
Dirac Mixture Density Approximation Based on
Minimization of the Weighted Cramér–von Mises Distance

Oliver C. Schrempf, Dietrich Brunn, and Uwe D. Hanebeck

Abstract— This paper proposes a systematic procedure for
approximating arbitrary probability density functions by means
of Dirac mixtures. For that purpose, a distance measure
is required, which is in general not well defined for Dirac
mixture densities. Hence, a distance measure comparing the
corresponding cumulative distribution functions is employed.
Here, we focus on the weighted Cramér–von Mises distance,
a weighted integral quadratic distance measure, which is
simple and intuitive. Since a closed–form solution of the given
optimization problem is not possible in general, an efficient
solution procedure based on a homotopy continuation approach
is proposed. Compared to a standard particle approximation,
the proposed procedure ensures an optimal approximation with
respect to a given distance measure. Although useful in their
own respect, the results also provide the basis for a recursive
nonlinear filtering mechanism as an alternative to the popular
particle filters.

NOTATION
δ(x) Dirac Delta function
H(x) Heaviside step function

G distance measure
η parameter vector
γ progression parameter

N(.,m, σ) Gaussian density with mean m
and standard deviation σ

I. INTRODUCTION

Processing density functions in nonlinear estimation pro-
cedures typically cannot be performed exactly. Especially in
recursive processing, the type of density changes and the
complexity increases. Hence, nonlinear estimation in general
requires the approximation of the underlying true densities
by means of generic density types.

Different types of generic approximation densities have
been proposed in literature including Gaussian mixtures [1],
Edgeworth series expansions [2], and exponential densities
[3]. Another very popular approach is to represent the true
density by means of a set of samples [4], which is used
by the class of particle filters [5]. Typically, the appropriate
locations and weights of the particles are calculated by means
of Monte Carlo techniques [6], [7].

Here, we pursue a different interpretation. The particles
are viewed as a mixture of weighted Dirac delta components
used to systematically approximate the density at hand. This
is different from the deterministic type of particle filters
in [8] as a distance measure is employed to transform the
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approximation problem into an optimization problem. How-
ever, in the case of Dirac mixtures, typical distance measures
quantifying the distance between two densities are not well
defined. Examples are the Kullback–Leibler distance [9],
its symmetrized version [10] or integral quadratic distances
between the densities. Hence, the first key contribution of
this paper is to compare the corresponding cumulative dis-
tribution functions of the true density and its approximation
in order to find optimal parameters for the Dirac Mixture
approximation. This can be viewed as a reversal of the
procedure introduced in [11], where a distribution distance,
in that case the Kolmogorv–Smirnov test statistic, is used
to calculate optimal parameters of a density given observed
samples.

In this paper, we focus on the weighted Cramér–von Mises
distance [12] between the cumulative distributions. Other
possible distribution distances would be the Kolmogorov–
Smirnov distance [13], or the generalized Cramér–von Mises
distance [14]. Since a closed–form solution of the given opti-
mization problem is not possible in general, the second key
contribution is an efficient solution procedure for arbitrary
true densities based on a homotopy continuation approach
similar to the approach introduced in [15].

The results of this paper can immediately be used for
implementing a recursive nonlinear filter that could serve
as an alternative to the popular particle filters. In contrast
to a standard particle approximation, the proposed approach
provides an optimal approximation with respect to a given
distance measure. Furthermore, the proposed approximation
procedure might be easier to understand than a real imple-
mentation of a particle approximation. The special case of
equally weighted components is presented in [16].

The paper is organized as follows. After a formulation of
the approximation problem in Section II, the conversion of
the approximation problem into an equivalent optimization
problem is described in Section III. A general solution
approach for arbitrary densities is then given in Section IV.
The algorithm of the solver applied is presented in Section V
followed by some practical examples in Section VI. Conclu-
sions and a few remarks about possible extensions and future
work are given in Section VII.

It is important to note that this paper is restricted to the
case of scalar random variables.



II. PROBLEM FORMULATION

We consider the problem of approximating a given density
f̃(x) by means of a Dirac Mixture given by

f(x, η) =
L∑

i=1

wi δ(x − xi) . (1)

The parameters of this approximation are the centers of the
individual Dirac functions xi and the weighting coefficients
wi. These parameters are collected in a parameter vector η
according to

η =
[
x1, x2, . . . , xL, w1, w2, . . . , wL

]T
.

For the remainder of this paper, we assume that the centers
are ordered according to

x1 < x2 < . . . < xL−1 < xL .

Our goal is to minimize a certain distance measure G be-
tween the given density f̃(x) and its approximation f(x, η).
For the purpose of nonlinear estimation, we are espe-
cially interested in approximations with an inhomogeneous
approximation quality.

III. APPROXIMATION BY OPTIMIZATION

The first key idea is to reformulate the above approxi-
mation problem as an optimization problem by minimizing
a certain distance between the true density f̃(x) and its
approximation f(x, η). Instead of comparing the densities
directly, which does not make sense for Dirac Delta func-
tions, the corresponding (cumulative) distribution functions
are employed for that purpose.

The distribution function corresponding to the true density
f̃(x) is given by

F̃ (x) =
∫ x

−∞
f̃(t) dt .

The distribution function corresponding to the Dirac mixture
approximation can be written as

F (x, η) =
∫ x

−∞
f(t, η) dt =

L∑
i=1

wiH(x − xi) , (2)

where H(.) denotes the Heaviside function defined as

H(x) =

⎧⎨
⎩

0, x < 0
1
2 , x = 0
1, x > 0

.

A suitable distance measure is given by the weighted
Cramér–von Mises distance [12]

G(η) =
∫ ∞

−∞
g(x)

(
F̃ (x) − F (x, η)

)2

dx , (3)

where g(x) is a nonnegative weighting function. This weigh-
ing function g(x) has been introduced for achieving an ap-
proximation with an inhomogeneous approximation quality.
In the specific application, g(x) is selected in such a way
that only those portions of the considered propability density
function relevant for the future evolution are approximated

with a high accuracy. This avoids to put much approximation
effort into irrelevant regions of the state space.

The next section is concerned with calculating an optimal
parameter vector η minimizing the given distance.

IV. SOLVING THE OPTIMIZATION PROBLEM BY
HOMOTOPY CONTINUATION

It is not possible to solve the optimization problem formu-
lated in the previous section directly. Hence, we introduce an
approach to find the solution progressively by applying the
homotopy continuation method. In order to apply homotopy
continuation, we introduce a so called progression parameter
γ into F̃ (x) that goes from 0 . . . 1. The purpose of this
parameter is to find a very simple or exact approximation
of F̃ (x, γ) for γ = 0. Further we must guarantee that
F̃ (x, γ = 1) = F̃ (x). By varying γ from 0 to 1 we track the
parameter vector η that minimizes the distance measure.

Example IV.1 An example of this continuation can be seen in
Figure 1. Here we have a progression schedule for a standard
normal density function. For γ = 0 we have a uniform density
that can be approximated very easily. As the progression goes
from γ = 0 . . . 1 the function becomes the desired normal den-
sity. This behavior is achieved by parameterizing the standard
deviation according to

f̃(x, γ) =
1√
2πσ

exp

8><
>:
−1

2

x2

“
1+ε
γ+ε

σ
”2

9>=
>;

,

where ε is a very small constant.

To find the minimum of the distance measure, we have to
find the root of partial derivative with respect to η according
to

∂G(η, γ)
∂η

=

⎡
⎣

∂G(η,γ)

∂x

∂G(η,γ)

∂w

⎤
⎦ != 0 .

Applying this derivative we obtain

∂G(η, γ)
∂xi

= −wig(xi)
[
F̃ (xi, γ) − F (xi)

]
∂G(η, γ)

∂wi
=

∫ ∞

−∞
g(x)

[
F̃ (x, γ) − F (xi)

]
H(x − xi) dx .

By setting
∂G(η,γ)

∂η to zero and replacing F (x, η) by∑L
j=1 wjH(x − xj) we obtain the system of equations

F̃ (xi, γ) =
L∑

j=1

wjH(xi − xj)

∫ ∞

xi

g(x)F̃ (x, γ) dx =
L∑

j=1

wj

∫ ∞

xi

g(x)H(x − xj) dx .

for i = 1 . . . L. By selecting the weighting function g(x) as
a piecewise constant function according to

g(x) =
{

1 −c < x < c
0 else
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Fig. 1. Progression schedule for Gaussian a) distribution function b) density function. γ = 0 corresponds to the uniform density or distribution. γ = 1
corresponds to the original Gaussian density or distribution.

we can simplify the system of equations to

F̃ (xi, γ) =
i−1∑
j=1

wj +
wi

2
(4)

and∫ c

xi

F̃ (x, γ) dx = c

L∑
j=1

wj − xi

i∑
j=1

wj −
L∑

j=i+1

wjxj . (5)

The weighting function g(x) considers the interval [−c, c]
but equation (5) considers only the interval [x1, c]. Since
generally x1 > −c, we have a small error. To compensate
for this error in the interval [−c, x1], we introduce a further
component w0H(x − x0) in the approximation for which
we let x0 = −c constant. The weight w0 automatically
compensates for the error.

To track the minimum of the distance measure we have
to take the derivative of (4) and (5) with respect to γ. Since
F̃ (xi, γ) is both an explicit and due to xi = xi(γ) an implicit
function of γ, we obtain

∂F̃ (xi, γ)
∂γ

+ f̃(xi, γ)ẋi =
i−1∑
j=0

ẇj +
ẇi

2
(6)

for i = 1, . . . , L, and
∫ c

xi

∂F̃ (x, γ)
∂γ

dx = c
L∑

j=0

ẇj − xi

i∑
j=0

ẇj −
L∑

j=i+1

xjẇj

+ F̃ (xi, γ)ẋi − ẋi

i∑
j=0

wj −
L∑

j=i+1

wj ẋj

(7)

for i = 0, . . . , L and ẋ0 = 0.
This system of ordinary first order differential equations

can be written in a vector–matrix–form as

b = Pη̇ , (8)

where

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F̃ (x1,γ)
∂γ
...

∂F̃ (xL,γ)
∂γ∫ c

x0

∂F̃ (x,γ)
∂γ dx∫ c

x1

∂F̃ (x,γ)
∂γ dx
...∫ c

xL

∂F̃ (x,γ)
∂γ dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
η̇ =

[
ẋ1, . . . , ẋL, ẇ0, ẇ1, . . . , ẇL

]T
.

The P matrix is given by (9).
Since we do not modify the x0 parameter by defining

ẋ0 = 0, we can omit the rows and columns for ẋ0.

V. SOLVER

Since (8) cannot be solved analytically we now give
an algorithm that solves this ODE numerically. It is very
efficient, due to adaptive stepsize control while keeping
the error low. The error control is achieved by applying a
predictor-corrector scheme. A pseudo code representation is
given in Algorithm 1.

The algorithm starts with γ = 0. During the solution pro-
cess we gradually increase γ while adjusting the parameter
vector η. Since we want to find the minimum of G(η, γ) for



P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2 0 . . . 0 −f̃(x1, γ) 0 . . . 0

1 1 1
2 . . . 0 0 −f̃(x2, γ) . . . 0

...
...

...
. . .

...
...

...
. . .

...
1 1 1 . . . 1

2 0 0 . . . −f̃(xL, γ)
c − x0 c − x1 c − x2 . . . c − xL −w1 −w2 . . . −wL

c − x1 c − x1 c − x2 . . . c − xL F̃ (x1) −
∑1

i=0 wi −w2 . . . −wL

c − x2 c − x2 c − x2 . . . c − xL 0 F̃ (x2) −
∑2

i=0 wi . . . −wL

...
...

...
. . .

...
...

...
. . .

...
c − xL c − xL c − xL . . . c − xL 0 0 . . . F̃ (xL) − ∑L

i=0 wi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Algorithm 1 Predictor–corrector method with step–size
control for parameter tracking

1: γ := 0
2: η

0
:= η(γ = 0) // G(η

0
, γ = 0) = 0

3: Δγ := γstep min

4: repeat
5: γ := γ + Δγ
6: η

tmp
:= Predictor

(
η, γ

)
7:

[
η
tmp

, success
]

:= Corrector
(
η
tmp

)
8: if success then
9: η := η

tmp

10: Increase(Δγ, γstep max)
11: else
12: γ := γ − Δγ
13: Decrease(Δγ, γstep min)
14: end if
15: until γ = 1

every γ, we initialize η so that η
0

= arg minG(η, γ = 0)
holds. We are able to do this, since we defined the parame-
terization of G(η) that way in Section IV. We then initialize
the step size Δγ to the minimal step size.

The main part of the algorithm is a loop, in which γ is
increased until γ = 1 is reached. In each loop iteration a
parameter vector η

tmp
for the increased γ is predicted. The

corresponding predictor is described in subsection V-A.
Subsequently a corrector step is applied to minimize the

error introduced by the predictor. The corrector is given in
subsection V-B. If the corrector converges fast, we know, that
the predicted parameter vector produced only a small error.
Hence, we can increase the step size for the next iteration.
If the convergence of the corrector fails, we know that the
predicted parameter vector produces a large error. Hence, we
revert the prediction step and decrease the step size before
proceeding with the loop iteration.

A. Predictor

The predictor solves the system of equations given by (8)
for η̇. We emphasize here, that we solve the system in this
step as a linear system of equations for a given γ.

The parameter vector is then predicted as

η
tmp

= η + Δγ η̇ .

Since η̇ only gives a direction, this step causes an error
governed by the step size Δγ. This error must be decreased
by the corrector step.

B. Corrector

The corrector step is based on a Newton approach for
determining roots. Following this approach, we apply the
equation

J
(
η

k

) [
η

k+1
− η

k

]
︸ ︷︷ ︸

Δη

= −h
(
η

k

)
(10)

where

h
(
η
)

=
∂G(η, γ)

∂η
=

[
h

(1)
1 , . . . , h

(L)
1 , h

(0)
2 , . . . , h

(L)
2

]T

with

h
(i)
1

(
η
)

= F̃ (xi, γ) −
i−1∑
j=0

wj − wi

2

and

h
(i)
2

(
η
)

=
∫ c

xi

F̃ (x, γ) dx−c

L∑
j=1

wj−xi

i∑
j=1

wj−
L∑

j=i+1

wjxj .

It is important to note, that γ is a constant in this step.
J

(
η

k

)
is the Jacobian defined by

J
(
η

k

)
=

∂h
(
η
)

∂ηT
=

∂2G(η, γ)
∂η∂ηT

,

which is in this case identical to the matrix P given by (9).
We solve (10) for Δη to obtain the recursion

η
k+1

= η
k
− Δη .

If the initial parameter vector η
0

is close to the true parameter
vector, the method converges very fast, what can be detected
by Δη → 0. In this case we return success and the converged
η. If the approach does not converge in few steps we abort
and return failure.
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Fig. 2. Initial approximation of F̃ (x, γ = 0) with L = 3 and L = 8
components.

VI. EXAMPLES

We now give two examples of approximating given para-
metric density functions by means of Dirac mixtures with
different numbers of components.

A. Gaussian Density

First, we approximate a standard normal density. In order
to guarantee that f̃(x, γ = 0) = 1, we use an unnormalized
Gaussian and parameterize it according to

f̃(x, γ) = exp

⎧⎪⎨
⎪⎩−1

2
x2(

1+ε
γ+εσ

)2

⎫⎪⎬
⎪⎭ .

Since we solve the optimization problem in the distribution
space, we have to consider

F̃ (x, γ) =
∫ x

−c

f̃(t, γ) dt.

The lower boundary of the integral is due to the weighting
function g(x) of the weighted Cramér–von Mises distance
we selected in section IV. The progression schedule for this
function is depicted in Figure 1.

Since f̃(x, γ = 0) = 1, we have F̃ (x, γ = 0) = x, which
can be seen in the left most plots of Figure 1.

The optimal initial parameters of F (x, η) with respect
to the defined distance measure depend on the number of
components. For L components we apply

xi =
2 c i

L + 1
− c, w0 =

c

L + 1
, wi =

2 c

L + 1
.

With these parameters we have G
(
η, γ = 0

)
= 0, indepen-

dent of the number of components. This can be seen in
Figure 2 for L = 3 and L = 8 components.

The resulting approximation for L = 3, L = 5, and L =
10 is depicted in Figure 3. The solver needed 14, 25, and 49
steps respectively.
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Fig. 3. Approximation of a standard normal distribution (left) and
density (right) for a different number of components in the Dirac mixture
approximation L = 3, L = 5, and L = 10.

B. Gaussian Mixture Density

In the next example we approximate a Gaussian mixture
density with three components. The parameters are given by

w =
[
0.45, 0.1, 0.45

]T

m =
[−3, 0, 3

]T

σ =
[
0.5, 3, 0.5

]T

as weight, mean and standard deviation values. The param-
eterization in each component of the Gaussian mixture is
identical to the parameterization in the previous example.
Hence, we start again with a uniform distribution and can
reuse the initial approximation of the previous example.

The progression schedule for L = 10 components is
depicted in Figure 4. The final approximation for L = 3,
L = 5, and L = 10 components is shown in Figure 5. The
solver needed 42, 66, and 111 steps respectively.

VII. DISCUSSION AND FUTURE WORK

This paper introduced a systematic procedure for approx-
imating an arbitrary probability density function by means
of a Dirac mixture by minimizing the weighted Cramér–von
Mises distance. The results provide the basis for a recursive
nonlinear filtering mechanism as an alternative to Monte
Carlo based particle filters.

The proposed procedure has been introduced in the context
of scalar random variables for the sake of simplicity. It can,
however, be generalized to random vectors in a straight-
forward manner. In the multidimensional case, the efficient
minimization procedure for obtaining optimal parameters is
even more important than in the scalar case.
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