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ABSTRACT. In this work we investigate the plastic instabilities associated

with the Portevin-Le Chatelier (PLC) effect in Al alloy 2024. A semi-

phenomenological approach is taken. A simple geometrically non-linear

elastic-viscoplastic constitutive model is proposed for simulation of material

response under various applied strain rates. Using the model we deter-

mine numerically the relation between the critical strain for the onset of

discontinuous yielding and the applied strain rate. The results obtained are

in very good quantitative agreement with the available experimental data

and cover both the normal and the inverse behavior of the critical strain.

The simulations are performed using non-linear finite element method.

Additional verification of the proposed constitutive framework was carried

out using statistical analysis of the simulated stress-time series. A transition

from a non-linear chaotic regime to self-organized critical behaviour of the

localized strain bands were predicted in terms of the temporal two-point

correlation function of the stress-time series. Finally we investigated the

influence of different factors, such as the geometry of the specimen, its

orientation with respect to the rolling direction and loading conditions (strain

rate), on the type of PLC instabilities and the critical conditions for their onset.

KEYWORDS: plastic instability, dynamic strain aging, non-linear finite ele-

ment method, normal and inverse behaviour, jerky flow
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1 Introduction

Dynamic interaction between mobile dislocations and solute atoms results for many

industrially relevant dilute metallic alloys (notably Al-, Cu- or Fe-based ones) in neg-

ative strain rate sensitivity of the flow stress. In a certain range of strain rates and

temperatures, this leads to destabilisation of the uniformity of plastic flow in these

materials (Neuhäuser, 1990; Estrin and Kubin, 1995). The instability takes the form of

propagating localised deformation bands and concomitant repetitive stress drops (’dis-

continuous yielding’). It is generally accepted that the micromechanical mechanism

underlying this destabilising effect is the dynamic aging of dislocations by diffusing

solute atoms (Cottrell, 1953b,a; Sleeswyk, 1958; McCormick, 1988; van den Beukel and

Kocks, 1982; Schlipf, 1994). In uniaxial strain-controlled tensile deformation tests (Es-

trin, 1987; Estrin and Kubin, 1995; Zaiser and Hähner, 1997; Ziegenbein et al., 2001;

Dierke et al., 2007) dynamic strain aging (the Portevin-Le Chatelier effect) manifests it-

self through serrations on the stress-strain curve (Portevin and Le Châtelier, 1923; Bell,

1973). From a technological perspective, this effect reduces the ductility of the mate-

rial and corrupts the surface quality of semi-products (appearance of surface markings

and waviness). The Portevin-Le Chatelier (PLC) effect reduces the formability of the

material in deep-drawing processes, e.g. in sheet-metal forming. Depending on the

spatiotemporal organisation of the deformation bands, different types of PLC instabil-

ities can occur. These are categorised as PLC instabilities of types A, B and C. A more

detailed taxonomy of PLC bands has also been used (Pink and Greenberg, 1982). PLC

bands of type C appear in the sample almost1 at randomwithout propagating (stochas-

tic nucleation), type B bands exhibit an oscillatory or intermittent propagation along

the specimen’s tensile axis in a kind of relay-race manner, and, finally, type A bands

propagate continuously, as solitary plastic waves, along the tensile axes. During the

uniaxial tensile tests conducted for the purposes of the present project on aluminium

alloy 2024, we observed - dependent on the strain rate - the occurrence of localised de-

formation bands (PLC instabilities) of all three types. At small strain rates, the plastic

flow was heavily discontinuous with bursts of plastic activity without correlation in

time and space, and bands of type C emerged. At large strain rates the quasi-periodic

stress drops observed were associated with the nucleation of PLC bands of type A,

which then propagated in the axial direction in a way similar to the propagation of the

Lüders bands (Lüders, 1860). In addition to the characterisation of the PLC effect in

terms of the type of the deformation bands, the critical equivalent strain after which

1In a recent study (Lebyodkin and Lebedkina, 2008) it was shown that these appear as a result of weakly correlated nucleation

events.
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strain localisation sets in is commonly used as an important practical characteristic of

PLC instability. The critical strain depends on the strain rate and temperature. A com-

mon case reported in the literature is that of the critical strain increasing with increas-

ing strain rate. This kind of behaviour, referred to as ’normal’, is typical of many dilute

alloys (Estrin and Kubin, 1995). The ’inverse’ behaviour characterised by a decrease of

the critical strain with increased strain rate was also reported occasionally (Kubin and

Estrin, 1992a; Estrin and Kubin, 1995). While some authors (Brechet and Estrin, 1995)

associate the inverse effect with precipitate shearing and re-constitution of precipitate

during deformation, others (Hähner et al., 2002) modified the ansatz for the aging time

and used a linear stability analysis to trace the inverse behaviour back to the dynamic

strain aging kinetics and dislocation dynamics. The latter approach accounts for a non-

monotonic dependence of the critical strain on the strain rate exhibiting a minimum,

or a plateau in the critical strain over a range of intermediate strain rates.

Since the experimental identification of the inverse PLC effect and analysis of its spa-

tial aspects pose an enormous experimental challenge, numerical simulations remain

the main tool for its study. Over the years, a significant research effort has been de-

voted to theoretical modelling and numerical simulations of the strain aging effects

(Kubin and Estrin, 1990, 1992b; Mesarovic, 1995; Zaiser and Hähner, 1997; Valanis,

2000; Hähner et al., 2002), kinematic characterisation of the PLC bands (McCormick

et al., 1993; Hähner, 1993; Dablij and Zeghloul, 1997), and the numerics of this par-

ticular type of instabilities (Kubin et al., 1988; McCormick and Ling, 1995; Lebyodkin

et al., 1996, 2000). Despite the large number of published works, however, the pre-

dictive capabilities of the dynamic strain aging models are not satisfactory, especially

concerning the inverse behavior of the alloys. Precise and reliable determination of

the critical strain for the onset of plastic instability as well as further quantification

of the inverse PLC behaviour are the two major challenges yet to be resolved by the

non-linear constitutive modelling and numerical simulations.

In this study we propose a novel geometrically and physically non-linear material

model for reliable simulation of the dynamic strain aging, and in particular the inverse

behavior of the critical strain for the onset of the PLC effect, in samples of an Al al-

loy subjected to three-dimensional loading conditions. Our approach is phenomeno-

logical, although it is related to earlier microstructural approaches (Kubin and Estrin,

1990, 1992a; Zhang et al., 2001). The model is elastic-viscoplastic and is based on a

single evolution equation for the dynamic strain aging. Exploring the concept of in-

ternal variables in a purely mechanical context we formulate the complex hardening

response of the material from a phenomenological point of view proposing a simple
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constitutive ansatz based on a non-linear formulation of the strain hardening law (of

Voce type) with account for strain rate effects (logarithmic strain rate dependence) and

a modified dynamic strain aging (Cottrell and Bilby, 1949; Head and Louat, 1955). The

model is gauged for the Al alloy investigated and further utilized for studying the

influence of various factors, including the geometry of the specimen, deformation con-

ditions (strain rate control), orientation with respect to the rolling direction etc., on the

type of the PLC instabilities and the critical conditions for their onset.

2 Experimental data

In the first series of experiments we conducted uniaxial tensile tests with samples of Al

alloy 2024, in the following range of applied strain rates: ε̇a = 1 · 10−5 − 1 · 10−1s−1. The

samples were annealed at 493◦C for 40 minutes and quenched in polyalkylene glycol

solution. Prior to mechanical tests the specimens were kept in liquid nitrogen. The

goal was to determine the instability range and the general features of the deformation

response for this diluted alloy. The following nominal applied strain rates were used:

ε̇a = 1·10−5, 1·10−4, 1·10−3, 1·10−2, 7·10−2, 1·10−1 s−1. In a second series of experiments,

tensile tests were conducted for three groups of samples characterized by different ori-

entation of the tensile axis with respect to the rolling direction (0◦, 45◦, 90◦). The fol-

lowing applied strain rates were used: ε̇a = 3 · 10−5, 3 · 10−4, 3 · 10−3, 3 · 10−2, 7 · 10−1 s−1.

A recorded signal from a standard extensometer provides local information about the

strain field within the gauged segment of the sample, and this information cannot be

considered as representative because of the heterogeneity of the deformation field, es-

pecially when the strain is localized outside of the extensometer span. For this reason

the cross-head displacement of the testing machine was used for determining the over-

all strain in the sample. Disregarding errors at small strains (<0.2%-0.3%) associated

with non-linearity of the testing machine, we present all data in terms of the engineer-

ing stresses and strains. (It should also be noted that the elastic component of the total

strain corresponds to the elastic response of the tensile specimen + testing machine sys-

tem.) The experimental stress-strain curves for the mentioned strain rates are shown

in Fig. 1 a)-d). For comparison, a triad of curves corresponding to three different ori-

entations and recorded at a particular strain rate are presented in each diagram along

with those for 10−5s−1taken as a reference. The findings can be summarized as follows:

i) The stress-strain curves for 90◦ and 45◦ are very close; the samples with 0◦ of

orientation exhibit a higher rate of strain hardening, and the corresponding curves

lie above those for the other two orientations. Thus, the orientation of the sample
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with respect to the rolling direction has a significant influence on the stress levels.

ii) For strain rates above 10−2 s−1 stress jumps degenerate to undulations on the de-

formation curve, mainly due to elastic reloading of the sample during a stress

drop, which results in smoothening of the saw-tooth profile on σ−ε diagram. The

strain at which undulations set in is as high as about 10% or above, and for strain

rates in excess of 10−2 s−1, unstable behaviour disappears altogether. It should

be noted that the waviness of the part of the stress-strain curve corresponding to

unstable plastic flow for strain rates in the upper part of the strain rate range con-

sidered makes it difficult to identify the critical strain for the onset of instability

accurately enough.

iii) Figure 2 shows the strain rate dependence of the critical strains and stresses in a

semi-logarithmic diagram. At small strain rates, ε̇a = 1 · 10−4 − 1 · 10−3s−1 the

material responds to an increase in the strain rate in an ’inverse’ way, i.e. the

critical strain decreases with increasing strain rate. In the transition range from

type C to type B to type A behaviour ε̇a = 10−3 − 10−2s−1 a plateau in the strain

rate dependence of εc is observed: in this range of conditions, the critical strain is

not sensitive to the strain rate. Finally, for ε̇a above 10−2s−2 in the range of type

A PLC bands, a normal behavior characterized by εc rising with ε̇a is observed

until the PLC instability disappears altogether. The influence of the specimen

orientation with respect to the rolling direction on the critical strain and the type

of the PLC bands appears to be of minor importance for the material investigated.

The variation of the critical strain with the strain rate in the inverse region is so

rapid that in the low strain rate part of the strain rate range considered, at ε̇a =

10−4s−1, the specimens fail prior to the onset of the PLC instability, and serrations

are only seen in the post-failure part of the stress-strain curves.

iv) Finally, no serrations were observed on the stress-strain curves corresponding to

the lowest strain rate studied, ε̇a = 1.0 · 10−5s−1.

The experimental results reported here were used for calibration and verification of

the constitutive model presented below. The data provide a reliable and representative

information for a broad strain rate range covering both the normal and the inverse PLC

effect.
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a) b)

c) d)

Figure 1: Experimental stress-strain curves for the strain rates: a) ε̇a = 1 · 10−1s−1; b) ε̇a = 1 · 10−2s−1; c)

ε̇a = 1 · 10−3s−1; d) ε̇a = 1 · 10−4s−1.

3 Constitutive equations

As already mentioned in the Introduction, our principal aim was to develop a consti-

tutive model accounting for both the normal and the inverse behavior under dynamic

strain aging conditions. Our research was driven by the fact that the existing models

are commonly not capable of accounting for both types of behaviour within a single

approach. A brief overview of the situation that gave us the motivation for embarking

on the present study is given below.
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a) b)

Figure 2: Experimental stability maps: a) critical strain εcr vs. strain rate; and b) critical stresses σcr vs.

strain rate.

3.1 Motivation

Consider a one-dimensional model similar to the one suggested by Penning (1972).

The flow stress σF is decomposed in three additive parts

σF = σH (εp) + σV (ε̇p) + σB (εp, ta) , (1)

with

σV = S0 ln

(

ε̇p

ε̇0

)

, σB = σB0

(

1 − exp

(

−

(

ta
t0

)n))

. (2)

The stress σH describes the strain hardening. The stress σV accounts for the contri-

bution to the flow stress with positive strain rate sensitivity. Finally, σB takes the dy-

namic strain aging into account. It is specified by the Cottrell-Bilby relation (Cottrell

and Bilby, 1949) modified by Louat to account for the saturation of solute atmospheres

around dislocations (Head and Louat, 1955). The characteristic time for solute diffu-

sion is denoted by t0 and the maximum value of this contribution to stress, which is

reached at saturation, is given by σB0. The ’dynamic aging’ time ta can be assumed

to be identical with the waiting time a dislocation spends at localized obstacles and

is ’aged’ by solutes segregating on it through diffusion: ta = tw with tw = Ω(εp)/ε̇p

(McCormick, 1988). The quantity Ω(εp) is the elementary plastic strain that would

be produced if all mobile dislocations temporarily pinned at localized obstacles (forest

dislocations) were released and moved to the next pinned configuration. Obviously,

it should depend on εp through the densities of mobile and forest dislocations (Estrin

and Kubin, 1995; Kubin and Estrin, 1990, 1992a). As a result, the part of the stress
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accounting for the PLC effect is given by

σB = σB0

(

1 − exp

(

−

(

Ω(εp)

t0ε̇p

)n))

. (3)

A criterion separating regions of stable and unstable behaviour in the (strain, strain

rate) space can be formulated as the condition of vanishing strain rate sensitivity:

S (εp, ε̇p) := ∂σF /∂ ln(ε̇p) = 0 (total strain ε fixed!) (Estrin and Kubin, 1995).

This condition can be seen as the lower bound of instability region 2 (see an example

for this bound in Ling and McCormick, 1990). Hence, the instability criterion is given

by

α − Z exp (−Z) = 0, α ∈ [0, 1/e), (4)

with α = S0/ (σB0n) and Z = (Ω(εp)/ (t0ε̇p))
n. Depending on α, this equation either has

no solution, or has two positive solutions for Z. Assume that two positive solutions

can be found and denote them by Z1,2 > 0. The boundary of the instability region can

be determined as the set of all critical plastic strains εC
pi satisfying the set of non-linear

algebraic equations

ε̇C
pi = fi(ε

C
p ) =

Ω(εC
p )

t0Z
1/n
i

(i = 1, 2). (5)

Taking into consideration that Z1,2 are positive and depend on the plastic strain rate,

we readily observe that: (i) sgn(df1/dεC
p ) = sgn(dΩ/dεC

p ) = sgn(df2/dεC
p ) for all strains

εC
p and (ii) that there is a set of plastic strain rates with εC

p = 0. The first implication

shows that for valid instability criterion, it is impossible to model with the same func-

tional dependence, i.e. for a fixed set of material parameters, the inverse behavior for

small strain rates and the normal behavior for large strain rates (see Fig. 3). Hence

the question of how the strain hardening model can be modified to capture the lower

and the upper bounds in the critical strain for the onset of the PLC effect becomes

that of crucial importance. Few attempts have been made so far to resolve this issue,

unfortunately without a striking success. The forest hardening model (Kubin and Es-

trin, 1992b) comes closest to achieving this goal. The model predicts the occurrence of

the upper and the lower bounds for stability of plastic flow if Ω is a non-monotonic

function of strain. In fact, such non-monotonic behaviour follows from the disloca-

tion evolution model proposed in the cited work. However, experimental evidence on

the shape of the function Ω(εp) is very scarce, and the data collected so far (Ling and

McCormick, 1990; Springer and Schwink, 1995) suggest that Ω increases with strain

monotonically. For that case, the forest hardening model predicts the occurrence of
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only a lower critical strain, which shows a normal behavior with the strain rate. In a

later paper, Brechet and Estrin (1995) suggested that a transition from normal to in-

verse behavior can be predicted in a model based on a precipitate-controlled (rather

than solute-controlled) deformation mechanism, but this is a rather special case appli-

cable to alloys with shearable precipitates only.

In the present study we follow a different approach and in order to model the both

types of behavior we modify the Bilby-Louat term specifying σB without changing

the monotonicity of Ω. Assuming that both σB0 and Ω depend on plastic strain, the

instability condition (4) and more precisely the experimentally acquired stability map

εc(ε̇p) can be used to determine both functions. An inspection of the equation

S(εp, ε̇p) = ε̇p
∂σF

∂ε̇p
= 0,

with σB0 = σB0(εp) shows that both regimes of dynamic strain aging can be reproduced

within this approach. For simplicity we assume in the following that σB0 is an affine

transformation of strain. Based on this assumption, we outline in the following sec-

tions sections a novel constitutive model, first in the geometrically linear case and then

for large strains as well. An interesting question to address would be a comparison

of the results obtained using the present model with those reported by Zhang et al.

(2001), where it was suggested to introduce a strain rate dependence in the argument

of the exponential function of the Cottrell-Bilby-Louat relation. For a monotonically

increasing strain dependence of Ω such a modification results in a faster saturation of

the Cottrell-Bilby-Louat term, while by modifying σB0 we only scale the relation thus

changing the range of σB0 while keeping the local geometric properties of this contri-

bution unchanged. A strain dependence of the kind introduced by Zhang et al. (2001)

affects the predicted critical strain for necking and might results in unreliable forming

limit diagrams.

3.2 Three-dimensional geometrically linear model

Before formulating the geometrically non-linear model we summarize the basic equa-

tions in a geometrically linear setting (small strains). We assume that both the elastic

and the viscoplastic response are direction-independent, i.e. isotropic. The stresses are

linearized in the elastic strains. The viscoplastic flow is modeled in terms of an over-

stress model with the flow direction equal to the direction of the stress deviator. The

elastic law and the flow rule are given by

σ = λtr(εe)I + 2µεe, εe = ε − εp. (6)
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Figure 3: Inverse (left) and normal (right) stability maps

and

ε̇p =
3

2

ε̇p

σeq
σ

′, ε̇eq = ε̇0

〈

σeq − σH(εp) − σB(εp, ta)

σD

〉m

, 〈x〉 = max(0, x), (7)

respectively. ε is the infinitesimal strain tensor. εe and εp are the elastic and the

plastic parts of ε, respectively. The von Mises equivalent stress is now defined by

σeq =
√

3/2‖σ′‖. The accumulated plastic strain εp =
∫ t

0

√

2/3‖ε̇p‖ dt̃ determines the

stress hardening part of the flow stress through the Voce ansatz

σH(εp) = σ0 + (σ∞ − σ0)

(

1 − exp

(

−
Θ0εp

σ∞ − σ0

))

. (8)

Here, σ0 and σ∞ and denote the initial and the saturation values of the stress and θ0

corresponds to the so called Stage II hardening stage (Estrin and Mecking, 1984).

The dynamic strain aging part is assumed to be given by the Cottrell-Bilby-Louat rela-

tion

σB(εp, ta) = σB0(εp)

(

1 − exp

(

−

(

ta
t0

)n))

, σB0(εp) = σB00 + σ′

B00εp. (9)

Here σB00 and σ′

B00
are constants. The evolution of the aging time is (see, e.g., Mc-

Cormick, 1988; McCormick et al., 1993; Kubin and Estrin, 1990)

ṫa = 1 −
ta
tw

, tw =
ε̇p

Ω(εp)
, Ω(εp) = Ω0 + Ω′

0εp. (10)

where Ω0 and Ω′
0 are constants. Note that the aging time ta is no longer set to be

identical to tw, but rather evolves to the latter as described by a relaxation equation,

Eq. (10) (McCormick, 1988).

Where due to the relatively thin range of the map Ω(εp) (cf. with Ling andMcCormick,

1990) an affine approximation of the form Ω(εp) = Ω0 + Ω′

0εp is utilized.
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3.3 Three-dimensional geometrically non-linear model

In this section we extend the capabilities of the small strain model towards capturing

the plastic activity arising in geometrically non-linear setting. We develop an elastic-

viscoplastic constitutive model capable of describing the normal and inverse behavior

of a material under dynamic strain aging conditions. Conceptually, the model is in

line with an hyperelastic-viscoplastic type of formulations of material response and

it is based upon the assumptions of small elastic strains and finite plastic strains and

rotations. In formulating a geometrically non-linear elastic-viscoplastic material model

we start with themultiplicative decomposition of the deformation gradientF (see, e.g.,

Lee, 1969; Mandel, 1974)

F = F eF p, (11)

F p is a path-dependent, invertible, non-symmetric tensor. If the material is plastically

incompressible then det(F p) = 1 holds. Issues of the non-uniqueness of the decompo-

sition are not addressed here since they are not relevant in the present context. As the

elastic strains are assumed to be small, any linear relation between a conjugate pair of

generalized stress and strain measures is applicable for the description of the elastic

behavior. Here, we assume a linear relation between the 2nd Piola-Kirchhoff stress

tensor and the Green strain tensor with respect to the undistorted state. In an Eulerian

setting, this ansatz implies that the Kirchhoff stress tensor τ is given as a linear tensor

function of the Almansi strain tensor E
A
e (see, e.g., Böhlke and Bertram, 2001; Böhlke

et al., 2003)

τ = Ce[E
A
e ], E

A
e =

1

2
(I − B

−1

e ), Be = F eF
T

e , (12)

with I being the 2nd-order unit tensor. The Kirchhoff stress tensor τ = Jσ is defined in

terms of the Cauchy stress tensor σ and the determinant J of F . The Eulerian stiffness

operatorCe is given by the Rayleigh product ofF e and the (constant) reference stiffness

tensor C̃ (see, e.g., Bertram, 2005)

Ce = F e ⋆ C̃ = C̃ijkl(F eei) ⊗ (F eej) ⊗ (F eek) ⊗ (F eel). (13)

The components C̃ijkl of C̃ refer to the fixed orthonormal sample system ei. For elas-

tically isotropic materials the reference stiffness C̃ has the following representation

C̃ = λI ⊗ I + 2µIS with λ and µ denoting the Lamé constants. IS is the 4th-order iden-

tity tensor acting on the subspace of all symmetric 2nd-order tensors. Due to the elastic

isotropy, the Eulerian stiffness tensor can be further simplified if the polar decomposi-

tion of F e = V eRe is taken into account

Ce = F e ⋆ C̃ = (V eRe) ⋆ C̃ = V e ⋆ (Re ⋆ C̃) = V e ⋆ C̃. (14)
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For the Kirchhoff stress tensor we thus obtain

τ =

(

λ

2
(tr(Be) − 3) I + µ(Be − I)

)

Be. (15)

The last equation shows that τ and Be are coaxial which is a result of the assumed

isotropy of the elastic behavior. If the elastic strains are small thenBe ≈ I holds and the

Kirchhoff stress is given approximately by τ ≈ λ (tr(Be) − 3) I/2 + µ(Be − I), which

implies for the stress deviator τ ′ ≈ µB
′

e.

The Kirchhoff stress tensor is completely determined by the symmetric variableBe for

which an symmetry preserving evolution equation has to be formulated. The material

time derivative ofBe is

Ḃe = Ḟ eF
T

e + F eḞ e
T. (16)

Similar to crystal plasticity, the rate of change of F p is assumed to depend on the Man-

del stress tensor T e = CeSe and a set of internal variables α = {εp, ta}

Ḟ pF
−1

p = k̃(T ′

e, α). (17)

Se is the 2nd Piola-Kirchhoff stress tensor and Ce = F
T

e F e the right Cauchy-Green

tensor. In the following we assume that the plastic behavior is isotropic. Hence, k̃ is an

isotropic tensor function. Combining Eqs. (16) and (17) and making use of the elastic

and the plastic isotropy we find

L(Be) = Ḃe − LBe − BeL
T = −2sym(k̃(τ ′, α))Be (18)

with the spatial velocity gradient L = ∂v/∂x. By analogy to the geometrically linear

model, we assume for the flow rule

k̃(τ ′, α) =
3

2

ε̇p

σeq
τ
′. (19)

The equivalent von Mises stress and the equivalent plastic strain rate are defined by

σeq =
√

3/2‖τ ′‖ and ε̇p =
√

2/3‖k̃‖, respectively. The plastic strain rate is related to

the variables σeq, σH(εp) and σB(εp, ta) in the same way as in the geometrically linear

model.

4 Numerical implementation

4.1 Numerical time integration scheme

In order to obtain an incrementally objective time integration scheme the evolution

equation for Be is transformed back to the reference configuration of the body. Using
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Be = FGpF
T and LvBe = FĠpF

T one further obtains

ĠpG
−1

p = −2F−1sym(k̃(τ ′, α))F . (20)

The variableGp = F
−1

p F
−T

p satisfies det(Gp) = 1 in the plastically incompressible case.

Equation (20) implies that in this case the evolution equation (17) has to obey the con-

straint tr(k̃) = 0, which is satisfied by the flow rule given by Eq. (19). In the following,

all variables at time tn have an index n. Variables without index refer to time tn+1 with

∆t = tn+1 − tn. The (implicit) exponential map (Simo and Miehe, 1992),

Gp = exp(ĠpG
−1

p ∆t)Gn
p (21)

fulfils the incompressibility constraint for Gp exactly. Because of the invariance of Gp

under superimposed rigid body motions, the time integration rule is incrementally

objective. Transforming Eq. (21) back to the current configuration of the body and

taking into account the properties of the tensorial exponential function, one obtains for

the flow rule

Be = exp(−2sym(k̃(τ ′, α))∆t)B̂e = exp(−2∆γN
′)B̂e (22)

with the trial variable B̂e = FG
n
pF

T, the stress direction N
′ = τ ′/‖τ ′‖ and

∆γ =
√

3/2∆tε̇p =
√

3/2∆εp. Since τ ′ is coaxial withBe in the isotropic elastic case,Be

and B̂e are coaxial too. In contrast to the geometrically linear case, no proportionality

between the unknown and the trial variables is obtained. In the following we simplify

the update formula drastically by consequently exploiting the smallness of the elastic

strains. For small ∆γ and small elastic strains one obtains

B̂e = exp(2∆γN
′)Be ≈ (I + 2∆γN

′)Be ≈ Be + 2∆γN
′ (23)

and similarly

B̂
′

e = B
′

e + 2∆γN
′. (24)

This equation does no longer satisfy det(Be) = det(B) or equivalently det(F p) = 1

since the exponential function has been approximated. When evaluating this result

it has to be taken into account that in the context of small elastic strains and hence

small total volume changes the approximation det(B) ≈ 1 + (tr(B) − 3) holds. Hence,

tr(B) ≈ tr(Be) is valid. With the approximate form of the elastic law τ ′ ≈ µB
′

e and the

trial stress τ̂
′ = µB̂

′

e equation (23) becomes τ̂
′ = τ ′ + 2µ∆γN

′. Now similarly to the

small strain case, τ ′ is proportional to τ̂
′ and one arrives at

‖τ̂ ′‖ = ‖τ ′‖ + 2µ∆γ, (25)
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with ‖A‖ =
√

tr(AA
T). From Eq. (25) it follows

σ̂eq = σeq + 3µ∆εp. (26)

In the overstress model, σeq can be eliminated

σ̂eq = σD

(

1

ε̇0

∆εp

∆t

)
1

m

+ σH(εn
p + ∆εp) + σB(εn

p + ∆εp, t
n
a + ∆ta). (27)

The aging time is integrated by the Euler backward scheme

ta = tna + ∆t ṫa = tna + ∆t −
ta∆εp

Ω(εn
p + ∆εp)

(28)

Although an implicit integration scheme is applied, the aging time ta can be explicitly

given as a function of ∆εp

ta =
tna + ∆t

1 + ∆εp/Ω(εn
p + ∆εp)

. (29)

It can be seen that the implicit Euler scheme ensures a non-negative aging time. Since

the aging time ta at tn+1 is determined explicitly, it can be eliminated from equation

(27). As a result, at a time step only one nonlinear algebraic equation needs to be

solved. The constitutive equations were implemented through an implicit integration

procedure in ABAQUS/Standard utilizing the interface and programming capabilities

provided for user defined material models (ABAQUS/Standard, 2003, UMAT subrou-

tines). In the geometrically linear case the consistent linearization of the incremental

form of the constitutive equations delivers an algorithmic tangent with a modified

structure that resembles the standard algorithmic tangent of the classical isotropic von

Mises plasticity. In the geometrically non-linear case the modified tangent was com-

puted on the basis of numerical linearization of the constitutive model again employ-

ing the user material subroutines in ABAQUS.

4.2 Parameter identification

Material parameters necessary for calibration of the proposed constitutive models have

been identified on the basis of a comparison between the simulation and experiment.

For this purpose we simulated in several steps the tensile experiments discussed above

(see Section 2) and compared the relevant segments of the resulting response diagrams.

The material parameters of the constitutive model were identified so as to reproduce

the experimentally observed intermediate stress distribution computationally. In a sec-

ond step the material parameters in the Cottrell-Bilby-Louat contribution were esti-

mated iteratively, along with the strain hardening parameter θ0, so that the computed

normal and the inverse behavior of the Al alloy fit the experimentally observed one.
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The parameters responsible for the normal and inverse behavior could then be es-

timated on the basis of the simple, one-dimensional, rigid-viscoplastic constitutive

model presented. It was possible to determine the instability range from the rigid-

viscoplastic model using the condition ε̇p∂σF /∂ε̇p = 0. Using the estimated strain

hardening parameter θ0 the stress amplitude σB0 and the characteristic time t0 were

then calculated for every strain level using the Newton-Raphson method.

The values predicted by the constitutive model are shown in Fig. 4 and Fig. 5. The

agreement between the experimental and the computed stability maps on Fig. 5 is

remarkable.

E 70.0 GPa ε̇0 3.5 · 10
−5 1/s σB00 18.9MPa

ν 0.3 σD 15.0MPa σ′

B00
189.26MPa

m 28.0 Ω0 6.81 · 10−4

σ0 123.0MPa Ω′

0
3.6 · 10−4

σ∞ 343.0MPa t0 0.125 s

Θ0 2800.0MPa n 1/3

Table 1: Material parameters

5 Results and discussion

5.1 Statistical analysis

The PLC effect in polycrystalline materials, such as Al alloy 2024 considered here, is

typically accompanied with complex deformation patterns discontinuous in time and

localized in space. As previously mentioned, different types of spatiotemporal strain

localization bands (stress serrations in the response diagram) can be observed under

the PLC conditions. The bands of type C can be considered ’temporally static’ but

’weakly spatially correlated’. They occur at low strain rates at weakly correlated po-

sitions along a flat sample. Type B instabilities were also static and occurred at inter-

mediate strain rates, the stress drops being distributed more densely along the time

axis. In addition, we found that new localized bands were formed near the old ones.

The latter fact is an indication of the existence of a spatial correlation between the band

nucleation events. At high strain rates the type B instabilities transformed to type A

PLC bands with stress drops occurring in a faster time sequence. The bands propa-

gated along the tensile axis of the sample in an apparently continuous manner, which

is an indication of nucleation events being strongly correlated in space. Recent studies

showed that this complex spatiotemporal behavior emerging as a result of an unsta-
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Figure 5: Experimental and simulation results: stability maps

ble plastic flow, and especially the transition from uncorrelated to strongly correlated

band nucleation events, is a consequence of the spatiotemporal interaction between

self-organized (dissipative) dislocation structures. It was also proven (Bharathi et al.,

2001) that the transition from a dynamic chaos (bands of type B) to a self-organized crit-

ical behavior (bands of type A) indeed happens in materials exhibiting the PLC effect,

and that moreover the transition between these two distinct dynamical regimes is con-
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trolled by a single scalar parameter: the effective applied strain rate. In the following,

we report the results from an investigation of the computationally simulated statistics

of the ’catastrophic slip’ associated with the PLC effect and calculate the two-point

temporal correlation function for the attendant serrations on the stress-strain curve.

The aim of this exercise is:

a) to test the capabilities of the constitutive model developed in order to predict the

transition from chaos to self organized criticality based on calculated two-point

correlation function;

b) to show that our material model is in agreement with the available results of a

statistical analysis of the experimentally observed discontinuous yielding, thus

predicting a change in the peaked distribution of the magnitude of stress drops

toward a monotonic one with the increase of the applied strain rate.

In order to achieve these aims, we first calculated an ’averaged’ stress-strain curve.

The difference between an averaged stress-strain curve and the experimentally de-

termined one gives a statistically representative sample of strain-hardening indepen-

dent stress fluctuations. After suppressing the ascending fluctuations and retaining

the stress drops one can see readily that the simulated stress-time series, resemble the

experimentally recorded stress-time series (see e.g. Fig. 4). Typical fragments of a

stress-strain curve obtained for four different strain rates are shown in Fig. 6 a) - c). We

have analyzed the distribution of the normalized stress drop magnitudes for every in-

dividual segment of the diagram. The normalization was performed on the basis of the

standard linear regression fit△σ = f(ε) for the statistics of the stress drops△σ versus

strain ε, and the resulting distribution of the normalized stress drops δ = △σ/△σ was

considered. The resulting histograms - the number of stress drops Z versus normal-

ized stress drop magnitude δ - are shown in Fig. 6. Since the strain rate increases from

the bottom to the top of Fig. 6, a trend in the histograms and hence in the distribution

functions for the normalized stress drop magnitudes is recognized easily: they tend to

transform from a bi-modal form (bands of type C) to a power law distribution Z ∼ δ−p

(bands of type A). As no attempt was made here to estimate p, we refer the interested

reader to a more detailed statistical analysis (Lebyodkin et al., 2001). To summarize

the results so far, we conclude that the proposed material model does predict a change

of a peaked distribution of stress drops to a monotonic one and hence proves to be in

a qualitative agreement with the available experimental data and the aforementioned

statistical studies.
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The two-point correlation function (see Fig. 7 a) - c)) gives an insight into the temporal

distribution of the band nucleation events in the simulated time interval of the PLC

effect, of course under controlled strain rate. More precisely, the questions we are

interested in addressing are: (i) given a band nucleation event at the temporal instant t1
in the simulated time interval, what is the probability of there being another nucleation

event at a second time point t2 in the same interval? and (ii) how does the length of the

simulated time interval affect the distribution of the nucleation events? The answers to

both questions are expressed graphically in Fig. 7 a) - c). The diagrams of the calculated

two-point temporal correlation function show that the higher the strain rate, the longer

is the time interval τ in which a pair of nucleation events can be considered as being

correlated. In a very simple and illustrative way these results indicate the plausibility

of the conclusion drawn by Bharathi et al. (2001) that the increase in the strain rate

leads to a change in the dynamical regime of the plastic flow from a non-linear chaotic

(nucleation events with short range of correlation) to a self-organized critical behavior

(nucleation events with long-range correlation).

5.2 Band characteristics in tension and compression

In this section we determine the most important characteristics of the PLC bands of

type A, viz. the band velocity and the band width, from the calculated plastic re-

sponse. A typical band of type A occurs as a plastic strain-rate spike propagating

along the tensile axis of the specimen as a solitary plastic wave. The projected uniaxial

motion of the solitary plastic wave is realized through a repetitive micromechanical

mechanism consisting of four phases: in the first phase the dislocations are unpinned

from the solute clouds; the second phase is characterized by a rapid dislocations glide;

in the third phase the dislocations are recaptured and pinned at the forest obstacles;

and finally in the fourth phase additional pinning by solutes occurs. Changes in the

strain field within the band are associated with the second phase while the strain rate

is affected by the micromechanics of the third phase of band propagation and exhibits

sharp variations across the bandwidth (Rizzi and Hähner, 2004). This temporal picture

translates to spatial variation in the plastic strain rate (and hence in the plastic strain)

within the band. The simulation results shown on Fig. 8 support this conjecture. In

order to estimate the band characteristics we assume, as is done customarily (Hähner

et al., 2002), that

i) the band plastic strain accommodates the total applied strain;
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a) ε̇a = 1 · 10−2 s−1

b) ε̇a = 1 · 10−3 s−1

c) ε̇a = 1 · 10−4 s−1

Figure 6: Simulated σ- ε diagrams and histograms of the normalized stress drop magnitude δ. Here Z

denotes the number of the stress drops at with magnitude δ.

ii) the effect of the stress rate on the motion of an already developed PLC band is

negligible.

To determine both spatial characteristics of the localized deformation bands men-

tioned above, we conducted numerical simulations of uniaxial tension/compression

experiments. The plastic activity is characterized in terms of the equivalent plastic

strain increment△εp. Figure 8 shows the distribution of this increment along the ten-

sile/compression axis x of the specimen. The values of the increment are obtained at

different time instants (increments) during the band propagation. From the axial dis-

placement at the peaks of the equivalent plastic strain increment and the corresponding

time intervals one can determine the velocity of band propagation. Indeed, it should
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a) ε̇a = 1 · 10−2 s−1

b) ε̇a = 1 · 10−3 s−1

c) ε̇a = 1 · 10−4 s−1

Figure 7: Two-point correlation functions.

be noted that assumption (a) implies for the band velocity2 c that c = △ε∗p/v where v is

the cross-head velocity, calculated as v = u|△ε∗
p
/△t, with u|△ε∗

p
denoting the component

of the displacement field in direction x corresponding to the maximum value △ε∗p of

△εp, and △t is the time increment for △εp. In order to determine the (average) band

width wx in x direction we again consider the simplifying assumption (a) from which

it follows wx = v/εp,t with εp,t = dεp/dt. Clearly, then wx ≈ v△t/△ε∗p. holds. The band

width in the direction normal to the middle band plane3 is calculated using the angle
2The band velocity is identified with the x-coordinate of the total band velocity field.
3Assuming the middle band surface to be flat.



22 Böhlke et al.

α between the unit direction vector ex of the x axis and the unit normal to to the mean

band plane (determined from the calculations). Accordingly, the band width in the

direction perpendicular to the middle band plane is w ≈ wx cos(α). Figure 8 illustrates

the dependence of the band velocity c and the band width w on the applied strain rate

ε̇a (proportional to cross-head velocity v) graphically. The calculated band width and

the band velocity lie in the experimentally observed ranges (Zhang et al., 2001). The

graphics in Fig. 8 b) - c) show a linear dependence (note the logarithmic scale!) of band

velocity on the applied strain rate and a relative independence of c on the specifics of

the test (tension or compression). By contrast, the band width depends strongly on the

type of the test and changes only slightly with the cross-head velocity.

Figure 9 a), b) shows the plastic strain increment, the internal variables as well as the

von Mises equivalent stress as obtained by simulations of tension/compression exper-

iments with flat samples. For the tensile tests considered the band moves from bottom

to top, while for the compression tests the motion is in the opposite direction. The sim-

ulations show that in tensile experiments single bands or X-shaped band pairs emerge

at a band angle typical of the tensile test. This is distinct from the compression tests

where V-shaped band pairs appear. The domains occupied by the bands are easily rec-

ognized as the regions of the localized plastic strain. The aging time in the region of a

band takes the smallest values (ta = 0). The distribution of the von Mises stress shows

that the equivalent stress close to the band front is larger than the equivalent stresses

behind the band.

In addition to the tensile tests with flat specimens, results for cylindrical specimens

undergoing tension and compression were also obtained (see Fig. 10). The axial sym-

metry was used in the simulations. In these simulations, small regularly distributed

initial fluctuations in the plastic strain field with controlled effective value were intro-

duced at the integration points of the finite element mesh. In this way the uniformity

of the plastic flow was perturbed and localized PLC bands were activated as a con-

sequence. The predicted apparent band shape for both tension and compression was

conical (Fig. 10). These results are consistent with the available computational data

for cylindrical samples (Zhang et al., 2001) and with the experimental observations

(McCormick et al., 1993; Ling and McCormick, 1993; van den Brink et al., 1977).

5.3 Rôle of the dimensionality of the strain state

In order to show the influence that the dimensionality of the strain state has on the

band characteristics, we performed a deformation driven simulation of the isothermal

response of a 2-dimensional representative volume element (RVE) (see Fig. 12). The
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RVE was loaded by periodic boundary conditions (displacements) generated from a

prescribed averaged strain, for a mesh of 50x50 finite elements. This particular choice

of loading conditions was motivated by the observation that periodic boundary condi-

tions result in a softer response of the deformed finite element mesh yielding in result

to a localized deformation modes. The strain hardening function applied in the com-

putations is defined in Section 3.2. Different boundary conditions have been gener-

ated for principal strain states with varying axiality. The control over the axiality was

enforced through the scalar parameter α and the relation ε2 = αε1 (cf. with Gänser

et al., 2000). In the latter, α = −0.5 corresponds roughly to a pure tension, α = 0

to plane strain state and α = 1 to a biaxial tension. For every α in the discrete set

α ∈ [−0.5,−0.375,−0.25,−0.125, 0, 0.25, 0.5, 1]we monitored the deformation up to the

appearance of PLC-bands. The obtained results for band orientation angle, in depen-

dence on the axiality parameter α are presented in Table 2 and in Figure 11.

α -0.5 -0.375 -0.25 -0.125 0.0 0.25 0.5 1.0

Orientation angle 53.0 ◦ 58.5 ◦ 62.0 ◦ 71.0 ◦ 90.0 ◦ 90.0 ◦ - -

Table 2: Simulated dependence of the band orientation angle (in, [ ◦]), from the axiality of the strain state

(controlled by the parameter α).

5.4 Deep drawing of a metal sheet

An example of an industrial application we analyzed is that of deep drawing of an

initially circular sheet of Al alloy 2024, for which the isotropic material properties are

assumed. It should be noted that the assumed plastic isotropy precludes the occur-

rence of earing of a deep drawn sample, although this effect was observed experimen-

tally. Hence, the simulation results shown have a qualitative character only. With the

defined constitutive model, the localization pattern observed from the simulation is

shown in Fig. 13. The simulation predicts propagating localization bands in circum-

ferential direction along the region with highest mean curvature. The explanation of

the observed phenomenon is related to decreased load bearing capacity of the deep

drawn sample. As well known from the theory of shells, an extreme loading capacity

can be achieved when the geometric design of the shell allows it to be in a membrane

state with equally strained material fibers. Clearly in a deep drawing process where

the thickness of the metal sheet decreases such a state cannot be achieved. Indeed, the

deep drawn sample is deformed in a bending dominated regime that is accompanied

by large mid surface inextensional deformations favoring early activation and, more

importantly, a non-uniform destabilized character of plastic flow.
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6 Summary and Conclusions

The experimental and computational results of the present investigation predicted the

onset and the propagation of localized Portevin-Le Chatelier bands in Al alloy 2024 in

a qualitatively and quantitatively correct way. The conditions for the occurrence of the

inverse and the normal strain rate behavior of the critical strain for the onset of discon-

tinuous plastic flow were determined and calculated using non-linear finite element

analysis. The predicted critical strain for the onset of the PLC effect is in good quan-

titative agreement with the available experimental results. Both the normal and the

inverse types of behavior were predicted. For constant strain rate tests, normal behav-

ior is associated with PLC bands of type A, while inverse behavior is associated with

type C bands. Complementary statistical analysis was carried out on the computed

and experimentally recorded stress-time series under the dynamic strain aging condi-

tions with the purpose of characterizing the distinct spatiotemporal dynamical regimes

associated with the PLC effect. The two-point temporal correlation function was cal-

culated for several different applied strain rates. The results indicate clearly that the

present physically and geometrically non-linear constitutive model is able to capture

the transition between the distinctly different dynamic regimes of the PLC flow - from

non-linear chaos to self-organized criticality. As predicted by the model, the character

of the band nucleation events changes from weakly to strongly correlated one as the

band type structure of the plastic flow switches from type C at small strain rates to

type A for high strain rates. While the model was gauged to a particular Al alloy (AA

2024), it possesses generality that makes it applicable to a broad range of dynamically

strain aging materials.
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a)

b)

c)

Figure 8: Band characteristics obtained from the simulations: a) distribution of the equivalent plastic

strain increment; b) estimated band velocity; and c) estimated band width. The simulation results are

obtained for samples with flat and cylindrical geometry subjected to uniaxial tension/compression.
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a)

b)

Figure 9: Internal variables and von Mises stress for flat samples subjected to: a) tension; and b) com-

pression. The arrows next to figures indicate the direction of propagation of PLC bands.
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Figure 10: Tension and compression test for cylindrical specimen. The white arrows next to the figures

denote the direction of band propagation.
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Figure 11: Band orientation angle γ (in degrees) as a function of the axiality factor α.
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a) α = −0.375

b) α = −0.25

c) α = 0.0

Figure 12: Calculated distribution of equivalent plastic strain in a 2-dimensional RVE subjected to peri-

odic boundary conditions in the midplane of the metal sheet. Note the change in the band orientation

for different strain rates.



33

Figure 13: Calculated distribution of equivalent plastic strain increment (left) and accumulated plastic

strain (right) during the deep drawing of a circular metal sheet. The PLC effect is observed in circumfer-

ential direction in the region with the highest mean curvature, where a high strain concentration (shown

in red) is seen.


