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Abstract – Recursive calculation of the probabil-

ity density function characterizing the state estimate

of a nonlinear stochastic dynamic system in general

cannot be performed exactly, since the type of the

density changes with every processing step and the

complexity increases. Hence, an approximation of

the true density is required. Instead of using a sin-

gle complicated approximating density, this paper is

concerned with bounding the true density from be-

low and from above by means of two simple den-

sities. This provides a kind of guaranteed estimator

with respect to the underlying true density, which re-

quires a mechanism for ordering densities. Here, a

partial ordering with respect to the cumulative distri-

butions is employed. Based on this partial ordering,

a modified Bayesian filter step is proposed, which re-

cursively propagates lower and upper density bounds.

A specific implementation for piecewise linear densi-

ties with finite support is used for demonstrating the

performance of the new approach in simulations.

Keywords: Nonlinear Bayesian Estimator, Bounding

density, Lower and upper bound, Cubic Sensor Problem

1 Introduction

The task of determining unknown quantities through
indirect measurements in nonlinear systems is a key
problem in digital signal processing. From a theoretical
point of view, this problem is solved by the Bayesian
Estimator or Bayesian filter. Practical implementa-
tions of this algorithm only exist for special systems.

In this paper, we introduce a novel approach to
propagate sets of probability density functions through
a Bayesian Estimator. This is achieved by defining
lower and upper densities for sets of densities, which
are passed through the filtering algorithm, to obtain
new lower and upper bounds for the resulting esti-
mated density. Several works have been done in pro-
cessing sets of probability distributions in a Bayesian
way. The field of robust Bayesian analysis [1] deals
with sets of probability distributions processed by
Bayesian inference and the dependence of the posterior
to the prior distributions and the likelihood function

respectively. Much work has been done on this topic [2]
and the theory is well established, but no convincing
algorithm has been proposed so far [6]. Furthermore,
the problem of state prediction is not solved with these
results. Another approach to state estimation is based
on interval analysis [3]. The problem here is the dis-
cretization of sample space.

By discretization no guaranteed probability distri-
bution bounds of the continuous sample space can be
given. The same problem holds for the Dempster-
Shafer-Theory [4] and operations on the Dempster-
Shafer structures [5]. This will be shown by an exam-
ple: Consider a Gaussian probability density function
f(x) = N (0, 2) with mean 0 and variance 2, and a
sample space Ω = [−5, 5]. Now a discretization of the
sample space is given by the intervals A := [−5,−2.5),
B := [−2.5, 0), C := [0, 2.5), and D := [2.5, 5]. For
the intervals, the probability is given as P (A) = 0.1,
P (B) = 0.4, P (C) = 0.4, and P (D) = 0.1. With
this information, a probability box as described in [5]
can be determined. It is shown in Figure 1. The cu-
mulative distribution function F , an upper distribu-
tion function U , and a lower distribution function L

are shown. With the intervals and the correspond-
ing probabilities, a probability box can be determined
that bounds the cumulative distribution function F .
Performing discrete Bayes’ law with the probabilities

Figure 1: Distribution function F with its probability
box U, L.

of f both as prior and likelihood results in a new proba-
bility box described by U ′ and L′. The corresponding
posterior probability density is f ′(x) = N (0,

√
2) in

continuous space. Discrete Bayes’ law agrees with this
result in that the probability box bounds the continu-



ous distribution F ′. If the discretization of the sample
space is changed in such a way that the intervals have
different widths, the result is less satisfactory. As an
example the intervals E1 := [0, 1) with P (E1) = 0.19
and E2 := [1, 2.5) with P (E2) = 0.21 are defined. The
partitioning of Ω is now {A, B, E1, E2, D}. Applying
Bayes’ law leads to a different solution shown in Fig-
ure 2. Here the probability box does not bound the
function F ′ and so no guaranteed upper and lower dis-
tribution functions are given. This can be seen at the
location 0.5. Furthermore, it can be shown that even

Figure 2: Distribution function F ′ with its probability
box U ′, L′. The probability box does not bound the
function F ′.

for equal interval widths the bounding property of the
probability boxes is not preserved for continuous densi-
ties. The same applies to Dempster-Shafer structures.
For that reason they are not adequate for this estima-
tion problem.

The use of bounds is able to simplify the Bayesian
estimation problem. In general, the complexity of a
density representation increases with a rising number
of measurements. Furthermore, the expressions usu-
ally cannot be calculated in closed form and the den-
sity type changes with each processing step. Only
linear systems with Gaussian noise can be evaluated
analytically with a constant complexity by employing
the well-known Kalman Filter [8]. To overcome the
problem of increasing complexity, the use of samples
instead of whole densities is employed [9, 10]. The so
called particle filters are very efficient from an algo-
rithmic point of view. Unfortunately, it is very diffi-
cult to guarantee a sufficient precision of the estimate.
An alternative approach is the use of generic parame-
terized density functions, like Gaussian mixtures [11].
The Gaussian mixture filtering algorithms themselves
are also very efficient. Approaches exist for approxi-
mating arbitrary density functions [12], but they are
computationally very costly. Our key idea is to sacri-
fice a bit of precision by introducing lower and upper
density bounds. In return, we obtain much simpler
density functions we can handle. Furthermore, if a pa-
rameterized representation of the bounding densities
is used, the complexity of the representation can be
easily kept at a constant level.

Another aspect for the use of density sets is that in
technical systems the exact likelihood is often unknown
or cannot be obtained with reasonable effort. Numer-
ical deviations, sensor drift or complex measurement
equipment are some common examples. Since these

errors are typically of a mixed stochastic-deterministic
nature, a set based approach has to be pursued. The
use of bounds would be an efficient method for dealing
with such stochastic-deterministic errors.

The following section reviews the time-discrete
Bayesian Estimator and discusses the structure of fil-
ter employing bounds. The rest of this paper is struc-
tured as follows: In Section 3, a more rigorous defini-
tion of lower and upper densities will be given. Then
a construction algorithm of a set containing a given
or partially known probability density function will
be derived. It is shown what information is required
and how to derive lower and upper probability density
functions. Section 4 describes the modifications of the
Bayesian filter step to propagate such bounds: The
lower and upper bounds of two sets are combined to
obtain new bounds. The second part of the estimator,
the prediction step is shown in Section 5. Section 6
investigates the cubic sensor problem as an example
application. This paper closes with a conclusion and
an outlook on future work.

2 Problem Formulation

For the sake of clarity and brevity, merely scalar
stochastic variables will be considered which are de-
noted by boldface, e.g. x.
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Figure 3: Structure of a time discrete nonlinear sys-
tem with input uk, output ŷk and a generic Bayesian
Estimator determining fe(x) for the state variable x.

We consider the following nonlinear time discrete
system

xk+1 = ak(xk, uk) + wk (1)

yk = hk(xk) + vk

with the not directly observable state variable xk, the
deterministic input uk, the scalar measurement yk, and
the additive noise terms vk, wk which have the densi-
ties fv(vk), fw(wk). Note that an realization of yk, i.e.
an actual measurement, is denoted by ŷk.

The Bayesian Estimator generates an estimate for
xk in the form of a density fe(xk) for each discrete



time k. As shown in Figure 3, the estimator consists
of the filter step and the prediction step.

The purpose of the filter step is to enhance a given
estimate fp(xk) with the information of the measure-
ment value ŷk. This is accomplished by determining
the likelihood [8]

fL(xk) = fv(ŷk − hk(xk))

and then using Bayes’ law

fe(xk) =
fL(xk)fp(xk)∫

R
fL(ξk)fp(ξk)dξk

(2)

to receive the desired estimated density fe(xk). It is
obvious that by recursive application fe(xk) gets more
and more complicated for almost any type of density
function. The prominent exception is the Gaussian
density with a linear measurement equation.

The prediction step is used to propagate a current
estimate fe(xk) to the next time step k + 1. It can be
shown that

fp(xk+1) =

∫
R

fw(xk+1 − ak(ξk))fe(ξk)dξk

is an optimal predicted density with respect to equa-
tion (1). A solution for value discrete densities can be
found in [13].
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Figure 4: Modified filter step for the use with lower
and upper bounds.

Our approach is to modify the filter step for prop-
agating a set of densities. As shown in Figure 2, two
likelihoods, one lower and one upper, are generated.
The generation of these likelihood depend on the non-
stochastic errors of the system. Efficient methods of
deriving density bounds from real systems are another
point of future research. These two likelihoods plus the
lower and upper bounds of the prior density f

p
u,l(x) are

used to calculate a lower and upper bounding estimate
density fe

u,l(x).

3 Lower and Upper Densities

For defining lower and upper bounds a partial ordering
over the cumulative probability distributions is intro-
duced. This approach is much more intuitive than us-
ing the density function, since cumulative distributions

are monotonous and intervals for probabilities can eas-
ily be derived.
Definition 3.1 Given are two probability density
functions f1(x) �≡ f2(x). If

F1(x) =

∫ x

−∞
f1(ξ)dξ ≤

∫ x

−∞
f2(ξ)dξ = F2(x)

holds for every x, then f2(x) is called an upper density
of f1(x). f1(x) is obviously a lower density of f2(x).

�

For investigating sets of probabilities, bounding
densities have to be defined.
Definition 3.2 Given is a set of densities Φ over x.
A density fu is called upper bounding density on Φ, if
for every density fΦ ∈ Φ and for every x ∈ Ω

FΦ(x) =

∫ x

−∞
fΦ(ξ)dξ ≤

∫ x

−∞
fu(ξ)dξ = Fu(x)

holds. A lower bounding density is defined analo-
gously. �

The ideal thing would be to know the density which
tightly bounds a given set.
Definition 3.3 Given is an upper bounding density
fu(x) on Φ. fu(x) is called an upper tight bounding
density, if there exists for every x0 ∈ R a fΦ ∈ Φ so
that

fΦ(x0) = fu(x0)

holds. A lower tight bounding density is defined anal-
ogously. �

It is not possible to derive tight bounding densities
for arbitrary sets of densities. But we are able to show
that bounding densities can be derived for a large class
of continuous density functions which are close enough
the tight bounding density to be used for nonlinear
estimation.

3.1 A Specific Class of Boundable

Probability Density Functions

This work considers one-dimensional probability den-
sities. The following assumptions are made for all den-
sity functions f :

• Two scalars α and β, α < β, exist with f(x) = 0
for all x < α and x > β. So f only has values
larger than 0 inside the interval [α, β].

• The density functions must be continuous. This
means that maximum and minimum values of f

exist for every set in [α, β]. The same assumption
applies to its derivative ∂

∂x
f(x) also.

In order to compute the bounds the density func-
tions need not to be completely known. The following
information is required:

• A partitioning of [α, β] in intervals [xi, xi+1] with
x1 = α, xn+1 = β and xi < xi+1 for all i = 1 . . . n.
So all intervals [xi, xi+1] are disjunct except their
borders xi and their union is [α, β].



• The function values of f at all locations xi, x =
1 . . . n + 1. This assumption can be loosened by
assuming an interval for the function values f(xi).
This is part of future work.

• The maximum and minimum bounds of the con-
sidered probability density function f within
[xi, xi+1]

ci ≥ max
x∈[xi,xi+1]

{f(x)} ,

di ≤ min
x∈[xi,xi+1]

{f(x)} .

• The maximum and minimum bounds of the
derivatives of the probability density functions:

ai ≥ max
x∈[xi,xi+1]

{ ∂

∂x
f(x)} ,

bi ≤ min
x∈[xi,xi+1]

{ ∂

∂x
f(x)} .

First, only one interval [xi, xi+1] is considered. The
idea is to determine an upper bound fu for the den-
sity function f with the known parameters f(xi),
f(xi+1), ai, bi, ci, and di. In this work it is bounded
with 3 straight lines. Other functions like higher or-
der polynomials or Gaussian distribution functions are
also possible. The first one goes through the point
(xi|f(xi)) with maximum slope ai. The second one
has a constant value of ci. The third straight line goes
through (xi+1|f(xi+1)) and has the minimum slope bi.
The upper estimation fu of f is now the minimum of
these three straight lines.

fu(x) = min{ ai · (x − xi) + f(xi), ci,

bi · (x − xi+1) + f(xi+1) } (3)

fu is displayed in Figure 5.

xi xi+1

f(x)

fu(x)

x

f
(x

)

Figure 5: Upper bound fu of a probability density
function f with three straight lines.

The lower estimation fl of f is given in a similar way
again with 3 straight lines. In comparision to the upper
estimation the slopes ai and bi are now interchanged
and the second straight line has a constant value of
the minimum di. To obtain the lower bound of f the
maximum of the 3 lines is needed:

fl(x) := max{bi · (x − xi) + f(xi), di,

ai · (x − xi+1) + f(xi+1) } (4)

fl is displayed in Figure 6.
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f(x)
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Figure 6: Lower bound fl of a probability density func-
tion f with three straight lines.

Now the estimates fl and fu can easily be calcu-
lated for all x in [α, β]. fu and fl are not valid prob-
ability density functions because none of their inte-
grals is guaranteed to be equal to 1. Only

∫
fu(ξ)dξ ≥∫

f(ξ)dξ = 1 and
∫

fl(ξ)dξ ≤ ∫
f(ξ)dξ = 1 are ful-

filled. How to get valid probability density functions is
discussed in the next Subsection.

3.2 Deriving Valid Lower and Upper

Bounding Densities

To obtain valid density and distribution functions only
the upper estimation fu is needed. If we compare∫

fu(ξ)dξ to
∫

f(ξ)dξ we can say that

∫ x

−∞
fu(ξ)dξ ≥

∫ x

−∞
f(ξ)dξ ∀x (5)

and especially∫ ∞

−∞
fu(ξ)dξ ≥

∫ ∞

−∞
f(ξ)dξ

are fulfilled. To convert the integral of fu to a valid
probability distribution function it will be bounded to
the maximum of 1. A scalar value v is determined
which satisfies the equation∫ v

−∞
fu(ξ)dξ = 1 , (6)

which exists because
∫

fu(ξ)dξ ≥ 1. Now the corre-
sponding valid probability density function u is

u(x) :=

{
fu(x) x ≤ v

0 x > v
. (7)

The probability distribution function is then∫ x

−∞ u(ξ)dξ which is an upper bound of the dis-
tribution function of f .

The lower boundary is determined as follows: A
scalar value w with∫ ∞

w

fu(ξ)dξ = 1 (8)



is defined. The resulting probability density function
l, the lower bound, is then

l(x) :=

{
0 x < w

fu(x) x ≥ w
. (9)

Its probability distribution function is
∫ x

−∞ l(ξ)dξ.
We will proof that this term is actually the lower

bound of the distribution function
∫ x

−∞ f(ξ)dξ, so∫ x

−∞
l(ξ)dξ ≤

∫ x

−∞
f(ξ)dξ (10)

applies for all x. For x < w equation (10) is obviously
fulfilled. For x ∈ [w, β], x is substituted by y − β and∫ β−y

−∞
l(ξ)dξ ≤

∫ β−y

−∞
f(ξ)dξ (11)

is obtained. Differentiating both sides of equation (11)
with respect to y we obtain

∂

∂y

(∫ β−y

−∞
l(ξ)dξ

)
= −l(β − y)

and
∂

∂y

(∫ β−y

−∞
f(ξ)dξ

)
= −f(β − y) .

Comparing both derivatives leads to

−l(β − y) ≤ −f(β − y) (12)

⇔ l(x) ≥ f(x)

⇔ fu(x) ≥ f(x), x ∈ [w, β] . (13)

Inequality (13) is true. For y = 0 with
∫ β

−∞ l(ξ)dξ =∫ β

−∞ f(ξ)dξ = 1 and equation (12) follows that equa-
tion (11) is fulfilled. For any x > β equation (10) is
fulfilled using equation (9).

An example of the densities u, l, and their distribu-
tion functions is shown in Figure 7. The density f(x)
at the top of Figure 7 is a Gaussian density N (0, 1).
5 intervals have been defined with their borders −5,
−3, −1, 1, 3, and 5 to calculate the bounds. The line
segments of the lower density bound l and the upper
density bound u can be seen clearly. The positions v

and w, where the densities u and l are cut-off, are at
about −0.7 and 0.7. At the bottom of Figure 7 the
probability distributions F, L, and U are shown. Here
the order of the densities can be seen. Neither the dis-
tribution function L corresponding to the lower density
bound l nor the distribution function U corresponding
to the upper density bound u subtend the distribution
function F .

4 Deriving a Modified Bayesian

Filter Step

With the bounds introduced in the preceding section,
it possible to derive an algorithm to obtain guaranteed
lower and upper bounds of the estimated resulting dis-
tribution function after a Bayesian filter step.

Figure 7: Top: density function f and corresponding
lower and upper density bounds with 5 intervals. Bot-
tom: distribution functions.

Passing the lower and upper bound directly to the
filter would not produce the desired result because the
order of the densities would not be conserved. The nor-
malization factor given in the denominator of equation
(2) would destroy the previously valid order. In the
following a modified Bayesian filter step is introduced.

We assume that the parameters introduced in Sec-
tion 3 of the functions f1 and f2 are known. First an
approximation of the product f1 · f2 will be shown.
All functions and variables relating to this product are
denoted by an additional index 1·2.

Now the parameters ai,1·2, bi,1·2, ci,1·2, di,1·2, and the
function values at the interval borders are needed to
create the bounds. The function values at xi are given
as f1(xi) · f2(xi) and are therefore known. The upper
and lower bounds of the product can be estimated by
ci,1·2 := ci,1 · ci,2 and di,1·2 := di,1 · di,2 because they
are all nonnegative. The bounds ai,1·2 and bi,1·2 of the
derivative of f1 · f2 must comply with

ai,1·2 ≥ max
x∈[xi,xi+1]

{f ′
1(x) · f2(x) + f1(x) · f ′

2(x)}

and

bi,1·2 ≤ min
x∈[xi,xi+1]

{f ′
1(x) · f2(x) + f1(x) · f ′

2(x)} .

The parameters are then calculated as

ai,1·2 := max{ai,1 · ci,2, ai,1 · di,2}
+ max{ai,2 · ci,1, ai,2 · di,1} and

bi,1·2 := min{bi,1 · ci,2, bi,1 · di,2}
+ min{bi,2 · ci,1, bi,2 · di,1} .

With this information the bounds of a Bayesian fil-
ter step of the two functions f1 and f2, labelled f12,
can be given. The lower and upper bounds will also
be denoted by the additional index 12. To calculate
the bounds an upper limit of the fraction in equation
2 is determined. This is done by calculating a lower



limit for the denominator and and an upper limit for
the numerator.

L :=
∫ ∞
−∞ fl,1·2(ξ)dξ is an approximation of the nor-

malization constant∫ ∞

−∞
f1(ξ) · f2(ξ)dξ

with L ≤ ∫ ∞
−∞ f1(ξ) · f2(ξ)dξ. L can easily be com-

puted. So an upper estimate of f12 is

f1(x) · f2(x)∫ ∞
−∞ f1(ξ) · f2(ξ)dξ

≤ fu,1·2(x)

L

and the parameters are ai,12 =
ai,1·2

L
, bi,12 =

bi,1·2

L
,

ci,12 =
ci,1·2

L
, di,12 =

di,1·2

L
, and the assumed function

values at all locations xi are f1(xi)·f2(xi)
L

. With these
parameters lower and upper functions fl,12 and fu,12

can be calculated.
An example is given in Figure 8. The top figure

shows the resulting density f12 after the Bayesian filter
step with its lower and upper bounds l12 and u12. The
functions f1 and f2 are probability densities with

f1(x) =

{ [
e−0.5x2

√
2π

+ sin2(3x)·0.03
5−|x|

]
· k , x ∈ [−5, 5]

0 , x �∈ [−5, 5]
,

a normalization constant k, and f2 = N (2, 1). f1 is a
composite of a Gaussian density and a sine curve and
therefore rather complex and elaborate to handle. The
bottom of Figure 8 shows the corresponding probabil-
ity distributions F12, U12 and L12.

Figure 8: Resulting estimation of a Bayesian filter step
of 2 probability densities with 20 intervals. Top: den-
sity functions, Bottom: distribution functions.

5 Deriving a Modified

Prediction Step

With the information of the parameters a, b, c, d, and
f(xi) of two probability distributions, the prediction

step described in Section 2 can be performed. The
required computation is given by a convolution of the
probability densities f1 and f2.

A special case with xk+1 = xk + wk is described
here. Other system model equations can be handled
by estimating the transitional density function fw(ŷk−
hk(xk)) and processing it with fe

k .
Regarding the segmentation of the sample space

f1∗2 =
∫ ∞
−∞ f1(ξ) · f2(x − ξ)dξ can be written as

f1∗2(x) =

n∑
j=1

∫ xj+1

xj

f1(ξ) · f2(x − ξ)dξ .

Maximum function values c1∗2 can be approximated
by maxx∈[xi,xi+1] {f1(x) ∗ f2(x)} ≤ ci,1∗2 and it holds

max
x∈[xi,xi+1]

{f1(x) ∗ f2(x)}

≤
n∑

j=1

∫ xj+1

xj

fu,1(ξ) · max
x∈[xi,xi+1]

{fu,2(x − ξ)} dξ .

The factor maxx∈[xi,xi+1] {fu,2(x − ξ)} can
be bounded by a constant value ci,2 ≥
maxx∈[xi−xj+1,xi+1−xj ]{f2(x)} in the interval
[xi − xj+1, xi+1 − xj ]. So the convolution is per-
formed by integrating fu,1 multiplied by a constant
factor. Because of the simple structure of fu,1 it is
easy to integrate. In an analogous way the minimum
function values di,1∗2 can be computed.

The minimal and maximal derivatives can be com-
puted by considering

∂

∂x
(f1(x) · f2(x)) =

∫ ∞

−∞
f1(ξ) · ∂

∂x
(f2(x − ξ))dξ

and replacing the factor ∂
∂x

(f2(x − ξ)) by the corre-
sponding upper or lower derivation ai or bi.

Assumed function values (f1 ∗f2)(xi) at the interval
borders can be estimated by computing the convolu-
tion interval directly. The product f1 · f2 is a polyno-
mial of order 2 and is easily integrated.

These are all parameters needed in order to perform
the prediction step.

6 Example: Cubic Sensor

Problem

The cubic sensor problem is a well known problem
which is extensively discussed in literature. It was in-
troduced by Bucy in [7]. This work investigates the
discrete-time cubic sensor problem with the measure-
ment model equation

yk = x
3
k + vk (14)

where vk is zero mean noise consisting of a Gaussian
and a sine part and the system model equation

xk+1 = xk + wk (15)

at a discrete time step k. wk is also zero mean noise
and constructed like vk. In order to perform backward



inference to estimate the system state xk at time step k

given the measurement ŷk and a prior density function
of the system state, the normalized product

fe
k(xk) = f(xk|ŷk) =

fp(xk) · fv(ŷk − x3
k)∫ ∞

−∞ fp(ξ) · fv(ŷk − ξ3)dξ
(16)

analogous to equation (2) needs to be calculated. This
problem can be reduced to estimating the likelihood
fv(ŷk − x3

k) and then applying the modified Bayesian
filter step discussed above.

First the parameters of the measurement noise func-
tion fv need to be specified. They are denoted by the
index v. Now a function fv,y−x3(x) is defined with
fv,y−x3(x) := fv(ŷ − x3). The parameters ai,v,y−x3 ,
bi,v,y−x3 , ci,v,y−x3 , di,v,y−x3 , and their function values
at the interval borders are determined now.

The function values at the interval borders are given
by fv(ŷ−x3

i ) for all i = 1 . . . n+1. The maximum and
minimum function values can easily be determined by
evaluating fu,v between ŷk − x3

i and ŷk − x3
i+1 for all

i. The derivative

∂

∂x
fv(ŷ − x3) = −3x2 · ∂

∂x

(
fv(ŷ − x3)

)
is estimated as follows: The maximum and minimum
slope of fu,v within [ŷk − x3

i+1, ŷk − x3
i ] are multiplied

with the maximum and minimum values of −3x2. In
this case only the borders xi and the root of −3x2 at
x = 0 have to be considered as extremal values. The
derivatives of fv are only known interval-wise with a
lower and an upper bound, named ai,v and bi,v. All
intervals j defined as [y − x3

j+1, y − x3
j ] which have

elements of [xi, xi+1] in common are in the set Ji.
We define the set

Di,j := { − 3x2
i · aj,v,−3x2

i+1 · aj,v,

− 3x2
i · bj,v,−3x2

i+1 · bj,v} ,

which gives

ai,v,y−x3 = max
x∈[xi,xi+1]

∧ j∈Ji

{Di,j}

and
bi,v,y−x3 = min

x∈[xi,xi+1]
∧ j∈Ji

{Di,j} ,

whereas the value 0 has to be considered for both
ai,v,y−x3 and bi,v,y−x3 if 0 ∈ [xi, xi+1].

An example upper estimation fu,v,y−x3(x) of the un-
normalized density fv(ŷ−x3) with ŷ = 0.5 and σ2

v = 1
is shown in Figure 9. Note that the integrals of both
functions are below 1. If they would be normalized
individually the condition fv(ŷ − x3) ≤ fu,v,y−x3(x)
would not be met any more and invalid results could
appear. Normalization is done in the modified filter
step.

Figure 10 shows a complete measurement step with
the parameters given above and a prior normal density
N (0, 1). It is clearly seen that the lower and upper
probability density functions are cut-off and are nor-
malized. Iterative estimations are shown in Figure 11.

Figure 9: Unnormalized density fv(ŷ−x3) and the cor-
responding upper estimate fu,v,y−x3 with 16 intervals.

The figure shows the system state after 20 iterations.
It can be seen that the density functions are rather ir-
regular. This is mainly due to the cubic measurement
equation and the complicated noise density.

Figure 10: Estimated system state after the cubic mea-
surement. Top: normalized density functions of the
real system state and the upper and lower bounds us-
ing 20 intervals. Bottom: distribution functions.

7 Conclusion and Future Work

In this work lower and upper bounds for sets of proba-
bility densities have been introduced. For that purpose
a partial ordering of densities has been defined. This
allows to encase complex densities by simpler bound-
ing densities. It was proposed to only propagate the
bounds instead of the whole set through a modified
Bayesian filter step which results in new bounding den-
sities.

A kind of guaranteed estimator for complex densi-
ties can be designed to cope with numerical deviation



Figure 11: Estimated system state after 20 measure-
ments with upper and lower bounds, 20 intervals. Top:
density functions, Bottom: distribution functions.

and other deterministic error sources. By choosing the
appropriate bounding density type, it can be ensured
that the true density stays within determined bounds,
while the complexity of the filter step does not increase.
Furthermore, in technical systems the exact likelihood
often cannot be obtained with adequate effort. Using
bounds can be an efficient method to incorporate these
kinds of mixed deterministic-stochastic uncertainties.

To demonstrate the practicability of our approach,
lower and upper bounds for a class of density func-
tions were constructed. It was shown that for contin-
uous piecewise limited densities with piecewise limited
derivatives, the modified Bayesian filter step can be de-
rived. It was demonstrated on the cubic sensor prob-
lem, that these bounds are tight enough to conduct
efficient nonlinear filtering.

Further research includes other classes of probabili-
ties, e.g. higher order polynomials or piecewise Gaus-
sians.

On the theoretical side, a derivation of a measure
of the tightness of bounds would be helpful to identify
new classes of boundable probability density functions.

In conclusion, we believe that the use of lower and
upper bounds can substantially improve the quality
of nonlinear estimators and simplify their design for a
wide range of applications.
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