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Vermögen, in einem alles und alles in einem zu
sehen. Wer jedoch das Eine nicht zu schauen
vermag (und manches spricht dafür, dass nie-
mand es kann), darf sich an vieles halten.
So geschieht es hier.

Martin Seel





Contents

Introduction 3

1 Elements of Unification 7

1.1 Flavour of and in the Standard Model . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Supersymmetric flavour physics . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Supersymmetric Yukawa unification . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Embedding the Standard Model into SO(10) . . . . . . . . . . . . . . . . . . 20

1.5 SO(10) breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Yukawa unification in SO(10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Higher-dimensional Yukawa terms . . . . . . . . . . . . . . . . . . . . . . . . 25

2 A Supersymmetric SO(10) Model of Flavour 27

2.1 The Chang-Masiero-Murayama model . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Constraints on the parameter space . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Phenomenology of down-quark-lepton unification . . . . . . . . . . . . . . . . 35

2.4 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 The CP phase in Bs −Bs meson mixing . . . . . . . . . . . . . . . . . . . . . 43

3 Yukawa Corrections for Light Fermions 45

3.1 Corrections from higher-dimensional operators . . . . . . . . . . . . . . . . . 45

3.2 Constraints from ǫK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Constraints from Bd −Bd and Bs −Bs mixing . . . . . . . . . . . . . . . . . 50

3.4 Closing the unitarity triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The flavour structure of Yukawa corrections . . . . . . . . . . . . . . . . . . . 55

4 Supersymmetric Unification and Large tanβ 57

4.1 Effects of large tan β in flavour physics . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Charged Higgs in B → (D)τν branching ratios . . . . . . . . . . . . . . . . . 60

4.3 B → Dτν differential distributions . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Yukawa unification and tanβ . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Conclusions 73

A Appendix 77

A.1 Weyl spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 SO(10) decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.3 Loop functions for meson mixing . . . . . . . . . . . . . . . . . . . . . . . . . 79

1



2 CONTENTS

A.4 B → D form factors and decay distribution . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

Acknowledgements 91



Introduction

Among the grand open questions any (curious) human being has in mind are the following

Why do we observe so many things we do not understand?

Is there a hidden order beyond our reach of perception?

(How) does this affect our daily living?

For a contemporary particle physicist, these questions turn into quests

Why do we observe different elementary particles and forces?

Is there a fundamental theory at very high energies?

How can we probe ultra-high-energy physics at today’s particle colliders?

The persistence of the questions reflects the difficulty, if not impossibility, to find solid answers.
Still (or hence), the remarkable achievements in particle physics within the last century and
the promising discovery potential of the Large Hadron Collider (LHC) encourage scientists
to proceed in approaching “the truth”. It is a worthwhile attempt to understand the depth
of the open issues and to subsequently contribute to find solutions.

Particles and forces

The guiding principle to explain the properties and interactions of elementary particles are
symmetries. A physical law based on symmetry has, on top of descriptive, predictive power.
What is established today as the Standard Model of particle physics is a quantum field theory
with an SU(3) × SU(2) × U(1) gauge symmetry of strong, weak, and electromagnetic inter-
actions. This framework describes the interactions between fermions (quarks and leptons)
via the exchange of gauge bosons (gluons, W and Z bosons, and the photon). Exploring the
symmetry properties of these interactions allows to classify the quarks and leptons in three
generations. The suppression of flavour-changing neutral currents in weak interactions led
to the prediction of the charm quark to complete the second generation of quarks. In order
to explain the observed CP violation in weak interactions of neutral kaons, the existence
of a third generation was postulated and confirmed by the subsequent discovery of the tau
lepton and the bottom and top quarks. Also in the lepton sector, the gauge symmetry of the
Standard Model properly describes the electroweak interactions of charged electrons, muons,
and tau leptons with the corresponding neutrinos. This extremely successful symmetry pic-
ture, however, forbids elementary mass terms in the Lagrangean. In the Standard Model, the
generation of mass is implemented through the Higgs mechanism. The vacuum expectation
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4 Introduction

value of an additional scalar field, the Higgs field, spontaneously breaks the SU(2) × U(1)
symmetry of electroweak interactions. This procedure leads to massive W and Z bosons in
the range of the electroweak scale MEW ≃ 100GeV. Interactions of the Higgs field with the
fermions, so-called Yukawa couplings, generate masses for quarks and leptons.

A fundamental theory at high energies

The Standard Model is experimentally confirmed to describe particle interactions up to ener-
gies of the order of MEW with impressive accuracy. Its conceptual validity, however, covers
the vast range up to a high-energy end marked by the Planck scale MPl = 1019 GeV, where
gravitational interactions are relevant. Strong, weak, and electromagnetic interactions are
experimentally proven to be energy-dependent. The gauge couplings associated with strong
and weak interactions decrease at high energies, while the electromagnetic coupling increases.
The energy dependence is well described by the theoretical concept of renormalization group
evolution and applies to all couplings in the theory, including the Yukawa couplings.

The assumption of a larger symmetry of particle interactions at high energies is not only
temptingly beautiful but also mathematically substantiated. Within a Grand Unified Theory
(GUT) based on the symmetry groups SU(5) or SO(10) the strong, weak, and electromagnetic
couplings are predicted to merge at an intermediate scale MGUT ≃ 1015 GeV. Three of the
fundamental forces thereby merge into one. The Standard Model is contained in the larger
symmetry group and can be considered as the low-energy remnant of a more fundamental
theory. Accordingly, the Standard-Model quarks are embedded together with the leptons
into representations of SU(5) or SO(10). On these grounds one can explain important issues
left open by the Standard Model like the quantization of electric charges or the number of
fermions per generation. The unification of fermions induces new interactions between quarks
and leptons via the exchange of a heavy boson associated with the larger gauge symmetry.
These interactions induce proton decay, which poses a serious challenge to GUTs, since it has
not been observed in experiments so far.

Independent from the embedding into a Grand Unified Theory, the large energy range of the
Standard Model is problematic. Interactions of the Higgs field with heavy particles generally
destabilize the scale of electroweak symmetry breaking, which is known as the hierarchy
problem. A promising way to protect the Higgs mass from unnaturally large corrections is the
introduction of supersymmetry, a symmetry between bosons and fermions. By assigning each
fermionic degree of freedom of the Standard Model a bosonic superpartner (and vice versa),
Higgs mass corrections due to couplings to heavy particles are cancelled by contributions of
the corresponding superpartners. In order to provide an effective solution to the hierarchy
problem, one expects supersymmetric particles not far above the electroweak scale, i.e. at
around MSUSY ≃ 1TeV.

As a fortunate coincidence Grand Unification likes supersymmetry. The presence of super-
partners can prolongate the lifetime of the proton, which temporarily reconciles the idea of
GUTs with the non-observation of its decay. Moreover, Grand Unification needs supersym-
metry. Numerically, the measured gauge couplings unify only if effects of superparticles in
the evolution to high energy scales are taken into account. Besides making the unification of
gauge couplings viable, supersymmetry allows to probe a second aspect of Grand Unification,
the unification of Yukawa couplings. If quarks and leptons of all three generations interact
with the Higgs field via one and the same Yukawa coupling, flavour mixing between quarks
translates into flavour-changing neutral currents among leptons and vice versa. Such relations
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cannot be observed in Standard-Model currents, but become visible in interactions involving
superpartners. From experiment we know that flavour mixing in the quark sector is moderate.
Contrarily, the large angles measured in solar and atmospheric neutrino oscillations show that
mixing in the lepton sector is significant. In a Grand Unified Theory, left-handed charged
leptons and neutrinos are embedded together with right-handed down-type quarks and their
superpartners into one representation of SU(5). The large neutrino mixing can thereby as
well appear in neutral currents with right-handed down-type (s)quarks. Signatures of quark-
lepton unification at high energies can thus be read off in flavour physics observables at low
energies. In particular, the large atmospheric neutrino mixing angle enters bottom-strange
transitions, yielding sizeable effects in observables related to Bs mesons. The current preci-
sion of Bs observables leaves room for signatures of new physics beyond the Standard Model,
whose observation in the near future can support the idea of Grand Unification.

Ultra-high-energy physics at today’s particle colliders

Symmetries are very useful guides to the main features of particle interactions, but nature
is more intricate. Perfect Yukawa unification complies with experiment only for the third
generation, i.e. for top and bottom quarks and tau leptons. A realistic GUT model of
fermion masses and mixings requires a refinement of the Yukawa sector. In this work we
confront the imprints of unified quarks and leptons with measured flavour physics observables
to gain insight into the structure of Yukawa couplings. We focus on the corrections to Yukawa
unification for light fermions. They translate atmospheric neutrino mixing also into strange-
down and bottom-down transitions. The flavour structure of Yukawa corrections is strongly
constrained from accurate predictions and measurements of kaon observables, as well as from
Bd physics. Extensions of the Yukawa sector are thereby restricted to exhibit a specific form,
which is an important finding for GUT model building.

Constraining the parameters of a concrete GUT model from sensitive flavour observables
helps to discriminate between different avenues of unification. We make further use of this
method to gain information about the Higgs sector in supersymmetry that comprises five
Higgs bosons, two of which carry electric charge. Its key parameter tan β determines the
ratio of top and bottom Yukawa couplings. A consistent GUT model with top-bottom-tau
unification requires tan β to be large. Determining the magnitude of tanβ is therefore crucial
to figure out the overall Yukawa structure realized in a framework with Grand Unification.
Large tan β induces characteristic effects in flavour physics observables, which we exploit to
pin down its value. In particular, the couplings of charged Higgs bosons to bottom quarks and
tau leptons are enhanced if tan β is large. The (semi)leptonic meson decay modes B → τν and
B → Dτν thus strongly depend on tanβ. We point out that the differential decay distribu-
tions in B → Dτν are well suited to discriminate between Standard-Model and charged-Higgs
contributions through the shape of the spectrum. The benefit of discovering charged-Higgs
effects in B → (D)τν decays at the B factories is twofold: First, it would confirm an extended
Higgs sector conform with supersymmetry. Second, for a fixed spectrum of supersymmetric
particles, the measurement of tan β could clarify fundamental aspects of Yukawa unification.



6 Introduction

This work is composed as follows: In Chapter 1, the disposed reader is made familiar with
the foundations of flavour physics and Grand Unification, including group-theoretical aspects
of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10)
and designed to probe down-quark-lepton Yukawa unification. Within this framework we
explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the
mass difference and CP phase in Bs−Bs meson mixing. Chapter 3 is devoted to corrections
to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from
K − K and Bd − Bd mixing. As an application we study implications of neutrino mixing
effects in CP -violating K and Bd observables on the unitarity triangle. Finally, in Chapter 4,
we discuss effects of large tan β in B → (D)τν decays with respect to their potential to
discover charged Higgs bosons and to discriminate between different GUT models of flavour.
The covered subjects are to a large extent published in Refs. [1] and [2].



Chapter 1

Elements of Unification

Although Grand Unification (if existing) is realized at energy scales far beyond today’s col-
liders’ reach, it can leave characteristic imprints in low-energy flavour physics observables.
The analysis of flavour effects in GUTs requires a framework that is valid over a large energy
range up to the Planck scale. We will start by introducing crucial aspects of flavour physics in
the Standard Model, before extending the setup by supersymmetry. The low-energy theory
being settled, we move on to implications of high-energy Yukawa unification on flavour mix-
ing. The subsequently presented mathematical grounds for SO(10) unification and breaking
are completed with an introduction to higher-dimensional Yukawa terms.

1.1 Flavour of and in the Standard Model

In order to embed the Standard Model into a theory valid up to high scales, it is impor-
tant to control the low-energy basis we start from. In fact, many formal features of Grand
Unification are visible in the mathematical structure of Standard-Model particle interactions.
The Standard Model itself can be seen as an example of unification: It combines weak and
electromagnetic interactions in the framework of one unified gauge theory, described by an
SU(2)×U(1) symmetry [3–5]. Expanding this group structure by quantum chromodynamics,
one ends up with the gauge group of the Standard Model

GSM = SU(3)C × SU(2)L × U(1)Y , (1.1)

incorporating strong, weak, and electromagnetic interactions between elementary particles.
The gauge group GSM acts on three generations of fifteen distinct fermion fields each, written
down in the upper part of Tab. 1.1. Left-(right-)handed fermions are denoted by an index
L(R), and νe,µ,τ represent neutrinos. Under the gauge group GSM these fermions transform
as (R3, R2)Y , with R3 and R2 labelling the representations of SU(3) and SU(2). Only the
quarks take part in strong interactions, since they transform as triplets R3 = 3 under SU(3)C .
Further, only left-handed particles are weakly interacting, as they come in SU(2)L doublets
R2 = 2, namely Q = (u, d)L and L = (ν, e)L. Apart from the neutrinos, all fermions
experience electromagnetic interactions, manifest in their electric charge Qe. The quantum
number corresponding to U(1), the hypercharge Y , is linked to Qe via the three-component
of weak isospin, T3 = ±1/2, as Qe = T3 + 1

2Y . Particle interactions are described by the
exchange of force carriers, the gauge bosons, depicted in Tab. 1.2. Strong interactions are
mediated by a set of eight gluons ga with a = 1, . . . , 8; electroweak interactions involve three
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8 1. Elements of Unification

quarks (u = up, d = down)L uR dR (νe, e)L eR
and (c = charm, s = strange)L cR sR (νµ, µ)L µR

leptons (t = top, b = bottom)L tR bR (ντ , τ)L τR

(R3, R2)Y (3, 2)1/3 (3, 1)4/3 (3, 1)−2/3 (1, 2)−1 (1, 1)−2

Qe [e] (2/3,−1/3) 2/3 −1/3 (0,−1) −1

Table 1.1: Fermions of the Standard Model, their transformation properties under the gauge
group GSM, and electric charges Qe in units of the electron charge e.

bosons ga W 1,2,W 3 B H = (H+,H0)

(R3, R2)Y (8, 1)0 (1, 3)0 (1, 1)0 (1, 2)1

Qe [e] 0 (±1, 0) 0 (1, 0)

Table 1.2: Bosons of the Standard Model.

gauge bosons of SU(2)L, W a with a = 1, 2, 3, and one gauge boson B associated with U(1)Y .

The gauge group GSM is well suited to describe interactions; however, it forbids the in-
troduction of particle masses. What became the “standard” way out of this striking incon-
venience is known as the Higgs mechanism [6–9]: The symmetry of electroweak interactions
is broken spontaneously down to a remnant associated with electromagnetism. Spontaneous
symmetry breaking solely affects the vacuum state of the gauge theory, whereas the dynamical
properties continue to follow GSM. To break electroweak symmetry spontaneously, one adds
a complex scalar SU(2) doublet, the Higgs field H (see Tab. 1.2), which exhibits a vacuum
expectation value (vev) v = 174GeV in its electrically neutral component, so that

SU(2)L × U(1)Y
v−→ U(1)em ; H =

(
H+

H0

)
, 〈H〉 =

(
0

v

)
. (1.2)

The three degrees of freedom associated with electroweak symmetry breaking translate into
longitudinal modes of the gauge bosons W± and Z, thereby giving them a mass. The fourth
degree of freedom associated with U(1)em, the photon A, remains massless:

W± = (W 1 ∓ iW 2)/
√

2 , M2
W = g2

2 v
2/2

Z = cos θWW
3 − sin θWB, M2

Z = (g2
1 + g2

2) v
2/2

A = sin θWW
3 + cos θWB, MA = 0 .

(1.3)

The relative strength between the SU(2) and U(1) couplings g1 and g2 is parametrized by the
Weinberg angle θW = arctan(g1/g2). The masses of gauge bosons and fermions result from
couplings to the Higgs field.



1.1. Flavour of and in the Standard Model 9

Flavour mixing

Higgs-fermion couplings are summarized in the Yukawa sector of the Standard Model,

LYSM = −Y iju Qiu
c
jH + Y ij

d Qid
c
jH

∗ + Y ij
e Lie

c
jH

∗ + h.c. , (1.4)

where the fermion fields Q,uc, . . . are left-handed Weyl spinors. Details of the Dirac structure
are suppressed, but given in Appendix A.1. Superscripts c indicate charge conjugation, under
which right-handed fermions transform into the corresponding left-handed anti-fermions (and
vice versa). The SU(2) doublets Q and L are understood to couple to the Higgs doublet in a
gauge-invariant way, e.g.1

QucH = Qαu
cǫαβHβ with ǫ12 = −ǫ21 = −ǫ12 = 1. (1.5)

The Yukawa couplings Y ij
f are 3×3 matrices in flavour space, the indices i, j = 1, 2, 3 denoting

the respective fermion generation. Fermion masses Mf are obtained by setting H → 〈H〉 and
after diagonalizing the Yukawa matrices Yf ,

Mu = v ·



yu 0 0

0 yc 0

0 0 yt


 , Md = v ·



yd 0 0

0 ys 0

0 0 yb


 , Me = v ·



ye 0 0

0 yµ 0

0 0 yτ


 . (1.6)

Yukawa diagonalization is achieved by two unitary matrices Lf , Rf : Yf = L∗
f Ŷf R

⊤
f . These

matrices simultaneously rotate the fermion fields into their mass eigenstates,

uL = Lu (uL)m, uR = Ru (uR)m, νL = Lν (νL)m,

dL = Ld (dL)m, dR = Rd (dR)m, eL = Le (eL)m, eR = Re (eR)m.
(1.7)

Within the Standard Model, only two combinations of the rotations of left-handed fermions
are physical,2 namely

VCKM ≡ L†
uLd =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 and VPMNS ≡ L†

eLν =



Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3


 , (1.8)

named after their “fathers” Cabibbo, Kobayashi, Maskawa [10, 11] and Pontecorvo, Maki,
Nakagawa, Sakata [12, 13]. These are unitary 3 × 3 matrices parametrized by three angles
and six phases each. Five phases can be eliminated by a redefinition of the fermion fields. A
convenient expression of the remaining, physical degrees of freedom in VCKM and VPMNS is
provided by the standard parametrization in terms of three angles θ12, θ23, θ13 and one phase
δ,3

VCKM,PMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 . (1.9)

1α, β = 1, 2 are SU(2) indices.
2Here we assume massive light neutrinos to introduce notations for later convenience. Strictly speaking, in

the Standard Model, mν = 0, so that Le,ν and consequently VPMNS are not physical.
3The abbreviations cij and sij stand for cos θij and sin θij . Potential Majorana phases in VPMNS are

dropped, since they are not relevant in our analysis.
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(0, 0)

βγ

α

(1, 0)

(ρ̄, η̄)

VudV
∗
ub

VcdV
∗
cb

VtdV
∗
tb

VcdV
∗
cb

Figure 1.1: Unitarity triangle.

These matrices describe flavour mixing in the quark and lepton sectors, visible in weak cou-
plings to charged gauge bosons,4

LCC = − g2√
2

(
ucLσ

µdLW
+
µ + νcLσ

µeLW
+
µ

)
+ h.c.

= − g2√
2

(
(ucL)mVCKMσ

µ(dL)mW+
µ + (νcL)mV †

PMNSσ
µ(eL)mW+

µ

)
+ h.c. .

(1.10)

Note that charged gauge bosons couple only to left-handed fermions, which reflects the parity-
breaking feature of weak interactions. Besides these charged currents, the gauge group of the
Standard Model allows for electromagnetic and weak neutral currents,

LNC = −eQe(f) (f cLσ
µfL + f cRσ

µfR)Aµ −
g2

cos θW

(
gf

L f
c
Lσ

µfL + gf

R f
c
Rσ

µfR
)
Zµ,

with e = g2 sin θW , gf

L,R = T3(fL,R) −Qe(fL,R) sin2 θW .
(1.11)

The Dirac structure of these currents is prescribed by σµ = (σ0, σi) and σµ = σµ = ηµνσ
ν

with the metric ηµν = diag(1,−1,−1,−1), σ0 = 12, and the three generators of SU(2), the
Pauli matrices σi,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.12)

Neutral currents do not involve the flavour-mixing matrix VCKM. In other words, there are
no flavour-changing neutral currents (FCNC) in the Standard Model at tree level and, in the
limit of vanishing quark masses, nor at loop level. This is known as the Glashow-Iliopoulos-
Maiani (GIM) mechanism [5]. The strong suppression of FCNC in the Standard Model is
advantageous for studying new-physics contributions in observables based on b− s, b−d, and
s− d transitions.

Contrarily to strong and neutral electroweak interactions, which are invariant under charge
conjugation C, parity P , and time reversal T transformations,5 charged weak interactions
break C, P , and the combination CP . To make the last statement explicit, let us write down
the transformation properties of vector currents and charged gauge bosons under CP ,

CP ucLσ
µdL = −dcLσµuL, CP W±

µ = −W∓,µ . (1.13)

4Note that for mν = 0, charged currents with leptons are flavour-conserving.
5Here we disregard the strong CP problem.



1.1. Flavour of and in the Standard Model 11

VCKM : VPMNS :

Figure 1.2: Quark and lepton mixing matrices. The absolute values of elements Vij are

represented by disks with radius r ∼
√

|Vij|.

The Lagrangean from Eq. (1.10) describing charged currents then transforms under CP as

LCC
q = − g2√

2

(
ucLVCKMσ

µdLW
+
µ + dcLV

†
CKMσ

µuLW
−
µ

)

CP−→ − g2√
2

(
dcLV

⊤
CKMσ

µuLW
−
µ + ucLV

∗
CKMσ

µdLW
+
µ

)
.

(1.14)

CP is thus conserved in charged currents only if VCKM = V ∗
CKM or, equivalently, if there is

no complex phase δ in the CKM matrix. In the Standard Model, VCKM is the only source of
flavour and CP violation. In supersymmetric models, additional sources of flavour and CP
violation arise, with drastic phenomenological implications. A graphic way to quantify CP
violation in the Standard Model is derived by exploiting the unitarity of the CKM matrix,
which implies

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.15)

Normalized to VcdV
∗
cb, the summands in this equation span a triangle in the complex plane,

the “unitarity triangle” (UT) depicted in Fig. 1.1. By overconstraining its sides and angles
α, β, and γ experimentally from B and K physics observables, one has realistic prospects to
distinguish CP violation in the Standard Model from possible new-physics contributions.

Due to the considerable effort made to measure the parameters in VCKM and VPMNS, the
structure of Standard-Model flavour mixing is experimentally constrained, though it is difficult
to motivate it on theoretical grounds. In the quark sector, especially the collaborations at
the B factories BaBar and BELLE provide us with precise determinations of CKM elements.
They reveal a strongly hierarchical mixing with small off-diagonal elements in particular when
heavy quarks are involved, see Fig. 1.2 left. Concerning the lepton sector, due to the fact that
neutrinos escape the detector, it is currently not possible to observe lepton flavour mixing
in the decay products at colliders. Still, there are (looser) constraints on the PMNS angles
θ12, θ23, and θ13 from solar, atmospheric, and reactor neutrino oscillation experiments. These
measurements are in agreement with tri-bi-maximal mixing [14, 15], which corresponds to
θ12 = arcsin(1/

√
3) ≃ 35◦, θ23 = arcsin(1/

√
2) = 45◦, and θ13 = 0◦, leading to

|VPMNS| =
1√
6




2
√

2 0

−1
√

2
√

3

1 −
√

2
√

3


 . (1.16)

In comparison with quark mixing, the structure of the lepton mixing matrix is much more
“democratic”, see Fig. 1.2 right. We would like to point out the large atmospheric neutrino
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mixing angle θ23, which is close to maximal, while the “reactor” mixing angle θ13 is close to
zero. Consequently, the third neutrino mass eigenstate is an (almost) equal mixture of νµ
and ντ . This observation is particularly interesting in the framework of Grand Unification,
where quarks and leptons are connected, so that the atmospheric mixing angle can induce
large flavour mixing in the quark sector.

Neutrino masses

Lepton flavour mixing requires massive neutrinos and is thus a step beyond the Standard
Model, where neutrinos are massless. Let us comment on the generation of light neutrino
masses by interaction with heavy right-handed neutrinos, known as the seesaw mechanism
[16–18]. Neutrino masses can be implemented by extending the Yukawa sector by a Standard-
Model singlet N = (1, 1)0,

LY = LYSM + Y ij
ν LiNjH − 1

2
M ij
N NiNj + h.c.. (1.17)

Heavy right-handed neutrinos are introduced as Majorana particles, i.e. they are their own
antiparticles, N = N c. Thus, by writing Eq. (1.17), we installed both Dirac and Majorana
mass terms for neutrinos. If one considers the Standard Model as an effective theory, couplings
of light to heavy neutrinos give rise to a dimension-five term in the low-energy Lagrangean,

Leff = −1

2
LiH (Y ik

ν (M−1
N )klY lj

ν )LjH + h.c. . (1.18)

After electroweak symmetry breaking, this operator generates Majorana masses for light
neutrinos,

LMν = −1

2
LiM

ij
ν Lj , with M ij

ν = v2 Y ik
ν (M−1

N )klY lj
ν . (1.19)

To get light neutrino masses Mν = O(0.1) eV, the mass scale of right-handed neutrinos has
to be MN = O(1014 − 1015) GeV for Yν = O(1). This is close to the scale of gauge unification
MGUT = 1016 GeV in supersymmetric models. As we will see, the seesaw mechanism can
be implemented into Grand Unified Theories. Especially in SO(10) models, the existence
of right-handed neutrinos is naturally motivated, and the magnitude of their mass can be
associated with the SO(10)-breaking scale or an intermediate SU(5) scale.

The Majorana nature of neutrinos implies two additional complex phases in the La-
grangean, which cannot be absorbed by a redefinition of the fermion fields. They enter
the lepton mixing matrix VPMNS, which therefore contains three physical phases.

1.2 Supersymmetric flavour physics

The extension of the Standard Model by supersymmetry (SUSY) stabilizes the scale of elec-
troweak symmetry breaking, as was explained in the Introduction. The Standard Model is
supersymmetrized by extending its particle content in order to assign each fermion a bosonic
superpartner and vice versa. This extension is called the Minimal Supersymmetric Stan-
dard Model (MSSM).6 Particles and their superpartners come in supermultiplets of equal

6Properly defined, the MSSM is the minimal extension of the Standard-Model gauge group by an N = 1
supersymmetry with R parity.
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quarks leptons higgsinos

spin 1/2 Q = (uL, dL) uR dR L = (νL, eL) eR (H̃+
u , H̃

0
u) (H̃0

d , H̃
−
d )

spin 0 Q̃ = (ũL, d̃L) ũR d̃R L̃ = (ν̃L, ẽL) ẽR (H+
u ,H

0
u) (H0

d ,H
−
d )

squarks sleptons Higgs bosons

Table 1.3: Chiral supermultiplets in the MSSM.

gluons W bosons B boson

spin 1 ga W a B

spin 1/2 g̃a W̃ a B̃

gluinos winos bino

Table 1.4: Vector supermultiplets in the MSSM.

fermionic and bosonic degrees of freedom. Chiral supermultiplets comprise the Standard-
Model fermions together with their scalar superpartners, the sfermions, and two scalar Higgs
boson doublets Hu, Hd joined with fermionic higgsinos, see Tab. 1.3. Vector supermultiplets
include the gauge bosons of the Standard Model and assigned Majorana fermions of spin
1/2, the gauginos (Tab. 1.4). Note that all superpartners transform under the gauge group
of the Standard Model as the corresponding particles, see Tabs. 1.1, 1.2. After electroweak
symmetry breaking, charged higgsinos H̃+

u , H̃−
d mix with winos W̃± = (W̃ 1 ∓ i W̃ 2)/

√
2 to

form two mass eigenstates, the charginos χ̃±
1,2. Similarly, the mixing of the neutral higgsinos

H̃0
u, H̃

0
d with the wino W̃ 3 and bino B̃ gives rise to neutralinos χ̃0

1,2,3,4.

Two-Higgs-doublet model and soft supersymmetry breaking

The structure of supersymmetric Yukawa interactions is prescribed by the superpotential

WMSSM = Y ij
u Qiu

c
jHu − Y ij

d Qid
c
jHd − Y ij

e Lie
c
jHd + µHuHd , (1.20)

where i, j = 1, 2, 3 are flavour indices. The higgsino mass parameter µ is a complex quantity of
mass dimension one. SU(2) doublets are contracted in a gauge-invariant way as in Eq. (1.5).
The fields occurring in the superpotential are chiral superfields, cf. Tab. 1.3. Thus, fermions
and sfermions couple with the same strength to either of the Higgs doublets

Hu =

(
H+
u

H0
u

)
and Hd =

(
H0
d

H−
d

)
, (1.21)

that transform under GSM as Hu : (1, 2)1 and Hd : (1, 2)−1, respectively. We observe that,
contrary to the Standard Model, the Higgs sector of the MSSM is a two-Higgs-doublet model
(2HDM)7 of type II. Since supersymmetry requires that the superpotential be a holomorphic
function of chiral superfields (i.e., the simultaneous occurrence of H and H∗ is not possible),
two Higgs doublets are needed to separately give masses to both up- and down-type fermions.
Below the scale of electroweak symmetry breaking, the neutral Higgs components exhibit

7For an extensive introduction into the Two-Higgs-Doublet model, see Ref. [19].
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vacuum expectation values 〈H0
u〉 = vu, 〈H0

d 〉 = vd. These vevs are related to the vev of the
Standard-Model Higgs boson via

v2 = v2
u + v2

d , tan β = vu/vd; (1.22)

their ratio tan β is a free parameter in the MSSM. This Higgs mechanism generates the fermion
masses

mu = yu · vu = yu · v sinβ, md,e = yd,e · vd = yd,e · v cos β . (1.23)

In the course of electroweak symmetry breaking, three of the eight degrees of freedom in Hu

and Hd, denoted by G0 and G±, give rise to longitudinal modes of the gauge bosons Z and
W±. The remaining degrees of freedom become manifest in five physical Higgs bosons: Two
neutral scalars h0 and H0, one neutral pseudoscalar A0, and two charged fields H+ and H−.
By writing down the Higgs potential in the 2HDM and diagonalizing the resulting Higgs mass
matrix, the Higgs mass eigenstates arise from the initial Higgs-doublet components as

√
2

(
ImH0

d

ImH0
u

)
=

(
sin β − cos β

cos β sin β

)(
A0

G0

)
,

√
2

(
ReH0

d − vd
ReH0

u − vu

)
=

(
cosα − sinα

sinα cosα

)(
H0

h0

)
,

(
H−∗
d

H+
u

)
=

(
sin β − cos β

cos β sin β

)(
H+

G+

)
, tan(2α) = tan(2β)

M2
A0 +M2

Z

M2
A0 −M2

Z

,

(1.24)

with the Higgs mixing angles α and β. The corresponding Higgs boson masses at tree level
are related by

M2
H0,h0 =

1

2

{
M2
A0 +M2

Z ±
√

(M2
A0 +M2

Z)2 − 4M2
A0M

2
Z cos2(2β)

}
,

M2
H± = M2

A0 +M2
W ,

(1.25)

so that the spectrum of the 2HDM is determined by two parameters, which are customarily
chosen to be (tan β,MA0) or equivalently (tan β,MH+). The mixing angles α and β enter the
Higgs-fermion couplings and lead to interesting flavour effects in FCNC and charged currents,
especially if tanβ is large. Such effects will be the subject of Chapter 4.

From the vacuum state of the superpotential, we read off that the masses of particles
and their superpartners have to be equal. Since, however, any direct searches of light scalar
particles failed, one concludes that supersymmetry is not exact in nature, but has to be
broken. In order to generate higher masses for superpartners and at the same time maintain
the solution of the hierarchy problem, SUSY breaking has to be explicit, but “soft”. The
mechanism of SUSY breaking being unknown, we assume its origin at a high energy scale and
parametrize its effects by softly SUSY-breaking terms added to the Lagrangean,

Lsoft = − Q̃∗M2
eQ
Q̃− ũcM2

eu ũ
c∗ − d̃cM2

ed
d̃c

∗ − L̃∗M2
eL
L̃− ẽcM2

ee ẽ
c∗

− Q̃Au ũcHu + Q̃Ad d̃cHd + L̃ Ae ẽcHd + h.c.

− 1

2
(M1 B̃B̃ +M2 W̃

aW̃ a +M3 g̃
ag̃a) + h.c.

−m2
Hu
H∗
uHu −m2

Hd
H∗
dHd − (m2

12HuHd + h.c.) .

(1.26)
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Here, the sfermion masses M2
f̃

are hermitean 3 × 3 matrices in flavour space. The complex
trilinear couplings Af of mass dimension one are analogous to the (dimensionless) Yukawa
couplings in the superpotential in Eq. (1.20). Further, Lsoft comprises the gaugino terms
with masses M1,2,3 and SUSY-breaking contributions to the Higgs potential, parametrized by
m2
Hu

, m2
Hd

, and m2
12. In order to keep corrections to the light Higgs mass moderate, the mass

scale associated with the soft parameters should not exceed MSUSY ≃ 1TeV. By introducing
these mass terms and trilinear couplings, we add a large number of free parameters that
strongly reduce the predictivity of our model. In particular, the complex entries of M2

f̃
and

Af are new sources of flavour and CP violation in addition to the CKM matrix. Facing
experiment, however, the flavour structure of soft terms is rigorously constrained by K and
B physics observables [20–22]. This motivates the assumption of minimal flavour violation
(MFV), where “all flavour- and CP -violating interactions are linked to the known structure
of Yukawa couplings” [23]. Within the framework of MFV, departures from Standard-Model
flavour mixing due to new physics can be accurately distinguished.

Flavour mixing from soft mass splitting

To make the above statement explicit, let us cast flavour violation into formulae: In the
fermion mass eigenbasis, the Yukawa terms in the superpotential read

W Y
MSSM = u Ŷu u

cH0
u − dV ⊤

CKM Ŷu u
cH+

u + d Ŷd d
cH0

d − uV ∗
CKM Ŷd d

cH−
d

+ e Ŷe e
cH0

d − ν V ⊤
PMNS Ŷe e

cH−
d .

(1.27)

We observe that flavour mixing in charged-Higgs currents is governed by the matrices VCKM =
L†
uLd and VPMNS = L†

eLν , which also determine the flavour mixing in left-handed weak
charged currents, cf. Eq. (1.10). The rotations of right-handed fermions are not visible in
charged-Higgs currents (and in the supersymmetrized version involving fermions, sfermions,
and higgsinos). Consequently, the supersymmetric part of the MSSM is minimally flavour-
violating as the Standard Model. However, flavour violation in both left- and right-handed
fermion sectors enters via SUSY breaking: The soft mass and trilinear A terms in Eq. (1.26)
are not necessarily aligned with the Yukawa couplings. Now, minimal flavour violation is
realized in a supersymmetric model if one assumes flavour-blind SUSY breaking at some
scale M & MSUSY, in our case at the Planck scale. Concretely, all soft mass parameters are
universal, and trilinear couplings are proportional to the corresponding Yukawa couplings,

MPl : M2
eQ

= M2
eu = M2

ed
= M2

eL
= M2

ee = m2
0 · 1,

Au = a0 · Yu, Ad = a0 · Yd, Ae = a0 · Ye .
(1.28)

The masses and couplings in a renormalizable quantum field theory are energy-dependent.
The mathematical framework of renormalization group evolution (RGE) links the values of
those parameters at different scales. By evolving the soft parameters from the high scale MPl

down to the electroweak scale MZ , the universality in Eq. (1.28) is broken. In particular,
effects of the large top Yukawa coupling in the RGE separate the third-generation ũL, d̃L,
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and ũR squark masses from the light generations,

MZ : M2
eQ

= m2
eQ
·




1 0 0

0 1 0

0 0 1 − ∆eQ


 , M2

eu = m2
eu ·




1 0 0

0 1 0

0 0 1 − ∆eu


 ,

M2
ed

= m2
ed
· 1, M2

eL
= m2

eL
· 1, M2

ee = m2
ee · 1 .

(1.29)

The universality of right-handed down-squark and lepton masses is preserved due to the
smallness of bottom and tau Yukawa couplings. The flavour effects of the mass splitting
become visible in the super-CKM basis, which is obtained by performing simultaneous ro-
tations on quark and squark fields when diagonalizing the quark mass matrices. So, in the
super-CKM basis, the mass splitting in M2

eQ
leads to off-diagonal elements in the mass matrix

of left-handed down squarks,

(M2
eQ
)sCKM = V †

CKMM2
eQ
VCKM . (1.30)

In summary, in the MSSM with minimal flavour violation, there arise flavour-changing neutral
currents of left-handed down squarks, which are guided by CKM mixing. Flavour mixing
among sleptons and right-handed squarks is absent, so that one still cannot probe the rotation
matrices Rf defined in Eq. (1.7).

1.3 Supersymmetric Yukawa unification

The prediction of gauge coupling unification is probably the most attractive feature of Grand
Unified Theories. In non-supersymmetric GUTs, however, the measured gauge couplings
do not meet when evolved to high energies. Supersymmetry helps to solve this problem.
Namely, in the MSSM with superpartners at MSUSY ≃ 1TeV, the three gauge couplings of the
Standard Model converge at the scale MGUT ≃ 1016 GeV due to the effect of supersymmetric
particles in the RGE [24–26]. Embedding the MSSM into a Grand Unified Theory extends
Standard-Model flavour mixing by relating the (s)quark and (s)lepton sectors. Due to the
unification of fermions in larger multiplets, the top Yukawa coupling now enters the RGE
of soft mass matrices other than MeQ and Meu above the GUT scale. In SO(10), all soft
mass matrices exhibit a mass splitting ∆ef for the third generation. This leads to FCNC
of right-handed squarks and sleptons, and the rotation matrices Rf become physical. We
will start by focussing on the implications of supersymmetric Grand Unification for flavour
mixing in SUSY SU(5) as an intermediate step to explain supersymmetric SO(10) unification.
Mathematical details are treated in the following sections.

SU(5)

SU(5) is the minimal enlargement of the Standard-Model gauge group GSM in which all three
gauge couplings g′1 =

√
5/3 g1, g2, and g3 unify to one coupling g5 [27].8 Even though GSM is a

subgroup of SU(5), it is not obvious that one can embed the fermions of the Standard Model

8The factor
p

5/3 in the U(1) coupling is due to the fact that the properly normalized hypercharge generator

in SU(5) is
p

3/5 Y .
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into SU(5) representations without introducing new particles. Fortunately, the Standard-
Model fermions (together with their corresponding superpartners) fit into the representations
5 and 10 of SU(5), in matrix notation

5 =




dc1
dc2
dc3
e

−νe




L

, 10 =
1√
2




0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −ec
d1 d2 d3 ec 0




L

. (1.31)

All particles are left-handed Weyl spinors, and indices 1, 2, 3 indicate colour, the quantum
number of SU(3)C . To generate neutrino masses via the seesaw mechanism, one adds an SU(5)
singlet 1 for the heavy right-handed neutrinoN with Yukawa coupling YN . The Yukawa terms
in the superpotential are composed as SU(5)-invariant trilinears,

W Y
SU(5) =

1

4
Y ij

5 10i10j5H +
√

2Y ij
5̄

10i5j5H + Y ij
ν 5i1j5H +

1

2
M ij
N 1i1j . (1.32)

The Higgs fields in SU(5) decompose into Standard-Model representations as

5H = (HC ,−Hu), 5H = (HC ,Hd) . (1.33)

Besides the two MSSM Higgs doubletsHu and (Hd)
α = ǫαβ (Hd)β , cf. Eq. (1.21), they contain

heavy Higgs fields transforming under GSM as colour triplets, HC : (3, 1)0 and HC : (3, 1)0.
These coloured Higgs bosons and the heavy neutrinos are integrated out at and little below
the SU(5) scale MGUT, respectively, such that they do not appear as degrees of freedom in
the low-energy Lagrangean. By calculating the Yukawa interactions in terms of MSSM fields,
one identifies relations between the Yukawa couplings,

Yu = (Y5)S and Yd = Y ⊤
e = Y5̄ . (1.34)

The up-quark Yukawa coupling is thus restricted by SU(5) to be symmetric (denoted by
(Y5)S = (Y5+Y ⊤

5 )/2). The Yukawa couplings of down quarks and charged leptons are unified,
since these are embedded into the same SU(5) multiplet. This implies that the mixings of
right-handed (left-handed) down quarks and left-handed (right-handed) charged leptons (cf.
Eq. (1.7)) are identical up to complex conjugation,

R∗
d = Le, Ld = R∗

e . (1.35)

In the U basis, where Yu is diagonal, the Yukawa sector in terms of MSSM mass eigenstates
is given by

WU
MSSM = Q Ŷu u

cHu −Q (V ∗
q Ŷd Vℓ) d

cHd − ec (V ∗
q Ŷe Vℓ)LHd − LYν NHu +

1

2
MN NN .

(1.36)

The couplings Yd and Y ⊤
e are diagonalized by one and the same bi-unitary transformation,

Yd = V ∗
q Ŷd,e Vℓ = Y ⊤

e . We directly identify Vq = L†
uLd = VCKM. If the U basis is also the

basis of right-handed neutrino mass eigenstates, we further have Vℓ = L†
eLν = VPMNS. We

introduce the phase matrices

ΘL = diag(e−iα1 , e−iα4 , e−iα5), ΘR = diag(1, ei(α1−α2), ei(α1−α3)) , (1.37)
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such that we can define VCKM and VPMNS in their standard parametrization with one CP -
violating phase δ each, given in Eq. (1.9). Five of six phases in Vq can be absorbed by a re-
definition of the quark fields, as in the Standard Model. Due to the unification of quarks and
leptons, the six phases in VPMNS are then physical. With VPMNS in its standard parametriza-
tion we thus have Vℓ = Θ†

LVPMNSΘ
†
R. The additional phases are important sources of new

CP -violating effects in flavour-changing neutral currents. For the neutrino angle θ13 6= 0, the
matrix that rotates (s)leptons and right-handed down (s)quarks is given by,

Vℓ =




√
2
3c13 e

iα1 1√
3
c13 e

iα2 s13 e
i(δ+α3)

eiα4

(
− 1√

6
− 1√

3
s13 e

−iδ
)

ei(−α1+α2+α4)
(

1√
3
− 1√

6
s13 e

−iδ
)

1√
2
c13 e

i(−α1+α3+α4)

eiα5

(
1√
6
− 1√

3
s13 e

−iδ
)

ei(−α1+α2+α5)
(
− 1√

3
− 1√

6
s13 e

−iδ
)

1√
2
c13 e

i(−α1+α3+α5)


 .

(1.38)

In the following, we will assume θ13 = 0, in which case the standard phase δ disappears from
the mixing matrix Vℓ.

Since the up quarks are not unified with down quarks and charged leptons, the top Yukawa
coupling does not affect the RGE of M2

ed
and M2

eL
, analogously to the MSSM, cf. Eq. (1.29).

Hence, provided that soft masses are universal at a high scale, the unification of right-handed
down-(s)quark and left-handed (s)lepton mixings (manifest in one rotation matrix Vℓ) is not
observable in sfermion currents at tree level. However, fermion couplings to heavy right-
handed neutrinos can change the flavour structure of sfermion soft mass matrices [28,29]. In
particular, the coupling of down (s)quarks to right-handed neutrinos and coloured Higgs(ino)

fields involves Vℓ via (R†
d = L⊤

e )9

dc Yν NHC = dcR†
d(L

∗
ν ŶνR

⊤
ν )R∗

ν NHC = dc V ∗
PMNSŶν NHC . (1.39)

These terms introduce VPMNS into the RGE of the right-handed down-squark mass matrix in
SU(5) above the GUT scale. The large mixing angles in VPMNS induce off-diagonal elements

(M2
ed
)sCKM
ij ≃ − 1

8π2
(V ∗

PMNS)ik y
2
νk

(V ⊤
PMNS)kj · (3m2

ed
+ |Ad|2) · log

MPl

MGUT
(i 6= j) . (1.40)

If the neutrino Yukawa couplings yνk
are sizeable, this generates FCNC among right-handed

down squarks, observable in bR − sR, bR − dR, and sR − dR transitions [30–33].

SO(10)

In SO(10), all fifteen Standard-Model fermions (and superpartners) of one generation are
unified in one 16-dimensional spinor representation [34,35],

16 = 1 ⊕ 10 ⊕ 5 = (N, (Q, uc, ec), (dc, L)). (1.41)

This framework includes the right-handed neutrino, thus providing light neutrino masses via
the seesaw mechanism in a natural way. Compared to SU(5), SO(10) incorporates not only
gauge unification but in addition the complete unification of the fermions of each generation.
The unified fermion couplings exhibit a universal flavour structure above the SO(10) scale

9Here we omit the phase difference between Vℓ and VPMNS parametrized by ΘL,R in Eq. (1.37).
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M10, which leaves significant imprints in low-energy flavour physics. Concretely, the large top
Yukawa coupling yt = (Y10)33 now affects the RGE of all soft mass matrices, such that the
mass of all third-generation sfermions separates from the (degenerate) light sfermions. In the
U basis, the mass eigenbasis of up-type quarks, one has

MPl : M2
ef

= m2
0 · 1

RGE−→ M10 : M2
ef

= m2
ef
(M10) ·




1 0 0

0 1 0

0 0 1 − ∆ef


 . (1.42)

In particular, the soft mass matrix of right-handed down squarks at the electroweak scale is
now given by

MZ : (M2
ed
)U = m2

ed
· diag(1, 1, 1 − ∆ed) , (1.43)

with the mass splitting ∆ed found as [36]

m2
ed
∆ed =

1

8π2
y2
t · (3m2

ed
+ |Ad|2) · (5 log

MPl

M10
+ log

M10

MGUT
) . (1.44)

Due to the large matter content of SO(10), the RGE of the soft mass matrices above M10 is
enhanced by a factor 5 with respect to the running below the SO(10) scale. Therefore ∆ed

is numerically of O(1) and about three times larger than the corresponding SU(5) effect for
yν3 = yt in Eq. (1.40). We choose M10 = 1017 GeV to be just one order of magnitude above
MGUT in order to maximize the mass splitting ∆ed from SO(10) running. Then the short range
of SU(5) running has no significant further impact on the soft mass splitting. We further
assume that the unified up-quark and light-neutrino Yukawa couplings are simultaneously
diagonal with the right-handed neutrinos and separated from the unified down-quark and
lepton Yukawa couplings. Thereby we are back in the flavour setup of the SU(5) scenario
discussed before, apart from the SO(10)-specific large soft mass splitting ∆ed and the additional
unification of Yu and Yν . We rotate the down quarks into their mass eigenbasis (thereby

reaching the super-CKM basis) via Vℓ = Θ†
LVPMNSΘ

†
R, cf. Eq. (1.36). Then M2

ed
is no

longer diagonal, but exhibits large off-diagonal elements (M2
ed
)23 due to the large atmospheric

neutrino mixing angle in Vℓ,

(M2
ed
)sCKM = V ∗

ℓ (M2
ed
)U V ⊤

ℓ = m2
ed
·




1 0 0

0 1 − ∆ed
2 −∆ed

2 e
−i(α4−α5)

0 −∆ed
2 e

i(α4−α5) 1 − ∆ed
2


 . (1.45)

This observation has significant impact on b − s transitions like Bs − Bs mixing [37] and
B → Xsγ [38]. Moreover, the complex phase in (M2

ed
)sCKM
23 induces effects in CP -violating

observables like the phase φs in Bs − Bs mixing and the CP asymmetries in Bd → φKs or
Bs → DsK

± [36,38].
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1.4 Embedding the Standard Model into SO(10)

In the remaining sections of this chapter we discuss relevant mathematical aspects of SO(10)
unification, still focussing on the Yukawa sector. Since unified fermions come with the same
helicity, we use left-handed fields only. Right-handed fermions are embedded as charge-
conjugated left-handed fields together with left-handed fermions into larger multiplets. These
left-handed antiparticles transform as the conjugate representation R, if the corresponding
right-handed particles transform as R; for instance, (uc)L transforms as (3, 1)−4/3, whereas
uR transforms as (3, 1)4/3. Thus the overall SU(3) × SU(2) × U(1) representation of left-
handed fermion fields differs from the representation of right-handed fermions, because the
subgroup SU(2)×U(1) is chiral. Consequently, the unifying representation has to be complex
in order to allow R 6= R. The group SO(10) provides such a complex representation, the
16-dimensional spinor representation. All fifteen Standard-Model fermions of one generation
fit into a 16-plet of SO(10), in addition to a heavy right-handed neutrino N .

In order to understand how to embed the Standard-Model gauge group into SO(10), let us
describe the embedding SU(n) ⊂ SO(2n) in a general formalism [39, 40]. The group SO(2n)
is formed by 2n(2n − 1)/2 traceless antisymmetric objects Mµν fulfilling the algebra

[Mµν ,Mρσ ] = −i(δµσMνρ + δνρMµσ − δµρMνσ − δνσMµρ) , (1.46)

with µ, ν, ρ, σ = 1, . . . , 2n being SO(10) indices. The fundamental representation is given by
the antisymmetric 2n× 2n matrices

(Mµν)αβ = −i(δµαδνβ − δναδµβ) . (1.47)

The generators of the spinor representation of SO(2n) are constructed from a set of hermitean
matrices Γµ, which fulfill the Clifford algebra {Γµ,Γν} = 2 δµν . The objects

Σµν = 1
4i [Γµ,Γν ] (1.48)

obey the commutation relations in Eq. (1.46), so these are the desired generators of the
SO(2n) spinor representation. The matrices Γµ can be constructed iteratively from the Pauli
matrices,

Γ
(k=1)
1 = σ1, Γ

(1)
2 = σ2, Γ

(1)
3 = σ3 :

Γ(k+1)
µ = Γ(k)

µ ⊗ Γ
(1)
3 , µ = 1, . . . , 2n,

Γ
(k+1)
2k+1 = 1(k) ⊗ Γ

(1)
1 ,

Γ
(k+1)
2k+2 = 1(k) ⊗ Γ

(1)
2 .

(1.49)

From these 2n operators Γ
(n)
µ one can find a set of n creation and annihilation operators

b†a = 1
2 (Γ2a−1 + iΓ2a) , a = 1, . . . , n,

ba = 1
2 (Γ2a−1 − iΓ2a) ,

(1.50)

which fulfill the anticommutation relations

{ba, b†b} = δab , {ba, bb} = {b†a, b†b} = 0 . (1.51)
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An SU(n) algebra is eventually generated by

Tab = b†abb : [Tab, Tcd] = δbcTad − δadTcb . (1.52)

As the SU(n) generators Tab can be expressed in terms of Σµν , this is indeed a subalgebra of

SO(2n). Note that the operators Γ
(k)
µ in Eq. (1.49) are direct products of k SU(2) generators

Γ
(1)
µ , such that one can think of an SO(2n) spinor state as a sequence of n signs, | ±± · · · ±〉.

The creation and annihilation operators b†a ∼ Γ
(1)
1 + iΓ

(1)
2 and ba ∼ Γ

(1)
1 − iΓ

(1)
2 flip the

sign at position a like (− → +) and (+ → −), respectively. This defines a vacuum state
|−− · · · −〉 ≡ |0〉 that is annihilated by all operators ba. In the spinor representation of SO(2n),
the generators Σµν act reducibly on a 2n-dimensional space, which can be decomposed into
two irreducible subspaces characterized by an even (odd) number of signs ±.

Let us write down explicitly the embedding SU(n) ⊂ SO(2n) for n = 5: In the SU(5) basis,
a general SO(10) spinor is given in one of the 16-dimensional irreducible representations by

|16〉 = |0〉ψ0 +
1

2
b†ab

†
b|0〉ψab +

1

4!
ǫabcdeb†bb

†
cb

†
db

†
e|0〉ψa or

|16〉 = b†a|0〉ψa +
1

2 · 3! ǫ
abcdeb†cb

†
db

†
e|0〉ψab + b†1b

†
2b

†
3b

†
4b

†
5|0〉ψ0 .

(1.53)

The objects ψ0, ψ
ab, and ψa transform under SU(5) as the singlet, 10-dimensional, and

conjugate 5-dimensional 5 representation. All indices are antisymmetrized, respecting the
anticommutation properties of the operators b†a and ba. In a last step we identify the Standard-
Model SU(3) × SU(2) representations embedded in SU(5). By splitting the set of operators
b(†)a into two subsets (b(†)1 , b(†)2 , b(†)3 ) and (b(†)4 , b(†)5 ), we create subspaces for SU(3) and SU(2).
This decomposition allows us to identify the Standard-Model fermions as objects in the SU(5)
basis, using the |16〉 representation in Eq. (1.53),

ψ0 : N = | − −− ; −−〉
ψab : Q =

(
| + −− ; +

−
−
+〉, | − +− ; +

−
−
+〉, | − −+ ; +

−
−
+〉
)

uc =
(
| + +− ; −−〉, | + −+ ; −−〉, | − ++ ; −−〉

)

ec = | − −− ; ++〉
ψa : dc =

(
| + +− ; ++〉, | + −+ ; ++〉, | − ++ ; ++〉

)

L = | + ++ ; +
−
−
+〉 .

(1.54)

In summary, the fermion fields of the Standard Model, together with the right-handed neu-
trino, are embedded in a spinor representation of SO(10) via an intermediate SU(5) symmetry
in the following way,

16 = 1 ⊕ 10 ⊕ 5 = (ψ0, ψ
ab, ψa) = (N, (Q, uc, ec), (dc, L)) . (1.55)

1.5 SO(10) breaking

The mechanism of breaking SO(10) down to the Standard-Model gauge group
GSM = SU(3) × SU(2) × U(1) has large impact on the Higgs field content of a specific
SO(10) model. Consequently, it will determine the structure of Yukawa interactions between
matter and Higgs fields, which is our focus. Here we discuss two main roads of breaking
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?

SU(3) × U(1)

SU(3) × SU(2) × U(1)
)q

) q

SU(5) SU(4) × SU(2) × SU(2)

SO(10)
16, 45 54/210

45 16/126

10, 120, 126

Figure 1.3: SO(10) breaking to the Standard Model. The Higgs representations noted with
the arrows refer to SO(10).

SO(10) → GSM (see also e.g. Ref. [39]). The group SO(10) can be broken to the Standard
Model via two subgroups, SU(5) and the so-called Pati-Salam group GPS = SU(4)× SU(2)×
SU(2) [41]. Though direct breaking SO(10) → GSM is possible, models with intermediate
symmetries are advantageous: The mass scale essential to implement the seesaw mechanism
can be associated with one of these subgroups.

With the Pati-Salam group as an intermediate symmetry, the breaking mechanism in-
corporates the symmetric 54 and a 16 or 126 representation. The 54 (also 210) potentially
exhibits a vacuum expectation value leaving the SO(10) subgroup SO(6)× SO(4) untouched,
which is isomorphic to GPS. The Pati-Salam group is then broken to the Standard-Model
group GSM using a 16 or 126 representation.

When opting for SU(5) as intermediate symmetry, a suitable representation to break
SO(10) is the antisymmetric adjoint 45. Its decomposition into SU(5) representations reads

45 = 24 ⊕ 10 ⊕ 10 ⊕ 1 . (1.56)

A vev in the SU(5)-singlet direction, 〈1〉45 ≡ v10 ∼M10, breaks SO(10) → SU(5)×U(1). The
additional U(1) is broken by the spinor Higgs representation 16. This reduces the rank of the
group from 5 for SO(10) to 4 for SU(5) and GSM. The subsequent breaking SU(5) → GSM

can be achieved using the SU(5)-adjoint representation 24 in 45. A vev 〈24〉45 ≡ v5 ∼MGUT

proportional to the hypercharge generator of SU(5),

〈24〉45 ≡ v5 diag(2, 2, 2 ;−3,−3) , (1.57)

has the desired properties for this breaking.

Finally, one has to arrange for electroweak symmetry breaking SU(3)C×SU(2)L×U(1)Y →
SU(3)C × U(1)em. To give the fermions mass, one needs a representation that couples to the
fermion bilinears and contains a component that transforms under GSM as the Standard-
Model Higgs field (1, 2)1. Both requirements are fulfilled by the 5 and 45 representations
of SU(5), see Eq. (A.10). In the fermion bilinear 16 ⊗ 16 each of the three constituents 10,
120, and 126 contains a 5 and/or 45 representation and can therefore contribute to elec-
troweak symmetry breaking. (The decompositions of SO(10) representations are given in
Appendix A.2.)

The pattern of SO(10) breaking discussed here is summarized in Fig. 1.3. In Chapter 2,
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we will concentrate on the breaking chain

SO(10)
45〈1〉−→
16,1̄6

SU(5)
45〈24〉−→ SU(3) × SU(2) × U(1)

10→ SU(3) × U(1) . (1.58)

The representation 16 is needed together with 16 in supersymmetric models in order to
preserve supersymmetry when reducing the rank of the gauge group [42]. Without adding
further representations, the possible content of Higgs fields in the Yukawa sector will consist
of 10H , 16H , 16H , and 45H .

1.6 Yukawa unification in SO(10)

Using the tools introduced in Sec. 1.4, we proceed and construct SO(10)-invariant Yukawa
terms. The tensor product of two 16-dimensional spinor representations decomposes into
tensor representations like

16 ⊗ 16 = 10S ⊕ 120A ⊕ 126S , (1.59)

which have respective symmetric (S) and antisymmetric (A) structures. Consequently, there
are three possibilities to form renormalizable Yukawa couplings of two fermion multiplets to
a Higgs representation, namely the symmetric terms 16 16 10H and 16 16 126H , as well as an
antisymmetric 16 16 120H coupling. The resulting SO(10) superpotential reads

W Y
ren = Y ij

10 16i 16j 10H + Y ij
120 16i 16j 120H + Y ij

126 16i 16j 126H . (1.60)

The indices i, j = 1, 2, 3 label the three generations of fermions. In the formalism of an SU(5)
basis, the various terms are written as

16i 16j 10H : 〈16∗i |B Γµ φµ|16j〉,

16i 16j 120H :
1

3!
〈16∗i |B ΓµΓνΓρ φµνρ|16j〉,

16i 16j 126H :
1

5!
〈16∗i |B ΓµΓνΓρΓσΓτ φµνρστ |16j〉.

(1.61)

The objects φµ, φµνρ, and φµνρστ stand for the 10-, 120-, and 252-dimensional Higgs repre-
sentations, the latter decomposing into 126 ⊕ 126 with only the 126 coupling to the spinors.
B is the charge conjugation matrix in SO(10), analogous to the charge conjugation matrix C
of the Lorentz group, which is dropped here. SO(10) invariance of the trilinears in Eq. (1.61)
is ensured if one chooses B ≡ −∏µ even Γµ, so that

B−1Γ⊤
µB = −Γµ . (1.62)

To elaborate on the details of SO(10) Yukawa unification, we exemplarily work out the cou-
pling 16i 16j 10H in Eq. (1.61) in terms of its SU(5) constituents. Using Eq. (1.53) and the
algebra in Eq. (1.51), one gets

〈16∗|B = −i ψ0〈0| b1b2b3b4b5 − i 1
12 ǫabcdeψ

ab〈0| bcbdbe − i ψa〈0| ba . (1.63)
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The tensor representation 10H is decomposed into irreducible SU(5) representations as
10 = 5 ⊕ 5, which we express in terms of φµ,

5H : φca = φ2a−1 − iφ2a , a = 1, . . . , 5,

5H : φc̄a = φ2a−1 + iφ2a ,
(1.64)

and thereby have

Γµφµ = baφc̄a + b†aφca . (1.65)

This formalism can be extended to the larger tensor representations φµνρ and φµνρστ [43].10

With these tools at hand, one computes the SO(10) Yukawa term in its SU(5) decompo-
sition (after rescaling the Higgs fields φca =

√
2Ha, φc̄a =

√
2Ha to obtain canonical kinetic

terms),

〈16∗i |B Γµ φµ|16j〉 = i
√

2
{
− (ψi0 ψ

j
a + ψia ψ

j
0)H

a (1.66)

+ (ψabi ψja + ψia ψ
ab
j )Hb + 1

4 ǫabcdeψ
ab
i ψcdj He

}
,

short: Y ij10 16i16j 10H ≡ Y ij
10

√
2
{
− (1i 5j + 5i 1j) 5H + (10i 5j + 5i 10j) 5H + 1

410i10j 5H

}
.

We observe that the Yukawa coupling Y10 has a symmetric flavour structure.11 The repre-
sentations 5H and 5H contain components that transform under GSM as (1, 2)1 and (1, 2)−1.
After electroweak symmetry breaking, they give masses to up quarks and neutrinos or down
quarks and charged leptons, respectively. With only one Yukawa term Y ij

10 16i16j 10H gener-
ating masses for all fermions, there is no mixing between fermions of different generations.
Furthermore, the Yukawa matrices of all fermions are unified at the GUT scale and they are
symmetric,

√
2 (Y10)S = Yu = Y ⊤

ν /2 = Yd = Y ⊤
e , (1.67)

with (Y10)
ij
S = (Y ij

10 + Y ji
10)/2. Since the fermion mass spectrum measured at low energies can

agree with this relation for the third generation only, one has to enlarge the Yukawa sector.
There are two main roads to correct the Yukawa unification of the light generations: First,
one could add the renormalizable couplings with 120H and 126H representations given in
Eq. (1.61), corresponding to antisymmetric and symmetric Yukawa structures, respectively.
By doing so, it is possible to accommodate the measured fermion masses and mixings [44].
However, adding large representations causes difficulties with the perturbativity of the gauge
coupling above the SO(10) scale [45]. The second possibility to generate a realistic Yukawa
structure is to introduce non-renormalizable terms of higher mass dimension. They can be
built by means of small Higgs representations, such that the couplings stay perturbative up
to the Planck scale. Such higher-dimensional terms, being suppressed by powers of a high
mass scale, will correct the relations between masses and mixings of light fermions, without
affecting the successful unification in the third generation.

10Note the differing definition of φca
, φc̄a

in Eq. (1.64), which we adapted to the definition of b†a, ba in
Eq. (1.50).

11The factor i is absorbed into the Yukawa coupling Y10.
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Figure 1.4: Non-renormalizable Yukawa term (16 16)10 (10H 45H)10 of mass dimension five.

1.7 Higher-dimensional Yukawa terms

In this section, we will elaborate on how to explicitly construct Yukawa corrections of mass
dimension five. Staying with the small Higgs representations 10H , 16H , 16H , and 45H , one
can build the following SO(10)-invariant dimension-five terms,

16 16 16H16H , 16 16 16H16H , 16 16 10H45H . (1.68)

The compositions with spinor Higgs fields are suitable to generate Majorana masses for
right-handed neutrinos via a vev in the SU(5)-singlet component of 16H , 16H . The term
16 16 10H 45H provides manifold patterns for fermion masses and mixings. There are four
different ways to form an SO(10) invariant out of its constituents, summarized in Ref. [46],

(16 16)10 (10H 45H)10 = 〈16∗|B Γµφνφµν |16〉 (1.69a)

(16 16)120 (10H 45H )120 = 〈16∗|B ΓµΓνΓρφµφνρ|16〉 (1.69b)

(16 10H )16∗(16 45H )16 = 〈16∗|B ΓµφµΣνρφνρ|16〉 (1.69c)

(16 10H )144∗(16 45H )144 = 〈16∗|B φµΓνφµν |16〉 − (1.69c) , (1.69d)

with the 10H and 45H represented by φµ and φµν . Consequently, one can produce four
different Yukawa textures. The terms in Eqs. (1.69a) and (1.69b) lead to the same symmetric
and antisymmetric structures as the renormalizable terms 16 16 10H and 16 16 120H , since
the relevant component of the reducible representation (10H ⊗ 45H) couples to the fermion
bilinear (16 ⊗ 16) as an effective 10H or 120H .

The appearance of dimension-five Yukawa terms is natural when thinking of SO(10) as an
effective theory below the Planck scale. In this setup, dimension-five terms arise as effective
operators by integrating out heavy degrees of freedom X above the SO(10) scale. Therefore
the terms in Eqs. (1.69a) – (1.69d) are suppressed by the mass MX of these heavy particles.
The Feynman diagram corresponding to the effective 10 coupling in Eq. (1.69a) is illustrated
in Fig. 1.4. The dashed double line denotes the heavy field 10, which is integrated out at the
mass scale M10.

Let us explicitly describe the formation of the term (16 16)10 (10H 45H)10. By extending
the formalism in Eq. (1.64) for higher tensor representations, one derives the decomposition of
φµν... into irreducible SU(5) representations, in particular φµν ≡ 45H = 145⊕1045⊕1045⊕2445.
Details are given in Appendix A.2. Then one can express the effective coupling (10H 45H)10
in terms of SU(5) fields,

10 10H45H = φ′µφνφµν (1.70)

= 1√
2

{
1√
5

(5105H + 5105H)145 + 5105H1045 + 5105H1045 + (5105H + 5105H) 2445

}
.
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Since we want to break SU(5) such that the Standard-Model gauge symmetry GSM is pre-
served, only the coupling to 2445 is relevant for Yukawa corrections, cf. Eq. (1.57). When
integrating out the heavy field 10 by means of a mass term 2M10 510510, the coupling 16 16 10
in Eq. (1.66) merges with the above 10 10H45H , yielding the effective dimension-five Yukawa
term

〈16∗i |B Γµφνφµν |16j〉 =
i

2

{
(ψabi ψ

j
a + ψiaψ

ab
j )Σc

bHc + 1
4 ǫabcdeψ

ab
i ψ

cd
j Σe

fH
f
}
,

short:
Ỹ ij

10

M10
16i16j 10H45H ≡ Ỹ ij

10

M10

{
(10i5j + 5i10j)24455H + 1

410i10j 24455H

}
.

(1.71)

Here we have suppressed the couplings to (1i5j + 5i1j), which generate Dirac masses and
Yukawa couplings of neutrinos. Explicit expressions of the dimension-five terms in Eqs. (1.69b)
– (1.69d) are given in Ref. [46]. The complete Yukawa sector extended by dimension-five coup-
lings reads

Y ij
10 16i16j 10H +

Ỹ ij
10

M10
(16i16j)10(10H45H)10 +

Ỹ ij
120

M120
(16i16j)120(10H45H)120

+
Ỹ ij

16

M16
(16i16j)16∗(10H45H)16 +

Ỹ ij
144

M144
(16i16j)144∗(10H45H )144 .

(1.72)

The couplings Y ij
10 and Ỹ ij

10 are flavour-symmetric, Ỹ ij
120 and Ỹ ij

16 are antisymmetric, and Ỹ ij
144

is not restricted by SO(10) symmetry. One can thus generate corrections to the Yukawa
unification in Eq. (1.67) with arbitrary flavour structure. Setting the mass scales of all heavy
fields equal to MPl, the Yukawa sector with non-renormalizable operators can be compressed
to

W Y
nr = Y ij

10 16i16j 10H +
Ỹ ij

MPl
16i16j 10′H45H , (1.73)

with an arbitrary unitary effective Yukawa matrix Ỹ . Note that a second Higgs field 10′H is
needed in order to yield non-trivial fermion mixings. If the same representation 10H appears
in both dimension-four and dimension-five terms, the Yukawa couplings are factored out in
the vacuum structure of W Y

nr and the mixing matrix is unity. In case the dimension-five
term has an effective 10 structure, the unification of down-type quarks and charged leptons is
preserved, provided that they both couple exclusively to 10′H . Corrections for light fermions
arise by adding effective 120, 16, and/or 144 terms. At the GUT scale, the SU(5)-breaking vev
〈24〉45 = v5 diag(2, 2, 2;−3,−3) corrects down-quark-lepton unification by higher-dimensional
Yukawa couplings, leading to

Yd = Y ⊤
e + 5

v5
MPl

Ỹ with Ỹ = Ỹ (Ỹ120, Ỹ16, Ỹ144). (1.74)

The flavour structure of Ỹ , which is a priori arbitrary, can be constrained from flavour-
changing processes involving light fermions. This will be extensively discussed in Chapter 3.
As demonstrated in Sec. 1.3, a supersymmetric framework is needed to render Yukawa unifi-
cation, and likewise its corrections, visible. We will show that FCNC constraints on Ỹ have
important consequences for SUSY GUT model building with higher-dimensional operators.



Chapter 2

A Supersymmetric SO(10) Model
of Flavour

The unification of down quarks and charged leptons translates the large atmospheric neutrino
mixing angle into supersymmetric b− s transitions. These flavour-changing effects are parti-
cularly transparent in a SUSY SO(10) model developed by Chang, Masiero, and Murayama.
After an introduction to the Yukawa sector of the model, we summarize flavour-independent
constraints on the SUSY parameter space. We subsequently discuss the phenomenology of
neutrino mixing in down-(s)quark currents, focussing on meson mixing observables. The
chapter closes with a quantitative examination of unification effects in the mass difference
and CP phase in Bs −Bs mixing.

2.1 The Chang-Masiero-Murayama model

In order to study the effects of large atmospheric neutrino mixing in b−s transitions, in 2003,
Chang, Masiero, and Murayama designed a supersymmetric perturbative SO(10) model for
this purpose [36]. Their reasoning was the following: In an SO(10) fermion multiplet, the
large top Yukawa coupling is unified with the third-generation neutrino Yukawa coupling.
Due to the maximal atmospheric neutrino mixing θ23 ≈ 45◦, the third-generation neutrino
ν3 consists in equal parts of νµ and ντ . The top quark is thus embedded in the multiplet
together with the third-generation 5-plet of SU(5),

53 = 5τ cos θ23 + 5µ sin θ23 . (2.1)

The leptons τ and µ (with the corresponding neutrinos), in turn, are unified with right-handed
down quarks,

5τ = (bc1, b
c
2, b

c
3, τ,−ντ ), 5µ = (sc1, s

c
2, s

c
3, µ,−νµ) . (2.2)

Large ντ − νµ mixing therefore implies large bR − sR mixing, which is not observable in
Standard-Model interactions due to the lack of right-handed flavour-changing currents. In
a supersymmetric model, however, the large top Yukawa coupling generates a considerable
mass correction of the third-generation down squark b̃c cos θ23 + s̃c sin θ23, which induces large
b̃R − s̃R mixing. This summarizes our introduction to flavour mixing effects in SO(10) at the
end of Sec. 1.3.

27
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The Chang-Masiero-Murayama model (short: CMM model) is based on small SO(10) rep-
resentations in order to ensure perturbative couplings up to the Planck scale. Consequently,
the Yukawa sector of the superpotential is constructed by means of higher-dimensional ope-
rators,

W Y
CMM = 16i Y

ij
10 16j 10H + 16i Y

ij
45 16j

45H 10′H
MPl

+ 16i Y
ij
16 16j

16H16H
2MPl

. (2.3)

The minimal content of Higgs fields in the model therefore is

10H , 10′H , 45H , 16H , 16H . (2.4)

Within this framework, SO(10) is broken to SU(5) by vevs v16 ∼ 1017GeV in the pair of
Higgs spinors 16H and 16H and by v10 ∼ 1017GeV in the SU(5)-singlet component of 45H .
Further, 45H develops a smaller vev v5 ∼ 1016GeV in the SU(5)-adjoint component 24H ,
cf. Eq. (1.57), which breaks SU(5) down to GSM. Electroweak symmetry breaking is finally
achieved via the vevs vu and vd of the Higgs doublets Hu and Hd contained in 10H and
10′H . This is the breaking chain introduced already in Eq. (1.58). The CMM model is a
“minimal perturbative SO(10) model” in the sense that the Yukawa sector is constructed out
of Higgs representations needed for symmetry breaking anyway. Further, only the minimal
set of dimension-five terms needed for realistic fermion masses and mixings is selected.1 The
three Yukawa terms in W Y

CMM give masses to up quarks and Dirac neutrinos, down quarks
and charged leptons, and right-handed neutrinos, respectively. In general, the MSSM Higgs
doublets Hu and Hd are linear combinations of the light degrees of freedom in the 5 and 5
representations in 10H = 5H ⊕ 5H and 10′H = 5′H ⊕ 5′H (see e.g. Ref. [45]),

Hu ⊂ αu 5H + βu 5′H ,

Hd ⊂ αd 5H + βd 5′H ,
(2.5)

with arbitrary coefficients αu,d and βu,d. The CMM model makes the restriction βu = 0 = αd,
so that Hu is entirely contained in 10H and separated from Hd in 10′H . In this case, Yu and Yν
are generated by the symmetric Y10, whereas Yd and Ye stem from the effective coupling Y45,
which has arbitrary flavour structure. To see how the Yukawa terms in SO(10) are related
to low-energy couplings, we write down the CMM superpotential after SO(10) → SU(5)
breaking,

W Y
CMM =

√
2 1

4 Y
ij
10 10i10j5H +

√
2Y ij

45

v10
MPl

10i5j5
′
H −

√
2Y ij

10 (5i1j + 1i5j) 5H + Y ij
16

v2
16

2MPl
1i1j .

(2.6)

Comparing with the SU(5) superpotential in Eq. (1.32) and the GUT Yukawa relations in
Eq. (1.34), we identify

Yu =
√

2 (Y10)S Yν = 2
√

2 (Y10)S

Yd = Y ⊤
e =

v10
MPl

Y45 MN =
v2
16

MPl
Y16 .

(2.7)

1This choice can be motivated by assigning the Higgs representations 10H , 10′
H , and 45H quantum numbers

of a discrete symmetry.
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SO(10) Y10 Y45 Y16

⇓ 〈1〉45 = v10 ⇓ ⇓ ⇓ 〈1〉1̄6 = v16

SU(5)
Y5 =

√
2Y10,

Yν = 2
√

2 (Y10)S
Y5̄ =

v10
MPl

Y45 MN =
v2
16

MPl
Y16

⇓ 〈24〉45 = v5 ⇓ ⇓ ⇓ seesaw

GSM Yu = Yν/2 Yd = Y ⊤
e + 5

v5
MPl

Ỹ45 Mν = v2 sin2 β
Y 2
ν

MN

Figure 2.1: Symmetry breaking in the CMM model. The Yukawa couplings are defined in
Eqs. (2.3), (1.32), and (1.20).

In this setup, only the Yukawa couplings of up quarks and Dirac neutrinos are generated from
a dimension-four term in SO(10). Thereby a hierarchy between large top and smaller bottom
and tau Yukawa couplings is naturally given by the suppression factor v10/MPl ∼ 10−2. For
“natural” SO(10) Yukawa couplings Y10, Y45 ∼ O(1), one has

Yd, Ye ≈ 10−2 Yu . (2.8)

Thus in the CMM model top-bottom-tau Yukawa unification is relaxed to potential bottom-
tau unification. Further, tanβ has to be small in order to reproduce the measured top and
bottom masses at the electroweak scale, following the relation

mt

mb
=
yt
yb

tan β ∼ O(102). (2.9)

The third term in the CMM superpotential in Eq. (2.3) is well suited to provide masses for
right-handed neutrinos. The ratio v2

16/MPl ∼ 1015 GeV is of the right order of magnitude to
implement the seesaw mechanism, cf. Sec. 1.1. Below the SU(5) scale, the flavour structure
presented so far generally develops a “substructure”. Down-quark-lepton Yukawa unification
is corrected by additional higher-dimensional contributions from an SU(5)-breaking vev v5 in
45H ,

Yd = Y ⊤
e + 5

v5
MPl

Ỹ45 . (2.10)

Due to the suppression with v5/MPl, these corrections significantly affect only the first two
generations of fermions. They have marginal effects on flavour-changing processes involving
the second and third generation, which are in the focus of the CMM model. We therefore
neglect Yukawa corrections from the GUT scale in this chapter, but already refer to Chapter
3, where they will be our main subject of interest when studying neutrino mixing in light
down-squark FCNC. The structure of symmetry breaking in the Yukawa sector of the CMM
model is summarized in Fig. 2.1.

The CMM model makes one crucial assumption concerning flavour mixing: The Yukawa
couplings Y10 and Y16 are simultaneously diagonal. In the U basis, where up quarks are in
their mass eigenstates, the CMM superpotential reads

WU
CMM = 16i Ŷ

ii
10 16i 10H + 16i (V

∗
q Ŷ45 Vℓ)

ij 16j
45H 10′H
MPl

+ 16i Ŷ
ii
16 16i

16H16H
2MPl

, (2.11)
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with Ŷ ii = δijY
ij. The alignment of Y10 and Y16 (and thereby of Yu, Yν , and MN ) can be mo-

tivated by a neutrino physics argument: From the measured neutrino oscillation parameters
we know that, contrary to up quarks, light neutrinos do not have a strong mass hierarchy.
Due to SO(10) unification, however, the neutrino Dirac Yukawa coupling Yν exhibits the same
strong hierarchy as the up-quark coupling Yu. Therefore the mass matrix MN must have a
respective double hierarchy in order to compensate for Y 2

ν in the seesaw mass formula in
Eq. (1.19). This pattern is ensured by the ansatz of simultaneously diagonal Yukawa cou-
plings Y10 and Y16. Now, flavour mixing can be cleanly studied by exploring the second term
in the superpotential. Since this term gives masses to down quarks and charged leptons only,
the flavour structure is SU(5)-like, as introduced in Sec. 1.3. Below the GUT scale, the CMM
superpotential is given by

WU
CMM = Q Ŷu u

cHu −Q (V ∗
q Ŷd Vℓ) d

cHd − ec (V ∗
q Ŷe Vℓ)LHd − L Ŷν NHu +

1

2
M̂N NN ,

(2.12)

which is equivalent to the SU(5) superpotential in Eq. (1.36) apart from the alignment of Yu,
Yν , and MN . We identify the matrices Vq and Vℓ that diagonalize Y45,

Vq = VCKM, Vℓ = Θ†
L VPMNS Θ†

R , (2.13)

and parametrize Vℓ as in Eq. (1.38). The fact that Vℓ = VPMNS up to phases is due to the
alignment of Yu and MN . This setup further allows us to identify the rotation matrix of
right-handed down (s)quarks, defined in Eq. (1.7), as

Rd = V ⊤
ℓ . (2.14)

We benefit from the framework introduced in Sec. 1.3 to describe flavour violation due to
large atmospheric neutrino mixing in the down-squark sector. In the super-CKM basis, the
mass matrix of right-handed down squarks is given by

(M2
ed
)sCKM = R†

d (M2
ed
)URd = m2

ed
·




1 0 0

0 1 − ∆ed
2 −∆ed

2 e
−iφBs

0 −∆ed
2 e

iφBs 1 − ∆ed
2


 , (2.15)

with the mass splitting ∆ed of O(1) and the complex phase φBs = α4 − α5, cf. Eq. (1.45).
These sources of flavour and CP violation, quantified by ∆ed and φBs , are the low-energy
imprints of Grand Unification in the CMM model: SU(5) symmetry unifies down (s)quarks
and (s)leptons and thus translates large atmospheric neutrino mixing into b̃R− s̃R transitions.
SO(10) symmetry renders this unification effect visible by inducing the large splitting ∆ed in
the down-squark mass matrix. We conclude this section by a summary of the main features
of the CMM model:

• The CMM model is a phenomenology-orientated perturbative supersymmetric SO(10)
model.

• The masses of up quarks are generated by a symmetric Yukawa term of mass dimen-
sion four. Down-quark and charged-lepton masses stem from the effective coupling of
a dimension-five term, therefore being suppressed by M10/MPl ∼ 10−2. The seesaw
mechanism is implemented via a second dimension-five term, leading to a suitable mass
scale for right-handed neutrinos of O(1015 GeV).
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• The Yukawa coupling of the dimension-four term is simultaneously diagonal with the
mass matrix of right-handed neutrinos, which translates light neutrino mixing directly
into mixing among right-handed down (s)quarks.

• Supersymmetry is assumed to be broken at the Planck scale in a flavour-blind way,
such that soft masses and trilinear couplings are universal at MPl. The CMM model
is thereby minimally flavour-violating. Without this constraint, flavour mixing effects
from Grand Unification could not be distinguished in the arbitrary structure of the soft
mass matrices.

2.2 Constraints on the parameter space

One crucial virtue of supersymmetric Grand Unification is its predictivity of masses and coup-
lings, which are free parameters in the MSSM. Namely the vast number of degrees of freedom
introduced in the course of SUSY breaking is largely reduced by means of unification relations
at the GUT scale. In the CMM model, only six free parameters related to supersymmetry
are sufficient to describe the entire spectrum of sparticle masses and couplings at low energy
scales. They can be chosen as the gluino mass M3 ≡ mg̃, cf. Eq. (1.26), the masses of
first-generation ũR and d̃R squarks mũ and md̃, the ratio of the (1,1) elements of the down

trilinear and Yukawa couplings in the super-CKM basis ad = (Âd)
11/(Ŷd)

11, the phase of the
µ parameter arg(µ), and the ratio of the two Higgs-doublet vevs tan β. This set of parameters
is used as an input at the electroweak scale and subsequently translated, passing the scales
of SU(5) and SO(10) unification, up to the Planck scale via the RGE. By making use of
the universality and unification conditions, the parameters are evolved down back to the
electroweak scale, spreading into the various SUSY parameters when symmetries are broken
at M10 and MGUT. This procedure has been implemented into a Mathematica program by
the authors of Ref. [47].2 Therein the first- and second-generation Yukawa couplings are set to
zero. Higgs masses are assumed to be universal at the Planck scale and equal to the sfermion
masses; gaugino masses are set equal above the GUT scale,

MPl : m2
10H

= m2
10′H

= m2
45H

= m2
16H

= m2
1̄6H

= m2
0,

M1 = M2 = M3 = mg̃ .
(2.16)

Thus all soft parameters are fixed from the six input parameters after m0 and a0 are deter-
mined by evolving mũ, md̃, and ad up to the Planck scale.3 In the code the light fermion
masses are set equal, mũ = md̃, such that the effective parameter space consists of five inputs
at MZ ,

mg̃, md̃, ad, arg(µ), tan β . (2.17)

This set of CMM input parameters resembles the parameter space of specific SUSY scenarios
inspired by minimal supergravity (mSUGRA) like the constrained MSSM (CMSSM). In the

2In the code the RGE is executed twice, taking the output parameters of the first run as input for the
second run to ensure that the resulting low-scale parameters converge to the “true” values. The program is
based on 2-loop running in the MSSM [48], using the DR scheme, and on 1-loop running in SU(5) [49] and
SO(10) [47].

3Both mũ and md̃ are needed to fix the D-term scalar mass splitting [47,50].
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Figure 2.2: Renormalization group evolution of the top Yukawa coupling yt on the logarithmic
energy scale t = ln(µ). The dashed line corresponds to the SO(10) fixed-point solution yct
(see text).

CMSSM, the SUSY-breaking parameters are taken to be universal at the GUT scale. The
scenario is thus determined by five SUSY inputs: The gaugino and scalar masses m1/2 and
m0, the trilinear coupling A, the sign of the µ parameter, and tan β [51]. By lowering the scale
of flavour-blind SUSY breaking from MPl to MGUT, however, one looses the relations between
quark and lepton flavours. Consequently, such scenarios do not probe the effects of Grand
Unification and lead to a different phenomenology. Still, they are popular in experimental
analyses of the MSSM, since they allow to define so-called benchmarks, i.e. fixed characteristic
points in parameter space, with a small set of inputs only. It would be a useful attempt to
establish equivalent benchmark points based on the CMM model. These would allow to
distinguish the phenomenology of GUTs from the MSSM by comparing the different outcome
in both models for the same set of input parameters.

We turn to specify various constraints on the CMM input parameters in Eq. (2.17). The
requirement of constructing a perturbative model with a realistic MSSM mass spectrum at
low energy scales leads to the following restrictions:

Perturbative top Yukawa coupling The ratio of the top Yukawa and gauge couplings
exhibits an infrared fixed point in the RGE of SU(5) and SO(10). While the small energy
range with SU(5) running doesn’t have large impact on the top Yukawa coupling, the SO(10)
fixed-point solution acts as a “perturbativity barrier”. If the fixed point is reached atM10 for a
critical value yct , the ratio yct/g stays constant at higher scales. For larger values yt(M10) > yct ,
the top Yukawa coupling blows up above the SO(10) scale [37]. Via the RGE, yt(M10) is linked
to the corresponding value at the electroweak scale, yt(MZ) = mt(MZ)/(v · sin β). In order to
keep the top Yukawa coupling perturbative at high scales, one thus has to judiciously choose
the input value of tanβ. From Fig. 2.2 [52] one reads off that yt < yct for tanβ > tan βc ≈ 2.5,
which assures the required perturbativity of yt up to the Planck scale.

An upper bound on tanβ is inherent in the structure of the CMM superpotential. Since
the bottom Yukawa coupling is suppressed by v10/MPl ∼ 10−2 with respect to yt, Eq. (2.9)
implies that naturally tan β . 10. The natural range for tan β in the CMM model is thus
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given by

2.5 . tan β . 10 . (2.18)

Flavour effects in the CMM model will be maximal for small tanβ, which corresponds to a
large top Yukawa coupling driving the RGE of soft masses.

Vacuum stability The existence of soft trilinear A terms in the MSSM Lagrangean leads in
general to charge- and colour-breaking minima of the scalar potential. In order to preserve the
Standard-Model gauge symmetry in the MSSM vacuum state, one needs to impose an upper
bound on the trilinear couplings. In particular, the CMM input parameter ad = Â11

d /Ŷ
11
d is

restricted to fulfill the stability bound [53]

|ad|2 ≤ 3 (m2
Q̃

+m2
d̃

+m2
Hd

) ≡ |ad|2max . (2.19)

From parameter scans one learns that for md̃/mg̃ < 5 the normalized stability bound in
the CMM model reads |ad|max/md̃ < 3. This quantity depends only little on other input
parameters. By setting

|ad|/md̃ < 2.6 , (2.20)

the stability bound is fulfilled in all regions of the CMM parameter space that are not excluded
by other constraints.

Chargino and neutralino masses Due to the universality of gaugino masses aboveMGUT,
the gluino mass mg̃ is constrained from experimental lower bounds on neutralino and chargino
masses [54]. Especially the chargino mass bound sets a lower limit

mg̃ & 300GeV (2.21)

for down-squark masses md̃ = O(1TeV). This bound depends only marginally on the other
CMM input parameters. Since GUT effects turn out to be most significant for light gluinos,
the lower bound on mg̃ limits the magnitude of flavour violation in the CMM model.

Positive sfermion masses Similarly to A terms, negative soft sfermion mass parameters
in the scalar potential lead to unwanted charge and colour breaking in the vacuum state.
In the CMM model this problem occurs if the large top Yukawa coupling drives the third-
generation sfermion masses to negative values at the electroweak scale. The requirement of
positive sfermion masses thereby excludes regions in the parameter space where the down-
squark mass splitting ∆d̃ is very large, limiting again the size of flavour-violating effects.

Lightest Higgs mass In the MSSM the mass of the lightest Higgs boson h0 at tree level
is bounded from above by

M tree
h0 . MZ | cos(2β)| ≤ 91.2GeV . (2.22)

On the contrary, the experimental lower limit on Mh0 for small tanβ is close to the Higgs
mass bound in the Standard Model [55],

M exp
h0 ≥ 114.4GeV . (2.23)
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Figure 2.3: Down-squark mass splitting ∆d̃ as a function of mg̃ and md̃. White: Negative
sfermion masses. Black: Excluded by lower bound on light Higgs mass Mh0.

This contradiction can be resolved by taking into account perturbative corrections to the
tree-level Higgs mass. The main contribution stems from top-quark-squark loops [56–58].
For large top squark masses mt̃ corrections are large and positive, so that it is possible to
exceed the experimental lower bound. Since large mt̃ implies small squark mass splitting
∆d̃, the Higgs mass constraint sets a strong upper bound on flavour effects in the CMM
model. From Eq. (1.44) we see that small ∆d̃ requires a moderate top Yukawa coupling
yt = mt/(v · sin β). Consequently, one needs to balance tan β in order to maximize flavour
effects and simultaneously fulfill the constraint on Mh0,

small tan β : small Mh0 , large flavour effects

versus

larger tanβ : large Mh0 , small flavour effects.

Apart from small yt, the Higgs mass corrections are enhanced by a large trilinear coupling
At, which via unification translates into a large input ad. On the other hand, for large ad the
mass splitting ∆d̃ increases, see Eq. (1.44). This leads to small mt̃ and thereby plays against
the enhancement of the Higgs mass from suppressed yt. To reach significant flavour effects,
one thus has to moderately increase ad, such that ∆d̃ is preferably large without spoiling the
corrections to the light Higgs mass.

The constraints on the CMM parameter space from the light Higgs and sfermion mass
bounds are illustrated in Fig. 2.3. The plot shows the down-squark mass splitting ∆d̃ in
the mg̃ − md̃ plane for the specific set of input parameters ad/md̃ = 1.8, arg(µ) = 0, and
tan β = 5. For this choice of inputs the other abovementioned constraints are fulfilled, while
still preserving a wide region in the CMM parameter space where flavour effects can be large.
Notice that tanβ is increased over tan βc ≈ 2.5 in order to fulfill the Higgs mass bound for
soft masses mg̃ and md̃ below 2 TeV. Still, the down-squark mass splitting can reach values
up to ∆d̃ = 0.55 because of the sizeable value of ad. This scenario will serve as our framework
in the subsequent phenomenological analysis of CMM flavour effects.
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2.3 Phenomenology of down-quark-lepton unification

At the end of Sec. 1.3 we already mentioned phenomenological implications of large atmo-
spheric neutrino mixing in b−s transitions. Within the CMM model, the following observables
have hitherto been studied quantitatively: In Ref. [37] the impact of b̃R − s̃R mixing on the
mass difference ∆Ms and CP phase φs in Bs − Bs mixing has been examined. A compre-
hensive study of B → Xsγ, ∆Ms, and τ → µγ is given by Ref. [47], resulting in constraints
on the CMM parameter space. Here we focus on neutrino mixing effects in meson mixing. In
Sec. 2.5, we reinvestigate Bs−Bs mixing. Both ∆Ms and φs having recently been measured at
the B factories, we confront the CMM contribution to these observables with experiment. In
Chapter 3, we extend the CMM model to study effects of large atmospheric neutrino mixing
in K −K and Bd −Bd mixing.

The characteristic effect of down-quark-lepton unification in the CMM model becomes
manifest in FCNC involving down squarks. In an MSSM with generic flavour structure in soft
SUSY-breaking terms, neutral flavour-changing vertices can be generated by quark-squark-
gluino and quark-squark-neutralino couplings. We will concentrate on the gluino vertex, which
is proportinal to the strong coupling g3 and therefore numerically dominant over the weak
neutralino couplings. The down-quark-squark-gluino vertex in the CMM model is displayed
in Fig. 2.4. Contrarily to the MSSM with generic soft parameters, where flavour mixing in this
coupling is arbitrary, in the CMM model flavour mixing among down (s)quarks is determined
by Rd ∼ VPMNS and thereby directly linked to flavour mixing in the lepton sector. Based
on these considerations, we proceed and introduce the formalism to make this “CMM effect”
visible in meson mixing.

Meson mixing

A neutral meson P is distinguished from its antimeson P by a quantum number F character-
izing its quark flavour content. In the case of neutral K and Bd/Bs mesons this is strangeness
S and beauty B with, for instance, S(K = ds) = −1 and S(K = ds) = +1. Oscillations
between P and P are thus induced by interactions that change the flavour quantum number
by two units, ∆F = 2. In the Standard Model, such flavour violation is possible through
weak interactions, namely the box diagram displayed in Fig. 2.5(a) for the kaon system. In
the CMM model, competitive additional contributions from large neutrino mixing arise via
a squark-gluino box, see Fig. 2.5(b). The corresponding diagrams for Bd − Bd and Bs − Bs

mixing are obtained by adapting the external quark flavours.

g̃a

(d)ib (d̃R)jc
= i

√
2 g3 T a

cb (R
∗
d)ji PR

Figure 2.4: Flavour-violating down-quark-squark-gluino vertex in the CMM model. The
generators T a in the fundamental representation of SU(3)C determine the colour structure.
PR = (1 + γ5)/2 projects on the right-handed component of the down-quark field d. The
matrix Rd = V ⊤

ℓ is given in Eq. (1.38).
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Figure 2.5: Dominant short-distance contributions to MK
12 (a) in the SM; (b) in the CMM

extension. k and m are flavour indices. Diagrams with flipped W ↔ q and g̃ ↔ d̃ are not
displayed.

The time evolution of a P − P system in the Wigner-Weisskopf approximation [59, 60] is
conveniently described by

i
d

dt
ψ(t) = Hψ(t), ψ(t) =

(
|P (t)〉
|P (t)〉

)
,

with H = M − i
2Γ =

(
M11 − i

2Γ11 M12 − i
2Γ12

M∗
12 − i

2Γ∗
12 M22 − i

2Γ22

)
.

(2.24)

M and Γ are hermitean matrices describing P − P transitions via virtual and physical in-
termediate states, respectively. Due to CPT symmetry, one has M11 = M22 and Γ11 = Γ22.
The physical eigenstates of this system are obtained by diagonalization to be

|P1(t)〉 = p|P (t)〉 + q|P (t)〉 , |P2(t)〉 = p|P (t)〉 − q|P (t)〉 , q

p
=

√
M∗

12 − i
2Γ∗

12

M12 − i
2Γ12

, (2.25)

with the corresponding eigenvalues

M1 − i
2Γ1 = M11 − i

2Γ11 +
q

p
(M12 − i

2Γ12) ,

M2 − i
2Γ2 = M11 − i

2Γ11 −
q

p
(M12 − i

2Γ12) ,
(2.26)

We use the phase convention CP |P (t)〉 = −|P (t)〉 and define the relative phase between M12

and Γ12,

φ ≡ arg

(
M12

−Γ12

)
. (2.27)

Going back to Eq. (2.25), we see that the physical states are CP eigenstates only if |q/p| = 1,
or equivalently φ = 0. In this case, |P1(t)〉 and |P2(t)〉 are CP -odd and CP -even, respectively,

CP |P1,2(t)〉 = η1,2|P1,2(t)〉, η1,2 = −1,+1. (2.28)

The mass and width differences between the two eigenstates are defined by

∆M ≡M1 −M2 = 2Re
(q
p
(M12 − i

2Γ12)
)
,

∆Γ ≡ Γ1 − Γ2 = −4 Im
(q
p
(M12 − i

2Γ12)
)
.

(2.29)
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Figure 2.6: Decay process Bd → J/ψKS . The Bd meson can decay into the CP eigenstate
J/ψKS either via mixing or directly.

For the K and B systems, approximations to these expressions can be derived by means of
empirical observations. In both Bd −Bd and Bs −Bs mixing one has |Γ12| ≪ |M12|, leading
to the mass differences

∆Md = 2 |Md
12|, ∆Ms = 2 |M s

12| . (2.30)

The situation is different in K − K mixing, where ∆Γ and ∆M are of the same order of
magnitude. Still, the phase difference φ between |Γ12| and |M12| is very small, so that the
short-distance contributions to the mass difference from Fig. 2.5 are again well approximated
by

∆MK = 2 |MK
12 | . (2.31)

However, ∆MK receives sizeable long-distance contributions from the exchange of light me-
sons, which are hard to estimate. Therefore, despite its precise measurement, ∆MK plays a
minor role in the search for new-physics contributions. Comprehensive discussions of meson
mixing can be found in Refs. [61,62].

The mass differences probe CMM effects in the mixing element |M12|. To study the CP -
violating properties of CMM contributions in meson mixing, one has to focus on the mixing
phase φM = arg(M12). In the Bd and Bs systems, the time-dependent CP asymmetries ACP
in the decays Bd → J/ψKS and Bs → J/ψφ are well-suited observables for this purpose. ACP
is a measure of CP violation in the interference between meson mixing and decay amplitudes.
Since neither of both decays exhibits direct CP violation, the asymmetry provides clean access
to the mixing phase φM . For negligible ∆Γ and Γ12 the time-dependent CP asymmetry is
given by

ACP (f) ≡ Γ(B(t) → f) − Γ(B(t) → f)

Γ(B(t) → f) + Γ(B(t) → f)

= Im
(q
p
· A(f)

A(f)

)
sin(∆Mt) = −ηf sin(φM ) sin(∆Mt) ,

(2.32)

where A(f)/A(f) is the ratio of the decay amplitudes for B → f and B → f . The sign
of ACP depends on the CP quantum number ηf of the respective final state. Let us first
consider the CP asymmetry in Bd → J/ψKS , where the final state f = J/ψKS is CP -odd,
i.e. ηJ/ψKS

= −1. The decay process is illustrated in Fig. 2.6. In the Standard Model, φM is
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closely related to the angle β of the unitarity triangle, following

q

p
· A(J/ψKS)

A(J/ψKS)
=

√
(Md

12)
∗

Md
12

· A(J/ψKS)

A(J/ψKS)
= e−iφM · A(J/ψKS)

A(J/ψKS)

= −ηJ/ψKS
· VtdV

∗
tb

V ∗
tdVtb

· VcbV
∗
cs

V ∗
cbVcs

· VcsV
∗
cd

V ∗
csVcd

= −e−2iβ , β ≡ arg

(
−V ∗

tdVtb
V ∗
cdVcb

)
.

(2.33)

The three factors of CKM elements stem from Bd−Bd mixing, the Bd → J/ψKS decay, and
subsequent K −K mixing. The minus sign is due to our phase convention CP |P 〉 = −|P 〉.
In the standard CKM phase convention one identifies φM = 2β, leading to

ASM
CP (J/ψKS) = sin(2β) sin(∆Mdt) . (2.34)

Consequently, in the Standard Model the CP asymmetry in Bd → J/ψKS measures the UT
angle β. New-physics contributions to Bd −Bd mixing will show up in ACP as a phase shift
φ∆
d . Since new physics in the decay amplitude is in general negligible compared to the SM

contribution, the CP asymmetry reads

SJ/ψKS
≡ sin(2β + φ∆

d ) = Im

(
Md

12

|Md
12|

)
, φ∆

d ≡ arg
Md

12

(Md
12)

SM
. (2.35)

The decay Bs → J/ψφ = (cc)(ss) differs from Bd → J/ψKS by merely changing the spectator
quark in the B meson from d to s, cf. Fig. 2.6 again. Analogously, one finds the relevant
quantity for the CP asymmetry expressed in terms of CKM elements,

q

p
· A(J/ψφ)

A(J/ψφ)
= −ηJ/ψφ ·

VtsV
∗
tb

V ∗
tsVtb

· VcbV
∗
cs

V ∗
cbVcs

= ηJ/ψφ · e2iβs , βs ≡ − arg

(
−V ∗

tsVtb
V ∗
csVcb

)
, (2.36)

and consequently φM = −2βs. Even though the final state f = J/ψφ is not a CP eigenstate,
it is possible to extract the CP asymmetry in Bs → J/ψφ from the angular distribution
of the decay products. We thus can compare new-physics contributions to ACP (J/ψφ) and
ACP (J/ψKS) via

SJ/ψφ ≡ sin(−2βs + φ∆
s ) = Im

(
M s

12

|M s
12|

)
, φ∆

s ≡ arg
M s

12

(M s
12)

SM
. (2.37)

In the Standard Model, SJ/ψφ is tiny due to the small mixing phase φM = −2βs ≈ −0.04.
Since Γ12 doesn’t exhibit a significant CP phase, one generally identifies

φM = φs = arg

(
M s

12

−Γs12

)
. (2.38)

The measurements of the observables discussed in this paragraph are given in Tab. 2.1.

The meson mixing element M12 is generally calculated in the framework of a low-energy
effective theory that separates weak interactions of O(MW ) between the mesons from strong
interactions of O(1GeV). The corresponding effective weak Hamiltonian

H∆F=2
eff =

G2
FM

2
W

16π2

∑

i

CiP (µP )QiP (µP ) , GF =

√
2 g2

2

8M2
W

, (2.39)
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∆M exp
K = (3.483 ± 0.006) · 10−12 MeV [54] |ǫK |exp = (2.229 ± 0.012) · 10−3 [54]

∆M exp
d = (3.337 ± 0.033) · 10−10 MeV [54] Sexp

J/ψKS
= 0.671 ± 0.024 [63]

∆M exp
s = (117.0 ± 0.8) · 10−10 MeV [54] φexp

s = (−0.77+ 0.29
− 0.37) ∪ (−2.36+ 0.37

− 0.29) rad [63]

Table 2.1: Experimental values of meson mixing observables.

describes weak interactions at low energy scales µB ∼ MB , µK . mc in terms of a series
of local operators Qi(µP ), weighted with Wilson coefficients Ci(µP ). The mixing MP

12 is
obtained by calculating the matrix element of H∆F=2

eff between meson and antimeson states,

2MP ·MP
12 = 〈P |H∆F=2

eff |P 〉 =
G2
FM

2
W

16π2

∑

i

CiP (µP )〈P |QiP (µP )|P 〉, (2.40)

with MP = (MP1 +MP2)/2. The Wilson coefficients Ci(µP ) are derived from matching the
calculated box diagrams in Fig. 2.5 to the effective theory at µ = O(MW ) and then evolving
down to µ = µP by means of the renormalization group. This formalism stores perturbative
effects of O(µ > µP ) in the Wilson coefficients to separate them from non-perturbative con-
tributions of O(µ < µP ) in the matrix elements 〈P |Qi(µP )|P 〉. The latter can be obtained
from non-perturbative methods like lattice calculations. An extensive introduction into the
theory of effective weak interactions is given in Ref. [64].

Standard-model contributions In the Standard Model, the contributions to meson
mixing from the weak box diagrams in Fig. 2.5(a) are described by only one effective operator
for each of the meson systems,

QK = (dLγµsL)(dLγ
µsL), QBq = (qLγµbL)(qLγ

µbL), q = d, s. (2.41)

The corresponding Wilson coefficients are given by

CK(µK) = 4UK(µK)
[
(V ∗
cdVcs)

2η1S0(xc)

+ 2(V ∗
cdVcs)(V

∗
tdVts)η3S0(xc, xt) + (V ∗

tdVts)
2 η2S0(xt)

]
,

CBq(µBq) = 4UB(µBq)(V
∗
tqVtb)

2ηBS0(xt).

(2.42)

For massless internal quarks the contributions from up, charm, and top loops cancel due to
the GIM mechanism, so that there is no meson mixing. In the Bd and Bs systems, only the
contribution with heavy top quarks is relevant, while light up and charm quarks are negligible.
In the K system, in addition one has to take account of charm and charm-top contributions,
because the top loops are suppressed by small CKM elements, cf. Eq. (2.42). The loop
functions S0(xq) with xq = m2

q/M
2
W are given in Appendix A.3. The factors η1,2,3 and ηB

comprise perturbative QCD corrections to these diagrams up to next-to-leading order (NLO)
at high scales of O(MW ) [65, 66]. The RGE of the Wilson coefficients at NLO is encoded in
the functions

UK(µ) =
[
α(3)
s (µ)

]− 2
9

[
1 +

α
(3)
s (µ)

4π
J3

]
and UB(µ) =

[
α(5)
s (µ)

]− 6
23

[
1 +

α
(5)
s (µ)

4π
J5

]
, (2.43)

where the high-energy dependence has been absorbed into ηi. α
(n)
s (µ) with αs ≡ g2

3/4π is the
strong coupling in a framework with n active quark flavours. Explicit expressions for J3 and



40 2. A Supersymmetric SO(10) Model of Flavour

J5 are given in Ref. [64]. To compute MP
12 from Eq. (2.40), one needs the matrix elements

of the operators QK and QBq . They are parametrized in terms of “bag factors” BP at low
scales µ = O(µP ),

〈P |QP (µ)|P 〉 =
2

3
M2
PF

2
PBP (µ), (2.44)

where FP is the decay constant of the meson P . The scale dependence of UP (µ) and BP (µ)
cancels in the product B̂P = BP (µ)UP (µ). From Eqs. (2.40), (2.42), and (2.44) one composes
the mixing elements

(MK
12)SM =

G2
FM

2
W

12π2
MKF

2
KB̂K

[
(λcds)

2η1S0(xc) + 2(λcds)(λ
t
ds)η3S0(xc, xt) + (λtds)

2 η2S0(xt)
]
,

(M q
12)

SM =
G2
FM

2
W

12π2
MBqF

2
Bq
B̂Bq(λ

t
qb)

2ηBS0(xt), λkij ≡ V ∗
kiVkj. (2.45)

CMM contributions In the context of the CMM model, the main additional contributions
to meson mixing stem from the gluino diagrams in Fig. 2.5(b) with internal d̃R, s̃R, and b̃R
squarks. They introduce the parity-flipped operators

QCMM
K =

(
dRγµsR

) (
dRγ

µsR
)
, QCMM

Bq
= (qRγµbR) (qRγ

µbR) . (2.46)

The Wilson coefficients at the scale of SUSY particles µS = O(md̃,mg̃) are given by

CCMM
P (µS) =

16π2

G2
FM

2
W

α2
s(µS)

2m2
g̃

3∑

k,m=1

(Rd)mj(Rd)
∗
mi(Rd)kj(Rd)

∗
ki L0(xm, xk) , (2.47)

with flavour indices (i, j) = (1, 2) for the K system and (i, j) = (1, 3) and (2, 3) for the Bd
and Bs systems. The loop function L0(xm, xk) with xn = m2

d̃n
/m2

g̃ is given in Appendix A.3.
The large (2, 3) element of the rotation matrix Rd, defined in Eqs. (2.14) and (1.38), leads to
sizeable Wilson coefficients CCMM

Bs
that compete with the SM ones for Bs mixing. In the K

and Bd systems, contributions to the CMM Wilson coefficients arise only from corrections of
Yukawa unification and will be studied in Chapter 3. Making use of the mass degeneracy of
the first two sfermion generations (cf. Eq. (1.42)) and the unitarity of Rd, Eq. (2.47) simplifies
to

CCMM
P (µS) =

16π2

G2
FM

2
W

α2
s(µS)

2m2
g̃

[(Rd)3j(Rd)
∗
3i]

2 S(g̃)(x1, x3),

x1 = m2
d̃
/m2

g̃, x3 = m2
d̃

(
1 − ∆d̃

)
/m2

g̃,

(2.48)

with the effective loop function

S(g̃)(x1, x3) = L0(x1, x1) − 2L0(x1, x3) + L0(x3, x3). (2.49)

Since the inputs of the CMM model in Eq. (2.17) are defined at the electroweak scale
µZ = O(MZ ,MW ,mt), we set µS = µZ and thereby neglect effects due to the RGE of
the CMM Wilson coefficients from µS down to µZ . The evolution to the meson scale µP
proceeds as in the Standard Model, leading to

CCMM
K (µK) = UK(µK)

η2

r
CCMM
K (µS = µZ), CCMM

B (µB) = UB(µB)
ηB
r
CCMM
B (µZ). (2.50)
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The factor r = 0.985 [66] removes the NLO QCD corrections to the SM loop function S0(xt)
from η2 and ηB . The bag parameters for the matrix elements of the CMM operators being
the same as in the Standard Model, the CMM contributions to Bs −Bs mixing read

(M s
12)

CMM =
α2
s(MZ)

6m2
g̃

[1
2
e−iφBs

]2
MBsF

2
Bs
B̂Bs

ηB
r
S(g̃)(x1, x3). (2.51)

Here the elements of (Rd)3n in Eq. (2.48) have been made explicit assuming tri-bi-maximal
neutrino mixing and using the phase φBs defined below Eq. (2.15). One immediately reads
off that CMM contributions are large for small gluino masses mg̃.

Additional supersymmetric contributions Finally, we comment on supersymmetric
contributions that are not affected by large neutrino mixing in the CMM model, namely
charged-Higgs(H)-quark and chargino(χ)-squark box diagrams. They do not introduce new
operators, and the flavour structure of the corresponding matrix elements is the same as in
the Standard Model,

(MK
12)H+χ =

G2
FM

2
W

12π2
MKF

2
KB̂K

{
2(λcds)(λ

t
ds)η

H
3 SH(c, t) + (λtds)

2 η2 [SH(t, t) + Sχ(t, t)]
}
,

(M q
12)

H+χ =
G2
FM

2
W

12π2
MBqF

2
Bq
B̂Bq(λ

t
qb)

2ηB [SH(t, t) + Sχ(t, t)] . (2.52)

The loop functions SH(c, t), SH(t, t), and Sχ(t, t) are given explicitly in Ref. [22]. The factor
ηH3 = 0.21 [22] denotes leading-order QCD corrections to the charged-Higgs box with virtual
flavours (c, t). Numerically, charged-Higgs and chargino contributions are small compared to
gluino contributions in the CMM parameter space. We checked explicitly that they can be
neglected in our analysis.

2.4 Numerical setup

In order to perform a numerical study of CMM effects in meson mixing, we have to consider
three classes of inputs: One, experimental and theoretical quantities needed for the calcula-
tion of the various observables. Two, inputs for the RGE of Yukawa couplings and SUSY
parameters. Three, parameter sets for the CMM inputs in Eq. (2.17). The CMM phase φBs

remains a free parameter in our analysis. All inputs of class one are reported in Tab. 2.2. The
meson decay constants FP and bag factors B̂P are taken from lattice calculations. The quan-
tities η1,2,3 and ηB comprise the NLO QCD corrections to K and B meson mixing. mc(mc)
and mt(mt) denote the charm and top quark masses in the MS renormalization scheme en-
tering the loop functions in SM meson mixing. Inputs related to CKM elements have to be
protected from new-physics impact. To this end, we determine the CKM matrix from the
elements |Vub|, |Vcb|, |Vus|, and δ, the CP phase in the standard parametrization, which equals
the angle γ of the unitarity triangle to very good accuracy. The three CKM elements are
extracted from tree-level decays. We use |Vus| = 0.2246±0.0012 [68], the inclusive determina-
tion |Vcb| = (41.6 ± 0.6) · 10−3 [54], and the average of inclusive and exclusive determinations
|Vub| = (3.95± 0.35) · 10−3 [54]. The angle γ is determined via γ = π−α−β = π−αeff −βeff,
with βeff = β+φ∆

d /2 = (21.1±0.9)◦ from SJ/ψKS
[63] and αeff = α−φ∆

d /2 = (88.2+ 6.1
− 4.8)

◦ from

B → ππ, πρ, ρρ decays [75]. The dependence on the new-physics phase φ∆
d cancels out in

the sum αeff + βeff, such that γ = (70.7+ 5.7
− 7.0)

◦ is indeed free from new-physics contamination.
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κǫ = 0.92 ± 0.02 [67] |Vus| = 0.2246 ± 0.0012 [68]

FK = (156.1 ± 0.8) MeV [68] |Vcb| = (41.6 ± 0.6) · 10−3 [54]

B̂K = 0.75 ± 0.07 [69] |Vub| = (3.95 ± 0.35) · 10−3 [54]

FBsB̂
1/2
Bs

= (270 ± 30) MeV [69] γ = (70.7+ 5.7
− 7.0)

◦ [s.text]

ξ ≡ FBs
bB
1/2
Bs

FBd
bB

1/2
Bd

= (1.21 ± 0.04) [69] η1 = (1.32 ± 0.32)
[

1.30GeV
mc(mc)

]1.1
[65,70]

mc(mc) = (1.266 ± 0.014) GeV [71] η2 = 0.57 ± 0.01 [66,70]

mt(mt) = (162.1 ± 1.2) GeV [72,73] η3 = 0.47 ± 0.05 [65,70]

αs(MZ) = 0.1176 ± 0.0020 [54] ηB = 0.551 ± 0.007 [66,74]

Table 2.2: Input parameters for meson mixing observables.

sin2 θW = 0.23122 [54] m̂t = 171.4 GeV [72]

MZ = 91.1876 GeV [54] m̂b = 4.914 GeV [54]

αe(MZ) = 1/128.93 [76] mτ = 1.77699 GeV [54]

αs(MZ) = 0.1176 [54]

Table 2.3: Input parameters for the RGE of Yukawa couplings and SUSY parameters. m̂t

and m̂b are two-loop pole masses. The precise value of m̂b is inessential for the analysis, while
m̂t matters. αe ≡ g2

1 cos2 θW/4π is the electromagnetic coupling.

Further inputs needed to perform the RGE of the Yukawa couplings and SUSY parameters
within the CMM model are given in Tab. 2.3. Besides some quantities related to electroweak
symmetry breaking one needs the masses of third-generation quarks. The dominant effects
in the RGE stem from the large top Yukawa coupling. Since within the CMM model up-type
quarks are not unified with down-type quarks and leptons, the smaller bottom and tau Yukawa
couplings are additional inputs to determine the trilinear Ad,e couplings, cf. Eq. (1.28). RGE
effects from light quarks are neglected. The scales of unification are fixed to

MGUT ≃ 1016 GeV ≃ v5,

M10 = 1017 GeV = v10,

MPl = 1019 GeV,

(2.53)

where MGUT is defined by the unification of the gauge couplings g′1 =
√

5/3 g1 and g2.

Concerning the SUSY input parameters, we preselect a setup in which CMM effects are
sizeable, but still allowed within the constraints discussed in Sec. 2.2. Correspondingly, we
fix three of the five input parameters in Eq. (2.17),

ad/md̃ = 1.8, arg(µ) = 0, tan β = 5, (2.54)

leaving the gluino and down squark masses mg̃ and md̃ as free parameters. The CMM
contributions to meson mixing observables are parametrized by just these soft masses and
the down-squark mass splitting ∆d̃, cf. Eq. (2.48). In Tab. 2.4, we therefore define three sets
distinguished by the inputs for mg̃ and md̃ to estimate the respective size of CMM effects for
specific points in parameter space. The output for ∆d̃ within each of these sets is given in
the last column. All three sets respect the constraints from B → Xsγ and τ → µγ studied
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mg̃ [GeV] md̃ [GeV] ∆d̃

Set 1 400 2000 0.52

Set 2 700 2000 0.44

Set 3 700 3000 0.51

Table 2.4: CMM parameter sets for fixed ad/md̃ = 1.8, arg(µ) = 0, and tanβ = 5.

in Ref. [47]. Set 1 is designed such that CMM effects are particularly large within the given
constraints. Sets 2 and 3 are useful to study the dependence of CMM effects on the gluino
mass and on the ratio mg̃/md̃ separately, although always implying a change in the mass
splitting ∆d̃.

2.5 The CP phase in Bs − Bs meson mixing

The characteristic effects of large atmospheric neutrino mixing in b− s transitions introduce
an additional source of CP violation to the Standard-Model CKM phase, which is the CMM
phase φBs , cf. Eq. (2.15). From the meson mixing element (M s

12)
CMM in Eq. (2.51) one learns

that φBs affects both the mass difference ∆Ms and the CP phase φs in the Bs −Bs system,
defined in Eqs. (2.30) and (2.38), respectively. The recent measurements of these observables
leave room for new-physics contributions. They compare to the Standard-Model predictions
as follows,

∆M exp
s = (117.0 ± 0.8) · 10−10 MeV φexp

s = (−0.77+ 0.29
− 0.37) ∪ (−2.36+ 0.37

− 0.29) rad

∆MSM
s = (122.3+ 38

− 31) · 10−10 MeV φSM
s = (−0.04 ± 0.01) rad,

(2.55)

where the uncertainties for ∆MSM
s and φSM

s are determined by varying the input values from
Tab. 2.2 within their errors. The measurement of ∆Ms agrees with the SM expectation within
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Figure 2.7: 3-sigma constraints on CMM parameter space from ∆Ms for φBs = 0 (dark gray).
White: Negative sfermion masses. Black: Excluded by lower bound on light Higgs mass Mh0 .
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Figure 2.8: Effects of CMM phase φBs in the Bs − Bs system for Set 1 (black curve), Set 2
(dark gray curve), and Set 3 (light gray curve), cf. Tab. 2.4, in comparison to the SM (black
line). Left: ∆Ms, gray band: exp. 3-sigma range. Right: φs = arg(−M12/Γ12), gray band:
exp. 1-sigma range, cf. Tab. 2.1. Sets 2 and 3 are largely superposed.

the errors, which are dominated by hadronic uncertainties from FBs and B̂Bs . The best fit
of the CP phase φs agrees with the SM central value at the level of 2.2σ only [63, 77]. This
tension is often referred to as a hint for new physics in the Bs sector.

Let us first concentrate on ∆Ms. The measurement being precise and theoretical un-
certainties under control, the mass difference in Bs − Bs sets an upper bound on CMM
effects, as illustrated in Fig. 2.7 for φBs = 0. In this setup the lower bound on the gluino
mass is strengthened to mg̃ & 550GeV at 3σ. This excludes φBs = 0 in our Set 1 where
mg̃ = 400GeV. We thus turn the question around and ask for the constraints on the a priori
free phase φBs in a parameter set where CMM effects are sizeable. Fig. 2.8 left shows ∆Ms

as a function of 2φBs for the three parameter sets from Tab. 2.4. Only in Set 1 the sensitivity
to CMM effects is sufficient to derive constraints on the CMM phase (black band),

∆Ms, Set 1 : 1.0 . |2φBs | . 2.4 . (2.56)

How large can CMM effects in the CP phase φs be within these bounds? In Fig. 2.8 right
we plot φs(2φBs) for the same CMM parameter sets. The sensitivity of φs to φBs is increased
with respect to ∆Ms. In Set 1, the experimental one-sigma band is reached for 2φBs ≈ 2,
in agreement with the parameter region favoured by ∆Ms. Set 2 (dark gray curve) and Set
3 (light gray curve) largely coincide in their sensitivity to φBs , indicating that the size of
CMM effects in both ∆Ms and φs is dominated by the gluino mass mg̃. We conclude that
neutrino mixing within the CMM model generates a sizeable CP phase in Bs − Bs mixing
for suitable SUSY parameters and CMM phase. Thereby it is possible, though difficult, to
cure the tension between the measurement of φs and its Standard-Model prediction.



Chapter 3

Yukawa Corrections for Light
Fermions

The measured masses of the bottom quark and the tau lepton are in line with bottom-tau
unification at the GUT scale. For light fermions, however, down-quark-lepton unification
has to be corrected by additional flavour structures in the Yukawa sector of a unified theory.
Higher-dimensional operators, being suppressed by a large mass scale, provide small correc-
tions for light fermions, while generally preserving bottom-tau unification. They give rise
to new FCNC involving light right-handed down (s)quarks, such that the large atmospheric
neutrino mixing angle also influences s − d and b − d transitions. The a priori arbitrary
flavour structure of Yukawa corrections is phenomenologically strongly constrained from kaon
physics, namely ǫK , and to lesser extent as well from Bd observables. Consequently, the
flavour structure of Yukawa corrections must be basically aligned with the initial, unified
Yukawa couplings. Within these strong constraints, we discuss the effects of Yukawa correc-
tions in K and B physics on the unitarity triangle. We find that the effects of large neutrino
mixing can remove a present tension concerning CP violation in the K − K and Bd − Bd

meson systems.

3.1 Corrections from higher-dimensional operators

Down-quark-lepton Yukawa unification is a feature of SU(5) symmetry, where SU(2)-singlet
down quarks are embedded together with the lepton doublet in a 5 representation. At the
unification scale MGUT the Yukawa couplings are thus equal up to transposition,

Yd = Y ⊤
e . (3.1)

The renormalization group evolution of this relation down to the scale of electroweak sym-
metry breaking yields the correct masses of bottom quarks and tau leptons. For the light
fermion generations, however, down-quark-lepton unification fails. Exact unification would
predict the mass relation ms/md = mµ/me, which is not fulfilled by the observed ratios

ms

md
≈ 20 ,

mµ

me
≈ 200 . (3.2)

In SU(5), this discrepancy can be corrected by adding Yukawa couplings of mass dimension
five without enlarging the content of Higgs fields [78]. The adjoint Higgs representation

45
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Σ = 24H , which is needed for SU(5) → GSM breaking anyway, is suited to extend the Yukawa
sector to

W d,e
SU(5) = Y ij

5̄
10abi 5ja5Hb + (Ỹ ′

24)
ij 10abi 5ja

Σc
b

MPl
5Hc + (Ỹ24)

ij 10abi
Σc
b

MPl
5jc 5Ha . (3.3)

Besides the dimension-four term of minimal SU(5), two additional independent Yukawa coup-
lings Ỹ ′

24 and Ỹ24 are introduced by dimension-five terms. Once SU(5) is broken to the
Standard Model via a vev 〈Σ〉 = v5diag(2, 2, 2;−3,−3) with v5 = O(MGUT), the effective
down and lepton Yukawa couplings read

Yd = Y5̄ − 3
v5
MPl

Ỹ ′
24 + 2

v5
MPl

Ỹ24 ,

Y ⊤
e = Y5̄ − 3

v5
MPl

Ỹ ′
24 − 3

v5
MPl

Ỹ24 .
(3.4)

Note that dimension-five terms ∼ Ỹ ′
24 merely shift both Yukawa couplings, without affecting

their unification. These contributions, however, are important to suppress proton decay
[79,80]. The second coupling Ỹ24 abrogates down-quark-lepton unification, because the Higgs
field Σ is “sandwiched” between the fermions, leading to

Yd = Y ⊤
e + 5

v5
MPl

Ỹ24 . (3.5)

Since the correction Ỹ24 is suppressed by MGUT/MPl, it affects only the small Yukawa coup-
lings of the first and second fermion generations, while preserving the successful bottom-tau
unification.

In the CMM model, Yukawa corrections due to SU(5) breaking generally arise from the
dimension-five term ∼ 45H ⊗ 10′H in the SO(10) superpotential, cf. Eq. (2.3),

W d,e
CMM = 16i Y

ij
45 16j

45H 10′H
MPl

. (3.6)

This term generates both unified down and lepton Yukawa couplings, as well as corrections
for the light generations. The embedding of the relevant SU(5) dimension-five couplings from
Eq. (3.3) is made explicit by writing the superpotential after SO(10) breaking via a vev in
the SU(5) singlet in 45H , 〈145〉 = v10,

W d,e
CMM =

v10
MPl

Y45 10abi 5ja5
′
Hb + Ỹ ′

45 10abi 5ja
Σc
b

MPl
5′Hc + Ỹ45 10abi

Σc
b

MPl
5jc5

′
Ha . (3.7)

Below the GUT scale, these operators yield the familiar down-quark-lepton Yukawa relation

Yd = Y ⊤
e + 5

v5
MPl

Ỹ45 . (3.8)

Naturally, one assumes that the entries of Y45 and Ỹ45 have the same magnitude as (Y10)
33, the

top Yukawa coupling. Then the corrections from Ỹ45 are suppressed by v5/v10 ≈ 10−1 with
respect to the bottom and tau couplings, which are of O(v10/MPl) yt = 10−2 yt. Therefore
effects of Yukawa corrections among light fermions are typically of O(1). Generally, the
flavour structure of Ỹ45 differs from Y45, since there are four possible SO(10) structures for the
coupling (16i 16j)(45H 10′H), given in Eqs. (1.69a) – (1.69d). Concretely, Yukawa corrections
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à la Ỹ45 can be generated by effective 120, 16, and/or 144 couplings at SO(10) level. The
effective 10 coupling may in addition contribute equally to both Yd and Y ⊤

e via Y45. In
presence of Yukawa corrections, the matrices Yd and Ye can no longer be diagonalized by the
same rotation V ∗

q Ŷd,e Vℓ as in Eq. (2.11). In the basis where Ye is diagonal, we rather have

UL Ŷd UR = Ŷe + 5
v5
MPl

Ỹ45 , (3.9)

where the unitary matrices UL and UR account for the mismatch between Yd and Ye due to
corrections from Ỹ45. Since these corrections preserve bottom-tau unification, UL and UR
have a non-trivial 1-2 block only,

UL, UR ∼



∗ ∗ 0

∗ ∗ 0

0 0 1


 . (3.10)

The rotation matrix Rd of right-handed down (s)quarks is no longer directly linked to the
PMNS matrix, but contains the additional rotations among light down (s)quarks U ≡ UR,

Rd = (UVℓ)
⊤. (3.11)

We parametrize the unitary matrix U by one rotation angle θ and four complex phases,

U =



U11 U12 0

U21 U22 0

0 0 eiφ4


 =




cos θ eiφ1 − sin θ ei(φ1−φ2+φ3) 0

sin θ eiφ2 cos θ eiφ3 0

0 0 eiφ4


 . (3.12)

Clearly, in absence of Yukawa corrections U = 1, and we are back in the original CMM
setup discussed in Chapter 2. Assuming tri-bi-maximal neutrino mixing, the down-(s)quark
rotation matrix reads, with Vℓ from Eq. (1.38) and θ13 = 0,

Rd =
1√
6




2U11 e
iα1 − U12 e

iα4 2U21 e
iα1 − U22 e

iα4 ei(φ4+α5)

√
2 eiα2

(
U11 + U12 e

i(α4−α1)
) √

2 eiα2
(
U21 + U22 e

i(α4−α1)
)
−
√

2 ei(φ4−α1+α2+α5)

√
3U12 e

i(−α1+α3+α4)
√

3U22 e
i(−α1+α3+α4)

√
3 ei(φ4−α1+α3+α5)


.

(3.13)

What are the physical implications of the additional rotations U on down-squark currents?
In the super-CKM basis, where down-type Yukawa couplings are diagonal, the mass matrix
of right-handed down squarks is given by

(M2
d̃
)sCKM = R†

d(M
2
d̃
)URd

= m2
d̃




1 − sin2 θ∆d̃/2 sin(2θ) e−iφK ∆d̃/4 sin θ e−iφBd ∆d̃/2

sin(2θ) eiφK ∆d̃/4 1 − cos2 θ∆d̃/2 − cos θ e−iφBs ∆d̃/2

sin θ eiφBd ∆d̃/2 − cos θ eiφBs ∆d̃/2 1 − ∆d̃/2


, (3.14)

φK = φ1 − φ2 , φBs = φ3 − φ4 + α4 − α5 , φBd
= φ1 − φ2 + φ3 − φ4 + α4 − α5 .

Comparing with Eq. (2.15), one observes that M2
d̃

exhibits additional off-diagonal elements in

the 1-2 and 1-3 sectors, resulting in d̃R− s̃R and d̃R− b̃R squark FCNC. The large atmospheric
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neutrino mixing is thus translated into sizeable effects in K and Bd physics, quantified by the
rotation angle θ. Solar neutrino mixing is not observable, because the squark masses of the
first two generations are degenerate. CMM effects in Bs observables are slightly reduced if
θ 6= 0. In summary, effects from atmospheric neutrino mixing in b − s transitions generally
imply contributions to s−d and b−d transitions if one corrects down-quark-lepton unification
by additional flavour structures. Further, the new phases φK , φBd

, and φBs induce CP
violation beyond the Standard Model in all three down-squark FCNC. Note that these phases
are not independent, but related by φBd

= φBs + φK .

Arguably, the predictivity for fermion masses and mixings strongly decreases with the
new parameters introduced by Yukawa corrections. Yet the CMM model is not designed to
predict the parameters related to Standard-Model particles, but to study the implications of
down-quark-lepton unification in the mixing of their superpartners. The strong experimental
constraints on FCNC in K and Bd observables can be used to gain insight into the flavour
structure of Yukawa corrections in Grand Unified models. Concretely, these constraints trans-
late into a strong upper limit on the angle θ. The CMM phases φK , φBd

, and φBs are less
constrained and can be adapted in order to generate considerable new-physics effects in CP -
violating observables. In the following, we will derive constraints on θ from K and B meson
mixing, in particular from the CP -violating quantity ǫK , and from the mass differences and
CP asymmetries introduced in Sec. 2.3. Due to the additional entries in the down-squark
mass matrix in Eq. (3.14), the mixing elements M12 in all three meson systems K − K,
Bd −Bd, and Bs − Bs receive CMM contributions. They are characterized by the following
combinations of rotation matrices in the relevant Wilson coefficients from Eq. (2.48),

MK
12 : [(Rd)32(Rd)

∗
31]

2 , Md
12 : [(Rd)33(Rd)

∗
31]

2 , M s
12 : [(Rd)33(Rd)

∗
32]

2 . (3.15)

By inserting the Rd elements using Eqs. (3.13) and (3.12), one arrives at explicit expressions
for CMM contributions in meson mixing,

(MK
12)

CMM =
α2
s(MZ)

6m2
g̃

[ 1

4
sin(2θ) e−iφK

]2
MKF

2
KB̂K

η2

r
S(g̃)(r1, r3) ,

(Md
12)

CMM =
α2
s(MZ)

6m2
g̃

[ 1

2
sin θ e−iφBd

]2
MBd

F 2
Bd
B̂Bd

ηB
r
S(g̃)(r1, r3) ,

(M s
12)

CMM =
α2
s(MZ)

6m2
g̃

[ 1

2
cos θ e−iφBs

]2
MBsF

2
Bs
B̂Bs

ηB
r
S(g̃)(r1, r3) ,

(3.16)

with all relevant quantities defined in Sec. 2.3.

3.2 Constraints from ǫK

The observable ǫK measures CP violation in K − K meson mixing. Since ǫK is a tiny
quantity and in addition very accurately measured, it sets strong limits on CP -violating
contributions to s − d transitions. In the CMM model, ǫK constrains a combination of the
parameters θ and φK , cf. Eq. (3.16), which originate from corrections to down-quark-lepton
Yukawa unification for light fermions. These constraints hint at the flavour structure of
higher-dimensional Yukawa terms, namely Ỹ45 in Eq. (3.9).
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Experimental access to ǫK is given by the measurement of the amplitudes for K decays
into two-pion final states 〈ππ|H|K〉,

ǫK ≡ η00 + 2 η+−
3

, η00 =
〈π0π0|H|KL〉
〈π0π0|H|KS〉

, η+− =
〈π+π−|H|KL〉
〈π+π−|H|KS〉

. (3.17)

The final states (ππ)I are classified in terms of their isospin quantum number I = 0, 2. Due
to the suppression of the I = 2 decay amplitude with respect to I = 0, A2/A0 ≈ 1/22, ǫK is
well approximated by

ǫK =
〈(ππ)I=0|KL〉
〈(ππ)I=0|KS〉

+ O

(
A2

2

A2
0

)
. (3.18)

By making use of empirical relations within the K −K system, one can express ǫK in terms
of the mixing element MK

12 [67],

ǫK = eiφǫ sinφǫ

(
ImMK

12

∆MK
+ argA0

)
. (3.19)

The phase φǫ in ǫK is measured to be [54]

φǫ = arctan
2∆MK

∆ΓK
= (43.51 ± 0.05)◦. (3.20)

The deviation of φǫ from π/4 and the estimation of O(5%) contributions from the phase of
the isospin-zero amplitude A0 are factored out in the quantity κǫ = (0.92 ± 0.02) [67]. This
leads to the compact formula we will use to constrain our CMM parameters,

|ǫK | = κǫ
ImMK

12√
2∆MK

. (3.21)

Comparing with Eq. (3.16), we find the CMM contribution to |ǫK | proportional to
Im(MK

12)
CMM ∼ sin2(2θ) sin(2φK)/m2

g̃. If the phase φK does not vanish and the gluino mass
is not too large, one generally expects strong constraints on θ for the following reasons:

• In the Standard Model, ǫK is twofold suppressed: The GIM mechanism predicts the
weak W box diagrams to be proportional to m2

q/m
2
W , which suppresses contributions

with q = u, c quarks in the loop. Second, the a priori large top quark contribution is
strongly CKM-suppressed by (V ∗

tdVts)
2, cf. Eq. (2.45).

• On the contrary, the main CMM contributions stem from gluino box diagrams based
on strong interactions, which involve a larger coupling constant and avoid CKM sup-
pression.

• The Standard-Model prediction for ǫK agrees with the precise measurement, leaving
only little space for new physics.

The first two arguments apply likewise to the mass difference ∆MK . This quantity, however,
is plagued by short-distance contributions, which are difficult to estimate and result in large
theoretical uncertainties. ǫK is thus the most effective observable to constrain θ.

In Fig. 3.1, we show the limits on the s̃R − d̃R mixing angle θ from |ǫK | dependent on the
relevant combinations of parameters, which are sin(2φK)/m2

g̃, md̃/mg̃, and ∆d̃. The black and
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Figure 3.1: Constraints on θ from |ǫK | for Set 1 (black) and Set 2 (gray) (curves lie
upon another). The dashed lines show the results for interchanged mass ratio, md̃/mg̃ =
2.86 (black dashed) and 5 (gray dashed).

gray lines correspond to the CMM parameter sets 1 and 2 introduced in Sec. 2.4, respectively,
while the dashed lines are obtained by interchanging md̃/mg̃. The dependence on md̃/mg̃

and ∆d̃ is mild, which can be seen by comparing the plain and dashed lines of the same
(md̃/mg̃) and interchanged (∆d̃) gray level. Typically, for | sin(2φK)|/m2

g̃ & 1TeV−2, θmax

is of the order of one degree. Fig. 3.1 has been obtained treating the errors of the input
parameters in Tab. 2.2 as flat, yet a different error treatment would not change this picture
significantly. Fixing φK to π/4, the precise limits on θ obtained for the three parameter
sets defined in Sec. 2.4 are displayed in the last column of Tab. 3.1. Constraints from ∆MK

are relevant only if φK is close to zero. Due to the large hadronic uncertainties, we impose
2|(MK

12)CMM| < ∆M exp
K to stay on the conservative side. In this case, for mg̃ ≃ 700GeV,

the constraint from ∆MK only starts to compete with that from |ǫK | when |φK | = O(0.1◦),
corresponding to θmax ≃ 10◦ − 20◦ (depending on the precise values of ∆d̃ and md̃/mg̃). In
Set 1, 2, and 3, ∆MK puts the constraints θmax = 10◦, 19◦, and 18◦, respectively.

Finally, we briefly comment on the dependence of θmax on the hypothesis of tri-bi-maximal
lepton mixing. In particular, one might expect the 2-3 mixing angle to be large but not exactly
equal to π/4. In this case, Im [(Rd)32(Rd)

∗
31]

2 = −1
4 sin4 θ23 sin2 (2θ) sin(2φK) for θ13 = 0.

Hence, for large θ23, the constraints on θ do not differ much. For a sizeable 1-3 mixing angle
in Vℓ, |ǫK | gets additional contributions,

∆
(
Im [(Rd)32(Rd)

∗
31]

2
)

= sin θ13 sin3 θ23 sin (2θ)
[
− cos(2φK) sin(φ3 − φ2 + α4 − α1 − δ)

+ sin(2φK) cos(2θ) cos(φ3 − φ2 + α4 − α1 − δ)
]
+ O

(
sin2 θ13

)
. (3.22)

No large numerical factors offset the sin θ13-suppression, such that the modified bounds on θ
are again as stringent as those exemplified in Fig. 3.1.

3.3 Constraints from Bd − Bd and Bs − Bs mixing

The observables related to B − B mixing are generally less sensitive to CMM contributions,
mainly because the SM contributions from weak box diagrams are not as strongly CKM-
suppressed as in the kaon system. For φK ≃ 0 (π/2) however, where CMM effects disap-
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mg̃ [GeV] md̃ [GeV] ∆d̃ θmax [◦]

Set 1 400 2000 0.52 0.5

Set 2 700 2000 0.44 0.9

Set 3 700 3000 0.51 0.9

Table 3.1: CMM parameter sets for fixed ad/md̃ = 1.8, arg(µ) = 0, and tan β = 5. The last

column shows the maximal s̃R − d̃R mixing angle θmax allowed by |ǫK | for sin(2φK) = 1 (the
symmetric solution θ ∈ [π/2 − θmax, π/2] is excluded by B physics observables, see Sec. 3.3).

pear from |ǫK |, B physics observables provide useful constraints on the parameters θ and
φBs = φBd

(φBd
−π/2). In Fig. 3.2, we show the parameter regions allowed by ∆Md, SJ/ψKS

,
and ∆Md/∆Ms for Set 1 (gray) and Set 2 (black) for φK = 0 and φK = π/2. Other values of
φK lead qualitatively to the same results. Note that the constraint from ∆Md/∆Ms depends
on both φBs and φBd

= φK + φBs . Further, ∆Md does not give additional constraints with
respect to the ratio ∆Md/∆Ms for φK = 0, which is due to the fact that the ratio of hadronic

Bs and Bd parameters ξ has a smaller uncertainty than FBd
B̂

1/2
Bd

, cf. Tab. 2.2. The combina-
tion of ∆Md, SJ/ψKS

, and ∆Md/∆Ms generally constrains θ to be below θmax ≃ 10◦ − 20◦,
similar to ∆MK . The solution θ ∈ [π/2−θmax, π/2] left by |ǫK | and ∆MK is thereby excluded.

Importantly, ∆Md/∆Ms, ∆Ms, and φs rigorously constrain the phase φBs for small θ, as
could already be seen in Fig. 2.8 for the latter two observables. The constraints from ∆Ms

are included in Fig. 3.2. The Bs phase φs can cut further into the parameter space, especially
for negative values of φBs . In Fig. 3.2, φs would remove gray points with 2φBs < 0 and black
points with −2.4 < 2φBs < −1. Roughly speaking, B−B mixing observables favour positive
values of φBs in the CMM model with Yukawa corrections.

Finally, we can distinguish two scenarios of CMM effects in B −B mixing:

• φK 6= 0: Effects in |ǫK | are large, constraining θ to be very small. In this case, there
are no visible CMM effects in Bd observables like ∆Md and SJ/ψKS

. Contributions to
Bs observables are close to maximal.

• φK ≃ 0: The CMM contributions to |ǫK | vanish, but θ is (less) constrained from B−B
mixing and ∆MK . CMM effects are thus sizeable in Bd observables and only slightly
lowered in the Bs system. The CMM phases in Bd and Bs observables are equal,
φBs ≃ φBd

.

3.4 Closing the unitarity triangle

Recent works on CP violation in meson mixing pointed out a tension between the K−K and
Bd − Bd systems: The amount of CP violation in Bd − Bd mixing, extracted from SJ/ψKS

,

seems to be inconsistent with CP violation in K − K mixing, measured by ǫK [67, 81–83].
One thus predicts new CP phases in the Bd and/or K sectors. We will show that, within the
CMM model, it is possible to restore consistency by making use of CP effects in s− d, b− d,
and b−s transitions. These effects simultaneously generate a sizeable phase φs in the Bs−Bs

system, which is welcome to explain the amount of CP violation measured in Bs → J/ψφ
decays.
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Figure 3.2: Constraints on θ from B physics observables. Black (gray) points indicate allowed
regions in parameter space for Set 2 (Set 1). The first four plots show individual three-sigma
constraints from (a) ∆Md, (b) SJ/ψKS

, (c) ∆Md/∆Ms setting φK = 0, (d) ∆Md/∆Ms setting
φK = π/2. Plots (e) and (f) show the combined (a,b,c) and (a,b,d) constraints, respectively.
In the case of Set 1, the three-sigma constraint from ∆Ms has been included, excluding points
outside the range 1.3 . |2φBs | . 2.3 (Set 2 is not affected by this constraint, cf. Fig. 2.8 left).
∆MK excludes points above the black (gray) horizontal line in Set 2 (Set 1).
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Figure 3.3: One-sigma constraints on the unitarity triangle from SJ/ψKS
(light gray), |ǫK |

(gray), and ∆Ms/∆Md (dark gray) in the SM. The one-sigma region determined from |Vus|,
|Vcb|av, |ǫK |, and ∆Ms/∆Md assuming the SM is shown in black, and its shift due to CMM
effects is the dashed ellipse. Left: Scenario I, θ = 0, φBs = 0.7. Right: Scenario II, θ =
0.1, φBs = φBd

= 0.8. CMM inputs: Set 1.

The tension between the K −K and Bd −Bd systems is made explicit by comparing the
value of sin(2β) extracted from SJ/ψKS

, cf. Eq. (2.35), to its determination from |ǫK |, whose
leading contribution is proportional to sin(2β), see Eq. (3.23) below. The angle β being
one of four parameters that fix the unitarity triangle, and thereby quark flavour mixing, we
choose the three further inputs as |Vus|, |Vcb|, and ∆Ms/∆Md. In the Standard Model, |ǫK |
and ∆Ms/∆Md can be expressed in terms of sin(2β) and a side of the unitarity triangle
Rt = |VtdV ∗

tb|/|VcdV ∗
cb| as

|ǫK | = κǫ
G2
FM

2
W

12π2

MKF
2
KB̂K√

2∆MK

|Vcb|2|Vus|2
{
|Vcb|2R2

t sin(2β) η2S0(xt)

+ 2Rt sin β (η3S0(xc, xt) − η1S0(xc))
}
,

∆Ms

∆Md
≃ ξ2

MBs

MBd

1

R2
t |Vus|2

.

(3.23)

Note that the determination of sin(2β) from the above expressions strongly depends on
|Vcb|, because |ǫK | ∼ |Vcb|4 in its leading contribution. Since the averaged value |Vcb|incl

from inclusive semileptonic B decays in Tab. 2.2 is significantly larger than from exclusive
B → D∗ℓν decays, |Vcb|excl = (38.8±1.1) ·10−3 [63], it is instructive to compare the respective
results for sin(2β) from |ǫK | with its determination from SJ/ψKS

,

sin(2βd) = 0.671 ± 0.024 SJ/ψKS

sin(2βK) = 0.81+ 0.11
− 0.09 |ǫK |, |Vcb|incl

= 0.98+ 0.02
− 0.11 |ǫK |, |Vcb|excl .

(3.24)

The remaining input values are taken from Tab. 2.2. Note that with |Vcb|incl there is no
significant deviation. With the smaller value |Vcb|excl, sin(2βK) is indeed larger than sin(2βd),
indicating an additional source of CP violation in the Bd − Bd system or compensating
CP effects in |ǫK | and ∆Ms/∆Md. The hadronic corrections to |ǫK | from κǫ = 0.92 and a
recent decrease of the bag parameter B̂K consolidate this discrepancy. In order to illustrate
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how CMM contributions can alleviate an observed tension, we will work with a weighted
average of inclusive and exclusive determinations, |Vcb|av = (41.0 ± 0.63) · 10−3 [83]. In the
CMM model with Yukawa corrections for light fermions, both |ǫK | and ∆Ms/∆Md receive
additional CP -violating contributions. Thus sin(2βK) is extracted from the more complex
system of equations, which holds to 0.5% accuracy,

|ǫK | = κǫ
MKF

2
KB̂K√

2∆MK

×
{
G2
FM

2
W

12π2
|Vcb|2|Vus|2

[
|Vcb|2R2

t sin(2β) η2S0(xt)

+ 2Rt sinβ (η3S0(xc, xt) − η1S0(xc))

]
− α2

s(MZ)

6m2
g̃

1

16
sin2(2θ) sin(2φK)

η2

r
S(g̃)(r1, r3)

}
,

∆Ms

∆Md
= ξ2

MBs

MBd

×
{ (
k1 +X cos2 θ cos 2φBs

)2
+
(
−2k2Rt sinβ|Vus|2 −X cos2 θ sin 2φBs

)2 }1/2

{ (
R2
t cos 2β|Vus|2 +X sin2 θ cos 2φBd

)2
+
(
R2
t sin 2β|Vus|2 −X sin2 θ sin 2φBd

)2 }1/2
,

with k1 = 1 + |Vus|2(1 − 2Rt cos β), X =
π2α2

s(MZ)S(g̃)(r1, r3)

2|Vcb|2G2
FM

2
Wm

2
g̃ r S0(xt)

,

k2 = 1 + |Vus|2(1 −Rt cos β). (3.25)

Due to the high sensitivity of |ǫK | to CMM effects, either θ or φK have to be very small. We
therefore consider the two limiting scenarios θ = 0 and φK = 0 for which |ǫK | is not affected
by CMM contributions and study the respective CP effects in ∆Ms/∆Md and SJ/ψKS

. We
use the CMM input parameters of Set 1. All errors are treated as gaussian.

I) θ = 0: CMM effects in ∆Ms/∆Md Since for θ = 0 there are no effects in K −K
and Bd − Bd mixing, CMM contributions enter the unitarity triangle only via ∆Ms. From
Fig. 3.3 left one sees that Rt has to increase in order to close the UT. This requires a CP -
violating phase 2φBs ∈ [1.3, 1.8], taking into account the three-sigma constraints on φBs from
∆Ms and φs. The dashed curve shows Rt for φBs = 0.7, such that the UT determined from
|ǫK | and ∆Ms/∆Md agrees with the sin(2β) measurement from SJ/ψKS

.

II) φK = 0, θ = 0.1: CMM effects in ∆Ms/∆Md and SJ/ψKS In this second case,
CMM contributions enter both ∆Ms/∆Md and SJ/ψKS

. For a fixed angle θ, the unitarity
triangle can be closed by adjusting the CMM phase φBs = φBd

. The resulting apex of the UT
is shown by the intersection of the dashed lines in Fig. 3.3 right for θ = 0.1 and φBs = 0.8.
For any value of θ allowed by the constraints from Bd and Bs observables in Sec. 3.3 one can
find a phase φBs to close the UT.

Departures from the limits θ = 0 and φK = 0 rapidly generate significant additional
effects in |ǫK |, cf. Fig. 3.1. These contributions can lower the band from the |ǫK | constraint
in the (ρ̄, η̄) plane, directly compensating for small values of |Vcb| and B̂K . Interestingly,
the values of the CMM phase 2φBs ≃ 1.5, favoured to close the unitarity triangle from K
and Bd observables, simultaneously lead to a sizeable CP phase φs in the Bs − Bs system,
cf. Fig. 2.8. We conclude that within the CMM model, despite the strong constraints on
s − d and b− d FCNC, CP -violating effects are sufficiently large to consistently explain the
observed SM tensions concerning CP violation in K −K, Bd −Bd, and Bs −Bs mixing.
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3.5 The flavour structure of Yukawa corrections

The probes of Yukawa corrections in s − d and b − d transitions lead to strong constraints
on the angle θ, which parametrizes deviations from the unification of light fermions. For a
non-vanishing phase φK , |ǫK | provides the upper bound θmax = O(0.1◦). The Bd observables
∆Md, SJ/ψKS

, and ∆Md/∆Ms lead to θmax = O(20◦), independently from the respective
CMM phase constellations. What are the implications of these constraints on the flavour
structure of dimension-five Yukawa corrections?

The constraints from |ǫK | require the correction matrix U = UR to be essentially diagonal,
specifying the corrected down-quark-lepton relation from Eq. (3.9) to

Yd = UL Ŷd ÛR = Ŷe + 5
v5
MPl

Ỹ45 . (3.26)

Since UR diagonalizes Y †
d Yd , in the basis where Ye is diagonal the combination

ŶeỸ45 + Ỹ †
45Ŷe + 5 v5

MPl
Ỹ †

45Ỹ45 must be diagonal as well. Without miraculous cancellations,

this implies that the Yukawa corrections Ỹ45 must be aligned with the couplings Yd and Y ⊤
e .

Going back to Eq. (3.26), we see that UL, the matrix which governs FCNC with light left-
handed sleptons, has to be diagonal as well, i.e.

UL, UR ∼



∗ 0 0

0 ∗ 0

0 0 1


 . (3.27)

Once more the GUT relation between quarks and leptons strikes: The study of Yukawa
corrections in the down-quark sector implies that FCNC involving ẽL are very small if the
constraint from |ǫK | is rigorous. For φK = 0, from Bd constraints one still derives that
flavour-violating µ̃L − ẽL and τ̃L − ẽL transitions are naturally not larger than s̃R − d̃R and
b̃R − d̃R transitions.

While we have worked out the analysis for a specific SO(10) model, these results hold in
general for GUT models with small Higgs representations. An efficient mechanism is generally
needed to render neutrino mixing in right-handed down-squark FCNC visible. In the CMM
model, this mechanism is provided by the fast SO(10) running of the d̃R soft mass matrix,
which generates the large universality-breaking quantity ∆d̃ at the electroweak scale. Of
course, other GUT scenarios could include additional sources of flavour and CP violation
leading to down-squark FCNC, like the SU(5) couplings of right-handed down (s)quarks to
heavy neutrinos introduced in Sec. 1.3.1 These effects could soften the constraints on θ. Yet,
they would have to be fairly fine-tuned to cancel the potentially large Yukawa corrections
from SU(5)-breaking dimension-five terms.

All in all, corrections to down-quark-lepton Yukawa unification from higher-dimensional
operators cannot introduce new flavour structures with respect to the initially unified coup-
lings.

1In the CMM model, these effects are very small, because the neutrino Yukawa coupling Yν has the same
strong hierarchy as Y10, thus suppressing FCNC for light down (s)quarks.
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Chapter 4

Supersymmetric Unification and
Large tan β

The unification of third-generation Yukawa couplings is highly sensitive to the parameter
tan β. Knowing tan β substantially helps to specify the Yukawa sector in supersymmetric
SO(10) models. In a scenario with large tanβ, Higgs couplings to down-type fermions
are enhanced, and loop-suppressed down-(s)quark FCNC can be large. The decay modes
B → τν and B → Dτν are sensitive to tan β/MH+ at tree level. Differential distributions in
B → Dτν are particularly well suited to determine the magnitude and phase of the charged-
Higgs coupling, and thereby to derive rigorous constraints on tan β for a fixed SUSY spectrum.
The theoretical accuracy of B → Dτν distributions is limited by hadronic form factors, which
however are known with less than 7% uncertainty. Experimentally, these modes should be
detectable at the B factories with current or upgraded statistics. The resulting constraints
on tan β help to classify SO(10) models with respect to their Yukawa sector.

4.1 Effects of large tan β in flavour physics

The ratio of the two Higgs-doublet vevs, tan β = vu/vd, is a free parameter in the Higgs
sector of the MSSM and a key parameter in supersymmetric flavour physics. First, tan β
governs the relative magnitude of top and bottom Yukawa couplings via the tree-level relation
mt/mb = yt/yb · tan β. In the case of large tan β ≈ 50, the bottom Yukawa coupling is of
the same order of magnitude as the otherwise dominant top Yukawa coupling. The effects
of yb in the RGE of couplings and squark masses are thus comparable with yt, affecting the
spectrum of SUSY particles and the conditions of Yukawa unification. We will come back to
these issues in Sec. 4.4.

Second, the parameter β quantifies the mixing within the Higgs sector, cf. Eq. (1.24), and
thereby enters Higgs-fermion couplings. In particular, the Yukawa couplings of charged Higgs
bosons to right-handed down-type quarks can be enhanced by tan β. This feature allows us
to probe tanβ in charged currents already at tree level. To compare the relative magnitude
of H+ and W+ boson exchange, let us write down the MSSM Lagrangean for charged quark
currents in terms of mass eigenstates, using Eqs. (1.27) and (1.24),

LCC
q = − g2√

2
dLV

†
CKMγ

µuLW
−
µ + dRŶdV

†
CKMuL sinβH− + dLŶuV

†
CKMuR cos βH− + h.c. .

(4.1)
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Figure 4.1: Contributions to non-holomorphic Yukawa couplings. Left: Down-quark-squark-

gluino loop ǫg̃d. Right: Down-quark-up-squark-chargino loop ǫχ̃d .

One observes that the coupling of charged Higgs bosons to right-handed down quarks is
enhanced by tan β with respect to the coupling to left-handed down quarks, the latter being
negligible if tanβ is large. We further express the charged-Higgs coupling in terms of measured
quantities and get

LCC
q = − g2√

2
dLV

†
CKMγ

µuLW
−
µ +

g2√
2

md

MW
tan β dRV

†
CKMuLH

− + h.c. . (4.2)

For tan β = O(50), the contributions from charged-Higgs currents can thus compete with the
longitudinal modes of W -boson exchange, leading to significant effects in helicity-suppressed
meson decays. The most promising channels to find large-tan β effects in charged currents
are the (semi)leptonic decays B → (D)τν.

A third source of tanβ-enhanced effects in flavour physics arises from non-holomorphic
Higgs-fermion couplings. Even though the superpotential must be holomorphic as in
Eq. (1.20), such terms can be induced by supersymmetric loop corrections. They lead to
effective couplings of fermions to the “wrong” Higgs doublet, which are tanβ-enhanced for
down quarks and charged leptons [84,85]. The effective Lagrangean for down-quark Yukawa
couplings in the down mass eigenbasis is then given by

Leff
d = dR ŶdQLHd + dR Ŷd ǫdQLH

∗
u + h.c. , ǫd = ǫg̃d + ǫχ̃d . (4.3)

The dominant contributions to non-holomorphic couplings stem from down-squark-gluino
(ǫg̃d) and up-squark-chargino (ǫχ̃d ) loops, depicted in Fig. 4.1. The general structure of Yukawa
corrections in the MSSM can be understood from symmetry considerations: Since fermion
couplings to the “wrong” Higgs doublet break the holomorphy of the superpotential, the
corresponding loop functions must be proportional to at least one power of a SUSY-breaking
parameter. For the gluino loop this is the soft gauge boson mass mg̃, for the chargino loop it
is the trilinear coupling Au. Besides breaking supersymmetry, non-holomorphic terms violate
a global U(1) symmetry, known as Peccei-Quinn symmetry PQ [86, 87].1 Under a Peccei-
Quinn transformation, SU(2)-singlet down-type fields and the Higgs doublet Hd undergo a
rephasing,

U(1)PQ : dR
PQ−→ eiϕdR, eR

PQ−→ eiϕeR, Hd
PQ−→ eiϕHd . (4.4)

1Peccei and Quinn originally studied a chiral U(1) invariance within the context of CP conservation in
strong interactions.



4.1. Effects of large tan β in flavour physics 59

The MSSM superpotential preserves PQ, apart from the term µHuHd. Since non-holomorphic
couplings dRdLH

∗
u obviously violate PQ, they must be proportional to the higgsino mass

parameter µ, cf. Fig. 4.1. Explicit expressions for the loop functions ǫg̃d and ǫχ̃d are given in
Ref. [88]. These contributions change the relation between the down-quark Yukawa coupling
and the physical mass. By writing the effective Lagrangean in its vacuum state,

Leff
d = dR ŶdQL v cos β + dR Ŷd ǫdQL v sin β + h.c. , (4.5)

one derives the corrected relation

md = yd vd (1 + ǫd tan β) . (4.6)

Since the loop suppression of 1/16π2 in ǫd is compensated by a large factor tanβ, super-
symmetric loop corrections to the down-quark mass can be substantial. Note that this for-
mula resums tan β-enhanced radiative corrections to all orders in perturbation theory [89].
Apart from contributing to mass renormalization, non-holomorphic terms also induce flavour-
changing couplings among down-type quarks. In the scenario of minimal flavour violation,
these arise from chargino loops ǫχ̃d only, which add flavour-off-diagonal contributions to the
down Yukawa coupling. A first consequence is the renormalization of CKM elements in-
volving one heavy quark [85]. Further, non-holomorphic flavour-changing couplings result in
tan β-enhanced down-quark FCNC [90, 91]. While these are strongly CKM-suppressed for
s − d transitions, they yield sizeable effects in b − d and b − s transitions. Phenomenolo-
gically, large-tan β FCNC are relevant in Bd,s → µ+µ− [92] and ∆Md,s [93], as well as in
B → Xsγ [94].

A first hint to the numerically allowed range of tanβ is given by the requirement of pertur-
bative Yukawa couplings above the electroweak scale. The top Yukawa coupling yt ∼ 1/ sin β
sets a rough lower bound of tan β & 1.5 in the MSSM and of tan β & 2.5 in SO(10) GUTs, cf.
Fig. 2.2. Similarly, one derives an upper bound of tanβ . 65 from the bottom Yukawa cou-
pling yb ∼ 1/ cos β, depending on the size of the tan β-enhanced corrections in Eq. (4.6). To
gain further information on the Higgs sector of the MSSM, it is instructive to confront the var-
ious tanβ-enhanced effects with experiment. This leads to constraints in the two-parameter
space (tan β,MH+), which determines the Higgs mass spectrum at tree level, cf. Eq. (1.25).
The usual quest is to pin down the mass of the charged Higgs boson for a fixed value of tan β.
To this end, two complementary roads are pursued: Direct Higgs boson searches at colliders
and indirect analyses of flavour physics observables. Direct constraints on (tanβ,MH+) arise
from the combination of neutral-Higgs searches (mostly in the process of Higgsstrahlung)
and charged-Higgs searches (in t → bH+). The reach of the experiments at LEP and TeVa-
tron excludes light charged Higgs bosons with MH+ . 150 GeV, largely independently from
tan β [95]. Indirect constraints from B physics observables generally cut stronger into the
(tan β,MH+) parameter space. Recent analyses exploit the correlations between large-tan β
effects in B physics and combine them with flavour-independent direct constraints [96–98].
Since these studies largely rely on loop-induced FCNC, they involve a large number of SUSY
parameters. Therefore the resulting constraints on (tan β,MH+) highly depend on the re-
spective scenario. Processes involving three-level charged-Higgs exchange provide cleaner
and widely model-independent constraints, since they give access to the quantity tan β/MH+

with reduced sensitivity to other MSSM parameters. In the following, we will concentrate on
the decay modes B → τν and B → Dτν to derive rigorous constraints on the coupling of
charged Higgs bosons to fermions.
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4.2 Charged Higgs in B → (D)τν branching ratios

Within the last two years, the collaborations at the B factories BaBar and BELLE have
made important progress in the analysis of the accumulated data to probe extensions of the
Higgs sector of the Standard Model. In particular, the branching fractions for tauonic and
semi-tauonic B decays, B(B → τν) and B(B → Dτν), have been extracted from the data.
B → τν and B → Dτν share the feature of sensitivity to charged-Higgs currents. Since the
couplings of right-handed b quarks and τ leptons to charged Higgs bosons are enhanced by
tan β, depicted in Fig. 4.2, both decay rates possibly receive significant contributions due to
charged-Higgs exchange. In the scenario of large tanβ, the discovery potential for a relatively
light charged Higgs boson in B → τν and B → Dτν is high. Vice versa, non-observation sets
strong constraints on MH+ for fixed tanβ. Still, the two decay channels are not congruent
in the search for charged Higgs bosons, due to both theoretical and experimental aspects.
B → Dτν compares to B → τν as follows:

• The branching fraction B(B → Dτν) exceeds B(B → τν) by about a factor of 50 in
the Standard Model.

• B → Dτν involves the well-known CKM element |Vcb|, whose uncertainty is much
smaller than for the element |Vub|, which governs B → τν.

• Hadronic effects in the decay B → τν are parametrized by the B meson decay con-
stant fB, which must be obtained from non-perturbative methods. Current lattice
gauge theory computations can determine f2

B with an uncertainty of roughly 20% [69].
B → Dτν involves two hadronic form factors, one of which has been measured in
B → Dℓν (ℓ = e, µ) decays [99, 100]. The other one is tightly constrained by Heavy
Quark Effective Theory (HQET), such that hadronic effects are under control up to an
uncertainty of less than 10%.

• Unlike B → τν, the three-body decay B → Dτν permits the study of decay distribu-
tions, which discriminate between W+ and H+ contributions. The novel prospects of
differential distributions in B → Dτν will be explained in Sec. 4.3.

• The SM contribution to the two-body decay B → τν is (mildly) helicity-suppressed,
which enhances its sensitivity to charged-Higgs currents. A similar effect occurs in
B → Dτν near the kinematic endpoint, where the pseudoscalar D meson moves slowly
in the B rest frame [101]: While the transverse modesW+

⊥ ofW+ bosons suffer from a P -
wave suppression, the virtual scalar H+ recoils against the D meson in an unsuppressed

u(c)L

bR

H+

mb tanβ mτ tanβ

ντ

τR

Figure 4.2: Doubly tanβ-enhanced charged-Higgs countributions to B → (D)τν.
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S wave. Therefore B → Dτν is preferable to B → D∗τν, where the vector meson D∗

in the final state prevents the suppression of transversal W+
⊥ modes.

In order to quantify charged-Higgs effects in B → (D)τν, let us elaborate on the theoretical
aspects of the decay rates. The effective Hamiltonian describing b→ qτν, q = u(c) transitions
mediated by W+ and H+ exchange is given by

Heff =
GF√

2
Vqb

{
[qγµ(1 − γ5)b] [τγµ(1 − γ5)ντ ] −

mbmτ

m2
B

[q (gS + gP γ5) b] [τ(1 − γ5)ντ ]
}

+ h.c.

(4.7)

The above operators, as well as mb, are defined in the MS scheme. Note the relative sign
between the W+ and H+ contributions, which renders the interference destructive. This
leads to a suppression of the branching ratios B(B → (D)τν) with respect to the SM, as
long as the charged-Higgs contribution does not dominate the decay rate. The meson mass
mB is factored out in the charged-Higgs coupling, so that B(B → τν) vanishes for gP = 1,
see Eq. (4.10) below. The pseudoscalar coupling constant gP governs charged-Higgs effects
in B → τν, while the scalar coupling gS enters B → Dτν only. In the MSSM one has
gP = gS . By introducing these effective couplings, it is possible to perform a scenario-
independent study of charged-Higgs couplings. In the two-Higgs-doublet model of type II,
gP,S = m2

B tan2 β/M2
H+ . In the framework of the MSSM, however, supersymmetric Yukawa

corrections modify the charged-Higgs couplings to be

gS = gP =
m2
B

M2
H+

tan2 β

(1 + ǫg̃ tan β)(1 + ǫτ tan β)
. (4.8)

This expression holds in a scenario with minimal flavour violation. The corrections ǫτ to the
τ lepton Yukawa coupling stem from neutralino-slepton and chargino-sneutrino loops given in
Ref. [102], which are numerically smaller than the gluino contributions ǫg̃. Since the Yukawa
corrections are enhanced by a factor of tanβ, they can significantly change the constraints
on (tan β,MH+) with respect to the 2HDM of type II. In particular, ǫg̃ and ǫτ can receive
a complex phase from the µ parameter if first-generation sfermions are sufficiently heavy to
soften the bounds from electric dipole moments on argµ. Beyond minimal flavour violation,
the phases in the sfermion mass matrices render Yukawa corrections complex. It is therefore
mandatory to measure both the magnitude and phase of gS .

B → τν branching fraction

The branching ratio of B → τν is calculated from the effective Hamiltonian in Eq. (4.7)
by taking its matrix element squared and subsequently integrating over the two-body phase
space of the final state. The matrix elements of the relevant axial-vector and pseudo-scalar
quark currents are parametrized in terms of the B meson decay constant fB ,

〈0|uγµγ5b |B−〉 = −ifBpµB , 〈0|uγ5b |B−〉 = ifB
m2
B

mb
, (4.9)

where pB is the four-momentum carried by the B− meson. The branching ratio finally
reads [103]

B(B → τν) =
G2
F

8π
τB |Vub|2f2

BmBm
2
τ

(
1 − m2

τ

m2
B

)2
(1 − gP )2 , (4.10)
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fB = (200 ± 20) MeV [69] τB = (1.638 ± 0.011) ps [54]

fπ− = (130.4 ± 0.04 ± 0.2) MeV [54] ττ = (290.6 ± 1.0) fs [54]

|Vub| = (3.87 ± 0.09 ± 0.46) · 10−3 [104] mc/mb = 0.222 ± 0.004 [73,105]

|Vcb| = (41.6 ± 0.6) · 10−3 [54] αs(MZ) = 0.1189 ± 0.001 [106]

|Vud| = 0.97418 ± 0.00027 [54]

Table 4.1: Input values for B → τν and B → Dτν branching ratios and decay distributions.

with the lifetime of the B meson, τB. Using the input values from Tab. 4.1, our estimate for
B(B → τν) in the Standard Model is 2

B(B → τν)SM = (1.06+ 0.56
− 0.40) · 10−4, (4.11)

which is in agreement with the average by the Heavy Flavour Averaging Group (HFAG) of
the measurements at BaBar and BELLE [63],

B(B → τν)exp = (1.43 ± 0.37) · 10−4. (4.12)

In Fig. 4.3 left, we confront B(B → τν)exp with the theory estimation as a function of the
charged-Higgs coupling gP . The measurement provides the following constraints on gP ,

gP < 0.34 ∪ 1.66 < gP < 2.81 95% CL. (4.13)

B → Dτν branching fraction

The calculation of the branching ratio for B → Dτν requires the matrix elements of the vector
and scalar quark currents between the B and D meson bound states, which are parametrized
by two form factors FV and FS ,

〈D(pD)| cγµb |B(pB)〉 = FV (q2)

[
pµB + pµD −m2

B

1 − r2

q2
qµ
]

+ FS(q2)m2
B

1 − r2

q2
qµ ,

〈D(pD)| c b |B(pB)〉 =
m2
B (1 − r2)

mb −mc
FS(q2) .

(4.14)

Here, pB and pD denote the meson four-momenta, q = pB− pD is the momentum transfer to
the leptons, and r = mD/mB is the ratio of D and B meson masses. The vector form factor
FV (q2) parametrizes contributions to the matrix element from transverse W+

⊥ modes, whereas
the scalar form factor FS(q2) comes with longitudinal W+

‖ modes and H+ contributions. It
is convenient to describe the kinematics of the decay by the dimensionless variable

w ≡ (1 + r2 − q2/m2
B)/2r, 1 ≤ w ≤ wmax =

m2
B +m2

D −m2
ℓ

2mBmD
, (4.15)

where mℓ is the mass of the lepton in the final state of a semileptonic B → D decay. The
kinematic endpoint of maximal momentum transfer q2, where theD meson is produced at rest,
is associated with w = 1. In the rest frame of the B meson, w = ED/mD is the normalized

2The uncertainty is calculated using flat errors on the input parameters.
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Figure 4.3: Branching fractions B(B → τν) (left) and R(D) = B(B → Dτν)/B(B → Dℓν)
(right) as a function of gP and gS , respectively. Light gray: Experimental one-sigma range.
Dark gray: Theory estimations based on Eqs. (4.10) and (4.16).

kinetic energy of the D meson. One obtains the differential decay rate for B → Dτν in terms
of the variable w [107],

dΓ(B → Dτν)

dw
=
dΓℓ
dw

(
1 − r2τ

t

)2
{

1 +
r2τ
2t

+
3r2τ (1 − r2)2

8tr2(w2 − 1)

(
1 − gS t(w)

1 −mc/mb

)2 FS(w)2

FV (w)2

}
,

dΓℓ
dw

=
G2
F

12π3
|Vcb|2m5

B r
4(w2 − 1)3/2FV (w)2 , (4.16)

where dΓℓ/dw is the differential decay rate for B → Dℓν with mℓ = 0, rτ = mτ/mB , and
t(w) = 1 + r2 − 2rw = q2/m2

B . Details on the calculation can be found in Ref. [108]. The
branching ratio is then derived by integrating the differential rate within the kinematical limits
given in Eq. (4.15). The experiments at the B factories extract B(B → Dτν) normalized to
the decay into light leptons [109],

R(D)exp ≡ B(B → Dτν)

B(B → Dℓν)
= (41.6 ± 11.7 ± 5.2) · 10−2. (4.17)

The normalization to B(B → Dℓν) reduces the dependence on |Vcb|FV and thereby the overall
uncertainty. The uncertainty of about 30% is comparable with the error for the measurement
of B(B → τν). With the input values given in Tab. 4.1, we obtain the SM value within the
experimental one-sigma range,

R(D)SM = (30.8+ 2.0
− 1.9) · 10−2. (4.18)

We use |Vcb| determined from inclusive semileptonic B decays. For the parametrization and
the input values of the form factors FV and FS entering R(D) we refer to Sec. 4.3, where
we will perform a careful analysis.3 In Fig. 4.3 right, we plot R(D) as a function of gS in
comparison with the experimental result. Despite the good control of uncertainties on the
theory side, R(D) does not allow strong constraints on gS , because B(B → Dτν) is less
sensitive to charged-Higgs contributions than B(B → τν). R(D) provides the constraints

gS < 1.66 ∪ 3.63 < gS 95% CL. (4.19)

3The form factor inputs are given in Eqs. (4.26) and (4.30).
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Figure 4.4: Excluded regions at 95% CL in the (tan β,MH+) plane from B(B → τν) (light
gray) and R(D) (dark gray) in the 2HDM (left) and in the MSSM (right). The dashed lines
show the contours of the areas excluded by B(B → τν).

For gP = gS , one derives the combined constraints on the charged-Higgs coupling from
B(B → τν) in Eq. (4.13) and R(D),

gS < 0.34 95% CL . (4.20)

Note that R(D) excludes the range around gS = 2 left by B(B → τν). The constraints on
charged-Higgs contributions in B(B → τν) and R(D) are visualized in the (tan β,MH+) plane
in Fig. 4.4. We display the excluded parameter regions in the 2HDM (left) and the MSSM
(right), using the charged-Higgs coupling from Eq. (4.8) for a typical amount of Yukawa
corrections. The corrections ǫτ to the H+ − τ coupling are neglected. Via the constraints
on (tan β,MH+), B → (D)τν decays provide important information for the direct discovery
of a charged Higgs boson at colliders: In a scenario with large tan β, the charged Higgs
must be quite heavy, especially if supersymmetric Yukawa corrections enhance its coupling
to fermions. The discovery of a H+ in the B → (D)τν branching fractions themselves is
possible, but difficult. From Fig. 4.3 one sees that a high experimental precision is needed
in order to distinguish charged-Higgs contributions in the decay rates. In particular, the
extraction of gS is complicated in B(B → τν) by the considerable theoretical uncertainty,
and in B(B → Dτν) by the flat dependence on the charged-Higgs coupling.

Finally, a comment on charged-Higgs effects in other leptonic meson decay modes like
Ds → τν and K → µν is in order. Since the branching fractions and decay constant for these
decay modes are known to much better precision than for B → τν, it is worth to compare the
respective H+ – fermion couplings. In the 2HDM, the charged-Higgs coupling in the leptonic
decay of a meson M = djui is given by

gMP =
m2
M

M2
H+

mdj

mui +mdj

tan2 β, (4.21)

independently of the flavour of the lepton in the final state. This translates into the explicit
couplings in Ds and K decays,

gDs
P =

m2
Ds

M2
H+

ms

mc +ms
tan2 β ≈ 0.002 gBP , gKP =

m2
K

M2
H+

tan2 β ≈ 0.009 gBP . (4.22)
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Due to this significant suppression with respect to B decays, only K → µν reaches the level
of B → Dτν concerning constraints in the (tan β,MH+) plane in Fig. 4.4. Thus, none of
the leptonic decays of lighter mesons provides additional information on (tan β,MH+) to the
constraints from the branching ratios of B → τν and B → Dτν.

4.3 B → Dτν differential distributions

Even though the branching fraction of B → Dτν is less sensitive to charged-Higgs effects
than B(B → τν), the semi-tauonic mode is valuable, since it allows to study differential
decay distributions. These can distinguish H+ from W+ contributions through the shape of
the decay spectrum [101, 107, 110]. Thereby it is possible to not only constrain, but to mea-
sure |gS | and to additionally determine a possible CP phase from Yukawa corrections in the
charged-Higgs coupling. A first step in this direction involves the D meson energy spectrum
dΓ(B → Dτν)/dw from Eq. (4.16), which probes the different dependence on the momentum
transfer q2 of H+ and W+ contributions. To gain further information about the characte-
ristics of charged-Higgs couplings, one has to investigate the polarization of the τ lepton. Since
the taus emerging from a H+ decay are dominantly right-handed, the angular distribution of
the decay products in the final state will change characteristics in presence of charged-Higgs
contributions [111]. However, the reconstruction of the τ lepton is challenging at the B facto-
ries, because it decays too fast for a displaced vertex and its decay involves at least one more
neutrino. In particular, the τ polarization is not directly accessible. The straightforward way
to deal with the missing information on the τ kinematics is to study the full decay chain down
to the final detectable particles stemming from the τ lepton. The resulting decay distribution
preserves the dependence on the τ polarization and thereby exhibits an increased sensitivity
to gS with respect to dΓ/dw. We have studied the decays τ− → ℓ−νℓντ , τ

− → π−ντ , and
τ− → ρ−ντ and find the decay chain B → Dνττ

−[→ π−ντ ] most powerful to discriminate be-
tween H+ and W+ contributions. This can be understood by comparing the energy spectrum
of the particles ℓ−, π−, and ρ− in the final state, displayed in Fig. 1 of Ref. [111]. Energetic
pions stem dominantly from τR decays (H+ and longitudinal W+

‖ ), while soft pions originate
from τL (transversal W+

⊥ ). For muons and ρ mesons the spectra are less characteristic. We
therefore will elaborate on the experimentally accessible triple differential distribution

d3Γ ≡ dΓ(B → Dντ [→ πν])

dED dEπ dcos θDπ
, (4.23)

which retains information on the τ polarization through the explicit dependence on the π−

energy Eπ and the angle θDπ between the meson momenta ~pD and ~pπ. We define these
quantities in the rest frame of the B meson.

Confronting the above considerations with the experimental feasibility, one learns that
the price to pay for an increased sensitivity to charged-Higgs effects is a significant loss of
statistics. The current amount of data collected at the B factories allows the projection on
the q2 distribution, cf. Ref. [109], so that a fit of dΓ(B → Dτν)/dw to gS comes into reach.
The triple distribution d3Γ is more difficult to handle, because the fraction of τ decays into
π−ντ amounts to about 10% only. Still, this sensitive observable provides a promising tool to
measure the charged-Higgs coupling with increased statistics from upgraded B experiments.
In the following, we thus discuss the prospects of both the ED spectrum dΓ/dw and the triple
differential rate d3Γ, which mark the way to quantify gS from B → Dτν distributions.
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Hadronic form factors for B → D transitions

In order to maximize the theoretical precision of the differential decay distributions in
B → Dτν, it is crucial to know both the normalization and the shape of the two form
factors FV (q2) and FS(q2) given in Eq. (4.14). To avoid a pole in the decay amplitude at
q2 = 0, the form factors have to be equal at maximal D meson recoil,

FV (q2 = 0) = FS(q2 = 0) . (4.24)

At the opposite point of the spectrum, namely at w = 1, the vector and scalar form factors are
related within the framework of Heavy Quark Effective Theory (HQET) [112–115]. In HQET,
flavour and spin symmetries between mesons that contain one heavy quark Q are manifest in
the limit mQ → ∞. In particular, in the limit of heavy-quark symmetry all form factors in
B → D(∗) transitions reduce to the universal Isgur-Wise function ξ(w) [116]. At the leptonic
endpoint, this function is normalized to ξ(w = 1) = 1. Deviations from the heavy-quark limit
can be expressed by a series of corrections of O(1/mQ, αs). The HQET description of form
factors is justified if the momentum transfer to the light quark in the meson is small compared
to the heavy quark mass mQ. This condition is fulfilled in the kinematically allowed range of
B → Dτν decays from Eq. (4.15). To apply heavy-quark constraints to B → D transitions,
we define the rescaled vector and scalar form factors V1(w) ≡ FV (w) · 2

√
r/(1 + r) and

S1(w) ≡ FS(w) · (1 + r)/
√
r (w + 1). At w = 1, the heavy-quark relation reads

V1(1) = S1(1) = 1 + O(1/mc,b, αs) . (4.25)

Let us focus on the scalar form factor S1. At the leptonic endpoint, S1(w = 1) is protected
from O(1/mQ) corrections to the heavy-quark limit, according to Luke’s theorem [117]. The
radiative corrections to heavy-quark currents of O(αs) have been calculated in Ref. [118]. We
add an uncertainty of 5% to account for corrections of O(1/m2

c,b, α
2
s) and get4

S1(1) = 1.02 ± 0.05 . (4.26)

The shape of the form factors can be described in terms of only two parameters by exploring
dispersion relations and analyticity properties. There are different parametrizations on the
market [119,120], which however are based on the same techniques and therefore lead to very
similar results [2]. After a conformal mapping of the kinematic variable

q2

m2
B

= t −→ z(t, t0) =

√
t+ − t−√

t+ − t0√
t+ − t+

√
t+ − t0

(4.27)

with |z| < 1 and t± = (1 ± r)2, the form factors can be expanded in a power series of z,

FV,S(t) =

∞∑

k=0

CV,Sk (t0) z
k(t, t0) . (4.28)

Choosing t0 = t−, the vector form factor is parametrized to very good approximation by [119]

V1(t) = G(1) ·
{

1 − 8ρ2 z(t, t0) + (51ρ2 − 10) z2(t, t0) − (252ρ2 − 84) z3(t, t0)
}
. (4.29)

4We compute S1(1) = Ĉ1 − Ĉ2 − Ĉ3 using the Wilson coefficients Ĉi for w = 1 from the appendix of
Ref. [118]. The quark mass inputs required for the determination of αs(mc,b) are taken from Ref. [105].
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Figure 4.5: Form factors |Vcb|FV (w) (light gray, cf. Eq. (4.30)) and |Vcb|FS(w) (dark gray,
cf. Eqs. (4.24), (4.26), and (A.26)) for semileptonic B → D decays. The vertical dashed line
marks the endpoint of maximal recoil in B → Dτν, wmax = 1.43.

From the differential distribution in Eq. (4.16), one learns that the decay B → Dℓν involves
only the vector form factor FV if the lepton in the final state is massless. The collaborations
BaBar and BELLE have recently extracted the normalization |Vcb|G(1) and the shape para-
meter ρ2 of the vector form factor from the spectrum dΓℓ/dw [99,100]. The world average by
the HFAG reads [63]

|Vcb|G(1) = (42.3 ± 0.7 ± 1.3) · 10−3 , ρ2 = 1.18 ± 0.04 ± 0.04 , (4.30)

with a correlation of 0.88. The scalar form factor is thereby automatically known at t = 0
from Eq. (4.24). Using the HQET value at the opposite edge of the spectrum from Eq. (4.26)
as second input, FS is fixed over the entire kinematic range by a two-parameter function
based on Eq. (4.28). The explicit expression is given in Appendix A.4.

The form factors resulting from these considerations are shown in Fig. 4.5. Uncertainties
are largest at w = 1. The vector form factor |Vcb|FV (w) is thereby known to a precision
of less than δ|Vcb|FV (w = 1) = 3.5%. The error of the scalar form factor is dominated by
the 5% uncertainty on the HQET input and amounts to δ|Vcb|FS(w = 1) = 6.4%. These
results provide good prospects to distinguish charged-Higgs contributions in the differential
distributions of B → Dτν.

An alternative route to pin down hadronic uncertainties in scalar currents might be given
by lattice calculations. In the quenched approximation, the ratio FS(w)/FV (w), parametrized
by ∆(w), has been computed within the kinematic range 1 < w < 1.2 with an error of 2%
[121,122]. The B → Dτν decay distributions depend only on this ratio, once one normalizes to
the B → Dℓν spectrum, cf. Eq. (4.16). By using the lattice input ∆(1) = 0.46± 0.01 instead
of the HQET value for S1(1), one could improve the overall precision of scalar contributions
in the normalized B → Dτν spectrum. However, further uncertainties are expected due to
the extrapolation of ∆(w) to larger values of w and the suppression of sea-quark masses in
the simulation. Therefore we do not find the lattice approach preferable to our conservative
error estimation based on HQET.
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Figure 4.6: Exclusions in the complex gS plane from B(B → τν) (light gray) and R(D) (dark
gray) at 95% CL, assuming gS = gP .

D meson energy spectrum

The branching ratios of B → τν and B → Dτν decays considered in Sec. 4.2 put already
stringent constraints on the absolute value of the charged-Higgs coupling gS . They are,
however, not sensitive to a potential phase of gS . We illustrate the constraints on gS from
B(B → τν) and R(D) in the complex plane in Fig. 4.6. The real axis reflects the results
from Sec. 4.2, see Eqs. (4.13) and (4.19). The constraint from the B → Dτν branching ratio
removes part of the white ring left by B → τν.

Further constraints can be added by differential distributions of B → Dτν, since they
allow to discriminate between different values of gS through the shape of the spectrum. Let
us once more come back to the D meson energy spectrum in Eq. (4.16). Close to the leptonic
endpoint, the transverse modes W+

⊥ (FV ) are suppressed with respect to longitudinal W+
‖

and charged-Higgs contributions (FS) by (w2 − 1). This is the analytic explanation for the
P -wave suppression of transverse modes mentioned in the introduction to this section. Fur-
ther, charged-Higgs contributions exhibit an additional dependence on w, which distinguishes
them from W+

‖ modes. Experimentally, the latter feature is more important than the W+
⊥

suppression near w = 1, because of the poor statistics at the leptonic endpoint. Via a fit to
the entire spectrum, it is possible to gain valuable additional information on gS . In Fig. 4.7
left, we show the spectrum dΓ(B → Dτν)/dw in the Standard Model and with charged-Higgs
contributions. The exemplary values gS = 0.3 and gS = 1 + 0.7i are allowed, but indistin-
guishable in B → (D)τν branching fractions. They lead to the same B(B → τν), but have
clearly different shapes in the w spectrum. One observes that it is difficult to strengthen
the upper bound on gS from the shape, because the sensitivity is not sufficient to detect tiny
charged-Higgs effects with gS ≤ 0.34. However, in presence of a complex phase, charged-Higgs
effects can change the shape of the spectrum significantly, as for gS = 1 + 0.7i. Knowing the
phase of gS would give us insight into the structure of supersymmetric Yukawa corrections to
the charged-Higgs coupling.

Triple differential distribution

To include the information on the τ polarization, we suggested to investigate the triple dif-
ferential distribution d3Γ from Eq. (4.23) in the decay chain B → Dντ−[→ π−ν]. The
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Figure 4.7: Differential decay distributions dΓ(B → D+τ−ντ )/dw (left) and dΓ(B →
D+νττ

−[→ π−ντ ])/dw dEπdcos θDπ (right) in the SM (light gray) and with charged-Higgs
contributions. The displayed values gS = 0.3 (gray) and gS = 1+0.7i (dark gray) are allowed
by B(B → τν) and R(D) from Sec. 4.2.

experimental access to this observable is given by the measurement of the energies ED and
Eπ in the B rest frame, as well as the angle θ between the mesons in the final state. The τ
polarization is encoded in these quantities via the correlation with the momentum of the pion
originating from the τ decay. If the τ lepton is right-handed, the pion preferably flies into
the direction of the τ , as we illustrate in Fig. 4.8. Pions from left-handed τ leptons prefer
the opposite direction. Charged Higgs bosons thereby manifest themselves in an excess of
energetic pions, especially if the D and π mesons fly back-to-back. Background from hadronic
decays à la B → DD−[→ π−π0] with unobserved neutral pions can be rejected by cuts in the
angular distribution around

cos θ =
(mB − ED − Eπ)

2 − 2(E2
D −m2

D) −m2

2(E2
D −m2

D)
, (4.31)

where m is the mass of the undetected particle. We obtain the triple differential distribution
by integrating over the neutrinos,

dΓ(B → Dν̄ττ
−[→ π−ντ ])

dED dEπ dcos θDπ
=G4

F f
2
π|Vud|2|Vcb|2ττ (4.32)

×
[
CW (FV , FS) − CWH(FV , FS)Re[gS ] + CH(FS)|gS |2

]
,

with the functions CW for the SM, CWH for interference, and CH for Higgs contributions.
Explicit expressions are given in Appendix A.4. Inputs for the pion decay constant fπ− , the
CKM elements |Vud| and |Vcb|, and the τ lepton lifetime ττ are summarized in Tab. 4.1. The
dependence of d3Γ on both Re(gS) and |gS | allows to distinguish the phase of the charged-
Higgs coupling from the shape, as was already the case in the ED spectrum dΓ/dw. Since
the differential distributions are CP -conserving quantities, a phase can be extracted up to
a twofold ambiguity. The increased sensitivity to charged-Higgs effects of d3Γ over dΓ/dw
becomes visible in Fig. (4.7) right. We plot d3Γ for fixed values Eπ = 1.8GeV and cos θ = −1
as a function of w. This choice corresponds to a kinematical region with an energetic pion
back-to-back with the D meson, where one expects H+ contributions to show up. Compared
to dΓ/dw, the additional information on the τ polarization changes the spectrum qualitatively.
Thereby it is possible to measure the phase of gS and furthermore to distinguish even tiny
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Figure 4.8: Correlation between the τ polarization and the π− momentum in the decay chain

B → Dντ−[→ π−ν].

charged-Higgs effects through the shape of the spectrum. A maximum likelihood fit to d3Γ
would automatically explore both the q2 dependence and the τ polarization that characterize
charged-Higgs contributions all over the phase space.

Note that B → τν is not expected to resolve very small charged-Higgs effects. Even with
significant improvements on the decay constant fB and the CKM element |Vub|, couplings of
gP ≃ 0.2 are very difficult to distinguish from the SM in the branching fraction. B → Dτν
distributions, if resolvable, definitively compete with B → τν and provide a complementary
approach to H+ searches at the LHC. Moreover, the distributions allow not only to find a
charged Higgs boson, but to determine the magnitude and phase of its coupling to fermions.

4.4 Yukawa unification and tan β

Knowing the value of tan β helps to gain insight into the structure of the Yukawa sector in an
SO(10) framework. In particular, the unification of the third-generation Yukawa couplings
at the SO(10) scale is very sensitive to tan β. In the case of tan β ≃ 50, yt and yb are of
comparable size, allowing for top-bottom-tau unification at M10. The RGE of the bottom
Yukawa coupling, however, is affected by a priori large tan β-enhanced threshold corrections
near the electroweak scale, due to the supersymmetric loops from Fig. 4.1. To keep the
Yukawa corrections ǫg̃b and ǫχ̃b small, the relevant SUSY parameters ought to fulfill [84]

µmg̃, µAt ≪ m2
q̃ , (4.33)

leading to a spectrum with light fermionic and heavy scalar SUSY mass parameters. Impor-
tantly, bottom-tau unification itself strongly depends on tan β, which enters the RGE of the
bottom Yukawa coupling via yt. To obtain a sufficiently low bottom mass, tan β has to be
either of O(1) (which is excluded) or of O(50) [123]. Threshold corrections to mb may relax
this constraint to smaller values of tanβ, but would in turn spoil bottom-top unification.

In SO(10), top-bottom-tau unification is realized at M10 if tanβ is large, and if the Yukawa
couplings of all third-generation fermions are generated from a single term Y ij 16i16j10H in
the superpotential. Within this framework, fermion mixing and Yukawa corrections for light
fermions are provided by adding either renormalizable terms with large Higgs representations
120H and/or 126H , or non-renormalizable higher-dimensional operators with 45H ⊗ 10′H , for
instance. In the CMM model, top-bottom-tau unification is relaxed to potential bottom-
tau unification, since up- and down-type Yukawa couplings are generated by separate terms
in the superpotential. Due to the suppression of yb with respect to yt by v10/MPl, which
naturally implies tanβ < 10, bottom-tau unification works to about 18% only. The gauge
couplings g′1 and g2 unify at MGUT = 4 · 1016 GeV, yielding yb(MGUT) = 0.83 yτ (MGUT) for
the input value tan β = 5 used in this work. This result is not very sensitive to the remaining
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CMM inputs mg̃, md̃, ad, and arg(µ). More generally, bottom-tau unification is challenged in
SO(10) models with small tanβ, where down-type Yukawa couplings are entirely generated by
higher-dimensional operators. SU(5)-breaking terms can partially account for this mismatch
via corrections of v5/v10 = O(10%). Another way out might be to relax the assumption
Hu ⊂ 10H , Hd ⊂ 10′H to linear combinations as in Eq. (2.5), such that the bottom Yukawa
coupling receives a contribution from the large coupling to 10H . In this case, however, the
typical effects of large neutrino mixing among right-handed down squarks are more difficult
to identify.

The potential unification of Yukawa couplings is a valuable and not at all obvious add-on
to gauge coupling unification. Preserving Yukawa unification and simultaneously providing
realistic fermion masses and mixings requires the refinement of the Yukawa sector by ad-
ditional terms in any case. The perturbative SO(10) models built with higher-dimensional
operators can be classified by means of tanβ. Large-tan β effects in flavour observables like in
B → (D)τν or Bs → µ+µ− hint at top-bottom-tau unification at M10. In absence of signals
for large tanβ, atmospheric neutrino mixing effects in Bs,d observables indicate the realization
of CMM-like models with suppressed down-type Yukawa couplings. B → (D)τν decays play
a special role to distinguish between different SO(10) models: Contrary to Bs observables,
the constraints on tan β from B → (D)τν for a fixed SUSY spectrum are independent of
atmospheric neutrino mixing effects. This allows us to figure out the realized model step by
step from b− s transitions and (semi)tauonic B decays.
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Conclusions

In the attempt to answer grand questions by Grand Unification, flavour physics observables
play a crucial role. They probe Yukawa unification independently from other hot spots in
GUTs like proton decay. In this work, we focussed on the relation between right-handed
down quarks and leptons. Their embedding in one single GUT representation translates lep-
ton flavour mixing into flavour-changing neutral currents among right-handed down quarks.
In particular, the large atmospheric neutrino mixing angle induces bR − sR transitions. In
the Standard Model, right-handed currents are generated only at loop level and strongly
suppressed. In supersymmetric models, however, flavour mixing among the superpartners
of right-handed down quarks can be large. Via flavour-changing down-quark-squark-gluino
couplings, b̃R − s̃R transitions translate effects of atmospheric neutrino mixing into Bs ob-
servables.

Perfect Yukawa unification can be realized only within the third generation of fermions.
A GUT model with realistic fermion masses and mixings requires Yukawa corrections for
light fermions. These are provided by adding higher-dimensional Yukawa terms suppressed
by powers of 1/MPl, with an a priori arbitrary flavour structure. Such terms may arise by
integrating out heavy degrees of freedom at the Planck scale. Yukawa corrections introduce
the large atmospheric neutrino mixing angle also into bR − dR and sR − dR transitions. This
allows to probe the flavour structure of corrections to down-quark-lepton unification with K
and Bd physics observables.

We have studied Yukawa (non)unification in the framework of the CMM model, a su-
persymmetric SO(10) model with flavour-blind SUSY breaking at the Planck scale. In this
model, the Yukawa couplings of down quarks and leptons are generated by a dimension-five
term and thereby suppressed with respect to up quarks by v10/MPl ∼ 10−2, which naturally
implies tan β . 10. Imprints of Grand Unification in flavour physics observables are confined
to effects of atmospheric neutrino mixing in down-squark currents. These effects are large in
the case of a light gluino and a strong inverted mass hierarchy among down squarks, generated
by the fast renormalization group evolution of Yukawa couplings in SO(10).

In Chapter 2, we have analyzed neutrino mixing effects in Bs−Bs mixing. The measured
mass difference ∆Ms sets a lower limit on the gluino mass, mg̃ & 550GeV, for a vanishing
CMM phase φBs = 0, which limits the general magnitude of CMM effects. Still, the CP
phase φs in Bs − Bs mixing can be significant. This finding can explain the discrepancy
of & 2σ between the measurement of a sizeable φs and a very small phase in the Standard
Model. For φBs ≃ 1 rad and a small gluino mass, the resulting phase φs ≃ −0.5 rad reaches
the experimental one-sigma range.

The CMM model was extended in Chapter 3 to include Yukawa corrections to Yd = Y ⊤
e of

v5/v10 = O(10−1). We parametrized the resulting additional rotations of dR and sR (s)quarks
by a mixing angle θ and three phases. In the absence of accidental cancellations among the

73
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new phases, the CP -violating observable |ǫK | sets the strong constraint θ . 1◦. This implies
that the flavour structure of Yukawa corrections to down-quark-lepton unification must be
aligned with the initial unified couplings Yd and Ye. The mass relations md−me and ms−mµ

are therefore corrected without introducing new flavour-changing effects in Bd and other (less
sensitive) K observables. Independently from kaon physics, the B physics observables ∆Md,
SJ/ψKS

, and ∆Ms/∆Md lead to the looser bound θ . 20◦, which applies for the case of a
vanishing CMM phase in the kaon system, φK = 0. As an application of neutrino mixing
effects due to Yukawa corrections, we studied the determination of the unitarity triangle from
K and Bd observables. The recently claimed tension concerning CP violation in the K and Bd
systems can be removed within the CMM model. Taking into account the above-mentioned
parameter constraints, CP -violating effects in K and Bd mixing are large enough to close the
unitarity triangle and at the same time account for a sizeable CP phase in Bs −Bs mixing.

Beyond the CMM model, our results hold more generally in GUT models with small
Higgs representations. Once the mass relations between light down-type quarks and leptons
are corrected by higher-dimensional Yukawa terms, large neutrino mixing effects in bR − sR
transitions a priori imply effects in bR−dR and sR−dR transitions. In scenarios with minimal
flavour violation, FCNC among down (s)quarks are made visible by breaking the universality
of down-squark masses through renormalization group effects. While in the CMM model
mass universality breaking stems from the large effects of yt in SO(10) running, in SU(5)
models off-diagonal mass matrix elements may arise from down-quark couplings to heavy
Higgs bosons and right-handed neutrinos. Other sources of flavour and CP violation in |ǫK |
would soften the constraints on θ. Yet, they would have to be fine-tuned to cancel the large
neutrino mixing effects.

In Chapter 4, we addressed the impact of the parameter tanβ on Yukawa unification
in GUT models. Since successful top-bottom-tau unification requires tan β ≃ 50, knowing
its value is crucial to specify the Yukawa sector. The (semi)leptonic decays B → τν and
B → Dτν are sensitive to tan β in tree-level contributions of charged Higgs bosons. From
the branching fractions of both decay modes the charged-Higgs coupling is constrained to
gS ≤ 0.34 at 95% CL. The D meson energy spectrum dΓ(B → Dτν)/dED can distinguish
a potential phase in gS if tanβ/MH+ is sufficiently large. Experimentally, a fit to the ED
spectrum is feasible with the present data collected at the B factories. With more statistics
one could explore the triple differential decay rate dΓ(B → Dντ [→ πν])/dED dEπ d cos θDπ.
This observable contains additional information on the τ polarization, which distinguishes
between the angular distributions of τ leptons stemming from W+ and H+ decays. The
thereby increased sensitivity allows to measure the coupling of charged Higgs bosons for
gS ≤ 0.3 through the shape of the spectrum, in addition to detecting a phase in the coupling.
There are thus good prospects to discover charged Higgs bosons in the decay distributions of
B → Dτν or, for a fixed SUSY spectrum, to pin down the value of tanβ. The information
on tanβ from B → (D)τν decays helps to reveal the Yukawa sector of a perturbative GUT
model step by step. Knowing the magnitude of tanβ clarifies whether down-type Yukawa
couplings are generated from a higher-dimensional term (small tan β) or unified with up-type
couplings (large tan β). Effects of large neutrino mixing in b− s, b− d, and s− d transitions
subsequently indicate the pattern of Yukawa corrections by constraining the parameters of a
specific model.

Imprints of neutrino mixing in K and B physics observables probe the flavour structure of
higher-dimensional Yukawa terms with different contributions to down quarks and leptons.
While the effect of these terms on the mass relationsms−mµ andmd−me and on proton decay
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has been investigated before, the constraints on their flavour structure are a novel result of
this work. The second class of Yukawa corrections, which contributes equally to down quarks
and leptons, is relevant for proton decay. Our analysis is thus complementary to studies
of higher-dimensional operators in proton decay. The finding of aligned Yukawa couplings
and corrections supports the suppression of dimension-five contributions to proton decay in
supersymmetric GUTs. Moreover, the flavour structure of the Yukawa sector is closely linked
to the minimal Higgs field content of a model. Both the Yukawa and Higgs sectors therefore
have to complement each other within a consistent and complete GUT model of flavour.
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Appendix A

A.1 Weyl spinors

A four-component Dirac spinor ψ can be written in terms of two-component Weyl spinors ξ
and χ,

ψ =

(
ξα

ǫρσχσ

)
, ψ = (χ∗

βǫ
βα, ξ∗ρ) with ǫαβ = −ǫαβ = 1, ξα = ǫαβξ

β . (A.1)

Lorentz indices α, β (ρ, σ) = 1, 2 are used for the upper (lower) components of ψ (and are not
to be confounded with SU(2) indices). ψ = ψ†γ0 denotes the Dirac-conjugated spinor. We
use the Weyl representation of the Dirac algebra,

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−1 0

0 1

)
, (A.2)

with σµ, σµ given in Eq. (1.12). By applying the chirality projectors PL,R = (1∓ γ5)/2 to the
Dirac spinor,

PLψ =

(
ξα
0

)
, PRψ =

(
0

ǫρσχσ

)
, (A.3)

one learns that ξ is a “left-handed” and χ is a “right-handed” Weyl spinor. A charge-
conjugated left-handed Dirac spinor reads

(ψL)c = iγ2PLψ
∗ = i

(
0 σ2

−σ2 0

)(
ξ∗α
0

)
= −i

(
0

σ2 ξ∗ρ

)
. (A.4)

This is a right-handed spinor, and one verifies that (ψc)R = PRiγ
2ψ∗ = (ψL)c. We thus define

ξc ≡ −iσ2 ξ∗ρ = ǫρσ(ξ
∗)σ = −ǫρσ(ξ∗)σ. (A.5)

Expressed in terms of Weyl spinors, the Lorentz scalar and vector bilinears read

ψ1ψ2 = (χ∗
1)β ǫ

βα(ξ2)α + (ξ∗1)ρ ǫ
ρσ(χ2)σ ≡ χc1 ξ2 + ξc1 χ2 ,

ψ1γ
µPLψ2 = ((χ∗

1)β ǫ
βα, (ξ∗1)ρ)

(
0 σµ

σµ 0

)(
(ξ2)α

0

)
= ǫρσ(ξ

∗
1)σ(σµ)ρα(ξ2)α ≡ ξc1 σ

µ ξ2 ,

ψ1γ
µPRψ2 = (χ∗

1)
βǫβα(σµ)αρǫ

ρσ(χ2)σ = χc1 σ
µ χ2 .

(A.6)
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One can identify ξ and χ with fermion fields fL and fR, such that for instance

ψ1ψ2 = (f1R)cf2L + (f1L)cf2R = (f c1)Lf2L + (f c1)Rf2R . (A.7)

A.2 SO(10) decompositions

Irreducible decompositions The decomposition of SO(10) representations in terms of
SU(5) fields reads

16 = 1 ⊕ 5 ⊕ 10

10 = 5 ⊕ 5

120 = 5 ⊕ 5 ⊕ 10 ⊕ 10 ⊕ 45 ⊕ 45

126 = 1 ⊕ 5 ⊕ 10 ⊕ 15 ⊕ 45 ⊕ 50

45 = 1 ⊕ 10 ⊕ 10 ⊕ 24 .

(A.8)

The relations between tensor products and direct sums of SO(10) representations relevant for
Yukawa couplings are

16 ⊗ 16 = 10S ⊕ 120A ⊕ 126S
10 ⊗ 45 = 10 ⊕ 120 ⊕ 320

10 ⊗ 16 = 16 ⊕ 144

45 ⊗ 16 = 16 ⊕ 144 ⊕ 560 .

(A.9)

In SU(5), the irreducible decompositions of fermion bilinears are given by

5 ⊗ 10 = 5 ⊕ 45

10 ⊗ 10 = 5 ⊕ 45 ⊕ 50 .
(A.10)

Explicit tensor decompositions SO(10) tensor representations φµν... of arbitrary dimen-
sion can be decomposed into SU(5) fields following Ref. [43],1

φca cb... = φ2a−1 cb... − iφ2a cb... ,

φc̄a cb... = φ2a−1 cb... + iφ2a cb... ,
(A.11)

The decomposition of the tensor representation 45 = φµν into reducible SU(5) representations
is given by

φµν =
iµ+ν

4

(
− φc̄ac̄b + (−1)νφc̄acb + (−1)µφcac̄b − (−1)µ+νφcacb

)
. (A.12)

One identifies the irreducible SU(5) constituents of 45 = φµν = 145 ⊕ 1045 ⊕ 1045 ⊕ 2445 [124],

φc5c̄5 =
√

10H , φc̄ac̄b =
√

2Hab ,

φcacb =
√

2Hab , φcac̄b =
√

2 Σa
b + 1

5 δ
a
b

√
10H ,

(A.13)

with

H = 145 , Hab = 1045 , Hab = 1045 , Σa
b = 2445 . (A.14)

1The formalism has been adapted to our conventions, cf. Eq. (1.64).
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A.3 Loop functions for meson mixing

The loop functions for meson mixing from the weak W box diagrams in the SM are given by
the Inami-Lim functions [125]

S0(xc) = xc, (A.15)

S0(xt) =
4xt − 11x2

t + x3
t

4(1 − xt)2
− 3x3

t log(xt)

2(1 − xt)3
, (A.16)

S0(xc, xt) = xc

[
log

xt
xc

− 3xt
4(1 − xt)

− 3x2
t log xt

4(1 − xt)2

]
, (A.17)

with xq = m2
q/M

2
W , where mq ≡ mq(mq) is the quark mass in the renormalization scheme

MS. For the gluino box diagrams relevant in the CMM model, the loop functions read

L0(x, y) =
11

18
G(x, y) − 2

9
F (x, y), (A.18)

S(g̃)(x, y) = L0(x, x) − 2L0(x, y) + L0(y, y), (A.19)

with F (x, y) and G(x, y) defined in Ref. [126],

F (x, y) = − 1

(x− 1)(y − 1)
− 1

x− y

[
x lnx

(x− 1)2
− y ln y

(y − 1)2

]
, (A.20)

G(x, y) =
1

(x− 1)(y − 1)
+

1

x− y

[
x2 lnx

(x− 1)2
− y2 ln y

(y − 1)2

]
. (A.21)

A.4 B → D form factors and decay distribution

Form factors Following the notations of Ref. [120], the hadronic form factors for B → D
transitions can be parametrized by a power series in the kinematic variable z, cf. Eq. (4.27),2

Fj(t) =
1

Pj(t)φj(t, t0)

∞∑

k=0

ajk(t0) z
k(t, t0) , (A.22)

where t0 = t+(1 −
√

1 − t−/t+) has been chosen in order to minimize |zmax|. For B → D,
one has |zmax| = 0.032, such that it is sufficient to break the series after the linear term in z
if the coefficients ak are under control. This is ensured by introducing the functions P (t) and
φ(t). Resonances below the BD threshold mB +mD ≈ 7.15GeV are removed by

P (t) =
∏

i

z(t,m2
B∗

c,i
/m2

B) . (A.23)

For the vector and scalar form factors, the relevant B∗
c resonances with JP = 1− and 0+

are [127]

PV (t) : mB∗
c

= 6.337, 6.899, 7.012GeV ,

PS(t) : mB∗
c

= 6.700, 7.108GeV .
(A.24)

2Note that we rescaled the variable t → m2
Bt with respect to Ref. [120], and accordingly for t0,±.
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Parameters centr. |Vcb|F min. |Vcb|F max. |Vcb|F
{|Vcb|G(1), ρ2} {0.042, 1.18} {0.041, 1.14} {0.044, 1.22}
|Vcb|{aV0 , aV1 } [10−5] {1.09,−3.1} {1.07,−2.6} {1.12,−3.7}
|Vcb|{aS0 , aS1 } [10−4] {1.88,−6.9} {1.80,−5.3} {1.97,−8.5}

Table A.1: Parameter sets for the form factors |Vcb|FV and |Vcb|FS . The results are shown in
Fig. 4.5, where the envelopes of the error bands correspond to the inputs labeled by “min.”
and “max.”.

The functions φj(t) are taken by default as

φV (t, t0) =
1

mB

1√
24π

t+ − t

(t+ − t0)1/4

(
z(t, 0)

−t

)5/2 (z(t, t0)
t0 − t

)−1/2(z(t, t−)

t− − t

)−3/4

,

φS(t, t0) =

√
t+t−
8π

√
t+ − t

(t+ − t0)1/4

(
z(t, 0)

−t

)2(z(t, t0)
t0 − t

)−1/2(z(t, t−)

t− − t

)−1/4

,

(A.25)

setting η = 2 and Q2 = 0 in Eq. (10) of Ref. [120]. The explicit expressions for FV and FS in
terms of two parameters a0 and a1 are finally given by

FV (t) =
1

PV (t)φV (t, t0)

{
aV0 + aV1 z(t, t0)

}
,

FS(t) =
1

PS(t)φS(t, t0)

{
aS0 + aS1 z(t, t0)

}
.

(A.26)

The coefficients aV0,1 for the vector form factor are derived from a fit to the experimen-

tal spectrum of B → Dℓν, cf. Eq. (4.29).3 For the scalar form factor, aS0,1 are fixed by

FS(0) = FV (0) and FS(t−) = 2
√
r

1+r (1.02 ± 0.05) from HQET. Using the inputs |Vcb| from

Tab. 4.1 and |Vcb|G(1), ρ2 from Eq. (4.30), we derive the relevant coefficients for B → D form
factor parametrizations given in Tab. A.1.

Decay distribution The triple differential distribution in the decay chain
B → Dν̄ττ

−[→ π−ντ ] reads

dΓ(B → Dν̄ττ
−[→ π−ντ ])

dED dEπ dcos θDπ
=G4

F f
2
π|Vud|2|Vcb|2ττ (A.27)

×
[
CW (FV , FS) − CWH(FV , FS)Re[gS ] + CH(FS)|gS |2

]
.

3The parametrizations in Eqs. (4.29) and (A.26) are equivalent and result in the same shape for the vector
form factor, when fitted to the spectrum.
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Setting mπ = 0, which is good to 1% precision in d3Γ, one has

CW = κ
m4
τ

2

l2

pπ · l

{
P 2(b− 1) + (P · l)2 2b

l2
+

[
l2(P · pπ)2
(pπ · l)2

− 2(P · l)(P · pπ)
pπ · l

]
(3b− 1)

}
,

CWH = 2κm4
τ

(1 − r2)FS
1 −mc/mb

b

[
P · l − l2P · pπ

pπ · l

]
,

CH = κm6
τ

(1 − r2)2F 2
S

(1 −mc/mb)2

(
1 − m2

τ

2 pπ · l
)
,

(A.28)

with the abbreviations

P = FV (pB + pD) − (FV − FS)
m2
B(1 − r2)

q2
(pB − pD) ,

κ =
Eπ

√
E2
D −m2

D

128π4 mBmτ
, b =

m2
τ

pπ · l
(
1 − m2

τ

2 pπ · l
)
,

l = pB − pD − pπ , q2 = (pB − pD)2.

(A.29)

The dot products appearing in Eqs. (A.28) and (A.29) are related to the energies, momenta,
and the angle θDπ measured in the B rest frame as

pB ·l =mB(mB − ED − Eπ) , pD ·l = ED(mB − ED − Eπ) + |~pD|2 + |~pD|Eπ cos θDπ ,

pπ ·l =Eπ(mB − ED) + |~pD|Eπ cos θDπ , pB ·pD = mBED . (A.30)
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metric corrections to the anomalous magnetic moment of the muon,” Phys. Rev. D79
(2009) 013010, arXiv:0808.1530 [hep-ph].

[103] W.-S. Hou, “Enhanced charged Higgs boson effects in B− → τν, µν, and b→ τν+X,”
Phys. Rev. D48 (1993) 2342.

[104] CKMfitter Collaboration. Fit inputs for winter 2009. Updates on
http://www.slac.stanford.edu/xorg/ckmfitter/.

[105] K. G. Chetyrkin et al., “Charm and Bottom Quark Masses: an Update,”
arXiv:0907.2110 [hep-ph].

[106] S. Bethke, “Experimental tests of asymptotic freedom,” Prog. Part. Nucl. Phys. 58
(2007) 351, arXiv:hep-ex/0606035.

[107] K. Kiers and A. Soni, “Improving constraints on tan β/mH using B → Dτν,” Phys.
Rev. D56 (1997) 5786, arXiv:hep-ph/9706337.

[108] A. V. Manohar and M. B. Wise, “Heavy Quark Physics,” Cambridge University Press,
UK (2000) .

[109] BABAR Collaboration, B. Aubert et al., “Measurement of the Semileptonic Decays
B → Dτ−ντ and B → D∗τ−ντ ,” Phys. Rev. D79 (2009) 092002, arXiv:0902.2660
[hep-ex].

[110] T. Miki, T. Miura, and M. Tanaka, “Effects of charged Higgs boson and QCD corrections
in B → Dτν,” arXiv:hep-ph/0210051.

[111] B. K. Bullock, K. Hagiwara, and A. D. Martin, “Tau polarization as a signal of charged
Higgs bosons,” Phys. Rev. Lett. 67 (1991) 3055–3057.

[112] N. Isgur and M. B. Wise, “Weak Decays of Heavy Mesons in the Static Quark Approxi-
mation,” Phys. Lett. B232 (1989) 113. And references therein.

[113] B. Grinstein, “The static quark effective theory,” Nucl. Phys. B339 (1990) 253.

[114] E. Eichten and B. R. Hill, “Static effective field theory: 1/m corrections,” Phys. Lett.
B243 (1990) 427.



90 BIBLIOGRAPHY

[115] H. Georgi, “An effective field theory for heavy quarks at low energies,” Phys. Lett. B240
(1990) 447.

[116] N. Isgur and M. B. Wise, “Weak transition form factors between heavy mesons,” Phys.
Lett. B237 (1990) 527.

[117] M. E. Luke, “Effects of subleading operators in the heavy quark effective theory,” Phys.
Lett. B252 (1990) 447.

[118] M. Neubert, “Short distance expansion of heavy quark currents,” Phys. Rev. D46 (1992)
2212.

[119] I. Caprini, L. Lellouch, and M. Neubert, “Dispersive bounds on the shape of B → D(∗)ℓν
form factors,” Nucl. Phys. B530 (1998) 153, arXiv:hep-ph/9712417.

[120] R. J. Hill, “The modern description of semileptonic meson form factors,”
arXiv:hep-ph/0606023.

[121] G. M. de Divitiis, R. Petronzio, and N. Tantalo, “Quenched lattice calculation of
semileptonic heavy-light meson form factors,” JHEP 10 (2007) 062, arXiv:0707.0587
[hep-lat].

[122] J. F. Kamenik and F. Mescia, “B → Dτν Branching Ratios: Opportunity for Lat-
tice QCD and Hadron Colliders,” Phys. Rev. D78 (2008) 014003, arXiv:0802.3790

[hep-ph].

[123] B. Ananthanarayan, K. S. Babu, and Q. Shafi, “Supersymmetric models with tan β
close to unity,” Nucl. Phys. B428 (1994) 19, arXiv:hep-ph/9402284.

[124] P. Nath and R. M. Syed, “Complete cubic and quartic couplings of 16 and 16 in SO(10)
unification,” Nucl. Phys. B618 (2001) 138, arXiv:hep-th/0109116.

[125] T. Inami and C. S. Lim, “Effects of Superheavy Quarks and Leptons in Low-Energy
Weak Processes KL → µ+µ−, K+ → π+νν, and K0 ↔ K0,” Prog. Theor. Phys. 65
(1981) 297. [Erratum: 65 (1981) 1772].

[126] S. Bertolini, F. Borzumati, A. Masiero, and G. Ridolfi, “Effects of supergravity induced
electroweak breaking on rare B decays and mixings,” Nucl. Phys. B353 (1991) 591.

[127] E. J. Eichten and C. Quigg, “Mesons with beauty and charm: Spectroscopy,” Phys.
Rev. D49 (1994) 5845, arXiv:hep-ph/9402210.



Acknowledgements

© I thank Prof. Ulrich Nierste for supervising my work, for interesting discussions and
helpful explanations, and for supporting me as a novice in the physicists’ community.
His animated way of talking about particle physics has always been inspiring to me.
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