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Abstract— Efficiently implementing nonlinear Bayesian esti-
mators is still not a fully solved problem. For practical appli-
cations, a trade-off between estimation quality and demand on
computational resources has to be found. In this paper, the use
of nonnegative Fourier series, so-called Fourier densities, for
Bayesian estimation is proposed. By using the absolute square
of Fourier series for the density representation, it is ensured
that the density stays nonnegative. Nonetheless, approximation
of arbitrary probability density functions can be made by using
the Fourier integral formula. An efficient Bayesian estimator
algorithm with constant complexity for nonnegative Fourier
series is derived and demonstrated by means of an example.

I. INTRODUCTION

A common challenge in many technical systems is the
problem of reconstructing unknown quantities from impre-
cise measurements. Typical examples are localization of ve-
hicles or reconstruction of distributed phenomena by means
of a sensor network.

The most common approach is to describe the uncer-
tain quantities with random variables, which results in a
Bayesian estimator. For linear systems with Gaussian ran-
dom variables, the problem can be fully solved using the
Kalman Filter [1], [2]. For the case of nonlinear systems, a
generalized convolution integral has to be evaluated for the
prediction step, which typically cannot be solved analytically.
Furthermore, with an increasing number of measurements,
the complexity of the density representation generally in-
creases. This leads to unbounded computational demands
for recursive Bayesian processing. For quite some time a
vast variety of approaches exist [2], [3] to overcome this
problem by employing appropriate approximations of the
needed probability density functions. Very popular are the
extended Kalman filter [2], particle filters [4], and set-based
methods [5]. They all have in common that they are efficient,
but determining the quality of their results is generally
difficult and usually needs high computational costs.

To overcome this drawback, systems of functions can be
employed for approximating probability densities. For that
purpose, Gaussian Mixtures [6] and Gauss-Hermite series
[7] are commonly used. Although methods exist for precisely
determining Gaussian mixtures approximations for arbitrary
density functions [8], approximating a density function,
including reapproximating other Gaussian mixtures, has high
computational demands as all parameters are interdependent.

Edgeworth-expansions [7] are much more efficient on
this point, due to the fact that Gauss-Hermite series are,
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in contrast to Gaussian mixtures, an orthogonal function
system, which permits determining the required parameters
independently of each other. Furthermore, the parameters
can be ordered with respect to a distance measure. That re-
duces the computational demands drastically. Unfortunately,
it cannot be generally ensured that a truncated Gauss-Hermite
series is a valid density function as it can become negative.

We propose an alternative filtering approach, by employing
Fourier series, which were proposed in [9] for estimating
probability densities. When truncating Fourier series, again,
nonnegativity cannot be ensured. Hence, we approximate the
square root of all occurring probability densities by Fourier
expansions. By taking the absolute square of those series,
the so-called Fourier probability density functions (short:
Fourier densities), the nonnegativity, i.e., a valid probability
density, can be ensured. Exploiting the property that Fourier
series are orthogonal expansions, it will be shown that
required coefficients can be calculated independently and
very effectively by evaluating a Fourier integral.

Furthermore, a recursive Bayesian estimator consisting
of a filtering step and a prediction step will be derived.
Employing Fourier densities Bayesian estimation can be
performed very efficiently, since all required expressions
can be calculated analytically and the type of probability
density is preserved. Additionally, the complexity, i.e., the
computational demands, stay constant, because the order of
the Fourier density of the predicted density is independent of
the order of the prior density. It can even be adjusted, because
the length of the Fourier series can be reduced optimally
with respect to the Hellinger metric, which is the employed
distance measure.

The rest of the paper is structured as follows: We begin
with discussing the Bayesian filter in the following section. In
Sec. III Fourier probability densities are introduced. Sec. IV
explains how to approximate arbitrary probability density
functions with Fourier densities. Sec. V demonstrates the
procedure of Bayesian filtering with Fourier densities by
means of an example. Sec. VI summarizes results and gives
an outlook to future work.

II. PROBLEM FORMULATION

The main goal is to find an efficient realization of the
Bayesian estimator, which is discussed in this section.

For brevity and clarity, only the case of one-dimensional
random variables is discussed. Without loss of generality,
finite intervals are limited to the interval Ω = [−π, π] unless
otherwise noted. The following notation is used:
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Fig. 1. Structure of a nonlinear discrete-time system with additive noise
and a nonlinear discrete-time estimator. The output ŷk is a realization of
the random variable yk .

x – random variable C – set of complex numbers
xk – x at discr. time k c∗ – conjugate complex of c
j – imaginary unit δ(x) – Dirac delta function

Consider a nonlinear discrete-time scalar system

xk+1 = ak(xk, uk) + wk , (1)

with state variable xk ∈ Ω = [−π, π], input uk, the nonlinear
system function ak(., .), and additive noise wk with the prob-
ability density fw(w). The subscript k denotes the discrete
time and bold variables, e.g. x, denote random variables.
Furthermore, we consider the measurement equation

yk = hk(xk) + vk , (2)

where yk is the measurement value at time k, h(.) the
nonlinear measurement function and vk the additive noise
with the density fv(vk). Note that an actual measurement,
denoted with ŷk, is a realization of (2). It is assumed that
all the individual noise variables wk and vk are statistically
independent and have an expected value of zero.

The purpose of the estimator is to determine the probabil-
ity density f(xk) of xk as precise as possible for each time
step k. To achieve this, two steps are performed alternately
(Fig. 1), namely the prediction step and the filtering step.

Prediction Step: A prior density f(xk) for xk, a known
input uk, and a noise density fw(wk) is assumed. With
respecting (1) for the discrete time k+1 the density fp(xk+1)
for xk+1 can be determined by employing the well-known
generalized convolution formula

fp(xk+1) =
∫ π

−π

∫ π

−π

δ(xk+1 − ak(xk, uk)− wk)

f(xk)fw(wk) dwk dxk

=
∫ π

−π

fw(xk+1 − ak(xk, uk)) f(xk) dxk . (3)

The input for the prediction step is usually the estimated
density f(xk) = fe(xk) from the filtering step.

Filtering Step: The purpose is to incorporate the informa-
tion of the measurement value ŷk including the measurement
noise fv(vk) respecting (2). This can be achieved by using

the famous Bayes formula for additive noise

fe(xk) =
fv(ŷk − h(xk))fp(xk)∫

Ω
fv(ŷk − h(xk))fp(xk) dxk

=
fL(xk)fp(xk)

ck
,

(4)

where

fL(xk) = f(ŷk|xk) =
∫ π

−π

δ(ŷk − h(xk)− vk)fv(vk) dvk

= fv(ŷk − h(xk))

is called the likelihood function for the measurement value
ŷk. It is the conditional density for the occurrence of the
measurement ŷk under the condition xk. The denominator
ck is a normalization constant for fL(xk).

III. CHARACTERISTICS OF FOURIER DENSITIES

As a probability density representation, we use Fourier
expansions. As shown in Sec. IV, they are constructed in a
way that they are nonnegative.
DEFINTION 1 (FOURIER DENSITIES) Consider a Fourier
expansion fΨ : x ∈ Ω = [−π, π] 7→ C of the form

fΨ(x) =
2n∑

k=−2n

γkejkx =
2n∑

k=−2n

(αk + jβk)ejkx , (5)

with γk = αk + jβk ∈ C and j2 = −1.
If the fundamental probability density properties

fΨ : x 7→ R+
0 := {fΨ|fΨ ∈ R ∩ fΨ ≥ 0} (6)∫ π

−π

fΨ(x) dx = 1 (7)

hold, then fΨ is called a Fourier probability density function
or short a Fourier density on Ω of the order 2n. If (7) is not
true, then fΨ is called an unnormalized Fourier density.

Note that for any real Fourier series fΨ(x) ∈ R γ−k = γ∗k
holds [10], thus also for Fourier densities.
LEMMA 1 (CUMULATIVE DENSITY) The cumulative den-
sity function of a Fourier density is given by

F (x) =
∫ x

−π

fΨ(ξ) dξ (8)

= γ0(x + π) +
2n∑

k=−2n
k 6=0

γk

jk

(
ejkx − (−1)k

)
.

The most widely used characterizations of probability den-
sities are the expected value and the variance.
THEOREM 1 (EXPECTATION VALUE AND VARIANCE) Con-
sider a Fourier density fΨ(x) as given in (5). The expected
value and the variance are

x̂ = E{x} =
∫ π

−π

ξfΨ(ξ) dξ = 2π
2n∑

k=−2n
k 6=0

γk

jk
(−1)k , (9)

σ2
x = E{(x− x̂)2} = (10)

=
2
3
γ0π

3− 4π
2n∑

k=−2n
k 6=0

γk

−k2
(−1)k − x̂2 .



PROOF. Integration by parts gives

x̂ =
∫ π

−π

ξfΨ(ξ) dξ = ξFΨ(ξ)
∣∣∣π
−π

−
∫ π

−π

1 FΨ(ξ) dξ

=
[
γ0ξ

2 + ξ
2n∑

k=−2n
k 6=0

γk

jk
(−1)k

]π

−π
−

∫ π

−π

γ0ξ +
2n∑

k=−2n
k 6=0

γk

jk
ejkξ dξ

= 2π
2n∑

k=−2n
k 6=0

γk

jk
(−1)k −

[
γ0

ξ2

2
+

2n∑
k=−2n

k 6=0

γk

−k2
ejkξ

]π

−π

equals (9), because ejk(π) = ejk(−π) holds for all integer
values k ∈ Z, Obviously, for the variance

σ2
x = E{(x− x̂)2} = E{x2 − 2xx̂ + x̂2}

= E{x2} − E{2xx̂}+ E{x̂2} = E{x2} − x̂2

holds, so it is sufficient to calculate the central moment
E{x2}. Again, integration by parts results in (10). �

As shown in (3) and (4), the Bayesian estimator uses
two-dimensional probability densities. Consequently, two-
dimensional Fourier densities are needed as well.
DEFINTION 2 (2D FOURIER DENSITY) A two-dimensional
Fourier density fΨ : (x, y) ∈ Ω2 = [−π, π]2 7→ R+

0 of the
order n×m is defined by

fΨ(x, y) =
∑
k,l

γk,le
j(kx+ly) , (11)

with γk,l ∈ C, k = −2n . . . 2n and l = −2m . . . 2m.
Obviously, it needs to fulfill

fΨ(x, y) ≥ 0 ∀(x, y) ∈ Ω2 and
∫∫

Ω2
fΨ(x, y) dxdy = 1 .

Again, if the integral condition does not hold, fΨ(x, y)
is called an unnormalized Fourier density. This definition
can be easily generalized to higher dimensions. Analogous
expressions to Theorem 1 can be derived as well.

IV. APPROXIMATING ARBITRARY DENSITIES WITH
FOURIER DENSITIES

For representing arbitrary probability densities f(x) we
need a method for determining an appropriate approximation
by a n-th order Fourier density fΨ(x). This, we interpret as
an optimization problem

G(f, fΨ) → min ,

where the parameters of fΨ(x) are adapted to minimize
the quality measure G(., .), which compares the similarity
of the two densities f(x) and fΨ(x). Choosing an ap-
propriate G(., .) is a difficult task, because the quality of
an approximation heavily depends on the application. E.g.,
optimizing for the expected value or for a certain fixed
interval of the density require different measures. Deriving
optimal quality measures in general is still, as far the authors
know, an unsolved problem in estimation theory. Hence, we
are satisfied with a measure, which is zero for identical

densities G(f, f) = 0 and reflects similarity in the shape
of the densities well.

In this work we utilize the Hellinger metric

G(f, fΨ) =
∫ π

−π

(√
f(x)−

√
fΨ(x)

)2

dx ,

which is employed for density estimation [11]. The Hellinger
metric has the advantage over the usually used integral
squared deviation that the coefficients can be determined
independently of each other, which will be shown in the
following. Furthermore, it can be shown that the Hellinger
metric is an optimal choice for some classes of applications.
The investigation of that is beyond the scope of this paper.

In our case, we do not determine the parameters of the
Fourier density fΨ directly. In analogy to quantum mechan-
ics, where the absolute square of Ψ-function are used to
represent probability densities [12], we define Ψ-densities:
DEFINTION 3 (Ψ-DENSITY) A two-dimensional Fourier
series Ψ : (x, y) ∈ Ω2 = [−π, π]2 7→ C which is given by

Ψ(x, y) =
∑
k,l

ck,le
j(kx+ly) ,

with ck,l ∈ C, k = −n . . . n, l = −m . . .m, for which the
absolute square

Ψ(x, y)Ψ∗(x, y) = |Ψ(x, y)|2 = fΨ(x, y)

results in a Fourier density is called a Ψ-density. By setting
y ≡ 0,m ≡ 0, the one-dimensional case is obtained. Higher-
dimensional cases can be defined analogously.

With Ψ-densities we are able to derive an approximation
rule for the one and two-dimensional case.
THEOREM 2 (APPROXIMATION) Given a two-dimensional
probability density function f : (x, y) ∈ Ω2 = [−π, π]2 7→
R+

0 , the optimal coefficients of the Ψ-density with respect to
the Hellinger metric

G(f, fΨ) =
∫∫

Ω2

(√
f(x, y)−Ψ(x, y)

)2

dxdy (12)

are given by the Fourier integral

ck,l = ak,l + jbk,l =
1

4π2

∫∫
Ω2

√
f(x, y)e−j(kx+ly) dxdy .

(13)
The Fourier density fΨ(x, y) = Ψ(x, y)Ψ∗(x, y) can be
obtained, by taking the absolute square of Ψ(x, y). Again,
by setting y ≡ 0 the one-dimensional case is obtained.
PROOF. For determining a minimum, the first derivative1

G−k,−l = ∂G/∂a−k,−l has to be zero, which results in

G−k,−l =
∫∫

Ω2

∂

∂a−k,−l

(√
f(x, y)−Ψ(x, y)

)2

dxdy

= −2
∫∫

Ω2

(√
f(x, y)−Ψ(x, y)

)
e−j(kx+ly) dxdy .

Since
∫ π

−π
ejkx dx = 0 for all integer k 6= 0, we obtain

G−k,−l = −2
∫∫

Ω2

√
f(x, y)e−j(kx+ly) dxdy + 2(4π2ck,l) .

1∂/∂ck,l cannot be used, since ∂c∗k,l/∂ck,l is not defined for complex
ck,l ∈ C, but occurs when approximating real functions.



With setting G−k,−l = 0, we obtain (13). Since it can easily
be shown that ∂2G−k,−l/∂a2

−k,−l is greater than zero, (13)
is the condition for a minimum. The same result is obtained,
when using b−k,−l using instead of a−k,−l. �

Note that the coefficients can be determined independently
and there exist very efficient algorithms, like the fast Fourier
transform [10], for calculating the Fourier integral of (13).
That is the main reason for using the Hellinger metric.
Other metrics, e.g. the integral squared deviation, could be
employed as well. Comparing the quality of approximations
of different metrics is a point of further research.

In the following, we discuss the special case of reapprox-
imating a given Fourier density by a Fourier density with
lower order. This is especially useful to reduce complexity,
when performing filtering steps without prediction steps,
which will be addressed in the next section. The reduction
can be performed by first calculating the square root

√
fΨ(x)

and then reducing the Ψ-density.
LEMMA 2 (CALCULATING

√
fΨ(x)) Given a valid Fourier

probability density function fΨ(x), if the coefficients ck of
Ψ(x) satisfy the following equations

|cn|2 = γ2n ,

2cncn−1 + cn−1cn = γ2n−1 ,

...

cnc∗−n + cn−1c
∗
−n+1 + . . . + c1c

∗
−1 + |c0|2 = γ0 ,

then fΨ(x) = Ψ(x)Ψ∗(x). The first n equations can be
solved sequentially from top to bottom, because the number
of unknowns increase by two and each line represents two
equations. The second n equations have to be used to ensure
that the solution is correct.

The Hellinger metric implies an order on the coefficients
of Ψ-density, as the next theorem shows.
THEOREM 3 (ORDERING FOURIER TERMS) The coefficient
cmin of a Ψ-density Ψ(x), which influences the Hellinger
metric minimally, has to satisfy

cminc∗min ≤ ckc∗k for k ∈ [−n, n] , (14)

where cmin is the ck with the minimal influence. I.e., the
coefficients ck can be ordered with respect to the Hellinger
metric by ordering them by their squared magnitude.
PROOF. By applying a Ψ-density reduced by one element

Ψ6k(x) := Ψ(x)− ckejkx

to the Hellinger metric, we obtain

G(ΨΨ∗,Ψ6kΨ∗
6k) = ckc∗k ,

Choosing the ck, which changes G minimally leads to (14).
�

We end this section with an two-dimensional example.
EXAMPLE 1 (2D APPROXIMATION) Fig. 2 (top) depicts

f(x, y) = N (y − 2x3 − x, σ2)

with σ2 = 1
2 and the Gaussian

N (z − ẑ, σ2
z) =

1√
2πσ2

z

e
− 1

2
(z−ẑ)2

σ2
z . (15)

x

x

y

y

f
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)

f
 (
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,y

)
Ψ

Fig. 2. The 2D-Density f(x, y) = N (y − 2x3 − x, 1
2
) (top) and its

Approximation with 16× 16-order Fourier density (bottom).

The bottom shows the approximation with a 16 × 16-order
Fourier density. The little bumps by (1.1,−π) and (−1.1, π)
appear, since Fourier series are periodic functions and there
is a sharp edge at y = ±π. The bumpiness at the top and
the bottom is caused by Gibbs phenomenon [10]. It can be
reduced by using appropriate windowing functions or using
Fourier densities of an higher order.

V. NONLINEAR FILTERING WITH FOURIER DENSITIES

In this section we discuss how to perform Bayesian
filtering with Fourier densities. We begin with the filtering
step of (4). To perform it efficiently, we insert one constant
function parameter in a two-dimensional Fourier density,
which results in a one-dimensional slice.
THEOREM 4 (CALCULATING A SLICE) Given a two-
dimensional Fourier density fΨ(x, y) as in (11), the coef-
ficients of the one-dimensional Fourier density

fΨ(x, y = y0) = f0
Ψ(x) =

2n∑
k=−2n

γ0
kejkx

are given by

γ0
k =

2m∑
l=−2m

γk,le
jly0 . (16)

An analogous expression can be derived for fΨ(x = x0, y =
y) as well as for higher dimensional densities.
PROOF. Using ej(kx+ly) = ejkxejly , (16) can be easily
derived from (11). �

Additionally, we need the product of two Fourier densities.
LEMMA 3 (PRODUCT) Given are two Fourier densities
fa
Ψ(x), f b

Ψ(x) of the order na, nb. For the product

fa
Ψ(x)f b

Ψ(x) = fc
Ψ(x) =

2nc∑
k=−2nc

γc
kejkx (17)

the coefficients are given by

γc
k =

na∑
l=−na

γ̄a
l γ̄b

l−k with γ̄(.)
p =

{
γ

(.)
p if − n(.) ≤ p ≤ n(.) ,

0 otherwise,

with nc = na + nb. The proof can be performed by
reformulating (17). Note that an analogous expression can
be derived for Ψ-densities.
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Fig. 4. The Liklihood Fourier series for the measurement equation (18)
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true function, which was determined numerically.

The filter step is demonstrated by means of an example.
EXAMPLE 2 (FILTER STEP) Given is the measurement
equation consisting of a third order polynomial

yk = 2x3
k + xk + vk , (18)

with vk being zero mean Gaussian noise as in (15) with
variance σ2

v = 1
2 . Furthermore, given is an initial Fourier

density, which is an approximation of a Gaussian f0(x) =
N (x − 0.15, 1

2 ) of the order 8 (Fig. 3). The maximum
deviation to the true density is 3 · 10−6. The filtering step is
a three step procedure:

1) The first step, which can be performed off-line in
time-invariant systems, is to determine the two-dimensional
conditional Fourier density fΨ(y|x) from the measurement
equation (18). Since vk is Gaussian, the true density is

f(yk|xk) = N (yk − 2x3
k − xk, σ2

v) , (19)

which has to be approximated by a 2D Fourier density. Fig. 2
depicts an approximation of the order 16× 16.
2) The second step is to calculate the likelihood for a given

measurement ŷ1, which results in

fL(x1) = f(ŷ1|x1) ,

which can be performed by employing Theorem 4. Here, we
assume ŷ1 = 1

2 , where the corresponding likelihood Fourier
series of the order 16 is depicted in Fig. 4.
3) The final step is performing the filtering step described

in (4) using Lemma 3, which results in Fig. 5. The resulting
density fe

Ψ(x1) has the order 24.
As expected, the density fe

Ψ(x1) is more complex than the
previous density f0

Ψ(x0). Thus, the order is higher as well.
Note that the order of the Fourier densities increases with

each filtering step. In Theorem 5 we will show that the
prediction step bounds the order of the Fourier density. When
performing multiple sequential filter steps, the order can
become very large. To limit the length, the corresponding
Ψ-densities can be determined with Lemma 2 and then
reapproximated using Theorem 3.

f
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Fig. 5. The estimated density fe

Ψ(x1) of the order 24 (solid blue line:
Fourier; dashed magenta line: true).

Remark: The dashed magenta lines in Fig. 4–7 show the
corresponding numeric calculations with 256 grid points for
each axis, which are assumed to represent the true functions.

We continue with deriving the prediction step.
THEOREM 5 (PREDICTION STEP) Given is a density

f(xk) =
∑

l

γ
(k)
l ejlxk

with l = −2nl . . . 2nl and a transition density

fT (xk+1, xk) = f(xk+1|xk) =
∑
p,q

γ(T )
p,q ej(pxk+1+qxk)

with p = −2np . . . 2np and q = −2nq . . . 2nq. With r =
−2np . . . 2np, the predicted density results in

fp(xk+1) =
∫ π

−π

fT (xk+1, xk)f(xk) dxk = (20)

=
∑

p

γ(k+1)
p ejpxk+1 with γ(k+1)

p = 2π
∑

r

γ
(k)
−r γ(T )

p,r .

PROOF. Obviously,

fp(xk+1) =
∫ π

−π

fT (xk+1, xk)f(xk) dxk (21)

=
∫ π

−π

∑
l,p,q

γ
(k)
l γ(T )

p,q ej(l+q)xk ejpxk+1 dxk

=
∑
l,p,q

(
γ

(k)
l γ(k)

p,q ejpxk+1

∫ π

−π

ej(l+q)xk dxk

)
.

Since
∫ π

−π
ejlx dx = 0 holds for all integers l 6= 0, (21)

simplifies to

fp(xk+1) = 2π
∑
p,r

γ
(k)
−r γ(T )

p,r ejpxk+1

with r = −2np . . . 2np. This can be rewritten to (20). �
Note that the order of the predicted density is independent

of the order of f(xk), i.e., for Bayesian prediction the
complexity of the density stays constant. The following
example demonstrates the utilization of the latter theorem.
EXAMPLE 3 (PREDICTION STEP) Given is a nonlinear
system equation

xk+1 =
xk + 1

2
+ 25

xk + 1
1 + (xk)2

+ wk , (22)

without input. This an adapted version of the nonstationary
growth model, investigated by [13]. wk is Gaussian f(wk) =
N (wk, σ2

w) with variance σ2
w = 1

2 . The prior density is the
result of the filter step of Example 2 depicted in Fig. 5.



Fig. 6. The 2D-Density fT (xk+1, xk) of Example 3. The top shows the
real density and the bottom its approximation fT

Ψ (xk+1, xk) with 32×32-
order Fourier density (bottom).
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Fig. 7. The predicted density of Example 3 of the order 16 (solid blue
line: Fourier; dashed magenta line: true).

The prediction step consists also of two steps. The first
step, which can be performed off-line for time-invariant
systems, is determining the approximation fT

Ψ (xk+1, xk) of
the transition density of (22)

fT (xk+1, xk) = N (xk+1 −
xk + 1

2
− 25

xk + 1
1 + (xk)2

, σ2
w)

with use of Theorem 2. The result of a 32×32-order Fourier
density is depicted in Fig. 6.

The second step, which is always performed on-line, is
the application of (20) to determine the resulting predicted
density fp(x1), which results in Fig. 7.

For treating systems with an input, a three dimensional
fT
Ψ (xk+1, xk, uk) is needed, which is reduced to a two-

dimensional density fT
Ψ (xk+1, xk) = fT

Ψ (xk+1, xk, ûk) for
a given ûk (Theorem 4).

VI. CONCLUSIONS AND FUTURE WORK

In this work, Bayesian estimation with Fourier densities
was proposed. In Sec. II the Bayesian estimator was re-
viewed. In Sec. III Fourier densities as probability densities
were introduced and some of their properties were discussed.

Sec. IV discussed the procedure of approximating arbitrary
probability densities with Fourier densities. The Fourier coef-
ficients can be determined independently evaluating a Fourier
integral. With a fast Fourier transform, the coefficients can
be calculated very efficiently. Additionally, it was shown that
the complexity of a Fourier density can easily be reduced,
since an ordering of coefficients exists. This allows to adjust
the computational demands.

Sec. V derived a recursive Bayesian estimator consisting
of a filtering step and a prediction step. It was addressed that

the prediction step bounds the complexity of the estimator.
Furthermore, it was shown that the complexity, i.e., the order
of the Fourier density, can be adjusted optimally with respect
to the Hellinger metric. This is helpful for performing a large
number of filter steps without intermediate prediction steps.
Additionally, it was discussed that for time-invariant systems,
the computationally expensive approximations can be done
off-line. The on-line part can be performed very efficiently,
since only multiplications and summations of coefficients are
required.

A main aspect of future work includes evaluating the per-
formance of Fourier densities on real life problems. Another
aspect is tackling the problem of the fixed size of state space.
One approach might be the use of an slideable and scalable
state space, which could be realized by simple coordinate
transformations. As already stated, a further point is the
investigation of different quality measures for approximating
densities. A final aspect is improving the approximation
efficiency. Some classes of densities, especially those whose
Fourier spectra have a lot of mass in high frequencies,
Fourier densities of very high order are needed. Some
other kinds of orthogonal function systems, e.g. orthogonal
polynomials, might perform better in approximating those
classes. A final result could be a family of orthogonal prob-
ability densities, which allow efficient Bayesian estimation
for arbitrary nonlinear real life problems.
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