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In this contribution an energetic model for multi-phase mate-
rials is developed describing the influence of microstructure on
different length scales as well as the evolution of phase changes.
Restrictions on the energy functional are discussed. In such a non-
convex framework, interfacial contributions serve for relaxing the
total energy. Such models can be applied to describe the macro-
scopic material properties of carbon fiber reinforced carbon where
phase transitions between regions of different texture of the carbon
matrix are observed on a nanoscale as well as columnar microstruc-
tures on microscale.
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1. INTRODUCTION

State-of-the-art composites, e. g., silicon carbide, carbon fiber

reinforced carbon (CFC) or polymer/ceramic composites, can be

classified as multi-phase materials. Either the phases are com-

posed from different materials (as in the case of silicon carbide)

or from different modifications of one material (as in the case

of CFC). The number of applications of such materials is ac-

tually rapidly increasing: high performance brake systems [1],

telescopes for space application based on sintered silicon car-

bide [2], metal matrix composites such as lightweight composite

wires [3], just to name a few. Especially for CFC, the dimen-

sioning with respect to thermomechanical loading is of utmost

importance since in almost all applications of CFC, high tem-

peratures are present.

Moreover, using modern experimental set-up for structural

characterization, quite rich microstructure can be observed in

composites. Aiming to model the macroscopic response of such

composites, the microstructure at different length scales has to

be taken into account (whose influence even on macroscopic

properties is nowadays out of discussion but quantitatively not

modelled so for) as well as possible phase transformations be-

tween the different phases. In regard to the ever growing number
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of applications of such composites in a huge number of do-

mains, the need for material models cannot be underestimated.

Moreover, developments in applied mathematics and scientific

computing additionally favor this aim.

As an example of such a composite we will concentrate on

CFC which is most often produced by chemical vapor infiltration

where the pyrolytic carbon matrix is deposited around fibers

during the long and costly process [4]. Depending on the scale

of observation different microstructures can be observed in CFC

[5, 6] (see Figure 1). On nanoscale for example, the building

blocks of the microstructure are called turbostratic domains and

describe regions of a few nm within which the basal planes of

carbon possess a common normal vector (see Figure 1c).

This has lead to a new scheme of classification of differ-

ent phases of carbon depending on the orientation distribution

of these normal vectors [8]: one distinguishes between low,

medium and high textured phases (see Figure 2) depending on

the width of the distribution of the angles of the normal vectors

of these basal planes.

The new classification scheme relies on the precise measure-

ment of the so-called orientation angle OA. This angle can be

measured using selected area electron diffraction (SAED) which

allows the analysis of submicron structures like in carbon fiber

reinforced composites instead of the previous scheme based on

polarized light microscopy (PLM) [9].

Experimental results for different mechanical properties of

the different textures of carbon [7] justify denoting these

different textures as different phases. Additionally, around

carbon fibers (see Figure 1b), pyrolytic carbon layers with

different texture degree’s have been detected [6]. The dif-

ferently textured layers can be considered as phases of py-

rolytic carbon [10–12]. Experimental hints for such phase tran-

sitions in CFC under high-temperature treatment are reported

in [13].

So far hierarchical material models exist for CFC [14] that

compute, using an engineering approach, the macroscopic ma-

terial properties based on a whole hierarchy of length scales

and appropriate microstructure. In such models, the different

phases of the matrix and the fibers are treated as separate mate-

rials with individual mechanical properties. However, only the

multi-scale character of the material is taken into account but
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ENERGY DENSITY IN CARBON FIBER 509

FIG. 1. Microstructures of CFC on different length scales. a) on macroscale

[7], b) on microscale [6], c) on nanoscale [5].

phase transitions have not been included. The role of interface

energy also is not clarified.

Energetic models have been developed for a wide range of

problems in many of which the energy functionals are no longer

convex (see, e.g., [15]). The advantage of such energetic models

since derivatives do not occur is their applicability to situations

where the fields are not smooth (e.g., composites). Instead an

energy conservation equation as well as a stability inequality in

global form have to be satisfied. For rate independent problems

incremental variational formulations have been proposed [16]. A

model for phase transformation driven by temperature changes

has recently been proposed [17]. Here the crucial assumption

is the decoupling of the thermoelastic problem by treating the

temperature field as an “applied load” and as a non-constant

equilibrium of the heat equation [18]. Moreover, in this approach

there is no interface energy specified, but some temperature-

independent regularizing contribution to the energy.

In this contribution we start to develop an energetic model

for CFC. We aim to describe the macroscopic material response

of CFC including the effect of solid-solid phase transitions. The

methodology is general allowing a direct generalization to the

framework of multi-phase multi-scale materials.

2. THE ENERGETIC MODEL FOR THE
NON-ISOTHERMAL CASE

The energetic formulations for rate-independent systems in

the isothermal case goes back to Mielke [18]. Key ingredients

of such an approach are the functional for the stored energy,

ε, and the dissipation distance, D. The main advantage of en-

ergetic models is their applicability to situations where deriva-

tives of the fields might not exist at some points and convex-

ity might also not be realized. This is true in many situations

where several phases with different material properties coex-

ist within one material: the jumping material parameters de-

stroy the smoothness of solutions and the question of an energy

minimum with several phases directly touches the convexity

properties.

Energetic formulations consist of a stability inequality as well

as an energy conservation equation [19]. An extension to an

abstract framework [16] (but still for isothermal situations) no

longer relies on the linear structure of the function spaces un-

der consideration and thus is inherently applicable to non-linear

material behavior, for example.

To be more precise, we now state the notation and then give

the stability inequality and the energy conservation. Note how-

ever, that we generalize the formulation for the non-isothermal

case. This is necessary in order to describe CFC since the phase

transitions are experimentally observed under high-temperature

treatment.

We have an open and bounded domain � ⊂ R
3 with bound-

ary Ŵ = ∂� and the displacement field u ∈ W 1,p(�, R
3) is

unknown. Considering boundary conditions on one part of the

boundary,

u = ū on Ŵu ⊂ Ŵ, (1)

we can define the space of admissible displacements

F = {u ∈ W 1,p(�, R
3) : u = ū|Ŵu

} (2)
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FIG. 2. Definition of different textures using distribution of orientation of normal vectors on turbostratic domains.

Let P denote the set of phases. To be able to quantify the

microstructure throughout the domain � we need an indicator

to which phase each material point belongs. Consequently, this

relation is a piecewise constant relation with values in P . We

call

S = {ŝ ∈ BV (�, R
3) ∩ L∞ (�,P) : ŝ is piecewise constant}

(3)

the set of internal states describing the microstructure of the

material within the domain �. However, due to phase transfor-

mations, such a map can only be valid for a specific instant of

time and it is necessary to specify, what phase distribution we

have at what time. This is precisely the definition of the curve of

internal states s : [0; T ] → S: for each time instant t ∈ [0; T ]

we have with s(t) ∈ S such a distribution, thus nothing other

than an internal state ŝ. Thus, s(t)[x] yields the phase at time

instant t ∈ [0; T ] at the material point at x ∈ �. Additionally,

we need to consider the absolute temperature θ as a function

of time, in order to describe, e.g., high temperature treatment:

θ : [0, T ] → R+. Focusing on domains with typical dimensions

in the micro-range, we assume the temperature to be constant

within �, thus there is no need to treat a thermal conductivity

system. However, temporally changing temperature has a sig-

nificant effect through the constitutive response of the material

by thermoelasticity. In case of thermoelasticity, the typical de-

composition of the total strains into the elastic ε
el part and the

thermal part ε
th is used:

ε
tot = ε

el + ε
th

Based on this notion we can now define the stored energy

E (t, u, s, θ) for any given tuple (t, u, s, θ) ∈ R+ ×F ×S×R+

to be simply the sum of an elastic contribution, Eelast (t, u, s, θ) ,

a contribution of the interfaces, Einter (t, u, s, θ), and an external

potential energy, Eext (t, u, θ):

E (t, u, s, θ) = Eelast (t, u, s, θ) + Einter (t, u, s, θ) − Eext (t, u, θ)

(4)

Here, the elastic part is expressed via the elastic energy den-

sity W

Eelast (t, u, s, θ) =

∫

�

W (x, Du(x) , s(x) , θ) dx (5)

where—as usual in linear elasticity—the strains are given as

symmetric gradients of the displacements

Du =
1

2
(∇u + (∇u)T ) (6)

and the external energy is given by

Eext =

∫

�

f (x) · u(x) dx +

∫

Ŵ

t(x) · u(x) dx , (7)

where f (x) denotes the density of the volume forces and t(x)

denotes the tractions on the boundary.

For describing the solid-solid phase transition between states

sa and sb, we use the dissipation distance D, which is given by

D (sa, sb, θ) =

∫

�

D̃ (sa(x) , sb(x) , θ) dx (8)

where D̃ denotes the dissipation metric. For the dissipation

distance, we require the triangle inequality:

D (s1, s2, θ) ≤ D (s1, s3, θ) + D (s3, s2, θ)

∀si ∈ S, i = 1, 2, 3 (9)

Now the extension of the energetic formulation by including

temperature reads:

Find (u, s) ∈ F × S such that ∀t ∈ [0; T ]

E (t, u(t), s(t), θ(t)) ≤ E (t, ũ, s̃, θ(t)) + D (s(t), s̃, θ(t))

∀ (ũ, s̃) ∈ F × S (10)

and

E (t, u(t), s(t), θ(t)) + Ediss (t, s(t), θ(t)) = E (0, u0, s0, θ0)

−Ẽext (t, u(t), θ(t)) (11)
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Here, the contribution of the external potential energy to the

energy conservation (11) is given by

Ẽext =

∫

�

ḟ (x) · u(x) dx +

∫

Ŵ

ṫ(x) · u(x) dx

and the complete dissipated energy during the time interval [0; t]

is

Ediss (t, s(t), θ(t)) = sup

N
∑

j=1

D(s(t j−1), s(t j )) ∀N ∈ N,

∀ partitions
{

t j

}

For numerical computations, an incremental formulation is use-

ful. We define a partition of the time interval [0; T ], such that

0 = t0 < t1 < · · · < tN = T and set θk := θ(tk) as well as

y = (ũ, s̃) ∈ Y := F × S. Find {y1, . . . , yk} such that

E (tk, yk, θk) = inf
y∈Y

{E (tk, y, θk) + D (yk−1, y, θk)} (12)

Progress in analysis of existence theorems for energetic models

can be referred for the isothermal case [16]:

• both the interface energy Einter and the elastic energy

Eelastic have to be sequentially lower semicontinuous,
• the elastic energy density W has to be coercive with

respect to the deformation in the second argument
• continuity assumption for external loading (replacing

the “convexity” assumption of the energy functional)

However, the check of sequential lower semicontinuity might be

hard in special cases. The need to relax the “convexity” assump-

tion is that for finite elasticity, the uniqueness of the functionals

minimizer is not fulfilled.

In [20] conditions are identified in order to establish that solu-

tions of the incremental version (12) satisfy the time-continuous

formulation (10) and (11). Additionally, a priori estimates for

the solutions are found.

FIG. 3. Fiber bundle and domain of single fiber.

3. ADAPTION TO CFC

In order to adapt this framework to the situation of CFC,

we have to specify several aspects: the relevant length scale as

well as the fiber architecture (fiber bundles, fiber felts, etc.),

the phases to be considered, the different contributions in the

stored energy as well as the dissipation distance. All this is done

in the following sections extending the first works in this di-

rection [21]. We propose an elastic energy density as well as

an interface energy for the case of CFC based on available

experimental evidence (e.g., on the structure of the interfaces

observed).

3.1. Choice of the Scale and Fiber Architecture

As already mentioned in the introduction, CFC is a typical

multi-scale material. The energetic model developed here re-

stricts itself first of all to one special length scale. Based on the

energetic model on the scale chosen, appropriate methods have

to be used in order to finally bridge the necessary scales and end

up with a model for the macroscopic response for CFC.

Since CFC is not only multi-scale (Figure 3) but additionally

shows a rich microstructure, we motivate our investigations by

considering unidirectional carbon fiber bundles that have been

infiltrated using the CVI process. Typically the carbon fibers

have diameters of a few micrometers. On macroscopic scale, the

structure of such CFC is schematically represented in Figure 3,

left. We restrict ourselves then to the microscale and choose one

single fiber including the deposited matrix of pyrolytic carbon

around (Figure 3, right) as representative substructure in order

to define the domain � under consideration.

3.2. Choice of the Phases

According to the scheme of classification of the microstruc-

ture of CFC [8], we define the set of phases to be

P = {LT, MT, H T } . (13)

Though an isotropic phase is also known, we neglect this

one based on experimental indications. Then, for p ∈ P , the
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FIG. 4. Regions of different textures within CFC [6].

appropriate subdomain �p where the internal state of the mate-

rial belongs to phase p, is defined to be

�p = {x ∈ � : s(x) = p} ∀p ∈ P (14)

From the sharp interface structure, we directly find for

p1, p2 ∈ P

�p1
∩ �p2

= ∅ ⇐⇒ p1 
= p2 (15)

3.3. Choice of Energy Density

Despite that especially under high-temperature treatment,

solid-solid-phase transitions between these three phases may

occur, they all have to be regarded as stable phases.

Consequently a three-well contribution W3w to the elastic

energy density is assumed. The experimental evidence for solid-

solid phase transformations especially under high temperature

loading motivates us to assume that the local minima themselves

depend on temperature:

W3w(x, s, Du, θ) =

∥

∥

∥

∥

Du −
∑

p′∈P

1�p′ (x)ξ p′

(θ)

∥

∥

∥

∥

m

L p

(16)

with m ≥ 1.

Additionally, the elastic energy density contains a contribu-

tion of the strain energy density. Here, we use thermoelasticity as

a framework assuming different elasticity tensors C(p)(θ) for the

different phases p ∈ P , all of which are temperature dependent:

Wstrain (x, Du(x) , s(x) , θ) =
∑

p∈P

1�p
(x)(Du − ǫth − ξ(p)(θ))i j

C
(p)

i jkl(θ)
(

Du − ǫth − ξ(p)(θ)
)

kl

(17)

As described in the following subsection, this expression is based

on sharp interfaces between pure phases of the material, i.e., no

phase mixtures.

The thermal part of the energy density can be specified. Re-

garding the anisotropic behavior of the phases we define

Wth (x, Du(x) , s(x) , θ)

=

∫

θ

θ0

∑

p′∈P

1�p′ (x)c(p′)(θ′)dθ
′ +

∑

p′∈P

1�p′ b
(p′)

i j (Du)i j (θ − θ0)

(18)

with the specific heat for each phase, c(p′)(θ), a symmetric

tensor of second rank, b(p′), and with θ0 as a reference temper-

ature. Note that in the case of isotropy of phase p′, we have

b
(p′)

i j ∝ αδi j with α as coefficient of linear thermal expansion.

The total free energy density is then given by the sum of the

three-well contribution according to Eq. (16) and the part of the

strain energy density Eq. (17):

W (x, Du(x) , s(x) , θ) = W3w + Wstrain + Wth (19)

where the dependencies have been skipped to simplify the no-

tation and can be found in Eqs. (16), (17) and (18).

3.4. Choice of Interface Energy

The expression for the interface energy directly determines

the structure of the interfaces. If no interface energy is assumed,

we obtain phase mixtures [18]. However, this is not the case for

CFC (see Figures 1b and 4). If the interface energy is assumed

to depend on the jumps of the internal states, sharp interfaces are

obtained. Using higher gradients of the internal states, smooth

interfaces can be obtained.

In a first assumption, we treat the interface energy as depen-

dent on the surface tension σ and the 2D-Hausdorff measures

of the boundaries B. The surface tension itself is assumed to

be constant, depending on the temperature θ and the adjacent

phases, denoted by s+ and s−:

Einter (t, u, s, θ) =

∫

B

σ (s+, s−, θ) dH2 (20)

3.5. About the Dissipation Distance

Within the framework of standard generalized materials [22],

the dissipation distance can be determined based on the princi-

ple of maximum dissipation [23]. Here, the internal states and

the thermodynamically conjugated force as well as the tem-

perature and the entropy enter the definition of the dissipation

distance. Note, however, that the dissipation could be calculated

only for a very few cases so far [23] and the case of thermoelastic-

ity is not among them. In case of a microscopic energetic model

for shape memory alloys [16] with internal states as elements

of R
m the dissipation distance for internal states z0, z1 ∈ R

m is

chosen to be

D (z0, z1) =

∫

�

|z0 − z1| dx (21)

3.6. Multi-Scale Aspects

Above, we developed a microscale energetic model for CFC.

However, as has been indicated in the introduction, the material
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itself is multi-scale and moreover, we intend to model the macro-

scopic response. Thus, we have to look at how to bridge the scale

and to arrive at the macroscale having started at the microscale

as above. One established method (see e.g. [24]) is to quasicon-

vexify the functionals of the energy as well as of the dissipation

distance on microscale given in Eqs. (4) and (8) which relaxes

the ill-posed formulation on macroscale. Alternatively, we could

ask whether these functionals on the microscale Ŵ-converge [25]

and what the possible limits Emac and Dmac look like. Conse-

quently restrictions arise on the functionals on the microscale

themselves. In the recent work [17] conditions have been stated

for the existence of solutions of the limit problem of a series of

incremental formulations of evolutionary problems and about

the convergence of solutions. Since isothermal conditions are

used, these results cannot be directly applied to the case of ther-

moelasticity here.

4. SUMMARY AND CONCLUSIONS

For describing the macroscopic response of CFC including

phase transformations, the framework of rate-independent ener-

getic models has been applied. To adapt this framework to the

case of CFC means to fix the set of phases, the length scale and

the domain. We have concentrated on unidirectional fiber bun-

dles and consequently on microscale energetic models for non-

isothermal situations for a domain consisting of a single fiber

and the concentrically deposited matrix with three phases of

pyrolytic carbon. Proposals for the interface energy and restric-

tions on the elastic energy density are derived. The conditions for

existence of solutions of the defined extension of the energetic

model to the non-isothermal situation remain to be investigated

as well as properties of the solution. Expressions for the dissi-

pation distances as well as for the temperature dependence are

actually studied.

Finally, restrictions on the energy density will be obtained due

to the existence and uniqueness theorems in the framework of

Ŵ-convergence for the description of the macroscopic material

properties.
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