

)
ds

∣∣∣∣∣∣

≤ 2 lim
r→∞

∫

Ωr

(
||u||2 + ||∇u||2

)
ds = 0

when Ωr = ∂Br(0)∩D is the half-circle with sufficiently large radius

r in the lower half-space and u ∈ H1(D) ∩ C(D).

3.5. Exponential Decay

We expect the solution to be exponentially decreasing in the −x2 co-

ordinate direction. This motivates the question whether it is possible

to include this assumption into the weak formulation without losing

coercivity.

Consider a smooth weight function ̺ : R2 → R>0 only dependent on

the second variable with ̺(·, 0) = 1, such as ̺(x) = e−ax2 . In the

TM case, we will show that a ̺ weighted solution exists by proving

coercivity of the resulting weighted sesquilinear form b̃.

Since ̺ is only dependent on the second variable ∂
∂x1

̺(x) = 0 holds,

and we compute the derivatives of the weighted functions u(x) =

̺(x)v(x) to be

∇u(x) = v(x)∇̺(x) + ̺(x)∇v(x)

and for ϕ(x) = φ(x)
̺(x) to be

∇ϕ(x) = −φ(x)
∇̺(x)
̺2(x)

+
∇φ(x)

̺(x)
.
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Now the ̺ weighted sesquilinear form in v and φ may be defined as

b̃TM(v, φ) := bTM(u, ϕ)

=

∫

D

[
(−φ̄∇̺

̺2
+

∇φ̄
̺

)(v∇̺ + ̺∇v) − k2
−φ̄v

]
dx

−
∫

Γ

φ̄Λv ds

=

∫

D

[
∇φ̄∇v +

∇̺
̺

(v∇φ̄ − φ̄∇v) − (
|∇̺|2
̺2

+ k2
−)φ̄v

]
dx

−
∫

Γ

φ̄Λv ds .

As we are expecting an exponential decay of the solution in the −x2

coordinate direction, from now on we will assume a weight function

of ̺(x) = e−ax2 , a > 0 and see that then ∇̺
̺ = −

(
0
a

)
.

Theorem 3.5.1. Let a < Im(k−), then the weighted sesquilinear form

b̃TM is coercive, that is, for

b̃TM(v, v) =

∫

D

[
|∇v|2 − 2i

(
0

a

)
Im(v∇v̄) − (a2 + k2

−)|v|2
]
dx

−
∫

Γ

v̄Λv ds

there exist constants C and α such that

Re
(
eiαb̃TM(v, v)

)
≥ C||v||2H1(D)

for all v ∈ H1(D).

Proof. Let k− = |k−|eiκ and || · || denote the L2-Norm on

D. Then κ ∈ (0, π4 ) by Equation 2.3. We will now show that

Re(eiαb̃TM(v, v)) > C(||∇v||2 + ||v||2) holds for α = π
2 − κ and

a < Im(k−). Note that for such α we have cos(α) = sin(κ) > 0

as well as sin(α) = cos(κ) > 0 and Re
(
(a2 + |k−|2ei2κ) · ei(

π
2 −κ)

)
=
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(sinκ)(a2 − |k−|2). Thus

Re
(
eiαb̃TM(v, v)

)
= (sinκ)||∇v||2 − (sinκ)(a2 − |k−|2)||v||2

+2a(cosκ)

∫

D

(
0

1

)
· Im(v∇v̄) dx+ r

where r = −Re(eiα
∫
Γ

v̄Λv ds) = −Re(eiα
∫
Γ

ūΛu ds) > 0 for chosen α

by Lemma 3.2.4. By Cauchy-Schwartz inequality, we have

|
∫

D

(
0

1

)
· Im(v∇v̄) dx| ≤ |

∫

D

(
0

1

)
· (v∇v̄) dx| ≤ ||v|| · ||∇v||

and an estimation into which we will introduce a parameter t ∈ R

and complete a square from the mixed term:

Re
(
eiαb̃TM(v, v)

)
≥ (sinκ)||∇v||2 − (sinκ)(a2 − |k−|2)||v||2

+2a(cosκ)||v|| · ||∇v|| + r

= (sinκ)||∇v||2 − (sinκ)(a2 − |k−|2)||v||2

+2 (ta(cosκ)||v||) ·
(

1

t
||∇v||

)
+ r

=

[
ta(cosκ)||v|| − 1

t
||∇v||

]2

+

(
sinκ− 1

t2

)
||∇v||2

−
(
t2a2 cos2 κ+ (sinκ)(a2 − |k−|2)

)
||v||2 + r

Now assuming 1
t2 = sinκ − ε, we have sinκ − 1

t2 = ε > 0 and it

remains to show the inequality

a2 cos2 κ+
1

t2
(sinκ)(a2 − |k−|2)

= a2 − (sin2 κ)|k−|2 − ε(sinκ)(a2 − |k−|2) < 0 ,

that is,

a2 < sin2 κ|k−|2 + ε(sinκ)(a2 − |k−|2)
= (Im(k−))

2
+ ε(sinκ)(a2 − |k−|2) ,
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which is fulfilled for

a < Im(k−) and ε =
1

2

(
a2 − (Im(k−))

2

sinκ(a2 − |k−|2)

)
.

�



CHAPTER 4

Distributions and Weighted Sobolev

Spaces

4.1. Motivation

As we have seen in Lemma 3.2.4, the Dirichlet-to-Neumann Map

Λ yields the normal derivative of the boundary data on Γ, that is

Λϕ := ∂u(x1,x2)
∂x2

|x2=0 of the solution u to the problem in the upper

half-space when the Dirichlet data ϕ on Γ is given. The mapping

properties on Sobolev spaces were discussed in Lemma 3.2.1— these

results were sufficient for two-dimensional problems but are lacking

for the spatial model:

The derivation of two-dimensional models showed that we had to

establish an additional condition to ensure separability of the TE

and TM mode. For discussion what will be needed in the general

case, let us assume for now that this condition is not satisfied, and

thus we have a coupled system of the two modes. This means that

we lose the freedom to express the problem in terms of either the

electric or magnetic field intensity to ensure that we only have to

deal with a Dirichlet-to-Neumann operator as we have done in the

TE and TM mode. Even in this simplified coupled system we will

already need both the Dirichlet-to-Neumann as well as its inverse, the

Neumann-to-Dirichlet operator. So it turns out that in the general

case of three dimensional Maxwell’s equations it will be necessary

to properly characterize the Neumann-to-Dirichlet operator and its

mapping properties:

In order to define the inverse mapping, we need to identify the im-

age set Λ
(
H1/2(R)

)
, which turns out to be a proper subspace of

65
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H−1/2(R), as e.g. the Fourier transform of the H−1/2(R) function

ψ(t) = exp(−t2/2) has no roots at ±k and is therefore not in the

image of the Dirichlet-to-Neumann mapping.

Example 4.1.1. Example plots of |Fu(τ)| and |FΛu(τ)|:
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This formal definition of the Neumann-to-Dirichlet mapping will help

to determine the image of Λ:

Definition 4.1.2. (Formal Neumann-to-Dirichlet)

Λ−1ψ (t) :=
1

i
√

2π

∫

R

ψ̂(τ)√
k2 − τ2

eiτt dτ

As expected, we see that the condition ψ ∈ H−1/2(R), or J−1/2ψ ∈
L2(R), is simply too weak due to the singularities at ±k. This is the

motivation to define a modified Bessel Potential similar to Definition

1.1.1:

Definition 4.1.3. (Modified Bessel k, α-Potential)

Let s, α < 2, k > 0, and n = 1 or n = 2, then for u ∈ S(Rn) we

define

J s
k,αu := F−1(ψsk,αû) ,

where ψsk,α(τ) :=
(
1 + |τ |2

) s
2

︸ ︷︷ ︸
=ψs(τ)

∣∣∣∣
1 + |τ |2
k2 − |τ |2

∣∣∣∣
α
2

, τ ∈ Rn ,

and û and F−1 denote the n-dimensional Fourier transform and in-

verse.

Note that ψsk,α has the same growth as ψs for large |τ |, and that this

definition is only valid for functions in S(R) in general under the ad-

ditional condition of α < 2 to ensure integrability of the potential at
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the singularity. Yet, this is just a formal definition and it is desirable

to gain the same mapping properties for S(R) and S∗(R) as for the

original Bessel Potential, but this is not necessarily the case:

Lemma 4.1.4. For α ∈ (−∞, 2), α 6= 0, the modified Bessel k, α-

Potential is a continuous linear operator

J s
k,α : S(R) → E(R) and J s

k,α (S(R)) 6⊆ S(R) .

Proof. Let u ∈ S(R), then we see for β ∈ N0 and q ∈ N,

q > (1 − α)/2
(
d

dt

)β (
J s
k,αu

)
(t) =

1√
2π

∫

R

(iτ)β(1 + τ2)
s+α

2 +qû(τ)︸ ︷︷ ︸
∈S(R)⊂BC(R)

· 1

|k2 − τ2|α/2(1 + τ2)q︸ ︷︷ ︸
∈L1(R)

· eiτtdτ ,

so
(
d
dt

)β J s
k,αu ∈ C(R) and therefore J s

k,αu ∈ E(R) = C∞(R).

For continuity, consider a sequence (un) ⊂ S(R) with un
S(R)−→ 0, so

(un) and all sequences of derivatives converge to 0 uniformly. Since

then ûn
S(R)−→ 0, it follows that J s

k,αu
E(R)−→ 0 as for all β ∈ N0 the

integral is bounded by the L1-Norm of the second factor and the

converging L∞-Norm of the first factor. Since S(R) is metrizable,

this proves continuity of J s
k,α as a mapping S(R) → E(R).

Now, if u(t) = e−t
2/2 ∈ S(R), then Ĵ s

k,αu (τ) = e−τ2/2

|k2−τ2|α/2 is certainly

not in S(R) for α 6= 0, and therefore J s
k,αu 6∈ S(R), since the Fourier

transforms of all functions in S(R) are in S(R). �

This lemma clarifies why the traditional test function space S(R) is

not sufficient. Still, it is possible to define the operator on generalized

function spaces, although this will prove to be of no use for the given

model:
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Definition 4.1.5. For α ∈ (−∞, 2)\{0} the Bessel k, α-Potential is

defined on distributions J s
k,α : E∗(R) → S∗(R), where

〈J s
k,αϕ, u〉S(R) := 〈ϕ,J s

k,αu︸ ︷︷ ︸
∈E(R)

〉E(R)

for u ∈ S(R) and ϕ ∈ E∗(R).

Remark 4.1.6. This definition for generalized functions in E∗(R) can

be seen as an extension of the definition for functions in S(R) in the

sense that they coincide for functions in both sets in the sense of

distributions: Let u ∈ S(R) ∩ E∗(R) and v ∈ S(R) any test function,

then by definition 4.1.3

〈J s
k,αϕ, v〉S(R) = (J s

k,αϕ, v̄)L2(R)

= (F J s
k,αϕ,F v̄)L2(R) = (ψsk,α Fϕ,F v̄)L2(R)

by Parseval’s theorem. As ψsk,α is real,

(ψsk,α Fϕ,F v̄)L2(R) = (Fϕ, ψsk,αF v̄)L2(R)

= (Fϕ,FJ s
k,αv̄)L2(R) = (ϕ,J s

k,αv̄)L2(R) ,

again by Parseval’s theorem. Now since ψsk,α is real and even,

J s
k,αv̄ = F−1ψsk,αF v̄ = Fψsk,αF−1v = F−1ψsk,αFv = J s

k,αv .

This finally leads to

(ϕ,J s
k,αv̄)L2(R) = 〈ϕ,J s

k,αv̄〉E(R) = 〈ϕ,J s
k,αv〉E(R) ,

which coincides with definition 4.1.5.

So based on the modified Bessel Potential and traditional test func-

tion spaces, at most, one might try to somehow define a space based

on the subset of generalized functions of E∗(R), the potentials of

which are in L2(R). But this is not advisable, as E∗(R) can be char-

acterized as the temperate distributions with essentially compact sup-

port ([22], Theorem 3.8), a somewhat less desirable property for the

treatment of electromagnetic fields on unbounded domains.
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4.2. A Modified Set of Test Functions

A reduced set of test functions will help extending the Bessel Potential

to more suitable function spaces:

Definition 4.2.1. For k > 0 and ̺k(τ) := |k2 − τ2|−1/2,

Sk(R) := {u ∈ S(R) : ̺kû ∈ S(R)} .

Example 4.2.2. Elements of S1(R): û(τ) = e
− τ2

arctan |τ2−1| and its first

and second derivative:
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The topology and convergence in this space is based on the conver-

gence of the Fourier transforms in S(R):

Definition 4.2.3. The topology of Sk(R) is defined by a countable

family of semi-norms

|u|Sk,α,β := |û|S,α,β + |̺kû|S,α,β .

This means a sequence (un) of functions un ∈ Sk(R) converges to 0

in Sk(R) if both sequences (ûn) and (̺kûn) converge to 0 in S(R).

This also defines un → u as (un − u) → 0 in Sk(R).

Lemma 4.2.4. Sk(R) is a Fréchet space.

Proof. Since the topology of Sk(R) is given by a countable fam-

ily of semi-norms, it is locally convex and metrizable, [15] 2 §4, [21]

§18 2.2, and sequential completeness implies topological complete-

ness, [31] Proposition 8.2.

Consider a Cauchy sequence (un) ⊂ Sk(R). Then the sequences (ûn)

and (̺k ûn) are Cauchy sequences in S(R) and have limits therein.

As the multiplication with ̺k is continuous, the limit of the latter

sequence is ̺k û and by continuity of the Fourier transform the limit

u ∈ Sk(R). Thus Sk(R) is complete and therefore a Fréchet space. �
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The following technical lemmata will be needed to show that Fourier

transforms of functions in this space are rapidly decreasing at ±k.

Lemma 4.2.5. If u, v ∈ C∞(−ε, ε) where v(t) = |t|−1/2u(t), then u,

v and all derivatives of u and v vanish at 0.

Proof. Let f(t) := u2(t) and g(t) := v2(t). Then also f, g ∈
C∞(−ε, ε) and f(t) = |t|g(t), or f(t) = t g(t) for t ≥ 0 and f(t) =

−t g(t) for t ≤ 0. Of course, f(0) = 0 and

f ′(t) =

{
g(t) + t g′(t) for t > 0,

−g(t) − t g′(t) for t < 0 .

Thus by continuity of the derivative, f ′(0) = g(0) = −g(0), thus

f ′(0) = 0 and g(0) = 0. Now let n ∈ N, then, by induction,

f (n)(t) =

{
n g(n−1)(t) + t g(n)(t) for t > 0,

−n g(n−1)(t) − t g(n)(t) for t < 0

and therefore, by continuity of the derivatives,

f (n)(0) = n g(n−1)(0) = −n g(n−1)(0)

and g(n−1)(0) = 0, so f and g and all their derivatives vanish at 0.

This carries over to u and v by induction:

For n = 0, we have u2(0) = f(0) = 0. Now let n ∈ N and u(k)(0) = 0

for k = 0, . . . , n − 1. By iterated product rule on f(t) = u(t) · u(t),
we have

0 = f (2n)(0) =

2n∑

k=0

(
2n

k

)
u(k)(0) · u(2n−k)(0) =

(
2n

n

)(
u(n)(0)

)2

,

as all other summands contain u(k)(0) for k < n. Therefore u(n)(0) =

0 and the same holds for v. �

Lemma 4.2.6. If u ∈ C∞(−ε, ε) and u and all its derivatives vanish

at 0, then for all l ∈ R the functions

vl(t) :=

{
|t|lu(t) for t 6= 0

0 for t = 0

are in C∞(−ε, ε) with v
(n)
l (0) = 0 for n ∈ N.
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Proof. As vl are compositions of smooth functions, it holds that

vl ∈ C∞ ((−ε, ε)\{0}). For the case l ≥ 0, the functions vl are clearly

continuous at 0. If l < 0, choose n ∈ N such that −l < n, then by

Taylor theorem for u at t0 = 0 and u(k)(0) = 0:

u(t) =
1

n!

t∫

0

(s− t)n u(n+1)(s) ds

=
tn

n!

t∫

0

(s
t
− 1
)n

u(n+1)(s) ds

=
tn+1

n!

1∫

0

(τ − 1)
n
u(n+1)(τt) dτ , by s = τt.

Therefore, vl is continuous at t = 0:

lim
t→0

∣∣|t|lu(t)
∣∣ = lim

t→0

∣∣∣∣∣∣∣∣

|t|l+n+1

n!︸ ︷︷ ︸
→0

1∫

0

(τ − 1)
n
u(n+1)(τt) dτ

∣∣∣∣∣∣∣∣
= 0 .

Now, for all n ∈ N the derivatives v
(n)
l of vl for t 6= 0 are finite

sums of functions of the same type as vl. Each of the summands

is continuous and vanishes at 0 and therefore v
(n)
l is continuous and

vanishes at t = 0 as well. �

Proposition 4.2.7.

(i) Sk(R) = {u ∈ S(R) : û(n)(±k) = 0 for all n ∈ N0}
(ii) Sk(R) = {u ∈ S(R) : ̺k,αû ∈ S(R) for all α ∈ R},

where ̺k,α(τ) := |k2 − τ2|α/2

Proof. (ii) ⇒ Definition: Obviously the condition in (ii) im-

plies the condition of Definition 4.2.1 for α = −1 as ̺k,−1 = ̺k.

Definition ⇒ (i): On the other hand, the condition presented in (i)

follows from Definition 4.2.1, where we have û ∈ S(R) ⊂ E(R) and

̺kû ∈ S(R) ⊂ E(R). As |k2 − τ2|−1/2 = |k + τ |−1/2 · |k − τ |−1/2,

we may apply Lemma 4.2.5 on neighborhoods around ±k to prove
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that the Fourier transform and all of its derivatives vanish at ±k, as

stated in (i).

(i) ⇒ (ii): Now, the condition in (i) yields ̺k,αû ∈ E(R) by Lemma

4.2.6 on neighborhoods around ±k for any α ∈ R. For any α ∈ R, the

factor |k2−τ2|α/2 and all its derivatives are at most slowly increasing

and therefore the product ̺k,αû still is rapidly decreasing and thus

̺k,αû ∈ S(R). �

The following lemma will help in the discussion of continuity of the

Bessel k, α-Potential.

Lemma 4.2.8. Let p ∈ N0. If (un) ⊂ Cp+1(−ε, ε) with

0 = un(0) = u′n(0) = · · · = u(p)
n (0)

for all n ∈ N and lim
n→∞

||u(p+1)
n ||∞ = 0 then lim

n→∞
||vn||∞ = 0 where

vn(t) = un(t)
|t|p+1 .

Proof. By Taylor’s theorem

|t|p+1 vn(t) = un(t) =

p∑

k=0

tk

k!
u(k)
n (0)

︸ ︷︷ ︸
=0

+
tp+1

(p+ 1)!
u(p+1)
n (τ)

for some τ ∈ (−ε, ε) and therefore ||vn||∞ ≤ 1
(p+1)! ||u

(p+1)
n ||∞. �

Theorem 4.2.9. For α, s ∈ R, the Bessel k, α-Potential

J s
k,α : Sk(R) → Sk(R)

u 7→ F−1(ψsk,αû) ,

where ψsk,α(τ) = (1 + τ2)
s
2

∣∣∣ 1+τ2

k2−τ2

∣∣∣
α
2

, is well defined and continuous.

The continuous inverse of J s
k,α is J −s

k,−α.

Proof. Let u ∈ Sk(R), then ̺k,αû ∈ S(R) by proposition 4.2.7

and therefore

ψsk,α û = ψs+α ̺k,αû︸ ︷︷ ︸
∈S(R)

∈ S(R) ,
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where ψs+α(τ) = (1 + τ2)(s+α)/2 denotes the traditional Bessel po-

tential from definition 1.1.1, so F−1ψsk,αû ∈ S(R) is well defined, and

J s
k,α a linear operator Sk(R) → S(R). As additionally

̺k ψ
s
k,α û = ψs+α ̺k,α+ 1

2
û

︸ ︷︷ ︸
∈S(R)

∈ S(R) ,

we have J s
k,αu = F−1ψsk,αû ∈ Sk(R).

Since J s
k,αu is well defined for k, α ∈ R and u ∈ Sk(R), so is

J −s
k,−α

(
J s
k,αu

)
︸ ︷︷ ︸
∈Sk(R)

= u

and therefore
(
J s
k,α

)−1

= J −s
k,−α.

Consider a sequence (un) ⊂ Sk(R) with un
Sk(R)−→ 0. To prove con-

tinuity of J s
k,α, we have to verify that this implies J s

k,αun
Sk(R)−→ 0.

Since J sun
S(R)−→ 0, it is sufficient to discuss uniform convergence of

all derivatives of (Ĵ s
k,αun) and (̺kĴ s

k,αun) around ±k, or equivalently,

uniform convergence of all derivatives of (̺k,−αûn) and (̺k,−α−1, ûn)

in fixed small neighborhoods of ±k if −α− 1 is negative at all. The

derivatives are finite sums of functions which are bounded by func-

tions as discussed in Lemma 4.2.8 for p > α+1
2 and higher, and be-

cause of this they will all converge uniformly to zero. �

Remark 4.2.10. The Bessel k, α Potential is self-adjoint with respect

to the L2 scalar product, i.e., for any u, v ∈ Sk(R) we have

(J s
k,αu, v)L2 = (u,J s

k,αv)L2 .

This is an effect of the definition as a multiplication with a real valued

multiplier in Fourier space.

Definition 4.2.11. S∗
k (R) denotes the dual space of continuous linear

functionals on Sk(R).

Lemma 4.2.12. S∗
k(R) is weakly sequentially complete, i.e., a sequence

(ϕn) ⊂ S∗
k (R) of linear functionals such that (ϕn(u)) converges in C

for any u ∈ Sk(R) is convergent in S∗
k (R).



74 4. DISTRIBUTIONS AND WEIGHTED SOBOLEV SPACES

Proof. Since Sk(R) is a Fréchet space, it is barreled by Baire’s

Theorem, and thus such sequences of continuous functionals are con-

vergent to a continuous linear form on Sk(R), [15] 3 §6 Proposition

5 and Corollary. See also the proofs for D∗(R) and S∗(R) in [32] §4,

II and §11, VII. �

Definition 4.2.13. The Bessel k, α-Potential has a natural continu-

ous extension J s
k,α : S∗

k (R) → S∗
k (R), where

〈J s
k,αϕ, u〉 := 〈ϕ, J s

k,αu︸ ︷︷ ︸
∈Sk(R)

〉 for ϕ ∈ S∗
k (R), u ∈ Sk(R).

Remark 4.2.14. Again, this definition really is an extension because

J s
k,α is self-adjoint and its Fourier multiplier is real: For ϕ ∈ S∗

k(R)∩
Sk(R) and u ∈ Sk(R) we identify the dual pairing with the L2(R)

scalar product,

〈J s
k,αϕ, u〉 = (J s

k,αϕ, ū)L2(R) = (ϕ,J s
k,αū)L2(R) = 〈ϕ,J s

k,αu〉

and this coincides with the above definition.

4.3. Weighted Sobolev Spaces

Now weighted Sobolev spaces may be defined using the modified

Bessel k, α-Potential:

Definition 4.3.1. For s ∈ R, α ∈ R and k > 0, let

Hs
k,α(R) := {ϕ ∈ S∗

k(R) : J s
k,α ϕ ∈ L2(R)} .

Remark 4.3.2. We equip this space with the inner product

(ϕ, ψ)Hs
k,α(R) := (J s

k,αϕ,J s
k,αψ)L2(R)

and the induced norm

||ϕ||2Hs
k,α(R) := (ϕ,ϕ)Hs

k,α
(R) .

The necessary properties of the inner product directly follow from the

inner product in L2(R). Since J s
k,0 = J s, the spaces Hs

k,0(R) and

Hs(R) coincide in the sense which will be discussed in Lemma 4.3.4.

Note that an increasing α denotes additional regularity.
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Theorem 4.3.3. Hs
k,α(R) is a Hilbert space.

Proof. It remains to prove completeness: Consider a Cauchy se-

quence (ϕn) ⊂ Hs
k,α(R). Since L2(R) is complete, the L2(R) Cauchy

sequence (J s
k,αϕn) converges to a function y ∈ L2(R). Let u ∈ Sk(R)

be an arbitrary test function, then the sequence
(
(J s

k,αϕn, u)L2(R)

)
,

which is the same complex valued sequence as
(
(ϕn,J s

k,αu)L2(R)

)
,

will converge to (y, u)L2 . Since u was arbitrary and J s
k,αu ∈ Sk(R),

the sequence (ϕn) will converge to ϕ ∈ S∗
k(R) by Lemma 4.2.12, for

which for all u ∈ Sk(R)

(ϕ,J s
k,αu)L2(R) = (J s

k,αϕ, u)L2(R) = (y, u)L2(R) .

Therefore, y = J s
k,αϕ with respect to the test function space, and

thus ϕ ∈ Hs
k,α(R), as y = J s

k.αϕ ∈ L2(R). �

Lemma 4.3.4. If α > 0, s ∈ R,

Hs
k,α(R) ⊂ Hs(R)

and ||u||Hs(R) ≤ max{1, kα} ||u||Hs
k,α(R) for all u ∈ Hs

k,α(R).

Proof. This relationship is not as obvious as it seems, because

S∗
k(R) ⊃ S∗(R). Thus a distribution u ∈ S∗

k(R) itself may not have

a meaning in S∗(R). But as J s
k,αu ∈ L2(R) for u ∈ Hs

k,α(R), we may

define

v := J 0
k,−α J s

k,αu︸ ︷︷ ︸
∈L2(R)

= F−1ψ0
k,−αĴ s

k,αu ∈ L2(R) ,

since the Fourier multiplier ψ0
k,−α(τ) =

∣∣∣k2−τ2

1+τ2

∣∣∣
α/2

is an L∞(R) func-

tion for α ≥ 0 with ||ψ0
k,−α||L∞(R) = max{1, kα}.

This defines a continuous linear functional ϑ : S(R) → C by

ϑ(f) := (J −sf︸ ︷︷ ︸
∈S(R)

, v̄)L2(R) , f ∈ S(R) ,

which coincides with u as functionals on Sk(R): For f ∈ Sk(R),

ϑ(f) = (J −sf, v̄)L2(R) = 〈J −sf,J su〉Sk(R) = 〈f, u〉Sk(R) = u(f) .
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This extends u to a functional u ∈ S∗(R), and since J su ∈ L2(R),

we have u ∈ Hs(R). This diagram illustrates the use of the different

potentials in the case of α ≥ 0:

Hs
k,α(R)

J s

→ L2(R)

J s
k,α
ց ↓ J 0

k,α

L2(R)

Finally,

||u||Hs(R) = ||J su||L2(R) = ||ψsû||L2(R) = ||ψ0
k,−αψ

s
k,αû||L2(R)

≤ ||ψ0
k,−α||L∞(R) ||J s

k,αu||L2(R)

α≥0
= max{1, kα} ||u||Hs

k,α(R) .

�

For an impression of the weight functions ψsk,α see the following plots.

The parameter s specifies the growth to infinity in case of s > 0 and

α sets the order of the poles for α > 0 or roots for α < 0 at ±k.

The value of k sets the position of the roots or poles, and it does also

modify the graph as a whole, but these changes are negligible.

Example 4.3.5. Illustrative plots of ψ0
2,−1 and ψ0

1/2,−1:

ψ0
2,−1(τ) =

∣∣∣ 22−τ2

1+τ2

∣∣∣
1/2

ψ0
1/2,−1(τ) =

∣∣∣ (1/2)
2−τ2

1+τ2

∣∣∣
1/2
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Lemma 4.3.6. If α > β, then

Hs
k,α(R) ⊂ Hs

k,β(R)

and ||u||Hs
k,β(R) ≤ max{1, kα−β} ||u||Hs

k,α(R) for all u ∈ Hs
k,α(R). This

includes Hs(R) ⊂ Hs
k,β(R) if β < 0 and

||u||Hs
k,β(R) ≤ max{1, k−β} ||u||Hs(R)

for all u ∈ Hs(R).
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Proof. Since Hs(R) = Hs
k,0(R), it remains to prove the second

norm inequality: For u ∈ Hs
k,α(R),

||u||Hs
k,β(R) = ||J s

k,βu||L2(R)

= ||ψsk,β û||L2(R) = ||ψ0
k,β−αψ

s
k,αû||L2(R)

≤ ||ψ0
k,β−α||L∞(R) ||J s

k,αu||L2(R)
β−α≤0

= max{1, kα−β} ||u||Hs
k,α(R) .

�

Finally, these spaces characterize the mapping properties of the Dirich-

let-to-Neumann map:

Theorem 4.3.7. The Dirichlet-to-Neumann map is a bounded linear

operator

Λ : Hs
k,α(R) → Hs−1

k,α+1(R) , s, α ∈ R

and ||Λϕ||Hs−1
k,α+1(R) = ||ϕ||Hs

k,α(R) for all ϕ ∈ Hs
k,α(R).

Proof. Let ϕ ∈ Hs
α(R), then

|Λ̂ϕ(τ)| = |
√
τ2 − k2ϕ̂(τ)| = |τ2 − k2|1/2︸ ︷︷ ︸

=̺k,1(τ)

|ϕ̂(τ)| ,

and since ̺k,1 = ψ1
k,−1, we have

||Λϕ||2
Hs−1

k,α+1(R)
= ||J s−1

k,α+1Λϕ||2L2(R) = ||ψs−1
k,α+1 ψ

1
k,−1 ϕ̂||2L2(R)

= ||ψsk,αϕ̂||2L2(R) = ||J s
k,αϕ||2L2(R) = ||ϕ||2Hs

k,α(R) .

�

And the mapping is onto, thus we may now give the formal definition

of the Neumann-to-Dirichlet map a meaning:

Theorem 4.3.8. The Neumann-to-Dirichlet operator is a bounded

linear operator

Λ−1 : Hs−1
k,α+1(R) → Hs

k,α(R) , s, α ∈ R ,

and ||Λ−1ϕ||Hs
k,α(R) = ||ϕ||Hs−1

k,α+1(R) for all ϕ ∈ Hs−1
k,α+1(R).
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Proof. Let ϕ ∈ Hs−1
k,α+1(R), then

|Λ̂−1ϕ(τ)| = | 1√
τ2 − k2

ϕ̂(τ)| = |τ2 − k2|−1/2

︸ ︷︷ ︸
=̺k,−1(τ)

|ϕ̂(τ)|

and since ̺k,−1 = ψ−1
k,1, we have

||Λ−1ϕ||2Hs
k,α(R) = ||J s

k,αΛ−1ϕ||2L2(R) = ||ψsk,α ψ−1
k,1 ϕ̂||2L2(R)

= ||ψs−1
k,α+1ϕ̂||2L2(R) = ||J s−1

k,α+1ϕ||2L2(R)

= ||ϕ||2
Hs−1

k,α+1
(R)

.

�

4.4. Extension to Two Dimensions

So far we have established suitable function spaces for discussion

of a two-dimensional coupled TE, TM mode system, that is, the

functions on the interface were functions of one variable. In the full

three-dimensional Maxwell setting, the traces on the interface will

be functions of two variables, so we will have to extend the concept

above spaces to R2. We will see that this does not exhibit additional

challenges: The general approach for extension will be to apply polar

coordinates, and the same method could be used to derive spaces

for higher dimensions by spherical coordinates. The following results

for functions defined on R2 follow the same order as in the previous

section and only the differences in the proofs compared to their earlier

counterparts are presented in detail.

Definition 4.4.1. For k > 0 and ̺k(τ) := |k2 − |τ |2|−1/2,

Sk(R2) := {u ∈ S(R2) : ̺kû ∈ S(R2)}

where û denotes the two-dimensional Fourier transform of u. The

topology of Sk(R2) is defined by a countable family of semi-norms

|u|Sk,α,β := |û|S,α,β + |̺kû|S,α,β .
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This means a sequence (un) of functions un ∈ Sk(R2) converges to 0

in Sk(R2) if both sequences (ûn) and (̺kûn) converge to 0 in S(R2).

This also defines un → u as (un − u) → 0 in Sk(R2).

Lemma 4.4.2. Sk(R2) is a Fréchet space.

Proof. This is true due to the same reasoning as in the proof

for Lemma 4.2.4. �

Proposition 4.4.3.

(i) Sk(R2) = {u ∈ S(R2) : |û(n)(τ)| = 0 for all |τ | = k, n ∈ N0}
(ii) Sk(R2) = {u ∈ S(R2) : ̺k,αû ∈ S(R2) for all α ∈ R},

where ̺k,α(τ) := |k2 − |τ |2|α/2

Proof. (ii) ⇒ Definition: As before in the proof of Proposition

4.2.7, the condition in (ii) includes the condition in the Definition

4.4.1 for α = −1, as ̺k,−1 = ̺k.

Definition ⇒ (i): Now, let u ∈ S(R2) and v ∈ S(R2) with v = ̺ku.

Transformation to polar coordinates yields

v(r, ϕ) = |k2 − r2|−1/2 u(r, ϕ) .

Lemma 4.2.5 applied on shifted restrictions

uϕ(r + k) := u(r + k, ϕ) and vϕ(r + k) := v(r + k, ϕ)

for r ∈ (−ε, ε) and fixed ϕ proves

u(k, ϕ) = v(k, ϕ) = 0 and

(
∂

∂r

)n
u(k, ϕ) =

(
∂

∂r

)n
v(k, ϕ) = 0

for all n ∈ N. Now since this is true for all ϕ and n ∈ N0, the

functions
(
∂
∂r

)n
u(k, ϕ) and

(
∂
∂r

)n
v(k, ϕ) are constant in ϕ, and all

(
∂
∂r

)n ( ∂
∂ϕ

)m
u(k, ϕ) ≡ 0 for m,n ∈ N0, thus the condition in (i) is

fulfilled.

(i) ⇒ (ii): Assume the conditions in (i) are satisfied for u, that is

u ∈ S(R2) with |u(n)(τ)| = 0 for all |τ | = k and n ∈ N0. As a

composition of smooth functions v := ̺k,αu, the function v is

v ∈ C∞(R2\{τ ∈ R2 : |τ | = k})
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for all α ∈ R. In polar coordinates, we see by Lemma 4.2.6 that for

fixed ϕ the function vϕ(r) := v(r, ϕ) is in C∞(R>0) and vϕ(k) = 0 for

all ϕ. Therefore, v(r, ϕ) and all partial radial derivatives of v are zero

and constant for r = k, thus all derivatives exist and are continuous

also at |τ | = k and therefore v ∈ C∞(R2). Again, as ̺k,α is at most

slowly increasing, v(τ) is rapidly decreasing for |τ | → ∞ as u(τ) and

therefore v ∈ S(R2). �

Theorem 4.4.4. Let α, s ∈ R, k > 0. Then the Bessel k, α-Potential

for scalar functions on R2

J s
k,α : Sk(R2) → Sk(R2)

u 7→ F−1(ψsk,αû) ,

where ψsk,α(τ) := (1+|τ |2) s
2

∣∣∣ 1+|τ |2
k2−|τ |2

∣∣∣
α
2

, is well defined and continuous.

Its continuous inverse is J−s
k,−α.

Proof. Analogous to the proof of Theorem 4.2.9 but for Sk(R2)

and use of Lemma 4.2.8 with polar coordinates as in the proof of

Proposition 4.4.3. �

Definition 4.4.5. The Bessel k, α-Potential for scalar functions on

R2 has a natural continuous extension J s
k,α : S∗

k (R
2) → S∗

k (R
2) .

By this we may define the corresponding weighted Sobolev spaces:

Theorem 4.4.6. The spaces

Hs
k,α(R2) := {u ∈ S∗

k (R
2) : J s

k,αu ∈ L2(R)}

for s ∈ R and k > 0 equipped with the inner product

(u, v)Hs
k,α(R2) := (J s

k,αu,J s
k,αv)L2(R)

and the induced norms

||u||2Hs
k,α(R2) := (u, u)Hs

k,α(R2)

are Hilbert spaces.



CHAPTER 5

Full Three-Dimensional Maxwell System

We will now discuss the scattering problem in the two-layered space

in R3 = R3
+ ∪Γ∪R3

− with the interface Γ = R2 ×{0} and half-spaces

R3
± := {(x1, x2, x3) ∈ R2 : x3 ≷ 0}, we seek the solution to the

time harmonic Maxwell’s equations for the electric or magnetic field

intensities with wave numbers k2 = k2
+ > 0 for x2 > 0 and k2

− ∈ C,

arg k2
− ∈ (0, π2 ) for x2 < 0, the transmission condition at the interface,

and boundary condition on a bounded perfect electrically conducting

obstacle Ω ⊂ R2
− within the lower half-space, and a radiation condi-

tion. As before we split the total field into an incoming field, which

itself is a solution to the Helmholtz equations in the two-layered space

without the scatterer Ω, and the scattering field.

First the classical problems for the electric and magnetic field inten-

sities are defined on the whole space, then integral equalities and

functions and trace spaces suitable for the corresponding weak for-

mulation are presented. This leads to the definition of the Calderon

operator and its mapping properties, with which it will be possible

to reduce the scenario to the lower half-space using weak formula-

tions. By virtue of the Lax-Milgram Lemma we will be able to

prove unique solvability of the weak problems using specific singu-

lar weighted Sobolev spaces. For these spaces we have equivalence of

the weak and classical formulations under the additional condition of

integrability which is no real restriction as the original problem was

shown to be uniquely solvable by Delbary et al. [11].

81
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5.1. Classical Problem Definitions

As outlined in Chapter 2, we may express the problem in terms

of both the electric and the magnetic field intensity, with differing

boundary and transmission conditions. First, we formulate the def-

inition of the classical boundary value problem for the electric field

intensity:

Problem 5.1.1. (EBVP1) Given a bounded scatterer Ω ⊂ R3
− with

boundary ∂Ω ∈ C2, an analytic incoming field Ei (at least defined

on some region G in the lower half-space enclosing the scatterer, i.e.,

Ω̄ ⊂ G ⊂ R3
−) the problem is to find the scattering field

(i) E ∈ C2(R3\(Γ ∪ Ω̄),C3) ∩BC(R3
±\Ω,C3) such that

(ii) curl curlE − k2
±E = 0 in R3

±,

(iii) n× E|∂Ω = −n× Ei|∂Ω,

(iv) [n× E]Γ = [n× curlE]Γ = 0, and

(v) components E1, E2 of E=(E1, E2, E3)
⊤ satisfy the UPRC,

E3 the Sommerfeld radiation condition 2.4.3 in R3
+,

and the exponential decay condition 2.4.2 in R3
−.

Secondly, we add the definition for the magnetic field intensity:

Problem 5.1.2. (HBVP1) Given a bounded scatterer Ω ⊂ R3
− with

boundary ∂Ω ∈ C2, an analytic incoming field Hi (at least defined

on some region G in the lower half-space around the scatterer, i.e.,

Ω̄ ⊂ G ⊂ R3
−) the problem is to find the scattering field

(i) H ∈ C2(R3\(Γ ∪ Ω̄),C3) ∩BC(R3
±\Ω,C3) such that

(ii) curl curlH − k2
±H = 0 in R3

±,

(iii) n× curlH |∂Ω = −n× curlHi|∂Ω,

(iv) [n×H ]Γ = [k2
∓n× curlH ]Γ = 0, and

(v) components H1,H2 of H=(H1,H2,H3)
⊤ satisfy the UPRC,

H3 the Sommerfeld radiation condition 2.4.3 in R3
+,

and the exponential decay condition 2.4.2 in R3
−.

Remark 5.1.3. The commonly used Silver-Müller radiation condi-

tion is equivalent to the Sommerfeld radiation condition of the Carte-

sian components as proven in [6]. In general, solutions satisfying
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the Sommerfeld radiation condition will also satisfy the UPRC, but

the converse is not necessarily the case. Therefore, above radiation

conditions for the upper layer are more general than the traditional

Silver-Müller radiation condition. The radiation condition of expo-

nential decay for the lower layer

|E(x)| + |curlE(x)| ≤M exp (−Im k− |x|)

for some M > 0 and correspondingly for H , follows [11] to ensure

existence and uniqueness of the classical problems.

As in the two dimensional case, we will be able to transform these

problems to weak formulations using Green’s formula, which is out-

lined below.

5.2. Integral Equalities and Function Spaces

In this section, integral equalities and function spaces most suitable

for Maxwell’s equations are established. The following notation for

vectors, which will also be used for functions, clarifies the switch

between R2 representing Γ and R3 when it is needed:

If x =




x1

x2

x3


 and y =

(
y1

y2

)
,

then x̃ =

(
x1

x2

)
and y

e
=




y1

y2

0




Please note, that in earlier chapters we already used a similar nota-

tion of a tilde above a symbol in completely different contexts and

meanings. The reader should not be confused by this minor inconve-

nience, and in this chapter this notation will consistently only have

above meaning.

To derive suitable spaces for the variational formulation we first need

to extend the following well known Theorems to unbounded inter-

faces:
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Theorem 5.2.1. Let Ω ⊂ R3 a bounded domain with Lipschitz contin-

uous boundary ∂Ω with unit outward normal n. Then the Divergence

Theorem holds for functions f ∈ C1(Ω,C3):
∫

Ω

div f dx =

∫

∂Ω

f · n dA

Choosing f = ψu and the product rule for one, and using the identi-

ties div(u×ϕ) = ϕ ·curlu−u ·curlϕ, as well as (u×ϕ) ·n = (n×u) ·ϕ,

and the substitution f = u× ϕ for the other, we get, cf. [14]:

Theorem 5.2.2. Let Ω ⊂ R3 be a bounded domain with Lipschitz

continuous boundary ∂Ω with unit outward normal n. Then, for func-

tions u, v, ϕ ∈ C1(Ω,C3) and ψ ∈ C1(Ω̄), the following equalities hold

by the Divergence Theorem:
∫

Ω

(ψ div u+ u · gradψ) dx =

∫

∂Ω

(n · u)ψ dA , (5.1)

∫

Ω

(ϕ · curl v − v · curlϕ) dx =

∫

∂Ω

(n× v) · ϕdA . (5.2)

This motivates the definition of function spaces suitable for Maxwell’s

Equations:

Definition 5.2.3. For Ω ⊂ R3 not necessarily bounded, we define

H(div,Ω) :=
{
v ∈ L2(Ω,C3) : div v ∈ L2(Ω)

}
,

H(curl,Ω) :=
{
v ∈ L2(Ω,C3) : curl v ∈ L2(Ω,C3)

}
.

Indeed as shown in [26], Equations (5.1) and (5.2) hold for functions

u ∈ H(div,Ω), v, ϕ ∈ H(curl,Ω), and ψ ∈ H1(Ω), when Ω is bounded

with a Lipschitz boundary. To discuss the validity of above integral

identities on the unbounded domains R3
± with boundary Γ we will

make use of the following density argument.

Lemma 5.2.4. C∞(R3
±,C

3)∩H(div,R3
±) is dense in H(div,R3

±), and

C∞(R3
±,C

3) ∩H(curl,R3
±) is dense in H(curl,R3

±).
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Proof. Both assertions for unbounded domains are justified by

the same technique of diagonal sequences and corresponding theorems

on bounded domains, for example from [26]. Here, only the proof for

H(curl,R3
±) is presented for brevity. Let ΩR = BR(0) ∩ R3

± and uR

the restriction of u to ΩR and continued by 0 outside ΩR. Then

||uR − u||H(curl,R3
±) → 0 for R → ∞ and there exists a sequence

(Rk) such that ||uRk
− u||H(curl,R3

±) <
1
2k . Since ΩRk

is bounded

for all k, there exists a function ϕk ∈ C∞(R3
±,C

3) such that ||ϕk −
uRk

||H(curl,R3
±) <

1
2k by standard density results on bounded domains

and ϕk ∈ H(curl,R3
±). This defines a sequence (ϕk) in C∞(R3

±,C
3)

which is convergent to u with respect to the H(curl,R3
±) norm:

||ϕk − u||H(curl,R3
±) ≤ ||ϕk − uRk

||H(curl,R3
±) + ||uRk

− u||H(curl,R3
±)

≤ 1

2k
+

1

2k
=

1

k

k→∞−→ 0 .

�

Next, we need to discuss the definition of the four different traces

showing up on the right hand sides of the identities:

Definition 5.2.5. Let n = (0, 0,±1)⊤ denote the unit outward nor-

mal to Γ, depending on the context. Then the trace operator onto Γ

is denoted by

γ0u := u|Γ ,
the surface traces are

πΓu := n× (u× n) |Γ ,
γtu := n× u|Γ ,

and the normal component trace is expressed as

γnu := n · u|Γ .

Of course, by adaption of Trace Theorem 1.2.1 to R3, the trace γ0 is

a bounded operator H1(R3) → H1/2(R2 × {0}).

Due to the special form of Γ the traces will often be discussed as

functions on R2 instead of R2 × {0}, making use of the notations
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introduced before. Note that they may implicitly reflect above traces

as, such as π̃Γu = ũ|Γ as well as γ̃0u = ũ|Γ and γ̃tu = ñ× u|Γ.

To state the mapping properties of the other traces, we need to define

the surface divergence, denoted by Div, and the surface curl, denoted

by Curl, following [26, 6]:

Definition 5.2.6. Let S denote a C2 surface in R3 parametrized

by Ψ(v) and let g denote the determinant of the first fundamental

matrix defined by gij := ∂Ψ
∂vi

· ∂Ψ
∂vj

. Then, for a smooth tangential field

u decomposed into u = a1
∂Ψ
∂v1

+ a2
∂Ψ
∂v2

, the surface divergence and

curl are defined as

Div u =
1√
g

(
∂(
√
ga1)

∂v1
+
∂(
√
ga2)

∂v2

)
,

Curlu =
1√
g

(
∂(
√
ga2)

∂v1
− ∂(

√
ga1)

∂v2

)
.

As in the regarded setup Ψ(v) = v
e

and therefore g = 1, the following

definition on Γ will suffice, defined for vector fields in R3, or on R2.

Definition 5.2.7. For u ∈ D(R2,C2) or u ∈ D(R3,C3), the surface

curl and divergence on Γ are defined as

Div u =
∂u1

∂x1
+
∂u2

∂x2
, Curlu =

∂u1

∂x2
− ∂u2

∂x1
,

and are extended continuously by density arguments as operators on

Sobolev spaces Hs(R2,C2) and Hs(R3,C3), s ∈ R.

The following spaces will aid to define the ranges of the traces:

Definition 5.2.8. For s ∈ R let

Hs(Div; Γ) :=
{
v ∈ Hs(Γ,C3) : n · v = 0, Div v ∈ Hs(Γ)

}
,

Hs(Curl; Γ) :=
{
v ∈ Hs(Γ,C3) : n · v = 0, Curl v ∈ Hs(Γ)

}
.

Now we can state the first integral equality on the unbounded sets

R3
± and the mapping properties of the γn trace operator:
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Lemma 5.2.9. Let u ∈ H(div,R3
±), ϕ ∈ H1(R3±) and n = (0, 0,∓1)⊤,

then ∫

R3
±

(u · gradϕ+ ϕdiv u) dx =

∫

Γ

(n · u)ϕdA , (5.3)

with a bounded dual pairing of the traces on the right hand side, and

the trace

γn : H(div,R3
±) → H−1/2(Γ) ,

u 7→ n · u|Γ

is bounded.

Proof. By the above density argument, and as for the corre-

sponding density in H1(R3
±), it is sufficient to prove the assertion

under the additional assumption of u, ϕ ∈ C∞(R3
±,C

3). Also note

that the left hand side of the equation is bound by the product of the

H(div,R3
±) and H1(R3

±) norms of u and ϕ.

Let ΩR = BR(0) ∩ R3
± and Γ0,R = BR(0) ∩ Γ0, then

∫

ΩR

(u · gradϕ+ ϕdiv u) dx

=

∫

Γ0,R

(n · u)ϕdA+

∫

∂ΩR\Γ0,R

(n · u)ϕdA .

Therefore, for the equality it remains to show for u (and ϕ, too), that
∫

∂ΩR\Γ0,R

|u|2 dA R→∞−→ 0 .

This is a consequence of u ∈ H(div,R3
±) ⊂ L2(R3

±) and the assumed

continuity of u: If the limit were not true, there would be a radius R̂

from which on all above integrals for R > R̂ were greater than some

ε > 0. Then the integral of |u|2 over R3
±\BR̂(0) would diverge, which

contradicts u ∈ L2(R3
±).

To prove the mapping properties of the trace, let Φ ∈ H1/2(Γ) and

assume that ϕ = EΦ ∈ H1(R3
±) is the image of a bounded extension

operator E such that γ0ϕ = Φ and ||ϕ||H1(R3
±) ≤ CE ||Φ||H1/2(Γ).
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Then, by above findings,
∣∣∣∣∣∣

∫

Γ

γnuΦ dA

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Γ

(n · u)ϕdA

∣∣∣∣∣∣
≤ ||u||H(div,R3

±) ||ϕ||H1(R3
±)

≤ CE ||u||H(div,R3
±) ||Φ||H1/2(Γ)

and therefore γn : H(div,R3
±) → H−1/2(Γ) is bounded by CE as a

mapping onto the dual space. �

Lemma 5.2.10. Let u, ϕ ∈ H(curl,R3
±) and n = (0, 0,∓1)⊤, then

∫

R3
±

(ϕ · curlu− u · curlϕ) dx =

∫

Γ

(n× u) · ϕdA , (5.4)

with a bounded dual pairing on the image spaces of the traces on the

right hand side, and the traces are bounded as mappings

γt : H(curl,R3
±) → H−1/2(Div; Γ) ,

u 7→ n× u|Γ ,
πΓ : H(curl,R3

±) → H−1/2(Curl; Γ) ,

u 7→ n× (u× n)|Γ .

Proof. By the above density argument it is sufficient to prove

the assertion assuming u, ϕ ∈ C∞(R3
±,C

3) ∩H(curl,R3
±). Also note

that the left hand side of the equation is bound by the product of the

H(curl,R3
±) norms of u and ϕ.

As above, let ΩR = BR(0) ∩ R3
± and Γ0,R = BR(0) ∩ Γ0, then

∫

ΩR

(ϕ · curlu− u · curlϕ) dx

=

∫

Γ0,R

(n× u) · ϕdA+

∫

∂ΩR\Γ0,R

(n× u) · ϕdA .
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Therefore, for the equality it remains to show for u (and also ϕ), that
∫

∂ΩR\Γ0,R

|u|2 dA R→∞−→ 0 .

This is a consequence of u ∈ H(curl,R3
±) ⊂ L2(R3

±) and the assumed

continuity of u: If the limit were not true, there would be a radius R̂

from which on all above integrals for R > R̂ were greater than some

ε > 0. Then the integral of |u|2 over R3
±\BR̂(0) would diverge, which

contradicts u ∈ L2(R3
±).

To prove the mapping properties of γt, we first assume that ϕ =

E Φ ∈ H1(R3,C3) is an extension of Φ ∈ H1/2(R3,C3), such that

ϕ|Γ = Φ and ||ϕ||H1(R3,C3) ≤ CE ||Φ||H1/2(R3,C3). Then
∣∣∣∣∣∣

∫

Γ

γtu · Φ dA

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Γ

(n× u) · ϕdA

∣∣∣∣∣∣
≤ ||u||H(curl,R3

±) ||ϕ||H1(R3
±,C

3)

≤ CE ||u||H(curl,R3
±) ||Φ||H1/2(Γ,C3) ,

which means that γt : H(curl,R3
±) → H−1/2(Γ,C3) is bounded. Ex-

actly the same argument holds for γT : H(curl,R3
±) → H−1/2(Γ,C3).

Furthermore, we now assume that ϕ = ∇Ψ, for some Ψ ∈ H2(R3
±).

Of course curlu ∈ H(div,R3
±), as div curlu = 0 and by (5.3) we have

on the other hand∫

R3
±

gradΨ · curlu dx =

∫

Γ

(n · curlu)Ψ dA

=

∫

Γ

(Curlu) Ψ dA = −
∫

Γ

(Div (n× u)) Ψ dA.

Therefore,
∣∣∣∣∣∣

∫

Γ

(Div γtu) Ψ dA

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Γ

(Div (n× u)) Ψ dA

∣∣∣∣∣∣
≤ ||u||H(curl,R3

±) ||Ψ||H1(R3
±,C

3)

≤ CE ||u||H(curl,R3
±) ||Ψ||H1/2(Γ,C3) ,
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so γt : H(curl,R3
±) → H−1/2(Div; Γ) is bounded, using the fact that

the third component of γt vanishes. Note that since curlϕ = 0, we

have ϕ ∈ H(curl,R3
±) and thus by above identity

∫

R3
±

gradΨ · curlu dx =

∫

R3
±

ϕ · curlu dx =

∫

Γ

(n× u) · ϕdA

=

∫

Γ

(n× u) · gradΨ dA ,

so −〈Div γtu,Ψ〉 = 〈γtu, gradΨ〉 as a dual product. By symmetry of

the left hand side of (5.4), a similar argumentation holds for γT , with

the simplification that n · curlϕ = CurlπΓϕ on Γ. Therefore, πΓ is as

well bounded as a mapping πΓ : H(curl,R3
±) → H−1/2(Curl; Γ). �

Although we just found that the H−1/2(Γ) norm of the surface pro-

jection trace πΓu and its surface curl CurlπΓu of a vector field u ∈
H(curl,R3

±) are bounded by the H(curl,R3
±) norm of u, we will need

the following more specific result for the surface curl alone:

Lemma 5.2.11. For u ∈ H(curl,R3
±) the surface curl of u may be

estimated by just the L2(R3
±) norm of curlu:

||CurlπΓu||H−1/2(Γ) ≤ CE ||curlu||L2(R3
±)

Proof. Since div curlu = 0, curlu ∈ H(div,R3
±) and therefore

||CurlπΓu||H−1/2(Γ) = ||γn curlu||H−1/2(Γ)

≤ CE ||curlu||H(div,R3
±) = CE ||curlu||L2(R3

±) ,

using the operator norm CE of the extension operator E from above

proofs. �

Remark 5.2.12. Note, that this result is surprisingly stronger than

corresponding estimate in the two-dimensional case! Recall that in

the two-dimensional case we only had

||u||2H1/2(Γ) ≤ εC1||u||2L2(D) +

(
C1

ε
+ C1C2

)
||∇u||2L2(D)
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for fixed C1, C2 but arbitrary ε in Lemma 1.2.4. In both cases the idea

is to estimate the traces mainly by the derivative terms in the lower

half-space, but in two dimension we can only make the dependence

of the trace with respect to the L2 norm of u arbitrary small, with

the cost of bearing an arbitrary large 1
ε . So here, we have a far

more fortunate estimate, and it is due to less regularity of the chosen

function space H(curl,R3
±) compared to H1(R3

±,C
3).

5.3. The Calderon Operator

The Calderon operator maps given boundary data such as the tan-

gential E field λ on Γ onto the tangential trace of the H field on

Γ, when the E,H fields are a radiating solution to the time har-

monic Maxwell’s equations in the upper half-space with given bound-

ary data.

It is strongly related to the Dirichlet-to-Neumann operator, as it not

only takes a similar role in the weak formulation of the problem, but

in fact, the reduction of the Calderon operator to the simplified TE

or TM setting yields just the Dirichlet-to-Neumann operator, or the

Neumann-to-Dirichlet operator, respectively.

Due to the symmetry in Maxwell’s equations, there are two Calderon

operators: The Calderon operator which maps E to H is denoted as

GEHλ = ñ×H |Γ = γ̃tH where λ = ñ× E|Γ and n is orthogonal to

the surface, that is n = (0, 0, 1)⊤, thus (λ1, λ2, λ3)
⊤ = (−E2, E1, 0).

The corresponding operator GHE maps λ = ñ×H |Γ onto ñ× E|Γ.

Theorem 5.3.1. Let E and H = − i
ωµcurlE be a (classical) solution

to the full space Maxwell’s Problem 5.1.1 (EBVP1), then the E to H

Calderon operator is given by the Fourier multiplier

ĜEHλ (τ) =
1

ωµ
√
k2
+ − |τ |2

(
τ1τ2 τ2

2 − k2
+

k2
+ − τ2

1 −τ1τ2

)
· λ̂(τ)

with τ ∈ R2 satisfies GEHλ = ñ×H |Γ, for λ = ñ× E|Γ if the

Fourier transforms exist.
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Remark 5.3.2. Later specific conditions for existence will be given.

Most importantly, there is a condition on λ to ensure integrability,

but we also need integrability of the E and H fields and their curls

in the proof. If λ ∈ Sk+(R2,C2) then above definition corresponds to

GEHλ (x) =
1

2πωµ

∫

R2

exp (i (x · τ))√
k2
+ − |τ |2

(
τ1τ2 τ2

2 − k2
+

k2
+ − τ2

1 −τ1τ2

)
·λ̂(τ) dτ .

Proof. We split the transmitted divergence-free field

E = E(1) + E(2) = (E1, E2, v)
⊤

into two divergence-free components such that

E(1) =




E1

0

v1


 , divE(1) = 0, E(2) =




0

E2

v2


 , divE(2) = 0 .

This means that
∂vj

∂x3
= −∂Ej

∂xj
for j = 1, 2 and v = v1 + v2. We will

now compute the corresponding H(j) = − i
ωµcurlE(j):

H(1) = − i

ωµ
curlE(1)

= − i

ωµ
curl (e1E1) −

i

ωµ
curl (e3v1)

= − i

ωµ

(
e2
∂E1

∂x3
− e3

∂E1

∂x2

)
− i

ωµ

(
e1
∂v1
∂x2

− e2
∂v1
∂x1

)

=
i

ωµ

[
−e1

∂v1
∂x2

+ e2

(
∂v1
∂x1

− ∂E1

∂x3

)
+ e3

∂E1

∂x2

]

The second field results in:

H(2) = − i

ωµ
curlE(2)

= − i

ωµ
curl (e2E2) −

i

ωµ
curl (e3v2)

= − i

ωµ

(
−e1

∂E2

∂x3
+ e3

∂E2

∂x1

)
− i

ωµ

(
e1
∂v2
∂x2

− e2
∂v2
∂x1

)

=
i

ωµ

[
e1

(
∂E2

∂x3
− ∂v2
∂x2

)
+ e2

∂v2
∂x1

− e3
∂E2

∂x1

]
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As the components E1 and E2 satisfy the conditions for Theorem

2.4.8 and are solutions to the Helmholtz equation themselves, we can

represent the solution as double layer potentials for x3 > 0.

Using the Fourier representation (2.9) of the fundamental solution in

three dimensions and its estimates in Lemma 2.4.7, we can apply the

same arguments as in Lemma 3.2.4.

In analogy to Equation 3.1 this yields the representation

Ej(x) =
1

2π

∫

R2

exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Êj(τ) dτ , j = 1, 2, 3

for x3 > 0, where Êj denotes the two-dimensional Fourier transform

of Ej at Γ. Additionally, since E is divergence free, the Fourier

transforms of the three components of E satisfy

τ1Ê1(τ) + τ2Ê2(τ) +
√
k2 − |τ |2Ê3(τ) = 0 .

Therefore, it is a reasonable Ansatz to assume the following represen-

tations for the fields E(j), j=1, 2 in the upper layer:

E
(j)
U (x) :=

ej
2π

∫

R2

exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Êj(τ) dτ

− e3
2π

∫

R2

τj√
k2 − |τ |2

· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Êj(τ) dτ

where we identify Ej and vj by E
(j)
U = ejEj + e3vj .

Since we defined vj in the upper layer using the divergence condition,

there might still be some function u(x1, x2), that is, constant in the

x3 coordinate direction, which itself satisfies the three-dimensional

Helmholtz equation such that

E3 = v1 + v2 + u .

Note that this is different to the two dimensional setup, where the

transmission conditions are relatively stronger in comparison to this
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case. It turns out that we cannot have a unique solution without a

radiation condition preventing such contributions that are constant

in the x3 coordinate direction, for example plane waves propagating

parallel to the interface Γ. By the Sommerfeld radiation condition in

E3, we ensure that there is no constant contribution in any direction

to infinity, so u ≡ 0 and v1 + v2 = E3, as expected.

By above findings and time harmonic Maxwell’s equations

H(1) = − i

ωµ
curlE(1)

and differentiation rules for the Fourier transform the field H(1) in

the upper layer is given by

H
(1)
U (x) =

i

ωµ


e1

i

2π

∫

R2

τ1τ2√
k2 − |τ |2

· exp
(
i
[
x3

√
k2 − τ2 + x̃ · τ

])
Ê1(τ) dτ

−e2
i

2π

∫

R2

(
τ2
1√

k2 − |τ |2
+
√
k2 − τ2

)

· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê1(τ) dτ

+e3
i

2π

∫

R2

τ2 exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê1(τ) dτ




and therefore

H
(1)
U (x) =

1

2πωµ

∫

R2




− τ1τ2√
k2−|τ |2

k2−τ2
2√

k2−|τ |2

τ2




· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê1(τ) dτ .
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For the second field H(2) we get

H
(2)
U (x) =

i

ωµ


e1

i

2π

∫

R2

(
τ2
2√

k2 − |τ |2
+
√
k2 − |τ |2

)

· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê2(τ) dτ

−e2
i

2π

∫

R2

τ1τ2√
k2 − |τ |2

· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê2(τ) dτ

−e3
i

2π

∫

R2

τ1 exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê2(τ) dτ




and thus

H
(2)
U (x) =

1

2πωµ

∫

R2




− k2−τ2
1√

k2−|τ |2
τ1τ2√
k2−|τ |2

τ1




· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
Ê2(τ) dτ .

Altogether, this yields

HU (x) =
1

2πωµ

∫

R2




− τ1τ2√
k2−|τ |2

− k2−τ2
1√

k2−|τ |2
k2−τ2

2√
k2−|τ |2

τ1τ2√
k2−|τ |2

τ2 τ1


 · Ê(τ)

· exp
(
i
[
x3

√
k2 − |τ |2 + x̃ · τ

])
dτ .
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Therefore, we have for x3 = 0, and using z̃ = GEHλ

z(x) =




0

0

1


×HU (λ)

=
1

2πωµ

∫

R2




0

0

1


×




k2−τ2
1√

k2−|τ |2
− τ1τ2√

k2−|τ |2

− τ1τ2√
k2−|τ |2

k2−τ2
2√

k2−|τ |2

0 0


 · λ̂(τ)

· exp (i x̃ · τ) dτ

=
1

2πωµ

∫

R2

exp (i x̃ · τ)√
k2 − |τ |2




τ1τ2 τ2
2 − k2

k2 − τ2
1 −τ1τ2

0 0


 · λ̂(τ) dτ .

�
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5.4. Weighted Spaces for the Calderon Operator

In contrast to the two-dimensional models where the weak problems

for the unbounded domains are discussed using traditional Sobolev

spaces, we will see that it is impossible to achieve coercivity of the

sesquilinear form for the corresponding three-dimensional problem

without using weighted spaces. The following decomposition of the

Fourier multiplier matrix in the Calderon operator is a key point in

finding the appropriate weights:

Remark 5.4.1. For |τ | 6= 0, the matrix in the Fourier multiplier of

the Calderon operator has the following revealing decomposition:
(

τ1τ2 −k2 + τ2
2

k2 − τ2
1 −τ1τ2

)
=

1

|τ |2

(
τ2 τ1

−τ1 τ2

)(
|τ |2 − k2 0

0 k2

)(
τ1 τ2

τ2 −τ1

)

By this decomposition and the division by
√
k2 − |τ |2, we see both

the integrating as well the differentiating part of the Calderon op-

erator: The matrix on the right hand side represents a linear map

performing the surface divergence and curl in Fourier space, the ma-

trix on the left hand side is the inverse to the map performing surface

curl and divergence, so in other words the curl components map onto

divergence components and vice versa. The diagonal matrix divided

by
√
k2 − |τ |2 finally features the Fourier multipliers of the Dirichlet-

to-Neumann, and the Neumann-to-Dirichlet map. The detailed dis-

cussion of the mapping properties of both operators in the previous

chapter, will now lead us to appropriate function spaces describing

the mapping properties of the Calderon operator on the unbounded

domain Γ.

In Definition 5.2.8 the domain and ranges of the functions in the set

were artificially truncated from R3 to the two dimensional set Γ and

by the additional condition of orthogonality to n. It seems natural

to treat the traces as functions R2 → C2. To facilitate the discus-

sion of the mapping properties and enable us to use the previously

introduced weighted Sobolev spaces directly, we will now introduce
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equivalent and corresponding weighted function spaces of functions

with domains and ranges in R2:

Definition 5.4.2. Let s ∈ R, k > 0, and α ∈ R, then

Hs(Div; R2) := {u ∈ Hs(R2,C2) : Div u ∈ Hs(R2)}
Hs
k,α(Div; R2) := {u ∈ Hs(R2,C2) : Div u ∈ Hs

k,α(R2),

Curlu ∈ Hs−1
k,α+1(R

2)}
Hs(Curl; R2) := {u ∈ Hs(R2,C2) : Curlu ∈ Hs(R2)}

Hs
k,α(Curl; R2) := {u ∈ Hs(R2,C2) : Curlu ∈ Hs

k,α(R2),

Div u ∈ Hs−1
k,α+1(R

2)} .

Remark 5.4.3. These spaces are normed spaces by

||u||2Hs(Div;R2) = ||u||2Hs(R2,C2) + ||Div u||2Hs(R2) ,

||u||2Hs
k,α(Div;R2) = ||u||2Hs(R2,C2) + ||Div u||2Hs

k,α(R2)

+||Curlu||2
Hs−1

k,α+1(R
2)
,

||u||2Hs(Curl;R2) = ||u||2Hs(R2,C2) + ||Curlu||2Hs(R2) ,

||u||2Hs
k,α(Curl;R2) = ||u||2Hs(R2,C2) + ||Curlu||2Hs

k,α(R2)

+||Div u||2
Hs−1

k,α+1(R
2)
.

Note that rotation of one space results in the other, in the sense that

if s ∈ R and n represents the normal vector on Γ,

Hs(Div; R2) =

{
ñ× v

e
: v ∈ Hs(Curl; R2)

}
,

Hs(Curl; R2) =

{
ñ× v

e
: v ∈ Hs(Div; R2)

}
,

Hs
k,α(Div; R2) =

{
ñ× v

e
: v ∈ Hs

k,α(Curl; R2)

}
,

Hs
k,α(Curl; R2) =

{
ñ× v

e
: v ∈ Hs

k,α(Div; R2)

}
.

Choosing some ϕ ∈ Sk(R2) illustrates that the weighted spaces are

not empty: For any u in Hs(Div; R2) or Hs(Curl; R2) the convolution

ϕ ∗ u is not only in same space by regularity of ϕ, but also in the
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weighted versions Hs
k,α(Div; R2) or Hs

k,α(Curl; R2) for any α, since ϕ

handles the additional weights by Proposition 4.4.3.

The following lemma establishes the norms of above spaces in the

frequency domain:

Lemma 5.4.4. In the frequency domain, above unweighted norms have

the representations

||u||2Hs(Div;R2) =

∫

R2

(
1 + |τ |2

)s (|û(τ)|2 + |τ · û(τ)|2
)
dτ ,

||u||2Hs(Curl;R2) =

∫

R2

(
1 + |τ |2

)s (|û(τ)|2 + |τ1û2(τ) − τ2û1(τ)|2
)
dτ

and the corresponding weighted norms are

||u||2Hs
k,α(Div;R2) =

∫

R2

(
1 + |τ |2

)s |û(τ)|2dτ

+

∫

R2

(
1 + |τ |2

)s+α

|k2 − |τ |2|α |τ · û(τ)|2dτ

+

∫

R2

(
1 + |τ |2

)s+α

|k2 − |τ |2|α+1 |τ1û2(τ) − τ2û1(τ)|2dτ ,

||u||2Hs
k,α(Curl;R2) =

∫

R2

(
1 + |τ |2

)s |û(τ)|2dτ

+

∫

R2

(
1 + |τ |2

)s+α

|k2 − |τ |2|α |τ1û2(τ) − τ2û1(τ)|2dτ

+

∫

R2

(
1 + |τ |2

)s+α

|k2 − |τ |2|α+1 |τ · û(τ)|
2dτ

where û is the two-dimensional Fourier transform of u.

Proof. Since D̂iv u = τ · û and Ĉurlu = τ1û2 − τ2û1 by Def-

inition 5.2.7 and the differentiation rules of the Fourier transform,

the assertion just combines the definition of traditional and weighted
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Sobolev spaces using the traditional and weighted Bessel potentials

in the frequency domain of the norms of u, Div u and Curlu. �

As we expected, it turns out that the space Hs
k(Div; R2) is very well

suited for the Calderon operator at the unbounded interface Γ that

was introduced before:

Theorem 5.4.5. The Calderon operator GEH at Γ, given by

ĜEHλ (τ) =
1

ωµ
√
k2
+ − |τ |2

(
τ1τ2 −k2

+ + τ2
2

k2
+ − τ2

1 −τ1τ2

)
· λ̂(τ) ,

is a bounded mapping GEH : Hs
k,α(Div; R2) → Hs

k,α(Div; R2) for

s ∈ R and α ≥ 0.

Proof. This proof only validates the mapping properties, and

for brevity let k = k+: Recall that for λ ∈ Hs
k,α(Div; R2),

||λ||2Hs
k,α(Div;R2) = ||λ||2Hs(R2,C2)+||Div λ||2Hs

k,α(R2)+||Curlλ||2
Hs−1

k,α+1(R2)

=

∫

R2

(1 + |τ |2)s|λ̂(τ)|2 dτ

+

∫

R2

(1 + |τ |2)s+α
|k2 − |τ |2|α |τ1λ̂1(τ) + τ2λ̂2(τ)|2 dτ

+

∫

R2

(1 + |τ |2)s+α

|k2 − |τ |2|α+1 |τ2λ̂1(τ) − τ1λ̂2(τ)|2 dτ .

Then the image µ(t) = GEHλ(t) is bounded by these norms. First,

the norm of ||CurlGEHλ||2Hs−1
k,α+1(R2)

is

||CurlGEHλ||2Hs−1
k,α+1(R2)

=

∫

R2

(1 + |τ |2)s+α

|k2 − |τ |2|α+1 |τ2µ̂1(τ) − τ1µ̂2(τ)|2 dτ

where

µ̂(τ) =
1

2πωµ

1√
k2 − |τ |2

(
τ1τ2 −k2 + τ2

2

k2 − τ2
1 −τ1τ2

)
· λ̂(τ) .
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Since
(

τ2

−τ1

)⊤

·
(

τ1τ2 −k2 + τ2
2

k2 − τ2
1 −τ1τ2

)
= (τ2

1 + τ2
2 − k2)

(
τ1

τ2

)

we have
∫

R2

(1 + |τ |2)s+α

|k2 − |τ |2|α+1 |τ2µ̂1(τ) − τ1µ̂2(τ)|2 dτ

=
1

(2πωµ)2

∫

R2

(1 + |τ |2)s+α

|k2 − |τ |2|α+2

∣∣k2 − |τ |2
∣∣2
∣∣∣τ1λ̂1(τ) + τ2λ̂2(τ)

∣∣∣
2

dτ ,

and therefore

||CurlGEHλ||2Hs−1
k,α+1(R2)

=
1

(2πωµ)2

∫

R2

(1 + |τ |2)s+α
|k2 − |τ |2|α

·
∣∣∣τ1λ̂1(τ) + τ2λ̂2(τ)

∣∣∣
2

dτ

=
1

(2πωµ)2
||Div λ||2Hs

k,α(R2) .

Next, the norm of ||DivGEHλ||2Hs
k,α

(R2):

||DivGEHλ||2Hs
k,α

(R2) =

∫

R2

(1 + |τ |2)s+α
|k2 − |τ |2|α |τ1µ̂1(τ) + τ2µ̂2(τ)|2 dτ

Since
(
τ1

τ2

)⊤

·
(

τ1τ2 −k2 + τ2
2

k2 − τ2
1 −τ1τ2

)
= k2

(
τ2

−τ1

)

we have
∫

R2

(1 + |τ |2)s+α
|k2 − |τ |2|α |τ1µ̂1(τ) + τ2µ̂2(τ)|2 dτ

=
1

(2πωµ)2

∫

R2

(1 + |τ |2)s

|k2 − |τ |2|α+1 k
4
∣∣∣τ2λ̂1(τ) − τ1λ̂2(τ)

∣∣∣
2

dτ .



102 5. FULL THREE-DIMENSIONAL MAXWELL SYSTEM

This results in

||DivGeλ||2Hs
k,α

(R2) =
k4

(2πωµ)2
||Curlλ||2

Hs−1
k,α+1

(R2)
.

The two remaining norms are both dissected into two parts:
∫

R2

(1 + |τ |2)s|µ̂p(τ)|2dτ =

∫

K

(1 + |τ |2)s|µ̂p(τ)|2dτ

+

∫

R2\K

(1 + |τ |2)s|µ̂p(τ)|2dτ

where K = {τ ∈ R2 : |τ | <
√

2k} and p = 1, 2.

Outside K, we have
∫

R2\K

(1 + |τ |2)s|µ̂1(τ)|2dτ

=
1

(2πωµ)2

∫

R2\K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣τ1τ2λ̂1(τ) + (−k2 + τ2
2 )λ̂2(τ)

∣∣∣
2

dτ

=
1

(2πωµ)2

∫

R2\K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣τ2(τ1λ̂1(τ) + τ2λ̂2(τ)) − k2λ̂2(τ)
∣∣∣
2

dτ .

Since on the one hand

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣τ2(τ1λ̂1(τ) + τ2λ̂2(τ))
∣∣∣
2

≤ (1 + |τ |2)s+1

|k2 − |τ |2|
∣∣∣τ1λ̂1(τ) + τ2λ̂2(τ)

∣∣∣
2

and on the other hand for |τ |2 > 2k2

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣k2λ̂2(τ)
∣∣∣
2

≤ (1 + |τ |2)s
∣∣∣kλ̂2(τ)

∣∣∣
2
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the summands can be estimated by ||Divλ||2Hs
k.α(R2) and ||λ||2Hs(R2,C2)

using Minkowski’s inequality

∫

R2\K

(1 + |τ |2)s|µ̂1(τ)|2dτ ≤

(
C1||Divλ||Hs

k.α(R2) + k||λ||Hs(R2,C2)

)2

(2πωµ)2

=
C2

1

(2πωµ)2
||Divλ||2Hs

k.α(R2)

+
2C1k

(2πωµ)2
||Divλ||Hs

k,α(R2)||λ||Hs(R2,C2)

+
k2

(2πωµ)2
||λ||2Hs(R2,C2) ,

where C2
1 = max

|τ |≥
√

2k

∣∣∣ |τ |2
k2−|τ |2

∣∣∣ ·
∣∣∣k

2−|τ |2
1+|τ |2

∣∣∣
α

and likewise

∫

R2\K

(1 + |τ |2)s|µ̂2(τ)|2dτ

=
1

(2πωµ)2

∫

R2\K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣(k2 − τ2
1 )λ̂1(τ) − τ1τ2λ̂2(τ)

∣∣∣
2

dτ

=
1

(2πωµ)2

∫

R2\K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣k2λ̂1(τ) − τ1(τ1λ̂1(τ) + τ2λ̂2(τ))
∣∣∣
2

dτ ,

thus

∫

R2\K

(1 + |τ |2)s|µ̂2(τ)|2dτ ≤

(
C1||Divλ||Hs

k.α(R2) + k||λ||Hs(R2,C2)

)2

(2πωµ)2

=
C2

1

(2πωµ)2
||Divλ||2Hs

k.α(R2)

+
2C1k

(2πωµ)2
||Divλ||Hs

k,α(R2)||λ||Hs(R2,C2)

+
k2

(2πωµ)2
||λ||2Hs(R2,C2) .
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Within K, it is
∫

K

(1 + |τ |2)s|µ̂1(τ)|2dτ

=
1

(2πωµ)2

∫

K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣τ1τ2λ̂1(τ) + (−k2 + τ2
2 )λ̂2(τ)

∣∣∣
2

dτ

=
1

(2πωµ)2

∫

K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣τ1
(
τ2λ̂1(τ) − τ1λ̂2(τ)

)

−(k2 − |τ |2)λ̂2(τ)
∣∣∣
2

dτ

and similar to before we have on the one hand

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣τ1(τ2λ̂1(τ) − τ1λ̂2(τ))
∣∣∣
2

≤ (1 + |τ |2)s+1

|k2 − |τ |2|
∣∣∣τ2λ̂1(τ) − τ1λ̂2(τ)

∣∣∣
2

and on the other hand

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣(k2 − |τ |2)λ̂2(τ)
∣∣∣
2

= (1 + |τ |2)s
∣∣∣λ̂2(τ)

∣∣∣
2 ∣∣k2 − |τ |2

∣∣ .

Thus the summands can be estimated using ||Curlλ||2
Hs−1

k.α+1(R2)
and

||λ||2Hs(R2,C2)

∫

K

(1 + |τ |2)s|µ̂1(τ)|2dτ ≤
(
C2||Curlλ||Hs−1

k.α+1(R2) + ||λ||Hs(R2,C2)

)2

= C2
2 ||Curlλ||2

Hs−1
k,α+1(R2)

+2C2||Curlλ||Hs−1
k,α+1(R2)||λ||Hs(R2,C2)

+||λ||2Hs(R2,C2)

where C2
2 = max

|τ |≤
√

2k
|τ |2 ·

∣∣k2 − |τ |2
∣∣α. Finally,

∫

K

(1 + |τ |2)s|µ̂2(τ)|2dτ

=

∫

K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣(k2 − τ2
1 )λ̂1(τ) − τ1τ2λ̂2(τ)

∣∣∣
2

dτ

=

∫

K

(1 + |τ |2)s
|k2 − |τ |2|

∣∣∣(k2 − |τ |2)λ̂1(τ) − τ2

(
τ2λ̂1(τ) − τ1λ̂2(τ)

)∣∣∣
2

dτ
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so likewise∫

K

(1 + |τ |2)s|µ̂2(τ)|2dτ ≤
(
C2||Curlλ||Hs−1

k.α+1(R2) + ||λ||Hs(R2,C2)

)2

= C2
2 ||Curlλ||2

Hs−1
k,α+1(R2)

+2C2||Curlλ||Hs−1
k,α+1(R2)||λ||Hs(R2,C2)

+||λ||2Hs(R2,C2) .

�

By the same argumentation, an identical result holds for the second

Calderon operator:

Theorem 5.4.6. The Calderon operator GHE at Γ, given by

ĜHEλ (τ) =
−1

ωε+

√
k2
+ − |τ |2

(
τ1τ2 −k2

+ + τ2
2

k2
+ − τ2

1 −τ1τ2

)
· λ̂(τ) ,

is a bounded mapping GHE : Hs
k,α(Div; R2) → Hs

k,α(Div; R2) for

s ∈ R and α ≥ 0.

The last two theorems present the same mapping properties of the

Calderon operators as in [26, 19] where they were used at bounded

interfaces, but they will not be sufficient for the discussion at the

infinite boundary plane. The following Lemma will be most useful

for the discussion of coercivity of the weak formulation, as it defines

the Calderon operators for even less regular spaces than before:

Lemma 5.4.7. For s ≥ − 1
2 ,

GHE , GEH : Hs
k,α(Div; R2) →

(
Hs
k,α(Curl; R2)

)∗

are bounded with respect to the L2(R2) scalar product if and only if

α ≥ − 1
2 .
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Proof. Let u, v ∈ Hs
k,α(Curl; R2), then ñ× u

e
∈ Hs

k,α(Div; R2)

and

〈v,GHE ñ× u
e
〉R2

= C

∫

R2

exp (i(t · τ))√
k2
+ − |τ |2

(v̂1, v̂2)

(
τ1τ2 −k2

+ + τ2
2

k2
+ − τ2

1 −τ1τ2

)(
û2

−û1

)
dτ

= C

∫

|τ |≤2k+

exp (i(t · τ))√
k2
+ − |τ |2

(
(τ · û)(τ · v̂) + (k2

+ − |τ |2)(û · v̂)
)
dτ

+C

∫

|τ |>2k+

exp (i(t · τ))√
k2
+ − |τ |2

(
(τ2û1 − τ1û2)(τ2v̂1 − τ1v̂2) + k2

+(û · v̂)
)
dτ .

This integration will only be successful for |τ | ≤ 2k+ for all u and v

if and only if the surface divergences τ · û and τ · v̂ are sufficiently reg-

ular: So if Div u,Div v ∈ Hs−1
k,α+1(R

2), then the equivalent condition

is 2α+1
2 ≥ 1

2 or α ≥ − 1
2 . For |τ | > 2k+, the condition for the surface

curls Curlu,Curl v ∈ Hs
k,α(R2) and u, v ∈ Hs(R2) is 2 s2 > − 1

2 , so

s ≥ − 1
2 is needed and suffices for the remainder of the integral. �

5.5. Variational Approach

Now that suitable integral equalities, the Calderon operator, and its

mapping properties are established, we may lay out the weak prob-

lems after the next definition of the solution space of H(curl; R3
−)

functions with traces in H
−1/2
k,α (Div; R2) appropriate for the Calderon

operator:

Definition 5.5.1. For k > 0, α ∈ R, let

Hk,α(curl; Curl; R3
−) :=

{
u ∈ H(curl,R3

−) : ñ× u|Γ∈H− 1
2

k,α (Div; R2)
}
.

Remark 5.5.2. The space Hk,α(curl; Curl; R3
−) is normed by

||u||2Hk,α(curl;Curl;R3
−) = ||u||2L2(R3

−,C
3) + ||curlu||2L2(R3

−,C
3)

+ ||ñ× u|Γ||2H−1/2(R2,C2)

+ ||Curl ũ|Γ||2H−1/2
k,α (R2)

+ ||Div ũ|Γ||2H−3/2
k,α+1(R

2)
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and is non-empty for α ≥ 0, as trace functions in H
−1/2
k,α (Div; R2) are

in H−1/2(Div; R2) as well, and therefore have extensions to functions

in H(curl; R3
−). Thus all spaces Hk,α(curl; Curl; R3

−) are non-empty,

as Hs
k,α(Div; R2) ⊆ Hs

k,β(Div; R2) for all β ≤ α. Since Hs(Div; R2) ⊆
Hs
k,α(Div; R2) for α ≤ 0 and since Hs(Div; R2) is the trace space of

H(curl; R3
−) in the regarded context, we even have

H(curl; R3
−) = Hk,α(curl; Curl; R3

−) for α ≤ −1

as sets with differing norms.

At first, it seems natural to assume α = 0 or α = −1 to seek a solution

in a space closest to H(curl; R3
−), as then either the surface curl or

the surface divergence resembles the usual trace space. In order to

discuss which α are appropriate, the problem definitions are posed

for general α ≥ −1/2 for which the sesquilinear form is well defined:

Problem 5.5.3. (EBVP2)

For D = R3
−\Ω̄ and α ≥ −1/2, find u ∈ Hk,α(curl; Curl;D) such that

for all test functions ϕ ∈ Hk,α(curl; Curl;D) the equation

bE(u, ϕ) = aE(ϕ)

holds, where

bE(u, ϕ) = (curlu, curlϕ)L2(D) − k2
−(u, ϕ)L2(D)

+ iωµ〈GEH γ̃tu, π̃Γϕ̄〉R2

using the traces γtu = n× u|Γ, πΓϕ̄ = n× (ϕ̄× n)|Γ, and

aE(ϕ) = −〈n× Ei, (n× ϕ̄) × n〉∂Ω

for an analytic incoming field Ei defined at least around Ω.

The weak problem for the magnetic field intensity for α ∈ R is defined

as:

Problem 5.5.4. (HBVP2)

For D = R3
−\Ω̄ and α ≥ −1/2, find u ∈ Hk,α(curl; Curl;D) such that

for all test functions ϕ ∈ Hk,α(curl; Curl;D) the equation

bH(u, ϕ) = aH(ϕ)



108 5. FULL THREE-DIMENSIONAL MAXWELL SYSTEM

holds, where

bH(u, ϕ) = (curlu, curlϕ)L2(D) − k2
−(u, ϕ)L2(D)

+ (σ− − iωε−)〈GHE γ̃tu, π̃Γϕ̄〉R2

and

aH(ϕ) = (curl g, curlϕ)L2(D) − k2
−(g, ϕ)L2(D) ,

where g is a smooth rapidly decaying vector field such that its sup-

port is located in a small domain around Ω and g|∂Ω = −Hi|∂Ω, an

analytic incoming field, defined at least around Ω.

5.6. Existence, Uniqueness, and Equivalence

By the discussion of the Calderon operator we found out that the

weak problem definitions are only well posed for α ≥ −1/2:

Theorem 5.6.1.

sup
u,v∈Hk,α(curl;Curl,R3

−)

|bE/H(u, v)|
||u|| ||v|| <∞

if and only if α ≥ − 1
2 .

Proof. As u, v ∈ H(curl,R3
−), we only need to consider the last

part of the sesquilinear forms. Lemma 5.4.7 then proves the desired

assertion. �

In the following, we will concentrate on the weak problem for the H

field for two reasons: First, only bH exposes suitable phase conditions

for application of the extended Lax Milgram Lemma, and second, a

solution to one of the weak problems will yield a solution to the other

problem.

Proposition 5.6.2. In the following, two representations of bH(u, u)

will be used, where ûT = ˆ̃u = (û1, û2)
⊤ denotes the two dimensional
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Fourier transform of the first two components of u at Γ.

bH(u, u)
(i)
= ||curlu||2L2(D) − k2

−||u||2L2(D)

−ik
2
−
k2
+

∫

R2

|τ · ûT |2√
k2
+ − |τ |2

dτ

−ik
2
−
k2
+

∫

R2

√
k2
+ − |τ |2 |ûT |2 dτ

bH(u, u)
(ii)
= ||curlu||2L2(D) − k2

−||u||2L2(D)

+i
k2
−
k2
+

∫

R2

|τ2û1 − τ1û2|2√
k2
+ − |τ |2

dτ

−ik2
−

∫

R2

|ûT |2√
k2
+ − |τ |2

dτ .

Proof. The first two summands are obvious since

bH(u, u) = (curlu, curlu)L2(D) − k2
−(u, u)L2(D)

+ (σ− − iωε−)〈GHE γ̃tu, π̃Γū〉R2 ,

so it remains to analyze the term σ−−iωε−
−ωε+ = iω

2ε−+iωσ−

ω2ε+
= i

k2
−

k2
+

using

Equation (2.3) and the term

1√
k2
+ − |τ |2

(û1, û2)

(
τ1τ2 −k2

+ + τ2
2

k2
+ − τ2

1 −τ1τ2

)(
−û2

û1

)
.

First of all,

(û1, û2)

(
τ1τ2 −k2

+ + τ2
2

k2
+ − τ2

1 −τ1τ2

)(
û2

−û1

)
=−τ1τ2

(
û1û2 + û1û2

)

−
(
k2
+ − τ2

2

)
|û1|2

−
(
k2
+ − τ2

1

)
|û2|2 .
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From this we get the first representation by

−τ1τ2
(
û1û2 + û1û2

)
−
(
k2
+ − τ2

2

)
|û1|2 −

(
k2
+ − τ2

1

)
|û2|2

= −
(
k2
+ − |τ |2

)
|ûT |2 − τ2

1 |û1|2 − τ1τ2
(
û1û2 + û1û2

)
− τ2

2 |û2|2

= −
(
k2
+ − |τ |2

)
|ûT |2 − |τ · ûT |2

and the second representation by

−τ1τ2
(
û1û2 + û1û2

)
−
(
k2
+ − τ2

2

)
|û1|2 −

(
k2
+ − τ2

1

)
|û2|2

= −k2
+|ûT |2 +

(
τ2
2 |û1|2 + τ1τ2

(
û1û2 + û1û2

)
+ τ2

1 |û2|2
)

= −k2
+|ûT |2 + |τ2û1 − τ1û2|2 .

�

Remark 5.6.3. We will need to analyze the structure of the sesquilin-

ear forms by plots of the phases of the different terms of bH in the

complex plane. As before, we assume arg k2
− ∈ (0, π2 ). In the plots we

set arg k2
− ≈ π

4 for illustration purposes. As before, the arguments of

square roots are either 0 for |τ | ≤ k+ or π
2 for |τ | > k+.

Representation (i) of bH(u, u) =

||curlu||2L2(R3
−)︸ ︷︷ ︸

(A)

−k2
−||u||2L2(R3

−)︸ ︷︷ ︸
(B)

−ik
2
−
k2
+

∫

R2

|τ · ûT |2√
k2
+ − |τ |2

dτ

︸ ︷︷ ︸
(C)

−ik
2
−
k2
+

∫

R2

√
k2
+ − |τ |2 |ûT |2 dτ

︸ ︷︷ ︸
(D)

(A) (B) (C) (D)

|τ |>k+

|τ |>k+

|τ |<k+ |τ |<k+
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Representation (ii) of bH(u, u) =

||curlu||2L2(R3
−)︸ ︷︷ ︸

(A)

−k2
−||u||2L2(R3

−)︸ ︷︷ ︸
(B)

+i
k2
−
k2
+

∫

R2

|τ2û1 − τ1û2|2√
k2
+ − |τ |2

dτ

︸ ︷︷ ︸
(E)

−ik2
−

∫

R2

|ûT |2√
k2
+ − |τ |2

dτ

︸ ︷︷ ︸
(F )

(A) (B) (E) (F )

|τ |>k+

|τ |>k+|τ |<k+

|τ |<k+

The dashed lines in the plots approximate the coercivity plane in the

spirit of Lemma 1.3.3 for the proof of the next theorem. It turns out

that even though the problem is well defined for α ≥ − 1
2 , coercivity

is impossible for α > − 1
2 , leaving only one choice of α:

Lemma 5.6.4. For all constants c > 0 and α > − 1
2 there exists a

function u ∈ Hk,α(curl; Curl;D) such that

|bH(u, u)| < c||u||2Hk,α(curl;Curl;D) .

Proof. First, we need some continuous extension operator E

from Sk(R2,C2) to Hk,α(curl; Curl;D), such as Eϕ̂(x) = ϕ̂(x̃)e−x
2
3

for ϕ ∈ Sk(R2,C2). Please note, that the extension operator will be

used together with the Fourier transform. For arbitrary but from

now on fixed ε > 0 let

ϕ0 ∈ Sk(R2,C2) with suppϕ0 ∈ Bk+ε(0)\Bk+ε/2(0)

and normalized by ||Eϕ̂0||Hk,α(curl;Curl;D) = 1. Starting from ϕ0 we

will define a sequence of functions which extended Fourier transforms

will eventually yield a function with the desired properties by induc-

tion:
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Assume that ϕn ∈ Sk(R2,C2) and

suppϕn ∈ Bk+ε/2n(0)\Bk+ε/2n+1(0) ,

then we define

ψn+1(re
iβ) := ϕn

(
r + k

2
eiβ
)
,

which inherits ψn+1 ∈ Sk(R2,C2) and moves the support to

suppψn+1 ∈ Bk+ε/2n+1(0)\Bk+ε/2n+2(0) .

We therefore have an extension Eψ̂n+1 ∈ Hk,α(curl; Curl;D), and we

may normalize

ϕn+1 :=
ψn+1

||Eψ̂n+1||Hk,α(curl;Curl;D)

.

Note that such a sequence of (Eϕ̂n) is not a Cauchy sequence in

Hk,α(curl; Curl;D), since by construction

||Divϕ̂n+1 − Divϕ̂n||H−3/2
k,α+1(R2)

will not vanish. Thus it does not contradict the completeness of the

singular weighted Sobolev spaces.

Regarding the individual parts of the Hk,α(curl; Curl;D) norm, we

see that for α > −1 the ||Div ϕ̂n||H−3/2
k,α+1

(R2)
will grow for increas-

ing n compared to the other parts due to the moving support and

the highest order singular weight function. By representation (i) of

aH(Eϕ̂n, Eϕ̂n), it is bound from above by several norms, from which

the norm with the most singular weight is ||Div ϕ̂n||2
H

−1/2

k,1/2

. There-

fore, aH(Eϕ̂n, Eϕ̂n) converges to 0 if α > − 1
2 as it has a less sin-

gular weight, and thus for n sufficiently large there exists a function

u = Eϕ̂n such that the assertion is fulfilled for any previously chosen

c > 0. �

Theorem 5.6.5. There are constants C and ϕ dependent on k− and

k+ such that

Re
(
eiϕbH(u, u)

)
≥ C||u||2Hk+,α(curl;Curl;D)
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for all u ∈ Hk+,α(curl; Curl;D) if and only if α = − 1
2 .

Proof. The norms are treated in Fourier space within three sec-

tions: The first section will treat large frequencies, the second section

frequencies just above the wave number k+, and the last section will

cover frequencies below the wave number k+.

First, we consider the segment

Σ1 := {τ ∈ R2 : |τ | >
√
k2
+ +

k4
+C

2
T

4|k−|4
} ,

where CT is a trace constant, such that

CT ||ũ|Γ||2H−1/2(R2) ≤ ||u||2H(curl;R3
−)

for all u ∈ H(curl; R3
−).

Using the representation (ii) of bH(u, u), we see that all terms are on

one side of a coercivity plane for this segment, except for the term

(E) for |τ | > k+. Since the term

1 + |τ |2
k2
+ − |τ |2 = 1 +

1 + k2
+

k2
+ − |τ |2

is monotonically decreasing for |τ | > k+ which is the case for τ ∈ Σ1

and noting that

∣∣∣∣k
2
+ −

(
k2
+ +

k4
+C

2
T

4|k−|4
)∣∣∣∣

1/2

=
k2
+CT

2|k2
−|

we may estimate
∣∣1 + |τ |2

∣∣1/2
∣∣k2

+ − |τ |2
∣∣1/2

< 2
|k2

−|
k2
+CT

√
1 + k2

+ +
k4
+C

2
T

4|k−|4

if τ ∈ Σ1 and therefore by Lemma 5.2.11
∣∣∣∣∣∣
k2
−
k2
+

∫

Σ1

|τ2û1 − τ1û2|2√
k2
+ − |τ |2

dτ

∣∣∣∣∣∣



114 5. FULL THREE-DIMENSIONAL MAXWELL SYSTEM

≤ 2
|k−|4
k4
+CT

√
1 + k2

+ +
k4
+C

2
T

4|k−|4
||Curlu||2H−1/2(R2)

≤ 2
|k−|4CE
k4
+ CT

√
1 + k2

+ +
k4
+C

2
T

4|k−|4︸ ︷︷ ︸
=:C1

||curlu||2L2(D) .

As discussed in Lemma 1.3.3, we now choose ϕ such that

Re


eiϕik

2
−
k2
+

∫

Σ1

|τ2û1 − τ1û2|2√
k2
+ − |τ |2

dτ


 ≤ 1

4
||curlu||2L2(R3

−) ,

then by above considerations there exists a constant C2 such that

Re


eiϕ


k

2
−
k2
+

∫

Σ1

|τ2û1 − τ1û2|2√
k2
+ − |τ |2

dτ

+
1

2
||curlu||2L2(R3

−) +
k2
−
2
||u||2L2(R3

−)






≥ C2

(
||curlu||2L2(R3

−) + ||u||2L2(R3
−)

)
.

The remaining norms are bounded due to the usual traces because

|τ | > k+ + ε.

For the second segment consider

Σ2 := {τ ∈ R2 : k+ < |τ | <
√
k2
+ +

k4
+C

2
T

4|k−|4
}

and representation (i) of bH(u, u). Here, the |τ | > k+ part of the (D)

term is on the wrong side of the coercivity plane, but by monotonicity

of the square root term and the specific choice of Σ2, we see that
∣∣∣∣∣∣
k2
−
k2
+

∫

Σ2

√
k2
+ − |τ |2 |ûT |2 dτ

∣∣∣∣∣∣
≤ CT

2
||ũ||H−1/2(R2)

≤ 1

2

(
||u||2L2(R3

−) + ||curlu||2L2(R3
−)

)
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it is sufficiently small in Σ2, thus

Re


eiϕ


−ik

2
−
k2
+

∫

Σ2

√
k2
+ − |τ |2 |ûT |2 dτ

+
1

2
||curlu||2L2(R3

−) +
k2
−
2
||u||2L2(R3

−)




 ≥ 0 .

In this segment the estimation of the α trace norms are most impor-

tant; it turns out that

Re

(
eiϕ(−i)k

2
−

k2
+

∫
Σ2

|τ ·ûT |2√
k2
+−|τ |2 dτ

)

≥ C4

∫

Σ2

(
1 + |τ |2

)α−1/2

∣∣k2
+ − |τ |2

∣∣α+1 |τ · ûT |2 dτ

︸ ︷︷ ︸
||Div u||2

H
−3/2
k,α+1

(Div;R2)|Σ2

,

for some constant C4 if and only if α ≤ − 1
2 : This is the necessary

condition under which the denominator of the Bessel potential factor

of the ||Div u||2
H

−3/2
k,α+1(Div;R2)

norm has at most the same singularity as

the left-hand side. The estimate of the surface curl norm of u follows

from Lemma 4.3.6 as α < 0.

For the third segment consider

Σ3 := {τ ∈ R2 : |τ | < k+}

and representation (i) of bH(u, u). Here, all summands multiplied by

eiϕ have a positive real part, thus estimates for ||u|| and ||curlu|| are

given, and as before

Re

(
eiϕ(−i)k

2
−

k2
+

∫
Σ3

|τ ·ûT |2√
k2
+−|τ |2 dτ

)

≥ C4

∫

Σ3

(
1 + |τ |2

)α−1/2

∣∣k2
+ − |τ |2

∣∣α+1 |τ · ûT |2 dτ

︸ ︷︷ ︸
||Divu||2

H
−3/2
k,α+1

(Div;R2)|Σ3
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if and only if α ≤ − 1
2 , and the estimate for the surface curl norm of

u is again easily fulfilled by Lemma 4.3.6 as α < 0. �

Conclusion 5.6.6. The weak problem for the magnetic field inten-

sity (HBVP2) is uniquely solvable for α = −1/2 by the Lax-Milgram

Lemma. This also yields a solution for (EBVP2) for the same α, and

the solutions may be extended to solutions in the full space R3.

Lemma 5.6.7. A solution H to Problem 5.1.2 (HBVP1) satisfying

the integrability condition H |D ∈ Hk,−1/2(curl; Curl;D) is a solution

to Problem 5.5.4 (HBVP2).

Proof. If H is a solution to HBVP1, then a function u := H+g,

where g is chosen in HBVP2, will satisfy

curl curlu+ k2
−u = curl curl g + k2

−g

in R3
−, and n× curlu|∂Ω = 0. Let

ϕ ∈ Hk,−1/2(curl; Curl;D) ∩ C∞(D,C3)

be an arbitrary test function. Then, by multiplication of above equa-

tion by ϕ, integration over D and the integral identity (5.4), we gain

(curlu, curlϕ)L2(D) − k2
−(u, ϕ)L2(D) − 〈n× curlu, ϕ〉Γ

= (curl g, curlϕ)L2(D) − k2
−(g, ϕ)L2(D) .

Since the term n × curlu may be expressed by the Calderon op-

erator, using Theorem 5.3.1 and density proven in Lemma 5.2.4,

the vector field H satisfies bH(H,ϕ) = aH(ϕ) for any test function

ϕ ∈ Hk,−1/2(curl; Curl;D). �

Lemma 5.6.8. The extension U of a solution u to Problem 5.5.4

(HBVP2) defined by

U(x) =

{
v(x) for x ∈ R3

+ ,

u(x) for x ∈ R3
− ∪ Γ ,
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where v is defined as a divergence free vector field using a double layer

potential
(
v1(x)

v2(x)

)
=

2k2
−

k2
+

∫

Γ

∂Φ(x, y)

∂y3

(
u1(y)

u2(y)

)
dy ,

v3(x) =

∞∫

x3

(
−∂v1(x1, x2, y3)

∂x1
− ∂v2(x1, x2, y3)

∂x2

)
dy3

is a solution to Problem 5.1.2 (HBVP1).

Proof. Since the Calderon operator is defined as a Fourier mul-

tiplier, it is as translation invariant and linear like the Dirichlet-to-

Neumann operator Λ. Therefore,

bH(∆h
j u, ϕ) = −bH(u,∆−h

j ) = −aH(∆−h
j ϕ) , j = 1, 2

if u is a solution to HBVP2. A corresponding equation holds for u−g,

and thus we may bound the difference quotients by the coercivity of

bH

C||∆h
j u||2H1(D) ≤ ||u||H1(D)||g||H1(D)

for all h > 0, so ∂
∂xj

u ∈ H1(D). Using the sesquilinear form aH

to find a bound for the derivative of u with respect to x3, the third

component is also in H1(D) and therefore u ∈ H2(D) ⊂ C(D). By

smoothness of Hi and ∂Ω, we may repeat the argumentation result-

ing in u ∈ C2(D̄). The double layer potential Ansatz for R3
+ with

such continuous and bounded potential therefore fulfills the radiation

conditions and Maxwell’s equations and the jump conditions. �

Please note that the uniqueness result of Delbary et al. [11] is appli-

cable using u ∈ H(curl, D) ∩ C(D) instead of the exponential decay

condition in the proof. Therefore, the weak and classical problems

are equivalent.
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current density, 23

displacement, 23

field intensity, 23

permittivity, 24

Fourier multiplier

Dirichlet-to-Neumann, 46

ψs, 11

ψs
k,α

, 66

̺k, 69, 78

Hankel function, 36

Helmholtz equation, 32, 33

Green’s function, 35

Lax-Milgram, 17

Magnetic

field intensity, 23

induction, 23

permeability, 24

Maxwell’s Equations, 23, 82

time harmonic, 24

Neumann-to-Dirichlet map, 77

Problem definition

DBVP1, 44

DBVP2, 52

EBVP1, 82

EBVP2, 107

HBVP1, 82

HBVP2, 107

NBVP1, 45

NBVP2, 50

Radiation condition, 33

Silver-Müller, 33, 82

Sommerfeld, 34, 82

two-layer, 34

upward propagating, UPRC, 35

Schwartz space

D(Rn), 9

E(Rn), 9

S(Rn), 10

Sk(Rn), 69, 78

Silver-Müller, see Radiation

condition

Sobolev space, 12

weighted, 74

Sommerfeld, see Radiation

condition

Surface divergence and curl, 86
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TE, see Transverse electric

Time harmonic, 24

TM, see Transverse magnetic

Trace, 13

γ0, 85

γn, 85, 87

γt, 85, 88

πΓ, 85, 88

Transmission condition, 26, 30, 44

Transverse

electric, 29, 32, 45, 50

magnetic, 29, 31, 44, 52

UPRC, see Radiation condition

Wave number, 24
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