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Abstract. The inelastic material properties of Metal Matrix Composites (MMC) with
particulate reinforcement are investigated. In order to be able to investigate a variety
of unit cells a method for the generation and spatial discretization of random model mi-
crostructures is presented. The Nonuniform Transformation Field Analysis (NTFA) is
employed to investigate the properties of the microheterogeneous material with physical
non-linearity. The coefficients of the NTFA are determined from full-field simulations us-
ing the Finite Element Method (FEM) on the microscopic scale with consideration of the
exact geometry. The homogenized material model is implemented into ABAQUS STAN-
DARD. Numerical examples highlight the efficiency of the method.
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1 INTRODUCTION

Many materials consist of multiple constituents on the microscopic scale. This
micro-heterogeneity often influences the macroscopic properties. For example, modern
composite materials consisting of a metallic matrix and ceramic reinforcement have
shown favorable mechanical and thermo-mechanical properties that are governed by the
individual physical properties and the geometry of the reinforcement.

A variety of homogenization methods has been proposed in the past century (see
e.g. Nemat-Nasser and Hori [1]) for the linear mechanical and thermal properties
of microheterogeneous materials. The latter can be considered to be (mostly) well
understood for many materials. Some established analytical and semi-analytical methods
for the homogenization of linear properties are the upper Voigt bound and the lower
Reuss bound, the Hashin-Shtrikman bounds [2], the Mori Tanaka estimate [3] and
self-consistent estimates [4]. Numerical computations have shown that these methods
can determine the linear properties of many microheterogeneous materials to a sufficient
extent (e.g. Fritzen et al. [5]) if the contrast in the physical properties is small or moderate.

In practice many materials show non-linearities such as plasticity, damage and
fracture. When non-linear material properties are investigated many of the assump-
tions entering the aforementioned methods are no longer satisfied. Particularly, the
stress and strain fields become nonlinear functions of the macroscopic loading with a
(mostly) unknown structure of the macroscopic constitutive equations. The evolution
of inelasticity cannot be determined (semi-)analytically due to severe path-dependency
except in rare cases. Numerical methods based on the Finite Element Method (FEM),
the Fast Fourier Transform (FFT), the Boundary Element Method (BEM) and oth-
ers have employed to determine the effective behaviour of non-linear heterogeneous
materials. One of the numerical multiscale methods is the multi-level Finite Element
Method (FEp) in which each integration point in a finite element analysis is equiped
with a sub-grid containing the full information of the microscopic constituent. The
method has seen massive attention for two-dimensional problems (e.g. Miehe [6])
and the technique has been extended to generalized continua by Feyel [7]. The large
degree of freedom with respect to the modelling of materials and structures when
using a multi-level FE approach in return leads to an excessive number of degrees of
freedom even for two-dimensional problems. Application to three-dimensional problems
is still limited, despite the ever increasing amount of available memory and CPU
power. It has to be mentioned that, usually, FEp requires massive parallelization which
precludes application of the method for many engineers in industry and research facilities.

In order to condense the number of degrees of freedom Dvorak and Benveniste
[8], Dvorak et al. [9] proposed the Transformation Field Analysis (TFA). In the latter the
plastic strain field is assumed to be constant in subdomains of the microscopic material.
Hence, only few coefficients need to be computed. The method has been applied for the
homogenization of non-linear material properties of materials at acceptable numerical
cost. However, the method has been shown to overestimate significantly the stiffness of
the microstructure [10].
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Michel and Suquet [11] extended the TFA to the case of plastic strain fields which
are no longer piecewise constant in order to overcome the overly stiff predictions of the
effective material response. More precisely, the characteristic deformation patterns of
composite structures can be replicated using only few scalar coefficients. The method
has been applied to two-dimensional composites with great success [11, 12, 13].

In this paper the non-uniform transformation field analysis (NTFA) is applied to ran-
dom three-dimensional model microstructures resembling particulate MMCs in the ab-
sence of damage, i.e. linear elastic particles and a ductile matrix material are considered.
Section 2 is devoted to the generation of the geometry and the spatial discretization of the
latter. In Section 3 the constitutive equations of the NTFA are briefly revisited and equa-
tions describing the macroscopic material behaviour using the internal variable formalism
are derived. The effective stress-strain response of the homogenized material is compared
to the one of full-field unit cell computations under proportional and non-proportional
loading in Section 4.

2 MODEL MICROSTRUCTURES

The concept of model microstructures created based on random variables allows to
examine a variety of different unit cell problems. As an example model microstructures
based on Voronoi tessellations have been used for polycrystalline aggregates in the past
(e.g. Barbe et al. [14]) to numerically perform statistical investigations. The authors have
recently proposed a fast mesh generator based on the Voronoi tessellation which creates
not only periodic microstructures but also periodic mesh topologies while the geometry is
exactly replicated [5]. In this section a modification of the procedure is described in order
to construct three-dimensional model microstructures consisting of a matrix material and
polygonal particulate inclusions. These particle shapes are often found in metal matrix
composites reinforced with ceramic powders (see e.g. Miserez et al. [15]).

For simplicity a cuboidal unit cell of the type

Ω = [−w/2, w/2]× [−d/2, d/2] × [−h/2, h/2] ⊂ R3 (1)

is considered. First, a set of N random points Pi ∈ Ω is generated and copied 26 times
around the unit cell in order to define a periodic Voronoi tessellation [16]. A point X ∈ Ω
is part of the Voronoi cell defined by the point Pi which has the smallest (Euclidean)
distance to X. The cells of a Voronoi tessellation are convex bounded polyhedra which
can either be characterized by their corner vertices or in terms of the intersection of a set
of m halfspaces, with m being the number of faces of the cell.

h/2
ni

Fig. 1: Shrinked convex polyhedron (here: in 2d)

Each of the halfspaces Hi is characterized by its outward unit normal vector ni and
the offset δi from the origin. Each cell is defined by a set of M tuples {ni, δi}i=1,...,M . By

3



Felix Fritzen and Thomas Böhlke

modifying the offset parameters via

δ∗i = δi −
h

2
(i = 1, . . . , M), (2)

all cell faces are translated in negative unit normal direction, i.e. inwards, forming a
separating layer of thickness h between two neighboring cells. The following properties
are found for cells constructed by the described methods:

• Cells can vanish during the shrinking process due to their small initial size.

• The remaining cells are convex.

• All cells have a uniform distance to their direct neighbors, i.e. there is no penetration
and no percolation.

• The number of faces of the new cell is smaller than or equal to the number of faces
on the original cell.

• The volume fraction of the inclusions can be scaled by the parameter h.

• The microstructure is periodic. This allows to endow the unit cell with periodic dis-
placement boundary conditions or anti-periodic traction boundary conditions (e.g.
Miehe [6] and others).

With the definition of the faces of the inclusions a periodic three-dimensional mesh can
be obtained by the procedure described by Fritzen et al. [5] with minor modifications.
Particularly, the filler material has to be added to the mesh and the surface mesh on the
faces of the unit cell has to be modelled with care. It is noteworthy that the advantages
of the mesh generation algorithm such as fast mesh generation and fully scalable mesh
density apply to this new class of model microstructures. Additionally, it is possible to
modify the point seed Pi by superimposing a hardcore condition etc., thereby increasing
the regularity of the cells.

Fig. 2: Example meshes for N = 5 (left with periodic continuation), 200 (right)

Example meshes for N = 5 and 200 are shown in Fig. 2. Remarkably, the larger the
number of inclusions the denser the mesh has to be in order to expect proper results from
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a finite element analysis. This may quickly lead to several million degrees of freedom
in a mechanical finite element analysis. Hence, such discrete microstructures are not
recommended for application with FEp methods.

3 NONUNIFORM TRANSFORMATION FIELD ANALYSIS

The focus of this paper are two-scale problems in the context of small deformations. The
restriction to geometrically linear behaviour is reasonable for many composite materials.
On the microscopic scale the stress, strain and the displacement are denoted by σ, ε and
u, respectively. Overlined quantities are taken at the macroscopic (structural) level of
the domain Ω̄ with boundary Γ̄ = ∂Ω̄. The macroscopic and the microscopic strain and
stress fields are related by the averaging operator 〈•〉 = |Ω|−1

∫

Ω
• dV :

ε̄ = 〈ε〉, σ̄ = 〈σ〉. (3)

Ω

Ω̄

u

ū

x̄, σ̄, ū, ε̄
x, σ, u, ε

Γ̄u
t̄
∗

Fig. 3: Macroscopic (structural) problem and associated microscopic problem

Then the homogenization problem persists in solving

(P̄ ) :







div(σ̄) = 0 in Ω̄,
σ̄n̄ = t̄ = t̄

∗

on Γ̄t ( Γ̄ ,
ū = ū∗ on ∅ 6= Γ̄u ⊂ Γ̄ ,

and (P ) :







div(σ) = 0 in Ω,
〈ε〉 = ε̄,
σ admissible,

(4)

where the admissible domain of σ is, e.g., defined by the yield surface of a plastic material.

The major assumption of the NTFA is the existence of a finite dimensional basis
spanned by plastic strain fields µ(i)(x) (i = 1, . . . , N < ∞), such that the plastic strain
field εp can be approximated by εp

app for some δp > 0, such that

εp
app(t, x) =

N
∑

i=1

ξi(t)µ
(i)(x), ‖εp

app(t, x) − εp(t, x)‖ < δp (5)

for some suitable norm. The latter usually involves volume averaging. An example is
the L2

Ω norm. Obviously (5) cannot be satisfied for arbitrary deformation processes. It
can, however, be observed that real materials show characteristic deformation patterns,
e.g. plastification in regions between almost rigid inclusions. These characteristic
deformations are massively influenced by both, the physical properties of the material
(anisotropy, nonlinearity) and the topology of the heterogeneous medium. The latter can
for example be described by means of n-point correlation functions [17].

The idea of the NTFA persists in trying to determine (a small but sufficient number
of) plastic modes µ(i) associated with the characteristic deformations of a unit cell in a
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numerical testing environment and then to formulate appropriate evolution equations for
the coefficients ξi(t). The local stress and strain field at position x and time t can be
expressed in terms of ξ(t) and the strain concentration tensor A(x)

ε(x, t) = A(x)[ε̄] +
N

∑

j=1

ξj(t)ε
(j)
∗

(x), (6)

σ(x, t) = C(x)A(x)[ε̄] +

N
∑

j=1

ξj(t)σ
(j)
∗

(x). (7)

Following the method introduced by Michel and Suquet [11, 12] the thermodynamic driv-
ing forces are:

τ (i) = 〈ATC[µ(i)]〉 · ε̄ +

N
∑

j=1

ξj〈µ
(i) · σ(j)

∗
〉 = 〈ATC[µ(i)]〉 · ε̄ + Dξ, (8)

with σ
(j)
∗ = C[ε

(j)
∗ − µ(j)] the solution of the eigenstress problem

(P j
σ) : div(C[ε(j)

∗
− µ(j)]) = 0, 〈ε(j)

∗
〉 = 0. (9)

We assert that the modes satisfy the restrictions of [11, 12]:

• The modes are normalized
(

〈‖µ(i)‖2〉 = 1
)

.

• The modes are linearly independent and the support of individual modes is restricted
to one phase.

• The modes are orthogonal (〈µ(i) · µ(j)〉 = 0 (i 6= j) ).

A suitable evolution equation for the internal variables ξi has been found to be

ξ̇i = λ̇
τ (i)

‖τ‖2

(10)

for a material showing plasticity of von Mises type. The variable λ̇ is a Lagrangian
multiplier satisfying the Karush-Kuhn-Tucker complementary conditions

λ̇ϕ = 0, λ̇ ≥ 0, for ϕ(τ , q̄) = ‖τ‖2 −
√

2/3σF(q̄). (11)

The variable q̄ is an additional internal variable accounting for isotropic hardening effects.
The latter is assumed constant over the entire unit cell, i.e. it has a spatially uniform
distribution. The evolution equation for the hardening variable is

˙̄q = λ̇

√

2

3
. (12)

As an important outcome of (7), the macroscopic stress σ̄ is a linear transformation of
the macroscopic strain ε̄(t) and coefficients ξ(t):

σ̄(ε̄(t), ξ(t)) = 〈C(x)A(x)〉[ε̄] +

N
∑

j=1

ξj(t)〈σ
(j)
∗
〉

= C̄[ε̄] +
N

∑

j=1

ξj(t)〈σ
(j)
∗
〉. (13)
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4 NUMERICAL EXAMPLES

4.1 Comparison on unit cell level

The NTFA is implemented into ABAQUS/STANDARD using an implicit time inte-
gration procedure based on the Backward Euler scheme to integrate (11) and (12) on the
interval [tn, tn+1]. The microstructure and discretization used in the subsequent analysis
are shown in Fig. 4.

Fig. 4: Discretized model microstructure used in the nonuniform transformation field analysis

As has been shown by Fritzen and Böhlke [18] the behaviour of the unit cell for pro-
portional multi-axial loading can well be approximated by the NTFA when using only a
small number of modes. These investigations are continued by examining the behaviour
upon nonproportional loading on the unit cell level in a first step. Therefore a strain-
path consisting of two different loading directions is prescribed to (i) a full field unit cell
computation and (ii) the homogenized material model. The macroscopic stress tensors
computed using the two methods are then compared. The strain rate of the process is

˙̄ε1 =





1 0 0
0 −1 0
0 0 0





ei ⊗ ej

100s
, ˙̄ε2 =





0 0 2
0 0.5 0
2 0 −0.5





ei ⊗ ej

100s
. (14)

Each of the two rates is held constant for 1 s. A total of only five different modes has been
identified for considered model microstructure containing 10 linear elastic particles (≈18%
vol. fraction). The material parameters were chose according to Michel and Suquet [11].
For the inclusions they are set to the ones of Boron (E = 400 GPa, ν = 0.2). The matrix
material is aluminium with nonlinear isotropic hardening of the type

σF(q) = σ0 + hqm, (15)

with q a strain like hardening variable ressembling the equivalent plastic strain and the
material parameters σ0 = 75 MPa, h = 416.5 MPa and m = 0.3895. The elastic parame-
ters were given by the Young’s modulus E = 75 GPa and the Poisson’s ratio ν = 0.3. The
large degree of nonuniformity of the plastic strain field, the displacement field and the
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stress field is exemplified in Fig. 5 for the first inelastic mode (scales normalized) which
has been identified from a numerical test at macroscopic strain rate

˙̄ε =
ε̇0

2





2 0 0
0 −1 0
0 0 −1



 ei ⊗ ej . (16)

Fig. 5: Plastic Mode 1: von Mises stress σvM (left) and plastic strain component ε
p
11 (right)
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Fig. 6: Time history of σ̄11, σ̄22, σ̄33 (left) and σ̄12, σ̄13, σ̄23 (right)

The time history of macroscopic stress tensor of the full field computation σ̄ref and the
NTFA σ̄NTFA are compared in Fig. 6. The diagonal components (Fig. 6; left) and the
shear components (Fig. 6; right) have been separated for clarity.

A considerable agreement was found for the components of the macroscopic stress
despite the partial load reversal (particularly in the e2⊗e2-direction; see (14)). While the
components of σ̄ of the NTFA show some discrepancy versus the reference computation
it has to be pointed out that the relative errors with respect to ‖σ̄‖ is in the order of 2%
and smaller. Hence, the method can be considered to yield acceptable results for partial
load reversal and multi-axial loading.
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4.2 Structural computation

The homogenized material has been used to model a tension test on the three-
dimensional specimen shown in Fig. 7. Since the homogenized material is no longer
per se isotropic, it is not possible to reduce the model of the axisymmetric specimen
to two dimensions. The discretization of the specimen was (Fig. 7, middle) consists of
approximately 70000 nodes, i.e. a total of 220000 degrees of freedom were considered.
Kinematic boundary conditions (Fig. 7, right) were prescribed to replicate a standard
tension test in e2-direction. The total displacement uy at the end of the load step was
set to 1mm equating to 5% of the measured section. The force displacement curve of the
microheterogeneous material is shown in Fig. 8.

6

12

60

R10

20

x
y

uy

Fig. 7: Threedimensional tensile specimen: Geometry (unit: mm; left), spatial discretization (middle)
and boundary conditions (right)
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Fig. 8: Force displacement curve Fig. 9: Observed integration point

The computation was used to validate the implementation of the homogenized mate-
rial model into the Finite Element code ABAQUS/STANDARD. Particularly, the tangent
stiffness operator was tested and the formulation used in the UMAT (User Material Sub-
routine) allowed for a good convergence rate. During the analysis the stresses, the strains
and internal variables computed for the homogenized material model were recorded for
the integration point highlighted in Fig. 9. The recorded strain-path was then used to
model nonproportional loading on the unit cell level. A full field simulation on the mi-
croscale is then carried out to compare the (effective) stress field of the numerical full field
simulation to the predicted field from the NTFA. The results are shown in Fig. 10.
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Fig. 10: Time history of σ̄11, σ̄22, σ̄33 (left) and σ̄12, σ̄13, σ̄23 (right)

5 SUMMARY AND CONCLUSIONS

5.1 Summary

An algorithm for the generation of random three-dimensional model microstructures
was discussed in Section 2. The procedure has the advantage that particles have a
constant distance to each other and arbitrarily high volume fractions are possible. The
latter is a critical point for many other algorithms. Moreover, the mesh density is fully
adjustable while the geometric representation of the material remains exact which is a
disadvantage of the multi-phase element method used by many authors.

The formulation of the NTFA as presented by Michel and Suquet [11] has briefly been
revisited in Section 3. The behaviour of the method upon nonproportional loading has
numerically been investigated in terms of a comparison between a full field simulation at
unit cell level and the results predicted by the NTFA. A number of only five inelastic modes
was employed and found to yield a good agreement between the full field simulation and
the result predicted by the homogenized material model. Notably the number of degrees
of freedom in the NTFA model is six (five mode coefficients, one hardening variable)
whereas 200000 displacement degrees of freedom plus a comparingly large number of
internal variables was solved.

5.2 Conclusions

The NTFA introduced by Michel and Suquet [11] has been extended to (i) three space
dimensions with consideration of complexly shaped particles and (ii) implementation
using the finite element method. It could be shown that the NTFA shows promising
results even in the case of non-proportional three-dimensional loading. The good
agreement between reference computations and the NTFA which was found by Michel
and Suquet [11, 12], Roussette et al. [13] for two-dimensional problems can be confirmed
for three dimensions and more complex microstructures.

In addition to unit cell computations a structural computation using the homogenized
material model was conducted. The strain-path has been recorded at an integration point
in a region where three-axial loading is to be expected. This strain-path has then been
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used to prescribe boundary conditions on the unit cell level. The agreement in the stress
field found using the two methods was excellent. It, hence, seems reasonable to use this
model for other structural computations where the loading is applied almost proportional.

The implementation used in this work was based on the finite element method which
offers the advantage of standardized implementation into commercial software (here:
ABAQUS). This approach differs significantly from the Fast Fourier Transform (FFT)
used in Michel and Suquet [11, 12], Roussette et al. [13]. We consider the finite element
method more suitable for many three-dimensional problems since, given a geometrically
exact discretization of the microstructure, there are no volumetric errors and all geomet-
ric details, i.e. corners, small edges etc., are considered. The FFT method and block-
structured meshes with multi-phase elements have at best the resolution h = 3

√

V/NDOF

(V : volume of unit cell, N : number of elements in each coordinate direction). Hence,
the number of degrees of freedom quickly increseases with these methods if only one
characteristic length in the microstructure gets small.
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