
Abstract—Location estimation in indoor/campus 
environments has attracted much interest for its broad 
applications.  Many applications (e.g. personnel security) 
require not only the 2-D coordinate but also the floor index 
where the mobile users are situated.  However, most of the 
current location systems cannot provide the floor information 
accurately and robustly. In this paper, we propose a 3-D 
localization scheme which fuses the barometric sensor with 
Wireless LAN (WLAN) signals and building information. Our 
experiments show that this fusion scheme can both identify the 
floor index without errors and improve the horizontal 
localization accuracy. Moreover, since the barometric sensor is 
quite simple and cheap, it would bring almost no increase in 
system costs. 

I. INTRODUCTION

OCATION estimation in indoor/campus environments 
has attracted more and more research efforts in recent 

years. It is the basis of many applications such as personnel 
security, tracking of assets and people, routing, navigation, 
location-aware multimedia services and many others [1]-[4].  

Some systems over the years have already tackled the 
localization problem. In general, these systems can be 
categorized into three groups: satellite based systems, sensor 
based systems and communication network based systems. 
The satellite based system, such as GPS, is widely used for 
outdoor navigation [5] [6]. But for indoor environments the 
satellite signals cannot be used because they are highly 
attenuated by the walls of the buildings. Furthermore, GPS 
signals that could be received have propagated via a very 
complex propagation channel, i.e. not through a line of sight 
path, such that the propagation time cannot be directly 
transformed into a distance.  

The first generation indoor location systems are mostly 
based on various dedicated sensors. Examples include 
magnetic sensors, radar, laser sensors, ultrasonic and infrared 
sensors [7]-[9]. These systems can usually achieve a very 
high accuracy, but the drawbacks are also obvious: (a) they 
scale poorly because of the limited propagation range; (b) 
they incur significant installation and maintenance costs, and 
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(c) some systems suffer from other interference, e.g. IR based 
systems are strongly influenced by the direct sunlight. 

Recently emerging and promising indoor localization 
techniques use the existing indoor communication 
infrastructures, such as WLAN or DECT [10]-[12]. The
received signal strength (RSS), propagation time (time of 
arrival, time difference of arrival) and angle of arrival are 
typically used to infer the user’s location. The biggest 
advantage of such kind of systems is that it makes use of 
available wireless networks and does not need additional 
hardware, thereby keeping the installation and maintenance 
cost at a very low level. Unfortunately, current systems suffer 
from the noisy characteristics of wireless channel, leading to 
a coarse accuracy. 

For indoor/campus location based services, a crucial 
parameter is the floor index. The localization systems and 
their applications are very sensitive to the choice of the floor. 
For instance, if a wrong floor would be identified, a wrong 
map is selected to display the position. This kind of wrong 
localization is independent of the horizontal precision. 
Furthermore, in many cases, e.g. personnel rescue, the change 
of a floor is more involved than the inspection of a 
neighboring room. Therefore, in some sense, floor accuracy 
is more critical than horizontal precision. However, the 
communication network based systems alone do not provide 
very accurate floor information because of the large 
variations in the field strength measurements.  

In this paper, we aim to develop a localization approach 
which can provide the 3-D location, especially the accurate 
floor index. Our solution is firstly to estimate the floor index 
by fusing the noisy altitude obtained from a barometric sensor 
with the building information. To compensate for the 
measurement fluctuation caused by the environmental 
changes, an adaptive fusion algorithm is proposed. Then the 
floor index is combined with the estimated location from 
WLAN signals, finally giving an accurate 2-D coordinate and 
very robust floor identifications. The structure of our 
proposed method  is shown in Figure 1. In our experiments, 
the floor information could be inferred without errors by this 
fusion scheme. Additionally, we find that the 2-D location 
accuracy in some special scenarios (e.g. in the elevator) could 
also be remarkably improved.  

The rest of the paper is organized as follows. In Section II, 
we briefly introduce the localization algorithm based on the 
received power of WLAN signals and evaluate the 3-D 
localization performance. In Section III, we present our 
adaptive fusion algorithm between the barometric sensor and
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building information. We report the results using this 
adaptive algorithm in a complex indoor/campus office 
environment. Section IV introduces methods of fusing 
WLAN based localization with barometric measurements and 
building map information to obtain an accurate 3-D location. 
Section V concludes the paper. 

II.  LOCALIZATION BASED ON THE RECEIVED POWER OF 
WLAN SIGNALS

A. Pattern Matching Algorithm 
In communication network based localization systems, 

RSS is most often used as the input of the positioning 
algorithm because it is easier to obtain compared with the 
time or the angle information. The popular localization 
algorithm for the RSS based systems is so-called pattern 
matching or the nearest neighbor (NN) [10]. This algorithm 
includes two steps. 

1. In the offline step, the received power vectors from 
several base stations (BSs) at calibration points are measured 
and recorded as the fingerprints of the calibration points.  

2.  In the online step, the received power vector is then 
compared with the fingerprint of calibration points. The 
calibration point which has the closest distance with the 
received power vector is then chosen as the estimated 
position. This is shown analytically in (1) [13]. 
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where  is the estimated position, Pq
m is the measured power 

from base station q, Pq(w) is the fingerprint at the position of 
the calibration point w . E is the mean operator over all the 
measured BSs. 

B. Performance Evaluation 
Our experimental network is placed on 3 floors of a 

standard office building. Each floor has a similar structure 
with an area of 62  78 m2, as depicted in Figure 2. There are 
14 WLAN base stations installed in the first floor and another 
8 base stations in the third floor (marked with pentagrams). 
There is no base station in the second floor.  

Our laptop used for measuring and testing is equipped with 
a Lucent Orinoco 802.11b WLAN card. In the offline step, 
we measured the received power at 143 different calibration 
points (55 in the first floor, 41 in the second floor and 47 in 

the third floor; shown in Figure 2, marked with ‘+’). At each 
calibration point, we measured 10 samples and took the mean 
value as the fingerprint. In the online step, we walked around 
in the building with the same laptop and recorded the received 
power at 107 test points (37 in the first floor, 33 in the second 
floor and 37 in the third floor; shown in Figure 2, marked 
with ‘o’). In real life, people typically don’t stay in a place too 
long. So we only took 3 samples for each test points and took 
the mean as the received power vector. 

The 3-D location error and the percentage of false floor 
estimations for each floor can be found in Table I. We can see 

Fig.2. The test environment. The BSs are marked with 
pentagrams; the calibration points are marked with ‘+’ 
and the test points are marked with ‘o’. 
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Fig.1. Fusion structure. f1 is the floor estimation by fusing 
barometric sensor with building information. (x2, y2, f2) is the 2-D 
coordinate and the floor index estimated using the WLAN signal.
(x, y, f) is the final estimated 3-D location. 



that although the pattern matching algorithm can achieve a 
good performance in the sense of localization error, it cannot 
guarantee the high accuracy on floor estimation. The false 
floor estimation tends to occur especially in the following 
cases.

1. The mobile user enters some place where the received 
signal is highly attenuated, e.g. in the elevator. 

2. The mobile user is situated in a place where the 
number of measurable BSs is small, e.g. some floor 
where no BS exists. 

3. Sometimes the connection to BSs is blocked because 
of high data load or the fault of BSs. 

4. The radio separation between floors is bad, i.e. the 
reference points at different floors can not be 
accurately differentiated. This can happen for example 
in stair cases or if the floors are merging together in a 
tall hall. 

As we have stated in Section I, for many applications, the 
false floor estimation is unacceptable. Therefore, a 3-D 
indoor localization system should provide the floor index as 
accurate as possible. Obviously, the system based on the 
received signal alone can not satisfy this requirement. 

TABLE I
RESULTS FOR RSS BASED LOCALIZATION ALGORITHM

 1st

Floor 
2nd

Floor 
3rd

Floor
All 

Floors 
3-D  Location Error (m) 4.7 6.1 8.7 6.5 
2-D Location Error (m) 4.2 5.5 7.1 5.6 

Percentage of False 
Floor Estimation 

2.7% 3% 8.1% 4.7% 

III. ADAPTIVE FUSION OF BAROMETRIC SENSORS AND 
BUILDING INFORMATION

Section II has shown that the very robust floor estimation 
cannot be obtained using only the received power of WLAN 
signals. Other approaches to sense the floor information 
should be considered. One good candidate we found is to fuse 
the barometric sensor with building information.  

A. Altitude Estimation by Barometric Sensors 
As is well-known, the atmospheric pressure is a physical 

property strongly related with the altitude and the height 
above a certain level. We can use barometric sensors to sense 
the value of the pressure and then transform the pressure to 
the altitude. For example, (2) is the transformation formula 
between the pressure and the altitude to the sea level under 
the standard conditions (temperature is 15 °C, i.e. 288.15 K; 
the reference pressure at sea level is 1013.25 hPa; 
temperature gradient  is 0.65 K per 100 m.) [14].  

    
255.5

15.288
0065.0125.1013 hPabs

 hPa,                            (2) 

where Pabs is the pressure measured by the barometric sensor 
with the unit of hPa; h is the sea level altitude in meter. 

In the following, we use the altitude h directly without 
stating verbosely the transformation from pressure to altitude.  

B. Building Information 
Building information is another useful information source. 

Typically, the building information can be obtained from a 
CAD system or in an image format (e.g. .jpg or .bmp file). A 
lot of location-related data can be extracted from the building 
structure information, such as the distance between floors, the 
position of walls, doors or elevators. In our algorithm for 
floor identification, we will use the observation that the 
height of the floors is discrete and that the floor separation 
distance is known.  

C. Adaptive Fusion Algorithm for Floor Identifications 
In order to determine the floor on which the mobile device 

is situated we can fuse the altitude determined by the 
barometric sensor with building information. For example, if 
we know the altitude above sea of the building and the 
altitude difference between two floors, we can tabulate the 
altitude for each floor. Then the floor index can be easily 
determined by comparing the measured altitude and the 
calibration for each floor. 

However, due to the environmental changes, the measured 
altitude varies with time. This causes a non-trivial problem 
for floor identifications, because in many cases the range of 
variance is already larger than the floor height of the building. 
Therefore, the calibration of the barometer must be updated in 
short periods to compensate the altitude fluctuations. 

One simple idea is to calibrate a barometer using reference 
sensors and meteorological information to determine the 
altitude. One or more barometric sensors are used as 
reference sensors, which are put in fixed places and use their 
measurements to calibrate the moving sensor. But this 
calibration scheme has several drawbacks: (a) it needs extra 
cost for reference sensors; (b) Due to the complexity of 
indoor environment, the pressure recorded by the calibration 
sensor is not always consistent with that recorded by the 
mobile device. For example, Figure 3 shows one of our 
records by two barometric sensors. The thick curve records 
the altitude by a calibration sensor which is fixed on a desk in 
the 1st floor. The thin curve records the altitude by another 
sensor moving on the same floor. At the beginning, these two 
curves coincide. Later, there is a big difference between the 
mobile sensor (whose altitude must be estimated) and the 
reference sensor, which can result in false floor estimations.   

To overcome the bad impact of measurement fluctuation, 

Fig. 3. Comparison between the altitudes by two sensors
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we propose a novel adaptive self-calibrating algorithm. This 
algorithm does not use calibration sensors, but is based on 
two observations. Firstly the heights of the floors are discrete, 
so that normally the mobile device is at a constant altitude. 
Secondly, the environmental changes are much slower than 
the time needed for changing the floors. Consequently, with 
an adaptive recursive filtering we can identify when device is 
situated on the same floor and the barometer can be 
self-calibrated. Then the changes between the floors can be 
recognized by more sudden changes of the barometric 
measurement. 

As shown in Figure 4, the algorithm recursively detects the 
floor index by building two filter windows in the time domain. 
The first window is called the ahead window and is 
positioned at the current time. The second window is called 
the back window and is positioned in the past, delayed by a 
time t. The back window can be regarded as the calibration 
window, which is used to update the calibration. Since it 
moves with time, the pressure changes due to the weather 
influence can be compensated. Finally, by comparing the 
difference of the averaged altitude in the two windows with 
the height difference between floors, it can be decided if a 
floor was changed between the first window and the second 
window, or not. The algorithm is presented in detail by the 
following steps: 

1. Initialize the experiment introducing the start floor as 
Floor(t0).

2. Build ahead and back filter windows in the time 
domain. The length of back window is denoted as t2,
the filtered altitude by back window is denoted as a2.
The length of the ahead window is denoted as t1. The 
filtered altitude by the ahead window is denoted as a1.
The distance between two windows is denoted t.

3. At each time t, compute the difference between the 
filtered values a1 and a2.

If the difference is larger or equal than the threshold 
H, the object is regarded as moving vertically. Mark 
that there is a floor change by setting the floor level to 
0 (notice: in our experiment the floor number 0 does 
not exist. Otherwise the marking of the floor change 
can be done with any other value or flag) and continue 
with Step 4. 

If the absolute value of the difference between a1

and a2 is smaller than H, the device is regarded as 
remaining at the same floor. Move both windows 
ahead and go back to Step 3. 

4. If a vertical movement is detected, the back window
remains static and the ahead window is repeatedly 
shifted with tshift until two consecutive average 
altitudes from the ahead window remain stable, i.e. the 
difference is less than the threshold Hs.

5. Compute how many floors the device moved by 
dividing the difference between the latest a1 (after the 
vertical movement stopped) and a2 by the height 
difference of the floors, f. Update the user’s position 
with the new floor index. Finally move the back 

window to the new floor and go back to Step 3. 

D. Physical Meaning and Sensitivity of Parameters  
In the above algorithm, several parameters should be given 

a priori. The final performance is related to the choice of the 
parameters’ values. However, our experiments also indicate 
that the algorithm is robust, i.e. in some range the choice of 
parameters’ values would not affect the validity of the 
algorithm. In the following, we explain the physical meaning 
and sensitivity of the parameters. And in sub section E, we 
give the empirical range of the parameters’ values. 

t1 and t2 are the length of the ahead and back window,
respectively. They should take several samples to smooth the 
noise of the barometric measurements and must be short 
enough in order not to interfere with the identification of a 
floor change.  In some special cases where people stay shorter 
than the window size on some floor, this short staying will be 
neglected by the algorithm. 

t is the time delay between the ahead window and the 
back window. It must be longer than the time needed for a 
person to climb or to descend a floor on foot or with the 
elevator, but shorter than the time in which the barometric 
pressure is changed due to weather changes. Also, this delay 
must be shorter than the period a person spends on a floor.  

f stands for the relative altitude difference between two 
floors. It is usually constant and can be obtained as a prior, e.g. 
by inspection of the building plan. 

tshift is the time shifting to identify the stopping of the 
vertical movement state. It should be short to track the 
vertical movement precisely. But it cannot be too short in 
order to avoid the wrong identification when people move 
slowly.

H is the threshold to identify the change of one floor. It 
should be a little smaller than f to tolerate remaining 
measurement noise.  

Hs stands for the threshold to identify whether the vertical 
movement stops. It should be a value larger than the 
measurement noise, but smaller than the vertical movement 
of the device in tshift.

Fig. 4. Illustration of the fusion algorithm using the 
barometric sensor and building information 
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E. Performance Evaluation 
In order to evaluate the above algorithm, we walked with a 

barometric sensor along several traces, including moving up 
and down inside buildings by stairs or elevator, going into 
and out of the building and walking around the campus. In 
addition, to get a more fair evaluation, we made experiments 
at different time of a day, on different days and under 
different weather conditions. Some of the altitude 
measurements are shown in Figure 5. In all the experiments, 
we started to walk from the same floor. But as we see in 
Figure 5, the altitude of the starting point for each experiment 
differs a lot. This demonstrates the big influence of 
environmental change in the long term. On the other hand, we 

can also observe that in a short time, the altitude change 
caused by the environment is relatively slow, which makes 
our adaptive calibration possible. 

 We applied our adaptive fusion algorithm to the four 
measurement data sets in Figure 5. Table II gives the 
parameter values used for the calculations presented before. 
In addition, tests have been performed with different values to 
determine the range of parameters for which the algorithm 
performs correctly, i.e. perfect floor identification. In this 
way, empirical range for the parameter values has been found 
(see Table II). Here we take the typical movements as 
consideration, some special cases, such as people stay very 
short in a floor or people run extremely fast or slow are not 
considered. Figure 6 shows the comparison between the real 
and the estimated floor index (The points in floor zero mean 
that at that time the object is estimated to be moving 
vertically). We observe that the result of our floor 
identification approach is very good. It gives very accurate 
floor estimations, even under bad weather conditions.  

TABLE II 
VALUE OF PARAMETERS

Parameter Value Empirical Range 

t1 4 s 4~16s1

t2 20 s 4~30s 
t 60 s 60~120s
f 4.5 m From the building 

plan 
tshift 10 s 1~20s 
H 0.75 f 0.6 f~0.9 f
Hs 0.2 f 0.1 f ~0.25 f

IV. FUSION OF BAROMETRIC SENSORS, THE RECEIVED 
POWER OF WLAN SIGNALS AND BUILDING INFORMATION

A. Fusion Algorithm 
Since the algorithm in Section III can provide a very 

accurate floor index, a natural idea is to combine the 
estimated floor in Section III with the estimated location in 
Section II. Generally speaking, fusion of barometer sensors, 
the RSS based localization and building information can 
benefit each other from the following aspects.  

Firstly, the barometric sensor based floor identification 
was demonstrated to be very robust in the various examples 
presented. Hence, by combining it with WLAN signals we 
can get an accurate 3-D localization.  

Secondly, not only the floor estimation but the 2-D location 
performance can also be improved. On one hand, with 
accurate floor information, we can make a pre-selection of the 
reference patterns on the correct floor which improves the 
localization performance. On the other hand, we know that 
the received signal is highly attenuated and will cause quite a 
large error in some special areas, like inside elevators or 
staircases. By combing the barometric sensor, the received 

1 In our experiments, the sampling rate of barometer is 0.5 sample/s. So the 
4s (2 samples) is the shortest period for averaging. If a higher sampling rate is 
used, the range can be extended to 1s or even shorter. 

0 1000 2000 3000
510

520

530

540

550

A
lti

tu
de

 (m
)

(a) 

(d) 

(c) 

(b) 

0 500 1000 1500 2000
505

510

515

520

Time of Recording (s)

A
lti

tu
de

 (m
)

0 500 1000 1500
430

440

450

460

470

Time of Recording (s)

A
lti

tu
de

 (m
)

0 500 1000 1500 2000
610

615

620

625

Time of Recording (s)

A
lti

tu
de

 (m
)

Fig. 5 Different Measurement Data Sets. (a) noon of Jan. 27, 
2006. (b) afternoon of Jan. 27, 2006. (c) noon of Jan. 30, 2006. 
(d) afternoon of  Feb. 9, 2006 when it snowed heavily.



signal and the map information, we can identify the period 
when people stay in an elevator. Therefore, the elevator 
related location error can be reduced. 

Thirdly, since the estimated location with WLAN signals 
has usually a good 2-D accuracy, it can be combined with the 
building map to enhance the barometric sensor based floor 
identification in the following cases: a) in a campus 
environment, different buildings often have different building 
parameters such as the floor height. We can use the RSS 
based algorithm to locate the building first and choose the 
correct building parameters for the floor identification; b) 
although we did not observe the false floor estimation by 

barometric sensors, theoretically this might happen when 
people enter a special place where the pressure changes 
suddenly, e.g. nearby air conditioners. In that case, the 2-D 
coordinate by WLAN signals can help to identify such a kind 
of areas; c) the barometric measurements can be performed 
only at the mobile device and are not available in the network 
without a communication system to transfer the data. It is 
beneficial to send the barometric measurements to a central 
server for several reasons, like monitoring applications and 
joint processing of the measurement information from several 
users.                     

In out test environment we have tested the following fusion 
algorithm that interactively checks the barometric 
measurements and the RSS ones to obtain an increased 
accuracy of the 3D localization, as shown in Figure 1: 

1. Initialize the parameters of barometric based floor 
identification algorithm, i.e. the initial floor using RSS based 
location estimation and the height of the floors using the 
building map information. 

2. At each time interval, we receive a WLAN signal power 
vector and an altitude by barometric sensor. Estimate the 
floor index using the adaptive fusion algorithm in Section III. 
The result is denoted as f1. Estimate the 3-D location by 
pattern matching. The result is denoted as (x2, y2, f2). 

3. If f1 is the same with the previous floor f, use f1 to choose 
the floor map and calibration points, and then compute a new 
2-D coordinate (x, y) with the RSS based pattern matching 
algorithm. Return to Step 2. 

4. If f1 is not the same with the previous floor f, (x2, y2)
should be checked. If (x2, y2) is close to stairs or to elevators, 
we conclude that the mobile device is going up or down by 
stairs or elevator. Update f with f1 and the estimated position 
(x, y) with the position of the stairs or the elevator. Return to 
Step 2. 

5. If f1 is not the same with the previous floor f, and 
meanwhile the user is estimated to be close to some pressure 
breaking point, we use the floor f2 estimated by the RSS based 
algorithm as the current floor f. (x, y) is set to (x2, y2). Return 
to Step 2. 

B. Experimental Results 
We tested the above fusion algorithm inside the building 

depicted in Figure 2. We walked in the building and recorded 
the received power and altitudes by the barometric sensor 
simultaneously. The walking trace is shown in Figure 7.  
Firstly, we walked in the corridor of the 1st floor and then 
went up to the 3rd floor by elevator, walked around in the 3rd

floor and finally took another elevator down to the 2nd floor.   
Table III shows the comparison between the RSS based 

location estimation and our fusion algorithm with respect to 
the 2-D and 3-D mean localization error, location error in the 
elevators and floor identification error. It can be remarked 
that both the 2-D and the 3-D localization performances are 
improved by our fusion algorithm. Especially, the large 
location errors due to the bad radio receiving in the elevators 
are corrected. This encouraging result indicates that it is a 
good choice to combine the barometric sensor, RSS of 

Fig.6. Floor estimation by adaptive calibration based 
algorithm. (a) - (d) correspond to the four measurement 
data sets in Figure 5 respectively. The lines stand for the 
real trace in floor level. The series of points stand for the 
estimated trace in floor level.  
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WLAN signals and the building map information to infer 3-D 
indoor locations.

TABLE III 
RESULTS OF FUSING RSS, BAROMETRIC SENSORS 

AND BUILDING MAP INFORMATION
 RSS Based  

Algorithm
Fusion  

Algorithm
3-D  Location Error (m) 7.71 3.54 
2-D Location Error (m) 4.96 3.54 

Location Error in the Elevators (m) 8.70 1.28 
Percentage of False Floor Estimation 8% 0 

V.  CONCLUSION

    In this paper we investigate the possibilities of combing the 
measurements from a barometric sensor with WLAN 
received signal power and building information to obtain an 
accurate 3-D indoor localization. We propose two novel 
fusion algorithms. The first one is an adaptive self-calibrating 
method to fuse the barometric sensor measurement with the 
building information, i.e. the floor height, to accurately 

identify the floor on which the mobile device is situated. The 
second step is the fusion of the results from the barometric 
sensor based algorithm and the RSS based localization 
algorithm. Our experiments indicate that by the above fusion, 
not only a floor index can be inferred without errors, but the 
horizontal location accuracy can also be improved 
remarkably.  
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Fig.7. The walking trace where the measurements are taken.




