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Abstract - Undirected cycles in Bayesian networks are often
treated by using clustering methods. This results in networks
with nodes characterized by joint probability densities instead of
marginal densities. An efficient representation of these hybrid
joint densities is essential especially in nonlinear hybrid net-
works containing continuous as well as discrete variables. In
this article we present a unified representation of continuous,
discrete, and hybrid joint densities. This representation is based
on Gaussian and Dirac mixtures and allows for analytic evalu-
ation of arbitrary hybrid networks without loosing structural in-
formation, even for networks containing clusters. Furthermore
we derive update formulae for marginal and joint densities from
a system theoretic point of view by treating a Bayesian network
as a system of cascaded subsystems. Together with the presented
mixture representation of densities this yields an exact analytic
updating scheme.
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1 Introduction
Bayesian networks are very popular in the field of infor-
mation fusion what can be seen from the vast number of
publications. To mention only a few examples, see [13],
[12], and [7]. Bayesian networks in general are used for
representing causal structures and probabilistic dependen-
cies in complex systems. They belong to the family of
graphical models. The models are represented by an acyclic
graph structure. The nodes of such a graph represent ran-
dom variables whereas edges depict dependencies between
variables. These dependencies are modeled by means of
conditional probabilities or conditional probability density
functions. Most Bayesian network implementations found
today use only discrete random variables. This approach
by Pearl [9] is very famous and uses conditional probabil-
ity tables (CPT) to describe the dependencies between vari-
ables. In his work, a method for continuous variables is
mentioned as well, but it considered exclusively continuous
variables with linear dependencies and Gaussian probabil-
ity density functions. A first approach to purely continuous
Bayesian networks with nonlinear dependencies was given
in [1]. They use Gaussian mixtures to represent the more
complex densities that occur when nonlinearities are con-
sidered.
A well known approach to hybrid Bayesian networks con-

sisting of continuous as well as of discrete random vari-
ables is given in [4], where so called cg-potentials are used
to describe the hybrid densities. The problem with this ap-
proach is that only mean and variance of the continuous
variables are considered, which lets the algorithm fail to
represent multimodal density functions that occur in com-
plex hybrid networks, even if only linear dependencies are
considered. An example for this failure is given in [10].
Another problem of the original cg-potentials is that the al-
gorithm cannot deal with discrete children of continuous
parent nodes. A first approach to solve this by variational
approximations is given in [8]. An exact solution, that uses
softmax conditional densities is given in [5]. Both of these
approaches, however, can only deal with linear dependen-
cies. In [10] and [11] we presented a method for model-
ing hybrid Bayesian networks with nonlinear dependencies
having restrictions concerning discrete children of continu-
ous parents. In this work the mixture approach of [1] was
extended for the hybrid case.

For a given Bayesian network we are mainly interested in
the marginal densities of the variable nodes given obser-
vations of other variables in the network. A popular algo-
rithmic approach to this problem is the so called message
passing algorithm presented by Pearl in [9]. It has been
shown that this algorithm is an instance of the sum-product
algorithm on factor graphs presented in [3]. This algorithm
exploits the graph structure of the Bayesian network to pass
information concerning observations or a-priori knowledge
from neighbor to neighbor while updating the marginal den-
sities. Although this approach is very popular, it uses awk-
ward formulations for the density update problem. Hence,
we derive more generic update formulae in this article.

A main restriction of the message passing or sum-product
algorithm is that it only works for so called singly con-
nected networks. This means the underlying graph must be
free of cycles. Even though directed cycles are forbidden
in Bayesian networks per se, the algorithm can further not
deal with undirected cycles. This is due to the fact, that up-
dates are also passed against the direction of the edges in the
graph. This is also called a Bayesian backward step in con-
trast to the Bayesian forward step that calculates the update
in direction of the edges. A standard approach to cope with
cycles in Bayesian networks is to merge the nodes form-
ing the cycle into a single node, which is called clustering.
The easiest way for doing this is to replace the marginal
densities of the variables in the cycle by their joint den-



sity. A more sophisticated approach to clustering is the so
called junction tree described in [2]. This algorithm reor-
ganizes the graph structure by means of moralization and
triangulation operations. In the resulting graph, maximum
cliques are identified as clustered nodes for a new singly
connected graph. A drawback of this approach is that the
original graph structure is hard to rediscover and the vari-
ables of the original graph appear in several clique nodes.
No matter what approach is used for clustering, the result-
ing nodes contain more than one random variable. This
means, that the density of this node is represented by a joint
probability density function. In the case of hybrid Bayesian
networks with nonlinear dependencies this results in hybrid
joint densities that cannot be fully described by first and
second moments (mean and variance). Therefore, we will
present a parametric representation of hybrid joint densities
with arbitrary complexity.
The remainder of this paper is structured as follows. We
first give a problem formulation in Section 2. In Section
3 we derive the general update rules for arbitrary density
functions from a system theoretic point of view. Section 4
is dedicated to the representation of density functions and
hybrid conditionals by means of mixtures. In Section 5 we
then consider hybrid joint densities. Conclusions are given
in Section 6

2 Problem Formulation
Cycles in Bayesian networks, as shown in the example on
the left hand side of Figure 1, are usually removed by ap-
plication of clustering methods. A clustered version of the
example is shown on the right hand side of Figure 1.
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Figure 1: A cycle in the left network is removed by cluster-
ing the nodes x and y as depicted in the right network.

Clustered nodes have to be treated like all the other nodes
in the network. They receive density functions from their
neighbor nodes to update their own probability density and
send information back. On the other hand, cluster nodes
consist of more than one variable, hence, the density to de-
scribe this node is a joint density. Due to this, we cannot
update the marginal densities of the variables in a cluster
directly.
In the example shown in Figure 1, we do not update f(x)
and f(y) directly. Instead we update f(x, y). Since y de-
pends on x, we have to consider the conditional density
f(y |x) when updating the joint density. Hence, we have

f(x, y) = f(y |x)f(x) .

It is very important, that the resulting joint density is of the
same type as the marginal densities. Only in this case the
updating algorithm can stay untouched. Further, we do not
want to lose information on the structure of the density.
A simple example is the joint density shown
in Figure 2. This is the joint density result-
ing from a Gaussian prior f(x) = N(x, 0, 2) with
N(x, µ, σ) = 1√

2πσ
exp{−1

2
(x−µ)2

σ2 } and a nonlinear
dependency y = sin(x) + v with additive noise v. It is
clear from this example, that the resulting joint density
cannot be represented by a single multivariate Gaussian
without loosing information.
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Figure 2: A joint density resulting from a Gaussian prior
and a nonlinear dependency.

This kind of joint densities may be the result of cluster-
ing techniques that where applied to reduce cycles. Since
these clustered cycles are cycles induced by dependencies,
we have to take special care of these joint and conditional
densities. Hence, the aim of this paper is to give an in-
tegrated view on joint and conditional densities that allows
for a unified update approach in hybrid Bayesian networks.
Another issue with respect to this unified approach is the
fusion of joint densities with only partly overlapping sets
of random variables. We need to make sure, that this op-
eration does not change the type of the density represen-
tation. Hence the representation of f(x, y), f(y, z), and
f(x, y, z) = f(x, y)f(y, z) must be the same, no matter if
the overlapping variable y is continuous or discrete.

3 Update Rules

Before we give a representation for continuous and dis-
crete density functions, we first derive the update rules for
generic marginal densities in a more system theoretic ap-
proach. For this purpose we interpret a Bayesian network
as a system of cascaded subsystems. Figure 3 shows a
representation of the most general subsystem we have to
consider. We use a block diagram representation with ran-
dom variables on the edges and conditional densities in the
blocks to emphasize the system theoretic viewpoint of this
derivation. This block diagram representation is very close
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Figure 3: The most general subsystem of a cascaded sys-
tem.

to the factor graph representation of Bayesian networks in-
troduced in [3] and [6].
We are interested in the marginal density of x. This
marginal density is governed by information coming from
the left side of x denoted by fp(x) and information com-
ing from the right side of x denoted by fe(x). Since fp(x)
and fe(x) are independent, we can calculate the marginal
density by

f(x) = cfp(x)fe(x) ,

where c is a normalizing constant. The density fp(x) com-
ing from the left part is the result of a Bayesian forward or
prediction step

fp(x) =∫
Rd

f(x |u1, . . . , ud)
d∏

i=1

f(ui)\xdu1 . . . dud .
(1)

In this equation f(ui)\x is the marginal density of ui where
the information coming from x itself is ignored, since we
want to update f(x). Taking the full marginal density f(ui)
into account would result in an double count of the informa-
tion from x. We will denote this reduced density by

f(ui)\x =
f(ui)
fe

x(ui)

to emphasize that this is the marginal density over ui with-
out any information coming from x. Due to the recursive
update scheme it is not necessary to devide f(ui) by fe

x(ui).
It is sufficient to ignore it when updating f(x).
Throughout this derivation we further assume d to be the
input degree of the corresponding subsystem. This number
may vary from subsystem to subsystem.
The density fe(x) coming from the right part is the product
of densities fe

j (x) received from each subsystem connected
to x as result of a Bayesian backward or filter step

fe(x) =
n∏

j=1

fe
j (x)

fe
j (x) =

∫
Rd+1

f(yj |x, xj1, . . . , xjd)fe(yj)

·
d∏

k=1

fp(xjk)dyj dxj1 . . . dxjd (2)

In the derivation of fe
j (x) all information coming from x

itself is ignored. Hence, we omit fp(x) in fe
j (x).

For a specific observation yj = ŷj we set
fe(yj) = δ(yj − ŷj). Applying this to (2) results
in

fe
j (x) = fe

j (x | ŷj)

=
∫
Rd+1

f(yj |x, xj1, . . . , xjd)δ(yj − ŷj)

·
d∏

k=1

fp(xjk)dyj dxj1 . . . dxjd

=
∫
Rd

f(ŷj |x, xj1, . . . , xjd)

·
d∏

k=1

fp(xjk)dxj1, . . . , dxjd .

For unobserved outputs yj we set fe(yj) = 1. In general,
observations for any variable are modeled by setting

f(x = x̂) = fp(x = x̂) = fe(x = x̂) = δ(x− x̂) .

In the next section we will give representations of continu-
ous, discrete, and hybrid joint densities that allow for solv-
ing the integrals in (1) and (2) analytically.

4 Mixture Representation for Densi-
ties and Conditional Densities

As pointed out in the problem formulation, the resulting
structure of densities in cascaded nonlinear systems can be-
come very complex. Hence, we apply mixture representa-
tions of the type

f( · ) =
M∑
i=1

αigi( · )

to represent arbitrary densities, where gi( · ) is a probability
density function and M is the number of components in this
mixture. αi are weighting factors with the property

M∑
i=1

αi = 1 .

Since we want to consider joint densities, we use multivari-
ate mixtures of the type

f(x1, . . . , xn) =
M∑
i=1

αigi(x1, . . . , xn) .

For the sake of computability we use mixtures with axis-
aligned components. This means, that each compo-
nent gi(x1, . . . , xn) can be decomposed by the product
gi(x1) · . . . · gi(xn) with gi(xj) 6= gi(xk) for all xj 6= xk.
The full mixture

f(x1, . . . , xn) =
M∑
i=1

αi

n∏
j=1

fi,j(xj)

however, is not axis-aligned. This can be seen in the exam-
ple of Figure 4. This is the contour plot of a mixture density
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Figure 4: Contourplot of density function with four axis-
aligned components.

with 3 components. Each of the three components is sym-
metric with respect to the x and the y axis. The resulting
mixture however is not sysmetric with respect to the axes.

Our aim in this article is to provide a unified view of
joint and conditional densities. Hence, we would like to
represent conditional density functions by means of mix-
tures, too. Since conditional densities in general are no
density functions, we approximate the conditional density
f(x |u1, . . . , ud) by means of a mixture

f(x |u1, . . . , ud) ≈
M∑
i=1

γifi(x)
d∏

j=1

fi,j(uj)

with axis-aligned components. The update densities (1) and
(2) can then be rewritten as

fp(x)

=
∫
Rd

f(x |u1, . . . , ud)
d∏

i=1

f(ui)\xdu1 . . . dud

≈
∫
Rd

M∑
i=1

γifi(x)
d∏

j=1

fi,j(uj)
d∏

k=1

f(uk)\xdu1 . . . dud

=
M∑
i=1

γifi(x)
d∏

j=1

∫
R

fi,j(uj)f(uj)\xduj (3)

and

fe
j (x)

=
∫
Rd+1

f(yj |x, xj1, . . . , xjd)fe(yj)

·
d∏

k=1

fp(xjk)dyj dxj1 . . . dxjd

≈
∫
Rd+1

M∑
i=1

γifi(yj)fi(x)
d∏

k=1

fi,k(xjk)fe(yj)

·
d∏

k=1

fp(xjk)dyj dxj1 . . . dxjd

=
M∑
i=1

γifi(x)
∫
R

fi(yj)fe(yj)dyj

·
d∏

k=1

∫
R

fi,k(xjk)fp(xjk)dxjk . (4)

The solution of the integrals depends on the type of the
density. Hence, we will give solvable representations for
continuous, discrete, and hybrid joint densities in the next
subsection.
We first take a look at purely continuous and purely discrete
systems, followed by hybrid conditional densities, which
leads directly to hybrid joints.

4.1 Gaussian Mixtures

We represent marginal densities over continuous variables
by means of Gaussian mixtures. With this approach the
approximation of the conditional density

f(x |u1, . . . , ud) =
M∑
i=1

γiNi(x, µi, σi)
d∏

j=1

Ni,j(uj , µij , σij)

is a mixture of axis-aligned Gaussian components. Since,
this type of density representation is already covered in [1],
we only give the resulting update densities for complete-
ness. For keeping the formulae compact, we omit the pa-
rameters of the Gaussians if possible and have

fp(x) =
M∑
i=1

γiNi(x)
d∏

j=1

∫
R

Ni,j(uj)N(uj)\xduj

=
M∑
i=1

γiNi(x)
d∏

j=1

N
uj

i,j

(
µij , µj\x

,
√

σ2
ij + σ2

j\x

)
︸ ︷︷ ︸

cuj

=
M∑
i=1

αiNi(x) ,

where

αi = γi

d∏
j=1

cuj



and

fe
j (x) =

M∑
i=1

γiNi(x)
∫
R

Ni(yj)Ne(yj)dyj︸ ︷︷ ︸
cyj

·
d∏

k=1

∫
R

Ni,k(xjk)Np(xjk)dxjk︸ ︷︷ ︸
cxjk

=
M∑
i=1

αiNi(x)

where

αi = γicyj

d∏
j=1

cxjk
.

For reasons of brevity, we assumed here that
fp(uj) = N(uj) is a single Gaussian component. In
the general case fp(uj) is a mixture of Gaussians. This is
no problem, since the Integral and the sum of this mixture
can be interchanged. The same holds for fe(yj).

4.2 Dirac Mixtures

In the case of discrete random variables we use Dirac mix-
tures as density representation. This is a valid mapping of
discrete events to a continuous scale.
One may argue, that the Dirac representation is not valid,
since the product of two Dirac pulses on the same axis is not
defined, but multiplication is a crucial operation for fusing
densities.
We will now show that this is not necessarily correct, since
we use Dirac series to represent the discrete Density. If we
further calculate the normalized product of two mixtures,
we can show that this product converges to the same solu-
tion that the standard vector approach yields.

Product of Dirac Mixtures

As an example we consider a binary random variable x and
two density functions on this variable represented by the
Dirac mixtures

f1(x) = α1δ(x− 1) + β1δ(x− 2)

and
f2(x) = α2δ(x− 1) + β2δ(x− 2) .

The most important part of the proof is, that we have to
calculate the normalized product of these mixtures given
by

f(x) =
f1(x)f2(x)∫

R

f1(ξ)f2(ξ)dξ
.

In our example this is

f(x) =
[α1δ(x− 1) + β1δ(x− 2)] [α2δ(x− 1) + β2δ(x− 2)]∫

R

[α1δ(ξ − 1) + β1δ(ξ − 2)][α2δ(ξ − 1) + β2δ(ξ − 2)]dξ

We now substitute the Dirac delta functions by their defini-
tion as limit

δ(x) = lim
ε→0

d(x, ε) .

where d(x, ε) is for example

d(x, ε) =
1√
2πε

exp
{
−1

2
x2

ε2

}
.

It can then be shown, that

lim
ε1→0,ε2→0

f1(x)f2(x)∫
R

f1(ξ)f2(ξ)dξ
=

α1α2

α1α2 + β1β2
δ(x− 1) +

β1β2

α1α2 + β1β2
δ(x− 2) .

This is the same result we would expect from the standard
matrix vector approach.

Update Rules for Discrete Variables

We now derive the update rules for the discrete case with
Dirac mixture representation. For this purpose we substi-
tute the generic density functions in (3) by Dirac mixture
representations.

fp(x)

=
M∑
i=1

γifi(x)
d∏

j=1

∫
R

fi,j(uj)f(uj)\xduj

=
M∑
i=1

γi

 |x|∑
k=1

αikδ(x− k)


·

d∏
j=1

∫
R

|uj |∑
l=1

αjlδ(uj − l)

|uj |∑
l=1

βjlδ(uj − l)

duj

(5)

|x| means the number of states of a discrete random vari-
able x. The normalized product of the integrand in (5) con-
verges to

|uj |∑
l=1

αljβlj∑|uj |
l=1 αljβlj

δ(uj − l) ,

as shown in the proof above. Since this is the normalized
product, we can say that the integral in (5) is the reciprocal
of the normalizing factor, hence,∫

R

|uj |∑
l=1

αljδ(uj − l)

|uj |∑
l=1

βljδ(uj − l)

duj

=
|uj |∑
l=1

αljβlj .

This is a constant and we end up with

fp(x) =
M∑
i=1

αi

 |x|∑
k=1

αikδ(x− k)


where

αi = γi

d∏
j=1

|uj |∑
l=1

αljβlj .



With the same argument we substitute the generic densities
in (4) and end up with

fe
j (x)

=
M∑
i=1

γifi(x)
∫
R

fi(yj)fe(yj)dyj

·
d∏

k=1

∫
R

fi,k(xjk)fp(xjk)dxjk

=
M∑
i=1

γi

 |x|∑
l=1

αilδ(x− l)


·
∫
R

|yj |∑
l=1

αilδ(yj − l)

|yj |∑
l=1

βilδ(yj − l)

dyj

·
d∏

k=1

∫
R

|xjk|∑
l=1

αklδ(xjk − l)

|xjk|∑
l=1

βklδ(xjk − l)

dxjk

=
M∑
i=1

αi

 |x|∑
l=1

αilδ(x− l)

 .

where

αi = γi

|yj |∑
l=1

αilβil

 d∏
k=1

|xjk|∑
l=1

αklβkl .

Now, the normalized product can be used to fuse fp(x) and
fe(x).

4.3 Hybrid Conditional Densities
In [10] we introduced a representation for approximated hy-
brid conditional densities. In the next section we will give
a slightly reformulated version that is more intuitive.
For this purpose we first consider some special cases which
will later be wrapped up to the general case. As an exam-
ple, we will take a look at two dependent random variables
x and y and their conditional density f(y |x) that will be
approximated by

f(y |x) ≈
M∑
i=1

γifi(x)fi(y) .

First we assume x and y to be discrete. Hence, we have

f(y |x) ≈
M∑
i=1

γi

 |x|∑
j=1

αijδ(x− j)

 |y|∑
j=1

βijδ(y − j)

 .

To explain the application of this approach we give the fol-
lowing example. Assume x and y to be binary and the CPT
for f(y |x) to be

y = 1 y = 2
x = 1 0.3 0.7
x = 2 0.8 0.2

.

In our Dirac mixture approach we use the following param-
eters. We only need two components in the mixture. Hence,

we set M = 2. The parameters for the x and y part are

α11 = 1 α12 = 0 β11 = 0.3 β12 = 0.7
α21 = 0 α22 = 1 β21 = 0.8 β22 = 0.2

The γ parameters can be set to 1 since this is a conditional
density that does not have to be normalized.
Next we consider the case that x is discrete and y is con-
tinuous, which leads to

f(y |x) ≈
M∑
i=1

γi

 |x|∑
j=1

αijδ(x− j)

N(y, µi, σi) .

In this case we have

M mod |x| = 0 ,

because we have to consider all the possible states of x.
This means, for a binary x we have

α11 = 1 α12 = 0
α21 = 0 α22 = 1

...
...

αM−1,1 = 1 αM−1,2 = 0
αM1 = 0 αM2 = 1

The parameters for the Gaussian parts of the components
have to be set accordingly.
Now we have the case that x is continuous and y is discrete,
which yields

f(y |x) ≈
M∑
i=1

γiN(x, µi, σi)

 |y|∑
j=1

αijδ(y − j)

 .

For a continuous x it is extremely important to select the
number of Gaussian components appropriately. This is due
to the fact, that f(y |x) in general is no density in x. Since
we approximate this axis by means of Gaussian densities,
we have to select an interval of relevance for x where we
place the components. Without this restriction, an infi-
nite number Gaussian components on this axis would be
required.
Finally, we wrap up all the cases seen so far to a generic
case. We consider y to depend on a set of continuous and
discrete variables {x1, . . . ,xm}. The type of y is left arbi-
trary, so we can write

f(y|x1, . . . , xm) ≈
M∑
i=1

γifi(y)

 n∏
k=1

|xk|∑
j=1

αijδ(xk − j)

 m∏
k=n+1

N(xk, µi, σi) .

fi(y) can then be substituted by a Gaussian or a Dirac mix-
ture respectively.

5 Hybrid Joint Densities
After having defined hybrid conditional densities, hybrid
joint densities are a logical consequence. As already
pointed out in the introduction, we have to consider joint
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Figure 5: A cluster consisting of three variables.

densities, whenever clustering was applied to the original
network.
We start with a short example of a cluster to explain how the
joint is composed and how to represent this. The example
in Figure 5 depicts a cluster of three variables x, y, and z.
The generic joint density in this example is

f(x, y, z) = f(x)f(y |x)f(z |x, y) .

Since we use mixture densities with axis aligned compo-
nents for prior as well as for conditional densities we write
the above as

f(x, y, z) =
L∑

i=1

αifi(x) ·
M∑

j=1

βjfj(x)fj(y) ·
N∑

k=1

γkfk(x)fk(y)fk(z) .

This can be subsumed into one sum

f(x, y, z) =
L ·M ·N∑

i=1

α′ifi(x)fi(y)fi(z) .

From now on we will express these kind joint densities in
the vector form

f(x) =
M∑
i=1

αifi(x1) . . . fi(xn) ,

where
x = [x1, . . . , xn]T

and
fi(xj) 6= fi(xk) for all xj 6= xk .

We now give the idea of the update rules for systems with
clusters. First of all we write the generic update rules (1)
and (2) in vector form

fp(x) =
∫
Rd

f(x |u1, . . . , ud)
d∏

i=1

fp(ui)du1 . . . dud

and

fe
j (x) =

∫
Rd+1

f(y
j
|x, xj1, . . . , xjd)f

e(yj)

·
d∏

k=1

fp(xjk)dy
j
dxj1 . . . dxjd .

The derivations are now similar to the considerations made
above for purely continuous and discrete densities, besides
the conditional densities used here. In the conditional den-
sities for clusters

f(x |u1, . . . , ud)

and
f(y

j
|x, xj1, . . . , xjd)

respectively, we have a set of variables depending on sets
of variables. The sets x and y

j
however, may contain vari-

ables, that did not depend on any of these ui or xji in the
original system, respectively. Hence, we have to consider
the conditional densities of the original system for all mem-
bers of the sets x and y

j
.

Comparing the update rules for systems with or without
clusters, we can say, that due to the application of mixture
densities with axis aligned components, everything boils
down to multiplication or fusion of density functions. In
the case of clusters, however, we have to fuse joint densities
with nonempty intersections as pointed out in the problem
formulation.

5.1 Fusion of Hybrid Joint Mixture Densities
We now derive the fusion of two hybrid joint mixture den-
sities that overlap in some variables, but not in all. To guar-
antee the convergence of the discrete parts of the product
(see 4.2), we derive the normalized product.
The normalized product of two arbitrary joint mixture den-
sities is(

L∑
k1=1

αk1

n∏
i=1

fk1(xi)

)(
M∑

k2=1

βk2

m∏
j=l

fk2(xj)

)
∫
Rm

(
L∑

k1=1

αk1

n∏
i=1

fk1(ξi)

)(
M∑

k2=1

βk2

m∏
j=1

fk2(ξj)

)
dξ

,

where 1 < l < n < m and the overlapping variables are
xl . . . xn. Since all functions f( · ) used here are normalized
densities, the denominator can be simplified by marginal-
ization to∫
Rn−l+1

(
L∑

k1=1

αk1

n∏
i=l

fk1(ξi)

) M∑
k2=1

βk2

n∏
j=l

fk2(ξj)

dξ .

Note that both products run from l to n, since all non-
overlapping variables where marginalized to 1.
The numerator can be rearranged into one sum

L ·M∑
k=1

α′k

l−1∏
i=1

fk(xi)
n∏

i=l

fk1(xi)fk2(xi)
m∏

i=n+1

fk(xi) .

To calculate the product of the densities for overlapping
variables, we can use the approaches for Gaussians and
Dirac Mixtures presented above. The normalization can
then be combined with the weight α, since it is a constant.
Finally, we end up with our well known mixture represen-
tation

L ·M∑
k=1

α′k

m∏
i=1

fk(xi) ,

over all involved variables.

Complexity

One may argue, that all these products of mixture sums lead
to a very high number of components in the resulting mix-
ture. With the presented approach however, we have some



features that keep the number of components on a tractable
level.
First, the component growth is only true for the Gaussian
components. For the Dirac mixtures this not true, since we
always come back to components in the number of discrete
states. This can also be seen directly from the product of
discrete mixtures in section 4.2.
Second, we would like to point out, that the application
of axis-aligned components in the conditional densities de-
creases the number of components in the forward step at
the handover point from one subsystem to another, which
can be seen in section 4. Due to this feature, the number
of components does not accumulate from the input to the
output of large cascaded systems.

6 Conclusions
In this article we presented a unified approach to nonlin-
ear hybrid Bayesian networks. The goal of this approach
is to unify the representation of continuous and discrete
variables in the network in order to apply the same update
mechanism for both cases.
To achieve this goal, we examined Bayesian networks from
a system theoretic viewpoint. Our derivations show that a
Bayesian network can be treated as a system of cascaded
subsystems. Hence, we have to calculate just the densities
from the output and the input of two connected systems and
end up with a recursive updating scheme.
We further presented a method for modeling continuous,
discrete, and hybrid joint densities by means of Gaus-
sian and Dirac mixtures. Our approach makes no restric-
tions concerning discrete variables depending on continu-
ous variables. In the same manner we can treat nodes con-
taining joint densities that result from clusters to remove
cycles in a network.
We did not address the problem of finding the model param-
eters for conditional densities. In the case of known depen-
dencies and known uncertainty characteristics, however, the
modeling of conditional densities is straightforward for the
presented approach. For a given subsystem y = h(x) + v
with additive noise v for example, we only have to place
axis-aligned Gaussian components along the curvature of
y = h(x). The number of components then governs the ap-
proximation quality. In the case of only given samples from
the subsystem, the optimal approximation is still subject to
research.
Our approach allows for exact evaluation. Hence, no
convergence considerations as in sample based evaluation
methods need to be made. Due to the preapproximation
of conditional densities by means of mixture densities with
axis-aligned components, the complexity in the number of
components is kept at a constant level.
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