
Deductive Verification of
Safety-Critical Java Programs

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
der Universität Fridericana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Christian Engel
aus Karlsruhe

Tag der mündlichen Prüfung: 13.11.2009
Erster Gutachter: Prof. Dr. P. H. Schmitt,

Universität Karlsruhe (TH)
Zweiter Gutachter: Prof. assoc. Dr. B. Thomsen,

Aalborg University

Acknowledgements

This thesis would not have been possible without the support and encour-
agement of many people to whom I would like to express my gratitude
here.

In the first place, I would like to sincerely thank my supervisor, Prof.
Dr. Peter H. Schmitt for giving me the opportunity to work in his research
group and for his valuable support and guidance.

I am grateful to Prof. Dr. Bent Thomsen for acting as second reviewer of
my thesis.

I also would like to show my gratitude to Prof. Dr. Ralf Reussner and Dr.
Carsten Sinz for their interest in my work and agreeing to act as examiners
for the thesis defense.

A special thank goes to my colleagues and former colleagues Daniel Bruns,
David Farago, Florian Merz, Dr. Hendrik Post, Dr. Steffen Schlager, Mat-
tias Ulbrich, Dr. Olga Tveretina, Benjamin Weiß and Dr. Frank Werner for
providing a relaxed working atmosphere.

Moreover, I would like to thank all active and former members of the KeY
project; in particular my thanks go to Dr. Richard Bubel, Prof. Dr. Reiner
Hähnle, Dr. Andreas Roth and Dr. Philipp Rümmer.

I owe my deepest gratitude to my parents - Helga and Manfred Engel - for
many years of support during my studies without which this thesis would
not have been possible. Finally, I would like to deeply thank Ulrike for her
love, encouragement and support.

Karlsruhe, November 2009
Christian Engel

i

Deduktive Verifikation
sicherheitskritischer Java-Programme
(Deutsche Zusammenfassung)
Die vorliegende Arbeit entstand im Rahmen des KeY-Projekts, das sich mit der Integration
formaler Methoden in den Softwareentwicklungsprozeß befaßt. Ein großer Teil der in dieser
Arbeit vorgestellten Ansätze wurde implementiert und in das KeY-System integriert, einem
aus dem KeY-Projekt hervorgegangenen Werkzeug zur deduktiven formalen Verifikation von
Java Card-Programmen mittels symbolischer Ausführung. Hierbei werden die dem Pro-
gramm zur Verfügung stehenden Speicherstellen, wie beispielsweise lokale Variablen, nicht
wie bei der tatsächlichen Programmausführung mit konkreten Werten belegt, sondern mit
symbolischen. Entsprechend wird anstelle eines konkreten Programmdurchlaufs die Menge
aller für den symbolischen Startzustand1 des Programms möglichen Programmdurchläufe und
aller daraus resultierenden symbolischen Endzustände betrachtet. Die vom KeY-System zu
beweisenden Korrektheitsaussagen werden in dynamischer Logik formalisiert, bei der es sich
um eine Erweiterung der klassischen Prädikatenlogik erster Stufe handelt, die (ähnlich wie
Hoare Logik) das Formulieren von Aussagen über Programmzustände und Übergänge zwis-
chen diesen erlaubt.

Seit einigen Jahren gibt es Bestrebungen, Java echtzeitfähig zu machen. Als Ergebnis
dieser Bestrebungen wurde im Jahr 2002 die Real-Time Specification for Java (RTSJ) veröf-
fentlicht. Eine der wichtigsten der darin eingeführten Neuerungen ist ein Speichermodell,
das die explizite Freigabe kompletter, zuvor definierter Speicherbereiche (sog. Scoped Mem-
ory) erlaubt. Dadurch wird der Java Garbage Collector überflüssig gemacht, der eines der
Haupthindernisse für die Verwendung von Java in Echtzeitsystemen darstellt. Diese Arbeit
beschäftigt sich nun mit verschiedenen Fragestellungen, die insbesondere bei der deduktiven
Verifikationen von RTSJ-Programmen auftreten und diskutiert Lösungsansätze für diese.

Teil I führt in die zum Verständnis dieser Arbeit nötigen Grundlagen ein. Zunächst wer-
den Syntax und Semantik der im KeY-System verwendeten Dynamischen Logik definiert,
dann ausgewählte Aspekte (beispielsweise die Behandlung innerer und anonymer Klassen)
eines auf dieser Logik basierenden und ebenfalls im KeY-System zum Einsatz kommenden
Sequenzenkalküls besprochen. Des Weiteren enthält dieser Teil eine kurze Einführung in die
Spezifikationssprache JML (Java Modeling Language), von der an diversen Stellen in dieser
Arbeit Gebrauch gemacht wird, und einen Überblick über die für diese Arbeit relevanten
Merkmale von RTSJ.

Der zweite Teil der Arbeit beschäftigt sich mit dem Speichermodell der RTSJ und sich
daraus ergebenden Problemstellungen. Kapitel 5 definiert die im Folgenden betrachtete Un-
termenge der RTSJ und motiviert die vorgenommenen Einschränkungen. In Kapitel 6 wird
eine Formalisierung des RTSJ-Speichermodells in dynamischer Logik vorgestellt und diese mit

1Dieser Startzustand kann Einschränkungen unterliegen (einer sog. Vorbedingung), die im KeY System als
prädikatenlogische Formeln über den verwendeten symbolischen Werten ausgedrückt werden können.

iii

einem alternativen Ansatz verglichen. Wie die in diesem Kapitel eingeführten Konzepte zur
Spezifikation von RTSJ-Programmen genutzt werden können, wird beispielhaft in Kapitel 7
aufgezeigt. Dieses Kapitel geht auch auf Beweisverpflichtungen für RTSJ-Programme ein. Es
gibt eine Reihe von auf der RTSJ basierenden Profilen für sicherheitskritische Java Anwen-
dungen (SCJ2.), die eine verbesserte Analysierbarkeit des Codes unter anderem durch Ein-
schränkungen des Sprachumfangs herbeizuführen versuchen. Wie in Kapitel 8 erläutert, liegen
Programme, die unter Berücksichtigung eines dieser gängigen SCJ Profile geschrieben wurden,
in der (zuvor in Kapitel 5 definierten) von unserem Ansatz betrachteten Untermenge RTSJs.
Andere SCJ-Konzepte sehen die implizite Bereitstellung neuer Scoped Memory-Bereiche bei
Methodenaufrufen vor, deren Lebensdauer der Ausführungsdauer der aufgerufenen Methode
entspricht3. Der vorgestellte Ansatz zur Behandlung des RTSJ-Speichermodells läßt sich
auch für solche, die implizite Erzeugung von Scoped Memory-Bereichen vorsehenden Spe-
ichermodelle einsetzen. Kapitel 9 beleuchtet schließlich die Frage, wie man unter Ausnutzung
des RTSJ-Speichermodells die Nichtinterferenz verschiedener nebenläufiger Programmfäden4

(bewiesenermaßen) sicherstellen kann. Unter anderem werden dazu Beweisverpflichtungen
in Dynamischer Logik für verschiedene Datenkapselungs- und Abhängigkeitseigenschaften
vorgestellt (so z. B. für die depends-Klausel, die angibt, von den Werten welcher Speicher-
stellen das Verhalten einer Methode abhängt) und deren Korrektheit und (sofern zutreffend)
Vollständigkeit bewiesen.

Teil III widmet sich der modularen vertragsbasierten Verifikation des Heap-Speicherver-
brauchs von Java-Programmen, eine Thematik die von besonderer Relevanz hinsichtlich der
RTSJ ist, da hier Speicherbereiche benutzt werden, die nicht durch den Garbage Collector
bereinigt werden. Kapitel 11 faßt die bestehenden Konzepte zusammen, die die Spezifikation-
ssprache JML zum Spezifizieren des Speicherverbrauchs von Java-Methoden bietet, und zeigt
deren Defizite bezüglich der Modularisierbarkeit der Spezifikation (und entsprechend auch
des Verifikationsprozesses) auf. Gleichzeitig werden Vorschläge gemacht, wie diese Defizite
mit Hilfe einer Reihe neuer JML-Konstrukte zu beheben sind. Abschließend definiert dieses
Kapitel, wie die neu eingeführten und die schon bestehenden JML-Konstrukte (zum Spezi-
fizieren des Speicherverbrauchs) in der von KeY verwendeten dynamischen Logik repräsentiert
werden. Daraufhin werden Beweisverpflichtungen (Kapitel 12) für die Korrektheit von Spe-
icherverbrauchsspezifikationen und Erweiterungen des Kalküls (Kapitel 13) zur Behandlung
der in Kapitel 11 eingeführten Symbole vorgestellt. Wesentliche Punkte sind hierbei die mod-
ulare Behandlung von Methodenaufrufen und die Verifikation des Speicherverbrauchs von
Schleifen. Die Funktionsweise dieser Kalkülerweiterungen wird in Kapitel 14 anhand einiger
Beispiele erläutert, unter anderem einer Methode aus der Echtzeit-Java-Bibliothek Javo-
lution, die unter Verwendung der zuvor eingeführten JML-Konstrukte spezifiziert und mit
Hilfe einer prototypischen Implementierung des vorgestellten Ansatzes im KeY-System veri-
fiziert wurde. Das folgende Kapitel (15) faßt zusammen, welche Anpassungen des Kalküls zur
Behandlung von Speichermodellen mit impliziter Erzeugung von Scoped Memory-Bereichen
notwendig sind. Besonderes Augenmerk liegt hier auf dem von dem SCJ-Compiler PERC
Pico verwendeten Speichermodell, das nicht nur die Erzeugung von mit Methodenausführun-
gen assoziierten Speicherbereichen erlaubt sondern auch von solchen, die mit neu erzeugten
Objekten assoziiert sind und deren Lebensdauer besitzen.

2Steht für Safety Critical Java
3Insofern ahmt dieser Ansatz in gewisser Weise Stackallokierung nach.
4engl.: Threads

iv

Contents

1 Introduction 1
1.1 The KeY System . 2
1.2 Outline . 3
1.3 Contributions . 3

I Foundations 5

2 Java DL 7
2.1 Syntax . 7

2.1.1 Type Hierarchy . 7
2.1.2 Signature . 8
2.1.3 Terms, Formulas and Updates . 9

2.2 Semantics . 12
2.2.1 Updates . 13
2.2.2 Location Descriptors and Location Dependent Symbols 14

2.3 Calculus . 21
2.3.1 The Taclet Language . 21
2.3.2 Symbolic Execution . 25
2.3.3 Object Creation . 26
2.3.4 Reachable States . 28
2.3.5 Method Contracts and Class Invariants 29
2.3.6 Inlining of Method Bodies . 34
2.3.7 Inner Classes . 36
2.3.8 Sum Comprehensions . 41

3 Java Modeling Language 51

4 Real-Time Specification for Java 55
4.1 Memory Management . 55

4.1.1 Memory Areas . 55
4.1.2 Assignment Checks . 59
4.1.3 Single Parent Rule . 60
4.1.4 Portals . 60

4.2 Safety-Critical Java Profiles Based on the RTSJ 61
4.3 Verification Challenges for RTSJ Programs and Scope of This Work 61

II Safety Critical Java 63

v

Contents

5 The Considered SCJ Profile 65
5.1 Constraints on the Scope Stack . 65
5.2 Finalization and Deletion of Objects . 65
5.3 Static Initialisation . 66

6 Calculus 67
6.1 Basic Ideas . 67
6.2 Determination of the Allocation Context . 68

6.2.1 The <cma> Pointer . 68
6.2.2 The Implicit Field <ma> . 69

6.3 The RTSJ API and the Scope Stack . 70
6.3.1 The Class MemoryStack . 70
6.3.2 Specification of MemoryArea and its Sub-Types 75
6.3.3 Admissible References to Inner Scopes 80
6.3.4 The Helper Class RealtimeSystem 80

6.4 Axiomatization of � and im . 82
6.5 The Implicit Method <delete> . 85
6.6 Proof Obligation for RS . 86
6.7 Rules for Symbolic Execution . 88

6.7.1 Assignments to Static References . 88
6.7.2 Assignments to Non-Static References 88

6.8 Related Work . 90

7 JML Specifications and Proof Obligations 91
7.1 JML Extensions . 91

7.1.1 The \currentMemoryArea Pointer 91
7.1.2 The \memoryArea construct . 91
7.1.3 The \outerScope and \inOuterScope constructs 91
7.1.4 The \inImmortalMemory Construct 92
7.1.5 The arbitraryScope and arbitraryScopeThis Modifiers 93
7.1.6 The scopeSafe Modifier . 94

7.2 Proof Obligations for KeYSCJ Programs . 95
7.3 An Extended Example . 96

8 Applicability to Existing SCJ Profiles and Required Adaptations 99
8.1 Implicit Scopes Based on Method Invocation 100

8.1.1 Syntactical Changes . 100
8.1.2 Calculus . 102

9 A Profile for Facilitating Non-Interference Proofs in RTSJ 105
9.1 Leveraging the RTSJ Memory Model for Data Encapsulation 106

9.1.1 The KeYSCJ* Profile . 106
9.1.2 Benefits of KeYSCJ* . 107

9.2 Assignable, Depends and Captures Clauses . 108
9.2.1 Proof Obligations for Assignable, Depends and Captures Clauses 109

9.3 Alternative Approach . 122
9.3.1 Handling of Threads . 124

vi

Contents

III Modular Verification of WCMU Contracts 127

10 The Necessity for Correct Worst Case Memory Usage Estimations 129

11 JML Memory Performance Specifications 131
11.1 Existing JML Specifications and their Shortcomings 131
11.2 Enhanced JML Heap Memory Specifications 134

11.2.1 The Applied Integer Semantics . 135
11.2.2 Interpretation of Working Space Clauses in the Pre-State 135
11.2.3 Rigid Working Space Functions with Explicit Preconditions 135
11.2.4 Loop Working Space Specifications . 136
11.2.5 Assumptions on the Java Virtual Machine 139
11.2.6 Mapping JML Expressions to Java DL 140
11.2.7 KeYJML Semantics for RTSJ Programs 141

12 Memory Contracts and Proof Obligations 145

13 Calculus 147
13.1 Axiomatization of wsr, wsnr, spacearr, maxSpace and C.<size> 147

13.1.1 Platform Independent Rules . 147
13.1.2 Platform Specific Rules . 151

13.2 Symbolic Execution . 153
13.2.1 Object Creation . 153
13.2.2 Method Calls . 154
13.2.3 Loops . 155

14 Examples 161
14.1 Modular vs. Non-Modular Verification . 161

14.1.1 Non-Modular Verification . 162
14.1.2 Modular Verification . 162

14.2 Javolution . 163

15 Verification of Scope Sizes in the PERC Pico Memory Model 165
15.1 PERC Pico Memory Annotations . 167

15.1.1 Local Scopes . 167
15.1.2 Immortal Memory . 168
15.1.3 Constructed Scopes . 169
15.1.4 Reentrant Scopes . 170

15.2 Treatment of Constructed Scopes . 170
15.2.1 Externally Constructed Scopes . 172
15.2.2 “Internally” (Newly) Constructed Scopes 172
15.2.3 Initialisation of the Implicit Field <rs> 173

15.3 Proof Obligation for PERC Pico Programs . 175
15.4 Modular Verification of PERC Pico Programs 176

15.4.1 Memory Consumption in the Caller Context 176
15.4.2 Memory Consumption in Loops . 176

16 Related Work 177

vii

Contents

IV Conclusions 179

17 Summary and Future Work 181

A Taclets for Sum Comprehensions 183
A.1 Not Automatically Applicable Rules . 183
A.2 Automatically Applicable Rules . 183

References 185

Index 193

viii

List of Figures

2.1 Two methods for summing an array’s elements starting from the first element . 45
2.2 Two methods for summing an array’s elements starting from the last element . 46
2.3 coincidenceCount1 with JML specifications . 48

4.1 RTSJ memory area class hierarchy . 56
4.2 A scope s1 containing objects o1, o2, s2 . 58
4.3 A scope S . 58
4.4 A scope stack . 58
4.5 Effects of the methods enter and executeInArea 59

6.1 S2.stack represents the substack consisting of Immortal, S1 and S2 70
6.2 JML specification of push . 73
6.3 A piece of code building a branched cactus stack 81
6.4 Scope stack created by the code from Figure 6.3 81
6.5 s3 is entered from s4 which is allocated in a more inner scope than s3 81
6.6 The class RealtimeSystem providing preallocated exceptions 82

7.1 RTSJ code (incorrectly) specified with JML 97
7.2 Extract from proof tree for the scopeSafe PO for method foo 98

9.1 Scope stack complying with the KeYSCJ* profile 107

14.1 A JML-annotated method from the Javolution class FastMap 164

15.1 PERC Pico Annotations . 167
15.2 PERC Pico Code after Application of TPerc . 171
15.3 Expanding of a @ExternallyConstructedScope method body statement . . 172
15.4 Expanding of a method body statement . 174

ix

List of Tables

2.1 Programs in proof obligations . 33
2.2 Performance Measurements . 49

4.1 Constraints on References in RTSJ . 60

xi

1 Introduction

Computers have nowadays become a virtually omnipresent part of our daily lives. This goes
along with an increasing use of computers, and consequently also software, in safety-critical
systems such as medical equipment, aviation- and automotive control systems or nuclear
power plants. The necessity for these systems to be correct is evident and often stringent
certification standards (such as DO-178B [RTCA, 1992]) are established for ensuring this. In
general, current certification standards for safety critical systems mainly rely on software re-
views and testing both of which are time-consuming, expensive and usually cannot guarantee
the correctness of software (i.e., compliance with its specification) with absolute certainty.
Considering this, formal methods appear to be the obvious technology for decreasing certifi-
cation costs as well as increasing the confidence in software correctness. Future certification
standards (e.g., DO-178C) currently in the process of being defined are seemingly taking into
account formal methods as an alternative to testing and reviewing software.

Most of the above mentioned examples for safety-critical systems must also meet real-time
(RT) constraints (and are thus also called real-time systems). A RT system is characterized
by responding to an event1 in a defined time interval (in this context the end of this interval
is referred to as a deadline). Missing a deadline renders the system response useless (hard
real-time) or just less useful (soft real-time) compared to a response performed in time. An
engine control unit can, for instance, be considered hard real-time: an ignition spark triggered
too late is useless. In contrast a video decoder is a soft real-time application: if a deadline for
decoding a video frame is missed it can still make sense to display the frame after expiration
of its deadline. The “value” of doing so, however, decreases the more time has elapsed since
the deadline has passed.

For analysing whether an RT system will always meet its deadlines it is essential that
software employed in such a system is not only (functionally) correct, it must also provide
deterministic performance. In this context, the relevant parameter is worst-case performance
(as an RT system is required to always meet its deadline, even in the worst case) not average
performance.

Though historically RT systems are mainly programmed in assembler, C or Ada, in recent
years a trend to make Java suitable for real-time applications could be observed. Standard
Java cannot be used for programming RT applications for several reasons: Its garbage col-
lector, for instance, leads to indeterministic performance since it can interrupt a program at
arbitrary occasions for unbounded periods of time. Therefore, the Java Specification Request
1 (JSR 1) for a real-time version of Java was issued in 1998 resulting in the Real-Time
Specification for Java (RTSJ, [Bollella and Gosling, 2000]). Among the improvements (with
respect to RT compliance) introduced by the RTSJ is a region-based memory model featuring
memory regions which can be explicitly freed and are not subject to garbage collection. In
addition it provides a novel kind of threads only allowed to operate on objects allocated in

1Events do not need to be external stimuli but can also be time-triggered such as in the case of a periodic
task.

1

1 Introduction

explicitly freeable regions. Since these threads do not interfere with the garbage collector,
they can interrupt it at arbitrary times.

This thesis elaborates on several aspects of deductive formal verification of RTSJ programs.
One of the key contributions is an approach for treating the just mentioned RTSJ memory
model. The formalism we use throughout this work for describing the presented approaches is
Java DL a dynamic logic [Harel, 1984] for a sequential subset of Java and a sequent calculus
for this logic. Most of the contributions of this thesis were implemented in the KeY system,
a semi-automatic theorem prover for Java DL.

1.1 The KeY System

The KeY system [Beckert et al., 2007] is a semi-automatic theorem prover jointly developed
by the University of Karlsruhe, Chalmers University of Technology in Gothenburg, and the
University of Koblenz within the context of the KeY project (http://www.key-project.
org), which aims for the integration of formal methods into the industrial software engineering
process. Initially, KeY’s target language was Java Card DL, a dynamic logic for Java
Card [Chen, 2000] which is a Java dialect intended for applications running on smart cards.
Meanwhile, however, KeY supports several other logics, such as a dynamic logic for MISRA
C [Mürk et al., 2007], a logic for JCSP programs [Klebanov et al., 2005], a logic for a generic
object oriented programming language called ODL [Platzer, 2004] and a Differential Dynamic
Logic for Hybrid Systems [Platzer and Quesel, 2008]. Also the supported Java subset is now a
real superset of Java Card including for instance multi-dimensional arrays and all primitive
Java data types. There are also efforts to support Java 5 in KeY [Ulbrich, 2007]. Therefore,
we will refer to Java Card DL as just Java DL in the remainder of this work as this
terminology better fits its current characteristics.

KeY possesses frontends for the following specification languages: The Java Modeling Lan-
guage JML [Engel, 2005] (which we make use of on several occasions in this work) and the
Object Constraint Language (OCL) [Beckert et al., 2002], both of which are facilitating the
Design by Contract [Meyer, 1992] paradigm. These frontends allow the generation of various
kinds of Java DL proof obligations (such as a proof obligation for checking whether a method
establishes the postcondition specified by its specification) for different correctness aspects of
a given specification written in OCL or JML. The frontends also map JML and OCL method
contracts to their Java DL counterparts which are required for modular program verification
(for details, refer to Section 2.3.5).

There are also backends leveraging formal proofs and proof attempts performed by KeY for
different purposes than formal reasoning: Proofs in the KeY system basically constitute a sym-
bolic execution [King, 1976] tree (which is owed to employing a sequent calculus and symbolic
execution) from which we can obtain execution path conditions and symbolic states. This
information can serve as input for white-box test case generation [Engel and Hähnle, 2007,
Beckert and Gladisch, 2007] or the visualisation [Baum, 2007, Rothe, 2008] of the symbolic
execution tree including its path conditions and symbolic program states. The latter backend,
called the symbolic debugger, can be used for debugging or just for adding to understanding
the program’s behavior.

As KeY aims at being integrated in a realistic software engineering process, it is not only
available as a standalone version but also as plug-in to the Eclipse IDE [Holzner, 2004].

2

http://www.key-project.org
http://www.key-project.org

1.2 Outline

1.2 Outline
The thesis is structured in three parts:

Part I summarises the foundations required for the remainder of this work. The basic
notational and semantic concepts of Java DL are introduced and solutions for handling
inner classes and comprehensions are presented in Chapter 2. This is followed by overviews
of the Java Modeling Language (JML, Chapter 3) and the Real-Time Specification for Java
(RTSJ, Chapter 4).

Part II discusses the RTSJ’s memory model and shows how it can be modeled in Java
DL. Chapter 8 elaborates on how the presented approach can be adapted to treat other Java
dialects (such as PERC Pico [Nilsen, 2006]) for safety critical applications based on implicit
scope identities. Finally, in Chapter 9, several existing proof obligations for guaranteeing data
encapsulation properties are reviewed and novel ones are proposed. We also consider how the
RTSJ memory model can facilitate non-interference of threads.

Part III is focused on the contract-based verification of worst-case memory usage (WCMU)
of Java programs (in particular RTSJ programs). The JML approach for specifying a
method’s WCMU is discussed in Chapter 11. We also point out deficiencies of the cur-
rent JML approach and propose solutions overcoming these deficiencies. Chapter 13 provides
a formal semantics for the afore introduced WCMU specification means by defining their han-
dling in the Java DL calculus. The following Chapter illustrates the usage of this calculus by
means of two example methods whose WCMU specification was verified using the described
approach. Chapter 15 again discusses adaptations required by the PERC Pico memory model.

Chapter 17 concludes this thesis and points out directions of future work.

1.3 Contributions
The main contributions of this work can be summarised as follows:

• A calculus for sequential RTSJ programs is presented and its suitability also with regard
to SCJ profiles is discussed.

• We elaborate on the ensurance of non-interference by leveraging the RTSJ memory
model. In this context several proof obligations for depends and captures clauses are
developed and proofs for their correctness and (if applicable) completeness are provided.

• An approach for modularly specifying and verifying worst case memory usage con-
straints is developed:

A proposal for enhancing the JML specification means (for memory usage) is made,
which facilitates the formulation of modular and precise memory consumption contracts.
In addition a calculus for modularly verifying these contracts is provided.

3

Part I

Foundations

5

2 Java DL

The logic used in this work for reasoning about safety-critical Java programs is Java DL
[Beckert et al., 2007] a dynamic first order logic for a sequential subset of Java. Dynamic first
order logic as invented by David Harel [Harel, 1984] extends first order logic by two modal
operators [p] (box) and 〈p〉 (diamond) for every legal sequence p of statements in the regarded
programming language. The intuitive meaning of a formula [p]ψ is the following partial
correctness statement1: If p terminates then ψ holds in the post-state of p. The diamond
modality in addition requires termination thus 〈p〉ψ means: p terminates and ψ holds in the
post-state of p (i.e., total correctness with regard to the postcondition ψ). The commonly
known Hoare triple {φ}p{ψ} is expressible in dynamic logic by the formula: φ → [p]ψ. In
contrast to Hoare logic, however, dynamic logic is closed under logic and modal operators.

A particularity of Java DL not present in the basic form of dynamic logic ([Harel, 1984])
are updates. Updates are a means to encode state transitions and work basically as lazy
substitutions. One important application of updates in Java DL is their usage as an inter-
mediate language: When evaluating a formula [p]ψ, the program p is first “compiled” (which
is done by symbolic execution) to an update {U} resulting in a formula {U}ψ. The update
{U} is then applied to ψ (meaning the state change it encodes is made explicit by applying
appropriate substitutions to ψ). The advantage this approach carries is that case distinctions
necessitated by the execution of p (e.g., when encountering if-statements) or by the compu-
tation of the state change (e.g., for treating aliasing) are encoded in the update and proof
splits triggered by these case distinctions are postponed until the update is actually applied
to a formula not having a modality as top-level operator.

The definition of Java DL we use here is mainly in line with [Beckert et al., 2007]. Thus
we only discuss Java DL to the level of detail needed to achieve a sensible degree of self-
containment of this work. Focus is put on those aspects of the calculus which are of special
relevance for the remainder of this thesis (such as the handling of method calls), definitions
and notations differing from previous works (anonymising updates, location descriptors) and
issues not handled previously in Java DL (comprehensions, inner classes). For an exhaustive
account of Java DL refer to [Beckert et al., 2007].

2.1 Syntax

2.1.1 Type Hierarchy

The first order fragment of Java DL is a typed first order logic. As its signature (see Section
2.1.2), its type hierarchy is not fixed but partly determined by the regarded program context.
The type hierarchy of the program context is embedded (the type hierarchy of the program

1We assume here that the regarded programming language is deterministic otherwise, in the general case, the
box operator [p] can be considered a universal quantification over the reachable post-states of p whereas
〈p〉 is an existential quantification over these states.

7

2 Java DL

context itself does not form a bounded lattice) in a bounded lattice forming the type system
of Java DL.

Definition 2.1 (Type Hierarchy) A Java DL type hierarchy is a bounded lattice (T ,v)
where

• T is a finite set of types such that

– T = Ta ∪ Td with Ta denoting the set of abstract types and Td denoting the set of
dynamic types.

– Ta ∩ Td = ∅
– > ∈ Td where > is also referred to as the type any

– ⊥ ∈ Ta

• The relation v is a partial order on T with > and ⊥ being the top resp. bottom element
of the lattice (T ,v), meaning:

⊥ v A v > f. a. A ∈ T

A dynamic type D ∈ Td can have elements that are of exact type D (i.e., of type D and not a
real subtype of it). In contrast, an abstract type A ∈ Ta can only have elements whose exact
type is a real subtype of A. In the context of Java primitive and non-abstract class types
are represented as dynamic types whereas interface and abstract class types are represented
as abstract types.

2.1.2 Signature

The signature of Java DL also depends on the program context since, for instance, attributes
are represented by function symbols. Since the interpretation of certain symbols (such as
function symbols representing attributes) depends on the program state, we make a distinction
between symbols which are state-dependent (a property we call flexible or non-rigid in the
following) and those which are not state-dependent (rigid).

Definition 2.2 (Signature) Let (T ,v) be a type Java DL hierarchy then a Java DL
signature for (T ,v) is a tuple

Σ := (V Sym,FSymr, FSymnr, PSymr, PSymnr, α)

where

• V Sym is a set of (logic) variables

• FSymr is a set of rigid function symbols and FSymnr a set of non-rigid function symbols
with FSymr ∩ FSymnr = ∅. We define FSym := FSymr ∪ FSymnr.

• PSymr is a set of rigid predicate symbols and PSymnr a set of non-rigid predicate
symbols with PSymr ∩ PSymnr = ∅. We define PSym := PSymr ∪ PSymnr.

8

2.1 Syntax

• α is a typing function fixing the signature of each symbol:

α :

{V Sym,FSym, PSym} → T +

such that

– α(v) ∈ T for all v ∈ V Sym
– α(f) ∈ T nf × T for all f ∈ FSym where nf (with nf ≥ 0) is the arity of f and

the last element in α(f) the result type of f .

– α(P) ∈ T nP for all P ∈ PSym where nP (with nP ≥ 0) is the arity of P .

For every Java DL signature several predefined and interpreted function and predicate sym-
bols exist such as arithmetic operators, boolean constants (denoted TRUE and FALSE in
the following) or function symbols stemming from the program context (e.g., attributes). A
complete list of predefined Java DL symbols can be found in [Beckert et al., 2007].

2.1.3 Terms, Formulas and Updates

The syntax of the first order fragment of Java DL largely matches the standard syntax defi-
nitions of first order logic. This section therefore concentrates on Java DL specific constructs
used in the remainder2 of this work and typing issues.

Definition 2.3 (Terms) Let (V Sym,FSymr, FSymnr, PSymr, PSymnr, α) be a Java DL
signature for a type hierarchy (T ,v) then TermsT (the terms of type T) with T ∈ T is the
smallest set such that

• x ∈ TermsT for all x ∈ V Sym with α(x) = T

• f(t1, . . . , tn) ∈ TermsT for all f ∈ FSym with α(f) = (T1, . . . , Tn)×T and ti ∈ TermsT ′i
with T ′

i v Ti

• \if(ϕ) \then(t1) \else(t2) ∈ TermsT for all formulas ϕ and all t1 ∈ TermsT1 , t2 ∈
TermsT2 with T1 t T2 = T (where T1 t T2 denotes the smallest common supertype of
T1, T2).

• {U}t ∈ TermsT for all t ∈ TermsT and all updates U

Definition 2.4 (Formulas) The set Fml of Java DL formulas is the smallest set such that

• P (t1, . . . , tn) ∈ Fml for all P ∈ PSym with α(p) = (T1, . . . , Tn) and ti ∈ TermsT ′i
with

T ′
i v Ti

• Fml is closed under first order connectives

• for all ϕ ∈ Fml and x ∈ V Sym with α(x) = T then ∀ T x;ϕ ∈ Fml and ∃ T x;ϕ ∈ Fml

• \if(ϕ) \then(ψ1) \else(ψ2) ∈ Fml for all ϕ, ψ1, ψ2 ∈ Fml
2We ignore, for instance, \ifEx terms here since they do not occur in the remainder of this work.

9

2 Java DL

• {U}φ ∈ Fml for all φ ∈ Fml and all updates U

• [p]φ ∈ Fml and 〈p〉φ ∈ Fml for all Java DL programs p and all formulas φ ∈ Fml

For the sake of simplicity the type of quantified variables is usually omitted in the following.

Definition 2.5 (Programs in Java DL) A Java DL program is a sequence of legal Java
DL statements where a legal Java DL statement is either

• a Java statement or

• a method frame or method body statement (see Section 2.3.6)

Program locations are also represented as flexible Java DL terms. The function symbols
corresponding to local variables, attributes and the array access operator are called location
function symbols .

Definition 2.6 (Location Function Symbol) A location function symbol is either

• a program variable v (arity 0) representing a local variable or a static attribute or

• an instance attribute a@(T) (arity 1, α(a@(T)) = T × Ta@(T) where Ta@(T) is the static
type of attribute a@(T)) declared in T or

• the array access operator [] (arity 2, α([]) = (T [], int)× T where T is the static element
type of the array)

The set LocSym (with LocSym ⊆ FSymnr) denotes the set of all location function symbols.

For technical reasons we define another class of flexible function symbols used in the cal-
culus for memorizing the values of locations certain program states (such as the pre-state of
method invocations). Virtual locations may not occur in programs but on the left-hand-side
of updates.

Definition 2.7 (Virtual Location Function Symbol) A function symbol f ∈ FSymnr is
a virtual location function symbol if and only if

• f is not a location function symbol and

• f is not a location dependent symbol (see Definition 2.9)

The set of all virtual location function symbols is denoted with V LocSym.

A state in a Java DL Kripke structure is uniquely determined by the evaluation of all
function symbols f ∈ LocSym∪V LocSym. Nevertheless there is a third kind of flexible
symbols, called location dependent symbols [Bubel, 2007], whose values do not determine
the state explicitly but are “affected” by parts of the state, namely by the value of certain
locations they depend on. Location dependent symbols cannot occur in programs or on
the left-hand side of updates, thus their value cannot be changed explicitly. A location
dependent symbol may implicitly depend on the set of all locations. In this case there are no
restrictions on its interpretation. It is, however, also possible to constrain the set of locations
a location dependent symbol depends on explicitly using by location descriptors, a concept
also introduced in [Bubel, 2007] for describing sets of locations. For this work only location
dependent symbols with explicit dependencies are relevant.

10

2.1 Syntax

Definition 2.8 (Location Descriptor) A location descriptor has the form

∗

or
(for x1 . . . xn; if(ϕ) f(t1, . . . , tm))

where

• x1 . . . xn are logic variables bound in ϕ and t1, . . . , tm

• ϕ is an arbitrary formula

• f is a location or a virtual location function symbol

• t1, . . . , tm are arbitrary terms complying with the signature α(f).

• No free variables occur in a location descriptor. Thus the only free variables that can
occur in ϕ and t1 . . . tm are x1 . . . xn which are bound by the location descriptor.

In cases no variables are bound in ϕ and t1, . . . , tm we write

if(ϕ) f(t1, . . . , tm)

If, in addition, ϕ is identical to true we just write f(t1, . . . , tm). The set of locations described
by a location descriptor in a certain state is referred to as its extension. The location descriptor
∗ represents the entire heap.

Definition 2.9 (Location Dependent Symbol with explicit Dependencies) Let

Locs := ld1, . . . , ldn

be a list of location descriptors then the flexible predicate symbol

P [Locs]

is called a location dependent predicate symbol and flexible function symbol

f [Locs]

is called a location dependent function symbol.

Semantical differences between the original definition [Bubel, 2007] of location dependent
symbols and the one used in this work are pointed out in Section 2.2.2.

Definition 2.10 (Updates) Let f be a location or a virtual location function symbol and
t1, . . . , tn and v terms such that f(t1, . . . , tn) ∈ TermsT1 and v ∈ TermsT2 with T2 v T1. Let
further U1 and U2 be updates, x a logic variable and Locs a list of location descriptors then

• skip is an update (empty update)

• f(t1, . . . , tn) := v is an update (elementary update)

• U1 ; U2 is an update (sequential composition of update)

11

2 Java DL

• U1 || U2 is an update (parallel composition of update)

• if(φ) U1 is an update (conditional update)

• for T x; if(φ) U1 is an update (quantified conditional update), x is bound in φ and U1

• ∗Locs
i is an update where i ∈ N (anonymising update)

• ∗i is an update where i ∈ N (anonymous update)

In the following we may omit the type of the logic variable bound in a quantified update
or write

for x1, . . . , xn; if(φ) U1

as syntactic sugar for
for x1; if(true) for x2; . . . for xn; if(φ) U1

2.2 Semantics

The semantic domain for Java DL are, as for modal logics in general, Kripke structures .
For a more convenient semantical definition of anonymous updates we extend our notion
of a dynamic logic Kripke structure in the following a bit by introducing a mapping from
anonymising updates to “reference states”.

Definition 2.11 (Java DL Kripke Structure) Let Σ be a Java DL signature for a type
hierarchy (T ,v). A Java DL Kripke structure for Σ and the given type hierarchy is a tuple
(M,S, ∗, ρ) such that

• M := (D, I) is a partial first order structure (with domain D and interpretation I) fixing
the interpretation of FSymr and PSymr (of the given signature) where D := (U, δ,�)
consisting of

– the universe U

– a typing function δ : U → T assigning each v ∈ U its exact (dynamic) type. We
define:

I(T) := {v ∈ U | δ(v) v T}

– A well-ordering � defined on U

• S is a set of states where each state s ∈ S is a first order structure refining M by fixing
also the interpretation of FSymnr and PSymnr.

• The mapping ∗ : N → S

• The mapping ρ assigning to each program p the state transition relation ρ(p) ⊆ S × S

12

2.2 Semantics

Note that the domain being fixed in M entails that it is the same in all states of a Kripke
structure (constant domain assumption, see also Section 2.3.3). The partial structure M is
called the Kripke seed .

The interpretation of terms and formulas is defined largely in a standard way (for details
refer to [Beckert et al., 2007]) so we only focus on the semantics of updates and location
dependent symbols in the following. Validity and satisfiability of formulas are also defined as
usual for a dynamic logic.

Definition 2.12 (Satisfiability and Validity of Java DL Formulas) Let φ be a Java
DL formula. Then φ is satisfiable if and only if there is a Kripke structure (M,S, ∗, ρ) (for
the given program context), a state s ∈ S and a variable assignment β such that

s, β |= φ

The formula φ is valid if and only if
K |= φ

for all (with the regard to the given program context) Kripke structures K. We write K |= φ
for K := (M,S, ∗, ρ) if and only if for all states s ∈ S and all variable assignments β

s, β |= φ

2.2.1 Updates

For talking about the semantics of updates we first define the notion of a semantic location,
which is a semantic entity independent of a syntactical representation of the location.

Definition 2.13 (Semantic Location) Let f be a location (or virtual location) function
symbol with (T1, . . . , Tn) × T and v̄ := v1, . . . , vn a vector of elements of U with vi ∈ I(Ti).
Then the tuple

(f, v̄)

is called a semantic location.

Analogous to this definition of semantic locations we define a semantic update as a mapping
from semantic locations to values (elements of U).

Definition 2.14 (Semantic Update) A semantic update is a set of pairs (l, v), where l is
a semantic location and v ∈ U. We call a semantic update U consistent if for no location l
there are (l, v1) ∈ U and (l, v2) ∈ U such that v1 6= v2. A semantic update U can be seen as
a function on states, where for each state s the state U(s) is partly defined3 by the semantic
update fixing the interpretation of location (and virtual location) function symbols (by this
U(s) is uniquely determined)

U(s)(f)(v̄) :=

{
v if ((f, v̄), v) ∈ U
s(f)(v̄) otherwise

for all location function symbols f and legal tuple of values v̄.
3One could also say partly redefined relative to state s, as state s is preserved except for the locations

occurring in U .

13

2 Java DL

Now we can define how updates relate to semantic updates.

Definition 2.15 (Evaluation of Updates) Let K := (M,S, ∗, ρ) be a Java DL Kripke
structure, s a state with s ∈ S and β a variable assignment. An update U is evaluated to a
consistent semantic update vals,β(U) in the following way:

• vals,β(skip) := ∅

• vals,β(f(t1, . . . , tn) := t) := {((f, (vals,β(t1), . . . , vals,β(tn))), vals,β(t))}

• vals,β(if(φ) U) :=

{
vals,β(U) if s, β |= φ
∅ otherwise

• vals,β(for T x; if(φ) U) := win
(⋃

v∈I(T): s,βv
x|=φ{vals,βv

x
(U)}

)
The function win ensures that the resulting update is consistent (meaning each location
is mapped to at most one value). This is achieved by utilizing the well-ordering �
on U and choosing the smallest value v in case a clash occurs (for details refer to
[Rümmer, 2006]).

• vals,β(U1 || U2) := (U1 ∪ U2) \ C
where U1 := vals,β(U1), U2 := vals,β(U2), and where
C := {((f, v̄), v) ∈ U1 | ((f, v̄), v′) ∈ U2 for some v′ 6= v}

• vals,β(U1 ; U2) := (U1 ∪ U2) \ C
where U1 := vals,β(U1), U2 := valU1(s),β(U2), and where
C := {((f, v̄), v) ∈ U1 | ((f, v̄), v′) ∈ U2 for some v′ 6= v}

• vals,β(∗i) := {((f, v̄), ∗(i)(f)(v1, . . . , vn))| f is location function symbol with
α(f) = (T1, . . . , Tn)× T and ti ∈ TermsT ′i

with T ′
i v Ti}

• vals,β(∗Locs
i) := {((f, v̄), ∗(i)(f)(v̄))| (f, v̄) ∈ vals,β(Locs)}

Note, that an anonymous update ∗i only anonymises locations (not virtual locations).

2.2.2 Location Descriptors and Location Dependent Symbols

In [Bubel, 2007] the concept of location descriptors (see Definition 2.8) is introduced for
describing sets of locations, which is for instance needed to express change information for
methods or their data dependencies. In the following the key ideas behind location descriptors
are summarized and adapted and extended to our purposes when necessary.

Definition 2.16 (Location Descriptor Extension) Let K := (M,S, ∗, ρ) be a Java DL
Kripke structure, ld := (for x̄; if(ϕ) f(t̄)) a location descriptor and s ∈ S. Then vals(ld)
denotes the set of locations ld evaluates to in state s:

vals(ld) := {(f, (vals,β(t̄)))|s, β |= ϕ}

The extension of a list Locs := ld1, . . . , ldn of location descriptors is the union of the extension
sets over all location descriptors contained in Locs:

vals(Locs) :=
⋃

i∈{1,...,n}

vals(ldi)

14

2.2 Semantics

The extension of the special location descriptor ∗ representing the set of all heap locations is
given by:

vals(∗) :=

(f, (a1, . . . , an))

∣∣∣∣∣∣∣∣
α(f) = (T1, . . . , Tn)× T and
δ(ai) v Ti and(
f is an attribute or
f = []

)

Remark 2.17 (Anonymising Updates for Location Descriptors) As stated in Defini-
tion 2.15, an anonymising update ∗Locs

i maps each location l ∈ vals(Locs) (for an arbitrary
state s) to the value l evaluates to in the reference state ∗(i). Thus the anonymising update

∗ld
i

with ld := (for x̄; if(ϕ) f(t̄)) where f is a location function symbol is obviously equivalent to
the update

{for x̄; if(ϕ) f(t̄) := ({∗i}f)(t̄)} (2.1)

In [Beckert et al., 2007] a location descriptor (a terminology, however, not used in the cited
work) ld := (for x̄; if(ϕ) f(t̄)) is anonymised by the update

{for x̄; if(ϕ) f(t̄) := f ′(t̄)} (2.2)

where f ′ is a fresh rigid function symbol not yet occurring in the regarded sequent in which
the update occurs. The two approaches of defining anonymising updates are “interchangeable”
as for each Kripke structure K := (M,S, ∗, ρ) and for each rigid function symbol f ′ and
each location function symbol f there is Kripke structure and K′ := (M′,S ′, ∗′, ρ′) (with
M′ := (D′, I ′)) such that

∗(i)(f) = I ′(f ′)

and vice versa. The semantics for anonymous updates differ however since we restrict the
effect of anonymous updates to (non-virtual) location function symbols.

Thus a formula free of anonymous updates (but possibly containing anonymising updates)
is satisfiable (resp. valid) applying the definition in [Beckert et al., 2007] if and only if it is
satisfiable (valid) applying our definition for anonymising updates.

Example 2.18 (Location Descriptors)

• The location descriptor ld := (for int x; if(0 ≤ x ∧ x < arr.length) arr[x]) contains all
array slots the array arr possesses in the state ld is evaluated in.

• if(o 6 .= null) o.a contains the location o.a if evaluated in states s in which o is not null.
In all other states the extension of this location descriptor is the empty set.

In [Bubel et al., 2008a] location dependent symbols have been introduced. The interpre-
tation of a symbol P [ld] depending on a location descriptor ld has to coincide in each two
states s1, s2 that share the same values for the locations described by ld. This circumstance
is formalized by definition 2.19 and 2.23.

Definition 2.19 (The Relation ≈ld) Let K := (M,S, ∗, ρ) be a Java DL Kripke structure
and ld := (for x̄; if(ϕ) f(t̄)) a location descriptor. For two states s1, s2 ∈ S the relation
s1 ≈ld s2 holds if and only if for every variable assignment β

15

2 Java DL

• s1, β |= ϕ if and only if s2, β |= ϕ and

• vals1,β(f(t̄)) = vals2,β(f(t̄)) if vals1,β |= ϕ

Let Locs be a list of location descriptors then s1 ≈Locs s2 holds if and only if s1 ≈ld s2 for
all ld ∈ Locs.

We write s1 ≈∗ s2 if the heap is identical in s1 and s2 meaning vals1(f) = vals2(f) for all
location function symbols f .

Note, that there are subtle differences in the definition of ≈ld in this work compared to
how the respective relation is defined in [Bubel et al., 2008a] (we call the location descriptor
equivalence defined in that work ≈′

ld to distinguish it from our definition). In particular, we do
not require the extension of ld to be equal in s1 and s2 if s1 ≈ld s2 holds. Let us, for instance,
consider the following simple location descriptor: ld := {o.a}. For s1 ≈ld s2 it is sufficient
that vals1(o.a) = vals2(o.a). In contrast, the definition of ≈′

ld from [Bubel et al., 2008a] would
also require that vals1(o) = vals2(o) in order for the extensions of ld to be equal in s1 and s2.
In this respect our definition is more liberal in another one, however, it is more restrictive as
illustrated with this method specification:

JAVA + JML
/*@ requires o!=null && u!=null;
@ depends o.i, u.i;
@*/

public int div(MyInteger o, MyInteger u){
return o.i/u.i;

}

JAVA + JML

The depends clause of the above specification is given by the list of location descriptors
Dep := {o.i, u.i}. Let us consider two states s1 and s2 with

vals1(o) = obj1, vals1(u) = obj2, vals1(o.i) = i1, vals1(u.i) = i2 (2.3)
vals2(o) = obj2, vals2(u) = obj1, vals2(o.i) = i2, vals2(u.i) = i1 (2.4)

where obj1 6= obj2 (the interpretations of o and u are just swapped in state s2 in comparison
to s1) and i1 6= i2. The extension of Dep is therefore the same in both s1 and s2, namely

vals1(Dep) = vals2(Dep) = {(i, (obj1)), (i, (obj2))}

Together with
s1(i)(obj1) = vals1(o.i) = i1 = vals2(u.i) = s2(i)(obj1)

and
s1(i)(obj2) = vals1(u.i) = i2 = vals2(o.i) = s2(i)(obj2)

we get s1 ≈′
Dep s2. This is, however, contrary to our intuition since i1/i2 (as computed by

div when executed in s1) is obviously not always the same as i2/i1 (as computed by div

when executed in s2) and thus s1 and s2 should not be considered equivalent with respect
to div’s depends clause Dep. This consideration is taken into account by definition 2.19
which requires that for two states to be equivalent with respect to Dep both states must be
equivalent with respect to each ld ∈ Dep. Therefore, s1 6≈Dep s2 since s1 6≈o.a s2 (due to
vals1(o.a) = i1 6= i2 = vals2(o.a)) and s1 6≈u.a s2 (due to vals1(u.a) = i2 6= i1 = vals2(u.a)).

16

2.2 Semantics

Remark 2.20 (Mimicking the Semantics of ≈′
ld (to some degree)) In certain cases4

it can still be necessary to identify states s, t in which the extension of a location descrip-
tor ld is identical. This is not entailed by s ≈ld t as it was just elaborated on. This aspect of
≈′

ld can, however, easily be mimicked: Let ld := (for x̄; if(ϕ) f(t̄)) be a location descriptor,
where x̄ := x1 . . . xn and t̄ := t1, . . . , tm. We define

ldext := (for x̄, ȳ; if(ϕ ∧
∧

i∈{1,...,m}

yi
.
= ti) f(t̄))

where ȳ := y1, . . . , ym and ȳ and x̄ are disjoint. For each two states s and t we get

s ≈ldext t implies s ≈′
ld t

as stated by Lemma 2.21 and proven in Proof 1.
Accordingly, for a list Locs := ld1, . . . , ldn of location descriptors we define

Locsext := ld1ext , . . . , ldnext

Lemma 2.21 Let Locs be a list of location descriptors. Then for every Kripke structure
K := (M,S, ∗, ρ) and any two states s1, s2 ∈ S

s1 ≈Locsext s2 (2.5)

entails
s1 ≈Locs s2 (2.6)

and
s1 ≈′

Locs s2 (2.7)

Proof 1 (of Lemma 2.21) We first show that equation (2.6) and then that equation (2.7)
follows directly from definition 2.19.

Equation (2.6): We assume that there are states s1, s2 such that

s1 ≈Locsext s2 (2.8)

and
s1 6≈Locs s2 (2.9)

Then according to definition 2.19 there is a location descriptor ld := (for x̄; if(ϕ) f(t̄)) and a
variable assignment β such that either

• s1, β |= ϕ if and only if s2, β |= ϕ does not hold. Wlog. we assume that s1, β |= ϕ and
s2, β 6|= ϕ. Then we could, however, find a variable assignment β′ coinciding with β in
the assignments for the variables x̄ such that

s1, β
′ |=

∧
i∈{1,...,m}

yi
.
= ti

4In this work an example for this is given by the PO RespectsDep(p, ct) in Section 9.2.1.

17

2 Java DL

and therefore
s1, β

′ |= ϕ ∧
∧

i∈{1,...,m}

yi
.
= ti

and
s2, β

′ 6|= ϕ ∧
∧

i∈{1,...,m}

yi
.
= ti

which poses a contradiction to the assumption (2.8).

• vals1,β(f(t̄)) 6= vals2,β(f(t̄)) and vals1,β |= ϕ. Then we can obviously find a variable
assignment β′ coinciding with β in the assignments to x̄ such that

s1, β
′ |= ϕ ∧

∧
i∈{1,...,m}

yi
.
= ti

due to (2.8) we get
vals1,β′(f(t̄)) = vals2,β′(f(t̄)) (2.10)

since β′ coincides with β in the assignments to the variables x̄ which are the only free
variables in t̄

vals1,β′(f(t̄)) = vals1,β(f(t̄)) (2.11)
vals2,β′(f(t̄)) = vals2,β(f(t̄)) (2.12)

and thus together with equation (2.10)

vals1,β(f(t̄)) = vals2,β(f(t̄))

which contradicts the initial assumption that vals1,β(f(t̄)) 6= vals2,β(f(t̄)) holds.

Equation (2.7): Definition 2.19 requires for s1 ≈Locsext s2 to hold that for every location
descriptor ldext := (for x̄, ȳ; if(ϕ ∧

∧
i∈{1,...,m} yi

.
= ti) f(t̄)) contained in Locsext and every

variable assignment β

s1, β |= ϕ ∧
∧

i∈{1,...,m}

yi
.
= ti iff. s2, β |= ϕ ∧

∧
i∈{1,...,m}

yi
.
= ti

which entails that vals1,β(ti) = vals2,β(ti) (for i ∈ 1, . . . , n) for every location

(f, (vals1,β(t1), . . . , vals1,β(tn))) ∈ vals1(ldext)

and thus

(f, (vals1,β(t1), . . . , vals1,β(tn))) = (f, (vals2,β(t1), . . . , vals2,β(tn))) ∈ vals2(ldext)

which entails vals1(ldext) ⊆ vals2(ldext) and (since for symmetry reasons also vals2(ldext) ⊆
vals1(ldext) holds):

vals1(ldext) = vals2(ldext) (2.13)
From equation (2.6) we get that in addition

s1(f)(vals1,β(t1), . . . , vals1,β(tn)) = s2(f)(vals2,β(t1), . . . , vals2,β(tn))

for every location
(f, (vals1,β(t1), . . . , vals1,β(tn))) ∈ vals1(Locs)

and thus
s1 ≈′

Locs s2

18

2.2 Semantics

Example 2.22 Let us consider the already previously used set of location descriptors Locs :=
o.i@(MyInteger), u.i@(MyInteger) then

Locsext = (for y1; if(y1
.
= o) o.i), (for y2; if(y2

.
= u) u.i)

Since s1 ≈LocsExt
s2 entails that for every variable assignment β

s1, β |= y1
.
= o iff. s2, β |= y1

.
= o

and thus (since vals1,β(y1) = β(y1) = vals2,β(y1)) we get

(i, vals1,β(o)) = (i, vals2,β(o))

As this holds analogously for the location descriptor u.i, the extensions of Locs are the same
in s1 and s2:

vals1,β(Locs) = vals2,β(Locs)

Due to s1 ≈LocsExt
s2 also vals1(o.i) = vals2(o.i) and vals1(u.i) = vals2(u.i), therefore:

s1 ≈′
Locs s2

Intuitively the semantics of a location dependent symbol requires, that it is interpreted
identically in two states s and t of a Kripke structure K if the evaluation of the locations (Locs)
it depends on is identical in both states (s ≈Locs t). Note, that this does not mean that a
location dependent symbol is an interpreted symbol or that its value is fixed by the evaluation
of the locations Locs it depends on for all Kripke structures: There are no restrictions on how
a location dependent symbol is interpreted in two states s and s′ contained in two different
Kripke structures K and K′ irrespective of how the locations it depends on are interpreted in
these two states.

Definition 2.23 (Semantics of Location Dependent Symbols) Let LDs be a list of lo-
cation descriptors, K := (M,S, ∗, ρ) a Java DL Kripke structure and P [LDs] (respectively
f [LDs]) a predicate (function) symbol depending on LDs. Then for any two states s, t ∈ S
with s ≈LDs t the interpretation of P [LDs] (f [LDs]) in s and t coincides.

In certain cases, such as for defining proof obligations for the correctness of assignable or
depends clauses (see Section 9.2.1 for details), it is necessary to memorize what locations a
location descriptor denotes in a certain state (which is the extension of the location descriptor).
Technically we realize this by means of updates storing the relevant information in virtual
locations.

Definition 2.24 (The Update D@pre(ld) and the Location Descriptor ld@pre) Let

ld := (for x1 . . . xn; if(ϕ) f(t1, . . . , tm))

be a location descriptor. We define

D@pre(ld) := {Uϕ || Ut1 || . . . ||Utm}

with

Uϕ := for x1 . . . xn; if(ϕ) b@pre
ϕ (x1, . . . , xn) := TRUE

Uti := for x1 . . . xn; if(true) t@pre
i (x1, . . . , xn) := ti for 1 ≤ i ≤ m

19

2 Java DL

and b@pre
ϕ , t@pre

i being virtual location function symbols of appropriate type.
We define the location descriptor ld@pre as:

ld@pre := (for x̄; if(b@pre
ϕ (x̄)

.
= TRUE) f(t@pre

1 (x̄), . . . , t@pre
m (x̄)))

where x̄ := x1, . . . , xn.

Since, except for the top level location function f , only virtual location function symbols
and also no location dependent symbols occur in the ld@pre location descriptor, its evaluation
is not affected by changes of the heap, which is stated by the following theorem.

Theorem 1 (Extension of ld@pre) Let ld be a location descriptor and D@pre(ld) and ld@pre

be defined as in definition 2.24. Then the following holds for every Kripke structure K :=
(M,S, ∗, ρ) every s ∈ S, i ∈ N and every program p:

vals(ld) = valt(∗i)(t)(ld
@pre) (2.14)

vals(ld) = valρ(p)(t)(ld
@pre) (2.15)

where t := vals(D@pre(ld))(s).

Example 2.25 Let us consider the location descriptor ld := o.attr then

D@pre(ld) = o@pre := o (2.16)
ld@pre = o@pre.attr (2.17)

obviously (attr, vals(o)) = (attr, valt(o
@pre)) (for t as defined in Theorem 1) and thus also

equations (2.14) and (2.15) hold since the value of the virtual location o@pre is not changed
by update ∗i or by a program p (see definitions 2.7 and 2.15).

There are also cases in which we do not only need to memorize the locations described by a
location descriptor in a certain state but also their values (examples for this can again be found
in Section 9.2.1). For this purpose we define the update D@pre′(ld) and the corresponding
location descriptor ld@pre′ .

Definition 2.26 (The Update D@pre′(ld) and the Location Descriptor ld@pre′) Let

ld := (for x1 . . . xn; if(ϕ) f(t1, . . . , tm))

be a location. We define

D@pre′(ld) := {D@pre(ld)||for ȳ; if(true) f@pre(ȳ) := f(ȳ)}

where f@pre is a virtual location function symbol and ȳ := y1, . . . , ym.
Accordingly, we define the location descriptor ld@pre′ as:

ld@pre′ := (for x̄; if(b@pre
ϕ (x̄)

.
= TRUE) f@pre(t@pre

1 (x̄), . . . , t@pre
m (x̄)))

where x̄ := x1, . . . , xn.

20

2.3 Calculus

As we can easily see, the information “stored” by D@pre′(ld) subsumes the information stored
by D@pre(ld). We can therefore also safely use D@pre′(ld) to initialise the virtual locations
needed for defining ld@pre. Since ld@pre′ is not heap dependent, its extension as well as the
values of the locations contained in its extension are not affected by changes of the heap. This
is expressed by the following theorem.

Theorem 2 (Extension of ld@pre′) Let ld be a location descriptor and D@pre′(ld), ld@pre′

be defined as in definition 2.26. Then the following holds for every Kripke structure K :=
(M,S, ∗, ρ) and every s, r ∈ S such that there is an i ∈ N or a program p with r = ρ(p)(t) or
r = valt(∗i)(t) (where t := vals(D@pre′(ld))(s)):

(f, (ā)) ∈ vals(ld) iff. (f@pre, (ā)) ∈ valr(ld@pre′)

s(f)(ā) = r(f@pre)(ā) f.a. (f, (ā)) ∈ vals(ld)

2.3 Calculus
The calculus we employ is a sequent calculus for Java DL which uses symbolic execution
[King, 1976] for evaluating programs. In this Section we shortly review parts of the calculus
that are of particular relevance for this work. Special emphasis is placed on newly made
extensions to the calculus, such as the handling of inner classes and comprehensions, which
were a prerequisite for parts of this work.

2.3.1 The Taclet Language

Calculus rules in the KeY system are written in the taclet language. This section gives a
quick overview of the taclet language as far as needed to understand the remainder of this
work and introduces a textbook-style notation5 for taclets. A comprehensive overview of
the taclet language can be found in [Beckert et al., 2004, Giese, 2004] or in Chapter 4 of
[Beckert et al., 2007].

Introductory Examples

find and replacewith Let us consider the propositional logic rule treating implications
occurring as top-level formulas in the succedent:

impRight
Γ, φ⇒ ψ, ∆

Γ ⇒ φ→ ψ, ∆

This rule can be formulated in the taclet language as follows:

Taclet

impRight{
\ find(==> phi −> ps i)
\replacewith (phi ==> ps i)

}

Taclet

5 This newly defined notation does not provide the full expressiveness of the taclet language.

21

2 Java DL

The entities phi and psi occurring in the above taclet are so-called schema variables which
must be declared beforehand. They are typed and can only match logic entities of appropriate
type. The find clause describes a pattern (or schema) for sequents, terms or formulas to
which the rule is applicable, in this case sequents containing a formula of the form φ → ψ
in the succedent. The replacewith clause specifies a schema for the sequent (term, formula)
used to replace the sequent matched in the find part. In this case the formula matched by
phi -> psi is consumed and the formula matched by phi is added to the antecedent and
the formula matched by psi to the succedent. The sequent context we denote with Γ and ∆
in text-book style rules is not mentioned explicitly in taclets.

assumes Like the find clause, the assumes clause of a taclet describes formulas that must
be present in the sequent for the rule to be applied. The modus ponens rule

modusPonens
Γ, φ, ψ ⇒ ∆

Γ, φ, φ→ ψ ⇒ ∆

could be expressed as a taclet using the assumes clause:

Taclet

modusPonens{
\assumes (phi ==>)
\ find (phi −> ps i ==>)
\replacewith (p s i ==>)

}

Taclet

Unlike the find clause, the formula matched by assumes is not consumed by the application
of the taclet (unless this assumption also occurs in find).

add We can also define modusPonens in a “non-destructive” way such that its application
does not consume the implication formula

modusPonensAdd
Γ, φ, ψ, φ→ ψ ⇒ ∆

Γ, φ, φ→ ψ ⇒ ∆

which is equivalent to the taclet

Taclet

modusPonensAdd{
\assumes (phi ==>)
\ find (phi −> ps i ==>)
\add(p s i ==>)

}

Taclet

It is also possible to combine one add clause with one replacewith clause.

22

2.3 Calculus

Multiple Premises The rule for treating implications that are top level formulas in the
antecedent possesses two premises:

impRight
Γ ⇒ φ, ∆ Γ, ψ ⇒ ∆

Γ, φ→ ψ ⇒ ∆

In the taclet language multiple premises can be created by a semicolon separated list of
multiple goal templates (each consisting of add and replacewith clauses):

Taclet

impRight{
\ find (phi −> ps i ==>)
\replacewith(==> phi) ;
\replacewith (p s i ==>)

}

Taclet

Rewrite Rules So far we have only considered rules applied to entire sequents. There are
also rules that can be applied to terms irrespective of their location in the sequent, so-called
rewrite rules. Let us consider the rewrite rule addZero

a+ 0 a

The find and replacewith parts of the corresponding taclet are not sequent templates like in
the previous examples but term templates:

Taclet

addZero{
\ find (a+0)
\replacewith (a)

}

Taclet

Rewrite rules can also be targeted to formulas and augmented with an assumes clause to
define additional conditions necessary for their application.

closegoal Axioms such as the following

trueRight
∗

Γ ⇒ true, ∆

can be implemented using the closegoal construct:

Taclet

trueRight {
\ find(==> true)
\ closegoal

}

Taclet

23

2 Java DL

sameUpdateLevel The flag sameUpdateLevel indicates that the entity matched by the find
clause must occur in the same state as the formula matched by the assumes clause.

Taclet

applyEq{
\assumes (s=t ==>)\sameUpdateLevel
\ find (s)
\replacewith (t)

}

Taclet

If s were occurring in different state than s=t we would not know if s=t still holds in this
state.

Example 2.27 The rule applyEq is not applicable to the sequent

a = b⇒ 〈a++;〉 a = b

Since if the above sequent is evaluated in a state s, the first occurrence of a = b is evaluated
in s while the second is evaluated in ρ(a++;)(s).

Other Features In addition to what we have seen so far there are further mechanisms for
defining conditions the instantiations of the used schema variables must fulfil or rule sets
grouping the available rules in different categories that can be differently prioritised by the
automatic proof finding strategy. We will not elaborate on these features here, a complete
description of them can be found in the afore mentioned sources.

Taclets in Textbook-Style Notation

In this work a textbook-style-like notation for taclets is used. In the following it is defined how
side conditions (assumes clauses) for rewrite rules and find or assumes clauses in non-rewrite
rules matching non-top-level terms/formulas are expressed in this notation.

Non-Top-Level Terms and Formulas in Non-Rewrite Rules Let us consider the following
taclet

Taclet

addAssumptionForR{
\ find (r)
\add(P(r) ==>)

}

Taclet

where r is a schema variable matching rigid terms and P is a predicate. The term matched
by r can occur in arbitrary places in a sequent. To express this rule in a more textbook-style
like notation we write:

addAssumptionForR
Γ, P (r) ⇒ ∆

Γ ⇒ ∆
3 r

24

2.3 Calculus

Definition 2.28 (The relation 3) Let ϕ and ψ be Java DL formulas and t a term. We
write

seqRule
Γ′ ⇒ ∆′

Γ ⇒ ∆
3 ϕ

if the taclet seqRule shall only be applied if either ϕ ∈ Γ∪∆ or there is a formula Φ such that
Φ ∈ Γ ∪∆ and ϕ is subformula of Φ. Analogously we define that

seqRule
Γ′ ⇒ ∆′

Γ ⇒ ∆
3 t

shall only be applied if there is a formula Φ such that Φ ∈ Γ ∪ ∆ and t is subterm of Φ. If
multiple formulas (or terms) are required to occur in the conclusion we write:

seqRule
Γ′ ⇒ ∆′

Γ ⇒ ∆
3 ϕ, ψ

Note, that 3 r used in rule addAssumptionForR merely constrains the situation in which
this rule should be applied (important for proof automation), namely if r occurs in the
regarded sequent, but do not express that the fact that r occurs in the conclusion is a logical
consequence of the premise(s).

A flexible term or formula specified by 3 to occur in the conclusion of the rule must always
occur in the same state as the formulas added to the premises.

Rewrite Rules A rewrite taclet in its basic form, without additional assumption necessary
for its application, is denoted as follows (exemplified by the already known taclet addZero):

addZero a+ 0 a

Side conditions that must be satisfied when applying a rewrite rule as it is, for instance, the
case for the rule applyEq shown in the previous Section are expressed as follows:

applyEq
[s t]

Γ, s = t⇒ ∆

The semantics of the above rule is, that in a sequent Γ, s = t ⇒ ∆ arbitrary occurrences
of s occurring on the same update level as s = t can be replaced by t. If an additional side
condition 3 r (or 3 φ) is specified, r (φ) must also occur in the same state as the target of
the rewrite rule.

A rewrite rule is correct if the validity of each sequent obtained by applying the rewrite
rule entails the validity of the original sequent.

2.3.2 Symbolic Execution

For reasoning about programs we need to compute the state change caused by a program. In
the Java DL calculus this is done by symbolic execution [King, 1976]. Symbolic execution
denotes a technique for executing a program with, as the name suggests, symbolic instead of
concrete values. The semantics of Java required for symbolic execution is encoded in taclets.
We can basically distinguish two kinds of symbolic execution taclets:

25

2 Java DL

• Taclets flattening statements (i.e., decomposing complex statements into simpler ones).
The order in which a complex statement is decomposed matches the evaluation order
specified by the Java Language Specification

• Taclets compiling not further decomposable statements to updates and case distinctions.

Both kinds of taclets operate solely on the first active statement of a program (i.e., the first
statement occurring after a non-active prefix of opening braces, method-frames (see Section
2.3.6) and try blocks). In rule schemata we denote the inactive prefix with π and the
remainder of the program succeeding the first active statement with ω.

Example 2.29 (Symbolic Execution Taclets) The taclet assignmentUnfoldRight flattens
an attribute access nse.a on the right-hand-side of an assignment, where nse is a non-simple
expression (an expression potentially having side effects):

assignmentUnfoldRight
Γ ⇒ {U}〈π Tnse v0 = nse; v = v0.a; ω〉φ, ∆

Γ ⇒ {U}〈π v = nse.a; ω〉φ, ∆

The taclets assignmentReadAttribute computes the effect of assignments of the form v0 = v.a;
where v and v0 are variables and a is an attribute. The assignment v0 = v.a; cannot be further
decomposed and its effect is thus described by an update necessitating a case distinction on
whether v .

= null holds:

assignmentReadAttribute
Γ ⇒ {U}v .

= null, {U}{v0 := v.a}〈π ω〉φ, ∆
Γ, {U}v .

= null⇒ {U}〈π throw new NullPointerException(); ω〉φ, ∆

Γ ⇒ {U}〈π v0 = v.a; ω〉φ, ∆

2.3.3 Object Creation

Having Java as the target language we need to model object creation and initialisation.
As many other dynamic logics, and modal logics in general, Java DL operates under the
technically advantageous constant-domain assumption. This means that all states of a Kripke
structure share the same universe, which seems contradictory to modeling dynamic object
creation since it is not possible to add new elements to the universe.

Remark 2.30 (Benefits of the Constant-Domain Assumption) Due to the constant-
domain assumption, the range of quantifiers is not state-dependent. Thus the formulas

∀x; [p]φ↔ [p]∀x;φ

and
∀x; {U}φ↔ {U}∀x;φ

hold. This allows us to propagate updates into the scope of quantifiers which is essential for
the application of updates.

The implications this carries for the modeling of object creation are that all objects that
can ever be created by a program have to exist in every program state. Whether an object is
created is determined by the values of certain implicit (see Remark 2.33) fields, when a new
object is created these fields have to be changed appropriately. To formalize this approach
we first define the notion of object repositories and repository access functions.

26

2.3 Calculus

Definition 2.31 (Object Repository) Let C be a non-abstract class type. The object
repository RepC denotes the set of all elements of U of dynamic type C:

RepC := {e ∈ U | δ(e) = C}

where RepC is an infinite and enumerable set.

Since we defined object repositories to be enumerable sets (which is actually a restriction
we imposed on the set of admissible states in Java DL Kripke structures), it is possible to
index them and provide by this a means to access every repository object including the not
yet created ones. This indexing is done by a repository access function.

Definition 2.32 (Object Repository Access Function) Let (M,S, ∗, ρ) be a Java DL
Kripke structure with M := (D, I) and C a non-abstract class type. Then the object reposi-
tory access function getC is a rigid unary function symbol with

I(getC) : Z → RepC

being a surjective mapping and I(getC)|N0 being bĳective.

Now as we have a means to talk about all (created and non-created) object we need to able
to distinguish which objects are already created and which are still “available” when a new
instance is to be created. For this we introduce the static field <nextToCreate> (which we
abbreviate <ntc> in the following) for each non-abstract class type C denoting the smallest
non-negative index such that the object getC(C.<ntc>) is not created. In addition we require
that all objects of dynamic type C having an index greater C.<ntc> are not created either.
Thus in each state s the set of created objects is

{s(getC)(i)| i ∈ Z ∧ 0 ≤ i < vals(C.<ntc>)}

For convenience reasons we define in addition a boolean instance field <created> (which we
abbreviate <c> in the following) in java.lang.Object which evaluates to TRUE if (and
only if) the corresponding object is created.

An instance creation expression is symbolically executed by replacing it by a sequence of
calls to implicit methods modeling object creation and initialisation which we do not consider
in-depth here (a detailed description of the handling of object creation in Java DL can be
found in Chapter 3 of [Beckert et al., 2007]). The object allocation itself is represented by the
invocation of the implicit method C.<allocate> which returns the object getC(C.<ntc>)
increases the C.<ntc> pointer and sets the <c> attribute of the returned object to TRUE.
This behavior is encoded in the taclet allocate:

allocate

Γ ⇒ {U}{v := getT (T.<ntc>) ||
T.<ntc> := T.<ntc>+ 1 ||
getT (T.<ntc>).<c> := TRUE}〈π ω〉φ, ∆

Γ ⇒ {U}〈π v=T.<allocate>();ω〉φ, ∆

Remark 2.33 (Implicit Fields and Methods) In Java DL the terms implicit field and
implicit method refers to fields and methods which do not exist in the original code and are
added for providing additional state information or describing certain operations during object
creation. Implicit fields/methods are enclosed in pointed brackets for distinguishing them from
“non-implicit” fields/methods.

Object creation and initialisation is, for instance, modeled by the four implicit methods

27

2 Java DL

• private static <allocate>(): allocating a fresh object from the object repository,

• protected void <prepare>(): assigning default values to all instance fields (such
as null for reference type instance fields),

• mods void <init>(params): executing the initialisers of instance fields and the body
of the invoked constructor and

• public static T <createObject>(): setting the values of certain implicit fields
related to object initialisation and invoking the methods <allocate> and <prepare>.

2.3.4 Reachable States

Tightly coupled with our modeling of object creation is the issue of states reachable by a Java
program. Properties that hold in each state reachable by a Java program are for instance
that

• only a finite number of objects is created

• objects referenced by instance attributes of created objects are either null or created.
We cannot simply restrict the states contained in a Java DL Kripke structure only to

those states reachable by a Java programs since it is possible to build updates resulting in
non-reachable states. Given, for instance, an arbitrary state s and the update

{U} := {for java.lang.Object o; if(true) o.<c> := TRUE}
the state vals(U)(s) is not reachable by any Java program since the number of objects created
in vals(U)(s) is infinite.

The properties characterizing a reachable state can be axiomatized as a set of Java DL
formulas (see Chapter 3 of [Beckert et al., 2007]). Thus we could add this set of axioms each
time we need to specify that a certain state is reachable (such as in the preconditions of
method contracts). This would, however, lead to impracticably lengthy formulas. Instead
we introduce a heap-dependent predicate RS (short for inReachableState[*]) that holds in
exactly those states reachable by a Java program. The properties holding in these states are
axiomatized by taclets that can be applied in states in which RS is known to be true. The
following taclet, for instance, states that each object referenced by an instance attribute of a
created object is either null or created:

instAttrNullOrCreated
Γ, o.<c>

.
= TRUE, RS, o.a.<c>

.
= TRUE ∨o.a .

= null⇒ ∆

Γ, o.<c>
.
= TRUE, RS ⇒ ∆

3 o.a

where o.a is a reference type attribute term.
In certain cases it is necessary to show that RS is satisfied in a specific state: When, for

instance, a method contract is applied (see Section 2.3.5), we need show that its precondition,
which usually incorporates the RS predicate, holds in the pre-state of the method invocation.
In this situation we have to show that a sequent of the form

Γ, RS ⇒ {U}RS, ∆

is valid. This could be solved by replacing RS by a conjunction of the already mentioned
axioms describing reachable states. This is again impracticable due to the size of this formula.
Instead the update {U} is analyzed and RS is replaced only by those formulas whose truth
value is potentially affected by {U}.

28

2.3 Calculus

2.3.5 Method Contracts and Class Invariants

The behavior of a method (or a constructor) is described by a set of method contracts
[Meyer, 1992]. In the scope of the KeY system method contracts serve different purposes:

• The correctness of the implementation of a method with respect to its contract can
be verified by KeY. For this, different kinds of proof obligations (POs) exist encoding
different aspects of the contract. For instance, there is a proof obligation for showing
that the method establishes its postcondition whenever called in a state satisfying the
corresponding precondition.

• Contracts can be used to approximate the effect of a method call which makes symbolic
execution and thus also verification of programs modular. The soundness of a proof
constructed by doing so, of course, depends on the correctness of the used contracts.

In this work we only consider total correctness method contracts (i.e., method contracts
requiring termination of the specified method). Partial correctness is handled analogously
but slightly simpler.

Definition 2.34 (Method Contracts) A method contract for an operation (i.e., a method
or constructor) op is quintuple

(Pre, Post,Mod,Dep, Cap)

where

• Pre ∈ Fml denotes the precondition of op and may contain the following program
variables:

– in case op is an instance method or a constructor the program variable self denotes
its receiver object, i.e., the object the method is invoked on, or (in case op is a
constructor) the object initialised by the constructor.

– p1, . . . , pn represent the parameters of op.

Pre may not contain free logic variables.

• Post ∈ Fml is the postcondition of op that has the form:

(exc
.
= null→ φ) ∧ (exc 6 .= null→ ψ)

where φ is the postcondition for the case op terminates normally and ψ for the case of an
abrupt termination (by an exception). The program variable exc denotes the exception
possibly thrown by op. If no exception is raised by op exc .

= null holds. The program
variable exc may occur in the exceptional postcondition ψ but not in φ. In turn the
program variable result (denoting the return value of op in case op has one) may only
occur in the normal termination postcondition φ. Besides exc and result, Post may
also contain the program variables self (for non-static methods) and p1, . . . , pn. As
Pre, Post may not contain free logic variables.

• Mod is a set of location descriptors specifying the modifies (or also: assignable) clause
of op (i.e., all locations that might be changed by op when called in a state satisfying
Pre).

29

2 Java DL

• Dep, which is also a set of location descriptors, specifies the depends clause for op under
the precondition pre (i.e., all locations whose value can influence the returned result and
side effects of op when called in a state satisfying Pre).

• finally the set of location descriptors Cap specifies all reference type locations whose
value can be captured by the execution of op (when started in a state satisfying Pre).
We say that an object o is captured by op if in the post-state o is referenced by a location
it was not referenced by in the pre-state.

Again, self and p1, . . . , pn can occur in Mod, Dep and Cap.

The semantics of method contracts permits to underspecify (or, in other words: over-approxi-
mate) Mod, Dep and Cap clauses. This means that the union of a correct Mod (Dep, Cap)
clause with an arbitrary set of location descriptors is still a correct Mod (Dep, Cap) clause.

In case the depends and captures clause are not relevant for certain considerations we may
omit them and specify a contract as the triple (Pre, Post,Mod). For only partly specified
contracts (see also Section 3) the defaults for the unspecified clauses are chosen as the most
permissive values for them which is true for Pre and Post and the entire heap ∗ for Mod,
Dep and Cap.

Example 2.35 Let us consider the method:

JAVA

public void swap(MyObject a, MyObject b){
Object tmp = a.attr;
a.attr = b.attr;
b.attr = tmp;

}

JAVA

A possible method contract for this method is given by:

(a 6 .= null∧b 6 .= null,
(exc

.
= null→ a.attr

.
= b.attr@pre ∧ b.attr .

= a.attr@pre) ∧ (exc 6 .= null→ false),
{a.attr, b.attr},
{a.attr, b.attr},
{a.attr, b.attr})

Since swap does not throw an exception under the chosen precondition, our exceptional post-
condition is just given by the formula false and thus exc 6 .= null→ false logically equivalent
to exc .= null. Therefore, the entire postcondition is equivalent to

a.attr
.
= b.attr@pre ∧ b.attr .

= a.attr@pre

Another important means beside method contracts for specifying object oriented programs
are class invariants. A class invariant is a property that must be satisfied by a class or all
instances of a class in certain states6.

6Which states these are in detail is exemplarily outlined in the following. For a comprehensive elaboration
on this topic refer to [Roth, 2006].

30

2.3 Calculus

Definition 2.36 An invariant Inv ∈ Fml is satisfied by a class C if each operation op of C
executed in a state satisfying at least the precondition of one of op’s contracts preserves Inv.

Example 2.37 Let us consider the class

JAVA

public class Wrapper{
Object obj;

public Wrapper(Object o){
obj = o;

}

public Object getObject(){
return obj;

}
}

JAVA

where
(o 6 .= null, true, {self .obj}, {o}, {o})

is the (only) contract for the constructor Wrapper(Object o) and

(true, result
.
= self .obj, ∅, {self .obj}, ∅)

the contract for the method getObject(). Then the class Wrapper satisfies the invariant:

∀ Wrapper w; (w.<c>
.
= TRUE → w.obj 6 .= null)

The Method Contract Rule

As already hinted, a method contract can add to modularize symbolic execution by approx-
imating a method call by one of the called method’s contracts. This approach can of course
only be sound if the used method contract is correct (an issue that is addressed in Section
2.3.5-Proof Obligations). The rule for applying the contract for an instance method to its
invocation inside a diamond modality looks as follows:

methodContractInst
Γ ⇒ {U}{self := serec||p1 := a1|| . . . ||pn := an}Pre′, ∆
Γ, {∗Mod

i }exc .= null⇒
{U}{∗Mod

i || self := serec||p1 := a1|| . . . ||pn := an}(Post′ → {lhs := result}〈π ω〉φ), ∆
Γ, {∗Mod

i }exc 6 .= null⇒
{U}{∗Mod

i || self := serec||p1 := a1|| . . . ||pn := an}(Post′ → 〈π throw exc; ω〉φ), ∆

Γ ⇒ {U}〈π lhs = serec.m(a1, ..., an)@(C); ω〉φ, ∆

where (Pre, Post,Mod) is a contract for the method invoked by7 serec.m(a1, ..., an)@(C); and
{∗Mod

i } is an anonymising update for Mod with ∗i as well as ∗Locs
i (for any set of location

7The statement lhs = serec.m(a1, ..., an)@(C); is not a “normal” method invocation but a so-called method
body statement which is basically a placeholder for the body of the invoked method m which is implemented
in class C. Section 2.3.6 elaborates on the semantics and purpose of method body statements.

31

2 Java DL

descriptors Locs) not yet occurring in the sequent the rule is applied to. This anonymising
update is used to approximate the state change caused by m by setting all locations it can
possibly modify to unknown values. We define

Pre′ := Pre ∧ ConjAssumed

Post′ := Post ∧ ConjEnsured

where ConjAssumed is a conjunction of invariants we assume to hold in the pre-state of m’s
method invocation and ConjEnsured is a conjunction of invariants being established by m in
the respective post-state. Section 2.3.5-Proof Obligations describes and motivates the criteria
relevant for the choice of ConjAssumed and ConjEnsured.

The first premise states that the precondition Pre′ has to hold in the state the method is
invoked in. In this state the receiver object and the arguments of the method are given by
serec and a1, . . . , an so we update the placeholders self and p1, . . . , pn occurring in Pre with
these values.

The second premise represents the normal termination case: We assume that no exception
(that is not internally caught by m) is raised by m and thus {∗Mod

i }exc .
= null holds. In

this case we have to show that the postcondition Post′ implies that after the execution of the
remaining program φ holds.

In the third premise we assume that the method terminated by an exception and thus
exc 6 .= null and Post′ holds. In this case after the execution of π throw exc; ω the formula
φ has to hold.

Corresponding rules for the invocation of static methods or methods without return value
are defined analogously.

Proof Obligations

The KeY system offers a wide range of proof obligations (POs) for verifying the compliance
of a program with its specification (so-called vertical proof obligations). In the following
we provide short a summary of the proof obligations relevant for this work. A detailed
description of vertical as well as horizontal proof obligations can be found in [Roth, 2006] and
[Beckert et al., 2007].

First we need to define some basic building blocks required for all of the following POs. If we
recall the structure of postconditions (see previous section) the need for capturing exceptions
thrown by the regarded program becomes obvious (otherwise we could not “talk” about them
in the postcondition). To achieve this we wrap the specified method or constructor op in a
try-catch statement:

JAVA

exc=null;
try{
Prg(op;self;p1,...,pn;result);

}catch(Throwable e){
exc = e;

}

JAVA

32

2.3 Calculus

Method/Constructor op declared in T Prg(op;self;p1,...,pn;result)

T0 m(T1,...,Tn) result=self.m(p1,...,pn)@(T);

void m(T1,...,Tn) self.m(p1,...,pn)@(T);

static T0 m(T1,...,Tn) result=T.m(p1,...,pn)@(T);

static void m(T1,...,Tn) T.m(p1,...,pn)@(T);

T(T1,...,Tn) result = new T(p1,...,pn)@(T);

Table 2.1: Programs in proof obligations

where Prg(op;self;p1,...,pn;result) is a placeholder for the statement defined by table
2.1. In the following we abbreviate the above program with Prgop().

In Section 2.3.4 the RS predicate is defined that characterizes the states reachable by a
program. For defining the states in which a method call can occur we have to constrain this
a bit further which is done by the formula V alidCallsemop (with op := self .m(p1, . . . , pn);)
characterizing the legal pre-states for the method invocation op under the semantics sem
determined by the considered programming language. This work distinguishes in this context
the semantics Java and SCJ (for Safety Critical Java). For the Java semantics V alidCallJava

op

is given by:

V alidCallJava
op :=

RS∧ self 6 .= null∧ self .<c> .
= TRUE ∧∧

i:1≤i≤n and
α(pi) is ref. type

(pi
.
= null∨pi.<c>

.
= TRUE)

Now we can start to define POs for the various properties a program has to fulfil. The PO
PreservesInv(op;Assumed;Ensured) states that op preserves the set of invariants Ensured
if executed in a (legal) state satisfying at least the precondition of one contract of op and the
set of invariants Assumed (typically Ensured ⊆ Assumed holds):

PreservesInv(op;Assumed;Ensured) :=

ConjAssumed ∧DisjPre ∧ V alidCallsemop → [Prgop()]ConjEnsured

where DisjPre is the disjunction of all preconditions for op and ConjF is the conjunction of
all formulae in set F .

The PO EnsuresPost(ct;Assumed) states that the postcondition Post (as defined by ct)
is ensured by the corresponding operation op under assumption of the invariants Assumed:

EnsuresPost(ct;Assumed) := ConjAssumed ∧ Pre ∧ V alidCallsemop → 〈Prgop()〉Post

In the previous section we defined the rule methodContractInst which uses a method contract
whose pre- and postcondition was strengthened by the invariants Assumed resp. Ensured.
As already stated, the correctness of the applied method contract is vital for the correctness
of the application of rule methodContractInst. The PO EnsuresPost(ct;Assumed;Ensured)
can be used to check that op ensures the postcondition Post and the invariants Ensured
when executed in a state satisfying Pre and Assumed:

EnsuresPost(ct;Assumed;Ensured) :=

ConjAssumed ∧ Pre ∧ V alidCallsemop → 〈Prgop()〉Post ∧ ConjEnsured

33

2 Java DL

In addition we also have to verify that the assignable clause Mod is correct. Section 9.2.1
elaborates on the verification of assignable, depends and captures clauses.

Having defined EnsuresPost(ct;Assumed;Ensured) it becomes clear how ConjAssumed

and ConjEnsured should be chosen when applying a method contract: ConjAssumed has to be
chosen strong enough to make the implications (occurring in the second and third premise of
rule methodContractInst)

Post′ → 〈π throw exc; ω〉φ (2.18)
Post′ → 〈π ω〉φ (2.19)

true in the states they are evaluated in (which are constraint by the sequent contexts).
ConjAssumed on the other hand must be chosen strong enough to entail validity of formula
EnsuresPost(ct;Assumed;Ensured) otherwise the application of methodContractInst is un-
sound.

Further strengthening the formula ConjEnsured could make it easier to prove validity of the
sequents resulting from the second and third premise of rule methodContractInst (since we
have stronger assumptions then). In turn, however, this might necessitate to strengthen also
ConjAssumed for preserving validity of EnsuresPost(ct;Assumed;Ensured). By doing so we
would also strengthen the formula Pre′ occurring in the first premise of methodContractInst
which could render the corresponding sequent invalid or at least less easier to prove valid.

2.3.6 Inlining of Method Bodies

In Section 2.3.5 a possibility for symbolically executing a method invocation is discussed: using
a method contract for approximating the state change caused by the method invocation. This
section reviews an alternative handling of method calls namely inlining the method body.
The disadvantage this carries is the obvious lack of modularity (at least for dynamically
bound methods): A proof performed using method inlining is only valid for a closed program
and becomes invalid whenever new implementations of an inlined method are added to the
regarded program.

We now consider the symbolic execution of a non-void instance method invocation. As de-
scribed in Section 2.3.2, statements containing complex subexpressions are first flattened. For
a method invocation this results in a statement of the form (we ignore additional statements
introduced by the process of flattening here):

JAVA

T v = self.m(v1,...,vn);

JAVA

where v, self, v1 . . .vn are program variables.
The next step is performing a case distinction (encoded as an if-cascade) on the dynamic

type (only subtypes of α(self) implementing m have to be considered here) of the receiver
object self:

JAVA

if(self instanceof T1){
v=self.m(v1,...,vn)@(T1);

}else if(self instanceof T2) {

34

2.3 Calculus

v=self.m(v1,...,vn)@(T2);
}else if ...
...
}else{

v=self.m(v1,...,vn)@(Tm);
}

JAVA

where the statements v=self.m(v1,...,vn)@(Ti) are so-called method-body-statements
which serve as placeholders for a concrete method body.

Definition 2.38 (Method Body Statement) Let r, v1,. . . ,vn and self be program vari-
ables. Then a method body statement is a statement of the form:
r=self.m(v1,...,vn)@(T);

with class T implementing a non-void instance method with signature m(α(v1), . . . , α(vn)) or:
r=m(v1,...,vn)@(T);

with class T implementing a non-void static method with signature m(α(v1), . . . , α(vn)) or:
self.m(v1,...,vn)@(T);

with class T implementing a void instance method with signature m(α(v1), . . . , α(vn)) or:
m(v1,...,vn)@(T);

with class T implementing a void static method with signature m(α(v1), . . . , α(vn)).

A method body statement is symbolically executed by replacing it with the method body
it stands for and enclosing it in a method frame (a statement keeping track of the current
execution context).

Definition 2.39 (Method Frame Statement) Let r and self be program variables, T a
class type and p a sequence of statements then

method-frame(result->r,
source=T,
this=self) : { p }

is a method frame statement.

Replacing a method-body statement with the actual method body it stands for is done by
the rule methodBodyExpand:

methodBodyExpand

Γ ⇒ {U}〈π method-frame(result->res,

source=T,

this=self) : {body} ω〉φ, ∆

Γ ⇒ {U}〈π res=self.m(v1,...,vn)@(T);ω〉φ, ∆

where body is a sequence of assignments assigning the variables v1, . . . , vn to the formal
parameters used in the corresponding implementation of m followed by the method body
itself.

35

2 Java DL

2.3.7 Inner Classes

Typical RTSJ applications make extensive use of inner classes which necessitated support
for this Java construct in Java DL. This section provides a quick overview of the different
kinds of inner classes [Gosling et al., 2005, Igarashi and Pierce, 2002] existing in Java and
how they are handled in Java DL.

Member, Local and Anonymous Classes in Java

Java distinguishes 4 different kinds of inner classes:

• Static inner classes (also known as top-level inner classes)

• Non-static inner classes

• Local classes

• Anonymous (local) classes

Static Inner Classes A static inner class is declared as a static member of a class. It has
access to all static (but no instance) fields and methods of the enclosing class.

JAVA

public class A{
...
private static int sa;
...
public static class B{
void m(){int x = sa; ...}

}
}

JAVA

A static class can be instantiated in the same manner as an ordinary top level class using its
full name which is the class name prefixed with the names of the enclosing classes. A new
instance of class B, for instance, shown in the above example is created by new A.B().

Non-Static Inner Classes Non-static inner classes (we just refer to them as inner classes
in the following) are declared as instance members of an enclosing class. Like static inner
classes, they can access static fields and methods of the enclosing class. In addition, each
instance of an inner class is associated with an instance of the enclosing class and can access
all instance fields and methods of this instance.

JAVA

public class A{
private int ia;
private static int sa;

class InnerA{
int m(){return sa+ia;}

36

2.3 Calculus

}
}

JAVA

For resolving field references that are not explicitly prefixed the field is looked up first in
the most inner instance and then successively in the outer instances iterating from inner to
outer instances. In the above example, the field ia accessed in method m()@(InnerA) is
first looked up in InnerA and since not being found there in A afterward. So we can think of
this occurrence of ia as prefixed by an implicit this reference to the enclosing this object.
It is also possible to reference the enclosing instance explicitly by A.this (thus in the above
example we could also write A.this.ia). In case the nesting level is greater 1 like here:
public class A{... class B{... class C{...} ...} ...}

every transitively reachable enclosing instance can be accessed analogously. In the context of
class C we can for instance write A.this to access the instance of A that encloses the instance
of B which is the enclosing instance of the regarded C object (and thus accessible through
B.this).

When creating an instance of an inner class, an appropriate enclosing instance must be
provided. This can either happen

• implicitly by creating the instance of the inner class in a non-static context of the
enclosing class (in this case the enclosing instance is the object referenced by this
when the inner class is instantiated).

• or explicitly by providing an object a of the outer class and using a special variant of
the new operator: a.new InnerA().

Both alternatives are shown in the following example:

JAVA

public class B{
private int ia;

public int m(){
A a = new A();
A.InnerA ina = a.new InnerA();
InnerB ib = new InnerB(a);
return ib.m();

}

class InnerB extends A.InnerA{
public InnerB(A a){ a.super();}

}
}

JAVA

When an instance of the inner class InnerB is created in the above example, its enclosing
instance of type B is set to the object denoted by this. Since InnerB extends another
inner class, InnerA, and requires as such also an enclosing instance of type A, we need
to provide one which is done by the super constructor call a.super(). Thus the newly

37

2 Java DL

created object ib possesses two enclosing instances (one of type A and one of type B). In
Java, field references as well as implicit references to enclosing instances are bound statically.
This means for the method call ib.m() in the above example that it returns the value of8

A.sa@(A)+A.this.ia@(A) since it is implemented in A.InnerA.

Local Classes Unlike inner classes local classes are not declared as members of a class but
inside a Java block (similar to a local variable). They are local in the sense that they are
only visible in the block they are declared in (in the code following their declaration). Like
inner classes they possess an enclosing instance but can in addition access final local variables
visible at the point they are declared.

JAVA

public class A{
int i = 1;

public int m(){
final int il = 0;
class LocalInM{
public int m(){ return i+il;}

}
LocalInM l = new LocalInM();
return l.m();

}
}

JAVA

Anonymous Classes An anonymous class is in principle a local class without a name. In the
following example an instance of an anonymous class extending an existing class B is created:

JAVA

public class A{
int i = 1;

public int m(){
final int il = 0;
B b = new B(){

public int m(){ return i+il;}
};
return b.m();

}
}

JAVA

The object created by the constructor call new B() ... in the above code has an anonymous
dynamic type that is a direct subtype of B.

8The notation a@(T) again refers to the attribute a declared in class T.

38

2.3 Calculus

Handling in Java DL

Static inner classes can be treated like top-level classes. The access to static members of the
enclosing classes poses no problem since static binding is used for this. For the handling of
non-static inner classes in Java DL two issues are of special importance:

• determining the correct enclosing instance implicitly or explicitly referenced in an inner
class and

• resolving references to final local variables in local (and anonymous) classes.

The Implicit Field <enclosingThis> For storing the enclosing instance of an inner class
we define an implicit field <enclosingThis>. This field is initialised by the implicit method
<init> taking the enclosing instance as an argument which needs to be taken into account
when evaluating a constructor call:

instanceCreationInner

Γ ⇒ 〈π T v0 = T.<createObject>();

v0.<init>(args, o)

v0.<initialized> = true;
v = v0;

ω 〉φ, ∆

Γ ⇒ 〈π v = o.new T(args);ω〉φ, ∆

For implicitly provided enclosing instances which can be considered syntactic sugar for an
enclosing instance explicitly provided by
this.new ...

we proceed analogously.
When symbolically executing a program, the <enclosingThis> pointer is used to resolve

implicit and explicit this pointers to enclosing classes which is needed for resolving field and
method references9. Let EnclosingT.this be a this pointer InnerC the static context
EnclosingT.this is evaluated in and self the object referenced by this. The resolution
of an explicit EnclosingT.this pointer is described by the algorithm (in pseudo code):

Pseudo Code
result = self;
staticContext = InnerC;
while(staticContext != EnclosingT){
result = result.<enclosingThis>@(staticContext);
staticContext = staticTypeOf(result);

}

Pseudo Code

For resolving implicit enclosing this pointers we have to change the above algorithm
slightly since only the class in which the field/method implicitly prefixed by this pointer
is declared in was determined at parse-time. The static type of the corresponding enclosing
instance can be a subtype of it:

9 We assume that static binding and also the determination of the type of an implicit this pointer is already
performed at parse-time and the this information is available to the calculus. Thus this information does
not need to be computed during its symbolic evaluation.

39

2 Java DL

Pseudo Code
result = self;
staticContext = InnerC;
while(!staticContext subtypeof EnclosingT){
result = result.<enclosingThis>@(staticContext);
staticContext = staticTypeOf(result);

}

Pseudo Code

Example 2.40 (Resolving of Enclosing this pointers) Let A be a top-level class con-
taining the inner class InnerA and declaring the field i:

JAVA

public class A{
int i=1;

class InnerA{
void m(){
int c = i;

}
}

}

JAVA

where InnerA does not declare a field named i. Then the symbolically executing the assign-
ment

〈{method-frame(source=A.InnerA, this=self): { c = i;}}〉φ

results in the following update:

{c := self.<enclosingThis>@(A.InnerA).i}
〈{method-frame(source=A.InnerA, this=self): {}}〉φ

References to Final Local Variables Local and anonymous classes can reference final local
variables of the enclosing block. We handle this by a program transformation:

• For each final local variable accessed by the local class we add a new uniquely named
instance field.

• The constructors of the local classes are extended to initialise these new attributes

• The signature of the constructors is changed accordingly.

Example 2.41 (Handling of Final Local Variables) Let us consider the following meth-
od incorporating a local class:

JAVA

public int m(){
final int il = 0;

40

2.3 Calculus

class B{
public int m(){
return i+il;

}
}
B b = new B(); ...

}

JAVA

It is transformed to:

JAVA

public int m(){
final int il = 0;
class B{
private int _new_field_il;

public B(int i1){
super();
_new_field_il=i1;

}

public int m(){
return i+_new_field_il;

}
}
B b = new B(il); ...

}

JAVA

2.3.8 Sum Comprehensions

The reasoning about the memory consumption of loops as presented in Section 13 necessitates
support for sum comprehensions in Java DL. This Section gives an overview of the syntax
and semantics of sum comprehensions in Java DL and provides also some evidence on the
degree of automation achieved by the calculus rules for sum comprehensions.

Other (e.g., product) comprehensions can be implemented analogously and are not discussed
here.

Definition 2.42 (Sum Terms – Syntax) A sum term has the form:

sum(x; [l, u); t)

where

• l, u and t are terms of type integer

• x is a logic integer variable bound in t (but not in l and u)

41

2 Java DL

Definition 2.43 (Sum Terms – Semantics) Let K := (M,S, ∗, ρ) be a Java DL Kripke
structure, s ∈ S and β a variable assignment. Then for an arbitrary sum term sum(x; [l, u); t):

vals,β(sum(x; [l, u); t)) :=

vals,β(u−1)∑
i:=vals,β(l)

vals,βi
x
(t) if vals,β(l) < vals,β(u)

0 otherwise

As definition 2.43 states, a term sum(x; [l, u); t) represents the “sum of t for all values of x
in the half-open (integer) interval [u, l)” (where the bounds u and l do not depend on x since
x is only bound in t). By limiting the range of the summation to the interval [u, l) we ensure
that we only have to consider finite sums. Since t can be an arbitrary term of type integer,
we can further filter the summands by using an if-then-else term here.

Using a half-open interval (instead of a closed one as the mathematical notation suggests)
bears some technical advantages, as pointed out in the following.

Axioms

This Section lists the axioms we assume for sums and their representation as taclets. All
additional taclets (partly defined for increasing automation, partly for convenience in inter-
active proof finding) presented in the following are entailed by these axioms which was also
formally proven10.

We define the semantics of sums inductively. First the base case, which states that a sum
over an empty range equals zero:

Axiom 2.44 (Sum Empty) Let a,b and s(i) be integers with b < a. Then the following
holds:

b∑
i=a

s(i) = 0

And its representation as a taclet:

sumEmpty

Γ ⇒ u ≤ l, ∆
[sum(x; [l, u); t) 0]

Γ ⇒ ∆
3 sum(x; [l, u); t)

And finally the induction step, linking the value of the sum to the values of its summands:

Axiom 2.45 (Sum Induction Upper) Let a,b and s(i) be integers with a ≤ b. Then the
following holds:

(
b−1∑
i=a

s(i)) + s(b) =
b∑

i=a

s(i)

Which can be formulated as a taclet as follows:

sumIndU1 sum(x; [l, u); t) sum(x; [l, u− 1); t) + \if(l < u) \then(t[x/u−1]) \else(0)
10These proofs were performed using the approach described in [Bubel et al., 2008b, Rümmer, 2003] for ver-

ifying the correctness of taclets. The proof files can be found under the following URL:
http://i12www.ira.uka.de/~engelc/bsumTacletsAndProofs.tgz

42

http://i12www.ira.uka.de/~engelc/bsumTacletsAndProofs.tgz

2.3 Calculus

Derived Rules

The additional taclets derived from sumIndU1 and sumEmpty can be subdivided in two classes:

• interactive rules providing basic operations on sums (such as splitting sums in sub-sums
or splitting off summands from sums) and

• automatically applicable rules normalizing sum terms (such as eliminating arithmetic
operations in summands by using commutativity, distributivity and associativity of
sums) and providing specialized inductive rules for sums for patterns typically occurring
in induction proofs/proofs using loop invariant.

In the following some examples for automatically and solely interactively applicable rules is
provided. A full account of taclets for sum terms can be found in Appendix A

Interactive Rules The rule sumSplit splits a sum in two sub-sums at an index m in case m
is inside the summation range:

sumSplit

Γ ⇒ l ≤ m ∧m ≤ u, ∆
[sum(x; [l, u); t) sum(x; [l,m); t) + sum(x; [m,u); t)]

Γ ⇒ ∆
3 sum(x; [l, u); t)

This taclet also shows an advantage of choosing the summation range to be a half-open
interval: m can directly used as the upper and lower bound of the summation interval of the
two sub-sums. A closed interval would necessitate to use either m + 1 or m − 1 (depending
on how exactly the split rule is formulated) in one of the cases. This bears, however, the
disadvantage that automatically applicable inductive taclets (to be defined in the following)
match on cases where one of the bounds is increased or decreased by one, a case typically
occurring in induction proofs or proofs using a loop invariant involving sum terms. The
second example for a solely interactively applicable rule is the convenience rule singleSummand
replacing a sum over a single summand with by this summand:

singleSummand

Γ ⇒ l
.
= u− 1, ∆[

sum(x; [l, u); t) t[x/l]
]

Γ ⇒ ∆
3 sum(x; [l, u); t)

Our last example is the taclet sumOneZero dealing with sums of a special form stemming from
the translation of JML’s \num_of construct to Java DL, which allows counting the number
of integers satisfying a certain formula (or boolean expression in JML) b:

sumOneZero
Γ, s ≥ 0 ⇒ ∆

Γ ⇒ ∆
3 s

where s stands for a term of the form sum(x; [l, u); \if(b) \then(1) \else(0)).

Automatically Applicable Rules Sum terms are automatically normalized to that respect
that addition operations in the summand term are resolved by utilizing the commutativity
and associativity of sum terms:

sumCommutativeAssociative sum(x; [l, u); t1 + t2) sum(x; [l, u); t1) + sum(x; [l, u); t2)

43

2 Java DL

If the summand is of the form t1 ∗ t2, where the logic variable x we sum over has no free
occurrence in t2, the factor t2 can be pulled out due to the distributivity of sums:

sumDistributive sum(x; [l, u); t1 ∗ t2) sum(x; [l, u); t1) ∗ t2

The backbone of our calculus extension for sum terms is formed by rules matching certain
cases frequently occurring when applying integer induction or loop invariants. These rules are
based on the assumption, that in induction proofs over an induction hypothesis φ[n] making
some statement about a sum term sum(x; [l, u); t) there typically is a linear dependence
between either the upper (u) or lower (l) bound and the induction variable n of the form
u = ±n+ c (or l = ±n+ c), where c is an arbitrary constant. When doing the induction step
for proving the implication φ[n] → φ[n + 1], the upper (or lower) bound (of the sum term
occurring in φ[n + 1]) is increased/decreased by 1 (in comparison to its occurrence in φ[n])
resulting in a new upper/lower bound of the form ±n + c ± 1. Proofs performed using loop
invariants exhibit a similar behavior.

Therefore, the four automatically applicable rewrite rules sumIndU1Concr, sumIndU2Concr,
sumIndL1Concr and sumIndL2Concr cover the four possible cases of a summation bound being
in- or decreased by one:

sumIndU1Concr sum(x; [l, 1 + u); t) sum(x; [l, u); t) + \if(l ≤ u) \then(t[x/u]) \else(0)

sumIndU2Concr sum(x; [l,−1 + u); t) sum(x; [l, u); t)−\if(l < u) \then(t[x/u−1]) \else(0)

sumIndL1Concr sum(x; [l − 1, u); t) sum(x; [l, u); t) + \if(l < u) \then(t[x/l−1]) \else(0)

sumIndL2Concr sum(x; [1 + l, u); t) sum(x; [l, u); t)− \if(l < u) \then(t[x/l]) \else(0)

Figures 2.1 and 2.2 show four methods which can be verified (against their JML specifica-
tion) each using one of the four presented rules11. The example programs shown in Figures
2.1–2.3 were taken from [Dĳkstra and Feĳen, 1988].

In the following use a self-defined JML-like notation

JML
(\bsum int i; l; u; t)

JML

that is equivalent to (TDL
JML denotes a mapping from JML expressions to Java DL terms and

formulas here)
sum(TDL

JML(i); [TDL
JML(l), TDL

JML(u)); TDL
JML(t))

for specifying properties over sums in JML.
All four methods compute the sum over the elements of an integer array a in a while loop

summing up the array elements in a variable s with sum0 and sum1 starting at the beginning
of the array and sum2 and sum3 starting at its end. The method specifications are identical
in all four cases.

We shortly review the role of our above defined rules in the proof of sum0’s method speci-
fication. The loop invariant defined in sum0 entails that
11For these examples we are applying an idealised semantics interpreting Java integers (Z/232Z) as unbounded

integers (Z) which is in line with the semantics of sum terms denoting a summation in Z. Faithfulness to
the actual Java semantics would necessitate a cast (int) to be applied to each of the \bsum expressions.

44

2.3 Calculus

JAVA + JML
/*@ public normal_behavior
@ ensures \result==(\bsum int i; 0; a.length; a[i]);
@*/

public static int sum0(int[] a){
int s = 0, n = 0;
/*@ loop_invariant n>=0 && n<=a.length && s==(\bsum int i; 0; n; a[i]);
@ assignable s, n;
@ decreasing a.length-n;
@*/

while(n < a.length){
s += a[n++];

}
return s;

}

/*@ public normal_behavior
@ ensures \result==(\bsum int i; 0; a.length; a[i]);
@*/

public static int sum1(int[] a){
int s = 0, n=0;
/*@ loop_invariant n>=0 && n<=a.length &&
@ s+(\bsum int i; n; a.length; a[i])==(\bsum int i; 0; a.length; a[i]);
@ assignable s, n;
@ decreasing a.length-n;
@*/

while(n < a.length){
s += a[n++];

}
return s;

}

JAVA + JML

Figure 2.1: Two methods for summing an array’s elements starting from the first element. The
code and method specifications of both methods are identical, the loop invariants
however differ. The contracts of both methods were proven correct automati-
cally requiring the application of the following rules for treating sum compre-
hensions: in both cases the rule sumLEqU was required for showing the initial
validity of the loop invariant. In addition, for proving the loop invariant to be
preserved in sum0 (sum1) the rule sumIndU1Concr (sumIndL2Concr) needed to
be applied (since the upper (lower) bound n of (\bsum int i; 0; n; a[i])

((\bsum int i; n; a.length; a[i])) is increased by the loop body by 1).

45

2 Java DL

JAVA + JML
/*@ public normal_behavior
@ ensures \result==(\bsum int i; 0; a.length; a[i]);
@*/

public static int sum2(int[] a){
int s = 0, n = a.length;
/*@ loop_invariant n>=0 && n<=a.length &&
@ s==(\bsum int i; n; a.length; a[i]);
@ assignable s, n;
@ decreasing n;
@*/

while(n > 0){
s += a[--n];

}
return s;

}

/*@ public normal_behavior
@ ensures \result==(\bsum int i; 0; a.length; a[i]);
@*/

public static int sum3(int[] a){
int s = 0, n = a.length;
/*@ loop_invariant n>=0 && n<=a.length &&
@ s + (\bsum int i; 0; n; a[i])==(\bsum int i; 0; a.length; a[i]);
@ assignable s, n;
@ decreasing n;
@*/

while(n > 0){
s += a[--n];

}
return s;

}

JAVA + JML

Figure 2.2: Two methods for summing an array’s elements starting from the last element.
The contracts of both methods were proven correct automatically requiring the
application of the following rules for treating sum comprehensions: For sum2 the
rule sumLEqU was needed for showing the initial validity of the loop invariant as
well as sumIndL1Concr for proving the invariant to be preserved. In the proof for
sum3’s contract sumIndU2Concr is required for proving the preserving of the loop
invariant.

46

2.3 Calculus

JML
s==(\bsum int i; 0; n; a[i])

JML

For proving that this loop invariant is preserved we basically have to show that

s
.
= sum(i; [0, n); a[i]) ∧ I ′ ∧ n < a.length→ 〈s+=a[n++];〉 s .

= sum(i; [0, n); a[i]) ∧ I ′

holds (where I ′ is the remainder of the invariant). This is equivalent to a formula of the form
(this is determined by symbolic execution of s+=a[n++]; in the Java DL calculus):

s
.
= sum(i; [0, n); a[i]) ∧ I ′ ∧ n < a.length→ s+ a[n]

.
= sum(i; [0, n+ 1); a[i]) ∧ I ′′

I ′′ is trivially implied by I ′∧n < a.length. What is left to prove is that sum(i; [0, n+1); a[i])
is entailed by the premise of the implication. Here the taclet sumIndU1Concr helps us to
determine how the two sum terms relate to each other:

It can be applied to sum(i; [0, n+ 1); a[i]) resulting in a term

sum(i; [0, n); a[i]) + \if(0 ≤ n) \then(a[n]) \else(0)

which can be simplified to
sum(i; [0, n); a[i]) + a[n]

leading to the formula

s
.
= sum(i; [0, n); a[i]) ∧ I ′ ∧ n < a.length→ s+ a[n]

.
= sum(i; [0, n); a[i]) + a[n]

which is obviously valid and can also be proven automatically.
For showing that the loop invariant is initially (before the first loop iteration) valid we

define another specialized taclet matching the case that the lower and upper bound of a sum
term are (syntactically) identical:

sumLEqU sum(x; [l, l); t) 0

In method sum1 we have to deal with a sum term whose lower bound is increased by the
loop body requiring application of sumIndL2Concr to prove its method spec. Examples for
specifications requiring the use of sumIndL1Concr and sumIndU2Concr are provided in figure
2.2.

Evaluation

In [Leino and Monahan, 2007] a similar technique for handling comprehensions in the Spec#
program verifier [Barnett et al., 2005] is described. The authors provide also performance
measurements of the presented approach applied to several example programs taken from
[Dĳkstra and Feĳen, 1988]. These include the already discussed programs shown in figures
2.1 and 2.2 and the more complex method coincidenceCount1 (see figure 2.3) featuring a
nested sum comprehension occurring in its loop invariant.

Table 2.2 compares the performance of an implementation of the just presented approach in
the KeY system with the one from [Leino and Monahan, 2007]. The figures are not compara-
ble one-to-one also due to different hardware, but first of all due to [Leino and Monahan, 2007]

47

2 Java DL

JAVA + JML
/*@ public normal_behavior
@ requires (\forall int i,j; 0<=i && i<j && j<f.length; f[i]<f[j]);
@ requires (\forall int i,j; 0<=i && i<j && j<g.length; g[i]<g[j]);
@ requires f!=null && g!=null;
@ ensures \result==(\bsum int i; 0; f.length;
@ (\bsum int j; 0; g.length; (f[i]==g[j]?1:0)));
@*/

public static int coincidenceCount1(int[] f, int[] g){
int ct=0, m=0, n=0;
/*@ loop_invariant m>=0 && n>=0 && m<=f.length && n<=g.length &&
@ ct ==(\bsum int i; 0; m;
@ (\bsum int j; 0; n; (f[i]==g[j]?1:0))) &&
@ (m==f.length || (\forall int j; j>=0 && j<n; g[j]<f[m])) &&
@ (n==g.length || (\forall int i; i>=0 && i<m; f[i]<g[n]));
@ assignable ct, n, m;
@ decreasing f.length-m + g.length-n;
@*/

while(m<f.length && n<g.length){
if(f[m]<g[n]){
m++;

}else if(g[n]<f[m]){
n++;

}else{
ct++;
m++;
n++;

}
}
return ct;

}

JAVA + JML

Figure 2.3: coincidenceCount1 annotated with JML specifications. The method contract was
proven correct automatically, which involved application of sumIndU1Concr,
sumZeroRight, sumCommutativeAssociative, sumEqual2, sumZero, sumEqSplit1′,
sumEqSplit2′, sumEqZeroCut and sumLEqU.

48

2.3 Calculus

Method KeY Spec#/Simplify Spec#/Z3 KeY/Number of
Rule Applications

sum0 0.8 0.219 0.172 502
sum1 0.9 0.063 0.016 569
sum2 0.6 0.047 0.016 418
sum3 0.9 0.110 0.016 475
coincidenceCount1 12.3 18.970 – 4884

Table 2.2: Performance Measurements (in seconds) of program verifications. The measure-
ments for the Spec# approach were taken from [Leino and Monahan, 2007] and
measured on a Core 2 Duo running at 2.33GHz with 4MB of L2 cache. The mea-
surements for the KeY approach were taken on roughly comparable hardware: an
1.83GHz Core 2 Duo laptop with 2MB L2 cache. A dash “–” indicates that no
proof was found.

only verifying partial correctness. The comparison, however, shows that not only a high level
of automation (as all examples could be proven automatically) can be achieved in treating
comprehensions when concentrating on handling patterns typically occurring in induction
proofs (using loop invariants basically means doing an induction proof), the formalization is
also efficient in terms of required rule applications and thus also execution time.

49

3 Java Modeling Language

The Java Modeling Language (JML) [Leavens et al., 2007, Leavens et al., 2006] is a behavioral
interface specification language dedicated to Java, which allows specifying the functional
and non-functional behavior of Java programs. This Section reviews the basic concepts of
JML relevant for this work and explains how JML expressions relate to Java DL terms
and formulas and JML method specifications and class invariants are translated to Java DL
contracts (see Section 2.3.5).

JML specifications are either added to the targeted Java code as comments enclosed in the
JML-specific comment delimiters /*@ and @*/ (or //@ for single-line specifications) or listed
in a separate file. The following example shows a Java class annotated with a JML class
invariant and several JML method specification cases :

JAVA + JML
public class MyArrayList{

int count;
public Object[] elements;

/*@ public invariant 0<=count && count<=elements.length &&
@ (\forall int i; 0<=i && i<elements.length;
@ elements[i]!=null <==> i<count); @*/

...

/*@ public normal_behavior
@ requires !(\exists int i; 0<=i && i<count; elements[i].equals(o))
@ && o!=null && count<elements.length;
@ assignable elements[count], count;
@ ensures elements[\old(count)]==o && count==\old(count)+1;
@ also public exceptional_behavior
@ requires o==null;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
@ also ... @*/

public boolean add(Object /*@nullable@*/ o)
throws IllegalArgumentException{...}

}

JAVA + JML

In JML invariants and pre- and postconditions are represented by JML expressions of type
boolean. As exemplified by the above class invariant, a JML expression can either be a side-

51

3 Java Modeling Language

effect free Java expression, such as 0<=count, or a JML specific construct (in general starting
with a \), for instance a quantified expression like:

JAVA + JML
(\forall int i; 0<=i && i<elements.length; elements[i]==null <==> i<count)

JAVA + JML

A quantified expression in JML is subdivided in three segments

• the first segment (represented by int i in the above example) declares the variables
bound by the quantifier in the remainder of the quantified expression.

• the second segment (0<=i && i<elements.length) is an expression (range predicate)
constraining the range of quantification to those values of the quantified variables making
the range predicate true.

• a third segment (elements[i]==null <==> i<count) expressing some property over
the quantified variables.

Most JML expressions can be mapped canonically to Java DL (as described in [Engel, 2005]).
In the following we denote this mapping with TDL

JML. The above quantified expression is
translated to a Java DL formula as follows:

TDL
JML((\forall int i; 0<=i&&i<elements.length; elements[i]!=null<==>i<count))

:=
∀ int i; (0 ≤ i ∧ i < elements.length) → (elements[i] 6 .= null↔ i < count)

As before, we use s 6 .= t as syntactic sugar for ¬s .
= t.

The method specification of method add is structured in several specification cases (or spec
cases for short) concatenated by the also keyword. Each specification case consists of (we
only consider a selection of clauses relevant in the following)

• implicitly conjoint requires clauses of type boolean specifying the precondition.

• an assignable clause (see Section 9.2 for details) consisting of JML location descriptors
describing the set of locations the method can assign to.

• implicitly conjoint ensures clauses of type boolean specifying the postcondition in
case of normal termination.

• implicitly conjoint signals clauses of type boolean specifying the postcondition in
case of abrupt termination (by raising an exception). The signals clause also allows to
specify the type of the exception and the respective postcondition that has to hold in
case an exception of this type is raised by the method.

• a depends clause (see Section 9.2 for details) consisting of JML location descriptors
describing the set of locations the method’s behavior depends on.

• a captures clause (see Section 9.2 for details) consisting of reference-type JML lo-
cation descriptors describing the set of locations whose values may be captured (i.e.,
fresh references to this values outliving the method’s execution may be created) by the
method.

52

If any of the above clauses is not explicitly specified by the programmer the most permissive
value is taken as default, e.g., true in case of a pre- or postcondition.

In the general case JML method spec cases start with the behavior keyword. JML defines
two additional types of spec cases:

• the normal_behavior spec case indicating normal termination of the specified method
in case the precondition of the spec case is met. A normal_behavior can be desugared
to a behavior spec case by adding the clause

JAVA + JML
signals (Exception) false;

JAVA + JML

• the exceptional_behavior spec case indicating abrupt termination of the specified
method in case the precondition of the spec case is met. Again this spec case is just
syntactic sugar for a behavior spec case containing the clause

JAVA + JML
ensures false;

JAVA + JML

Thus the normal_behavior spec case of add corresponds to the Java DL contract (see
Section 2.3.5):

(¬∃ int i; (0<i ∧ i≤count→ elements[i].equals(o)) ∧ o 6 .=null∧count<elements.length,
(exc

.
= null→ postnormal) ∧ (exc 6 .= null → postexceptional),

{elements[count], count},
∗,
∗)

where
postnormal := elements[count@pre]

.
= o ∧ count .= count@pre + 1

and
postexceptional := instanceofException(exc)

.
= TRUE → false

with instanceofT (exc) for any type T are rigid function symbols with

vals,β(instanceofT (t)) :=

{
vals(TRUE) if δ(vals,β(t)) v T
vals(FALSE) otherwise

Since postexceptional is logically equivalent to false, the postcondition

(exc
.
= null→ postnormal) ∧ (exc 6 .= null → postexceptional)

is equivalent to
postnormal ∧ exc

.
= null

The \old construct occurring in the ensures clause evaluates the expression it is applied
to in the pre-state of the method. We therefore get TDL

JML(\old(count)) = count@pre. The

53

3 Java Modeling Language

captures and the depends clause are not specified so their default value is taken which is ∗
(the entire heap).

The exceptional_behavior spec case yields the Java DL contract:

(o
.
= null,

(exc
.
= null→ postnormal) ∧ (exc 6 .= null → postexceptional),

∅,
∗,
∗)

where
postnormal := false

and
postexceptional := instanceofIllegalArgumentException(exc)

.
= TRUE → true

In this case the postcondition is logically equivalent to

exc 6 .= null

Remark 3.1 (JML Assignable Clauses and Object Creation) Assignable clauses are
evaluated in the pre-state. One consequence of this is that locations of objects newly created
by the specified method need not be mentioned in the assignable clause since they did not exist
in the pre-state (and there is no means for referencing not yet created objects in JML). Due
to the constant domain assumption (see 2.3.3), this approach cannot be adopted by Java DL
and all locations changed by the method also those belonging to in the pre-state not yet created
objects need to be listed by the assignable clause (this includes implicit fields such as <c> and
<ntc>).

For writing JML contracts that are also correct under the constant domain assumption the
construct \object_creation(T) was introduced which can occur in the assignable clause
and denotes the set of locations potentially changed when an object of type T is created (i.e.,
implicit fields affected by object creation and fields of the created object or array slots of the
created array).

54

4 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) [Bollella and Gosling, 2000] is the result of the
Java Specification Request 1 (JSR001, see also http://jcp.org) aiming at making Java
suitable for real-time applications. RTSJ addresses several issues important for real-time ap-
plications which were not satisfyingly (from the real-time programming perspective) handled
by standard Java so far including scheduling, event-handling and memory management. This
Section shortly reviews the novel memory model (MM) introduced by the RTSJ.

4.1 Memory Management

A garbage collector [Jones and Lins, 1996] as employed by Java carries numerous advantages:
it helps, for instance, to prevent memory leaks, eliminates the possibility of creating dangling
references (a dangling reference is a reference to an object that has already been reclaimed)
and reduces the programming effort since objects no longer in use do not have to be deallocated
explicitly by the programmer. For real-time programming, however, garbage collection poses
a severe problem (even though this is mitigated by real-time garbage collectors [Siebert, 2007]
to a certain extend): It introduces indeterministic performance, since the garbage collector
thread can interrupt other threads at arbitrary times and for unbounded periods of time.

4.1.1 Memory Areas

The RTSJ approaches this problem by defining a region-based memory model (region-based
memory management is not an RTSJ-specific concept, [Tofte and Talpin, 1997], for instance,
proposes a region-based memory model for ML) featuring, in addition to the classical Java
heap memory, two novel kinds of memory regions that are not subject to garbage collection:
immortal memory and scoped memory . Both are represented by Java classes; the RTSJ
entails no changes to Java on the syntax level.

An immortal memory area, which is always a singleton, is never garbage collected and
never freed during the lifetime of the application. In contrast, a scoped memory area (or just:
scope), of which arbitrarily many can be created by an application, is freed at well defined
occasions, namely as soon as no thread is active inside it any more. As, for an application,
scopes are just represented by “ordinary” objects, new scopes can be created via the new
operator at runtime. Heap memory is in principle also usable by RTSJ-based applications
which is for afore mentioned reasons not advisable in a hard real-time context. This work
will thus only consider programs running exclusively in immortal and scoped memory.

Let us now review how scopes are used in RTSJ programs and fix the nomenclature for
talking about operations on (and relations between) scopes. We start with an overview of
the different kinds of memory areas and the corresponding API classes before describing the
concept of the scope stack and how it is affected by RTSJ API methods.

55

http://jcp.org

4 Real-Time Specification for Java

MemoryArea

ScopedMemoryImmortalMemory

LTMemory VTMemory

HeapMemory

Figure 4.1: RTSJ memory area class hierarchy (abstract classes are printed italic)

Class Hierarchy

The various kinds of memory areas provided by the RTSJ are each represented by a Java
class extending the abstract class javax.realtime.MemoryArea1. This applies also to the
standard Java heap memory which is given by a singleton instance of the class HeapMemory
extending MemoryArea.

Figure 4.1 shows the class hierarchy of memory areas in the RTSJ. Scoped Memory is rep-
resented by the abstract class ScopedMemory. The RTSJ provides two classes implementing
ScopedMemory:

• LTMemory: a scoped memory area where allocations take a linear (relative to the size
of the allocated object) amount of time.

• VTMemory: a scoped memory area without a linear correspondence between object size
and allocation time.

Due to its more deterministic performance characteristics, LTMemory is preferable for hard
real-time and safety-critical [Kwon et al., 2005, Kung et al., 2006] applications.

The Current Scope

For each thread and each program state the allocation context (i.e., memory area) from
which a thread allocates memory via the new operator is uniquely determined. We call this
allocation context the thread’s current scope in the following. The current scope may change
during program execution as threads can enter and leave scopes.

1For the sake of readability package prefixes for frequently used classes are often omitted in the following.

56

4.1 Memory Management

Entering a Scope

A thread can enter a scope which has the effect the entered scope becomes the new current
scope of the thread entering it. As already mentioned, scopes are represented by objects of
type MemoryArea. From a technical point of view, entering a scope is performed by calling
the method enter@MemoryArea which takes an object of type java.lang.Runnable as
argument. The run@Runnable method of the passed Runnable object is then executed in
this new current scope. When the enter method terminates, the scope which was the current
scope before execution of the enter method becomes current scope again.

Nesting of Scopes and the Scope Stack

When a scope b was entered from a scope a, we say b is an inner scope of a. Accordingly,
we call a an outer scope of b. The scope b remains an inner scope of a until all invocations
(for all threads) of enter@MemoryArea invoked from an execution context in which a was
the current scope and having b as receiver object have terminated. As nesting constitutes a
transitive relation, we denote also inner nested scopes as inner and outer nested scopes as
outer scopes. Inner scopes must always be left before their respective outer scopes2. The
nesting of scopes can therefore be described by a stack. In the following we depict the nesting
of scopes as an upward growing stack (inner scopes are located above outer scopes on this
stack).

The Method executeInArea and the Cactus Stack

Besides the method enter, the RTSJ offers a second possibility to change a threads cur-
rent scope: the method executeInArea@MemoryArea that, as the method enter, takes a
Runnable object as argument. When executeInArea is invoked on a receiver object a,
that is an outer scope of the current scope (if this constraint is not met, an exception is
raised) a becomes the current scope when the run method of the passed Runnable object is
executed. After executeInArea has terminated the previous current scope becomes current
scope again. Note, that invoking executeInArea does not change the scope stack. There is,
however, an indirect effect the execution of executeInArea can have on the structure of the
scope stack: during the execution of executeInArea other scopes may be entered. This can
either concern a scope that is already a direct inner scope of the current scope (thus entering
this scope does not change the scope stack) or a scope that is not yet located on the scope
stack. Due to this, every scope can have several direct inner scopes which makes the scope
stack a cactus stack.

Remark 4.1 (Notation Used for Memory Stacks) On several occasions, we will in the
following visualize scope stacks by diagrams for which we use the following notations: A single
scope s1 with several objects allocated in it is depicted as in Figure 4.2. The topmost line
contains a unique identifier for the scope, the area below unique identifiers for (a selection
of) objects allocated in this scope. If we are just interested in the structure of the scope stack
and not in any objects allocated in a scope we use the simpler notation shown in Figure 4.3.

Scope stacks grow upward in our notation. Figure 4.4 shows a stack in which two scopes

2This obviously holds, since on the call stack, the invocation of enter corresponding to the inner scope is
located above the outer scope’s corresponding method invocation.

57

4 Real-Time Specification for Java

Figure 4.2: A scope s1 containing objects o1, o2, s2

Figure 4.3: A scope S

s1 and s2 are allocated in immortal memory and then subsequently entered. Such a stack is
created if the following piece of code is executed in immortal memory:

JAVA

final ScopedMemory s1 = new LTMemory(10000);
final ScopedMemory s2 = new LTMemory(10000);
s1.enter(new Runnable(){
public void run(){
s2.enter(new Runnable(){
public void run(){
...

JAVA

The two Runnable objects created in the above code are denoted as r1 and r2 in Figure 4.4.

Example 4.2 Figure 4.5 shows what effects the execution of the enter and executeInArea

method has on the scope stack and the current scope:

• We start in the current scope s2

• from which we call s3.enter(...) which pushes s3 on the scope stack above s2 and
makes s3 the new current scope.

Figure 4.4: A scope stack

58

4.1 Memory Management

Figure 4.5: Effects of enter and executeInArea. The current scope is marked red.

• While s3 is still the current scope (s3.enter(...) has not yet terminated) we call
s1.executeInArea(...), with s1 being an outer scope of the current scope s3. Thus
s1 becomes the new current scope.

• While s1 is still the current scope we execute s4.enter(...). Thus s4 is pushed on
the scope stack above s1 (or, in other words: becomes a direct inner scope of s1). This
leads to a branching of the scope stack as s1 has now two direct inner scopes: s2 and
s4.

Real-Time Threads

For leveraging the properties of its novel kinds of memory areas the RTSJ defines the class
NoHeapRealtimeThread (NHRTT) using exclusively scoped and immortal memory. There-
fore, a NHRTT does not interfere with the garbage collector, which operates solely on the
heap, and can thus interrupt the garbage collector at arbitrary occasions.

4.1.2 Assignment Checks

When assigning to locations of non-primitive type (that are no local variables), runtime
checks are performed to prevent the creation of such references that can potentially give rise
to dangling references. A failed check raises an IllegalAssignmentError. In the following
we call assignments not raising an IllegalAssignmentError legal and otherwise illegal.
These checks enforce that for each reference x.r or x[i] to an object y

• y resides in immortal memory or

• y resides in a scope s1 and x resides in the same or an inner scope s2 of s1 (s2 is located
above s1 on at least one branch of the scope stack3).

In short, the creation of references outliving the referenced object is avoided by this approach.
Table 4.1 gives an overview of the criteria for the admissibility of references applied by the
runtime assignment checks. Heap memory, which is in this respect treated equivalently to
immortal memory (as it is, like immortal memory, never freed explicitly), is not listed in this
table as it is considered irrelevant for safety critical applications.

Example 4.3 (Dangling Reference) The following piece of code would create a dangling
reference as the object o.a refers to is reclaimed after termination of enter:

3The single parent rule (see Section 4.1.3) ensures that if s2 is located above s1 on one branch, s2 is located
above s1 on every branch s2 occurs on.

59

4 Real-Time Specification for Java

From Reference to
Immortal Memory

Reference to
Scoped Memory

Immortal Memory allowed forbidden
Scoped Memory allowed allowed iff. reference points

to outer nested scope
Local Variable allowed allowed
Static Field allowed forbidden

Table 4.1: Constraints on References in RTSJ

JAVA

1 ScopedMemory s = new LTMemory();
2 final MyObject o = new MyObject();
3 s.enter(new Runnable(){
4 public void run(){
5 o.a = new Object();
6 }
7 }

JAVA

Therefore, the assignment in line 5 raises an IllegalAssignmentError.

4.1.3 Single Parent Rule

RTSJ also imposes certain well-formedness constraints on the scope stack which are also
checked at runtime. The so-called single parent rule ensures that each occurrence of a scope
s1 on the scope (cactus) stack has the same parent s2. Since this also holds for s2 and all
preceding scopes as well, the entire branch below s1 is identical for each occurrence (on the
stack) of s1. The single parent rule is enforced when scopes are entered. A failed check again
raises an exception leading to abrupt termination of the enter method.

The single parent rule is needed to avoid cycles in the scopes’ nesting hierarchy which would
render the assignment checks as described in Section 4.1.2 insufficient for preventing dangling
references.

4.1.4 Portals

For facilitating sharing of data in scoped memory the RTSJ provides so-called portals. Each
object allocated in scoped memory can serve as portal to the scope it is allocated in. Associat-
ing a scope with a portal is done by the method setPortal@(ScopedMemory) obtaining the
portal from a certain scope is possible through the method getPortal@(ScopedMemory).
Both methods can give rise to an IllegalAssignmentError if

• (in the case of setPortal) the portal object is not allocated in the scope given by the
receiver object of the invocation of setPortal or

• (in the case of getPortal) a reference from the context in which getPortal is invoked
to the portal object would be illegal.

60

4.2 Safety-Critical Java Profiles Based on the RTSJ

4.2 Safety-Critical Java Profiles Based on the RTSJ

The definition of a Java standard for safety critical systems is currently in progress under
the Java community process (JSR302). This standard aims at subsetting the RTSJ for the
sake of more deterministic behavior and better analysability.

There are several (e.g., [Schoeberl et al., 2007, Kung et al., 2006, Kwon et al., 2005]) com-
peting proposals for the specification of such a safety-critical Java (SCJ) profile. One aspect
these SCJ profiles have in common is the distinction between an (non-real-time) initialisation
and a (real-time) mission phase. During the initialisation phase an initialiser thread creates
objects having application lifetime as well as all threads executed in the mission phase. Also
all required static initialisation is performed during the initialisation phase. During the mis-
sion phase only allocations in scopes freed after the mission phase are allowed. By this, it is
ensured that the system returns to its initial state after each mission phase and can reenter
its next mission phase without being newly set up (by an initialiser thread) again.

Another similarity between these profiles is that the use of scoped memory is strictly lim-
ited. The Ravenscar Profile [Kwon et al., 2005], for instance, permits only one scope per
thread running in the mission phase. In addition, all scopes need to be created during the
initialisation phase. In [Schoeberl et al., 2007] a similar restriction is imposed: Each thread
is associated with one scope for dynamic allocation4.

4.3 Verification Challenges for RTSJ Programs and Scope
of This Work

The correctness of an RTSJ program can be considered from several perspectives. Functional
correctness meaning the compliance of the program with a functional specification must be
ensured. Functional correctness can be addressed, as also for “classical” Java, by deductive
verification or static analysis. Using existing verification tools (such as [Beckert et al., 2007,
Cok and Kiniry, 2004]) for sequential Java for this is, however, not possible without modifica-
tion due to the different memory model and the additional runtime checks an RTSJ compliant
JVM performs. Section 6 elaborates on how a reasonably restricted version of the RTSJ mem-
ory model can be formalized to be efficiently usable in a theorem prover for dynamic logic.
The described approach has been implemented in the KeY [Beckert et al., 2007] system and
was evaluated on several non-trivial examples.

As opposed to non-real-time systems, in real-time system not only functional but also non-
functional properties such as Worst-Case Execution Time (WCET) and Worst-Case Memory
Usage (WCMU) are an issue of correctness: A real-time system missing its deadline is incorrect
irrespective of its functional behavior. As resources in real-time systems are inherently limited,
it is vital to have precise and (provably) correct WCMU estimations for RT applications. This
is not only important when memory is freed explicitly as it is the case for scoped memory
but also when employing a real-time garbage collector. For determining the CPU utilization
of such a garbage collector it is necessary to know the allocation rate of the application it
is applied to [Mann et al., 2005] which is in turn a figure every schedulability analysis for
determining whether the regarded system meets its deadline depends on. WCMU contracts

4The authors of [Schoeberl et al., 2007] consider this an intermediate solution and propose compiler generated
scopes as future work.

61

4 Real-Time Specification for Java

can obviously add to determining such an allocation rate correctly.
Sections 11–17 describe a way to modularly specify and verify WCMU contracts. Besides

being more hardware dependent, WCET time contracts [Fredriksson et al., 2007] could be
formally verified analogously, but this is not in the scope of this work.

Concurrency in RT applications gives rise to new phenomena and sources for incorrectness.
Accessing shared resources and data can lead to, for instance, deadlocks or starvation of
threads. Concurrent read and write accesses to data can lead to race conditions or leave
data in an inconsistent state. Verification results obtained for a sequential programs can be
rendered incorrect when this program is employed in a concurrent setting with other threads,
due to these threads possibly interfering with its execution. Proving non-interference and
correctness of concurrent Java programs [Klebanov, 2004, Beckert and Klebanov, 2007] for an
arbitrary number of threads is a complex endeavor since every possible (modulo symmetries)
intermixing of execution progress of the threads has to be considered. Section 9 elaborates
on how the RTSJ memory model can be employed for achieving improved data encapsulation
guarantees which eases verification of non-interference. It also proposes proof obligations for
depends and captures clauses.

Knowing about non-interference is also relevant when it comes to real-time model check-
ing (for instance [Bengtsson et al., 1996]) which can be applied to check safety and liveness
properties. Code blocks known to show no interference with other threads can be considered
atomic and can thus add to reducing the complexity of the model.

Another issue arising for concurrent real-time systems is scheduling: To be correct, a real-
time system must possess a schedule ensuring that all deadlines are met (such a schedule is
called feasible). The class javax.realtime.Scheduler responsible for scheduling of RTSJ
applications incorporates a built-in feasibility analysis. However, this can only guarantee
feasible schedules if the characteristics of each schedulable object (such as WCET, which
again depends to a certain extent on WCMU estimations) communicated to it are correct.

62

Part II

Safety Critical Java

63

5 The Considered SCJ Profile

In this work we will not consider the RTSJ in its full complexity but only a sequential subset
of it with a restricted memory model which is referred to as KeYSCJ in the following.

5.1 Constraints on the Scope Stack

KeYSCJ compliant applications are only permitted to use immortal and scoped memory
(but not heap memory). The initial memory area, in which a KeYSCJ application starts its
execution, is immortal memory. By making this restriction we implicitly forbid (classical1)
Java threads which must not execute in a javax.realtime.MemoryArea.

We also forbid the reentering of immortal memory using its enter method; accessing it
via executeInArea is permitted however. This ensures that the only place the immortal
memory area can occur on the scope stack is its root. Even though this rules out legal
RTSJ programs it is much less restrictive than safety critical Java profiles imposing similar
restrictions [Schoeberl et al., 2007, Kwon et al., 2005, HĲA, 2006].

5.2 Finalization and Deletion of Objects

Finalization of objects is not explicitly taken into account by the calculus. This means in de-
tail: After the reference count of a scoped memory area drops to 0 the finalizers of the objects
contained in this area are not (symbolically) executed. Also, we consider objects allocated in
a reclaimed memory scope to be still created after freeing the scope. In particular this means
that even though the memory in a scoped memory is reclaimed the objects contained in it are
still considered to be created (as the <c> attribute is not changed). We, however, consider
these objects to be moved to a specific scope containing all deleted objects (see Section 6.3.2).

To make this a sound approach we have to limit the effects a finalize method can have. A
finalize method is not allowed to

• create objects,

• reenter the scope the finalized object is allocated in and to

• have side effects that are not local to the scope containing the finalized object. This
means that for every semantic location o.a or arr[i] in finalize’s assignable clause,
the objects o or arr reside in the same scope as the finalized object.

This ensures that the execution of a finalize method can have no influence on the (func-
tional) behavior of the program (performance wise, it can of course have an influence how-
ever). As objects residing in a scope whose memory was reclaimed can obviously no longer

1Threads which are not instances of type javax.realtime.RealtimeThread.

65

5 The Considered SCJ Profile

be accessed by the application, ignoring the execution of finalize is a viable approach for
modeling object deletion: The side effects of the finalize method as restricted above are
not observable for the code following its execution and do thus not need to be taken into
account.

These constraints are expressible as, for instance, JML specifications, and could be verified
formally. A formal verification of the finalize method is, however, only required in rare cases,
namely in those in which it is overridden by a class. The finalize method defined in
java.lang.Object is known to comply with the above restrictions.

5.3 Static Initialisation
The Java DL calculus of the KeY system is capable of taking into account the effects of static
initialisation. The price to pay for this are (for most realistic programs) much more complex
proofs (compared to the approach of just assuming that each class occurring in the code to
be verified is already initialised). To limit the effects of static initialisation and by this ease
the analysis of KeYSCJ applications we allow

• static primitive type fields only to be initialised with compile time constants and

• the static initialisation of reference type static fields to have no other side effects than
on the initialised class itself.

These properties can be checked locally for each class2. In addition we assume that all static
initialisation of classes is done in the initialisation phase of the considered RT system and no
static initialisation can thus happen in the mission phase.

This allows, when performing symbolic execution, to ignore static initialisation and treat
every class as already initialised since the execution of static initialisation is known to have
no side effects on anything else than the initialised class itself.

Even though constraining initialisers of static fields seems to be a substantial restriction
for classical Java it is only a moderate restriction for RTSJ for several reasons:

• In RT systems typically no dynamic allocation is performed. All required data structures
as well as classes are initialised during an initialisation phase which leads to more
deterministic performance in the mission phase.

• Besides this argument holding for RT systems in general there are special risks concern-
ing static initialisation in RTSJ that can render a program erroneous:

– Reference type static fields must be initialised with null or objects residing not
in scoped memory. Thus there is the danger of failed runtime checks when a class
is initialised when executing in scoped memory.

– Object creation performed during static initialisation may give rise to OutOfMem-
oryErrors when executing in scoped memory.

For the above reasons static initialisation performed in an unrestricted way would bear a high
risk for RTSJ programs.

2In Java DL static initialisation is modeled by an implicit method. The constraints on static initialisation
concerning reference type fields can be seen as a contract for this method and be verified analogously
to user-provided contracts. For primitive type fields a simple syntactical check is sufficient to determine
whether they are initialised by compile time constants.

66

6 Calculus

This section elaborates on the handling of the RTSJ memory model in Java DL. Section
6.1 first gives a high-level overview of our approach and the changes applied to Java DL
for realizing it. Section 6.3 explains in detail how we model the scope stack and operations
affecting it. Taclets axiomatizing the semantics of constructs introduced in Section 6.3 are
defined in Section 6.4. Section 6.5 shows how object deletion is handled in our approach. The
newly defined axioms have to be considered when proving the reachability of a program state
which is summarised in Section 6.6. Finally, in Section 6.7, we present rules for symbolic
execution of RTSJ programs taking into account runtime checks for illegal references.

6.1 Basic Ideas
We now give a high-level and informal summary of our modeling of the RTSJ memory model.
The extensions to the existing Java DL calculus required to support the scoped memory
model can be subdivided as follows:

1. As for other parts of the execution context, we use the method frame statement to
determine the allocation context (i.e., the current scope). This is done by introducing a
pointer <cma> whose value is stored by the method frame (Section 6.2.1). Each object
is associated with the scope it is allocated in via the implicit field <ma> (Section 6.2.2).

2. The scope stack is represented by a Java (model) class whose semantics is defined with
the help of the binary predicate �, which reflects the nesting relation of scopes, and the
unary predicate im (Section 6.3.1).

3. The semantics of the relevant parts of the RTSJ API needs to be formalized which
is done by JML specifications of the respective API classes and, in cases providing
a sufficiently strong JML specification is not feasible1, by a Java implementation2 of
several API methods which complies with the (informal) RTSJ API specification. This
implementation (which we refer to as our reference implementation of the RTSJ API
in the following) can then, like other parts of the respective code we reason about, be
symbolically executed during proof finding.

4. Axioms holding in reachable (RTSJ) program states are encoded in taclets (Section 6.4).
This new axioms must also be taken into account when proving that a state is reachable
by execution of an admissible RTSJ program (Section 6.6).

1An example for such a method for which a “useful” JML specification is infeasible is enter@MemoryArea.
Besides performing some checks enter’s main functionality is to invoke the run@Runnable method of
the Runnable object passed as argument. Thus, its behavior is mainly determined by that of the run
method which can, however, not be used in JML specifications (since it is, in general, not side-effect-free).

2This implementation is not written in pure Java but incorporates Java DL specific constructs such as the
<cma> pointer.

67

6 Calculus

5. Deleted objects are distinguished from not-deleted objects by putting them in a distinct
scope holding all deleted objects. When moving objects into this scope, we need to take
care that existing (legal) references are not rendered illegal (Section 6.4).

6. Calculus rules for symbolic execution of RTSJ programs are defined which reflect the
RTSJ runtime checks performed upon assignments to reference type attributes and array
slots (Section 6.7).

6.2 Determination of the Allocation Context
In this section we consider how the scope is determined in which an object is allocated. First
(Section 6.2.1), we explain how we keep track of the current scope. Then, in Section 6.2.2, we
show how an object is associated with the scope is allocated in.

6.2.1 The <cma> Pointer

We augment the Java syntax with a pointer <cma> (shorthand for current memory area) of
type MemoryArea which points to the current scope. It is not only similar to a this pointer
in this respect, it is also technically handled in a comparable way.

As described in Section 2.3.6 we use a method frame statement to keep track of the execution
context of a method. This method frame also determines, for instance, to which object the
this pointer is to be resolved. We enrich method frame to store also the memory area which
<cma> refers to:

JAVA

method-frame(result->retvar,
source=T,
this=self,
<cma>=mem) : {body}

JAVA

Except for the enter and executeInArea methods the active memory area does not change
when a method is called. In this case <cma> is set to the value the <cma> pointer of the
enclosing method frame evaluates to at the point the method call occurs which is from a
technical point of view just the object mem stored in the enclosing method frame.

For describing the changeover of the memory area taking place when the executeInArea

or enter method is called we define an implicit method <runRunnable> in class MemoryArea
which is called from within the enter or executeInArea method respectively and triggers
the memory area switch before executing the Runnable object logic passed to this memory
area. When expanding a <runRunnable> method body statement, we therefore have to set
<cma> to the receiver object of the method call (as for the rule methodBodyExpand in Section
2.3.6, body denotes the method body of the expanded method body statement):

expandRR

Γ ⇒ {U}〈π method-frame(result->lhs,

source=MemoryArea,

this=se,
<cma>=se) : {body} ω〉φ, ∆

Γ ⇒ {U}〈π lhs=se.<runRunnable>(logic)@(MemoryArea);ω〉φ, ∆

68

6.2 Determination of the Allocation Context

Default Memory Area

Initially, in cases no enclosing method frame exists, <cma> refers to the program variable

defaultMemoryArea

of static type javax.realtime.MemoryArea. In method contracts defaultMemoryArea
can be used as well to denote the memory area in which the specified method is called.
When applying the contract as demonstrated by rule methodContractInst in Section 2.3.5, the
placeholder defaultMemoryArea has to be updated with the value <cma> resolves to at the
point the considered method is called.

In this respect, the handling of <cma> is again similar to that of the this pointer: In
method contracts we use the program variable self to denote the object the this pointer
of the specified method refers to. When the contract is applied, self is updated with the
receiver object of the method invocation (see Section 2.3.5).

6.2.2 The Implicit Field <ma>

We declare an implicit field <ma> in class java.lang.Object for storing the memory scope
the object is allocated in. In JML specifications we access this field via
\memoryArea(object)

which can be mapped to Java DL canonically:

TDL
JML(\memoryArea(o)) := o.<ma>

In our model, every created object is allocated in some memory area. This is also true for
objects previously allocated in memory areas which have already been freed since we do not
model deletion of objects. Therefore, the following axiom holds in every reachable state:

∀ Object o; o.<c>→ o.<ma> 6 .= null (6.1)

We make use of this axiom in rule maNonNull:

maNonNull
Γ, o.<c>

.
= TRUE, RS ⇒ o.<ma>

.
= null, ∆

Γ, o.<c>
.
= TRUE, RS ⇒ ∆

The initialisation of <ma> is done by the rule allocate which is shown in its basic form in
Section 2.3.3. We extend this rule here by an update setting <ma> to the memory area
<cma> refers to at the point <allocate> is called:

allocate

Γ ⇒ {U}{v := getT (T.<ntc>) ||
T.<ntc> := T.<ntc>+ 1 ||
getT (T.<ntc>).<c> := TRUE ||
getT (T.<ntc>). <ma> := m}〈π ω〉φ, ∆

Γ ⇒ {U}〈π v=T.<allocate>();ω〉φ, ∆

Where m is the object <cma> resolves to, which is determined by the innermost method frame
occurring in π.

69

6 Calculus

6.3 The RTSJ API and the Scope Stack

We model the scope stack by immutable instances of the Java class MemoryStack. Each of
these instances only represents a (local) sub branch of the entire (global) cactus stack and is as
such just a “normal” stack. Each scope is augmented with an attribute stack@MemoryStack

Figure 6.1: S2.stack represents the substack consisting of Immortal, S1 and S2

(which we just denote as stack in the following) representing the subbranch of the cactus
stack ending with the considered memory scope and starting with the immortal memory at
the root of the stack. This is possible, as for every scope s the branch below each occurrence
of s on the cactus stack is identical (see Sect. 4). If stack is null the scope is not located
on the cactus stack.

Whenever a new scope, that is not yet located on the cactus stack, is added to it (by
execution of the scope’s enter method) its stack is initialised with the stack created by
pushing the newly entered scope on the stack of the currently active memory area (the memory
area from which it was entered). By doing this the local stack of the currently active memory
area (as well as the stacks of all other scopes on the global stack) is not changed since the
instances of MemoryStack are immutable.

6.3.1 The Class MemoryStack

We now need a specification for class MemoryStack that is sufficiently expressive but also
simple enough to be efficiently used in a verification system. Simplicity of our formalization
of MemoryStack is crucial since we do not only need to reason over the structure of the
scope stack when we call methods on an instance of MemoryArea but each time we perform
an assignment to an instance attribute or an array slot. In the following we present two
alternative approaches to do this and discuss their advantages and drawbacks. First we
describe an explicit modeling of the stack by means of arrays and then a lightweight modeling
via imposing an ordering relation on the set of stacks.

Modelling with Arrays

Since MemoryStack must only represent a non-branching stack, it is possible to model it by
means of Java arrays. This carries the advantage of using existing Java and JML features

70

6.3 The RTSJ API and the Scope Stack

and thus making the specification also readable for other JML tools. The class MemoryStack
could be declared and specified in the following way: A so-called JML ghost field3 _stack

stores the internal state of a MemoryStack. The push method returns a new MemoryStack

with a new internal array _stack that contains all elements from the original stack plus the
one pushed on it. A possible specification for MemoryStack, containing in addition to push

several auxiliary methods, is given by:

JAVA + JML
public class MemoryStack{

//@ public invariant \inImmortalMemory(this);

//@ private ghost MemoryArea[] _stack;

//@ public static invariant EMPTY_STACK.size()==0;
private static MemoryStack EMPTY_STACK;

/*@ public invariant
@ (\forall int i,j;
@ 0<=i && i<_stack.length && i<j && j<_stack.length;
@ _stack[i]!=null && _stack[i]!=_stack[j]);
@*/

/*@ public normal_behavior
@ working_space 0;
@ ensures \fresh(\result) && \fresh(\result._stack) &&
@ \result._stack.length==_stack.length+1 &&
@ \result._stack[_stack.length]==m &&
@ (\forall int i; i>=0 && i<_stack.length;
@ \result._stack[i]==_stack[i]);
@*/

public MemoryStack push(MemoryArea m);

/*@ public normal_behavior
@ ensures \result==(\exists int i; i>=0 && i<_stack.length;
@ _stack[i]==m);
@*/

public /*@pure@*/ boolean contains(MemoryArea m);

/*@ public normal_behavior
@ ensures \result==((o instanceof MemoryStack) &&
@ _stack.length == ((MemoryStack) o)._stack.length &&
@ (\forall int i; 0<=i && i<_stack.length;
@ _stack[i]==((MemoryStack) o)._stack[i]));

3A ghost field is a field declared with the JML modifier ghost within a JML specification. It is only
available for specification purposes and not visible on the implementation level.

71

6 Calculus

@*/
public /*@pure@*/ boolean equals(Object o);

/*@ public normal_behavior
@ ensures \result==_stack[i];
@*/

public /*@pure@*/ MemoryArea get(int i);

/*@ public normal_behavior
@ ensures \result==_stack.length;
@*/

public /*@pure@*/ int size(){return _stack.length;}

/*@ public normal_behavior
@ ensures \result==_stack[_stack.length-1];
@*/

public /*@pure@*/ MemoryArea top();
}

JAVA + JML

The above specification incorporates a newly defined JML construct \inImmortalMemory
which indicates that its argument is allocated in immortal memory. Since every scope stack
is allocated in immortal memory, it can legally be referenced from any scope. The drawback
of this specification is that it is more involved than needed leading to bigger and harder to
handle proofs.

The following considerations lead us to a simpler specification: On no occasions it is neces-
sary to know the exact structure of the scope stack. For checking the single parent rule it is
sufficient for each scope to know its parent scope which could also be stored by an attribute.
For determining whether an assignment operation is legal or not we only need to know if one
scope is an inner scope of another scope which can be described by a binary relation.

The Sub Stack Relation �

A more lightweight way of formalizing the behavior of the scope stack than the previously
presented is to define a sub stack relation �, where a � b is true for two local stacks a and b
if a is a prefix of b. The formal specification of push then just has to express that the result
is a newly created MemoryStack and that

s � s.push(a)

holds for every stack s and every scope a which could be expressed as a JML method spec-
ification as shown in Figure 6.2. In Figure 6.2 we denote � as \subStack. Due to the
immutability of MemoryStack, � can be rigid (its arguments, however, can be flexible) which
makes it less involved to handle in dynamic logic than it would be the case for a flexible
symbol. However, the stack attribute of a scope can be set to a different value during the
program run. This means that each instance of MemoryStack is only a snapshot of a part of
the scope stack taken at a certain time.

72

6.3 The RTSJ API and the Scope Stack

JAVA + JML
/*@ public normal_behavior
@ ...
@ ensures \fresh(\result) &&
@ \subStack(this, \result);
@*/

public MemoryStack push(ScopedMemory m);

JAVA + JML

Figure 6.2: JML specification of push

Definition 6.1 (Syntax and Semantics of Relation �) � is a binary predicate with

α(�) := MemoryStack ×MemoryStack

Let s be a state, β a variable assignment and a and b two terms with a, b ∈ TermsMemoryStack

then a represents a sub stack of b in state s if and only if

s, β |= a � b

In addition for each state s, variable assignment β and term a with a ∈ TermsMemoryStack:

s, β 6|= a � null

s, β 6|= null � a

From definition 6.1 follows that given a state s, a variable assignment β and two terms a
and b with δ(vals,β(a)) v MemoryArea and δ(vals,β(b)) v MemoryArea, a represents an outer
scope of b in state s if and only if

s, β |= a.stack � b.stack

As described in Section 2.3.3, Java DL operates under the constant domain semantics
which means all instances that can ever be created by the program have to exist from the
beginning. Since � is rigid, the createdness of objects does not influence its evaluation and
it thus has also to be defined on not yet created objects. To make sure that we can always
create a stack of which the current stack is a substack, we have to require that for every
integer value i there are infinitely many integer values j such that

j > i and I(getMemoryStack)(i) �I I(getMemoryStack)(j)

holds for the interpretations I of every Kripke seed (D, I). This is, however, already ensured
as a byproduct of the specification of push which states that there is a fresh instance of
MemoryStack which meets this requirement.

For efficiency reasons, we encode this behavior of the scope stack in the newly defined rule
push:

push

Γ, {U}(b � getMemoryStack(j) ∧ j ≥MemoryStack.<ntc>) ⇒
{U}{ a := getMemoryStack(j) ||

MemoryStack.<ntc> := j + 1 ||
for i; if(MemoryStack.<ntc> ≤ i ∧ i ≤ j)

getMemoryStack(i).<c> := TRUE ||
getMemoryStack(j). <ma> := b. <ma>}〈π ω〉φ, ∆

Γ ⇒ {U}〈π a=b.push(s)@(MemoryStack);ω〉φ, ∆

73

6 Calculus

where j is a fresh integer skolem constant. By adding the assumption that

j ≥MemoryStack.<ntc>

and setting a to getMemoryStack(j), we can express that the result of push is some newly
created MemoryStack. Note, that we cannot just simply set b to

getMemoryStack(MemoryStack.<ntc>)

since then we could deduce from this rule by induction that

∀ int x, y; (x ≥MemoryStack.<ntc> ∧ y ≥ x) →
getMemoryStack(x) � getMemoryStack(y)

which is obviously false.
Having defined the calculus rule push the class MemoryStack can be reduced to:

JAVA + JML
public class MemoryStack{

//@ public invariant \inImmortalMemory(this);

public MemoryStack push(MemoryArea m);

}

JAVA + JML

This specification still states that all instances of MemoryStack are allocated in immortal
memory. As JML invariants only refer to already created objects, we need the update

{getMemoryStack(j). <ma> := b. <ma>}

in rule push to preserve this invariant.
In summary, describing the scope stack by the relation � is more suitable for our purposes

than the alternative explicit modeling based on arrays. In the remainder of this chapter we
will therefore base our considerations only on the specification of MemoryStack using �.

The Predicate im

For distinguishing the scope stack of the immortal memory area from other scope stacks we
introduce the predicate im with im(s) evaluating to true if and only if s is the scope stack of
the immortal memory area. For the JML construct \inImmortalMemory we consequently
define:

TDL
JML(\inImmortalMemory(o)) := im(o.<ma> .stack)

74

6.3 The RTSJ API and the Scope Stack

6.3.2 Specification of MemoryArea and its Sub-Types

The behaviour of memory areas is described by an implementation of class MemoryArea and
its subtypes augmented with class invariants expressed in JML. Due to the restrictions (see
Section 5) imposed on the memory model, all memory areas we permitted (immortal and
scoped memory) behave basically like scoped memory areas: since calling the enter method
on the immortal memory area is no longer allowed its behavior is basically identical to that of
a scoped memory area. The mere difference of the immortal memory compared to “normal”
scopes is its distinct position at the bottom of the scope stack. Due to this uniformity, it
is sufficient to provide a reference implementation for javax.realtime.MemoryArea: the
classes ScopedMemory, LTMemory and VTMemory do not need to override any of the enter

and executeInArea methods since their behaviour is sufficiently described by the implemen-
tation and specification of MemoryArea. Only for ImmortalMemory we have to strengthen
(compared to MemoryArea) its class invariants a bit for the afore mentioned reasons.

Attributes and Invariants

Each memory area possesses its own scope stack accessible via the attribute stack. Due to
the chosen lightweight modeling of the scope stack, we need an additional attribute parent

for determining the parent scope.

JAVA + JML
public abstract class MemoryArea{

public MemoryStack /*@nullable@*/ stack;
public /*@nullable@*/ MemoryArea parent;
protected int referenceCount=0;
protected final long size;
protected long consumed;
protected final /*@nullable@*/ java.lang.Runnable logic;

/*@ public invariant referenceCount>=0 &&
@ (referenceCount>0 <==> parent!=null); @*/

//@ public invariant parent==null <==> stack==null;
//@ public invariant parent==null ==> consumed==0;

...

JAVA + JML

The attributes size and consumed determine the size of the scope in bytes and how much of it
has already been consumed. The number of executions of the scopes enter method currently
in progress is counted by referenceCount. The attribute logic stores the Runnable object
passed to this memory area by its constructor. Whenever the parameterless version of the
enter() method is called, the run() method of logic is executed.

For the enter method, we provide a reference implementation that

• ensures that the Runnable passed to the MemoryArea is not null and that the single
parent rule is met.

75

6 Calculus

• If that is the case parent is set to <cma> and referenceCount is increased

• If the memory area is not yet on the scope stack, the attribute stack is initialised by a
new stack created by <cma>.stack.push(this).

• Afterwards the implicit method <runRunnable> is called, which switches cma to this
and executes logic.

• If the execution of logic raises an exception we have to check whether the exception
was raised in this memory area. If this is the case a ThrowBoundaryError is raised.
For this purpose we use the ThrowBoundaryError given by RealtimeSystem.TBE

which is pre-allocated in immortal memory. The rationale behind using pre-allocated
exceptions and defining a class RealtimeSystem which provides them is explained in
Section 6.3.4.

• Before leaving the enter method, the reference count is decreased again. If it is equal to
0, indicating that no thread executes in the considered memory area anymore, parent
and stack are reset to null and the amount of consumed memory in the area to 0.
The implicit method <delete> deletes all objects in this scope by moving them to
scope RealtimeSystem.TRASH (see Section 6.3.4). The exact semantics of <delete>
is defined in Section 6.5. We do not model finalization of objects in freed memory areas.
Note, that these objects are not accessible in the remainder (after the memory is freed)
of the program, therefore, and due to the constraints on finalization imposed in Section
5.2, treating deletion of objects in this way does not influence the modeled semantics of
RTSJ programs.

Since we do not allow Java threads but only RTSJ Schedulable objects in KeYSCJ, we do
not need to take into account java.lang.IllegalThreadStateExceptions arising from
methods of MemoryArea being called by Java threads.

JAVA

public abstract class MemoryArea{
...

public void enter(java.lang.Runnable logic){
if(logic==null) throw new IllegalArgumentException();
if(parent!=null && parent!=<cma>){

throw new ScopedCycleException();
}
parent = <cma>;
referenceCount++;
if(stack==null){

stack = <cma>.stack.push(this);
}
try{

<runRunnable>(logic);
}catch(Exception e){

if(this==getMemoryArea(e)){
throw RealtimeSystem.TBE;

76

6.3 The RTSJ API and the Scope Stack

}
}finally{

referenceCount--;
if(referenceCount==0){

<delete>(RealtimeSystem.TRASH);
consumed=0;
parent=null;
stack=null;

}
}

}

...
}

JAVA

The executeInArea method is implemented in a similar manner. Instead of checking the
single parent rule, which is not necessary since the stack is not changed by executeInArea,
we have to ensure that the considered memory area is accessible, i.e., that it is located below
<cma> on the scope stack:

JAVA

public abstract class MemoryArea{
...

public void executeInArea(java.lang.Runnable logic){
if(logic==null) throw new IllegalArgumentException();
if(!outerScopeM(this, <cma>)){
throw new InaccessibleAreaException();

}
try{
<runRunnable>(logic);

}catch(Exception e){
if(this==getMemoryArea(e)){
throw RealtimeSystem.TBE;

}
}

}

...
}

JAVA

In the above reference implementations we made use of the helper method outerScopeM and
the RTSJ API method getMemoryArea for which we provided the JML specification shown
below 4. The implementation of the implicit method <runRunnable> is rather simple; it just

4The specification of outerScopeM makes use of the construct \outerScope(a,b) (expressing that
a is an outer scope of b). Its mapping to Java DL is defined in Section 7.

77

6 Calculus

calls the run method of the Runnable passed to it. The important part of <runRunnable>’s
functionality namely the switching of the currently active memory area is performed by rule
expandRR presented in Section 6.2.1.

JAVA + JML
public abstract class MemoryArea{

...

private void <runRunnable>(java.lang.Runnable logic){
logic.run();

}

private void <delete>(MemoryArea m);

/*@ public normal_behavior
@ working_space 0;
@ ensures \result==\outerScope(a,b);
@*/

public static /*@pure@*/ boolean outerScopeM(MemoryArea a,
MemoryArea b);

/*@ public normal_behavior
@ ensures \result == \memoryArea(object);
@ working_space 0;
@*/

public static /*@pure@*/ MemoryArea getMemoryArea(java.lang.Object object);

...
}

JAVA + JML

As explained before, the immortal memory area behaves like a scoped memory area of which
we know that

• it is a singleton, and

• it is located at the bottom of the scope stack.

The following specification expresses that immortal memory areas can only occur as a sin-
gleton and that the immortal memory area itself is allocated in immortal memory. All other
relevant properties of ImmortalMemory, such as being an outer scope for every scope on the
stack, are expressed by the calculus rules shown in Section 6.4.

JAVA + JML
public class ImmortalMemory extends MemoryArea{

/*@ public static invariant
@ (\forall ImmortalMemory i; i==instance) &&
@ \memoryArea(instance)==instance &&

78

6.3 The RTSJ API and the Scope Stack

@ instance.parent==instance &&
@ \inImmortalMemory(instance);
@*/

private static ImmortalMemory instance;

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result == instance;
@*/

public static /*@pure@*/ ImmortalMemory instance(){
return instance;

}
}

JAVA + JML

The behaviour of instances of ScopedMemory is almost sufficiently described by the reference
implementation of MemoryArea. One particularity of scoped memory areas that remains un-
covered by this implementation are portals . This aspect is taken care of by the implementation
of ScopedMemory.

JAVA + JML
public abstract class ScopedMemory extends MemoryArea{

private /*@nullable@*/ Object portal;
...
public java.lang.Object getPortal(){
if(outerScopeM(this, <cma>)){
return portal;

}else{
throw new IllegalAssignmentError();

}
}

public void setPortal(java.lang.Object object){
if(!outerScopeM(this, <cma>)){
throw new InaccessibleAreaException();

}
if(object!=null){
if(this==getMemoryArea(object)){
portal = object;

}else{
throw new IllegalAssignmentError();

}
}

}
}

JAVA + JML

79

6 Calculus

A portal can only be obtained from a scope a via the getPortal() if for the callers active
scope b

a.stack � b.stack

holds. If this is not the case an IllegalAssignmentError is raised. This condition has also
to be met in case a portal is set via the setPortal method leading to an
InaccessibleAreaException

otherwise. Portal objects must be allocated in the scoped memory area to which they serve
as a gateway. Calling setPortal(o) leaves the existing portal unchanged if o equals null
and raises an IllegalAssignmentError if and only if o is not allocated in this memory
scope.

6.3.3 Admissible References to Inner Scopes

The RTSJ constrains non-static references to point only to the same or to an outer scope. In
our model, there are, however, a few exceptions to this: (i) the implicit field <ma>@Object
and (ii) the field parent@MemoryArea.

The reason for the first exception is, that due to the executeInArea method we cannot
assume that the scope s1 in which the object representing a scope s2 is allocated in is an
outer scope of s2 for every possible stack that can be built by an application. The RTSJ code
from Figure 6.3 creates such a stack (shown in Figure 6.4) in which the scope ltm3 is not
allocated in one of its outer scopes. For an object o allocated in ltm3 the reference o.<ma>
is not a legal RTSJ reference since it points to the object ltm3 which is not allocated in ltm3

or one of its enclosing scopes.
The second exception concerning the attribute parent@MemoryArea has to be made since

scopes can be entered in a different order than they are created as shown in Figure 6.5: The
object s3 is allocated in a more outer scope than s4 (s3. <ma> .stack � s4. <ma> .stack)
but still the scope s3 is an inner scope of s4 (s4.stack � s3.stack).

6.3.4 The Helper Class RealtimeSystem

We model certain exceptions, namely OutOfMemoryError (which will become important
in Section 10) and ThrowBoundaryError, that can be thrown by KeYSCJ programs as
being preallocated in immortal memory. For obtaining these exceptions we define a class
RealtimeSystem which is shown in figure 6.6. The reason for modeling these exceptions as
preallocated is twofold. Modeling object creation introduces a certain overhead to automatic
proof finding thus using preallocated exceptions instead of dynamically creating increases ef-
ficiency. In addition especially ThrowBoundaryErrors and OutOfMemoryErrors can entail
a cascade of additional exceptions if they are dynamically created in scoped memory:

• An OutOfMemoryError is thrown if an object allocation cannot be performed due to lit-
tle remaining free memory in a scope. The dynamic creation of an OutOfMemoryError

would then just trigger a new OutOfMemoryError.

• A ThrowBoundaryError is thrown if another thrown exception is not caught before
reaching the scope boundary. Throwing a ThrowBoundaryError that was allocated in
scoped memory would cause a new ThrowBoundaryError as soon as this error reaches
another scope boundary.

80

6.3 The RTSJ API and the Scope Stack

JAVA + JML
final LTMemory ltm1 = new LTMemory(3000000);
final Runnable hello = new Runnable(){...};
ltm1.enter(new Runnable(){
public void run(){
final LTMemory ltm2 = new LTMemory(3000000);
ltm2.enter(new Runnable(){
public void run(){
final LTMemory ltm3 = new LTMemory(3000000);
ltm1.executeInArea(new Runnable(){
public void run(){
ltm3.enter(hello);

}
});

}
});

}
});

JAVA + JML

Figure 6.3: A piece of code building a branched cactus stack

Figure 6.4: Scope stack created by the code from Figure 6.3

Figure 6.5: s3 is entered from s4 which is allocated in a more inner scope than s3

81

6 Calculus

JAVA + JML
package javax.realtime;

public class RealtimeSystem{

//@ public static invariant \inImmortalMemory(OOME);
//@ public static invariant \inImmortalMemory(TBE);
//@ public static invariant \inImmortalMemory(TRASH);

public static final OutOfMemoryError OOME =
new OutOfMemoryError();

public static final ThrowBoundaryError TBE =
new ThrowBoundaryError();

public static final ScopedMemory TRASH =
new LTMemory();

}

JAVA + JML

Figure 6.6: The class RealtimeSystem providing preallocated exceptions

By avoiding these consecutive exceptions failed proofs are more simple to analyze which is
important in interactive proving for finding the cause of the failure needed to adapt the code
and specification that is to be verified accordingly.

The use of pre-allocated exceptions is permitted by the RTSJ. There are also implementa-
tions (such as [Dawson, 2008]) of the RTSJ following this approach.

In addition the class RealtimeSystem also provides a reference (TRASH) to the scope
holding deleted objects.

6.4 Axiomatization of � and im

By what has been described so far � is merely an uninterpreted predicate, so we have to
axiomatize what it should semantically stand for. This is done via calculus rules as demon-
strated in the following. The relation � is a partial order and thus reflexive, transitive and
antisymmetric:

outerScopeReflexive
Γ ⇒ true, o

.
= null, ∆

Γ ⇒ o � o, o
.
= null, ∆

outerScopeTransitive
Γ, o1 � o2, o2 � o3, o1 � o3 ⇒ ∆

Γ, o1 � o2, o2 � o3 ⇒ ∆

outerScopeAntisymmetric
Γ, o1 � o2, o2 � o1, o1

.
= o2 ⇒ ∆

Γ, o1 � o2, o2 � o1 ⇒ ∆

82

6.4 Axiomatization of � and im

Also directly from definition 6.1 follows that for two arbitrary terms a and b with a, b ∈
TermsMemoryStack

a � b→ a 6 .= null∧b 6 .= null

is valid. This is expressed by rule nonNullStack:

nonNullStack
Γ, a � b⇒ a

.
= null, b

.
= null, ∆

Γ, a � b⇒ ∆

Since the attribute stack is either set to null or to some newly created object during
program execution, two different scopes cannot share the same local stack (unequal null).
This means the axiom

∀ MemoryArea a, b;

a.<c>

.
= TRUE ∧

b.<c>
.
= TRUE ∧

a.stack 6 .= null∧
a.stack

.
= b.stack

 → a
.
= b (6.2)

holds in all reachable states.
We make use of this axiom by rule stackInjective:
stackInjective

Γ, a.<c>
.
= TRUE, b.<c>

.
= TRUE, a

.
= b, RS ⇒ a.stack 6 .= null, ∆

Γ, a.<c>
.
= TRUE, b.<c>

.
= TRUE, a.stack

.
= b.stack, RS ⇒ a.stack 6 .= null, ∆

The following rule states that in every reachable program state all non-static attributes
different from <ma>@Object and parent@MemoryArea, that are not null, point to the
same or an outer scope:

outerRefAttr1

Γ, o.<c>
.
= TRUE, o.a.<ma> .stack � o.<ma> .stack, RS ⇒

o.a
.
= null, ∆

Γ, o.<c>
.
= TRUE, RS ⇒ o.a

.
= null, ∆

Analogously objects referenced by array slots are allocated in an outer or the same scope
compared to the scope containing the array itself:

outerRefArray1

Γ, arr.<c>
.
= TRUE, arr[i]. <ma> .stack � arr.<ma> .stack, RS ⇒

arr[i]
.
= null, ∆

Γ, arr.<c>
.
= TRUE, RS ⇒ arr[i]

.
= null, ∆

This is a redundant rule defined to facilitate shorter proofs and increase automation:

outerRefAttr2

Γ, o.<c>
.
= TRUE, RS ⇒

o.a
.
= null, o.a. <ma> .stack � s, o.<ma> .stack � s, ∆

Γ, o.<c>
.
= TRUE, RS ⇒

o.a
.
= null, o.a. <ma> .stack � s, ∆

Given the above conclusion the premise can as well be derived from outerScopeTransitive,
outerRef1 and the cut rule:

∗
Γ, Γ′′′, o.a. <ma> .stack � s, RS ⇒ ∆′, ∆

Γ, Γ′′, o. <ma> .stack � s, RS ⇒ ∆′, ∆ Γ, Γ′′, RS ⇒ o.<ma> .stack � s,∆′, ∆

Γ,Γ′, o.a. <ma> .stack � o.<ma> .stack, RS ⇒ ∆′, ∆

Γ, o.<c>
.
= TRUE, RS ⇒ o.a

.
= null, o.a. <ma> .stack � s, ∆

where

83

6 Calculus

• ∆′ := {o.a .
= null, o.a. <ma> .stack � s},

• Γ′ := {o.<c> .
= TRUE},

• Γ′′ := Γ′ ∪ {o.a.<ma> .stack � o.<ma> .stack} and

• Γ′′′ := Γ′′ ∪ {o.<ma> .stack � s}.

In correspondence to outerRefAttr2 we can define outerRefArray2:

outerRefArray2

Γ, arr.<c>
.
= TRUE, RS ⇒

arr[i]
.
= null, arr[i]. <ma> .stack � s, arr.<ma> .stack � s, ∆

Γ, arr.<c>
.
= TRUE, RS ⇒

arr[i]
.
= null, arr[i]. <ma> .stack � s, ∆

Memory areas are represented by Java objects which are themselves allocated in a certain
memory area. This imposes a hierarchy �′ on the set of memory areas of an application that
is different from the cactus stack order �.

Definition 6.2 Let M be a set of scopes with M ⊆ U, then for every state s and variable
assignment β the relation s(�′) ⊆M2 is minimal such that :

s, β |= a �′ b if s, β |= b. <ma>
.
= a ∨ ∃MemoryArea c; (b. <ma>

.
= c ∧ a �′ c)

The substack relation � has to respect �′ to that extend that no scope can be allocated in
one of its inner scopes or, in other words, for each two memory areas a, b occurring on the
cactus stack

a.<ma> �′ b. <ma>→ ¬b. <ma> .stack � a.<ma> .stack (6.3)

holds in every reachable state. This entails that

RS → ∀MemoryArea m; (m.<c>
.
= TRUE → ¬m.stack � m.<ma> .stack) (6.4)

is valid which leads to the rewrite rule:

maAllocOuter
[m.stack � m.<ma> .stack false]

Γ, m.<c>
.
= TRUE, RS ⇒ ∆

where m is a term of type MemoryArea. As Figure 6.4 illustrates, we can, however, not
deduce from this that a.<ma> �′ b. <ma>→ a.<ma> .stack � b. <ma> .stack since � is not
total.

Immortal memory always occurs as a singleton. Since the stack associated with this im-
mortal scope does not change either during the program run, we can assume that there can
be only one stack for which im holds:

imUnique
Γ, im(o1), im(o2), o1

.
= o2 ⇒ ∆

Γ, im(o1), im(o2) ⇒ ∆

The immortal scope is the outermost scope on the scope stack. Thus the only stack that is
a sub stack of the stack belonging to the immortal scope is the stack of the immortal scope
itself:

imSub1
Γ, o1 � o2, im(o2), o1

.
= o2 ⇒ ∆

Γ, o1 � o2, im(o2) ⇒ ∆

84

6.5 The Implicit Method <delete>

The stack of the immortal scope is a sub stack of any other stack. This is expressed by the
rewrite rule:

imSub2
[o1 � o2 true]

Γ, im(o1) ⇒ ∆

For any object o and array arr (with reference type elements) allocated in immortal memory
the objects referenced by o.a (for an attribute a having a reference type) and arr[i] must
be allocated in immortal memory as well. Conversely, this means:

If o.a (arr[i]) is not allocated in immortal memory than o (arr) cannot be
either.

This can already be derived from the rules we have defined so far but would require using the
cut rule which can be obstructive for automated proof finding. Therefore, we introduce the
following two rules:

imSub3

Γ, o.<c>
.
= TRUE, RS ⇒

im(o.<ma> .stack), im(o.a.<ma> .stack), o.a
.
= null, ∆

Γ, o.<c>
.
= TRUE, RS ⇒ im(o.a.<ma> .stack), o.a

.
= null, ∆

imSub4

Γ, arr.<c>
.
= TRUE, RS ⇒

im(arr.<ma> .stack), im(arr[i]. <ma> .stack), o.a
.
= null, ∆

Γ, arr.<c>
.
= TRUE, RS ⇒ im(arr[i]. <ma> .stack), arr[i]

.
= null, ∆

where arr[i] is a reference type array slot and a a reference type attribute Finally, provided
that we abstract away from static initialisation, we can assume that a reference type static
field is either null or created and referencing an object allocated in immortal memory:

staticIm
Γ, sa.<c>

.
= TRUE, im(sa.<ma> .stack), RS ⇒ sa

.
= null, ∆

Γ,RS ⇒ sa
.
= null, ∆

where sa is a reference type static field.

6.5 The Implicit Method <delete>

For treating RTSJ programs we have to take into account deletion of objects. The alternative
(i.e., just leaving deleted objects in their original memory area and not distinguishing them
from non-deleted objects) could render references pointing from or to deleted objects illegal
(due to a changing of the local scope stack and the nesting hierarchy when a scope is popped
from the cactus stack and later pushed on it again) making some of the axioms assumed in
Section 6.4 invalid and the corresponding taclets thus unsound.

The basic idea behind the modeling of object deletion is as follows: All objects allocated in
a scope s that is to be freed are moved to the scope RealtimeSystem.TRASH dedicated to
holding deleted objects. The local stack of RealtimeSystem.TRASH is changed in that way,
that all legal references pointing from or to objects in s or RealtimeSystem.TRASH remain
legal after the deletion is performed. The described procedure is performed by the implicit

85

6 Calculus

method <delete> whose semantics is defined by taclet deleteScope:

deleteScope

Γ, {U}

trash.stack � getMemoryStack(j)∧
se.stack � getMemoryStack(j)∧

∀MemoryArea m;

m.created
.
= TRUE ∧

m 6 .= trash ∧m 6 .= se∧(
se.stack � m.stack∨
trash.stack � m.stack

)
 →

getMemoryStack(j) � m.stack

∧

j ≥MemoryStack.<ntc>

⇒
{U}{ trash.stack := getMemoryStack(j) ||

MemoryStack.<ntc> := j + 1 ||
for i; if(MemoryStack.<ntc> ≤ i ∧ i ≤ j)

getMemoryStack(i).<c> := TRUE ||
getMemoryStack(j). <ma> := trash.<ma> ||
for Object o; if(o.<ma>

.
= se)o.<ma> := trash}〈π ω〉φ, ∆

Γ ⇒ {U}〈π se.<delete>(trash)@(MemoryArea);ω〉φ, ∆

where j is a fresh integer skolem constant. The update in the succedent sets trash.stack to a
newly created MemoryStack and moves all objects from scope se to trash. In the antecedent
we formulate constraints for the new stack, namely that

• the stacks of trash and se are substacks of it and

• all scopes that were inner scopes of trash or se are inner scopes of trash after resetting
the stack of trash. Thus, also all references from objects allocated in these scopes and
pointing to objects allocated in trash or se remain legal5.

6.6 Proof Obligation for RS

In the previous Section we defined several novel axioms which we required to hold in reachable
states. As pointed out in Section 2.3.4, the necessity may occur to prove that RS holds in a
certain state which, from a technical point of view, happens when we encounter sequents of
the form:

Γ, RS ⇒ {U}RS, ∆

As described in Section 2.3.4, this is done by replacing the occurrence of RS in the scope
of update U with a conjunction Φ of those axioms (characterizing RS) that can possibly be
affected by the update U .

For the newly defined axioms from the previous Section we have to proceed analogously.
Concretely, this means that we have to ensure that

5Note, that for any legal execution trace of an RTSJ program there can be, of course, no inner scopes of
a scope whose memory is reclaimed. However, due to our approach underspecifying the structure of the
scope stack, we need to add this constraint. Otherwise it might not be possible to deduce that the RS
predicate is preserved (see Section 6.6) in certain cases even though it actually should be according to the
semantics of RTSJ.

86

6.6 Proof Obligation for RS

1. all references changed by update U are legal,

2. all references between objects that were already created in the pre-state of U remain
legal and

3. all references pointing from objects, that were not yet created in the pre-state of U but
are created in its post state, are legal (This is not covered by the first item since these
references could already have existed in the pre-state without being modified by {U}).

4. In addition, we have to ensure that the axioms (shown in equations (6.2) and (6.4) and
used in the taclets stackInjective and maAllocOuter) constraining the attribute stack

still hold and that

5. the implicit field <ma> is unequal null for all created objects as stated by equation
(6.1) (rule maNonNull)

For addressing the first of the above items we have to determine which location function
symbols are affected by {U} and add the corresponding axioms to Φ. As, for instance,
in every reachable program state all non-static attributes different from <ma>@Object and
parent@MemoryArea and unequal null must point to an object allocated in the same or an
outer scope (as exploited by rules outerRefAttr1, outerRefAttr2 and imSub3), we have to add
the axiom

{U}∀ T o; (o 6 .= null∧o.a@(T) 6 .= null∧o.<c> .
= TRUE) →

o.a@(T). <ma> .stack � o.<ma> .stack
(6.5)

to this conjunction for each non-static attribute a@(T) updated by U . Accordingly we have
to create corresponding formulas for the cases that

• array slots (we utilise the property that array slots refer only to outer scopes in reachable
states in the rules outerRefArray1, outerRefArray2 and imSub4),

• static attributes (pointing to immortal memory, stated in rule staticIm),

are updated.
As item 2 states, we need to show that existing legal references have not become illegal by

changes of the implicit attribute <ma> or the attribute stack. This is ensured by adding the
following formula to Φ in case <ma> or stack are changed by {U}:

∀ Object o1, o2;
o1.<c>

.
= TRUE ∧o2.<c>

.
= TRUE ∧o1. <ma> .stack � o2. <ma> .stack→

{U}(o1. <ma> .stack � o2. <ma> .stack)
(6.6)

Also attributes and array slots of objects/arrays newly created by U need to constitute legal
references (item 3). Thus we have to add formula 6.5 for each attribute a@(T) of every type
T for which T.<ntc> is changed by U . For array slots of newly created arrays we proceed
analogously.

For ensuring the constraints imposed on stack and <ma> (item 4 and 5) we simply add
the corresponding axioms (equations (6.2), (6.4) and (6.1)) to Φ if needed (i.e., if the field
stack or <ma> is assigned to by {U}).

87

6 Calculus

6.7 Rules for Symbolic Execution

For the evaluation of RTSJ programs by symbolic execution we have to take into account
the runtime checks an RTSJ compliant JVM performs and the exceptions originating from
this. Luckily, this applies only to IllegalAssignmentErrors since all other RTSJ typical
exceptions we deal with are handled by the reference implementation of the RTSJ memory
management API. In the following the symbolic execution rules for assignment operations
necessitating such illegal-assignment runtime checks are described. These assignments can be
subdivided in two classes: (i) assignments to static references and (ii) assignments to non-
static references (instance attributes, array slots). In the former case the assigned object has
to reside in immortal memory, in the latter case it is sufficient that it resides in the same
or in a more outer scope than the object (array) whose attribute (array slot) constitutes the
left-hand side of the assignment.

6.7.1 Assignments to Static References

Static reference type attributes can only reference null or objects allocated in immortal
memory. This has to be checked when assigning an object to a static attribute (sa denotes a
reference type static attribute and v a program variable of compatible type):

sRAttrWrite

Γ, {U}(im(v.<ma> .stack) ∨ v .
= null) ⇒ {U}{sa := v}〈π ω〉ϕ, ∆

Γ, {U}(¬ im(v.<ma> .stack) ∧ v 6 .= null) ⇒ {U}〈π IAE;ω〉ϕ, ∆

Γ ⇒ {U}〈π sa=v;ω〉ϕ, ∆

In the above rule we have to distinguish two cases (indicated by the two premises):

• the assignment is legal since v is null or allocated in immortal memory. In this case
the assignment is executed and the resulting state change is expressed by the update
{sa := v}.

• the assignment is illegal since v is not null and not allocated in immortal memory.
This leads to an IllegalAssignmentError to be raised. The statement
throw new IllegalAssignmentError();

was abbreviated with IAE; in the above rule.

6.7.2 Assignments to Non-Static References

For write accesses to instance attributes we have to distinguish two cases: Either the attribute
assigned to is parent@(MemoryArea) or it is not. In the former case no check for an illegal as-
signment is performed since the attribute parent may actually refer to objects in inner scopes.
As parent is only used for modeling purposes and does not correspond to a real attribute
in MemoryArea, this treatment cannot lead to undetected IllegalAssignementErrors.
In the latter case we have to take into account the possibility that the assignment raises
an IllegalAssignementError which is modeled by the following rule (where o and v are

88

6.7 Rules for Symbolic Execution

program variables and a is a reference type attribute different from parent@MemoryArea):

rAttrWrite

Γ, {U}(o 6 .= null ∧ ψ) ⇒ {U}{o.a := v}〈π ω〉ϕ, ∆
Γ, {U}o .

= null⇒ {U}〈π NPE;ω〉ϕ, ∆
Γ, {U}(o 6 .= null ∧ ¬ψ) ⇒ {U}〈π IAE;ω〉ϕ, ∆

Γ ⇒ {U}〈π o.a=v;ω〉ϕ, ∆

where ψ := v
.
= null ∨ v.<ma> .stack � o.<ma> .stack states that v is either null or

allocated in the same scope as o or an outer scope of it. In the above rule we have to
distinguish three cases (indicated by the three premises):

• o is not null in the state described by the update U and the assignment is legal with
respect to the RTSJ constraints on this (i.e., when formula ψ holds),

• o
.
= null holds and a NullPointerException is raised (abbreviated by NPE;) or

• the former two cases do not hold and an IllegalAssignmentError is thrown (abbre-
viated by IAE;).

Assignments to attributes without an explicit prefix (i.e., being prefixed with an implicit this
reference) are handled analogously after determining the receiver object on the left-hand side
from the execution context π.

When assigning to the parent@MemoryArea attribute, no runtime check for an illegal
assignment is performed:

parentWrite

Γ, {U}o 6 .= null⇒ {U}{o.parent := v}〈π ω〉ϕ, ∆
Γ, {U}o .

= null⇒ {U}〈π NPE;ω〉ϕ, ∆

Γ ⇒ {U}〈π o.parent@MemoryArea=v;ω〉ϕ, ∆

Assignments to array slots are handled analogously to assignments to instance attributes.
Beside the kinds of errors we encountered in rule rAttrWrite we have to take into account two
new ones now: the ArrayIndexOutOfBoundsException and the ArrayStoreException.
The first one occurs (self-explanatorily) when the array is accessed with an index outside the
array bounds ([0, length − 1]). The second one can be blamed on the subtyping relation of
array types being covariant to the subtyping relation on its elements: B[] is a strict subtype
of A[] if and only if B is a strict subtype of A. Thus an array arr of static type A[] may have
the exact type B[] and must therefore not contain elements of exact type A. If an assignment
operation violates this constraint by assigning an object of exact type A to an array slot of
arr an ArrayStoreException is thrown. This is not ruled out by the type system since arr
has the correct static type. Altogether we have to distinguish 5 cases:

arrayWrite

Γ, {U}(a 6 .= null ∧ ψib ∧ ψav ∧ ψos) ⇒ {U}{a[j] := o}〈π ω〉ϕ, ∆
Γ, {U}a .

= null⇒ {U}〈π NPE;ω〉ϕ, ∆
Γ, {U}(a 6 .= null ∧ ¬ψib ∧ ψav ∧ ψos) ⇒ {U}〈π AIOOBE;ω〉ϕ, ∆
Γ, {U}(a 6 .= null ∧ ψib ∧ ¬ψav ∧ ψos) ⇒ {U}〈π ASE;ω〉ϕ, ∆
Γ, {U}(a 6 .= null ∧ ψib ∧ ψav ∧ ¬ψos) ⇒ {U}〈π IAE;ω〉ϕ, ∆

Γ ⇒ {U}〈π a[j]=o;ω〉ϕ, ∆

where o is a reference type program variable, AIOOBE stands for

89

6 Calculus

throw new ArrayIndexOutOfBoundsException()

and ASE stands for
throw new ArrayStoreException()

The formulas ψib, ψav and ψos are defined as follows:

ψib := 0 ≤ j ∧ j < a.length

ψav := arrayStoreV alid(a, o)

ψos := o
.
= null ∨ o.<ma> .stack � a.<ma> .stack

With arrayStoreV alid being a predicate indicating that an element can legally be assigned
to an array slot. There are further rules for handling arrayStoreV alid formulas.

6.8 Related Work
This Section focused on verifying real-time Java programs complying (with only minor re-
strictions; see Sect. 5) with the existing RTSJ. Most related approaches try to improve ana-
lyzability of real-time Java applications by further restricting or changing the RTSJ memory
model losing, in turn, some of the flexibility it provides.

Kwon and Wellings [Kwon and Wellings, 2004] describe a memory management model mak-
ing use of implicitly created memory scopes associated with each method leading to something
comparable to stack allocation of objects only locally used by a method. The absence of ex-
plicit scope identities, for instance, eliminates the need for enforcing the single parent rule
since it is impossible to reenter a scope. IllegalAssignemntErrors still remain an issue
to consider, but checking their absence statically is eased by the simpler memory model and
can, for instance, be done by escape analysis [Choi et al., 1999].

To reduce the error-proneness of RTSJ programs several profiles for safety critical Java
(SCJ) applications have been proposed [Kwon et al., 2005, Schoeberl et al., 2007] building
upon RTSJ and imposing restrictions, for instance, on the nesting hierarchy of scopes.

Several works [Andreae et al., 2007, Boyapati et al., 2003, Zhao et al., 2004] have proposed
an encoding of the nesting relation of scopes in the type system. The outlives relation between
memory regions defined in [Boyapati et al., 2003] bears similarities to the relation � intro-
duced in Sect. 6.3.1. One major difference is however that, unlike in [Boyapati et al., 2003],
� represents only a snapshot of the nesting relation between scopes, thus allowing it to change
during the program run.

90

7 JML Specifications and Proof
Obligations

In this section we exemplarily consider how RTSJ programs can be specified with JML and
what the resulting proof obligations are which can be discharged by the KeY prover. It is
also explained what feedback can be gained from failed proofs.

7.1 JML Extensions

JML offers no possibility to talk about the nesting of scopes. In the following examples we will
therefore use some newly defined JML constructs, some of which have already been stepwise
introduced in the previous section. Below we give a short summary on which JML constructs
were added and how they compare to their Java DL counterparts. Sections 7.1.5 and 7.1.6
show how existing and in this section newly introduced JML specification concepts can be
used to define new specification constructs for conveniently specifying SCJ programs.

7.1.1 The \currentMemoryArea Pointer

The \currentMemoryArea reference points to the memory area currently active in the state
the \currentMemoryArea expression is evaluated. When compiling a JML specification to
Java DL, it is mapped to the program variable defaultMemoryArea introduced in Section
6.2.1:

TDL
JML(\currentMemoryArea) := defaultMemoryArea

7.1.2 The \memoryArea construct

The memory area an object is allocated in is determined by the implicit field <ma>. In
JML specifications that are not aware of any implicit fields we access <ma> via the function
\memoryArea with:

TDL
JML(\memoryArea(o)) := o.<ma>

where o is a reference type JML expression.

7.1.3 The \outerScope and \inOuterScope constructs

The nesting hierarchy of scopes can be described using \outerScope. For two memory areas
a and b, \outerScope(a, b) evaluates to true iff a is an outer scope of b in the state the
\outerScope expression is evaluated in. These are exactly those states s with

s |= a.stack � b.stack

91

7 JML Specifications and Proof Obligations

Therefore, \outerScope is translated to a Java DL formula as follows:

TDL
JML(\outerScope(a,b)) := a.stack � b.stack

For convenience reasons we define the construct \inOuterScope, where for two reference
type JML expressions x and y \inOuterScope(x, y) is syntactic sugar for
\outerScope(\memoryArea(x), \memoryArea(y))

Therefore we get:

TDL
JML(\inOuterScope(x,y)) := x.<ma> .stack � y.<ma> .stack

With \inOuterScope(x, y) we express that the object x is allocated in a more outer scope
(or in the same) scope compared to y. This is a necessary requirement for assignments of the
form y.a=x; or y[i]=x; to be legal.

Example 7.1 Setter methods cannot always be safely called in RTSJ programs:

JAVA + JML
/*@ public normal_behavior
@ requires \inOuterScope(a, this);
@*/

public void setA(MyObject a){
this.a = a;

}

JAVA + JML

If the above precondition is not met, setA raises an IllegalAssignementError.

7.1.4 The \inImmortalMemory Construct

The expression \inImmortalMemory(o) is true if and only if the object o is allocated in
immortal memory. The translation to Java DL is again canonical:

TDL
JML(\inImmortalMemory(o)) := im(o.<ma> .stack)

Example 7.2 Static fields can only refer to null or objects allocated in immortal memory
therefore the following specification holds:

JAVA + JML
public class Complex{
public static /*@nullable@*/ Complex zero;
...
/*@ public normal_behavior
@ requires zero==null ==>
@ \currentMemoryArea==ImmortalMemory.instance();
@ assignable zero, \object_creation(Complex);
@ ensures \inImmortalMemory(\result);

92

7.1 JML Extensions

@*/
public static Complex zero(){
if(zero==null){
zero=new Complex(0, 0);

}
return zero;

}
...

}

JAVA + JML

7.1.5 The arbitraryScope and arbitraryScopeThis Modifiers

By default we assume that every reference type argument of a method as well as the receiver
object of a non-static method is allocated in the current or an outer scope. The effect is the
same as adding for each reference type argument a the clause

JAVA + JML
requires \outerScope(\memoryArea(a), \currentMemoryArea);

JAVA + JML

to each specification case of the regarded method and also

JAVA + JML
requires \outerScope(\memoryArea(this), \currentMemoryArea);

JAVA + JML

in the case of an instance method.
This approach is comparable to the JML policy of treating all method arguments as non-null

by default if not specified differently: like null arguments, arguments residing in inner scopes
make a method error-prone since referencing them can lead to IllegalAssignmentErrors1.
Thus, as for non-null arguments, the less error-prone alternative is chosen as default.

Example 7.3 The JML method specification

JAVA + JML
/*@ public normal_behavior
@ ensures \result>0;
@*/

public int m(Object a, Object b){...}

JAVA + JML

can be desugared to

1 Such a reference does not need to be explicitly created in a program. It is sufficient for an
IllegalAssignmentError to occur that an inner scope final argument is used inside a local class
(see Section 7.3). The Java compiler desugars local class declarations to top-level classes containing
instance fields to store the values of the final variables stemming from the enclosing block.

93

7 JML Specifications and Proof Obligations

JAVA + JML
/*@ public normal_behavior
@ requires \outerScope(\memoryArea(this), \currentMemoryArea);
@ requires \outerScope(\memoryArea(a), \currentMemoryArea);
@ requires \outerScope(\memoryArea(b), \currentMemoryArea);
@ requires a!=null && b!=null;
@ ensures \result>0;
@*/

public int m(Object a, Object b){...}

JAVA + JML

For allowing arguments that reside in an arbitrary scope the modifier arbitraryScope
can be attached to the respective argument. The modifier arbitraryScopeThis attached
to the method declaration has the same effect for the this pointer.

Example 7.4 The JML method specification

JAVA + JML
/*@ public normal_behavior
@ ensures \result>0;
@*/

public /*@arbitraryScopeThis@*/ int m(
/*@arbitraryScope@*/ Object a,
/*@nullable@*/ Object b){...}

JAVA + JML

can be desugared to

JAVA + JML
/*@ public normal_behavior
@ requires \outerScope(\memoryArea(b), \currentMemoryArea);
@ requires a!=null;
@ ensures \result>0;
@*/

public /*@arbitraryScopeThis@*/ int m(
/*@arbitraryScope@*/ Object a
/*@nullable@*/ Object b){...}

JAVA + JML

7.1.6 The scopeSafe Modifier

The scopeSafe modifier can be attached to method or classes where the latter variant is
syntactic sugar for attaching it to all methods of the considered class. The intuitive semantics
of a method being declared scopeSafe is that is can safely be executed in scoped memory.
This means that it terminates and does not raise any RTSJ memory model specific Exceptions.
The scopeSafe modifier can be desugared to

94

7.2 Proof Obligations for KeYSCJ Programs

JAVA + JML
/*@ public behavior
@ signals (Throwable e)
@ !(e instanceof javax.realtime.IllegalAssignmentError ||
@ e instanceof javax.realtime.ScopedCycleException ||
@ e instanceof javax.realtime.InaccessibleAreaException ||
@ e instanceof javax.realtime.ThrowBoundaryError)
@*/

JAVA + JML

Example 7.5 The following method computing the conjugate of a complex number is, for
instance, not scopeSafe:

JAVA + JML
public Complex getConjugate(){
if(conjugate==null){
conjugate=new Complex(real, -im);

}
return conjugate;

}

JAVA + JML

When executing getConjugate() in a scope that differs from the scope of the receiver object
and is also not an outer scope of it, the assignment
conjugate=new Complex(real, -im);

raises an IllegalAssignmentError. In contrast, this method is scopeSafe:

JAVA + JML
public Complex /*@scopeSafe@*/ add(Complex a){
return new Complex(a.real+real, a.im+im);

}

JAVA + JML

This does, however, not mean that it can never throw an exception (if a==null holds it
actually does throw a NullPointerException). The modifier scopeSafe only states that
no exception (that is not caught internally by the method) is caused by using the RTSJ instead
of the standard Java memory model.

7.2 Proof Obligations for KeYSCJ Programs
EnsuresPost POs for KeYSCJ methods are created in principle analogously to the POs shown
in Section 2.3.5. The EnsuresPost PO for a method contract ct = (Pre, Post,Mod) is given
by:

EnsuresPost(ct, Assumed) :=
ConjAssumed ∧ ConjInvRealtime ∧ Pre ∧ V alidCallSCJ

op →
〈PRGop()〉Post

where

95

7 JML Specifications and Proof Obligations

• V alidCallSCJ
op :=

V alidCallJava
op ∧

defaultMemoryArea 6 .= null∧
defaultMemoryArea.<c>

.
= TRUE ∧

defaultMemoryArea.stack 6 .= null

• ConjInvRealtime is the conjunction of the class invariants defined in javax.realtime.*.

• ConjAssumed and V alidCallJava
op are defined as in Section 2.3.5.

All other POs shown in Section 2.3.5 are adapted analogously by strengthening their precon-
dition with ConjInvRealtime and V alidCallJava

op .

7.3 An Extended Example

The method foo shown in Figure 7.1 mimics to a certain extend the behavior of a typical RT
application as described in Section 4:

• During an initialisation phase the memory scopes and objects reusable in each of the
mission phases are allocated. In the considered method foo this is the Runnable r and
the LTMemory m.

• In the mission phases r executes in m. After each phase m is freed.

• In the mission phase itself represented by the run method of r a set of data is created
(the array a) and some operation is performed with this data (represented by the method
bar). The memory allocated to a and the instances of A with which it is initialised is
reclaimed after each run.

The JML specification of foo claims that it is scopeSafe which is, however, incorrect. The
reason for this incorrectness can be quickly found when trying to prove the method specifi-
cation to be correct. In the prove tree one goal remains unclosable and a closer look on the
open branch (see Figure 7.2) reveals that the implicit reference the Runnable r holds (as an
instance of an inner class) to its enclosing object can cause an IllegalAssignementError.
From looking at the open goal we can also determine that the exception is thrown in the case
of

¬self.<ma> .stack � defaultMemoryArea

holding. Thus we could either

• accept that foo is not scope safe and remove the scopeSafe modifier from the code.
The remaining specification case

JAVA + JML
/*@ public normal_behavior
@ requires x>=0 && y>=0;
@*/

public final void foo(){...

JAVA + JML

96

7.3 An Extended Example

JAVA + JML
import javax.realtime.*;

public abstract class B{

/*@ public normal_behavior
@ requires x>=0 && y>=0; @*/

public final void /*@scopeSafe@*/ foo(final int x, final int y){
ScopedMemory m = new LTMemory(24*x+16);
Runnable r = new Runnable(){
public void run(){
int j=0;
A[] a = new A[x];
/*@ loop_invariant j>=0 && \object_creation(A) &&
@ (\forall int k; k>=0 && k<j; a[k]!=null);
@ assignable j, a[*], \object_creation(A);
@ decreasing x-j;
@*/

while(j<x){
a[j] = new A();
j++;

}
bar(a);

}
};
int i=0;
/*@ loop_invariant i>=0 && \object_creation(A) &&
@ \object_creation(A[]) && \object_creation(MemoryStack);
@ assignable i, \object_creation(A), \object_creation(A[]),
@ \object_creation(MemoryStack);
@ decreasing y>0 ? y-i : 0;
@*/

while(i<y){
m.enter(r);
i++;

}
}

/*@ public normal_behavior
@ assignable \nothing;
@*/

public void bar(A[] a);
}

JAVA + JML

Figure 7.1: RTSJ code (incorrectly) specified with JML

97

7 JML Specifications and Proof Obligations

Figure 7.2: Extract from proof tree for the scopeSafe PO for method foo

is, however, correct and does not need to be adapted since due to the absence of an
arbitraryScopeThis modifier we implicitly require that

\outerScope(\memoryArea(this), \currentMemoryArea)

holds in the pre-state of foo.

• or define foo and bar to be static which eliminates the problem with the enclosing
instance of r since the anonymous class is now defined within a static context and does
thus not possess an enclosing instance. The scopeSafe modifier would then be correct.

98

8 Applicability to Existing SCJ Profiles
and Required Adaptations

The approach described in Sections 6 and 7 is only applicable to RTSJ programs complying
with the KeYSCJ profile. This can, however, be considered a minor restriction since all
existing1 SCJ profiles based on the RTSJ comply with the KeYSCJ profile.

In the Hĳa [HĲA, 2006, Kung et al., 2006] project a SCJ profile was proposed limiting the
use of scoped memory by allowing

• only linear nesting of scopes,

• the immortal scope only to occur at the bottom of the scope stack and

• prohibiting the use of heap memory.

This use of scoped memory is obviously compatible with KeYSCJ. The Ravenscar-Java profile
[Kwon et al., 2005] as well as the profile proposed in [Schoeberl et al., 2007] are even more
restrictive concerning memory management allowing only one scope per thread.

Other Approaches [Kwon and Wellings, 2004, Nilsen, 2006] abstains from scopes that are
explicitly created and managed by the programmer and provide scopes that are instead im-
plicitly created when calling a method or constructor. This concept is implemented in the
Java dialect supported by the commercial tool set PERC Pico [Aonix, 2008, Nilsen, 2006,
Nilsen, 2008]. Since each method call is (by default2) associated with its own scope in which
objects not outliving the method execution can be allocated, this concept bears some resem-
blance to stack allocation.

In [Kwon and Wellings, 2004] two possibilities to implement such a method-invocation-
based (MIB) memory model were suggested:

• Based on a cross-compiler producing RTSJ code or

• based on a JVM or AOT (i.e., ahead-of-time) compiler that is aware of the memory
model.

For verification of programs based on a MIB MM we have two similar choices:

• Cross-compilation to (KeYSCJ compliant) RTSJ code and verification of the generated
code without modification of the approach described in the previous sections or

1This refers only to those SCJ profiles ([Schoeberl et al., 2007, Kung et al., 2006, Kwon et al., 2005]) which
are, to the best of the author’s knowledge, sufficiently well-known and considered relevant within the
safety-critical Java community.

2The memory model described in [Kwon and Wellings, 2004] allows methods to execute in the caller’s scope.
Whether a method creates its own scope or depends on the caller’s scope has to be specified explicitly by
the programmer.

99

8 Applicability to Existing SCJ Profiles and Required Adaptations

• adaptation of the calculus to directly treat the MIB memory model. Since proofs are
then performed on the original source code, this alternative is preferable when it comes
to interactive proving. The calculus extensions this alternative necessitates are discussed
in Section 8.1.

8.1 Implicit Scopes Based on Method Invocation
Both approaches ([Kwon and Wellings, 2004] and [Nilsen, 2006]) we consider here share the
following characteristics:

• Methods (can) allocate a scope (we call it local scope in the following) having method
lifetime for the allocation of objects not outliving the method execution.

• Facilities for allocating objects in other scopes than the current local scope are pro-
vided. Both approaches realize this through Java 5 annotations indicating that certain
allocations are performed in other scopes.

To handle the first item the rule methodBodyExpand for inlining method bodies is adapted in
this respect that the <cma> pointer of the resulting local scope is set to a fresh instance of
LTMemory.

For treating the second item we have to differentiate in which scope the new object is to
be allocated. Both approaches allow allocation of objects directly in the scope of the calling
method. Allocation does not necessarily need to take place in the direct caller’s scope, if
a returned object needs to be relayed back through a sequence of method calls this object
is allocated in the original caller’s scope. To mimic this behavior in the calculus we extend
the method frame statement by another pointer pointing to the scope for allocating returned
objects in.

The modifications of the calculus sketched above are discussed in more detail in Sections
8.1.1 and 8.1.2.

8.1.1 Syntactical Changes

In [Kwon and Wellings, 2004] whether a new object is allocated in the caller context is indi-
cated by the annotation @ReturnedObject attached to the statement performing the allo-
cation. PERC Pico [Nilsen, 2006] provides the method
\jj{ScopeManagement.allocInCallerContext}

for this purpose.
To keep track of caller memory areas we introduce a pointer <oma> (shorthand for outer

memory area) pointing to that caller context in which returned objects are to be allocated:

JAVA

method-frame(result->retvar,
source=T,
this=self,
<cma>=cm,
<oma>=om) : {body}

JAVA

100

8.1 Implicit Scopes Based on Method Invocation

As for the <cma> pointer introduced in Section 6.2.1, the scope <oma> refers to is determined
by the enclosing method frame. Like <cma>, the pointer <oma> can only occur inside programs
(and not as a term).

Besides local scopes, PERC Pico defines two additional kinds of scopes: constructed and
reentrant scopes. Both are associated with an object and have the same lifetime as this
object. Since constructed and reentrant scopes have the same lifetime as the object o, they
are associated with we abstract from the fact that they are physically different from the scope
o is allocated in and consider the constructed and reentrant scope of o to be identical with
o.<ma>. A constructed scope created within

• a method is associated with the object returned by this method.

• a constructor is associated with the object initialised by the constructor.

In both cases allocation in the constructed scope can only be performed by the method (or
constructor) by which it was created. A reentrant scope can be seen as a special case of a
constructed scope lacking this limitation: A reentrant scope can also be used for performing
object allocation by instance methods of the associated object.

Whether an object needs to (for avoiding dangling references) be allocated in the reen-
trant/constructed scope of an object is determined by PERC Pico by a data flow analysis
performed at compile-time. Thus the programmer is not required to explicitly specify the
target scope for each object object allocation. We assume that the results of this analy-
sis are back-annotated in the code or made available in a different way usable for program
verification.

To be able to determine in which scope a method/constructor call will allocate objects
outliving the method/constructor call (e.g., returned objects newly created by the called
method or, in case of a constructor call, the object created by the corresponding new operator)
we apply a program transformation adding (we refer to this transformation as TMIB in the
following) an annotation of the form @scope to each new operator and method call where
@scope stands for one of the following alternatives

• the @<oma> pointer in case the method/constructor call will perform allocations in the
caller’s (of the currently executed method) scope. In the case of PERC Pico also objects
allocated in the constructed scope of the returned object are considered to be allocated
in the <oma> scope according to the abstraction we apply here for handling constructed
scopes.

• the expression @this.<ma> in case of a method/constructor call allocating an object
in the reentrant (when @this.<ma> occurs inside a method body) or constructed scope
(when @this.<ma> occurs inside a constructor body)(both cases are PERC Pico spe-
cific).

• the method invocation @ImmortalMemory.instance() in case of a constructor invo-
cation allocating an object in immortal memory (PERC Pico specific).

• the @<cma> if none of the preceding alternatives applies.

Java 5 annotations are removed by this transformation.

101

8 Applicability to Existing SCJ Profiles and Required Adaptations

Example 8.1 (The Transformation TMIB) The method myMethod is augmented with an-
notations introduced in [Kwon and Wellings, 2004]:

JAVA

@ScopedMemoryMethod(...)
public MyObject myMethod(Object param){
@ReturnedObject(type = MyObject)
MyObject ret = new MyObject(param);
MyObject localObj = new MyObject(ret);
return ret;

}

JAVA

Applying the transformation TMIB to the above program results in:

JAVA

public MyObject myMethod(Object param){
MyObject ret = new@<oma> MyObject(param);
MyObject localObj = new@<cma> MyObject(ret);
return ret;

}

JAVA

Example 8.2 The implicit method <createObject> (see [Beckert et al., 2007] or Section
2.3.3) is transformed as follows:

JAVA

public static C <createObject>(){
C newObject = C.<allocate>()@<oma>;
newObject.<transient> = 0;
newObject.<initialized> = false;
newObject.<prepare>()@<oma>;
return newObject;

}

JAVA

8.1.2 Calculus

When invoking a method possessing its own scope, a new scope has to be created and ap-
propriately initialised. This behavior of a method invocation in a MIB MM is reflected by
the rule scopedMemoryMethodBodyExpand describing the inlining of the body of a method
possessing its own memory scope. This means in detail:

• The <cma> pointer of the newly created method frame is initialised with the repository
object getLTMemory(LTMemory.<ntc>).

• The scope stack of this newly created scope is initialised with a fresh scope stack
getMemoryStack(j) for which cma.stack � getMemoryStack(j) holds, where cma denotes

102

8.1 Implicit Scopes Based on Method Invocation

the memory area the <cma> pointer of the inner-most scope in π refers to. In other
words: the local scope of the method which invokes meth is an outer scope of meth’s
method local scope.

• Affected <c> and <ntc> attributes are changed adequately.

We can abstain from checking the single parent rule since scopes cannot be entered a second
time due to the lack of explicit scope identities and thus this rule cannot be violated. It
is also not necessary to initialise the <ma> attribute of the newly created scope and scope
stacks since these objects are never assigned to a location different from a local variable and
thus knowing their memory area is never required for evaluating a runtime check (testing for
illegal assignments). Therefore, this underspecification bears no disadvantages here.

scopedMemoryMethodBodyExpand
Γ, {U}(cma.stack � getMemoryStack(j) ∧ j ≥MemoryStack.<ntc>) ⇒

{U}{getLTMemory(LTMemory.<ntc>).stack := getLTMemory(j) ||
newMem := getLTMemory(LTMemory.<ntc>) ||
getLTMemory(LTMemory.<ntc>).<c> := TRUE ||
LTMemory.<ntc> := LTMemory.<ntc>+ 1 ||
MemoryStack.<ntc> := j + 1 ||
for i; if(MemoryStack.<ntc> ≤ i ∧ i ≤ j)

getMemoryStack(i).<c> := TRUE
}〈π method-frame(result->lhs,

source=C,

this=se,
<cma>=newMem,

<oma>=mem) : {body} ω〉φ, ∆

Γ ⇒ {U}〈π lhs=se.meth(args)@scope@(C);ω〉φ, ∆

where j is a fresh integer skolem constant (see rule push in Section 6.3.1) and mem denotes
the scope the expression scope is resolved to. For method invocations not possessing their
own local scope we just have to initialise the <oma> pointer with the value determined for this
by the method body statement. The <cma> pointer is set to the value of the <cma> pointer
of the innermost method frame, which we denote as cma here:

methodBodyExpand

Γ ⇒ {U}〈π method-frame(result->lhs,

source=C,

this=se,
<cma>=cma,

<oma>=mem) : {body} ω〉φ, ∆

Γ ⇒ {U}〈 π method-frame(...,<cma>=cma,...) : {
lhs=se.meth(args)@scope@(C); p} ω〉φ, ∆

Due to the transformation TMIB the scope an object is allocated in is determined by the anno-
tation attached to the new operator. This is taken into account by the rule instanceCreation

103

8 Applicability to Existing SCJ Profiles and Required Adaptations

dispatching the constructor invocation as follows:

instanceCreation
Γ ⇒ {U}〈π T v0 = T.<createObject>()@scope;

v0.<init>(args)@scope;
v0.<initialized> = true;
v = v0;

ω〉φ
Γ ⇒ {U}〈π v=new@scope T(args);ω〉φ, ∆

The scope scope is propagated to the called methods <createObject> and <init>. The im-
plementation of <createObject> is shown in Example 8.2, the method <init> encapsulates
the body of the called constructor.

The rule allocate representing the actual allocation of the new object also changes slightly:
due to the program transformation TMIB the scope the newly created object is allocated in is
determined by the scope annotation attached to <allocate>:

allocateMIB

Γ ⇒ {U}{v := getT (T.<ntc>) ||
T.<ntc> := T.<ntc>+ 1 ||
getT (T.<ntc>).<c> := TRUE ||
getT (T.<ntc>). <ma> := mem}〈π ω〉φ, ∆

Γ ⇒ {U}〈π v=T.<allocate>()@scope;ω〉φ, ∆

Again, mem denotes the scope determined by the @scope annotation and the execution
context π.

104

9 A Profile for Facilitating
Non-Interference Proofs in RTSJ

In a concurrent system source code verification results produced under the assumption that
the code is executed in a single threaded environment can be rendered invalid. This problem is
induced by concurrent (read- and write-) accesses to shared data that cause different threads
to interfere with each other.

One means of limiting the risk of interference is to use synchronized blocks or methods.
Synchronized code is always associated with a lockable object: If a thread tries to enter a
synchronized piece of code it blocks if another thread already holds the lock for the associated
object otherwise it acquires the lock and starts executing the synchronized code. Relying on
synchronized code as a means for avoiding interference carries several disadvantages: (i) There
is a performance overhead for locking objects and (ii) it needs to be correctly determined for
which objects to acquire a lock which can be non-trivial as the following simple example
shows:

JAVA + JML
public int computeDistance(int n){
int dist = 0;
for(int i=0; i<n; i++){
dist+=read(i);

}
return dist;

}

JAVA + JML

For preventing that any thread interferes with the execution of computeDistance (and thus
rendering any verification result for a sequential execution of this method invalid) it is not
(necessarily) sufficient to declare computeDistance synchronized since this would only
make the executing thread acquire the lock of the receiver object of computeDistance.
Instead the lock for every object the result of read depends on has to be acquired to ensure
that no other thread can change that data while computeDistance is executing.

The set of locations a method (or more general: a program) depends on is described by its
depends clause [Müller et al., 2003]. Informally, a method m depending on a location l means
that the value of l can have influence on the result and side effects of m. Complementary
to the depends clause the assignable clause specifies which locations can be assigned to by a
method. This two clauses can be used to determine which locks need to be acquired by the
executing thread and help to identify situations in which we can do without synchronized code:
If, for instance, n threads t1, . . . , tn execute n different programs p1, . . . , pn every program pi

with a depends clause di which is disjoint from any assignable clause aj of a program pj with
j 6= i we know that no other thread can interfere with the execution of pi and thus, from the
perspective of formal verification, it can be regarded as being executed sequentially.

105

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

In this context, another important specification concept facilitating data encapsulation is
the captures clause which constrains to which objects references can be retained by executing
the specified method.

Even when possessing the depends and assignable clauses of every program each thread in
a system executes, one obstacle for precisely determining non-interference remains, namely
aliasing: Syntactically different expressions can refer to the same location. Since deciding
whether locations in, for instance, the assignable clause of a program p can be aliased by
locations in the depends clause of a program q cannot be always done syntactically based only
on the information provided by the respective clauses, we need additional information. Section
9.1 exemplifies how this information can be obtained by defining a profile (called KeYSCJ*)
for instrumenting the existing RTSJ memory model for data encapsulation purposes to ensure
non-interference.

9.1 Leveraging the RTSJ Memory Model for Data
Encapsulation

The scoped memory model of RTSJ can be considered a means of data encapsulation: A
Java expression o.a@(C) can only be an alias for u.a@(C) if o and u reside in the same
memory area. We strengthen this already present data encapsulation mechanism of RTSJ by
additionally constraining the use of scoped memory.

9.1.1 The KeYSCJ* Profile

For enhancing the data encapsulation properties of RTSJ we constrain KeYSCJ in the follow-
ing way:

• The initial thread (the thread started when execution of an RTSJ program begins)
possesses a dedicated scope having mission lifetime. We call this scope mission memory
in correspondence to [HĲA, 2006]. The initial thread may only execute in immortal
and mission memory.

• Schedulable objects may only be created and started by the initial thread and only
be allocated in mission memory.

• Each Schedulable object (except the initial thread) must possess an initial scope1

different from the immortal and mission memory.

• Usage of getPortal and setPortal is prohibited.

Figure 9.1 shows how a possible KeYSCJ compliant scope stack with an initial thread T

and three spawned threads T1, T2 and T3 can look like. Note, that we do not explicitly forbid
scopes to be shared, the desired data encapsulation properties are still achieved by forbidding
getPortal and setPortal.

1 Initial memory areas are provided as constructor arguments.

106

9.1 Leveraging the RTSJ Memory Model for Data Encapsulation

Figure 9.1: Scope stack complying with the KeYSCJ* profile. The dashed lines mark the
scopes accessible by a certain thread.

9.1.2 Benefits of KeYSCJ*

Due to the restrictions made in KeYSCJ*, threads cannot share data in any scope different
from the mission and the immortal scope. For determining whether a method-call can safely
be performed at a certain point of the program without showing interference with other
threads it is thus sufficient to check in what scopes the locations in the assignable and depends
clause reside.

Lemma 9.1 Let op be an operation, Mod its assignable clause (all locations ever assigned
to by op) and Dep its depends clause (all locations ever read by op) both represented by
a list of location descriptors. When executed in a KeYSCJ* compliant application by a
thread T , op shows no interference with other threads if for all l ∈ Mod ∪ Dep with l :=
(for x̄; if(ϕ) f(t1, . . . , tn))

• f is no static variable and

• the following holds for each reference type term t occurring in f(t1, . . . , tn) whose top-
level function symbol is a location function symbol:

∀x̄;ϕ→ (t
.
= null∨T.getMemoryArea().stack � t. <ma> .stack)

where T.getMemoryArea() returns the initial memory area of T .

Lemma 9.1 allows formal verification of non interference to be done (i) modularly and (ii)
locally. Modularity means in this context that the implementation of called methods needs
not to be taken into account, its depends and assignable clause is sufficient. Locality means
here that non-interference of a program can be ensured without knowing the code executed
by concurrently running threads due to the data encapsulation properties of KeYSCJ*.

107

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

9.2 Assignable, Depends and Captures Clauses
The correctness of any non-interference proof utilizing assignable and depends clauses re-
quires, of course, correctness of the used clauses. Various works on checking the correctness of
assignable clauses [Spoto and Poll, 2003, Sălcianu and Rinard, 2005, Cok and Kiniry, 2004]
exist. A technique for proving the correctness of assignable clauses in KeY has been pro-
posed in [Engel et al., 2009]. In [Bubel, 2007] a proof obligation for proving the correctness
of a depends clause for pure methods has been presented. Checking the correctness of cap-
tures clauses can, for instance, be done by pointer analysis techniques [Choi et al., 1999,
Whaley and Rinard, 1999, Rountev et al., 2001].

In the following a formal semantics of assignable, depends and captures in Java DL is
presented. The proceeding Section 9.2.1 discusses how proof obligations for the correctness
of these clauses can be formulated in Java DL. We only consider clauses here that contain
only concrete locations and do not make use of any means of data abstraction such as model
fields [Breunesse and Poll, 2003] and data groups [Leino, 1998]. This can be justified by the
assumption that safety critical systems are naturally closed systems and thus all classes used in
a Java application are known. In this setup assignable, depends or captures clauses containing
model fields can always be desugared to equivalent clauses containing only real locations.

Definition 9.2 (Semantics of Assignable, Depends and Captures Clauses) Let op
be a method or constructor possessing a contract (Pre, Post,Mod,Dep, Cap). Let further be
α a formula containing no free variables.

1. Mod is a correct assignable clause for op under the precondition α if and only if for all
Kripke structures K := (M,S, ∗, ρ), all states s, t ∈ S with s |= α and t := ρ(Prgop())(s)
and all heap location function symbols f and all n-tuples a1, . . . , an in the universe U
the following holds2:

if f t(a1, . . . , an) 6= f s(a1, . . . , an) then (f, (a1, . . . , an)) ∈ vals(Mod)

2. Dep is a correct depends clause for op under the precondition α if and only if for all
Kripke structures K := (M,S, ∗, ρ), all states s, t ∈ S with s |= α and t |= α and
s ≈Dep t and s1 := ρ(Prgop())(s) and t1 := ρ(Prgop())(t) and all location function
symbols f that are either heap location function symbols or f = result or f = exc
(where result and exc are the program variables used in Prgop() for capturing the result
of op and the exception possibly raised by it) and all n-tuples a1, . . . , an in the universe
U the following holds:

if f t1(a1, . . . , an) 6= f t(a1, . . . , an) then f t1(a1, . . . , an) = f s1(a1, . . . , an)

3. Cap is a correct captures clause for op under the precondition α if and only if for
all Kripke structures K := (M,S, ∗, ρ), all states s, t ∈ S with s |= α and t :=
ρ(Prgop())(s), all reference type heap location function symbols (i.e., attributes and the
array access operator) f and all n-tuples a1, . . . , an in the universe U the following holds:

if f t(a1, . . . , an) 6= f s(a1, . . . , an) then
f t(a1, . . . , an) = val(null) or

2For the sake of readability, we frequently use the notation fs in place of s(f) (i.e., the interpretation of
function symbol f in state s.) in this section.

108

9.2 Assignable, Depends and Captures Clauses

f t(a1, . . . , an).<c>s = val(FALSE) or
there is (g, (b1, . . . , bm)) ∈ vals(Cap) such that f t(a1, . . . , an) = gs(b1, . . . , bm)

Note, that the semantics of assignable and depends clauses in Java DL is more liberal than
the one previously (informally) described in Section 9.1: In Java DL temporary changes of
locations do not need to be reflected in the assignable clause, as long as the changed location
is changed back to its pre-state value before the specified method terminates. In addition read
access to locations needs not be reflected in the depends clause as long as the methods result
and side effects are independent of the value of the read location. The following specification
is therefore correct with respect to the Java DL semantics:

JAVA + JML
/*@ requires o!=null;
@ assignable \nothing;
@ depends \nothing;
@*/

public void doNothing(MyObject o){
int i = o.a++;
o.a = i;

}

JAVA + JML

Remark 9.3 (depends Clauses in JML) Standard JML does not know the concept of de-
pends clauses which is a KeY specific extension. It incorporates, however, a related concept
named accessible clause which bears slight semantic differences to the depends clause.

Definition 9.4 (Semantics of Depends Clauses for Terms and Formulas) Let t be a
term, φ a formula and Dep a list of location descriptors.
Dep is a correct depends clause for t (and φ respectively) if and only if for all Kripke

structures K := (M,S, ∗, ρ), all states s1, s2 ∈ S with s1 ≈Dep s2 and all variable assignments
β:

vals1,β(t) = vals2,β(t)

and
s1, β |= φ iff. s2, β |= φ

respectively.

9.2.1 Proof Obligations for Assignable, Depends and Captures Clauses

Assignable Clauses

In [Roth, 2006] a proof obligation for assignable clauses was presented. A variant of this proof
obligation following the same basic idea but using more recent concepts than the original one
such as location dependent predicates [Bubel, 2007] (originally queries we used in a similar
way) can be defined as:

RespectsMod(op, ct) := {D@pre(Mod)}(α ∧ {∗Mod@pre

j }P [∗] → [p] {∗Mod@pre

j }P [∗]) (9.1)

where

109

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

• j is an arbitrary index such that no anonymising or anonymous update with index j
occurs in α.

• P [∗] is an uninterpreted heap-dependent predicate.

• p := Prgop()

• ct := (Pre, Post,Mod,Dep, Cap) is a contract for op.

• α := ConjInvRealtime ∧ ConjAssumed ∧ Pre ∧ V alidCallSCJ
op

with ConjInvRealtime and V alidCallSCJ
op as defined in Section 7.2.

Theorem 3 (Soundness and Completeness of RespectsMod) Let op be an operation
and ct := (Pre, Post,Mod,Dep, Cap) a contract for op. The formula RespectsMod(op, ct) is
valid if and only if Mod is a correct assignable clause for op under the precondition α.

A correctness and completeness proof for a slightly different variant of this PO (using for-
mulas and rigid constants for memorizing the pre-state instead of updates) can be found in
[Engel et al., 2009]. This proof can be easily adapted to the PO RespectsMod.

Remark 9.5 Even though we consider proof obligations for SCJ programs in this section, the
corresponding POs for standard Java programs can be easily obtained by setting the assump-
tions α used in the above as well as the following POs to

α := ConjAssumed ∧ Pre ∧ V alidCallJava
op

Depends Clauses

A sound PO for verifying the depends clause of a query (or a pure method in the JML jargon)
is defined in [Bubel, 2007]:

RespectsDepq(q, ct) := ∀x, y; ({∗Dep
j }α ∧ {∗i}{∗Dep

j }α ∧
{∗Dep

j }[r=q;] r
.
= x ∧ {∗i}{∗Dep

j }[r=q;] r
.
= y → x

.
= y) (9.2)

Where α is defined as above. The intuitive meaning of RespectsDepq(q, ct) is that if the
query is called in two arbitrary states s and t with s ≈Dep t (s and t are “constructed” by the
updates {∗Dep

j } and {∗i}{∗Dep
j }) its result is the same in both states. Thus if RespectsDepq

is valid, Dep is a correct dependency clause for q. Even though this PO is sound, it is utterly
incomplete as soon as Dep consists of more than one location descriptor as the following
simple example shows.

Example 9.6 Let us consider the following method

JAVA + JML
/*@ public normal_behavior
@ depends o, o.a;
@*/

public /*@pure@*/ int m(MyObject o){
if(o==null) return 0;
return o.a;

}

JAVA + JML

110

9.2 Assignable, Depends and Captures Clauses

The depends clause of this query is obviously correct, though RespectsDepq(m(o), ct) (with ct
being the contract as shown above) is invalid.

The reason for this invalidity becomes clear when we compare the evaluation of the de-
pends clause in the states reached by the updates {∗i}{∗Dep

j } and {∗Dep
j }. Let us assume

RespectsDepq(m(o), ct) is evaluated in a state s1 let further be

pre1 := vals1(∗
Dep
j)(s1)

s2 := vals1(∗i)(s1)

pre2 := vals2(∗
Dep
j)(s2)

Thus pre1 and pre2 denote the states in which the query is evaluated. Then

valpre1(o.a)

= vals1({∗
Dep
j }o.a)

=

{
val∗(j)(o.a) if val∗(j)(o) = vals1(o)
vals1(({∗i}o).a) if val∗(j)(o) 6= vals1(o)

and

valpre2(o.a)

= vals2({∗
Dep
j }o.a)

=

{
val∗(j)(o.a) if val∗(j)(o) = vals2(o)
vals2(({∗i}o).a) if val∗(j)(o) 6= vals2(o)

This shows that the location o.a can evaluate to different values in the states pre1 and pre2
in which the query is evaluated. Therefore, we can find a witness Kripke structure in which
we choose the states s1, ∗(j) and ∗(i) in such a way that valpre1(o.a) 6= valpre2(o.a) (and thus
pre1 6≈Dep pre2) which entails

valρ(r=m(o);)(pre1)(r) 6= valρ(r=m(o);)(pre2)(r)

and consequently s1 2 RespectsDepq(m(o), ct).
The problem arises since we only ensure that the locations to which o.a evaluates in the

states s1 and s2 (which are (a, (vals1(o))) and (a, (vals2(o)))) are set to the same value (by
update {∗Dep

j }). Since, however, the value of location o is changed as well by {∗Dep
j }, o.a can

evaluate to a different location in state pre1 (and pre2) compared to s1 (and s2). In short,
we set the locations to which the depends clause evaluates in the state s1 and s2 to identical
values instead we should ensure that the locations to which it evaluates in pre1 and pre2 (since
these are the states in which we evaluate the query) have identical values.

Before we try to define a sound and complete PO for the depends clause we briefly recall
what has to be proven: Whenever we execute a query q in two states s and t with s ≈Dep t
(where Dep is q’s depends clause) then the result yielded from q’s execution is the same both
times. The question is now how to obtain such two states if constructing them by means
of updates bears such subtle pitfalls as example 9.6 illustrates. An obvious possibility is, to
choose a declarative instead of constructive (as done in RespectsDepq) approach to define
these two states:

RespectsDep∗q(q, ct) := ∀x, y; (α ∧ {∗i}α ∧
∧

ld:ld∈Dep

ξi(ld) ∧

[r=q;] r
.
= x ∧ {∗i}[r=q;] r

.
= y → x

.
= y) (9.3)

111

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

where
ξi(ld) := ∀x̄; (({∗i}ϕ↔ ϕ) ∧ (ϕ→ {∗i}f(t̄)

.
= f(t̄)))

with ld := (for x̄; if(ϕ) f(t̄)). Obviously, for every state s the property s ≈Dep vals(∗i)(s)
holds if and only if

s |=
∧

ld:ld∈Dep

ξi(ld) (9.4)

holds.

Theorem 4 (Soundness and Completeness of RespectsDep∗q) Let q be a query possess-
ing a contract ct = (Pre, Post,Mod,Dep, Cap). The formula RespectsDep∗q(q, ct) is valid if
and only if Dep is a correct depends clause under the precondition α.

Theorem 4 follows directly from equation (9.4).
Analogously we can define proof obligations for depends clauses of terms and formulas

which do not contain virtual location function symbols:

DependsOn(t,Dep) :=
∧

ld:ld∈Dep

ξi(ld) → {∗i}t
.
= t (9.5)

DependsOn(φ,Dep) :=
∧

ld:ld∈Dep

ξi(ld) → {∗i}φ↔ φ (9.6)

Theorem 5 (Soundness and Completeness of DependsOn) Let t be a term, φ a for-
mula and Dep a list of location descriptors. Let further t and φ be free of virtual location
function symbols. Then DependsOn(t,Dep) is valid if and only if Dep is a correct depends
clause for t and DependsOn(φ,Dep) is valid if and only if Dep is a correct depends clause
for φ.

Theorem 5 is also trivially entailed by equation (9.4).

Remark 9.7 (Comparison to other POs for depends clauses of formulas) In previ-
ous works ([Bubel, 2007, Roth, 2006]) POs for depends clauses of formulas differing from
DependsOn have already been suggested. This raises the question about the benefit of yet an-
other PO for the correctness of such a depends clause. In short, this benefit is that DependsOn
is complete with respect to our definition of depends clauses (see Definition 9.2), which is not
the case for the POs introduced in the cited works as we elaborate in the following:

The PO pop[ld] presented in [Bubel, 2007] is afflicted with the same completeness issue as
RespectsDepq: it cannot canonically be raised to a PO for sets of location descriptors without
becoming incomplete.

In [Roth, 2006] the following PO3 for proving the correctness of a depends clause Dep for
a formula φ was introduced:

CorrectDepends(Dep, φ) := {D@pre′(Dep)}(φ→ {∗i}{U}φ)

3This is not the actual PO introduced in [Roth, 2006] but a logically equivalent one using an update instead
of a set of axioms for defining the values of the required @pre-functions.

112

9.2 Assignable, Depends and Captures Clauses

with

Dep := {ld1, . . . , ldn}
U := {uld1|| . . . ||uldn}

u(for x̄; if(ϕ) f(t̄)) := for x̄; if(b@pre
ϕ (x̄)

.
= TRUE) f(t̄@pre) := f@pre(t̄@pre)

Basically the update U sets the locations contained in Dep in the pre-state (defined by update
D@pre′(Dep)) to their pre-state values. CorrectDepends is only complete (with respect to
the semantics of depends clauses chosen in this work) for sets of location descriptors Dep and
formulas φ complying with the following property4:

for all ld := (for x̄; if(ϕ) f(t1, . . . , tn)) and all states s:

if ld ∈ Dep and Dep \ {ld} is not a correct depends clause for φ then

vals,β((for x̄; if(ϕ) t)) ⊆ vals,β(Dep)

for each term t occurring in ld whose top-level function symbol is a location func-
tion symbol.

Illustratively, this means, for instance, that

CorrectDepends({o.a}, o.a .
= 0) =

{D@pre′({o.a})}(o.a .
= 0 → {∗i}{o@pre.a := a@pre(o@pre)}o.a .

= 0)

is (obviously) not valid even though {o.a} is a correct depends clause for o.a .
= 0 according to

Definition 9.2. Adding o (which can be done since underspecifying a depends clause is viable)
to the depends clause fixes this problem since

CorrectDepends({o.a, o}, o.a .
= 0) =

{D@pre′({o.a, o})}(o.a .
= 0 → {∗i}{o@pre.a := a@pre(o@pre)||o := o@pre}o.a .

= 0)

is valid. This fix carries, however, the disadvantage of an overapproximated (and thus less
precise) depends clause.

Generalizing this approach in a canonical way for applying it to operations with potential
side effects leaves us to the following PO, in which we make use of the location dependent
predicates for capturing the side effects of the regarded program:

RespectsDep(op, ct) := α ∧ {∗i}α ∧ {D@pre(Mod)}[p]P [M] ∧
∧

ld:ld∈Dep

ξi(ld) →

{∗i}{D@pre(Mod)}〈p〉P [M] (9.7)

where {∗i} is a new anonymous update, M := (Mod@pre
ext , result, exc) (result is optional in

case of op being non-void) and ct, ξi(ld), result, exc, p and α are defined as before.

4The semantics for depends clauses used in [Roth, 2006] entails that this property is met by a correct
depends clause. Thus CorrectDepends is complete with respect to the semantics of depends clauses
defined in [Roth, 2006].

113

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

Theorem 6 (Soundness of RespectsDep) Let ct := (Pre, Post,Mod,Dep, Cap) be a con-
tract for an operation op. Then the following implication holds: If RespectsDep(op, ct) is
valid and Mod is a correct assignable clause under the precondition

α := ConjInvRealtime ∧ ConjAssumed ∧ Pre ∧ V alidCallSCJ
op

then Dep is a correct depends clause for op under the precondition α and op terminates (when
invoked in a state satisfying α).

Before we start to sketch a proof for Theorem 6 we need a helper Lemma.

Lemma 9.8 Let K := (M,S, ∗, ρ) be a Kripke structure and s, t ∈ S. Then for every i ∈ N
there is a Kripke structure K′ := (M,S, ∗′, ρ) (coinciding with K except for the functions ∗
and ∗′) such that

valK′,s(∗′i)(s) = t′

with t′ ≈∗ t.

This Lemma follows directly from the semantics of anonymous update (see Section 2.2.1):
There is a Kripke structure K′ := (M,S, ∗′, ρ) such that

∗′(i) = t

Proof 2 (of Theorem 6) The termination argument is obvious.
For proving that the validity of RespectsDep(op, ct) also implies the correctness of Dep we

assume that Dep is an incorrect depends clause and then show that this entails invalidity of
RespectsDep(op, ct).

Let Dep be an incorrect depends clause for op. Then (according to definition 9.2) there are
states s and t with

s |= α (9.8)
t |= α (9.9)
s ≈Dep t (9.10)

and s1 := ρ(p)(s) and t1 := ρ(p)(t) and either a heap location (f, (a1, . . . , an)) or f ∈
{result, exc} (and n = 0) such that

f t1(a1, . . . , an) 6= f t(a1, . . . , an) (9.11)
f t1(a1, . . . , an) 6= f s1(a1, . . . , an) (9.12)

As a consequence of Lemma 9.8 we assume wlog.5 that

vals(∗i)(s) = t (9.13)

This implies
s |=

∧
ld:ld∈Dep

ξi(ld) (9.14)

5 This can be done since due to Lemma 9.8 there is a Kripke structure K = (M,S, ∗, ρ) such that ∗(i) = t
and thus vals(∗i)(s) = t′ with t′ ≈∗ t and thus t′ ≈Dep t and (since ≈Dep is an equivalence relation)
s ≈Dep t′. This entails that t |= α and for s1 := ρ(p)(s) and t1 := ρ(p)(t′) also equations (9.11) and (9.12)
hold.

114

9.2 Assignable, Depends and Captures Clauses

In addition we define

s1 |= P [M] (9.15)
t1 2 P [M] (9.16)

which is admissible according to the semantics of location dependent symbols (see Definition
2.23) since either

1. vals(Mod) 6= valt(Mod): Thus valρ(p)(s)(Mod@pre) 6= valρ(p)(t)(Mod@pre) which entails
s1 6≈′

Mod@pre t1 and due to Lemma 2.21 s1 6≈Mod@pre
ext

t1 and therefore also s1 6≈M t1.
Therefore, we can legally pick the interpretations s1 and t1 as done in equations (9.15)
and (9.16).

2. or vals(Mod) = valt(Mod): Therefore, vals1(Mod@pre) = valt1(Mod@pre) and conse-
quently vals1(M) = valt1(M). From equation (9.11) and Mod being a correct assignable
clause we get

(f, (a1, . . . , an)) ∈ {valt(Mod), result, exc}

and also (f, (a1, . . . , an)) ∈ {valt(Mod@pre), result, exc}. Together with equation (9.12)
and Lemma 2.21 this entails

s1 6≈M t1

Since there are no restrictions on the interpretation of P [M] in states s1 and t1 with
s1 6≈M t1, the interpretations s1, t1 as constrained in equations (9.15) and (9.16) are
again admissible.

This entails that for s the following holds:

s |= α ∧ {∗i}α ∧
∧

ld:ld∈Dep

ξi(ld) ∧ {D@pre(Mod)}[p]P [M] (9.17)

s 2 {∗i}{D@pre(Mod)}〈p〉P [M] (9.18)

and thus
s 2 RespectsDep(op, ct)

�

Remark 9.9 (Incompleteness of RespectsDep) The presented proof obligation for the de-
pends clause is again not complete. This means that correctness of Dep (and Mod) does not
entail validity of RespectsDep(op, ct).

The problem arises when Mod is underspecified (i.e., overapproximated). This is illustrated
by the following example: Let op be a void method with an empty body, Dep := ∅, Mod := ∗
and α := true. Then RespectsDep(op, ct) is logically equivalent to:

P [∗, exc] → {∗i}P [∗, exc]

which is obviously not valid.

115

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

For obtaining a sound and complete proof obligation we need to cope with underspecified
assignable clauses. One solution could be to check for every location in the assignable clause
if it was actually changed compared to its pre-state s and then to require only for those
locations that their interpretation is the same in the post-states s′ and t′ (with s,s′ and t′ as
defined above). A PO reflecting this considerations could be:

RespectsDep∗(op, ct) := α′ → {U1}〈p〉 {U2}〈p〉φ(Mod@pre′2 ,Mod@pre3 ,Mod@pre′3) (9.19)

with

• α′ := α ∧ {∗i}α ∧
∧

ld:ld∈Dep

ξi(ld) and α and ξi(ld) as defined above.

• ct := (Pre, Post,Mod,Dep, Cap)

• {U1} := {D@pre1(Mod)}

• {U2} :=

D@pre′2(Mod@pre1)||
exc′ := exc||
result′ := result

 {∗i}
{
D@pre3(Mod)||
D@pre′3(Mod)

}

• exc′ and result′ (in case op is not void) are fresh virtual location function symbols

and

φ(Mod@pre′2 ,Mod@pre3 ,Mod@pre′3) := result′
.
= result ∧ exc′ .= exc∧∧

m:m∈Mod@pre3

(∀x̄m; (ϕ@pre3
m →

(
fm(t̄@pre3

m)
.
= f@pre3

m (t̄@pre3
m)∨

fm(t̄@pre3
m)

.
= f@pre2

m (t̄@pre3
m)

)
))

(9.20)

where m := (for x̄m; if(ϕ@pre3
m) fm(t̄@pre3

m)). To understand what RespectsDep∗(p, ct) states
we walk through it step by step (and from left to right):

• We only consider initial states that satisfy the assumptions α′ (indicated by the impli-
cation α′ → . . .), for all other states RespectsDep∗(p, ct) is trivially true. This means
in particular that s |= RespectsDep∗(p, ct) holds trivially for all states s with s 6≈Dep t
for all t with t ≈∗ ∗(i) (due to the subformula

∧
ld:ld∈Dep

ξi(ld) in conjunction α′).

• The locations Mod denotes in this state are memorized by {D@pre1(Mod)}.

• In the state reached after the execution of p the values of the locations in Mod@pre1 are
memorized by {D@pre′2(Mod@pre1)}. We need this information later to check whether
the locations changed by p are always changed in the same way. Also the values of the
program variables result and exc are memorized.

• Afterwards the entire heap is anonymised by update {∗i}.

• Again we memorize the locations in Mod as well as the values of these locations in the
current state by the update {D@pre3(Mod)||D@pre′3(Mod)}.

116

9.2 Assignable, Depends and Captures Clauses

• In the state reached after the (second) execution of p we compare each location contained
in Mod@pre3 with its pre-state (the state before the second execution of p) value. If its
value changed it must be the same as in the state after the first execution of p (which
was memorized by {D@pre′2(Mod@pre1)}). It is also determined whether the returned
result (in case of a non-void method) and the possibly thrown exception are identical.

This is expressed by the formula φ(Mod@pre′2 ,Mod@pre3 ,Mod@pre′3).

Theorem 7 (Soundness and Completeness of RespectsDep∗) Let

ct = (Pre, Post,Mod,Dep, Cap)

be a contract for op and Mod a correct assignable clause under the precondition

α := ConjInvRealtime ∧ Pre ∧ V alidCallSCJ
op

The formula RespectsDep∗(op, ct) is valid if and only if Dep is a correct depends clause under
the precondition α .

Proof 3 (Soundness and Completeness of RespectsDep∗(op, ct)) The soundness proof
is performed in parts analogously to the proof of Theorem 6. For proving completeness we
show that invalidity of RespectsDep∗(op, ct) implies incorrectness of Dep with respect to op.

As in Proof 2, we again assume incorrectness of Dep and show that this entails invalidity
of formula RespectsDep∗(op, ct).

Let Dep be an incorrect depends clause for op. Then (according to definition 9.2) there are
states s and r with

s |= α (9.21)
r |= α (9.22)

s ≈Dep r (9.23)

and s1 := ρ(p)(s) and r1 := ρ(p)(r) and a heap location (f, (a1, . . . , an)) or f ∈ {result, exc}
(and n = 0) such that

f r1(a1, . . . , an) 6= f r(a1, . . . , an) (9.24)
f r1(a1, . . . , an) 6= f s1(a1, . . . , an) (9.25)

Again we assume wlog. (due to Lemma 9.8) that

vals(∗i)(s) = r (9.26)

This implies
s |=

∧
ld:ld∈Dep

ξi(ld) (9.27)

and together with equations (9.21) and (9.22)

s |= α′ (9.28)

As the modifier set Mod is correct,

(f, (a1, . . . , an)) ∈ {valr(Mod), result, exc} (9.29)

117

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

and thus
(f, (a1, . . . , an)) ∈ {valr1(Mod@pre3), result, exc} (9.30)

Due to equation (9.30), there is a location descriptor ld := (for x̄; if(ϕ) f(t̄)) and a variable
assignment β such that

r1, β |= ϕ@pre3 (9.31)
(f, (a1, . . . , an)) = (f, (valr1,β(t̄@pre3))) (9.32)

then due to equation (9.24)

r1, β 2 f(t̄@pre3)
.
= f@pre3(t̄@pre3) (9.33)

and due to equation (9.25) (since r1(f@pre2) = s1(f))

r1, β 2 f(t̄@pre3)
.
= f@pre2(t̄@pre3) (9.34)

Equations (9.30) through (9.34) imply now

r1 2 φ(Mod@pre′2 ,Mod@pre3 ,Mod@pre′3) (9.35)

and thus (together with (9.28))

s 2 RespectsDep∗(op, ct) (9.36)

Let us now assume RespectsDep∗(p, ct) is invalid. Then there is a Kripke structure K :=
(M,S, ∗, ρ) and states s, s′, s1, r, r1 with s := vals′(U1)(s

′), s1 := ρ(p)(s), r := vals1(U2)(s1)
and r1 := ρ(p)(r) such that

s′ |= α′ (9.37)
r1 2 φ(Mod@pre′2 ,Mod@pre3 ,Mod@pre′3) (9.38)

Equation (9.37) implies
s |= α′ (9.39)

since U1 only assigns to virtual locations on which α′ does not depend. Since s |=
∧

ld:ld∈Dep

ξi(ld)

holds (due to equation (9.39)), we get

s ≈Dep vals(∗i)(s) (9.40)

and consequently (since r ≈∗ vals(∗i)(s))

s ≈Dep r (9.41)

Together with equation (9.38) we conclude from this that there is a

(f, (a1, . . . , an)) ∈ {valr(Mod), result, exc}

such that

f r1(a1, . . . , an) 6= f r(a1, . . . , an) (9.42)
f r1(a1, . . . , an) 6= f s1(a1, . . . , an) (9.43)

Equations (9.42) and (9.43) together indicate that Dep is an incorrect depends clause with
respect to op. �

118

9.2 Assignable, Depends and Captures Clauses

Example 9.10 (RespectsDep and RespectsDep∗) Let us revisit the method m and its spec-
ification shown in Example 9.6. Its JML specification corresponds to the contract

ct := (true, true, ∅, {o, o.a}, ∗)

Thus we get the proof obligations

RespectsDep(m, ct) =
α ∧ {∗i}α ∧ [Prgm()]P [result, exc] ∧ {∗i}o

.
= o ∧ {∗i}o.a

.
= o.a→

{∗i}[Prgm()]P [result, exc]

and

RespectsDep∗(m, ct) =
α ∧ {∗i}α ∧ {∗i}o

.
= o ∧ {∗i}o.a

.
= o.a→

〈Prgm()〉{exc′ := exc||result′ := result}{∗i}〈Prgm()〉result .= result′ ∧ exc .= exc′

Since m is a query, we can also apply PO RespectsDep∗q:

RespectsDep∗q(m, ct) =
∀x, y; (α ∧ {∗i}α ∧ {∗i}o

.
= o ∧ {∗i}o.a

.
= o.a∧

[r = m(o);] r
.
= x ∧ {∗i}[r = m(o);]r

.
= y → x

.
= y)

Captures Clauses

A proof obligation for the captures clause can be developed in a similar manner as for the
depends clause: A captures clause for a method or constructor op is correct if after op’s
execution each reference type location in the assignable clause (assuming the correctness of
the assignable clause) that changed either references a value contained in the captures clause,
is null or newly created. This is formalized by the proof obligation:

RespectsCap(op, ct) := α→ { D@pre′(Mod)||
D@pre′(Cap)

}[p]ψ(Mod@pre,Mod@pre′ , Cap@pre′) (9.44)

where α is defined as above and

ψ(Mod@pre,Mod@pre′ , Cap@pre′) :=

∧
m:m∈Mod@pre

ET (m) is ref. type

(∀x̄m; (ϕ@pre
m →

fm(t̄@pre

m)
.
= f@pre

m (t̄@pre
m)∨

fm(t̄@pre
m)

.
= null∨

fm(t̄@pre
m).<c>@pre .

= FALSE ∨∨
c:c∈Cap@pre′∧
ET (c),ET (m)

are compatible

∃x̄c; (ϕc ∧ fm(t̄@pre
m)

.
= f@pre

c (t̄@pre
c))

))

(9.45)
where

• m := (for x̄m; if(ϕ@pre
m) fm(t̄@pre

m)) and c := (for x̄c; if(ϕ@pre
c) f@pre

c (t̄@pre
c))

• ET (m) denotes the static type of elements of m, i.e., the static type of fm

• we call two types T1, T2 compatible here if there is a Java type T ∈ Td with T v T1uT2

(that means that two locations of (element) type T1 and T2 can potentially evaluate to
the same value.

119

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

Intuitively the meaning of formula ψ(Mod@pre,Mod@pre′ , Cap@pre′) is that all locations con-
tained in Mod which have a reference type keep either their pre-state value or they hold a
reference mentioned in the captures clause (which is evaluated in the pre-state). Again this
PO requires a correct assignable clause to be sound.
Theorem 8 (Soundness and Completeness of RespectsCap) Let

ct := (Pre, Post,Mod,Dep, Cap)

be a contract for op and Mod a correct assignable clause under the precondition

α := ConjInvRealtime ∧ Pre ∧ V alidCallSCJ
op

The formula RespectsCap(op, ct) is valid if and only if Cap is a correct captures clause under
the precondition α.

Proof 4 (Soundness and Completeness of RespectsCap) We first prove the soundness
of PO RespectsCap by showing that an incorrect captures clause Cap for an operation op
also entails invalidity of formula RespectsCap(op, ct) with ct := (Pre, Post,Mod,Dep, Cap)
and then the completeness by showing that conversely invalidity of RespectsCap(op, ct) entails
incorrectness of Cap with respect to op.

Let us assume Cap is an incorrect captures clause. Then there are state s and r such that
s |= α and r′ := ρ(p)(s) with

f r′(a1, . . . , an) 6= f s(a1, . . . , an) (9.46)
f r′(a1, . . . , an) 6= val(null) (9.47)

f r′(a1, . . . , an).<c>s 6= val(FALSE) (9.48)
f r′(a1, . . . , an) 6= gs(b1, . . . , bm) f.a. (g, (b1, . . . , bm)) ∈ vals(Cap) (9.49)

since the update U := D@pre(Mod)||D@pre′(Mod)||D@pre′(Cap) only assigns to virtual loca-
tions and thus does not affect the heap equations (9.46) through (9.49) still hold if we substitute
r := ρ(p)(vals(U)(s)) for r′.

From equation (9.46) and Mod being a correct assignable clause we deduce that

(f, (a1, . . . , an)) ∈ vals(Mod) (9.50)

and thus that there is a ld ∈ Mod with ld := (for x̄; if(ϕ) f(t̄)) and a variable assignment β
such that

s, β |= ϕ (9.51)
(f, (a1, . . . , an)) = (f, (vals,β(t1), . . . , vals,β(tn))) (9.52)

Consequently (since r(f@pre) = s(f) and valr,β(t̄@pre) = vals,β(t̄)):

r, β
9.51

|= ϕ@pre (9.53)

valr,β(f(t̄@pre)) = f r(a1, . . . , an)
(9.46)

6= f s(a1, . . . , an) = valr,β(f@pre(t̄@pre)) (9.54)

valr,β(f(t̄@pre)) = f r(a1, . . . , an)
(9.47)

6= val(null) (9.55)

valr,β(f(t̄@pre).<c>@pre) = f r(a1, . . . , an).<c>s
(9.48)

6= val(FALSE) (9.56)

r, β
(9.49)

2
∨

c:c∈Cap@pre′∧
ET (c),ET (m)

are compatible

∃x̄c; (ϕc ∧ f(t̄@pre)
.
= f@pre

c (t̄@pre
c)) (9.57)

120

9.2 Assignable, Depends and Captures Clauses

Therefore,
r 2 ψ(Mod@pre,Mod@pre′ , Cap@pre′) (9.58)

and together with the assumption s |= α we get

s 2 RespectsCap(op, ct) (9.59)

Let us now assume RespectsCap(op, ct) is invalid. Then there is a Kripke structure K :=
(M,S, ∗, ρ) and states s′ and r := ρ(p)(vals′(U)(s′)) with

U := D@pre(Mod)||D@pre′(Mod)||D@pre′(Cap)

and s′, r ∈ S such that

s′ |= α (9.60)
t 2 ψ(Mod@pre,Mod@pre′ , Cap@pre′) (9.61)

We define s := vals′(U)(s′). Then r := ρ(p)(s) and due to equation (9.60) and U only updating
virtual locations:

s |= α (9.62)
vals(Cap) = vals′(Cap) (9.63)
vals(Mod) = vals′(Mod) (9.64)

Together with equation 9.61 this implies that there is a (f, (a1, . . . , an)) ∈ vals(Mod) such
that

f r(a1, . . . , an) 6= f s(a1, . . . , an) (9.65)
f r(a1, . . . , an) 6= val(null) (9.66)

f r(a1, . . . , an).<c>s = val(TRUE) (9.67)
f r(a1, . . . , an) = gs(b1, . . . , bm) f.a. (g, (b1, . . . , bm)) ∈ vals(Cap) (9.68)

Equations (9.65) through (9.68) indicate that Cap is an incorrect captures clause according
to definition 9.2. �

Example 9.11 (RespectsCap for a setter method) Let us consider the following JML-
specified method implemented in a class C:

JAVA + JML
/*@ public normal_behavior
@ assignable this.attr;
@ depends this, a;
@ captures a;
@*/

public void setAttr(Object a){
this.attr = a;

}

JAVA + JML

121

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

The JML method spec is equivalent to the contract

ct := (true, true, {self.attr}, {self, a}, {a})

Thus the proof obligation RespectsCap(setAttr, ct) is given by:

α→

self@pre := self ||
for C x; if(true) attr@pre(x) := x.attr||
a@pre := a

 [PrgsetAttr()]ψsetAttr

where

ψsetAttr :=

self@pre.attr
.
= attr@pre(self@pre)∨

self@pre.attr
.
= null∨

self@pre.attr.<c>@pre .
= FALSE ∨

self@pre.attr
.
= a@pre

and α is defined as before.

9.3 Alternative Approach
The Java DL semantics for assignable and depends clauses, though sensible for the verification
of sequential programs, is to liberal for proving non-interference. Even a method with an
empty assignable clause is allowed to temporarily modify data which can cause interference.
This can be illustrated by method doNothing in Section 9.2. Let us assumed doNothing is
concurrently executed by two threads: If the execution of both threads is interlaced like this

JAVA + JML
int i = o.a++; //executed by Thread 1
int i = o.a++; //executed by Thread 2
o.a = i; //executed by Thread 1
o.a = i; //executed by Thread 2

JAVA + JML

the field o.a has been increased by 1 after doNothing was executed by the two threads
despite its empty assignable and depends clause.

This example illustrates that for deciding whether the execution of a method can cause
interference with other threads assignable and depends clauses as interpreted in Java DL are
not sufficient. Before tackling this issue we have to clarify what the interesting properties
(with respect to the ensuring of non-interference) of a program are. As pointed out in Lemma
9.1, a method m can show no interference (neither actively by modifying data other threads
read, or passively be reading data that is concurrently modified by another thread) if no
location read or written by m, if executed by a thread different from the initial one, resides in
immortal or mission memory6.

Forbidding read access to data in immortal/mission memory is a strong restriction. Non-
interference is ensured as well in KeYSCJ* if no locations in immortal or mission memory

6This should not be confused with where the value a location refers to is allocated. The memory area of a
location o.a, for instance, denotes the memory area in which o resides since the field a (containing either
a reference or a primitive value) is part of o, not the memory area of the object referenced by a (in case a
has a reference type).

122

9.3 Alternative Approach

are modified by any thread, except the initial one, so this might be the second “interesting”
property to check on the method level.

After we have identified what to verify (namely that no write access to immortal or mission
memory occurs) the question is how to verify it: Writing proof obligations in the manner
shown in Section 9.2.1 making statements about the state change performed by a program
won’t succeed since we must also account for intermediate, temporary changes. An alternative
could be to extend the calculus in a way to reflect additional constraints on the KeYSCJ*
profile in dependence of the property we aim to verify. Technically this can be realized in the
KeY systems be means of alternative rule sets7.

We discuss briefly the extensions needed to ensure the following property to which we will
refer to as the WriteRestricted KeYSCJ* criterion:

For any write access to a location l executed by a thread t, l must either reside in
a scope s with:

t.getMemoryArea().stack � s.stack

or l must be an instance field of t.getMemoryArea() (we need to make this ex-
ception to permit a thread to enter its initial scope, and thus modify some of its
attributes, when it starts executing).

The currently executing RealtimeThread can be obtained by the RTSJ API method:
RealtimeThread.currentRealtimeThread()

The required changes to ensure this property solely affect the calculus rules executing
assignments to attributes and array slots. Concretely this means that for each assignment to
a (reference as well as primitive type) field o.a we have to ensure that:

RealtimeThread.currentRealtimeThread().getMemoryArea().stack � o.<ma> .stack∨
RealtimeThread.currentRealtimeThread().getMemoryArea()

.
= o

This leads to the rule pAttrWrite′ for assignments to primitive type attributes:

pAttrWrite′

Γ ⇒ {U}(ct.gma().stack � o.<ma> .stack∨ct.gma() .
= o), ∆

Γ, {U}(ct.gma().stack � o.<ma> .stack∨ct.gma() .
= o) ⇒ {U}{o.a := v}〈p〉ϕ, ∆

Γ ⇒ {U}〈o.a=v; p〉ϕ, ∆

and to the rule rAttrWrite′ for assignments to reference type attributes:

rAttrWrite′

Γ, {U}(o 6 .= null ∧ ψ) ⇒ {U}(ct.gma().stack � o.<ma> .stack∨ct.gma() .
= o), ∆

Γ, {U}(o 6 .= null ∧ ψ ∧ (ct.gma().stack � o.<ma> .stack∨ct.gma() .
= o)) ⇒

{U}{o.a := v}〈p〉ϕ, ∆
Γ, {U}o .

= null⇒ {U}〈NPE; p〉ϕ, ∆
Γ, {U}(o 6 .= null ∧ ¬ψ) ⇒ {U}〈IAE; p〉ϕ, ∆

Γ ⇒ {U}〈o.a=v; p〉ϕ, ∆

7KeY already possesses alternatively selectable rule sets reflecting, for instance, different integer semantics
(mathematical (unbounded) semantics and Java (bounded) semantics).

123

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

where ct := RealtimeThread.currentRealtimeThread(), gma() := getMemoryArea() and
ψ := v

.
= null∨ v.<ma> .stack � o.<ma> .stack. Write access to array slots can be treated

analogously.
When assigning to a static attribute, we have to ensure that the executing thread resides

in immortal memory. Again this holds for primitive as well as reference type attributes. The
rule sRAttrWrite′ handling assignments to reference type static fields can be defined as:

sRAttrWrite′

Γ, {U}(im(v.<ma> .stack)) ⇒ im(ct.gma().stack), ∆
Γ, {U}((im(v.<ma> .stack) ∨ v .

= null) ∧ im(ct.gma().stack)) ⇒
{U}{sa := v}〈p〉ϕ, ∆

Γ, {U}(¬ im(v.<ma> .stack)v∧ 6 .= null) ⇒ {U}〈IAE; p〉ϕ, ∆

Γ ⇒ {U}〈sa=v; p〉ϕ, ∆

The corresponding rule for primitive type static fields is obtained analogously.

Example 9.12 (doNothing Revisited) Let us again consider the method doNothing pre-
sented in Section 9.2. With regard to the WriteRestricted criterion the original specification
is no longer correct since the operations o.a++ and o.a = i necessitate that

RealtimeThread.currentRealtimeThread().getMemoryArea().stack � o.<ma> .stack

which is checked by rule pAttrWrite′. Thus we have to adapt the original specification accord-
ingly:

JAVA + JML
/*@ requires o!=null &&
@ \outerScope(RealtimeThread.currentRealtimeThread().getMemoryArea(),
@ \memoryArea(o));
@ ...
@*/

public void doNothing(MyObject o){
int i = o.a++;
o.a = i;

}

JAVA + JML

Specifications that are correct with regard to the WriteRestricted criterion for KeYSCJ* are,
however, also correct in its unrestricted semantics which can thus be considered a refinement
of the semantics including the WriteRestricted criterion.

9.3.1 Handling of Threads

Since we ensured that threads complying with the KeYSCJ* profile show no interference,
we may treat them as if executed sequentially. In particular the symbolic execution of the
start() method of a javax.realtime.RealtimeThread is handled like for any “normal”
Java method sequentially. For realizing this approach one technical issue remains: we have
to keep track of the currently executing thread.

This can be solved largely analogously to the handling of the <cma> pointer (see Section
6.2.1) referencing the currently active memory area and it is therefore not discussed in too

124

9.3 Alternative Approach

much detail here. In correspondence to the approach described in Section 6.2.1 we introduce
the pointer <ct> referring to the currently active thread and include a reference to this current
thread in the method-frame statement:

JAVA

method-frame(result->retvar,
source=T,
this=self,
<cma>=mem,
<ct>=thread) : {body}

JAVA

Since except for the method start()@javax.realtime.RealtimeThread (where the re-
ceiver object of the method call starts executing) the executing thread does not change when
a method call occurs, we only have to pay special regard to this method:

expandStart

Γ ⇒ 〈π method-frame(result->lhs,

source=MemoryArea,

this=se
<cma>=cma

<ct>=se) : {body} ω〉φ, ∆

Γ ⇒ 〈π lhs=se.start()@(RealtimeThread);ω〉φ, ∆

where cma denotes the current scope as determined by π. The method body of start() is
given by:

JAVA

getMemoryArea().enter(this);

JAVA

When expanding method body statements of other methods, we just set <ct> to the value
<ct> refers to in the enclosing method frame.

Having defined the <ct> pointer we can now also provide an implementation for the method
RealtimeThread.currentRealtimeThread() which is simply

JAVA

public static RealtimeThread currentRealtimeThread(){
return <ct>;

}

JAVA

The Default Thread

Initially when the value of <ct> is not explicitly determined by a method frame <ct> evaluates
to the program variable defaultThread. This program variable is used in a very similar way
as defaultMemoryArea (see Section 6.2.1) and self . It can be used in method contracts
to specify the thread executing the specified method and (comparable defaultMemoryArea
and self) needs to be instantiated when the contract is applied with the thread <ct> refers
to at the point of application of the contract.

125

9 A Profile for Facilitating Non-Interference Proofs in RTSJ

Restrictions

Asynchronous Event Handler Instances of class javax.realtime.AsyncEventHandler
are, like RealtimeThreads, Schedulable objects. Their execution is not synchronously
started by the application but triggered by an event they are associated with. They are
then either executed by a dedicated thread the event handler is bound to (in case it is a
BoundAsyncEventHandler) or by an arbitrary already existing server thread.

We do not model events that trigger the execution of AsyncEventHandlers at arbitrary
times. This is, however, no major restriction since if it is ensured that AsyncEventHandlers
comply with the KeYSCJ* profile they are known to show no interference with other threads
and can thus safely be executed at arbitrary times.

Example 9.13 When symbolically executing the following method, the run method of the
newly created AsyncEventHandler is not symbolically executed:

JAVA

public void createAsyncEventHandler(Runnable logic){
new AsyncEventHandler(logic);

}

JAVA

Assumptions on the Application The described approach assumes compliance of the re-
garded application with the properties of the KeYSCJ* profile described in Section 9.1.1 but
does not ensure it. Therefore, these properties must be ensured differently, for example by
syntactic checks (which are sufficient for ensuring that getPortal and setPortal are not
used) or by reviews. Writing programs that trustably comply with the KeYSCJ* profile in
an obvious way should, however, be relatively simple.

126

Part III

Modular Verification of WCMU Contracts

127

10 The Necessity for Correct Worst Case
Memory Usage Estimations

Estimating the worst case memory usage (WCMU) of a Java application is essential for
giving performance or safety guarantees. This becomes even more relevant in the context
of real-time and embedded applications where the amount of memory available is inherently
small and software failures caused by memory shortage are not acceptable. In the context of
real-time Java [Bollella and Gosling, 2000] estimating the WCMU is especially relevant with
regard to the concept of scoped memory [Beebee and Rinard, 2001], which allows defining
memory areas of a fixed size (memory scopes) that are not subject to garbage collection.
Since unreferenced objects in scopes are not recycled by the garbage collector, which can
easily give rise to memory leaks, it would be desirable to have a means of verifying that the
heap space allocated by an application does not exceed a certain upper bound, for instance a
given scope size.

Another field of application [Giambiagi and Schneider, 2005] for WCMU analysis tech-
niques are smart cards which usually possess only several KB of RAM memory. This ap-
plication scenario is particularly relevant for this work since the KeY tool which has been
used for a prototypical implementation of the presented technique is targeted on the verifica-
tion of programs written in Java Card, a Java dialect for smart cards.

Even though the usefulness and necessity for a methodology for ensuring WCMU constraints
is evident [Jacobs et al., 2007], only few theoretical works [Krone et al., 2001, Atkey, 2006,
Hayes and Utting, 2001, Hunt et al., 2006, Barthe et al., 2005] in this area exist. In practice,
due to the lack of static analysis tools in this field, WCMU is often validated experimentally
(by measuring the memory usage during runtime). However, this can, like testing in general,
give no guarantees on the correctness of the tested WCMU estimations.

In the following we elaborate on the specification and verification of WCMU constraints.
Existing WCMU specification means in JML are described and their shortcomings are pointed
out. We propose extensions to JML facilitating modularity of the specification and add
to overcoming the identified shortcomings. We then show how the extension we made are
reflected in Java DL and handled in the calculus. Here we put a focus on modular verification
of WCMU contracts and the handling of loops. Finally we sketch how MIB memory models,
in particular the one featured by PERC Pico, affect the presented approach.

129

11 JML Memory Performance
Specifications

11.1 Existing JML Specifications and their Shortcomings
Besides a variety of constructs aiming at the description of the functional behavior of Java
programs, JML provides means for specifying performance properties such as worst case
execution time and heap memory consumption. The worst case heap memory allocation of a
method under a certain precondition PRE is specified as part of a JML method specification
using the working_space clause:

JAVA + JML
/*@ public normal_behavior
@ requires PRE;
@ ...
@ working_space S;
@*/
public void foo(){...

JAVA + JML

S is a JML expression of type long that defines an upper bound on the size of heap space
allocated by foo() when invoked in a state satisfying PRE. S is evaluated in the post-state
of foo() and allows (like other JML clauses evaluated in the post-state) access to the pre-
state by JML’s \old construct. As already identified in [Atkey, 2006], this restriction to two
program states can be seen as a severe shortcoming of JML’s memory consumption specs, on
which this work will elaborate in the following.

The JML reference manual [Leavens et al., 2007] does not state clearly if and how garbage
collection (GC) is taken into account by a working_space clause. One could think of different
approaches here:

1. The effect of GC is ignored. Thus every object allocation performed by the method con-
tributes to its memory usage and has to be taken into account by the working_space
clause irrespective of the lifetime of the object. The working_space clause conse-
quently specifies the worst case amount of heap space additionally (compared to the
pre-state) consumed in the post-state of the regarded method.

2. The effect of GC is taken into account and the working_space clause specifies

a) the additional amount of memory still consumed (an not reclaimable by GC) in
the worst case in the post-state of the regarded method or

b) the worst case amount of memory additionally consumed (and not reclaimable by
GC) in any program state during execution of the regarded method.

131

11 JML Memory Performance Specifications

As our focus is on RTSJ, SCJ and Java Card applications, which are not subject to garbage
collection anyway, we adopt the first approach here.

The space allocated to an object o (only to the object o itself not including objects refer-
enced by o’s attributes) can be obtained by \space(o).
The JML function \working_space (not to be confused with the clause working_space
used above) describes

the maximum specified amount of heap space, in bytes, used by the method call or
explicit constructor invocation expression that is its argument. (JML Reference
Manual [Leavens et al., 2007])

Example 11.1 The amount of memory allocated by m according to its JML specification
shown below can be referred to in other JML specifications by means of the \working_space
function.

JAVA + JML
public myClass{ ...

/*@ public normal_behavior
@ requires a>0;
@ working_space 0;
@ also public normal_behavior
@ requires a<=0;
@ working_space 8;
@*/

public static Object m(int a){ ...

JAVA + JML

The expression \working_space(myClass.m(3)), for instance, could be replaced by 0 since
there is only one specification case, namely the first one in the above code, whose precondition
(a>0) is true if m is called with the argument 3.

Considering, however, the following piece of code:

JAVA + JML
/*@ public normal_behavior
@ ...
@ ensures \result!=0;
@ working_space
@ \working_space(myClass.m(\result));
@*/

public int m2(){...}

JAVA + JML

both preconditions(a>0 and a<=0) can hold in the state the expression

JAVA + JML
\working_space(myClass.m(\result))

JAVA + JML

132

11.1 Existing JML Specifications and their Shortcomings

is evaluated in as we only know that \result!=0 holds in this state. Thus, all we can assume
without additional information is that this expression is smaller or equal to the maximum of
the specified working space clauses of both specification cases, which is 8.

As example (11.1) illustrated, an expression \working_space(m()) used in the working
space clause of a specification case of a method m2 denotes the worst case memory consumption
of m as derivable from those of m’s specification cases, whose precondition can potentially be
true in the state \working_space(m()) is evaluated in (either the pre or post-state of m2, de-
pending on whether the expression \working_space(m()) occurs inside an \old expression
or not). This means, in other words, we need to consider all specification cases of m possessing
a precondition which is not contradictory to the precondition (if \working_space(m()) is
evaluated in the pre-state of m2) of the specification case \working_space(m()) occurs in or
to its post condition (if \working_space(m()) is evaluated in the post-state) respectively.

One could argue that a more fine grained \working_space function permitting to refer to
the working space of a single specification case, would be desirable to be able to write more
precise working space specifications.

Besides the fact that these restrictions (the lack of granularity and the restriction to the
pre- and post-state of the specified method) can be considered inconvenient, they could easily
give rise to specification bugs as the following example shows:

JAVA + JML
public static SomeClass _instance;

/*@ public normal_behavior
@ working_space 0;
@ assignable _instance;
@ ensures _instance==null;
@*/

public static SomeClass clear(){
SomeClass old = _instance;
_instance = null;
return old;

}

/*@ public normal_behavior
@ requires _instance==null;
@ assignable _instance;
@ working_space \space(new SomeClass());
@ also public normal_behavior
@ requires _instance!=null;
@ assignable \nothing;
@ working_space 0;
@*/

public static SomeClass getInstance(){
if(_instance==null) _instance = new SomeClass();
return _instance;

}

133

11 JML Memory Performance Specifications

/*@ requires _instance!=null;
@ working_space \working_space(clear()) +
@ \working_space(getInstance());
@*/

public SomeClass freshInstance(){
clear();
return getInstance();

}

JAVA + JML

The above specification of freshInstance() is incorrect since in the state getInstance()
is called

_instance .
= null

holds while in the post-state in which we evaluate \working_space(getInstance())

_instance 6 .= null

holds leading to a specified working space of 0 (instead of \space(new SomeClass())) for
this case. Writing \old(\working_space(getInstance())) does not help either since in
the pre-state _instance is also required not to be null. This example illustrates that

• it is not possible with the JML semantics as it is to specify the working space of method
freshInstance() relative to the working space of getInstance() and clear() since
one does not have access to the state in which getInstance() is called in the code
and

• that the semantics of the \working_space expression makes JML vulnerable to spec-
ification bugs since the programmer could be tempted to use method calls occurring in
the specified method’s body by just copying and pasting them into the working_space
clause as has happened in the above specification.

11.2 Enhanced JML Heap Memory Specifications

This work proposes an extension and modification of the JML construct \working_space
addressing both drawbacks of the current concept: the restriction to the pre- and post-state of
the specified method and the lack of granularity. To distinguish the present JML specification
from our proposal we will refer to the latter as the KeYJML spec.

The syntax and semantics of KeYJML memory specifications differs in certain respects from
the original JML specification. Concretely these differences concern

• the applied integer semantics

• the state in which working space clauses are interpreted

• a modification of the \working_space function and

• an extension of JML’s loop specifications.

134

11.2 Enhanced JML Heap Memory Specifications

11.2.1 The Applied Integer Semantics

Since KeY supports mathematical (unbounded) integers, \space and \working_space ex-
pressions as well as the expressions contained in working_space clauses do not have the
Java type long but are treated by KeY as mathematical integers. This makes verification
tasks a bit easier since modulo arithmetics is no longer required for evaluating working space
clauses themselves1 and prevents subtle (specification) bugs that can arise if integer overflows
are not taken into account.

11.2.2 Interpretation of Working Space Clauses in the Pre-State

In contrast to JML, working_space clauses in KeYJML are interpreted in the pre-state. This
is motivated by the rationale that in scenarios in which performance and especially memory
consumption specifications are of interest, namely for real-time and embedded systems with a
possibly very limited amount of physical memory or scoped memory in a certain scope (as in
RTSJ), it is desirable to estimate the memory allocation of a method based on the information
available at the point it is called (i.e., its pre-state). However, the approach presented in this
paper does not depend on this decision and keeping JML’s original semantics would only
require minor modifications in some of the calculus rules shown in Section 13.

11.2.3 Rigid Working Space Functions with Explicit Preconditions

The \working_space function undergoes the most distinct changes syntactically and seman-
tically compared to the original JML definition. Beside supporting the original JML working
space function KeYJML incorporates a new working space function that is written as

JML
\working_space(m, pre)

JML

where m is a method signature and pre is a boolean expression. \working_space(m, pre)
then denotes the maximum of the specified amount of heap space consumed by m if invoked in
a state satisfying pre. This means that we have to take the maximum over all working space
clauses having a precondition which is not contradictory to pre. If pre is chosen carefully this
is only the case for exactly one contract. The second argument pre can be thought of as quoted
meaning it is not evaluated in the state the containing expression \working_space(m, pre)
occurs in, thus, making the entire expression \working_space(m, pre) not state dependent
(i.e., rigid). The expression

JML
\working_space(SomeClass.m(int a1, int a2), a1<a2)

JML

for instance denotes the maximum amount of heap space method SomeClass.m can consume
according to its specification if invoked in a state in which the first of m’s arguments is smaller
than the second one (a1<a2). This alternative suggestion of defining the \working_space
function helps to overcome the drawbacks described in Section 11.1 since

1Of course we still need modulo arithmetics for reasoning over programs containing arithmetic operations
on integers.

135

11 JML Memory Performance Specifications

• by making the pre-state (of the method) and thus the relevant specifications explicitly
selectable, it supports a finer level of granularity than the original JML variant of the
\working_space function and

• reduces the risk of “copy and paste” related specification bugs as demonstrated in
Section 11.1.

The working space of freshInstance we were unable to specify conveniently with standard
JML in the preceding example can be expressed as

JML
\working_space(clear()) +
\working_space(getInstance(), _instance==null)

JML

11.2.4 Loop Working Space Specifications

Since JML lacks features for specifying the memory consumption of loops, we propose a
working space clause applicable to loops which specifies the maximum amount of heap memory
allocated by any single loop iteration not terminating with an exception or by a break
statement. We denote this clause wssi (shorthand for working space single iteration) in
the following to distinguish it from method level working space clauses. The wssi clause is
evaluated in the state before the first iteration of the loop. Its value in this state is therefore
required to be an upper bound for the WCMU of any subsequent loop iteration terminating
normally.

An upper bound of the accumulated amount of memory consumed by the loop in all its
normally terminating iterations is then given by dec ∗ w, where dec and w are the pre-state
values of the expressions specified by the decreasing and the wssi clause. The decreasing
clause specifies a value that is (i) strictly decreasing in every iteration of the loop and (ii)
always greater 0. Thus dec constitutes an upper bound for the number of loop iterations.
The specification of initArr shown below illustrates the usage of the wssi clause which is,
as method-level working space clauses, preceded by the working_space keyword:

JAVA + JML
/*@ public behavior
@ requires a!=null;
@ working_space s1 > s2 ? s1 : s2;
@*/
public void initArr(Object[] a){

int i=0;
/*@ loop_invariant i>=0;
@ assignable a[*], i;
@ decreasing a.length-i;
@ working_space \space(new Object());
@*/

while(i<a.length){
a[i++] = new Object();

}

136

11.2 Enhanced JML Heap Memory Specifications

}

JAVA + JML

where s1 is an abbreviation for

JML
\working_space(new ArrayStoreException(), true)+\space(new Object())

JML

and s2 for

JML
a.length*\space(new Object())

JML

In each normally terminating iteration of the above while loop an object of type Object

is created. Thus, \space(new Object()) is a correct wssi clause. In case the run-
time type of a is a strict subtype of Object[], an ArrayStoreException is raised and
the memory consumption of the loop body would be the working space of the constructor
call new ArrayStoreException() which includes the space occupied by the newly created
ArrayStoreException itself. Since, if this happens, the loop body does not terminate nor-
mally, this case needs not be taken into account according to our definition of the semantics
of wssi. However, it has to be taken into account when specifying initArr’s working space.
This example also clarifies the rationale behind defining the wssi clause only for normally
terminating iterations of the loop: The working space of new ArrayStoreException()

(several hundreds of bytes, depending on the created stack trace) is significantly larger then
the space occupied by a newly created object of type Object (8 bytes for the JVM charac-
teristics we exemplarily consider here). If w were also required to be an upper bound for the
heap space consumed by an abruptly terminating iteration the value dec ∗ w would be of no
real significance for the worst case memory consumption estimation of the loop, since:

• If the loop raises no exception w is by an order of magnitudes larger then the space
actually consumed by each iteration (\space(new Object())) which also applies to
the worst case estimation dec ∗ w for the memory consumption of the entire loop.

• If the loop raises an exception, it is only executed once and our worst case estimation
dec ∗ w would be wrong by factor dec.

By restricting wssi the way it is done we get a precise worst case estimation for the first of the
above two cases. This information can also be used by the Java DL calculus for determining
a correct upper bound for the memory consumption of a loop terminating abruptly in an
arbitrary iterationas shown in Section 13 .

Dependent wssi Clauses

In method initArr the value (\space(new Object())) specified by the wssi clause exactly
matches the (constant) memory consumption of each normally terminating loop iteration. In
cases the memory consumption of a loop is not constant but varies significantly over different
iterations the presented approach could, however, lead to imprecise WCMU estimations. This
can be exemplified by the following piece of code:

137

11 JML Memory Performance Specifications

JAVA + JML
/*@ public behavior
@ requires a!=null && typeof(a)==Object[];
@ working_space (\sum int i; 0<=i && i<a.length && a[i]==null;
@ \space(new Object()));
@*/
public void completeArr(Object[] a){

int i=0;
/*@ loop_invariant i>=0;
@ assignable a[*], i;
@ decreasing a.length-i;
@ working_space \space(new Object());
@*/

while(i<a.length){
if(a[i]==null) a[i] = new Object();
i++;

}
}

JAVA + JML

The above method level working space clause is obviously correct. However, we cannot deduce
its correctness from the WCMU estimation we obtain for the loop which is

JML
\space(new Object())*a.length

JML

based on the wssi and the decreasing clause since it is a to rough overapproximation of
the loop’s actual memory consumption which matches the WCMU WS of completeArray
as specified by its method-level working space clause2:∑

i:i∈{0,...,a.length−1}∧
\old(a[i])=null

\space(new Object())

We can overcome this shortcoming by using a loop-level working space clause that can
vary over different loop iterations. For the above loop the memory consumption of a single
iteration is:

w(i) :=

{
\space(new Object()) iff. \old(a[i]) = null
0 iff. \old(a[i]) 6= null

The memory consumption of the entire loop could then be determined by

a.length−1∑
i=0

w(i)

2To avoid too much notational overhead mathematical and JML notations are sometimes mixed in this
motivating example. A formal semantics of the dependent wssi clause is given by rule loopInvTotalVarWS
in Section 13.2.

138

11.2 Enhanced JML Heap Memory Specifications

which matches WS. This illustrates that we could achieve improved preciseness by a loop
level working space that is variable over different loop iterations.

The above considerations lead us to the definition of a loop-level working space clause
specifying the memory consumption of the ith iteration of the loop:

JML
working_space(i) w;

JML

where

• i is a variable of type long bound in w.

• w may not depend on any locations contained in the loops assignable clause.

This variable wssi (we call it vwssi in the following) clause specifies the WCMU of the ith

iteration of the loop. At the beginning of an arbitrary iteration the maximum amount of
memory consumed so far is then given by:

dec0−deci−1∑
i=0

w

where deci stands for the value of the loop variant (specified by the decreasing clause) before
the (i+1)th iteration of the loop.

The WCMU of the loop occurring in method completeArray could, for instance, be spec-
ified by the clause

JML
working_space(i) \old(a[i])==null ? \space(new Object()) : 0;

JML

which precisely reflects the WCMU of the (i+1)th iteration of the loop.

11.2.5 Assumptions on the Java Virtual Machine

The approach presented in this work is independent of characteristics, such as the memory
overhead needed to store an object and alignment issues, of the Java Virtual Machine (JVM)
the regarded code runs on. Nevertheless for determining the concrete memory consumption
of an application on a specific target platform we need to know certain characteristics of the
target platform (in the calculus presented in Section 13 we therefore distinguish platform
independent rules and platform specific rules). For the calculus rules and examples presented
in the following we will assume the JVM characteristics of the Sun J2SE 1.4.2 32bit Client VM
running on the Linux operating system. This entails that we can provide concrete values for
the space occupied by objects and arrays (see Section 13), in case their dimension is known.

In particular the JVM characteristics we assume are:

• The space ase,l required for a one-dimensional array of length l with each of its entries
occupying e bytes is:

ase,l = min{a|a ≥ 12 + e ∗ l ∧ a mod 8 ≡ 0}

139

11 JML Memory Performance Specifications

• The space spaceT in bytes occupied by an object of type T is:

spaceT := min{a|a ≥ 8 + s ∧ a mod 8 ≡ 0}

where s is the space occupied by the fields of the object.

11.2.6 Mapping JML Expressions to Java DL

For making JML expressions utilizable within KeY, it is necessary to compile them to Java
DL.

As before, TDL
JML denotes the mapping from JML expressions to Java DL terms and for-

mulas. For the JML functions \working_space and \space we define TDL
JML as:

• TDL
JML(\working_space(C.m(T1 p1,...,Tn pn), pre)) := wsr

C.m(p̄),pre,
where p̄ := T1 p1, . . . , Tn pn and wsr

C.m(p̄),pre (with pi := TDL
JML(pi) and Ti := TDL

JML(Ti))
is a rigid term. This means in particular that pre can be thought of as quoted since it
is not evaluated in the state wsr

C.m(ā),pre occurs in.

• TDL
JML(\working_space(self.m(T1 p1,...,Tn pn), pre)) := wsr

self.m(p̄),pre

• TDL
JML(\working_space(C.m(a1,...,an))) := {U}wsnr

C.m[Dep](p̄),
where

– Dep denotes m’s depends clause.

– p̄ := p1, . . . , pn are the parameters of m used in its declaration (and thus also its
contract).

– wsnr
C.m is a location dependent function symbol.

– The update {U} := {p1 := a1|| . . . ||pn := an} “binds” the formal parameters p̄ to
the actual arguments ā (with ai := TDL

JML(ai)).

• TDL
JML(\working_space(o.m(a1,...,an))) := {U}wsnr

m [Dep](p̄)
with p̄ := self , p1, . . . , pn and {U} := {self := o||p1 := a1|| . . . ||pn := an}.
In the following when discussing flexible (location dependent) working space terms we
may omit the depends clause Dep in cases it is not explicitly required for our consider-
ations and just write wsnr

m (ā) instead of wsnr
m [Dep](ā).

• TDL
JML(\space(new T())) := i,

with the integer literal i being the amount of heap space an object of type T occupies.

• For representing \space expressions whose arguments have an array type we introduce
a rigid function symbol spacearr, where spacearr(s, l) denotes the space occupied by a
one-dimensional array of length l whose entries (for primitive typed entries) or entry
references (in case of reference typed entries) respectively have size s.

TDL
JML(\space(new T[d1]...[dn][]...[])) :=
spacearr(4, TDL

JML(d1)) + TDL
JML(d1) ∗ TDL

JML(\space(new T[d2]...[dn][]...[]))
TDL

JML(\space(new T[d][]...[])) := spacearr(4, TDL
JML(d))

TDL
JML(\space(new T[d])) := spacearr(s, TDL

JML(d))

140

11.2 Enhanced JML Heap Memory Specifications

where

s :=

1 iff. T ∈ {byte, boolean}
2 iff. T ∈ {short, char}
4 iff. T = int or T is a reference type
8 iff. T = long

Although spacearr is a rigid function, terms having spacearr as top level function symbol
can be non-rigid since the second argument of a spacearr term can be non-rigid.

• TDL
JML(\space(T)) := T.<size>,

where T.<size> is a static implicit field defined for each type T and denoting the
maximum size in bytes of an object of type T (note, that this means that the object’s
exact type can also be a subtype of T). In original JML \space can only be applied to
expressions. Applying it to types is a KeY specific extension.

• TDL
JML(\space(o)) := maxSpace(o),

where o is a JML expression of non-primitive type which is not a constructor call. The
rigid function maxSpace takes as arguments terms of non-primitive type. Intuitively
maxSpace(o) represents the size of o. As long as the exact type of o is unknown, this size
can’t be determined exactly. We know, however, that due to the meaning of T.<size>
described above,

o instanceof T → maxSpace(o) < T.<size>

holds.

An axiomatization of •.<size> and maxSpace(•) is given in Section 13.

• Variable loop level variable working space clauses contain a bound variable which is
translated to a logic variable. Let working_space(i) w; be a variable loop level
working space clause then:

TDL
JML(working_space(i) w) := TDL

JML(w)[i/x]

where x is a integer type logic variable not occurring in TDL
JML(w).

11.2.7 KeYJML Semantics for RTSJ Programs

For RTSJ programs it is more relevant to know the memory consumption in specific scopes
than the overall heap memory consumption in all scopes since memory allocated in a scope
entered by the considered method is (as long as the scope is not used elsewhere) already
reclaimed again before the method terminates.

Therefore, we adapt the semantics of JML WCMU specifications employed in RTSJ pro-
grams in that respect that working_space clauses as well as \working_space expressions
only refer to the memory consumption in the current scope. In the (infrequent) case that a
method, for instance, allocates objects in an outer scope the corresponding memory require-
ments have to be expressed in the pre- and postcondition. This is illustrated by example 11.2.

Example 11.2 (WCMU Specifications of RTSJ Programs) Memory allocation within
scopes local to the specified method is not observable for the caller of the method and needs
thus not to be taken into account by the method specification:

141

11 JML Memory Performance Specifications

JAVA + JML
/*@ working_space \space(new LTMemory()) + \space(new Runnable());
@*/

public void compute(String s, MyInteger result){
ScopedMemory s = new LTMemory(10000);
s.enter(
new Runnable(){
public void run(){
Term t = new Parser().parseTerm(s);
result.i = evalTerm(t);

}
});

}

JAVA + JML

The method add@(MyList) allocates memory in a scope that is not necessarily the current
scope, which is taken into account in its requires and ensures clause:

JAVA + JML
private Runnable resizeRunnable = new Runnable(){

public void run(){ resize();}
};

...

/*@ public normal_behavior
@ requires
@ \memoryArea(this).memoryRemaining()>=\working_space(resize()) &&
@ \inOuterScope(o, this);
@ working_space \memoryArea(o)==\currentMemoryArea ?
@ \working_space(resize()) : 0;
@ ensures \memoryArea(this).consumed==
@ \old(\memoryArea(this).consumed)+\working_space(resize());
@*/

public void add(Object o){
if(tail.next==null){
MemoryArea.getMemoryArea(this).enter(resizeRunnable);

}
tail.element = o;
tail = tail.next;

}

JAVA + JML

As method-level working_space clauses, also loop-level working_space clauses refer only
to the memory consumption within the current scope. Here the same approach as for method
specifications could be taken, i.e., encoding memory consumption in scopes different from the
current scopes in the loop invariant as Example 11.3 illustrates.

142

11.2 Enhanced JML Heap Memory Specifications

Example 11.3 Let us assume the loop depicted in the below code allocates at most c bytes
(where c is a JML expression) in a scope s in each of its iterations. This could be specified
by a loop invariant as follows:

JAVA + JML
l: ...
/*@ loop_invariant i>=0 && s.consumed<=i*\old(c, l)+\old(s.consumed,l);
@ decreasing n-i;
@ ...
@*/

for(int i=0; i<n; i++){ ... }

JAVA + JML

Alternatively, we can parameterize the working space clause with the scope in which the
specified amount of memory is supposed to be allocated. For the loop from Example 11.3 this
results in the following specification:

JAVA + JML
/*@ loop_invariant i>=0;
@ decreasing n-i;
@ working_space[s] c;
@ ...
@*/

for(int i=0; i<n; i++){ ... }

JAVA + JML

This second approach carries several advantages:

• More compact and less redundant3 specifications.

• The usage of labels and the “labeled” \old construct (as depicted in Example 11.3)
is not required. This is especially advantageous in the case of loops with a dependent
working space clause which would require employing the \sum construct when using the
first approach. This could lead to more involved specifications since bound variables (as
the one bound by \sum) are not allowed to occur in the argument expression of \old.

In the following we will not explicitly consider parameterized working space clauses as the
proof obligation and taclets (presented in Sections 12 and 13) can be canonically adapted to
parameterized working space clauses.

3Using the first alternative we need to encode information in the loop invariant that is already entailed by the
variant. For instance, in Example 11.3 the variant already states that i is an upper bound to the number
of already performed loop iterations, yet this information must also be included in the loop invariant.

143

12 Memory Contracts and Proof
Obligations

Since its memory consumption is now considered a relevant aspect of a method’s behavior, we
have to adapt our notion of a method contract (as introduced in Section 2.3.5) accordingly.
A method contract is now a sextuple:

(Pre, Post,Mod,Dep, Cap,WS)

where WS is a Java DL term representing the working space clause. Again we may omit
irrelevant parts of the contract if possible.

In correspondence to the POs shown in Section 2.3.5 we define now a PO, which we call
RespectsWorkingSpace, that is valid if and only if a working space clause specifies a correct
WCMU upper bound for its specification case:

RespectsWorkingSpace(ct;Assumed) :=
ConjAssumed ∧ Prews ∧ ConjInvRealtime ∧ V alidCallSCJ

op →
{cmax := c +WS}〈Prgop()〉 c ≤ cmax

where

• c stands for defaultMemoryArea.consumed@(MemoryArea) (the amount of memory
consumed in the current memory area),

• ConjAssumed is defined as in Section 2.3.5,

• ConjInvRealtime is defined as in Section 7.2,

• cmax is a virtual program variable storing the pre-state value of c +WS.

• we assume that there is at least as much space remaining in defaultMemoryArea as
maximally need if Prgop() complies with its contract. Therefore:

Prews := Pre ∧WS ≤ defaultMemoryArea.memoryRemaining()

This PO can be applied for checking the correctness of working space clauses of RTSJ as well
as Java and Java Card programs. For this purpose the heap of Java and Java Card
programs can be considered to be represented by the memory area defaultMemoryArea.

When employing the memory-consumption-aware rules shown in Section 13, the correctness
and completeness of POs defined so far (in Section 7.2 and 9.2.1) can be preserved by using
the strengthened precondition Prews instead of Pre in these POs.

145

12 Memory Contracts and Proof Obligations

Remark 12.1 (Alternative Proof Obligation) One could argue that it is sufficient to
prove termination of Prgop() since surpassing of the specified memory usage WS would po-
tentially result in an OutOfMemoryError, as Prews only entails

WS ≤ defaultMemoryArea.memoryRemaining(),

to be raised and thus non-termination of Prgop(). This consideration leads to the following
PO:

RespectsWorkingSpace′(ct;Assumed) :=
ConjAssumed ∧ Prews ∧ ConjInvRealtime ∧ V alidCallSCJ

op →
{cmax := c +WS}〈Prgop()〉 true

This PO is, however, also valid for pathological programs catching OutOfMemoryErrors.
This is problematic since it depends on the JVM implementation from which memory scope
the memory for an OutOfMemoryError is allocated which is not reflected in the calculus
(we model OutOfMemoryErrors as pre-allocated). Therefore PO RespectsWorkingSpace
features the post condition c ≤ cmax instead which makes RespectsWorkingSpace invalid
also in case of a program Prgop() surpassing WS and catching the resulting error1.

Remark 12.2 (JML and KeYJML) If we apply the original JML semantics here, mean-
ing that the working space clause is evaluated in the post-state we still have to require that there
is enough space remaining in defaultMemoryArea as maximally needed if Prgop() complies
to its specification, but now the specified WCMU is evaluated in the post-state. Accordingly
we could

• either approximate the post-state value of WS obtained by the given contract and require
that Prews is of the form:

Pre ∧ {∗Mod
i }Post ∧ ({∗Mod

i }WS) ≤ defaultMemoryArea.memoryRemaining()
(12.1)

which would lead to a PO

ConjAssumed ∧ Prews ∧ ConjInvRealtime ∧ V alidCallSCJ
op →

{cold := c}〈Prgop()〉 c ≤ cold + S
(12.2)

• or use the exact value determined by the implementation of op:

∃x;
(
ConjAssumed ∧ Prews ∧ ConjInvRealtime ∧ V alidCallSCJ

op →
{cold := c}〈Prgop()〉 c ≤ cold + S ∧ x .

= S

)
(12.3)

where
Prews := Pre ∧ x ≤ defaultMemoryArea.memoryRemaining()

1 We consider the value of c to be increased by an allocation even if this allocation raises an
OutOfMemoryError. See rule allocate in Section 13.2.

146

13 Calculus

We now turn to calculus rules extending the existing Java DL calculus provided by KeY.
These newly defined rules reflect the semantics of KeYJML and Java DL expressions de-
scribed in Section 11.2 and make Java DL suitable for reasoning with memory performance
aspects of Java programs. We can basically distinguish two different types of rules: Those
that axiomatize the semantics of the new symbols like wsr and those that compute the mem-
ory consumption of a program by symbolic execution.

13.1 Axiomatization of wsr, wsnr, spacearr, maxSpace and
C.<size>

We start with Section 13.1.1 defining the platform independent axioms and corresponding
rules holding for the symbols wsr, wsnr, spacearr, maxSpace and C.<size> before showing
in Section 13.1.2 which rules are necessary two reflect the characteristics of a specific target
platform.

13.1.1 Platform Independent Rules

We know that a method can have no negative memory consumption which is stated by axiom
13.1:

Axiom 13.1 For each symbol wsr
m(ā),ϕ and wsnr

m (ā): wsr
m(ā),ϕ ≥ 0 and wsnr

m (ā) ≥ 0 is valid.

Axiom 13.1 is reflected in the rules wsGEqZeroR and wsGEqZeroNR:

wsGEqZeroR
Γ, wsr

m(ā),ϕ ≥ 0 ⇒ ∆

Γ ⇒ ∆
3 wsr

m(ā),ϕ

wsGEqZeroNR
Γ, {U}wsnr

m (ā) ≥ 0 ⇒ ∆

Γ ⇒ ∆
3 {U}wsnr

m (ā)

where {U} is an arbitrary update. As opposed to rule wsGEqZeroNR, in rule wsGEqZeroR we
do not need to regard the state in which wsr

m(ā),ϕ occurs in the sequent the rule is applied to
since wsr

m(ā),ϕ is rigid.
In Section 11.2 we introduced the implicit fields T.<size> for each type T and the function

symbol maxSpace for specifying the memory consumption of objects with unknown runtime
type. We already sketched a semantics for them which is now formalized by the axioms 13.2
and 13.3 and the corresponding calculus rules sizeInstance and sizeSubtype.

Axiom 13.2 For every term o with o ∈ TermsT and T being a reference type the following
holds:

maxSpace(o) ≤ T.<size>

147

13 Calculus

The corresponding rule sizeInstance is only applicable to sequents containing a term of the
form maxSpace(o):

sizeInstance
Γ, maxSpace(o) ≤ T.<size>⇒ ∆

Γ ⇒ ∆
3 maxSpace(o)

For all types T1, T2 with T1 v T2 (T1 is subtype of T2) each instance of T1 is an instance of
T2. This entails that the maximum size over all objects of type T1 is smaller or equal to the
maximum size over all objects of type T2.

Axiom 13.3 For all types T1, T2 with T1 v T2 T1.<size> ≤ T2.<size> is valid.

This axiom justifies the following rule:

sizeStatic
Γ, T1.<size> ≤ T2.<size>⇒ ∆

Γ ⇒ ∆

Concrete values or upper bounds for the fields T.<size> may be determined by the specifi-
cation, for instance, by a class invariant of the following form:

JML
//@ invariant \space(T)<limit;

JML

The rigid term wsr
m(ā),ϕ denotes the specified WCMU of method invocation m(ā) under the

precondition ϕ. Thus for two working space terms wsr
m(ā),ϕ1

and wsr
m(ā),ϕ2

with ϕ1 → ϕ2 the
maximum amount of heap space consumed by m under the precondition ϕ1 cannot be larger
than under the precondition ϕ2 since the set of states satisfying ϕ1 is a subset of the set of
states satisfying ϕ2:

{s|s |= ϕ1} ⊆ {s|s |= ϕ2}

This manifests itself in the following axiom

Axiom 13.4 Let ϕ1 and ϕ2 be Java DL formulas and m a method then the following holds:

If ϕ1 → ϕ2 is valid then wsr
m(ā),ϕ1

≤ wsr
m(ā),ϕ2

is valid.

This axiom is encoded in the rule wsRigid:

wsRigid

Γ ⇒ {∗i}(ϕ1 → {V}ϕ2), ∆
Γ, wsr

m(ā),ϕ1
≤ wsr

m(b̄),ϕ2
⇒ ∆

Γ ⇒ ∆
3 wsr

m(ā),ϕ1
, wsr

m(b̄),ϕ2

where

• ā := T1 a1, . . . , Tn an and b̄ := T1 b1, . . . , Tn bn

• the update {V} := {b1 := a1|| . . . ||bn := an} updates the method parameters occurring
in ϕ2 with those occurring in ϕ1 and thus ensures that in both formulas the parameters
of m are named identically.

• {∗i} is a fresh (i.e., not yet occurring in Γ, ∆) anonymous update

148

13.1 Axiomatization of wsr, wsnr, spacearr, maxSpace and C.<size>

The reason for applying {∗i} in the first premise is that we need to show that ϕ1 → ϕ2 is
valid and thus holding in every state and not just those constrained by the sequent context
Γ and ∆. The update {∗i} erases, so to speak, the information on the state determined
by the sequent context. In the second premise we can then use wsr

m(ā),ϕ1
≤ wsr

m(ā),ϕ2
as an

assumption (meaning it becomes part of the antecedent).
The relation between a non-rigid working space term and a rigid one can be defined in

similar manner as done by rule wsRigid for two rigid working space terms: If the condition
ϕ holds in a certain state then the value of wsr

m(ā),ϕ is an upper bound for wsnr
m (ā) when

evaluated in this state. This circumstance is formalized by axiom 13.5.

Axiom 13.5 For all Kripke structures K := (M,S, ∗, ρ), all states s ∈ S, all updates U and
all formulas ϕ the following holds:

If t |= ϕ with t := vals(U)(s) then valt(ws
nr
m (ā)) is smaller or equal to vals(wsr

m(ā),ϕ)

We make use of axiom 13.5 in the following rule:

wsNonRigid

Γ ⇒ {U}{V}ϕ, ∆
Γ, {U}wsnr

m (ā) ≤ wsr
m(b̄),ϕ

⇒ ∆

Γ ⇒ ∆
3 {U}wsnr

m (ā), wsr
m(b̄),ϕ

In the first premise we have to show that ϕ holds in the state determined by U and Γ,∆
if the parameters b̄ have the values ā while in the second premise we can then assume that
the memory consumption of m in this state is smaller or equal than wsr

m(ā),ϕ (indicated by
{U}wsnr

m (ā) ≤ wsr
m(ā),ϕ occurring in the antecedent). Again we use an update {V} := {b1 :=

a1|| . . . ||bn := an} to initialise the parameters b̄ of m with the arguments ā determined by
wsnr

m (ā).
With the rules defined so far, it is not yet possible to put a working space term wsr

m(ā),ϕ

in relation to the working spaces specified by any of m’s contracts. However, we know that
if there is a contract C for m whose precondition is logically weaker than ϕ, the semantics of
wsr

m(ā),ϕ entails that wsr
m(ā),ϕ denotes the WCMU WS specified by C as evaluated in some

state satisfying ϕ.

Axiom 13.6 If ϕ→ Pre is valid then s |= wsr
m(ā),ϕ

.
= WS for some state s with s |= ϕ and

vals(ā) = vals(p̄) with p̄ being the placeholders for m’s parameters used in C.

Analogously, axiom 13.7 states that in the case that ϕ is weaker than C’s precondition
every value WS, when evaluated in a state satisfying Pre, is a lower bound for wsr

m(ā),ϕ.

Axiom 13.7 If Pre→ ϕ is valid then s |= WS ≤ wsr
m(ā),ϕ for every state s with s |= Pre.

This results in two calculus rules for the two mentioned cases:

wsContract1

Γ ⇒ {∗i}(ϕ→ {V}Pre), ∆
Γ, {∗j}(ϕ→ wsr

m(ā),ϕ

.
= {V}WS) ⇒ ∆

Γ ⇒ ∆
3 wsr

m(ā),ϕ

wsContract2

Γ ⇒ {∗i}({V}Pre→ ϕ), ∆
Γ, {∗j}(Pre→ WS ≤ wsr

m(ā),ϕ) ⇒ ∆

Γ ⇒ ∆
3 wsr

m(ā),ϕ

149

13 Calculus

Where we use the update {V} := {p1 := a1|| . . . ||pn := an} sets the parameters p1, . . . , pn

used in the regarded method contract to the values of a1, . . . , an. Again, {∗i} and {∗j} are
fresh anonymous updates. The motivation for the anonymous updates {∗i} used in each of
the above rule’s first premises is the same as for rule rigidWS namely that, for instance,
the implication Pre → ϕ (as occurring in rule wsContract2) has to be valid, meaning it is
required to hold in every state not only the ones determined by the context formulas Γ and
∆. Since the working space t is only defined for states meeting Pre, we can only assume
in the second premise of rule wsContract2 that WS ≤ wsr

m,ϕ holds in states also satisfying
Pre. This leads us to the formula {∗}(Pre→ WS ≤ wsr

m,ϕ) which is part of the antecedent
of the second premise of rule wsContract2. The second premise of wsContract1 is motivated
analogously except that we can constrain the set of considered states even further by ϕ (due
to ϕ→ {V}Pre being valid and wsr

m,ϕ denoting the worst case memory consumption in states
satisfying ϕ).

For non-rigid working space terms there is a similar axiom motivated basically by the same
considerations as axiom 13.6 with WS and Pre as defined above:

Axiom 13.8 Let (Pre, . . . ,WS) be a contract for m with p̄ being the placeholders for m’s
parameters (and receiver object if necessary). For all Kripke structures K := (M,S, ∗, ρ), all
states s ∈ S and all formulas ϕ the following holds: If s |= Pre and vals(ā) = vals(p̄) then
vals(ws

nr
m (a1, ..., an)) = vals(WS).

The corresponding rule is given by wsContract3:

wsContract3

Γ ⇒ {U}{V}Pre, ∆
Γ, {U}(wsnr

m (ā)
.
= {V}WS) ⇒ ∆

Γ ⇒ ∆
3 wsnr

m (ā)

We use the update {V} := {p1 := a1|| . . . ||pn := an} to map m’s parameters p1, . . . , pn

occurring in WS and Pre to the concrete arguments ā := a1, ..., an taken from wsnr
m (ā). The

update {U} represents the state in which the term wsnr
m (ā) occurs in the sequent wsContract3

is applied to.

Remark 13.9 (Soundness of Contract Rules) For the rules wsContract1 and wsCon-
tract3 to be sound we have to require that for any pair C1, C2 of specification cases for a
method m the condition φ1 ∧ φ2 → w1 = w2 holds, where φi and wi denote the precondition
and working space of contract Ci. For this condition to be true it is sufficient to require that
different specification cases for the same method have disjoint preconditions.

In case φ1 ∧ φ2 → w1
.
= w2 does not hold, as, for instance, if we set φ1 := φ2 := true and

w1 := 0, w2 := 1, using wsContract3 we could prove that the unsatisfiable (according to the
semantics of wsnr) formula wsnr

m () < 0 holds as these derivation steps illustrate:

∗
⇒ true, wsnr

m () < 0 wsnr
m ()

.
= 0 ⇒ wsr

m() < 0

⇒ wsnr
m () < 0

By applying wsContract3 again to the remaining goal wsnr
m () = 0 ⇒ wsr

m() < 0 using the
second contract for m we get a proof tree with one open goal of the form

wsnr
m ()

.
= 0, wsnr

m ()
.
= 1 ⇒ wsr

m() < 0

150

13.1 Axiomatization of wsr, wsnr, spacearr, maxSpace and C.<size>

which can eventually also be closed:

∗
wsnr

m ()
.
= 0, wsnr

m ()
.
= 1, false⇒ wsr

m() < 0

wsnr
m ()

.
= 0, wsnr

m ()
.
= 1, 0

.
= 1 ⇒ wsr

m() < 0

wsnr
m ()

.
= 0, wsnr

m ()
.
= 1 ⇒ wsr

m() < 0

Remark 13.10 (JML and KeYJML) Applying the original JML semantics for working
space clauses (according to which working space clauses are evaluated in the post-state) leads
to the following working space contract rules:

wsContract1′

Γ ⇒ {∗i}(ϕ→ {V}Pre), ∆
Γ, {∗i}(ϕ ∧ {∗Mod

j }(Post→ wsr
m(ā),ϕ

.
= {V}WS)) ⇒ ∆

Γ ⇒ ∆
3 wsr

m(ā),ϕ

wsContract2′

Γ ⇒ {∗i}({V}Pre→ ϕ), ∆
Γ, {∗i}(Post→ WS ≤ wsr

m(ā),ϕ) ⇒ ∆

Γ ⇒ ∆
3 wsr

m(ā),ϕ

wsContract3′

Γ ⇒ {U}{V}Pre, ∆
Γ, {U}({V ′}Post→ wsnr

m (ā)
.
= {V ′}WS) ⇒ ∆

Γ ⇒ ∆
3 wsnr

m (ā)

Where Pre and Post are the pre and postcondition of the applied method contract, t its
working space and Mod its assignable clause. In addition we define

V ′ := {V ; ∗Mod
i }

with V being defined as above.

13.1.2 Platform Specific Rules

We now consider rules constraining the size of objects and arrays with regard to a certain
platform (the JVM characteristics exemplarily assumed here are described in Section 11.2.5)
or computing the concrete size of an object (array) in case sufficient information is available
for this.

The space (measured in bytes) occupied by an array is a multiple of 8 and the overhead
(the space occupied by an array without being available to store array elements) of an array
is 12 bytes.

Axiom 13.11 For every x, y ∈ N with x ≥ 1 and y ≥ 0:

spacearr(x, y) = min{a|a ≥ 12 + x ∗ y ∧ a ≡ 0 mod 8}

Axiom 13.11 is exploited by two rules: The first one (arraySpaceConcreteDim) computes the
exact value of a term spacearr(e, l) in case the arguments e and l are literals, the second
one (arraySizeLowerUpperBound) determines lower and upper bounds for spacearr(e, l) and is
applicable for arbitrary arguments.

151

13 Calculus

If the length of an array is known (meaning it is a concrete value not only a symbolic
expression) the heap space consumed by this array can be determined:

arraySpaceConcreteDim

Γ ⇒ e > 0 ∧ l ≥ 0, ∆
[spacearr(e, l) ase,l]

Γ ⇒ ∆

where

• e and l are integer literals.

• ase,l := min{a|a ≥ 12 + e ∗ l ∧ a ≡ 0 mod 8}

In case e and l are no literals but only symbolic values, we can still determine upper and
lower bounds of the spacearr(e, l) term depending on the value of e and l:

arraySizeLowerUpperBound

Γ ⇒ e > 0 ∧ l ≥ 0, ∆

Γ,
spacearr(e, l) ≤ ub(e, l)∧
spacearr(e, l) ≥ lb(e, l)∧
spacearr(e, l) ≥ minas

⇒ ∆

Γ ⇒ ∆
3 spacearr(e, l)

where

• ub(e, l) denotes an upper bound of spacearr(e, l) for arbitrary values of l. For the targeted
JVM implementation we can choose for instance:

ub(e, l) :=

{
8l + 16, if e = 8
e(l − 1) + 20, if e ∈ {1, 2, 4}

• lb(e, l) denotes a lower bound of spacearr(e, l) for arbitrary values of l:

lb(e, l) :=

{
8l + 16, if e = 8
el + 12, if e ∈ {1, 2, 4}

• minas := spacearr(e, 0) is the size of an array of length 0 which is for the JVM we
consider 16 bytes.

In case the argument of maxSpace is a repository object term getT (t) we know its exact
type and can thus also compute its exact size:

sizeInstanceExactType maxSpace(getT (t)) spaceT

where spaceT is an integer literal matching the amount of heap space consumed by an object
of exact type T (see Section 11.2.5).

Objects are not stored at arbitrary places in memory but are aligned with certain addresses.
We consider an alignment with addresses that are a multiple of 8. For arrays this is already
expressed by axiom 13.11. Axiom 13.12 reflects this circumstance for arbitrary objects.

152

13.2 Symbolic Execution

Axiom 13.12 For all terms t1, t2 of type integer, all terms o of reference type and all types
T the following holds:

maxSpace(o) ≡ 0 mod 8

T.<size> ≡ 0 mod 8

spacearr(t1, t2) ≡ 0 mod 8

This is stated by the rule objectAlignment:

objectAllignment
Γ,mod(oSize, 8)

.
= 0 ⇒ ∆

Γ ⇒ ∆
3 oSize

Where oSize is a term of the form maxSpace(o), T.<size> or spacearr(t1, t2) and mod
is an interpreted function symbol representing the modulo operation. If maxSpace(o) or
spacearr(t1, t2) are non-rigid they may not occur behind an update or a modality for the rule
to be applicable.

13.2 Symbolic Execution

13.2.1 Object Creation

The symbolic execution of the implicit method <allocate> increases c by the size of the
created object. We adapt the rule allocate already shown in Section 6.2.2 to reflect this
circumstance:

allocate

Γ ⇒ {U}{c := c + spaceT} \if(α)\then({v := getT (T.<ntc>) ||
T.<ntc> := T.<ntc>+ 1 ||
getT (T.<ntc>).<c> := TRUE ||
getT (T.<ntc>). <ma> := m}〈π ω〉φ)

\else(〈π toomeω〉φ), ∆

Γ ⇒ {U}〈π v=T.<allocate>();ω〉φ, ∆

Where

• c := m.consumed where m is the currently active memory area as determined by π.

• α := m.consumed ≤ m.size

• toome := throw javax.realtime.RealtimeSystem.OOME;

• spaceT is an integer literal representing the heap space occupied by an object of dynamic
type T which is in this case (see Section 11.2.5) spaceT := min{a|a ≥ 8+s∧a mod 8 ≡ 0}
where s is the space occupied by the fields of the object (for a non-primitive field only
the space occupied by the reference, namely 4 bytes, not the object itself). For the case
that T is an array type we define spaceT := 0. The memory consumption caused by the
creation of an array is accounted for by rule arrayCreation.

In rule allocate we distinguish the two cases that the available memory in the current memory
area m (determined by π, see Section 6.2.1) is

153

13 Calculus

• not sufficient to perform the allocation. In this case an OutOfMemoryError is raised.

• is sufficient to perform the allocation. In this no error is raised.

Array constructors are treated in a similar way with the mere difference that the size of an
array cannot necessarily be statically determined since it depends on the array’s dimension:

arrayCreation
Γ ⇒ {U ; c := c + TDL

JML(\space(new T[d1]...[dn][]...[]))}〈π ACω〉φ, ∆

Γ ⇒ {U}〈π v=new T[d1]...[dn][]...[]);ω〉φ, ∆

Where AC is a placeholder for the code modeling the array’s creation (for details on the
handling of array creation in Java DL refer to [Beckert et al., 2007]) and

TDL
JML(\space(new T[d1]...[dn][]...[]))

is defined as in Section 11.2.6. We do not have to consider the case that an OutOfMemoryError

is thrown this time since, among other things, the program AC calls the method <allocate>

whose symbolic execution will trigger this case distinction.

13.2.2 Method Calls

In order to be also able to modularly verify performance contracts (as it has also been pro-
posed in [Krone et al., 2001]), we need a rule describing the effect (including its memory
consumption) of a method’s execution merely by utilizing the information retrievable from its
specification instead of symbolically executing the method body. In Section 2.3.5 such a rule
was already presented, that was, however, not aware of the method’s memory consumption.
We now extend this rule to reflect also the information obtained from the working space
clause. Let (Pre, Post,Mod,Dep, Cap,WS) be a method contract:

methodContractInstMem
Γ ⇒ {U}{self := serec||p1 := a1|| . . . ||pn := an}Pre′ws, ∆
Γ, {∗Mod

i }exc .= null⇒
{U}{self := serec||p1 := a1|| . . . ||pn := an}(wsnr

m (self , p1, ..., pn)
.
= WS →

{∗Mod
i ||c := c + wsnr

m (self , p1, ..., pn)}(Post′ → {lhs := result}〈π ω〉φ)), ∆
Γ, {∗Mod

i }exc 6 .= null⇒
{U}{self := serec||p1 := a1|| . . . ||pn := an}(wsnr

m (self , p1, ..., pn)
.
= WS →

{∗Mod
i ||c := c + wsnr

m (self , p1, ..., pn)}(Post′ → 〈π throw exc; ω〉φ)), ∆

Γ ⇒ {U}〈π lhs = serec.m(a1, ..., an)@(C); ω〉φ, ∆

Where (see also Section 2.3.5):

Pre′ws := Prews ∧ ConjAssumed

Post′ := Post ∧ ConjEnsured

As we can see, methodContractInstMem also describes that in every state s reachable by state
update U the worst case memory consumption of m() (when executed in state s) equals WS
evaluated in state s (indicated by the update c := c + wsnr

m (self , p1, ..., pn) and the term
wsnr

m (self , p1, ..., pn)
.
= WS). A rule for static method calls can be defined analogously.

154

13.2 Symbolic Execution

Remark 13.13 (Working space terms in rule methodContractInstMem) The way work-
ing space term wsnr

m (self , p1, ..., pn) is used in rule methodContractInstMem could seem to be
counter intuitive at first glance since the rule

methodContractInstMem′

Γ ⇒ {U}{self := serec||p1 := a1|| . . . ||pn := an}Pre′ws, ∆
Γ, {∗Mod

i }exc .= null⇒
{U}{self := serec||p1 := a1|| . . . ||pn := an}{∗Mod

i ||c := c +WS}
(Post′ → {lhs := result}〈π ω〉φ), ∆

Γ, {∗Mod
i }exc 6 .= null⇒

{U}{self := serec||p1 := a1|| . . . ||pn := an}{∗Mod
i ||c := c +WS}

(Post′ → 〈π throw exc; ω〉φ), ∆

Γ ⇒ {U}〈π lhs = serec.m(a1, ..., an)@(C); ω〉φ, ∆

also expresses that c is increased by the value w specified by the applied contract.
However, keeping the information explicitly in the sequent that w equals the memory con-

sumption of m when called in the state defined by U and the sequent context Γ and ∆ (as
expressed by the subformula wsnr

m (self , p1, ..., pn)
.
= WS in rule applyContract) can ease prov-

ing tasks later on in case rigid working space terms occur in φ. This is mainly owed to the
rule wsNonRigid allowing to directly relate rigid and non-rigid working space terms referring
to the same method.

Remark 13.14 (JML and KeYJML) Basing the rule set on the original JML semantics
that demands evaluation of the working space clause in the post-state would result in the
following contract rule:

methodContractInstMemPost
Γ ⇒ {U}{self := serec||p1 := a1|| . . . ||pn := an}Pre′′ws, ∆
Γ, {∗Mod

i }exc .= null⇒
{U}{self := serec||p1 := a1|| . . . ||pn := an||∗Mod

i }(wsnr
m (self , p1, ..., pn)

.
= WS →

{c := c + wsnr
m (self, p1, ..., pn)}(Post′ → {lhs := result}〈π ω〉φ)), ∆

Γ, {∗Mod
i }exc 6 .= null⇒

{U}{self := serec||p1 := a1|| . . . ||pn := an||∗Mod
i }(wsnr

m (self , p1, ..., pn)
.
= WS →

{c := c + wsnr
m (self , p1, ..., pn)}(Post′ → 〈π throw exc; ω〉φ)), ∆

Γ ⇒ {U}〈π lhs = serec.m(a1, ..., an)@C; ω〉φ, ∆

Where

Pre′′ws := Pre′ ∧ {∗Mod
i }Post′ ∧ ({∗Mod

i }WS) ≤ defaultMemoryArea.memoryRemaining()

with Pre′ and Post′ being defined as in Section 2.3.5.

13.2.3 Loops

As the last step of adapting the Java DL calculus to performance verification needs we will
have a look at a loop invariant rule making use of loop annotations as provided by a JML
specification. We first consider the special case of a constant working space clause and then
the more general case of a variable working space clause as defined in Section 11.2.4.

155

13 Calculus

For a constant wssi clause we can approximate the loop’s WCMU at the beginning of an
arbitrary iteration by the product of the WCMU of a single iteration (specified by the wssi
clause) and the number of iterations performed so far:

loopInvTotalConstWS
Γ ⇒ {U}(Inv ∧ var ≥ 0), ∆
Γ, {U ; c1 := c;w1 := WSL; v1 := var; ∗Mod

i ; c := c1 + w1 ∗ (v1 − var)}
(Inv ∧ ([π boolean g=e;]g

.
= TRUE) ∧ var ≥ 0) ⇒

{U ; c1 := c;w1 := WSL; v1 := var; ∗Mod
i ;

c := c1 + w1 ∗ (v1 − var); c2 := c; v2 := var}〈tc(p,e)〉ψ, ∆
Γ, {U}{∗Mod

j ||c := c + var ∗WSL}Inv ⇒
{U}{∗Mod

j ||c := c + var ∗WSL}[π g=e;](g
.
= FALSE → 〈π ω〉φ), ∆

Γ ⇒ {U}〈π while(e){p}ω〉φ, ∆

Where

• Inv is a loop invariant holding at the beginning and the end of each normally terminating
(meaning not termination by break or an exception) loop iteration.

• Mod is an assignable clause defining a set of locations modifiable by the loop. Al-
lowing the specification of assignable clauses for loops is a KeY-specific extension of
JML.

• var is the loop variant specified by a decreasing clause. The term var strictly de-
creases in each iteration of the loop while remaining greater or equal to 0 thus inducing
termination of the loop.

• The term WSL is a WCMU estimation for a single normally terminating iteration of
the loop obtained from the, again KeY-specific, working_space clause.

The first premise of loopInvTotalConstWS states that the invariant Inv is valid just before
the loop is executed the first time.

The second premise states that, in case the loop body terminates normally, the loop invari-
ant is preserved by the loop body and the loop guard1 and the memory consumption of this
loop iteration does not exceed WSL. Here

• ∗Mod
i is an anonymising update approximating the state change caused by the loop.

• The update c := c1 + w1 ∗ (v1 − var) increases c (whose value before the first iteration
of the loop is stored in c1) by the maximal cumulated amount of heap space the loop
has potentially consumed in all (normally terminating) iterations executed before the
observed iteration. Since v1 contains the old value of the loop variant before its first
iteration, var its current value and w1 the value of WSL as evaluated before the first
loop iteration w1 ∗ (v1 − var) is the maximum amount of memory consumed so far by
the loop.

• g is a fresh program variable used to store the value of e.

1The loop guard can potentially have side effects.

156

13.2 Symbolic Execution

• tc(p,e) is derived from the original loop body and guard that were transformed in a
way that, for instance, allows capturing the execution of break and continue state-
ments or the raising of an uncaught (i.e., uncaught within the loop body) exception.
Such events are memorized by fresh program variables exc, bbreak and bcont.

• ψ := ψexc ∧ ψbreak ∧ ψnormal

ψ describes the conditions required to hold after the loop body terminated normally
(given by formula ψnormal) or abruptly by an exception (ψexc) or break (ψbreak).

– ψnormal :=
(exc

.
= null∧bbreak

.
= FALSE ∨bcont

.
= TRUE) →

(Inv ∧ c− c2 ≤ w1 ∧ var < v2)

The rationale behind this formula is that if no exception has been thrown and
the loop body terminates normally (indicated by the values of e and bbreak) or a
continue statement has been executed (indicated by bcont

.
= TRUE) then

∗ the invariant holds
∗ c was increased at most by the pre-state value of WSL and
∗ var strictly decreased compared to the pre-state of the considered loop itera-

tion.

– ψexc := exc 6 .= null→ 〈π throw exc;ω〉φ
If an exception has been thrown the postcondition φ must hold after the execution
of the rest of the program π throw exc;ω. We inject the statement throw exc;

into the remaining code since the exception was not caught in the original imple-
mentation of the loop but only by a catch block added by the transformation tc

for memorizing uncaught exceptions.

– ψbreak := bbreak
.
= TRUE → 〈π ω〉φ

In case a break statement terminates the loop we are in a similar situation as in
the exceptional case to that effect that φ must be shown to hold after the remaining
code is executed.

Recapitulating one can say that these explanations about ψ also clarify why it is suffi-
cient to specify only the memory consumption of normally terminating loop iterations:
All information needed about abruptly terminating iterations is obtained by symbolic
execution of the loop body and thus c has already been accordingly increased in the
state ψexc and ψbreak are evaluated in.

Finally, in the third premise of rule loopInvTotalConstWS we can use the information that
the loop invariant holds after the last iteration of the loop (at the end of which e

.
= FALSE

holds) and that c was increased at this point by the pre-state value of var ∗WSL, which is
encoded in an update.

The invariant rule loopInvTotalVarWS making use of the variable working space clause can
be defined analogously to loopInvTotalConstWS. Since the memory consumption of the loop
as specified by the vwssi is not constant over different iterations, we cannot simply express it
as the product of the term WSL specified by vwssi and the number of iterations performed
(as done in rule loopInvTotalConstWS). Instead the WCMU of the loop at the beginning of an
arbitrary iteration is given by the sum of the values of WSL over all loop iteration performed

157

13 Calculus

so far (as described in Section 11.2.4). This is done by means of the sum operator introduced
in Section 2.3.8.

loopInvTotalVarWS
Γ ⇒ {U}(Inv ∧ var ≥ 0), ∆
Γ, {U ; c1 := c;w1 := WSL; v1 := var; ∗Mod

i ; c := c1 + sum(x; [0, v1 − var); WSL)}
(Inv ∧ ([π g=e;]g

.
= TRUE) ∧ var ≥ 0) ⇒

{U ; c1 := c; v1 := var; ∗Mod
i ; v2 := var;

c := c1 + sum(x; [0, v1 − v2); WSL); c2 := c}〈tc(p,e)〉ψ′, ∆
Γ, {U}{∗Mod

j ||c := c + sum(x; [0, var); WSL)}Inv ⇒
{U}{∗Mod

j ||c := c + sum(x; [0, var); WSL)}[π g=e;](g
.
= FALSE → 〈π ω〉φ), ∆

Γ ⇒ {U}(∀x; WSL
.
= {∗Mod

j }WSL), ∆

Γ ⇒ {U}〈π while(e){p}ω〉φ, ∆

Where x is a logic variable stemming from the translation of the parameter of the vwssi
clause. This rule differs from loopInvTotalConstWS in the following respects:

• Second premise:

– In the second premise the accumulated WCMU of the preceding loop iterations
used to initialise c before the considered loop iteration appropriately is given by
sum(x; [0, v1 − var); WSL).

– ψ′ := ψexc ∧ ψbreak ∧ ψ′
normal with ψexc and ψbreak being defined as above and

ψ′
normal :=

(exc
.
= null∧bbreak

.
= FALSE ∨bcont

.
= TRUE) →

(Inv ∧ c− c2 ≤ sum(x; [v1 − v2, v1 − var); WSL) ∧ var < v2)

After normal termination of the loop body the accumulated memory consumption
of all preceding iterations must not exceed sum(x; [0, v1− var); WSL) (where the
term var is the loop variant and the program variable v1 memorizes the variants
value just before the first iteration of the loop). Therefore, c may only have
increased by sum(x; [v1 − v2, v1 − var); WSL) compared to its value (which is
c1 + sum(x; [0, v1 − v2); WSL)) before the considered iteration. This is expressed
by

c− c2 ≤ sum(x; [v1 − v2, v1 − var); WSL) (13.1)

This approach is only sound since WSL (and thus also the term sum(x; [0, v1 −
v2); WSL)) does not depend on any location modified by the loop. If we dropped
this restriction we could still maintain a sound rule by simply replacing formula
(13.1) in the second premise by:

c ≤ c1 + sum(x; [0, v1 − var); WSL) (13.2)

Proving this would, however, be much more involved and less automatic (compared
to proving formula (13.1)) since arbitrary summands of sum(x; [0, v1−var); WSL)
can change compared to their pre-state value.

158

13.2 Symbolic Execution

In case the variant is only decreased by 1 in each iteration, formula 13.1 can be
simplified to:

c− c2 ≤ sum(x; [v1 − v2, v1 − var); WSL)

c− c2 ≤ sum(x; [v1 − v2, v1 − (v2 − 1)); WSL)

c− c2 ≤ sum(x; [v1 − v2, v1 − v2 + 1); WSL)

c− c2 ≤ WSL[x/v1−v2]

• Third premise: After termination of the loop c is increased by the maximum amount
of memory consumed by the loop which is sum(x; [0, var); WSL).

• Fourth premise: We need to show that WSL does indeed not depend on any location
in Mod which is done by proving {U}(∀x; WSL

.
= {∗Mod

j }WSL).

Remark 13.15 As location dependencies and their corresponding proof obligations showed to
be a source of subtle pitfalls in Section 9, let us briefly convince ourselves why the formula

{U}(∀x; WSL
.
= {∗Mod

j }WSL)

can be used to show that WSL does not depend on any location in the loop’s assignable clause.
For the soundness of loopInvTotalVarWS it is sufficient that WSL does not depend on any

location in Mod in the symbolic state (which is defined by the sequent context Γ and ∆ and
the update U) the rule loopInvTotalVarWS is applied in.

We now assume the that there is a state t satisfying the constraints defined by the sequent
context and the update U such that WSL depends on at least one location in valt(Mod)
and show that this entails invalidity of the sequent resulting from the fourth premise of rule
loopInvTotalVarWS:

Let us assume that there is a state s, a variable assignment β with

s, β |=
∧
γ∈Γ

γ ∧
∧
δ∈∆

¬δ (13.3)

and a location (f, (ā)) ∈ valt,β(Mod) (where we define t := vals,β(U)(s)) such that WSL
depends on (f, (ā)) (i.e., (f, (ā)) ∈ valt,β(Dep) for each correct depends clause Dep of WSL).
This means that there is a state t′, a variable assignment β′ (with β′(y) = β(y) f. a. y 6= x)
and a value v with

valt,β(WSL) 6= valt′,β(WSL) (13.4)

and
valt′(g)(b̄) =

{
v if g = f and b̄ = ā
valt(g)(b̄) otherwise (13.5)

for all location (and virtual location) function symbols g and all tuples of values b̄ complying
with g’s signature2.

Then there is a Kripke structure K := (M,S, ∗, ρ) with s, t, t′ ∈ S and t′ = ∗(j). Together
with equations (13.4) and (13.5) this implies that

t, β 6|= ∀x; WSL
.
= {∗Mod

j }WSL

2The existence of such a state t′ entails that (f, (ā)) ∈ valt,β(DepWSL) where DepWSL denotes the depends
clause of WSL.

159

13 Calculus

and thus (due to equation (13.3) and the definition of t)

s, β 6|=
∧
γ∈Γ

γ → {U}(∀x; WSL
.
= {∗Mod

j }WSL) ∨
∨
δ∈∆

δ

which renders the sequent resulting from the fourth premise of rule loopInvTotalVarWS invalid.

For the sake of simplicity and readability, both of the presented loop invariant rules
(loopInvTotalConstWS and loopInvTotalVarWS) do not take into account parameterized work-
ing space clauses as introduced in Section 11.2.7. As a non-parameterized loop-level working
space clause can be considered syntactic sugar for a working space clause parameterized with
the currently active scope (<cma>), the adaptations for handling “other” parameterized work-
ing space clauses are canonical and therefore not discussed in detail here.

160

14 Examples

In the following we demonstrate the capabilities of the presented approach based on two exam-
ples. In the first one we examine modular verification of performance constraints. The second
one shows the JML specification of a realistic piece of code with performance specifications
that can be verified by KeY fully automatically.

14.1 Modular vs. Non-Modular Verification
We will now regard the modular verification of performance contracts using the example im-
plementations and specifications of the methods freshInstance, clear and getInstance

already discussed in Section 11.1. Due to the specification bugs identified for freshInstance,
its specification is corrected using the rigid working_space construct in the following way:

JAVA + JML
/*@ requires _instance!=null;
@ working_space \working_space(clear()) +
@ \working_space(getInstance(), SomeClass._instance==null);
@*/

public static SomeClass freshInstance(){
clear();
return getInstance();

}

JAVA + JML

The POs derived from the contracts for clear and getInstance can be proven automatically.
The PO for the first of getInstance’s specification cases, for instance, is given by the formula:

ConjInvRealtime ∧ V alidCallSCJ
op ∧ SomeClass._instance .

= null∧16 ≤ memRem→
{cmax := c + 16}〈res=SomeClass.getInstance();〉 c ≤ cmax

where memRem := defaultMemoryArea.memoryRemaining(). For proving the PO

ConjInvRealtime ∧ V alidCallSCJ
op ∧ SomeClass._instance 6 .= null∧

wsnr
SomeClass.clear()() + wsr

SomeClass.getInstance(),SomeClass._instance
.
=null ≤ memRem→

{cmax := c + wsnr
SomeClass.clear()() + wsr

SomeClass.getInstance(),SomeClass._instance
.
=null}

〈res=SomeClass.freshInstance();〉 c ≤ cmax

generated for freshInstance’s contract we can either choose to replace the method calls
clear() and getInstance() (encountered when symbolically executing getInstance’s
method body) by their implementation and symbolically execute them in the following (non-
modular verification) or to use the already verified performance contracts of the called methods
to approximate the methods’ behaviour (modular verification).

161

14 Examples

14.1.1 Non-Modular Verification

When evaluating the method body of freshInstance by executing the method bodies of
clear and getInstance sequentially, we get (after the symbolic execution has terminated)
a sequent

Γ ⇒ SomeClass._instance .
= null,

c + 16 ≤ c + wsnr
SomeClass.clear()() + wsr

getInstance(),SomeClass._instance
.
=null (14.1)

which shows that c was increased by 16 bytes1 and we now have to prove that this is smaller
than the sum of the maximum specified amounts of space consumed by the method clear

and the method getInstance when called in a state satisfying SomeClass._instance .
=

null. This can be achieved by applying the rules wsGEqZeroNR to wsnr
SomeClass.clear()() and

wsContract1 to wsr
getInstance(),SomeClass._instance

.
=null using the first contract of getInstance.

The resulting sequents (where ∆ denotes the antecedent of sequent (14.1)) are

⇒ {∗}(SomeClass._instance .
= null→ SomeClass._instance .

= null),∆

expressing that SomeClass._instance .
= null has to imply the precondition (which is also

given by SomeClass._instance .
= null) of the applied contract and

{∗}(SomeClass._instance .
= null∧wsr

getInstance(),SomeClass._instance
.
=null

.
= 16),

0 ≤ wsnr
SomeClass.clear()()

⇒ ∆

containing the assumptions

{∗}(SomeClass._instance .
= null∧wsr

getInstance(),SomeClass._instance
.
=null

.
= 16)

and
0 ≤ wsnr

SomeClass.clear()()

obtained from the application of wsContract1 and wsGEqZeroNR. Both sequents can be
proven valid automatically.

14.1.2 Modular Verification

If we decide to verify the PO (14.1) in a modular way by utilizing clears’s and getInstance’s
contracts by applying methodContractInstMem the symbolic execution of freshInstance

leads to c being increased by {U1}wsnr
clear()() and {U2}wsnr

getInstance()() (where U1 and U2 are
updates representing the symbolic state in which the respective methods where invoked). Thus
after the symbolic execution of freshInstance is completed we have obtained a sequent:

{U1}wsnr
clear()()

.
= 0, {U2}wsnr

getInstance()()
.
= 16

⇒
SomeClass._instance .

= null,

c + 16 ≤ c + wsnr
SomeClass.clear()() + wsr

getInstance(),SomeClass._instance
.
=null (14.2)

1This results from the increase of c by the symbolic execution of the constructor call in getInstance’s
method body.

162

14.2 Javolution

This proof goal could be discharged in the same manner as in the previous case by ap-
plying wsContract1 and wsGEqZeroNR. Another option is, however, due to the presence
of the assumption {U2}wsnr

getInstance()()
.
= 16, to apply the rule wsNonRigid to the terms

{U2}wsnr
getInstance()() and wsr

getInstance(),SomeClass._instance
.
=null resulting in the sequents

Γ ⇒ {U2}(SomeClass._instance
.
= null),∆ (14.3)

stating that the precondition SomeClass._instance .
= null has to hold in the symbolic state

in which the method call of getInstance was evaluated and

Γ, {U2}wsnr
getInstance()() ≤ wsr

getInstance(),SomeClass._instance
.
=null ⇒ ∆ (14.4)

with Γ and ∆ being the antecedent and succedent of sequent (14.2). The sequent (14.3)
is proven valid automatically, (14.4) requires an interactive application of wsGEqZeroNR as
seen in Section 14.1.1 before it is provable automatically.

14.2 Javolution
Javolution [Dautelle, 2009] is a real-time Java library facilitating the development of real-
time compliant Java applications. This is accomplished by, for instance, reducing the need
for garbage collection by using so-called memory contexts in which objects, that are no longer
needed, are recycled and can be reused the next time an object of the corresponding class is
needed in the containing context. Javolution also provides time-deterministic implementations
of standard Java packages such as collection and map data structures. The example we now
consider is taken from the Javolution class FastMap which implements the same functionality
as java.util.HashMap but shows a more time-deterministic behavior. Since possessing a
deterministic memory performance is essential for real-time applications, this example also
illustrates the suitability of the presented approach for the field of application it is intended
for.

The memory performance of the method setup shown in Figure 14.1 which is part of the
Javolution [Dautelle, 2009] library was specified in JML. Since the setup method is used by
FastMap’s constructors to create and initialise a new map, its memory performance is of
particular relevance for determining the memory consumption of instances of this class. The
specification cases can be verified fully automatically by the KeY system. This demonstrates
the potential of the presented approach even for rather complex code in realistic real-time
applications.

Remark 14.1 Given properties for a concrete JVM one could simplify the performance spec-
ification shown in the example. For instance with the JVM parameters we assume (see Section
11.2.5) the working space expressions
\space(new Entry[1][1<<R0])+(2+capacity)*\space(new Entry())

can be simplified to a better human readable
240+capacity*40

This simplified expression does not need to be computed manually but can be retrieved from
the KeY proof for the corresponding contract.

163

14 Examples

JAVA + JML
/*@ public normal_behavior
@ requires capacity <= (1 << R0) && capacity>=0;
@ working_space \space(new Entry[1][1<<R0]) +
@ (2+capacity)*\space(new Entry());
@ also public normal_behavior
@ requires capacity > (1 << R0) && capacity < (1<<30);
@ working_space \space(new Entry[(2*capacity)>> R0][1<<R0])+
@ (2+capacity)*\space(new Entry());
@*/

private void setup(int capacity) {
int tableLength = 1 << R0;
/*@ loop_invariant 1 << R0 < capacity ?
@ tableLength>=1 << R0 && tableLength<2*capacity :
@ tableLength == 1 << R0;
@ decreases 1 << R0 < capacity ? 2*capacity-2-tableLength : 0;
@ assignable tableLength;
@ working_space 0; @*/

while (tableLength < capacity){ tableLength <<= 1;}
int size = tableLength >> R0;
_entries = (Entry[][]) new Entry[size][];
/*@ loop_invariant i>=0;
@ decreases _entries.length-i;
@ assignable i, _entries[*];
@ working_space \space(new Entry[1 << R0]); @*/

for (int i=0; i < _entries.length;) {
int blockLength = 1 << R0;
_entries[i++] = (Entry[]) new Entry[blockLength];

}
_head = new Entry();
_tail = new Entry();
_head._next = _tail;
_tail._previous = _head;
Entry previous = _tail;
/*@ loop_invariant i>=0 && previous!=null;
@ decreases capacity-i;
@ assignable _tail._next, i;
@ working_space \space(new Entry()); @*/

for(int i = 0; i++ < capacity;) {
Entry newEntry = new Entry();
newEntry._previous = previous;
previous._next = newEntry;
previous = newEntry;

}
}

JAVA + JML

Figure 14.1: A JML-annotated method from the Javolution class FastMap

164

15 Verification of Scope Sizes in the
PERC Pico Memory Model

In Section 8.1 modifications of the calculus described in Section 6 are presented for treating
runtime checks (for illegal assignments) in a MIB MM. We now regard what adaptations
are needed in addition for performing verification of memory contracts in a MIB MM in
general and the PERC Pico MM in particular. The changes are introduced stepwise: First we
consider the simple MIB MM defined in [Kwon and Wellings, 2004] requiring only marginal
adaptations and then extend the approach to PERC Pico.

We first need to make the approach described in Section 8.1 aware of scope sizes, which
means when scopes are created (i.e., when methods are invoked) the size of a scope has to be
set according to its specification, when objects are allocated the size of the object has to be
accounted for by increasing the attribute consumed@(MemoryArea) of the appropriate scope
accordingly and the POs shown in Section 12 have to be adapted to the MIB MM.

The rule scopedMemoryMethodBodyExpand defined in Section 8.1 describes the creation of
local scopes in a MIB MM. The rule scopedMemoryMethodBodyExpandMC represents a slight
modification of this rule now initialising also the fields consumed@(MemoryArea) (with 0)
and size@(MemoryArea) (according to the specified memory consumption). The changes in
comparison to rule scopedMemoryMethodBodyExpand in Section 8.1 are printed bold:

scopedMemoryMethodBodyExpandMC
Γ, {U}(cma.stack � getMemoryStack(j) ∧ j ≥MemoryStack.<ntc>) ⇒

{U}{getLTMemory(LTMemory.<ntc>).stack := getLTMemory(j) ||
newMem := getLTMemory(LTMemory.<ntc>) ||
getLTMemory(LTMemory.<ntc>).<c> := TRUE ||
getLTMemory(LTMemory.<ntc>).consumed := 0 ||
getLTMemory(LTMemory.<ntc>).size := localScopeSize ||
LTMemory.<ntc> := LTMemory.<ntc>+ 1 ||
MemoryStack.<ntc> := j + 1 ||
for i; if(MemoryStack.<ntc> ≤ i ∧ i ≤ j)

getMemoryStack(i).<c> := TRUE
}〈π method-frame(result->lhs,

source=C,

this=se,
<cma>=newMem,

<oma>=mem) : {body} ω〉φ, ∆

Γ ⇒ {U}〈π lhs=se.meth(args)@scope@(C);ω〉φ, ∆

The value mem is again determined by the annotation @scope (attached to the method
invocation) and the innermost method frame in π.

165

15 Verification of Scope Sizes in the PERC Pico Memory Model

The rule allocateMIB describing object allocation in a MIB MM increases the consumed

attribute of the target scope:

allocateMIB

Γ ⇒ {U}{c := c + spaceT}
\if(α)\then({v := getT (T.<ntc>) ||

T.<ntc> := T.<ntc>+ 1 ||
getT (T.<ntc>).<c> := TRUE ||
getT (T.<ntc>). <ma> := mem}〈π ω〉φ)

\else(〈π toomeω〉φ), ∆

Γ ⇒ {U}〈π v=T.<allocate>()@scope;ω〉φ, ∆

Where

• c := mem.consumed

• α := mem.consumed + spaceT ≤ mem.size

• mem is defined as for rule scopedMemoryMethodBodyExpandMC

• toome and spaceT are defined as for rule allocate in Section 13

The PO RespectsWorkingSpace as defined in Section 12 states that memory consumption
in the current scope does not surpass a certain specified upper bound. Since we are now
interested in the memory consumption taking place in the local scope of the method we
reason about, we define a new PO RespectsLocalScopeSize in a similar manner.

RespectsLocalScopeSize(ct;Assumed) :=
ConjAssumed ∧ Pre ∧ ConjInvRealtime ∧ V alidCallSCJ

op →
{LTMemory.<ntc>@pre := LTMemory.<ntc>}〈Prgop()〉 ls.consumed ≤ ls.size

where

• ls abbreviates getLTMemory(LTMemory.<ntc>@pre) which is the local scope of the
method call embedded in Prgop(),

• ConjAssumed is defined as in Section 2.3.5,

• Pre is defined as in Section 2.3.5,

• ConjInvRealtime and V alidCallSCJ
op are defined as in Section 7.2.

Both, [Kwon and Wellings, 2004] and [Nilsen, 2006], provide means to define the size of local
scopes. This can for instance be done by specifying the size of the local scope in bytes or
(similar to what can be done with the \space construct in JML specifications) by providing
the types of objects created and the respective number of instances for each type. These spec-
ifications can be canonically expressed in Java DL. Figure 15.1 shows a method augmented
with PERC Pico annotations for determining the local and constructed1 scope sizes. This
example also hints why the approach defined so far is not sufficient for verifying memory con-
tracts of PERC Pico programs. So far we considered a constructed scope to be identical with

1In this case the constructed scope is associated with the returned object.

166

15.1 PERC Pico Memory Annotations

PERC Pico
1 @ScopedMemorySize(instances = {1}, types = {Object.class})
2 @ConstructedScopedMemorySize(instances = {1}, types = {Bar.class})
3 @CallerAllocatedResult
4 public Foo getFoo(){
5 Object tmp = new Object();
6 Bar bar = new Bar();
7 Foo foo = new Foo();
8 foo.bar = bar;
9 return foo;

10 }

PERC Pico

Figure 15.1: PERC Pico Annotations

the scope of its associated object which is sound for modelling illegal-assignment-checks. For
determining whether scope sizes are sufficient it is necessary to know that constructed scopes
are physically different from other scopes on the same scope stack level. Section 15.1 gives
an overview of PERC Pico annotations as far as needed for understanding Section 15.2 which
elaborates on the handling of constructed scopes. Section 15.3 provides a proof obligations
showing that constructed scopes PERC Pico programs are sufficiently sized. Finally Section
15.4.1 shortly summarizes how the calculus in Section 13 needs to be modified to suit the
PERC Pico memory model.

15.1 PERC Pico Memory Annotations

This section provides an overview of the semantics of different kinds of scoped memory areas
distinguished by PERC Pico and a selection of the respective annotation means provided for
them. For an exhaustive account of PERC Pico’s annotations refer to [Aonix, 2008].

15.1.1 Local Scopes

Local (method) scopes are associated with method invocations. Their lifetime matches the
duration of the associated method execution. The size of a method’s local scope is either
determined by a

• static analysis providing a conservative approximation of the required scope size. For
applying this analysis to a certain method, this method has to be marked with the

PERC Pico
@StaticAnalyzable

PERC Pico

annotation. Performing the static analysis (which is not always feasible) requires addi-
tional helper annotations (such as loop bounds) to support the analysis.

167

15 Verification of Scope Sizes in the PERC Pico Memory Model

• user-provided annotations attached to the corresponding method or constructor decla-
ration. These annotations can be of the form

PERC Pico
@ScopedMemorySize(bytes=k)

PERC Pico

providing the size of the local scope measured in bytes or

PERC Pico
@ScopedMemorySize(instances = {h1,...,hn}, types = {T1,...,Tm},

primitive_array_instances = {j1,..., jn},
primitive_array_lengths = {lp1,..., lpn},
primitive_array_types = {PT1,...,PTn},
reference_array_instances = {k1,..., ks},
reference_array_lengths = {lr1,..., lrs},
reference_array_types = {RT1,...,RTs},
constructed_scopes = cs)

)

PERC Pico

stating that the local scope size is

m∑
i=1

ki ∗ spaceTi +
n∑

i=1

ji∗spacePTi[lpi] +
s∑

i=1

ki∗spaceRTi[lri] + cs∗spaceconsSc

where spaceT denotes the size of an object of exact type T and spaceT[l] the size of the
array new T[l]. Empty clauses (occurring for instance in the case that no arrays are
created) can be omitted in the above annotation. Local scopes of constructors and meth-
ods annotated with @CallerAllocatedResult or @CallerAllocatedArrayResult
need to set aside memory for the constructed scopes of objects allocated within the
method’s local scope. The maximum number of such constructed scopes nested within
the method’s local scope is determined by the constructed_scopes clause.

15.1.2 Immortal Memory

Immortal memory has application lifetime. As for RTSJ programs, we can consider immortal
memory to be the primordial scope (i.e., being an outer scope of each other scope existing
within the regarded application). Note, that this does not mean that it is equal to the local
scope of the application’s main method. Methods performing immortal memory allocation
must be annotated with the

PERC Pico
@ImmortalAllocation

PERC Pico

annotation. There are, however, no annotations for specifying the amount of memory allo-
cated within immortal memory. The size of the immortal memory area is determined by a
configuration file entry.

168

15.1 PERC Pico Memory Annotations

15.1.3 Constructed Scopes

Constructed scopes are associated with an object and share the same lifetime with this object.
As for local scopes, the size of a constructed scope is either determined by static analysis or
by an annotation

PERC Pico
@ConstructedScopedMemorySize(...)

PERC Pico

attached to a method (in this case the constructed scope is associated with the returned ob-
ject) or constructor (in this case the constructed scope is associated with the object initialised
by the constructor) declaration. The size of the constructed scope is specified in the same way
as for the @ScopedMemorySize annotation. Objects can only be allocated in a constructed
scope during execution of the corresponding method/constructor creating the constructed
scope. Note, that this entails that for each execution context there is at most one constructed
scope (which is different from the currently executed method’s receiver object’s reentrant
scope, see Section 15.1.4) available (in which the new operator can allocate memory), namely
the one created when the currently executing method was invoked.

Methods allocating the returned object in the caller context must also be annotated with
the @CallerAllocatedResult annotation (see Section 8.1).

Figure 15.1 illustrates the usage of constructed scopes: The object created by the con-
structor invocation new Foo() (line 7) is allocated in the caller context of getFoo which is
determined by the @CallerAllocatedResult (line 3) annotation. The size of the returned
object is not accounted for in the annotation of getFoo(). It is the responsibility of the
caller to provide enough memory to allocate it. The field foo.bar (line 8) is initialised with
a newly created object of type Bar which therefore needs to be allocated in the constructed
scope of foo. The annotation (line 2)

PERC Pico
@ConstructedScopedMemorySize(instances = {1}, types = {Bar.class})

PERC Pico

ensures that this constructed scope is sufficiently big. The caller of a method does in general
(except for constructed scopes of objects allocated in (i) a reentrant scope or (ii) the local
scope of constructors or @CallerAllocatedResult methods) not need to set aside memory
for the constructed scope of the object returned by the called method. The object allocated
by new Object() (line 5) is never assigned to a reference outliving the method execution
and can thus be allocated in the local scope of getFoo.

A constructed scope is physically different from the scope containing its associated object
(even though the lifetimes of these two scopes are the same). By using the

PERC Pico
@ExternallyConstructedScope

PERC Pico

it is possible to avoid the overhead for creating such a new scope and use the scope containing
the associated object instead. The caller of a method/constructor annotated with this an-
notation has to provide sufficient memory not only for the returned object itself but also for

169

15 Verification of Scope Sizes in the PERC Pico Memory Model

newly created objects referenced by this object and allocated in its (externally-) constructed
scope.

15.1.4 Reentrant Scopes

Reentrant scopes are a variant of constructed scopes. If a class declaration is annotated with
@ReentrantScope, each instance method of this class can allocate objects in the constructed
scope of its receiver object. Constructed scopes of objects allocated within a reentrant scope
are embedded within the reentrant scope entailing that the reentrant scope has to set aside the
space for objects allocated in these constructed scopes and some space required as overhead
for the constructed scopes themselves. One typical application for reentrant scopes are data
structures like lists or maps: Entry objects of these data structures need to possess at least
the same lifetime as the data structure itself and are therefore allocated in its reentrant scope.

The constructed scope associated with an object is in general not uniquely determined: In
case an object is initialised by a chain of constructor calls (as realized by calls to this or super
constructors) not annotated with @ExternallyConstructedScope each constructor creates
its own constructed scope. If there are multiple constructed scopes created for an instance of
a class annotated with @ReentrantScope they are merged into a single constructed scope of
accumulated size, as stated by the PERC Pico manual [Aonix, 2008]:

If multiple chained constructor invocations for a @ReentrantScope ... class each
introduce a constructed scope, the effect of object construction is to create a single
constructed scope of the accumulated size represented by adding the individual
constructed scope sizes.

15.2 Treatment of Constructed Scopes
For each execution context there are now up to five scopes available in which a newly created
object can potentially be allocated:

• The immortal memory area which can be obtained by ImmortalMemory.instance()

• The current local scope accessible by the pointer <cma>

• The (not necessarily direct) caller’s scope, given by the pointer <oma>

• The constructed scope which is for each execution context uniquely determined (see
Section 15.1.3). To be able to explicitly reference also this memory area we introduce a
pointer <coma> (shorthand for constructed memory area).

• The reentrant scope associated with the receiver object of the currently executed method.
We introduce an implicit instance field <rs>@Object referring to this scope.

As for <cma> and <oma>, the value of this pointer is determined by the (once more extended)
method frame statement

JAVA

method-frame(result->retvar,
source=T,

170

15.2 Treatment of Constructed Scopes

this=self,
<cma>=cm,
<oma>=om,
<coma>=com) : {body}

JAVA

As in Section 8.1, we assume that the results2 of the static analysis performed by PERC
Pico for determining the appropriate allocation context are back-annotated by a program
transformation. We refer to this transformation as TPERC in the following. Analogously to
the transformation TMIB used in Section 8.1, TPERC adds an annotation to each method call
and each occurrence of the new operator for indicating the memory area in which the newly
created object which is returned by the call (initialised by the constructor) is to be allocated.
This annotation is chosen from the following alternatives:

• the @<oma> pointer in case the method/constructor call will perform allocations in the
caller’s (of the enclosing method) scope.

• the expression @this.<rs> in case of a method/constructor call allocating an object
in the reentrant scope.

• the method invocation @ImmortalMemory.instance() in case of a method/construc-
tor invocation allocating an object in immortal memory.

• the @<coma> pointer in case the method/constructor call will perform allocations in the
constructed scope.

• the @<cma> if none of the preceding alternatives applies.

PERC Pico
1 public Foo getFoo(){
2 Object tmp = new@<cma> Object();
3 Bar bar = new@<coma> Bar();
4 Foo foo = new@<oma> Foo();
5 foo.bar = bar;
6 return foo;
7 }

PERC Pico

Figure 15.2: PERC Pico Code after Application of TPerc

Figure 15.2 shows the result of TPerc being applied to the method getFoo introduced in
figure 15.1.

The initialisation of the <coma> pointer is performed when expanding a method body
statement. For this we have to distinguish whether the corresponding method is annotated
with @ExternallyConstructedScope or not.

2These analysis results can, for instance, be obtained from the C Code generated by PERC Pico as an
intermediate stage when compiling Java code.

171

15 Verification of Scope Sizes in the PERC Pico Memory Model

percECSMemoryMethodBodyExpandMC
Γ, {U}(cma.stack � getMemoryStack(j) ∧ j ≥MemoryStack.<ntc>) ⇒

{U}{getLTMemory(LTMemory.<ntc>).stack := getLTMemory(j) ||
newLocalMem := getLTMemory(LTMemory.<ntc>) ||
getLTMemory(LTMemory.<ntc>).<c> := TRUE ||
getLTMemory(LTMemory.<ntc>).consumed := 0 ||
getLTMemory(LTMemory.<ntc>).size := localScopeSize ||
LTMemory.<ntc> := LTMemory.<ntc>+ 1 ||
MemoryStack.<ntc> := j + 1 ||
for i; if(MemoryStack.<ntc> ≤ i ∧ i ≤ j)

getMemoryStack(i).<c> := TRUE
}〈π method-frame(result->lhs,

source=C,

this=se,
<cma>=newLocalMem,

<oma>=mem,

<coma>= mem) : {body} ω〉φ, ∆

Γ ⇒ {U}〈π lhs=se.meth(args)@scope@(C);ω〉φ, ∆

Figure 15.3: Expanding of a method body statement for a method annotated with the
@ExternallyConstructedScope annotation

15.2.1 Externally Constructed Scopes

If the constructed scope is provided externally (by the caller) it is identical to the scope holding
the returned object which is determined by the annotation @scope attached to the method
body statement. Figure 15.3 shows the rule for expanding such a method body statement.
The changes in comparison to rule scopedMemoryMethodBodyExpandMC are printed bold.

15.2.2 “Internally” (Newly) Constructed Scopes

If a method is not annotated with @ExternallyConstructedScope it has to create its own
constructed scope3. Consequently the <coma> pointer is set to a fresh instance of LTMemory
whose size is set as specified by the @ConstructedScopedMemorySize annotation. The
constructed scope resides on the same scope level as the scope containing the returned object.
Here the decoupling of the nesting order (which is defined on scope sub-stacks not on the
memory areas themselves) from the actual scopes again pays off: We can simply initialise
the stack attribute of the constructed scope with the stack of the outer scope in which the
returned object is to be allocated. Thus these two scopes share the same local scope stack but
are physically different. This entails that rule stackInjective shown in Section 6.4 is not sound
anymore for treating PERC Pico programs (and can consequently not be used for this).

The rule for expanding method bodies creating a fresh constructed scope is shown in fig-
ure 15.4. The changes in comparison to rule scopedMemoryMethodBodyExpandMC are again
printed bold. We obtain term consScopeSize from the @ConstructedScopedMemorySize

3Also in cases the constructed scope size is specified to be 0 we still assume that a constructed scope of this
size is created.

172

15.2 Treatment of Constructed Scopes

annotation defining the size of the constructed scope.
As already elaborated, a constructed scope is under certain circumstances embedded in the

local scope or the reentrant scope of the enclosing method. This is taken into account by
update V increasing the consumed@(MemoryArea) attribute of the affected local/reentrant
scope accordingly if needed:

• {V} = {cma.consumed := cma.consumed+ consScopeSize′}
where consScopeSize′ := consScopeSize + LTMemoryArea.size. Update V is chosen
as above if the object returned by meth is to be allocated in the current local scope
(@scope=@<cma>) and the innermost method frame occurring in π belongs to a method
annotated with @CallerAllocatedResult (resp. @CallerAllocatedArrayResult)
or to the implicit method <init> (representing basically a constructor body). The term
cma stands for the local scope referenced by the <cma> pointer of this method frame.
The term LTMemoryArea.size represents the memory overhead needed (in addition
to the space for objects allocated in this scope) for the constructed scope itself whereas
consScopeSize is the size of the constructed scope available to objects allocated inside
it.

• {V} = {self.<rs> .consumed := self.<rs> .consumed+ consScopeSize′}
If @scope=@this.<rs>. The term self stands for the receiver object referenced by the
this pointer of the innermost enclosing method frame occurring in π.

• {V} = {skip} if none of the preceding cases matches.

15.2.3 Initialisation of the Implicit Field <rs>

When invoking the constructor declared in a class annotated with @ReentrantScope, the
implicit field <rs> is initialised with the constructed scope associated with this constructor.
If this.<rs> has already been initialised by a chained this or super constructor invocation
with a constructed scope different from the current constructed scope4 (i.e., the one <coma>

refers to) the current constructed scope is resized accordingly (see Section 15.1.4). Technically
this is realized by placing the code fragment5

JAVA

if(this.<rs>!=<coma>){
if(this.<rs>!=null){
<coma>.size += this.<rs>.size;
<coma>.consumed += this.<rs>.consumed;

}
this.<rs> = <coma>;

}

JAVA

4This occurs if the declaration of the invoked this or super constructor is not annotated with
@ExternallyConstructedScope.

5The field this.<rs> has already been set to null when allocating the regarded object (and thus before
executing any implementation of the <init> method on the regarded object). For the sake of brevity
we omit the canonical changes applied to the allocation rule allocateMIB for realizing this.

173

15 Verification of Scope Sizes in the PERC Pico Memory Model

percCSMemoryMethodBodyExpandMC
Γ, {U}(cma.stack � getMemoryStack(j) ∧ j ≥MemoryStack.<ntc>) ⇒

{U}{V}{getLTMemory(LTMemory.<ntc>).stack := getLTMemory(j) ||
newLocalMem := getLTMemory(LTMemory.<ntc>) ||
getLTMemory(LTMemory.<ntc>).<c> := TRUE ||
getLTMemory(LTMemory.<ntc>).consumed := 0 ||
getLTMemory(LTMemory.<ntc>).size := localScopeSize ||
newConsMem := getLTMemory(LTMemory.<ntc>+ 1) ||
getLTMemory(LTMemory.<ntc>+ 1).stack := mem.stack ||
getLTMemory(LTMemory.<ntc>+ 1).<c> := TRUE ||
getLTMemory(LTMemory.<ntc>+ 1).consumed := 0 ||
getLTMemory(LTMemory.<ntc>+ 1).size := consScopeSize ||
LTMemory.<ntc> := LTMemory.<ntc>+ 2 ||
MemoryStack.<ntc> := j + 1 ||
for i; if(MemoryStack.<ntc> ≤ i ∧ i ≤ j)

getMemoryStack(i).<c> := TRUE
}〈π method-frame(result->lhs,

source=C,

this=se,
<cma>=newLocalMem,

<oma>=mem,

<coma>= newConsMem) : {body} ω〉φ, ∆

Γ ⇒ {U}〈π lhs=se.meth(args)@scope@(C);ω〉φ, ∆

Figure 15.4: Expanding of a method body statement of methods not declared with the
@ExternallyConstructedScope annotation

174

15.3 Proof Obligation for PERC Pico Programs

in the <init> method right after the possible call to a this or super constructor. For details
on the structure of the <init> method refer to [Beckert et al., 2007, p. 143].

15.3 Proof Obligation for PERC Pico Programs
The proof obligation for proving the correctness (i.e., sufficiency) of constructed scope sizes
can be defined as follows:

RespectsConstructedScopeSize(ct;Assumed) :=
ConjAssumed ∧ Pre ∧ ConjInvRealtime ∧ V alidCallSCJ

op ∧ V alidCallPERC
op →

{LTMemory.<ntc>@pre := LTMemory.<ntc>}〈Prgop()〉 cs.consumed ≤ cs.size

where

• cs abbreviates

– defaultMemoryArea if op is annotated with @ExternallyConstructedScope

– getLTMemory(LTMemory.<ntc>@pre + 1) otherwise

which is the constructed scope of the method call embedded in Prgop(),

• ConjAssumed is defined as in Section 2.3.5,

• Pre is defined as in Section 2.3.5,

• ConjInvRealtime is defined as in Section 7.2,

• The static analysis performed by PERC Pico enforces certain constraints on arguments
of methods not declared with the @AllowCheckedScopedLinks modifier. These con-
straints are expressed by the formula V alidCallPERC

op in the above PO. Let p1, . . . , pn

be the arguments of the method call embedded in Prgop()

– For a method declared with the @CallerAllocatedResult modifier all arguments
of the method declared as @Scoped (but not @CaptiveScoped6) are known to
reside in an outer scope of the constructed scope or (in the case of an externally
constructed scope) in the constructed scope itself.

– For a method declared with the @ReentrantScope modifier or a constructor all
arguments declared as @Scoped (but not @CaptiveScoped) reside in the same
scope as the this object or an enclosing scope of it.

In both of the above cases V alidCallPERC
op has the form

V alidCallPERC
op :=

∧
i:1≤i≤n and

pi is declared @Scoped

(pi 6
.
= null→ pi. <ma> .stack � mem.stack)

(15.1)
where mem denotes either the (externally) constructed scope or the scope containing
the receiver object (created object) of the method (constructor) invocation embedded in

6The modifier @CaptiveScoped indicates that no reference to the annotated parameter created by the
method execution outlives the method execution.

175

15 Verification of Scope Sizes in the PERC Pico Memory Model

Prgop(). For methods and constructors annotated with the @NestedReentrantScope
modifier restrictions on @Scoped arguments are slightly more stringent: @Scoped ar-
guments are required to reside in the same scope as the receiver object of the method
(or the object created by the constructor) itself. This leads to the following definition
of V alidCallPERC

op for this kind of methods and constructors:

V alidCallPERC
op :=

∧
i:1≤i≤n and

pi is declared @Scoped

(pi 6
.
= null→ pi. <ma>

.
= mem) (15.2)

where mem is the memory area containing the object referenced by op’s this pointer.

Proof obligations for the sufficiency of local and reentrant scopes are defined analogously.

15.4 Modular Verification of PERC Pico Programs
This section lists modifications needed to apply the calculus presented in 13 to PERC Pico
programs. These modifications are mostly canonical and their implementation is not described
in its technical details here.

15.4.1 Memory Consumption in the Caller Context

PERC Pico annotations lack a facility to specify the amount of memory allocated in the
caller context. This is, however, needed for performing modular verification in cases externally
constructed scopes or returned objects of an array type are involved (In case a method returns
a non-array object of type T , externally constructed scopes are not allowed to be used and
the constructed scope is also not embedded in the outer local scope we can assume that the
amount of memory allocated in the caller context does not exceed T.<size>).

Rules for symbolically executing method invocations by approximating them by their con-
tract need (analogously to rules for expanding method bodies) to determine the scope for
allocating a newly created returned object in. The memory space consumed in this and other
already existing scopes has to be accounted for (and needs to be specified by a contract).

15.4.2 Memory Consumption in Loops

Since, with local, constructed and reentrant scopes, we now have to deal with several currently
active scopes in parallel, it is no longer sufficient to have only one working space clause for
specifying the memory consumption (in the current scope) of a single loop iterations. Memory
consumption figures in the different current scopes need to be distinguished by different loop-
level working space clauses. The loop invariant rules presented in Section 13.2.3 are adapted
canonically.

176

16 Related Work

The shortcomings of JML’s \working_space constructs were also identified in [Atkey, 2006].
To overcome this, [Atkey, 2006] proposes to specify the working space of certain methods
with the help of model methods parameterized by those locations and method arguments
potentially affecting the working space of the specified method. This carries the advantage
of requiring only existing JML features but burdens the programmer with extra specification
efforts (providing and specifying the model method) and decreases modularity (changes in
the program might entail changes of model methods and specifications containing calls to the
changed model methods).

In [Barthe et al., 2005] another approach verifying the JML memory consumption contracts
is presented. The total amount of consumed heap space is stored in a ghost variable which
is increased by set statements after each constructor call. The memory specifications de-
scribed in [Barthe et al., 2005] can in principle be verified modularly but not conveniently be
specified in a modular way since the memory consumption of a method cannot be expressed
(the way memory contracts are written in [Barthe et al., 2005]) as a function of the memory
consumption of the methods it calls (as it is possible with the \working_space construct).
Using the memory contracts introduced in [Barthe et al., 2005] this could, however, still be
achieved by means of model methods as described in [Atkey, 2006].

The verification of loop bounds is described in [Hunt et al., 2006]. Section 13.2.3 extends
and makes use of this work by describing a way to reason about the memory consumption of
loops.

Giambiagi and Schneider [Giambiagi and Schneider, 2005] presented an on-card static an-
alyzer for estimating the memory consumption of Java Card byte code. A similar approach
is described in [Pham et al., 2008]. Performing a sound analysis automatically on a smart
card with very limited resources implicates of course a preciseness trade-off: The algorithm
presented in [Giambiagi and Schneider, 2005], for instance, basically is limited to detecting
whether a new instruction occurs inside a cycle (i.e., a loop or recursively called method) and,
in case such a new instruction is found, assumes infinitely many instances to be allocated by
this instruction.

There are several approaches, as, for instance, [Hughes et al., 1996, Chin et al., 2005], to
make space requirements of objects part of the type system.

177

Part IV

Conclusions

179

17 Summary and Future Work
This work provided several contributions in the field of formal verification of safety-critical
and real-time Java systems some of which are also relevant and applicable to Java Card
(such as the approach for verifying memory performance contracts, as described in Sections
10–14) and standard Java applications (such as the proof obligations discussed in Section 9).

The first part of this thesis laid the foundations the remainder of this work is based on.
Section 2 gave an overview of Java DL and introduced solutions for handling inner classes
and sum comprehensions in the Java DL calculus which formed a prerequisite for other
parts of this work. For treating sum comprehensions we assumed two axioms, the correctness
(relative to these axioms) of all other rules introduced for treating comprehensions was verified
with the KeY system. Some evidence was provided suggesting a high degree of automation
facilitated by this rule set when employed in induction proofs. The subsequent Sections 3 and
4 summed up the aspects of JML and RTSJ relevant for this work.

The second part deals with the formalisation of the RTSJ and other region-based memory
models and implications of these memory models for proving data encapsulation properties.
Section 6 showed how the RTSJ MM can be formalized in Java DL. For this we imposed some
restrictions on the set of considered programs as described in Section 5. Proof obligations
for RTSJ programs were considered in Section 7 which also exemplarily showed how higher
level specification means can be defined based on the constructs introduced in the preceding
Sections. In the following (Section 8) adaptations of the presented approach required for
treating other SCJ profiles were discussed. Section 9 reviews several proof obligations for
proving data encapsulation properties, introduces novel POs for depends and captures clauses
and provides correctness and completeness proofs for these POs. It is also explained how the
RTSJ MM can be leveraged for facilitating non-interference in RTSJ programs.

The third part depicted a contract-based approach for verifying worst case memory usage
(WCMU) specifications. Section 11 wrapped up the existing JML specification means for
WCMU figures, pointed out their shortcomings and made propositions how to overcome them.
In the following, a calculus for verifying the correctness of WCMU contracts in a modular way
was introduced. This included a loop invariant rule for verifying the memory consumption
of loops. Adaptations of this calculus required for treating memory models featuring implicit
scope identities were developed in Section 15. Particular focus was put on the memory model
employed by the PERC Pico tool suite [Nilsen, 2006].

With few exceptions the concepts described in this work have been implemented in the
KeY system.

Possible areas of future work are the evaluation of the presented solutions based on a
wider range of examples and the minimisation of user interaction: Currently all specifi-
cations described in this work have to be provided by the user. It would be preferable
to derive some of them, such as, for instance, the memory consumption figures of sin-
gle loop iterations or loop invariants [Schmitt and Weiß, 2007], automatically by means of
static analysis. More lightweight static analysis techniques (such as abstract interpretation
[Cousot and Cousot, 1977]) could also help to provide likely memory consumption estima-

181

17 Summary and Future Work

tions. The applied analysis could attempt to be as precise as possible without being restricted
by the necessity of being sound since its results can then be checked by means of formal ver-
ification as described in this work. Another topic worth investigating would be whether the
verification of depends and captures clauses as presented in Section 9 would benefit from a
different, more explicit encoding of the heap which could simplify formulating constraints on
heaps or comparing two different heaps.

182

A Taclets for Sum Comprehensions

This Appendix lists all rules for treating sum comprehensions (introduced in Section 2.3.8).

A.1 Not Automatically Applicable Rules

sumIndU1 sum(x; [l, u); t) sum(x; [l, u− 1); t) + \if(l < u) \then(t[x/u−1]) \else(0)

sumIndU2 sum(x; [l, u); t) sum(x; [l, u+ 1); t)− \if(l < u+ 1) \then(t[x/u]) \else(0)

sumIndL1 sum(x; [l, u); t) sum(x; [l + 1, u); t) + \if(l < u) \then(t[x/l]) \else(0)

sumIndL2 sum(x; [l, u); t) sum(x; [l − 1, u); t)− \if(l − 1 < u) \then(t[x/l−1]) \else(0)
sumDistributive sum(x; [l, u); t1 ∗ t2) sum(x; [l, u); t1) ∗ t2

Where x has no free occurrence in t2.

sumSplit

Γ ⇒ l ≤ m ∧m ≤ u, ∆
[sum(x; [l, u); t) sum(x; [l,m); t) + sum(x; [m,u); t)]

Γ ⇒ ∆
3 sum(x; [l, u); t)

sumEmpty

Γ ⇒ u ≤ l, ∆
[sum(x; [l, u); t) 0]

Γ ⇒ ∆
3 sum(x; [l, u); t)

singleSummand

Γ ⇒ l
.
= u− 1, ∆[

sum(x; [l, u); t) t[x/l]
]

Γ ⇒ ∆
3 sum(x; [l, u); t)

A.2 Automatically Applicable Rules

sumIndU1Concr sum(x; [l, 1 + u); t) sum(x; [l, u); t) + \if(l ≤ u) \then(t[x/u]) \else(0)
sumIndU2Concr sum(x; [l,−1 + u); t) sum(x; [l, u); t)−\if(l < u) \then(t[x/u−1]) \else(0)
sumIndL1Concr sum(x; [l − 1, u); t) sum(x; [l, u); t) + \if(l < u) \then(t[x/l−1]) \else(0)
sumIndL2Concr sum(x; [1 + l, u); t) sum(x; [l, u); t)− \if(l < u) \then(t[x/l]) \else(0)

sumEmptyConcrete1
Γ ⇒ ∆, u ≤ l

Γ ⇒ sum(x; [l, u); t)
.
= 0, ∆

sumEmptyConcrete2 sum(x; [l,−u); t) 0

where l and u are positive integer literals.

sumLEqU sum(x; [l, l); t) 0

183

A Taclets for Sum Comprehensions

sumOneZero
Γ, s ≥ 0 ⇒ ∆

Γ ⇒ ∆
3 s

where s stands for a term of the form sum(x; [l, u); \if(b) \then(1) \else(0)).

sumEqual1
Γ ⇒ sum(x; [l, u); t1)

.
= sum(y; [l, u); t2), ∀x; l ≤ x ∧ x < u→ t1

.
= t

y/x
2 , ∆

Γ ⇒ sum(x; [l, u); t1)
.
= sum(y; [l, u); t2), ∆

sumCommutativeAssociative sum(x; [l, u); t1 + t2) sum(x; [l, u); t1) + sum(x; [l, u); t2)

sumEqual2

Γ, sum(x; [l, u); t1)
.
= t⇒

sum(y; [l, u); t2)
.
= t, ∀x; l ≤ x ∧ x < u→ t1

.
= t

y/x
2 , ∆

Γ, sum(x; [l, u); t1)
.
= t⇒ sum(y; [l, u); t2)

.
= t, ∆

sumEqual3

Γ, sum(x; [l, u); t1)
.
= i, sum(y; [l, u); t2)

.
= j ⇒

i
.
= j, ∀x; l ≤ x ∧ x < u→ t1

.
= t

y/x
2 , ∆

Γ, sum(x; [l, u); t1)
.
= i, sum(y; [l, u); t2)

.
= j ⇒ i

.
= j, ∆

sumEqZeroCut

Γ ⇒ sum(x; [l1, u1); t1)
.
= 0, sum(x; [l1, u1); t1)

.
= sum(y; [l2, u2); t2) ∗ t, ∆

Γ, sum(x; [l1, u1); t1)
.
= 0 ⇒ sum(x; [l1, u1); t1)

.
= sum(y; [l2, u2); t2) ∗ t, ∆

Γ ⇒ sum(x; [l1, u1); t1)
.
= sum(y; [l2, u2); t2) ∗ t, ∆

sumZeroRight
Γ ⇒ ∀ int x; l ≤ x ∧ x < u→ t

.
= 0, sum(x; [l, u); t)

.
= 0, ∆

Γ ⇒ sum(x; [l, u); t)
.
= 0, ∆

sumEqSplit1

Γ ⇒

l ≤ u1 ∧ l ≤ u2∧\if(u1 < u2)

\then(sum(x; [l, u1); t1 − t
[y/x]
2)

.
= sum(y; [u1, u2); t2))

\else(sum(x; [u2, u1); t1)
.
= sum(y; [l, u2); t2 − t

[x/y]
1)),

sum(x; [l, u1); t1)
.
= sum(y; [l, u2); t2), ∆

Γ ⇒ sum(x; [l, u1); t1)
.
= sum(y; [l, u2); t2), ∆

sumEqSplit1′

Γ ⇒

l ≤ u1 ∧ l ≤ u2∧\if(u1 < u2)

\then(sum(x; [l, u1); t1 − t
[y/x]
2)

.
= sum(y; [u1, u2); t2))

\else(sum(x; [u2, u1); t1)
.
= sum(y; [l, u2); t2 − t

[x/y]
1)),

sum(x; [l, u1); t1)
.
= sum(y; [l, u2); t2), ∆

Γ, sum(x; [l, u1); t1)
.
= t⇒ sum(y; [l, u2); t2)

.
= t, ∆

sumEqSplit2

Γ ⇒

l1 ≤ u ∧ l2 ≤ u∧\if(l1 < l2)

\then(sum(x; [l1, l2); t1)
.
= sum(y; [l2, u); t2 − t

x/y
1))

\else(sum(x; [l1, u); t1 − t
y/x
2)

.
= sum(y; [l2, l1); t2)),

sum(x; [l, u1); t1)
.
= sum(y; [l, u2); t2), ∆

Γ ⇒ sum(x; [l1, u); t1)
.
= sum(y; [l2, u); t2), ∆

sumEqSplit2′

Γ ⇒

l1 ≤ u ∧ l2 ≤ u∧\if(l1 < l2)

\then(sum(x; [l1, l2); t1)
.
= sum(y; [l2, u); t2 − t

x/y
1))

\else(sum(x; [l1, u); t1 − t
y/x
2)

.
= sum(y; [l2, l1); t2)),

sum(x; [l, u1); t1)
.
= sum(y; [l, u2); t2), ∆

Γ, sum(x; [l1, u); t1)
.
= t⇒ sum(y; [l2, u); t2)

.
= t, ∆

184

Bibliography

[Andreae et al., 2007] Andreae, C., Coady, Y., Gibbs, C., Noble, J., Vitek, J., and Zhao,
T. (2007). Scoped types and aspects for real-time Java memory management. Real-Time
Syst., 37(1):1–44.

[Aonix, 2008] Aonix (2008). PERC Pico User Manual. http://research.aonix.com/
jsc/.

[Atkey, 2006] Atkey, R. (2006). Specifying and verifying heap space allocation with JML
and ESC/Java2 (preliminary report). In Workshop on Formal Techniques for Java-like
Programs (FTfJP).

[Barnett et al., 2005] Barnett, M., Leino, and Schulte, W. (2005). The Spec# Programming
System: An Overview, volume 3362/2005 of Lecture Notes in Computer Science, pages
49–69. Springer, Berlin / Heidelberg.

[Barthe et al., 2005] Barthe, G., Pavlova, M., and Schneider, G. (2005). Precise analysis of
memory consumption using program logics. SEFM, 0:86–95.

[Baum, 2007] Baum, M. (2007). Debugging by visualizing symbolic execution. Diplomarbeit,
Fakultät für Informatik, Universität Karlsruhe.

[Beckert et al., 2004] Beckert, B., Giese, M., Habermalz, E., Hähnle, R., Roth, A., Rümmer,
P., and Schlager, S. (2004). Taclets: A new paradigm for constructing interactive theorem
provers. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, Serie A:
Matemáticas (RACSAM), 98(1). Special Issue on Symbolic Computation in Logic and
Artificial Intelligence.

[Beckert and Gladisch, 2007] Beckert, B. and Gladisch, C. (2007). White-box testing by com-
bining deduction-based specification extraction and black-box testing. In Meyer, B. and
Gurevich, Y., editors, Proceedings, International Conference on Tests and Proofs (TAP),
Zurich, Switzerland, LNCS 4454. Springer.

[Beckert et al., 2007] Beckert, B., Hähnle, R., and Schmitt, P. H., editors (2007). Verification
of Object-Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer.

[Beckert et al., 2002] Beckert, B., Keller, U., and Schmitt, P. H. (2002). Translating the
Object Constraint Language into first-order predicate logic. In Proceedings, VERIFY,
Workshop at Federated Logic Conferences (FLoC), Copenhagen, Denmark.

[Beckert and Klebanov, 2007] Beckert, B. and Klebanov, V. (2007). A dynamic logic for de-
ductive verification of concurrent programs. In Hinchey, M. and Margaria, T., editors, Pro-
ceedings, 5th IEEE International Conference on Software Engineering and Formal Methods
(SEFM), London, UK. IEEE Press.

185

http://research.aonix.com/jsc/
http://research.aonix.com/jsc/

Bibliography

[Beebee and Rinard, 2001] Beebee, W. S. and Rinard, M. C. (2001). An implementation of
scoped memory for real-time java. In EMSOFT ’01: Proceedings of the First International
Workshop on Embedded Software, pages 289–305, London, UK. Springer-Verlag.

[Bengtsson et al., 1996] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and Yi, W.
(1996). Uppaal—a tool suite for automatic verification of real-time systems. In Proceedings
of the DIMACS/SYCON workshop on Hybrid systems III : verification and control, pages
232–243, Secaucus, NJ, USA. Springer-Verlag New York, Inc.

[Bollella and Gosling, 2000] Bollella, G. and Gosling, J. (2000). The real-time specification
for Java. Computer, 33(6):47–54.

[Boyapati et al., 2003] Boyapati, C., Salcianu, A., Beebee, W., and Rinard, J. (2003). Own-
ership types for safe region-based memory management in real-time Java. ACM Conference
on Programming Language Design and Implementation (PLDI).

[Breunesse and Poll, 2003] Breunesse, C. and Poll, E. (2003). Verifying jml specifications with
model fields. Technical report, In Formal Techniques for Java-like Programs. Proceedings
of the ECOOP 2003 Workshop.

[Bubel, 2007] Bubel, R. (2007). Formal verification of recursive predicates. PhD thesis, Uni-
versität Karlsruhe.

[Bubel et al., 2008a] Bubel, R., Hähnle, R., and Schmitt, P. H. (2008a). Specification predi-
cates with explicit dependency information. In Beckert, B., editor, Proceedings, 5th Inter-
national Verification Workshop (VERIFY’08), volume 372 of CEUR Workshop Proceedings,
pages 28–43. CEUR-WS.org.

[Bubel et al., 2008b] Bubel, R., Roth, A., and Rümmer, P. (2008b). Ensuring the correctness
of lightweight tactics for javacard dynamic logic. Electron. Notes Theor. Comput. Sci.,
199:107–128.

[Chen, 2000] Chen, Z. (2000). Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Chin et al., 2005] Chin, W., Nguyen, H. H., Qin, S., and Rinard, M. (2005). Memory usage
verification for oo programs. In In SAS 05, pages 70–86. Springer.

[Choi et al., 1999] Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V. C., and Midkiff, S.
(1999). Escape analysis for Java. SIGPLAN Not., 34(10):1–19.

[Cok and Kiniry, 2004] Cok, D. R. and Kiniry, J. (2004). Esc/java2: Uniting esc/java and
jml. In CASSIS, pages 108–128.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract interpretation: a
unified lattice model for static analysis of programs by construction or approximation of
fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238–252, New York, NY, USA. ACM.

[Dautelle, 2009] Dautelle, J.-M. (2009). Javolution – the java solution for real-time and em-
bedded systems. Javolution homepage, http://www.javolution.org/.

186

http://www.javolution.org/

Bibliography

[Dawson, 2008] Dawson, M. H. (2008). Challenges in Implementing the Real-Time Specifi-
cation for Java (RTSJ) in a Commercial Real-Time Java Virtual Machine. In ISORC ’08:
Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing, pages 241–247, Washington, DC, USA. IEEE Computer Society.

[Dĳkstra and Feĳen, 1988] Dĳkstra, E. W. and Feĳen, W. H. (1988). A Method of Program-
ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Engel, 2005] Engel, C. (2005). A Translation from JML to JavaDL. Studienarbeit, Fakultät
für Informatik, Universität Karlsruhe. Institut für Logik, Komplexität und Deduktionssys-
teme.

[Engel and Hähnle, 2007] Engel, C. and Hähnle, R. (2007). Generating unit tests from formal
proofs. In Gurevich, Y. and Meyer, B., editors, Proceedings, 1st International Conference
on Tests And Proofs (TAP), Zurich, Switzerland, volume 4454 of LNCS, pages 169–188.
Springer.

[Engel et al., 2009] Engel, C., Roth, A., Schmitt, P., and Weiß, B. (2009). Verification of
Modifies Clauses in Dynamic Logic with Non-rigid Functions. Technical Report 2009,9,
ISSN: 1432-7864, Universität Karlsruhe.

[Fredriksson et al., 2007] Fredriksson, J., Nolte, T., Nolin, M., and Schmidt, H. (2007).
Contract-based reusable worst-case execution time estimate. In RTCSA ’07: Proceedings of
the 13th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 39–46, Washington, DC, USA. IEEE Computer Society.

[Giambiagi and Schneider, 2005] Giambiagi, P. and Schneider, G. (2005). Memory consump-
tion analysis of Java smart cards. In Proceedings of XXXI Latin American Informatics
Conference (CLEI 2005), page 12, Cali, Colombia.

[Giese, 2004] Giese, M. (2004). Taclets and the KeY prover. In Aspinall, D. and Lüth, C.,
editors, Proc. User Interfaces for Theorem Provers Workshop, UITP 2003, volume 103 of
Electronic Notes in Theoretical Computer Science, pages 67–79. Elsevier.

[Gosling et al., 2005] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The Java Lan-
guage Specification, Third Edition. Addison-Wesley Longman, Amsterdam, 3. edition.

[Harel, 1984] Harel, D. (1984). Dynamic logic. In Gabbay, D. and Guenther, F., editors,
Handbook of Philosophical Logic, volume 2 of Extensions of Classical Logic, pages 497–604.
D. Reidel Publishing Company.

[Hayes and Utting, 2001] Hayes, I. J. and Utting, M. (2001). A sequential real-time refine-
ment calculus. Acta Informatica, 37(6):385–448.

[HĲA, 2006] HĲA (2006). HĲA – High Integrity Java Application. Project Web Site. http:
//www.hija.info.

[Holzner, 2004] Holzner, S. (2004). Eclipse. O’Reilly, 1. edition.

187

http://www.hija.info
http://www.hija.info

Bibliography

[Hughes et al., 1996] Hughes, J., Pareto, L., and Sabry, A. (1996). Proving the correctness of
reactive systems using sized types. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 410–423, New York,
NY, USA. ACM.

[Hunt et al., 2006] Hunt, J. J., Siebert, F. B., Schmitt, P. H., and Tonin, I. (2006). Provably
correct loops bounds for realtime Java programs. In JTRES ’06: Proceedings of the 4th
international workshop on Java technologies for real-time and embedded systems, pages
162–169, New York, NY, USA. ACM Press.

[Igarashi and Pierce, 2002] Igarashi, A. and Pierce, B. C. (2002). On inner classes. Inf.
Comput., 177(1):56–89.

[Jacobs et al., 2007] Jacobs, B., Muller, P., and Piessens, F. (2007). Sound reasoning about
unchecked exceptions. In SEFM ’07: Proceedings of the Fifth IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM 2007), pages 113–122, Wash-
ington, DC, USA. IEEE Computer Society.

[Jones and Lins, 1996] Jones, R. and Lins, R. (1996). Garbage collection: algorithms for
automatic dynamic memory management. John Wiley & Sons, Inc., New York, NY, USA.

[King, 1976] King, J. C. (1976). Symbolic execution and program testing. Commun. ACM,
19(7):385–394.

[Klebanov, 2004] Klebanov, V. (2004). A JMM-faithful non-interference calculus for Java.
In Scientific Engineering of Distributed Java Applications, 4th International Workshop,
FIDJI 2004, Luxembourg-Kirchberg, volume 3409 of Lecture Notes in Computer Science,
pages 101–111. Springer.

[Klebanov et al., 2005] Klebanov, V., Rümmer, P., Schlager, S., and Schmitt, P. H. (2005).
Verification of JCSP programs. In Broenink, J., Roebbers, H., Sunter, J., Welch, P., and
Wood, D., editors, Communicating Process Architectures 2005, volume 63 of Concurrent
Systems Engineering Series, pages 203–218, IOS Press, The Netherlands. IOS Press.

[Krone et al., 2001] Krone, J., Ogden, W. F., and Sitaraman, M. (2001). Modular verification
of performance constraints. In ACM OOPSLA Workshop on Specification and Verification
of Component-Based Systems (SAVCBS), pages 60–67.

[Kung et al., 2006] Kung, A., Hunt, J., Gauthier, L., and Richard-Foy, M. (2006). Issues in
building an ANRTS platform. In JTRES ’06: Proceedings of the 4th international workshop
on Java technologies for real-time and embedded systems, pages 144–151, New York, NY,
USA. ACM.

[Kwon et al., 2005] Kwon, J., Wellings, A., and King, S. (2005). Ravenscar-Java: a high-
integrity profile for real-time Java: Research articles. Concurr. Comput. : Pract. Exper.,
17(5-6):681–713.

[Kwon and Wellings, 2004] Kwon, J. and Wellings, A. J. (2004). Memory management based
on method invocation in RTSJ. In OTM Workshops, pages 333–345.

188

Bibliography

[Leavens et al., 2006] Leavens, G. T., Baker, A. L., and Ruby, C. (2006). Preliminary design
of JML: a behavioral interface specification language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38.

[Leavens et al., 2007] Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D. R.,
Müller, P., Kiniry, J., and Chalin, P. (2007). JML Reference Manual. Department of
Computer Science, Iowa State University. Available from http://www.jmlspecs.org.

[Leino, 1998] Leino, K. R. M. (1998). Data groups: specifying the modification of extended
state. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 144–153, New York,
NY, USA. ACM.

[Leino and Monahan, 2007] Leino, K. R. M. and Monahan, R. (2007). Automatic verification
of textbook programs that use comprehensions. In Workshop on Formal Techniques for
Java-like Programs (FTfJP).

[Mann et al., 2005] Mann, T., Deters, M., LeGrand, R., and Cytron, R. K. (2005). Static
determination of allocation rates to support real-time garbage collection. In LCTES ’05:
Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, compilers,
and tools for embedded systems, pages 193–202, New York, NY, USA. ACM.

[Meyer, 1992] Meyer, B. (1992). Applying "Design by Contract". Computer, 25(10):40–51.

[Müller et al., 2003] Müller, P., Poetzsch-Heffter, A., and Leavens, G. T. (2003). Modular
Specification of Frame Properties in JML . Concurrency and Computation: Practice and
Experience, 15:117–154.

[Mürk et al., 2007] Mürk, O., Larsson, D., and Hähnle, R. (2007). KeY-C: A tool for verifica-
tion of C programs. In Pfenning, F., editor, Proc. 21st Conference on Automated Deduction
(CADE), Bremen, Germany, volume 4603 of LNCS, pages 385–390. Springer-Verlag.

[Nilsen, 2006] Nilsen, K. (2006). A type system to assure scope safety within safety-critical
Java modules. In JTRES ’06: Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems, pages 97–106, New York, NY, USA. ACM.

[Nilsen, 2008] Nilsen, K. (2008). Simple low-level real-time threading semantics to enable
portability, efficiency, analyzability, and generality. In JTRES ’08: Proceedings of the 6th
international workshop on Java technologies for real-time and embedded systems, pages
125–134, New York, NY, USA. ACM.

[Pham et al., 2008] Pham, T.-H., Truong, A.-H., Truong, N.-T., and Chin, W.-N. (2008).
A fast algorithm to compute heap memory bounds of java card applets. In SEFM ’08:
Proceedings of the 2008 Sixth IEEE International Conference on Software Engineering and
Formal Methods, pages 259–267, Washington, DC, USA. IEEE Computer Society.

[Platzer, 2004] Platzer, A. (2004). An object-oriented dynamic logic with updates. Diplo-
marbeit, Universität Karlsruhe, Fakultät für Informatik. Institut für Logik, Kom-
plexität und Deduktionssysteme. http://i12www.ira.uka.de/~key/doc/2004/
odlMasterThesis.pdf.

189

http://www.jmlspecs.org
http://i12www.ira.uka.de/~key/doc/2004/odlMasterThesis.pdf
http://i12www.ira.uka.de/~key/doc/2004/odlMasterThesis.pdf

Bibliography

[Platzer and Quesel, 2008] Platzer, A. and Quesel, J.-D. (2008). Keymaera: A hybrid theo-
rem prover for hybrid systems (system description). In ĲCAR ’08: Proceedings of the 4th
international joint conference on Automated Reasoning, pages 171–178, Berlin, Heidelberg.
Springer-Verlag.

[Roth, 2006] Roth, A. (2006). Specification and Verification of Object-Oriented Software
Components. PhD thesis, Universität Karlsruhe.

[Rothe, 2008] Rothe, M. (2008). Assisting the understanding of program behavior by using
symbolic execution. Master’s thesis, Chalmers University of Technology.

[Rountev et al., 2001] Rountev, A., Milanova, A., and Ryder, B. G. (2001). Points-to analysis
for java using annotated constraints. SIGPLAN Not., 36(11):43–55.

[RTCA, 1992] RTCA (1992). Software considerations in airborne systems and equipment
certification. Washington DC. DO-178B.

[Rümmer, 2003] Rümmer, P. (2003). Ensuring the soundness of taclets – Constructing proof
obligations for Java Card DL taclets. Studienarbeit, Fakultät für Informatik, Universität
Karlsruhe.

[Rümmer, 2006] Rümmer, P. (2006). Sequential, parallel, and quantified updates of first-
order structures. In 13th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2006), LNCS 4246, pages 422–436. Springer.

[Schmitt and Weiß, 2007] Schmitt, P. H. and Weiß, B. (2007). Inferring invariants by symbolic
execution. In Beckert, B., editor, Proceedings, 4th International Verification Workshop
(VERIFY’07), volume 259 of CEUR Workshop Proceedings, pages 195–210. CEUR-WS.org.

[Schoeberl et al., 2007] Schoeberl, M., Sondergaard, H., Thomsen, B., and Ravn, A. P.
(2007). A profile for safety critical Java. In ISORC ’07: Proceedings of the 10th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting, pages 94–101, Washington, DC, USA. IEEE Computer Society.

[Siebert, 2007] Siebert, F. (2007). Realtime garbage collection in the JamaicaVM 3.0. In
JTRES ’07: Proceedings of the 5th international workshop on Java technologies for real-
time and embedded systems, pages 94–103, New York, NY, USA. ACM.

[Spoto and Poll, 2003] Spoto, F. and Poll, E. (2003). Static analysis for JML’s assignable
clauses. In Ghelli, G., editor, Proceedings, 10th International Workshop on Foundations of
Object-Oriented Languages (FOOL-10).

[Sălcianu and Rinard, 2005] Sălcianu, A. D. and Rinard, M. C. (2005). Purity and side effect
analysis for Java programs. In Cousot, R., editor, Proceedings, 6th International Conference
on Verification, Model Checking and Abstract Interpretation (VMCAI 2005), volume 3385
of LNCS, pages 199–215. Springer.

[Tofte and Talpin, 1997] Tofte, M. and Talpin, J.-P. (1997). Region-based memory manage-
ment. Information and Computation.

190

Bibliography

[Ulbrich, 2007] Ulbrich, M. (2007). Software verification for Java 5. Diplomarbeit, Fakultät
für Informatik, Universität Karlsruhe.

[Whaley and Rinard, 1999] Whaley, J. and Rinard, M. (1999). Compositional pointer and
escape analysis for java programs. SIGPLAN Not., 34(10):187–206.

[Zhao et al., 2004] Zhao, T., Noble, J., and Vitek, J. (2004). Scoped types for real-time Java.
In RTSS ’04: Proceedings of the 25th IEEE International Real-Time Systems Symposium,
pages 241–251, Washington, DC, USA. IEEE Computer Society.

191

Index

accessible clause, 109
\add, 22
<allocate>, 28
anonymous class, 38
arbitraryScope, 93
arbitraryScopeThis, 93
ArrayStoreException, 89
assignable clause, 29, 108

proof obligation, 109
\assumes, 22
@pre, 19
@pre′, 21

box modality, 7

cactus stack, 57
captures clause, 30, 108

proof obligation, 119
certification, 1
\closegoal, 23
comprehension, 41
constant-domain assumption, 26
constructed scope, 101, 169
contract, 29
<c>, 27
<createObject>, 28
\currentMemoryArea, 91
currentRealtimeThread(), 123

dangling reference, 55
defaultMemoryArea, 69
deletion of objects, 65
depends clause, 30, 108

proof obligation, 113
diamond modality, 7
DO-178B, 1
DO-178C, 1

enter, 57, 76
exact type, 8
executeInArea, 57

finalization, 65
\find, 21
flexible, 8

garbage collector, 55
getC , 27
ghost field, 71

IllegalAssignmentError, 59
immortal memory, 55, 168
implicit field, 27
implicit method, 27
\inImmortalMemory, 92
<init>, 28
inner class, 36
\inOuterScope, 91
inReachableState, 28
invariant

class invariant, 30

Java Card, 2
Java Card DL, 2
Java Modeling Language, 51
Java DL, 7

formula, 9
program, 10
signature, 8
syntax, 7
term, 9
type hierarchy, 7
update, 11

Javolution, 163
JML, 51

assignable, 52
behavior spec case, 53
captures, 52
class invariant, 51
depends, 52
ensures, 52
exceptional_behavior spec case, 53
method specification case, 51

193

INDEX

normal_behavior spec case, 53
requires, 52
signals, 52

JVM, 139

KeY system, 2
KeYSCJ, 65
KeYSCJ*, 106
Kripke seed, 13
Kripke structure, 12

local class, 38
local scope, 100, 167
location, 10

location function symbol, 10
virtual location function symbol, 10

location dependent symbol, 19
location descriptor, 11

≈ld, 15
extension, 14

loop
dependent working space clause, 137
invariant rule, 155
working space clause, 136

LTMemory, 56

maxSpace, 141
memory area

javax.realtime.MemoryArea, 75
<ma>, 69

\memoryArea, 91
method body statement, 35
method contract, 29
method frame statement, 35, 68, 100
MIB memory model, 99
model checking, 62
modifies clause, 29

<ntc>, 27

object
creation, 26
initialisation, 27
repository, 27

\outerScope, 91

PERC Pico, 99, 165
portal, 60, 79
postcondition, 29

precondition, 29
<prepare>, 28

reachable state, 28
real-time, 1
RealtimeThread

currentRealtimeThread(), 123
NoHeapRealtimeThread, 59

reentrant scope, 101, 170
refinement, 124
\replacewith, 21
RespectsCap, 119
RespectsDepq, 110
RespectsDep∗q, 111
RespectsMod, 109
RespectsWorkingSpace, 145
rewrite rule, 23, 25
rigid, 8
RS, 28
RTSJ, 55

\sameUpdateLevel, 24
scheduling, 62
scoped memory, 55
scopeSafe, 94
sequent calculus, 2
\space, 132
Spec#, 47
static initialisation, 66
sum, 41
symbolic execution, 25

taclet, 21
TDL

JML, 52

update, 11
anonymising, 12
anonymous, 12, 14
semantics, 13
syntax, 11

V alidCallsemop , 33
V alidCallJava

op , 33
V alidCallSCJ

op , 95
VTMemory, 56

working_space, 131
\working_space, 132

194

	Introduction
	The KeY System
	Outline
	Contributions

	Foundations
	Java DL
	Syntax
	Type Hierarchy
	Signature
	Terms, Formulas and Updates

	Semantics
	Updates
	Location Descriptors and Location Dependent Symbols

	Calculus
	The Taclet Language
	Symbolic Execution
	Object Creation
	Reachable States
	Method Contracts and Class Invariants
	Inlining of Method Bodies
	Inner Classes
	Sum Comprehensions

	Java Modeling Language
	Real-Time Specification for Java
	Memory Management
	Memory Areas
	Assignment Checks
	Single Parent Rule
	Portals

	Safety-Critical Java Profiles Based on the RTSJ
	Verification Challenges for RTSJ Programs and Scope of This Work

	Safety Critical Java
	The Considered SCJ Profile
	Constraints on the Scope Stack
	Finalization and Deletion of Objects
	Static Initialisation

	Calculus
	Basic Ideas
	Determination of the Allocation Context
	The [language=[JML]Java,basicstyle = ,keywordstyle =]<cma> Pointer
	The Implicit Field <ma>

	The RTSJ API and the Scope Stack
	The Class [language=[JML]Java,basicstyle = ,keywordstyle =]MemoryStack
	Specification of [language=[JML]Java,basicstyle = ,keywordstyle =]MemoryArea and its Sub-Types
	Admissible References to Inner Scopes
	The Helper Class [language=[JML]Java,basicstyle = ,keywordstyle =]RealtimeSystem

	Axiomatization of and im
	The Implicit Method [language=[JML]Java,basicstyle = ,keywordstyle =]<delete>
	Proof Obligation for RS
	Rules for Symbolic Execution
	Assignments to Static References
	Assignments to Non-Static References

	Related Work

	JML Specifications and Proof Obligations
	JML Extensions
	The [language=[JML]Java,basicstyle = ,keywordstyle =]currentMemoryArea Pointer
	The [language=[JML]Java,basicstyle = ,keywordstyle =]memoryArea construct
	The [language=[JML]Java,basicstyle = ,keywordstyle =]outerScope and [language=[JML]Java,basicstyle = ,keywordstyle =]inOuterScope constructs
	The [language=[JML]Java,basicstyle = ,keywordstyle =]inImmortalMemory Construct
	The [language=[JML]Java,basicstyle = ,keywordstyle =]arbitraryScope and [language=[JML]Java,basicstyle = ,keywordstyle =]arbitraryScopeThis Modifiers
	The [language=[JML]Java,basicstyle = ,keywordstyle =]scopeSafe Modifier

	Proof Obligations for KeYSCJ Programs
	An Extended Example

	Applicability to Existing SCJ Profiles and Required Adaptations
	Implicit Scopes Based on Method Invocation
	Syntactical Changes
	Calculus

	A Profile for Facilitating Non-Interference Proofs in RTSJ
	Leveraging the RTSJ Memory Model for Data Encapsulation
	The KeYSCJ* Profile
	Benefits of KeYSCJ*

	Assignable, Depends and Captures Clauses
	Proof Obligations for Assignable, Depends and Captures Clauses

	Alternative Approach
	Handling of Threads

	Modular Verification of WCMU Contracts
	The Necessity for Correct Worst Case Memory Usage Estimations
	JML Memory Performance Specifications
	Existing JML Specifications and their Shortcomings
	Enhanced JML Heap Memory Specifications
	The Applied Integer Semantics
	Interpretation of Working Space Clauses in the Pre-State
	Rigid Working Space Functions with Explicit Preconditions
	Loop Working Space Specifications
	Assumptions on the Java Virtual Machine
	Mapping JML Expressions to Java DL
	KeYJML Semantics for RTSJ Programs

	Memory Contracts and Proof Obligations
	Calculus
	Axiomatization of wsr, wsnr, spacearr, maxSpace and C.<size>
	Platform Independent Rules
	Platform Specific Rules

	Symbolic Execution
	Object Creation
	Method Calls
	Loops

	Examples
	Modular vs. Non-Modular Verification
	Non-Modular Verification
	Modular Verification

	Javolution

	Verification of Scope Sizes in the PERC Pico Memory Model
	PERC Pico Memory Annotations
	Local Scopes
	Immortal Memory
	Constructed Scopes
	Reentrant Scopes

	Treatment of Constructed Scopes
	Externally Constructed Scopes
	``Internally'' (Newly) Constructed Scopes
	Initialisation of the Implicit Field [language=[JML]Java,basicstyle = ,keywordstyle =]<rs>

	Proof Obligation for PERC Pico Programs
	Modular Verification of PERC Pico Programs
	Memory Consumption in the Caller Context
	Memory Consumption in Loops

	Related Work

	Conclusions
	Summary and Future Work
	Taclets for Sum Comprehensions
	Not Automatically Applicable Rules
	Automatically Applicable Rules

	References
	Index

