
Wireless Sensor Network
Pattern Based Fault Isolation

in Industrial Applications

Dissertation
Prof. Dr. Wilfried Juling
Fakultät für Informatik

Universität Karlsruhe (TH)

by

Luciana Moreira Sá de Souza

Advisors:

Prof. Dr. Wilfried Juling
Prof. Dr. Christian Becker

Defended on: 2009-06-05

Institut für Telematik

Abstract

A next generation technology for environment awareness, called Wireless Sensor
Network (WSN)s, is emerging with the potential to bring enterprise systems to a new
level of business process management. Due to the tight integration of WSNs with
the environment and the possibility to attach them to physical items, WSNs reduce
the information gap that exists between the real world and its digital representation,
enabling a new paradigm of business process execution.

However, regardless of high reliability of single elements present in WSNs, faults
in the respective components always occur. Therefore, the adoption of WSNs in
enterprise environments requires a constant supervision to ensure the reliability and
availability of the provided services. In general and according to the scenario in
which the WSN is applied, the effects of a failure may range from economic losses
to contaminating the environment and risking human lives. Hence, the successful
deployment of WSNs in business processes relies on efficient fault diagnostic systems,
in order to reduce maintenance time and costs.

As enterprise business systems are required to work with a broad range of wireless
sensor network platforms, integration mechanisms and fault diagnosis methods can-
not rely on specific functionalities and information that may not be available at all
platforms.

Hence, this thesis approaches the research question of how to integrate heteroge-
neous WSNs with enterprise business systems, and how to identify the malfunction-
ing components of these networks based only on a restricted information set that
can be provided by most WSNs. Therefore, this restricted information set forms an
appropriate WSN platform abstraction for this thesis. This restricted set of infor-
mation is based on sensor node identification number, timestamp information and
the time interval between messages (heart beat).

As a solution, we propose a framework that creates a hardware platform abstraction
for enterprise applications. This framework enables the integration of heterogeneous
WSNs with backend applications and defines the mechanisms for fault diagnosis and
recovery.

As core contribution, this thesis proposes a fault isolation method based on the iden-
tification of system patterns. This approach has the ability to learn the behaviour
of the network when specific failures occur and to combine known patterns. This re-
duces the need of expert system knowledge to determine the causes of misbehaviour
in the network. The proposed solution proved to be efficient in identifying failures,
and represents a new method for isolating failures in wireless sensor networks.

Zusammenfassung

Sensornetze bezeichnen eine aufkommende Technologie der nächsten Generation
zur Über-wachung der Umgebung mittels Sensoren. Sie bergen das Potential, be-
triebliche Informati-onssysteme auf die nächste Stufe des Geschäftsprozessmanage-
ments zu führen. Aufgrund ihrer festen Integration in der Umgebung und der
Möglichkeit, sie an physischen Gegenständen zu befestigen, reduzieren Sensornetze
die Informationslücke zwischen der Realität und ihrer digitalen Repräsentation und
ermöglichen so völlig neue Möglichkeiten bei der Ausführung von Geschäftsprozessen.

Trotz der hohen Zuverlässigkeit einzelner Elemente eines Sensornetzes treten im-
mer wieder Fehler in den jeweiligen Komponenten auf. Aus diesem Grund erfordert
der Einsatz von Sensornetzen in Unternehmen deren permanente Überwachung, um
die Zuverlässigkeit und Verfügbarkeit der bereitgestellten Dienste sicherzustellen.
Derartige Fehler können finanzielle Verluste zu Folge haben, im Extremfall je nach
Szenario aber auch Gefahren für Mensch und Umwelt. Daher ist der erfolgreiche
Einsatz von Sensornetzen im Rahmen von Geschäftsprozessen auf effiziente Fehler-
diagnosesysteme angewiesen, um Wartungszeit und Wartungskosten zu reduzieren.

Da betriebliche Informationssysteme unterschiedlichste Sensornetzplattformen un-
terstützen müssen, können sich Integrationsmechanismen und Fehlerdiagnosemeth-
oden nicht auf spezifische Funktionalitäten und Informationen stützen, die nicht von
allen Plattformen unterstützt werden.

Aus diesem Grund geht diese Arbeit der Forschungsfrage nach, wie heterogene Sen-
sornetze in betriebliche Informationssysteme integriert und fehlerhafte Komponenten
innerhalb dieser Netze identifiziert werden können. Dabei darf nur auf grundlegende
Informationen zugegriffen werden, die von jedem Sensornetz bereitgestellt werden
können, um eine gemeinsame Abstraktionsebene zu schaffen. Diese grundlegen-
den Informationen setzen sich aus gelesenen Sensorwerten, Identifikationsnummern,
Zeitstempeln und Intervallen zwischen gelesenen Sensorwerten zusammen.

Die Lösung besteht aus einem Framework. Es enthält eine Hardwareabstaktion-
schicht für betriebliche Informationssysteme, unterstützt dadurch die Intergration
heterogener Sensornetzwerke und erlaubt Fehlerdiagnose und -beseitigung.

Der zentrale Beitrag dieser Arbeit ist eine Methode zur Fehlerdiagnose, die auf der
Erkennung von Systemmustern beruht. Dieser Ansatz besitzt die Fähigkeit, das Ver-
halten des Netzwerks beim Auftritt von Fehlern zu erlernen und bekannte Muster zu
kombinieren. Dadurch wird das zur Bestimmung der Ursachen eines Fehlverhaltens
des Sensornetzes benötigte Expertenwissen verringert. Die vorgestellte Lösung hat
sich hinsichtlich der Erkennung von Fehlern als effizient erwiesen und stellt eine neue
Strategie zur Isolierung von Fehlern in Sensornetzen dar.

Acknowledgements

The path to achieve a doctoral degree is one of the hardest challenges I faced during
my lifetime. It already became clear to me on the first year of my research that it is
a lonely path, and yet one that I could not have gone through without the personal
and practical support of several people.

Although the list of those that I wish to thank extends beyond the limits of this
page, I would like to give a special token of my appreciation to the following people
and institutions for their dedication, prayers, and support:

I would like to thank the University of Karlsruhe and SAP Research for giving me
the opportunity to pursue this work in an inspiring and motivating environment.

My supervisors, Prof. Dr. Wilfried Juling, Prof. Dr. Christian Becker, and Christian
Decker, the discussions and insights have significantly strengthened this study. It
has been an honour to work with you and I will always be thankful for your wisdom.

Harald Vogt, thank you for the brain storming sessions and the valuable advices you
gave me. Your help came at crucial moments, and I will always be thankful for that.

Zoltan Nochta, thank you for reading my thesis and providing valuable feedback
that considerably improved my work.

Special thanks to my colleagues Jens, Patrik, Nina and Stamatis, I had the oppor-
tunity to share the office with some of you which was a really nice and exciting
experience. Thank you for the nice evenings and the well known “Wine of Friday”
event.

To my dear friend Asma, thank you for the long talks, the kind gestures and the
friendship we developed throughout these years. The memories of the nice moments
and difficult times we overcame together will always stay in my heart.

To my grandmother Dalva, for all your prayers, and for being all that a person can
wish for in a grandmother.

To my sister Carla, thank you for the support and for bringing Gabriela into my life.
Her pictures and videos made my life full of joy every day.

To my parents Otávio and Eliane, thank you for the guidance, education and love
you always gave me during my life, without it I would not be where I am today.

To my love, words will never express all my gratitude for the support you gave
me, the patience you had, and the sacrifices you made for me to finish this thesis.
Thank you for always being there for me, constantly supporting and encoraging me,
watching my steps, holding me never letting me fall. Ricardo, to you I dedicate this
thesis.

Contents

1 Introduction: Thesis and Objective 1

1.1 Problem Description . 2

1.2 Thesis and Goal . 4

1.3 Solution Approach . 4

1.3.1 Fault Tolerant Framework for Wireless Sensor Networks . . . 4

1.3.2 Pattern Based Fault Isolation for WSNs Applied in Industrial
Environments . 5

1.4 Research Contribution . 5

1.5 Structure and Contents . 6

2 Problem Statement 9

2.1 Enterprise Scenarios . 11

2.1.1 Supply Chain Management 11

2.1.2 Environment, Health, and Safety 12

2.2 Effects of Wireless Sensor Network Failures in Business Processes . . 14

2.2.1 Environment Contamination and Risk of Human Life 15

2.2.2 Economic Losses . 15

2.3 Scope of the Thesis . 16

3 Research Foundations 19

3.1 Models and Definitions . 20

3.1.1 Wireless Sensor Networks . 20

3.1.2 Fault Tolerant Industrial Systems 22

3.2 Wireless Sensor Network Faults in Industrial Applications 24

3.2.1 Sources of Faults in WSN Applications 25

3.2.1.1 Node Faults . 26

3.2.1.2 Network Faults . 27

x Contents

3.2.1.3 Sink Faults . 28

3.2.2 Failure Types . 29

3.3 State of the Art in Fault Tolerance for Wireless Sensor Networks . . . 30

3.3.1 Fault Diagnosis Techniques 30

3.3.1.1 Self Diagnosis . 31

3.3.1.2 Group Diagnosis . 32

3.3.1.3 Hierarchical Diagnosis 34

3.3.2 Fault Recovery Techniques . 36

3.3.2.1 Active Replication in WSNs 36

3.3.2.2 Passive Replication in WSNs 37

3.3.3 Classification and Evaluation of Techniques 40

3.4 State of the Art in Fault Diagnosis for Industrial Applications 44

3.4.1 Binary Diagnostic Matrix . 44

3.4.2 Diagnostic Trees and Graphs 45

3.4.3 Rules and Logic Functions . 46

3.4.4 Neural Networks . 47

3.4.5 Fuzzy Systems . 50

3.4.6 Classification and Evaluation of Techniques 51

3.5 Summary . 52

4 Fault Tolerant Framework for Wireless Sensors Networks 55

4.1 Requirements . 56

4.2 Architecture . 59

4.2.1 Framework Layers . 61

4.2.1.1 Device Layer . 61

4.2.1.2 Platform Abstraction Layer 61

4.2.1.3 Fault Management Layer 62

4.2.2 Fault Diagnosis . 63

4.2.2.1 In-Network Fault Diagnosis 63

4.2.2.2 Fault Detector . 63

4.2.2.3 Fault Isolator . 64

4.2.2.4 System State . 64

4.2.2.5 Component Interaction 65

Contents xi

4.2.3 Fault Recovery Management 66

4.2.3.1 In-network Recovery 66

4.2.3.2 Decision Maker . 67

4.2.3.3 Recovery . 67

4.2.3.4 Mapper . 68

4.2.3.5 Device Manager . 69

4.2.3.6 Code Distribution Manager 69

4.2.3.7 Code Repository . 69

4.2.3.8 Code Injector . 70

4.2.3.9 Component Interaction 70

4.3 Summary . 71

5 Pattern Fault Isolator for WSNs 75

5.1 Failure Model . 76

5.2 Crash Fault Analysis . 76

5.3 Architecture . 79

5.3.1 Choice of Techniques . 80

5.3.2 Pattern Fault Isolation Process 81

5.3.3 Pattern Base . 82

5.3.3.1 Message Throughput Distribution 84

5.3.3.2 Combination of Known Patterns 85

5.3.4 Membership Evaluator . 89

5.3.4.1 Membership Functions 89

5.3.4.2 Threshold Definition: Gaussian Distribution Approx-
imation . 95

5.3.4.3 Considerations . 96

5.3.5 Transient Analyzer . 97

5.3.6 Failures Match Maker . 99

5.3.7 Neural Classifier . 101

5.4 Prediction Model . 103

5.4.1 Membership Evaluator . 103

5.4.2 Transient Analyzer . 105

5.4.3 Failures Match Maker . 106

5.4.4 Neural Classifier . 106

5.5 Summary . 106

xii Contents

6 Applications 109

6.1 Application Trial: Research Lab Monitoring 110

6.1.1 Data Collection . 111

6.1.2 Preliminary Data Analysis . 112

6.2 Application II: Simulation . 114

6.2.1 Existing Simulation Environments 114

6.2.2 FT-WiseNets Network Traffic Simulator 115

6.2.2.1 Topology Generator 116

6.2.2.2 Failures Generator 119

6.2.2.3 Traffic Generator . 121

6.3 FT-WiseNets Monitoring Application 122

6.3.1 Fault Isolator Implementation 123

6.3.2 FT-WiseNets User Interface 125

6.3.3 Pattern Acquisition View . 126

6.3.4 Pattern Combination View . 127

6.3.5 Online Isolation Views . 127

7 Pattern Based Fault Isolator Evaluation 131

7.1 Simulation Procedures . 131

7.1.1 Membership Evaluator . 131

7.1.1.1 Threshold Definition 132

7.1.1.2 Timeframe . 138

7.1.2 Pattern Combination . 141

7.1.3 Transient Analyzer . 142

7.1.4 Failures Match Maker . 150

7.1.5 Neural classifier . 154

7.2 Application trial results . 156

7.2.1 Membership Evaluator . 157

7.2.2 Failures Match Maker . 158

7.2.3 Neural Classifier . 162

7.3 Evaluation Results Discussion . 164

8 Conclusions 167

8.1 Future Work . 169

Contents xiii

A Message Exchange 171

A.1 Message Handler . 172

A.2 Notification Manager . 173

A.3 Request Processor . 174

A.4 Component Interaction . 174

B Pattern Combination 179

Bibliography 183

List of Figures

1.1 Application scenario. 3

2.1 Potential value of introducing WSNs in industrial applications. 10

2.2 Wireless sensor nodes applied in quality control. 12

2.3 Application trial at a chemical plant where storage regulations of haz-
ardous materials were monitored. 13

2.4 Effects of failures in WSNs applied in business processes. 14

3.1 Wireless sensor network model. 21

3.2 Fault diagnosis process for industrial control systems. 23

3.3 Failure caused by a loosely connected sensor. 25

3.4 Fault classification and propagation. 26

3.5 Self diagnosis in WSNs. 31

3.6 Group diagnosis in WSNs. 33

3.7 Hierarchical diagnosis in WSNs. 35

3.8 Steps to recover from a failure in a passive replication mode. 38

3.9 Graphical representation of a binary diagnostic matrix. 45

3.10 Diagnostic graph. 46

3.11 Failure diagnosis rules for an electric mining car. 47

3.12 Neural network model, from [128]. 49

3.13 Division of variable x into fuzzy regions and the corresponding mem-
bership functions, from [128]. 50

4.1 Application trial at a chemical plant. 57

4.2 FT-WiseNets: Fault Tolerant Framework for Wireless Sensors Networks. 60

4.3 Components interaction: fault diagnosis. 66

4.4 Component interaction: fault recovery. 71

5.1 Fault classification. 78

xvi List of Figures

5.2 Pattern Fault Isolator. 80

5.3 Fault isolation process. 83

5.4 Message throughput histogram of a sensor node. 84

5.5 Sensor node message throughput distribution during normal opera-
tion and faulty state. 87

5.6 Influence including negative values. 88

5.7 Sensor node message throughput distribution when rounding the in-
fluence to zero. 88

5.8 Distribution of P. 90

5.9 Curve level view of P. 90

5.10 Normalized euclidean distance curves. 93

5.11 Curves level view of P and normalized euclidean distance curves. . . . 95

5.12 Normalized euclidean distance histogram of a fault pattern. 95

5.13 Cumulative density function of DE. 96

5.14 Euclidean distances between the mean of sink failure patterns. 97

5.15 Transient state for a sudden crash failure. 98

5.16 Transient state for a link failure. 99

5.17 Diagnostic signal. 100

5.18 Minimum vectors of three different sink failures. 100

5.19 Unexpected observed failure vectors for sink failures S1, S2 and S3. . 101

5.20 Neural Classifier. 102

6.1 Nodes deployed in the research facility. 110

6.2 Placement of nodes during the application trial. 110

6.3 Number of events per node. 113

6.4 Fault balance for the period of 2 months. 113

6.5 Topology scheme in the FT-WiseNets Network Traffic Simulator. . . . 116

6.6 Topology generation view in the FT-WiseNets Network Traffic Simu-
lator. 117

6.7 Failure percentage view in the FT-WiseNets Network Traffic Simulator.120

6.8 Area of interference failure view in the FT-WiseNets Network Traffic
Simulator. 121

6.9 Database scheme. 124

6.10 Pattern acquisition view. 126

List of Figures xvii

6.11 Pattern combination view. 127

6.12 Online isolation view of the Membership Evaluator. 128

6.13 Online isolation view of the Failures Match Maker. 129

6.14 Online isolation view of the Neural Classifier. 129

7.1 Pre-processing procedure improves the normal distribution approxi-
mation. 134

7.2 Normalized euclidean distance distribution for each pattern analyzed. 135

7.3 Influence of threshold and number of pattern readings on fault iso-
lation effectiveness. With more pattern readings the FIE approaches
the “Ideal” value. 135

7.4 Influence of threshold and number of pattern readings on fault isola-
tion effectiveness. Membership function behaves in the same manner
for networks with and without overlap. 136

7.5 Diagnostic signal distribution for different topologies setups. There is
an increase in the number of outlier readings as the overlap raises. . . 137

7.6 Node message throughput distribution with different timeframe se-
tups. The distribution is better approximated by a Gaussian curve as
the timeframe increases. 140

7.7 Diagnostic signal distribution for different topology setups. The num-
ber of outlier readings reduces as the timeframe increases. 140

7.8 Comparison between calculated and acquired mean values. 143

7.9 Comparison between calculated and acquired variance values. 143

7.10 Error between calculated and acquired mean and variance values. . . 143

7.11 Fault isolation effectiveness for link failures. The FIE increases as the
interference raises, until the point where misdiagnosis start to occur. . 145

7.12 Misdiagnosis: link failure diagnosed as node failure. A higher number
of misdiagnosis occur as the interference increases. 146

7.13 Link failure false positives. There is a high number of false positives
for a threshold of 1std. 146

7.14 Fault isolation effectiveness for node failure. 148

7.15 Misdiagnosis: node failure diagnosed as link failure. 148

7.16 Node failure false positives. 149

7.17 Correct isolation of healthy nodes. 149

7.18 Percentage of total attempts where no matches were found by the
Failures Match Maker. 151

7.19 Failures Match Maker results for sink failure isolation performance.
Results confirm Prediction 5. 152

xviii List of Figures

7.20 Failures Match Maker results for node failure isolation performance. . 152

7.21 Failures Match Maker results for link failure isolation performance.
There is a high number of false positives with 1std as the threshold. . 153

7.22 Total number of neural classifications. 155

7.23 Neural Classification results. 156

7.24 Percentage of sink failures correctly identified by the Membership
Evaluator. 158

7.25 Percentage of sink failures false positives accused by the Member-
ship Evaluator. The number of FP decreases after reaching a “peak”,
because the diagnostic signal starts to be accepted by its own pattern. 159

7.26 Membership Evaluator results for overlapping sink failures. 159

7.27 Failures Match Maker results for sink isolation effectiveness. The
results of this test confirm Prediction 5. 160

7.28 Failures Match Maker results for link failure false positives. There is
a reduction on the number of false positives as the threshold value
increases. 161

7.29 Failures Match Maker results for node failure false positives. After
5std the number of FP increases because the Failures Match Maker
also starts to accept the diagnostic signal as part of incorrect sink
failure patterns. 161

7.30 Neural Classifier effectiveness. Lower performance of the configura-
tion TF=135s and TS=45s is due to stronger a overlap of a sink failure
and the system in normal operation. 162

7.31 Incorrect classification of sink failures by the Neural Classifier. 163

7.32 Even classification of sink failures by the Neural Classifier. The diag-
nostic signals are not “recovered” for large thresholds, and get further
away from the values used to train the network. 163

A.1 Components interaction: notification. 175

A.2 Components interaction: invocation. 176

B.1 Comparison between calculated and acquired mean values. 180

B.2 Comparison between calculated and acquired variance values. 180

B.3 Error between calculated and acquired mean and variance values. . . 180

B.4 Comparison between calculated and acquired mean values. 181

B.5 Comparison between calculated and acquired variance values. 181

B.6 Error between calculated and acquired mean and variance values. . . 181

Glossary

B2B Business to Business.

B2C Business to Customer.

CoBIs Collaborative Business Items.

EH & S Environment Health and Safety.

ERP Enterprise Resource Planning Systems.

FIE Fault Isolation Effectiveness.

FP False Positive.

FT-WiseNets Fault Tolerant Framework for Wireless Sensor Networks.

GUI Graphical User Interface.

KPI Key Performance Indicators.

LAN Local Area Network.

RFID Radio-Frequency IDentification.

RPC Remote Procedure Calls.

SOA Service Oriented Architectures.

SOAP Simple Object Access Protocol.

WSN Wireless Sensor Network.

1. Introduction: Thesis and

Objective

Pushed by the market and competitors, modern enterprise information systems seek

innovative solutions that can be adopted to drastically improve business processes.

Currently, Radio-Frequency IDentification (RFID) is used to enhance business pro-

cesses in a broad range of industrial applications [94, 138, 120], such as supply chain

management, theft prevention and automatic payment. However, due to the hard-

ware limitations of RFID, this technology is usually only applied to item tagging for

identification and localization.

To overcome the restrictions of RFID, a next generation technology for environ-

mental awareness is emerging to bring enterprise systems to a new level of business

process management [4]. This new technological concept is called wireless sensor

network (WSN), and is composed of wireless sensor nodes, which are devices that

have sensors, computational capabilities, are battery powered and have the ability

to communicate with surrounding nodes in a peer-to-peer fashion [41].

Due to their tight integration with the environment and the possibility of attaching

them to physical items, WSNs reduce the information gap that exists between the

real world and its digital representation, enabling a new paradigm of business process

execution. In this new paradigm, the rules that govern the business process (called

business logic) is distributed and executed on the devices, at the “point of action”

[33].

The advantages that WSNs have on enterprise applications includes, for instance,

increase in the scalability of systems, and reduction on the information load that

must be processed by the back-end. A prime example of the use of WSNs applied

2 1. Introduction: Thesis and Objective

in industrial environments was introduced in the CoBIs project [26]. There, WSNs

were applied to prevent drums containing hazardous chemicals from violating storage

regulations. In this scenario business rules were pushed to wireless sensor nodes

attached to the drums and were locally executed.

However, regardless of the reliability of single elements present in WSNs, faults in

the respective components always occur. Hence, malfunctions and break-down states

of WSNs applied in business processes must be efficiently diagnosed and recovered

to reduce economic losses.

Our research is supported by several real world WSN deployments. We conducted an

investigation on frequent faults that occur on those deployments [30]. As indicated

by deployment reports [110, 163, 93, 168, 159], the installation of large-scale sensor

networks for real world applications is not a trivial task and can lead to numerous

failures. What works in theory does not always perform as expected in practice.

WSNs may fail due to various reasons, including radio interference, battery exhaus-

tion, software bugs, or the dislocation of nodes. Such failures are caused by software

and hardware faults, environmental conditions, malicious behaviour, or bad timing

of a legitimate action. In some cases, a failure caused by a simple software bug can

be propagated to become a failure of the entire WSN.

In general, the consequence of such an event is that nodes become unreachable

or violate certain conditions that are essential for executing the business process.

Hence, the successful deployment of WSNs in business processes relies on efficient

fault diagnostic systems to support maintenance workers in the correct isolation of

failures, in order to reduce maintenance time and costs.

In this thesis, we approach the problem of efficiently diagnosing faults in heteroge-

neous WSNs applied in business processes.

1.1 Problem Description

Enterprise business systems support a great variety of business processes and are

therefore required to work with a broad range of wireless sensor network platforms.

As a consequence, enterprise business systems cannot be restricted to one hardware

platform. This also implies that specific functionalities may not be available on all

platforms.

These restrictions also apply to the isolation of failures performed by the back-end

system. Therefore, we tackle the research question of how to identify malfunctioning

components in heterogeneous WSN based only on a basic information set that can

1.1. Problem Description 3

Figure 1.1: Application scenario.

be provided by any WSN regardless of its specific implementation. This inherently

forms an appropriate WSN platform abstraction for enterprise business systems.

This restricted information set is based on sensor node identification number, times-

tamp information, and the time interval between messages (heart beat).

Structural information, such as routing topology, is also linked to the functionality

that a WSN may offer. Therefore it is hard to generically exploit structural infor-

mation for fault diagnosis by enterprise systems. This restricted set of information

makes the task of isolating failures extremely challenging.

Figure 1.1 depicts the CoBIs scenario, where several chemical drums have sensor

nodes attached to them to monitor storage regulations. In this scenario, devices

called sinks provide a coverage area, which enables them to gather the data generated

by sensor nodes in their region. As demonstrated in this figure, the identification of

failed components of a WSN, applied in a business process, based only on timeout

evaluation will lead the system to masquerade failures of several components as only

node failures. Sinks, when malfunctioning will not forward the data of several nodes

to the back-end. Link and path failures can be confused with crash failures, and the

composition of sink and node failures will only appear as node failures.

Additionally, due to the low cost associated with these devices, it is possible to

imagine the deployment of large-scale WSNs with potentially thousands of nodes

[41]. Without the support of a system that analyzes the great amount of data

4 1. Introduction: Thesis and Objective

generated by WSNs, the isolation process becomes cumbersome and time consuming.

This results in increased effort to maintain the system and reduces the chances of

mitigating the effects of the failure in the business process.

In this context, this thesis investigates the research question of how feasible it is

to integrate heterogeneous WSNs platforms with enterprise business systems and

perform fault isolation with a minimum, but for most platforms, generic information

set.

1.2 Thesis and Goal

In order to address the problem of integrating heterogeneous hardware platforms

with enterprise business systems, we propose:

Thesis: The isolation of failed components in heterogeneous WSNs platforms ap-

plied in business processes can be achieved based on a restricted information set:

sensor node identification number, timestamp information, and heart beat interval.

Goal 1: To enable the integration of heterogeneous WSNs with enterprise applica-

tions.

Goal 2: To identify failures occurring in heterogeneous WSNs applied in business

processes.

1.3 Solution Approach

Since WSNs are emerging as the next generation technology that will bring enterprise

systems to a new level of business process management, and since they require the

support of a broad spectrum of platforms, the integration of reliable heterogeneous

WSNs with enterprise systems becomes a crucial point for enabling the deployment

of WSNs in industrial applications.

In order to achieve the required integration, which takes fault management into

account, this thesis will focus on addressing (1) the integration of heterogeneous

hardware platforms with enterprise applications and (2) the isolation of failures in

WSNs based on a restricted set of information.

1.3.1 Fault Tolerant Framework for Wireless Sensor Net-

works

For achieving an integration of heterogeneous WSN hardware platforms with en-

terprise business systems, this thesis proposes the Fault Tolerant Framework for

1.4. Research Contribution 5

Wireless Sensor Networks (FT-WiseNets), a framework that embraces the tenden-

cies defined by enterprise applications [89, 127, 82], such as Service Oriented Archi-

tectures (SOA) based on Web Services. The key idea of this framework is to define

a layered architecture that creates a hardware platform abstraction for enterprise

applications. As a result, new platforms can be easily integrated and accessed by

business systems in a transparent way, achieving the goal of integrating heteroge-

neous hardware platforms.

This framework not only provides a transparent access for business systems to WSNs,

but also defines mechanisms for fault diagnosis and recovery. These mechanisms aim

at monitoring the network of devices and automatically recovering failures or trig-

gering maintenance workflows when necessary. In addition, due to the utilization

of web services and well defined interfaces, the framework is flexible and extend-

able. This enables the adoption of new fault diagnosis and recovery algorithms and

techniques.

1.3.2 Pattern Based Fault Isolation for WSNs Applied in

Industrial Environments

In order to demonstrate that fault isolation based on a restricted information set is

achievable, we developed a novel approach that enables such analysis. This approach

seeks to learn system patterns, during normal and faulty states. Once patterns

have been learned by the system, pattern recognition techniques are applied during

runtime to isolate system failures. Based on neural networks and statistics, this

solution explores the benefits of each technique, which enables a better performance

of the isolation process.

Using this technique, the faults that occur in WSNs can be efficiently identified,

which increases the chances of mitigating their effects on the business process. For

example, in a real application trial, the proposed approach correctly identified fail-

ures in 98% of the cases in a single-hop network. In addition, the proposed approach

introduces a technique to reduce the number of patterns that must be acquired dur-

ing the learning phase. This reduction of acquired patterns is due to the combination

of already known system patterns.

1.4 Research Contribution

The work presented in this thesis is the result of experiences gathered in the CoBIs

EU funded project [26], where real industrial scenarios made use of WSNs. In this

project, fault management was not the main focus of the research; nevertheless, the

6 1. Introduction: Thesis and Objective

need for reliable WSNs became evident during the course of industrial application

trials. Hence, we searched for mechanisms that can increase the reliability of WSNs

applied in business processes, seeking to mitigate the effects of failures.

In a nutshell, this thesis makes the following contributions to fault management

research applied in Wireless Sensor Networks and computer science:

1. FT-WiseNets, a framework for integrating WSNs with enterprise applications,

including a flexible and extendable approach for fault management.

2. An analysis and classification of crash failures that are observed and their

underlying causes.

3. A novel fault isolation method, based on pattern recognition techniques, which

relies only on a restricted information set: sensor node identification number,

timestamp information, and heart beat interval.

4. Application and evaluation of the FT-WiseNets framework, and of the pro-

posed fault isolation approach.

1.5 Structure and Contents

One of the goals of this thesis is to integrate heterogeneous WSN platforms with

enterprise applications to increase the value of business processes. By adopting

fault management methods, enterprise systems can mitigate the effects of failures

occurring in the networked devices.

In Chapter 1, we introduce the motivation of our thesis and present our contributions

to fault management for WSNs applied in business processes.

In Chapter 2, we describe the benefits of integrating WSNs in industrial scenarios

and analyze the effects of failures occurring in WSN.

The research foundations for this thesis are introduced in Chapter 3. This chap-

ter presents models and definitions, and a discussion of the related work on fault

tolerance in WSNs and fault diagnosis in industrial applications.

The FT-WiseNets framework is depicted in Chapter 4. The requirements for a

framework that integrates WSNs with enterprise applications are discussed based

on a real world application trial. Then all components of the framework and their

interactions are presented.

1.5. Structure and Contents 7

In Chapter 5, a novel method for isolating failures in WSNs applied in business

processes based only on a restricted information set is presented. A crash fault

analysis is introduced to emphasize the challenge of isolating failures under the

described restrictions.

The evaluation of the framework and the pattern fault isolator is described in Chap-

ters 6 and 7. In these chapters, the setup of a real application trial, the lessons

learned and the results are discussed.

Chapter 8 discusses the main contributions, the already visible impacts and the

outlook of future research directions.

8 1. Introduction: Thesis and Objective

2. Problem Statement

Wireless sensor networks are emerging as a novel approach to support business pro-

cesses in large-scale enterprise environments, which involves physical entities, such

as goods and tools [5]. Software systems that provide various services for enterprise

businesses are usually based on: highly decentralized, manual and often error-prone

data collection, centralized data storage and business logic execution in so called

“back-end” systems.

An important advancement that this new WSN technology provides is the possibility

of distributing business logic functionality to sensor nodes. In this way, the virtual

state of enterprises, as represented in business processes and in the supporting enter-

prise software systems, can reflect to a greater extent what is actually happening in

the real world. Since wireless sensor nodes are considered to be much “smarter” than

items tagged with RFID transponders, they can play a more active role in business

processes [153].

Processes within a given operational environment can yield significantly better re-

sults, by relocating well-defined parts of business logic functionality (i.e. process

execution), from resource intensive backend systems to relatively low cost networked

embedded systems that run “where the action is”. In our case, these systems use

sensor network technology, which enables them to build collaborating “teams” that

work together, for certain process relevant results [107, 153].

Relocating business logic to WSNs have the potential of adding value to industrial

applications [33]. These aspects are illustrated in Figure 2.1 and are discussed below:

• Information gap reduction: Many benefits arise from improving the accuracy

of data that represents the current status of a business process. These benefits

10 2. Problem Statement

Figure 2.1: Potential value of introducing WSNs in industrial applications.

include the possibility of reducing losses of items, precise detection of hazardous

situations (e.g. in safety-critical applications), and improving the decision

making processes due to the availability of detailed information.

• Information load reduction: The use of WSNs enables low level processing of

data, reducing the amount of data that has to be processed by the back-end

to a small set of relevant information. The information load reduction has

the potential to: reduce process execution and transactional costs, improve

response times in business- and/or safety-critical situations, and to have a

better scalability of the system.

• Automation increase: With devices capable of collaborating and executing

business logic, it is possible to conceive processes with less human interaction.

This leads to: error reductions, labour cost reduction, and increased process

quality and speed.

• Business item intelligence: The use of WSNs in industrial applications enables

a new paradigm of business process execution. With WSNs, processes become

more flexible and mobile since nodes can collaborate with each other and the

process can be executed anywhere the items are located.

2.1. Enterprise Scenarios 11

• Local information processing: Wireless sensor nodes have the advantage that

they are located at the “point of action”, which enables them to process most

events and information locally. This technology enables access to local in-

formation, which generates a local view of the current status of the system

without the need of accessing a back-end system, i.e. by using a mobile device

capable of capturing the wireless packages generated by sensor nodes. This

leads to: more flexibility in the shop floor, better scalability of the system,

and new approaches for handling business processes supervision.

In industrial scenarios, where WSNs technology is applied, the functionalities pro-

vided by WSNs must be reliable to avoid major losses in the business processes

caused by failures in the sensor network. Therefore, it is necessary to analyze the

applicability of WSNs in business processes, and the possible failures and effects that

can result from the adoption of this technology [30].

2.1 Enterprise Scenarios

The benefits of applying WSNs in business processes make this technology attractive

for industrial applications, including a variety of application domains (e.g. supply

chain management [165], environment health and safety management) [107, 153].

Although the applicability of this technology covers a large spectrum of industrial

domains, most of them share the need to improve their business processes, by inte-

grating the information collected from the WSNs with Enterprise Resource Planning

Systems (ERP). In this subchapter we will analyze two industrial scenarios where

WSNs are applied in order to identify aspects where business processes can be im-

proved.

2.1.1 Supply Chain Management

Supply chain management is an application domain that can profit from the adoption

of WSNs. In [165] the authors propose an approach to use sensor nodes to monitor

the products’ storage conditions during transportation.

This scenario addresses Business to Business (B2B) and Business to Customer (B2C)

transactions, where sensitive goods (e.g. food and chemicals) have to be delivered.

In such scenarios, restrictions and handling requirements are key factors for quality

control and for guaranteeing the quality properties of goods.

When the customer receives the goods, the customer must verify if the products

have been properly handled and must define the validity period of the material. If

12 2. Problem Statement

the restrictions are violated the validity period of the product has to be reduced, or,

depending on the product and the violated condition, the product must be disposed.

Figure 2.2: Wireless sensor nodes applied in quality control.

By inserting wireless sensor nodes in supply chain management, the storage and

transport conditions of goods can be constantly monitored, as depicted in Figure

2.2. Goods are equipped with sensor nodes that constantly monitor the conditions

in which the materials are stored and transported. Upon arrival the recorded data is

automatically transferred to the ERP system where the quality of the material will

be evaluated to verify if it is in a good condition to enter the manufacturing process

or if it has to be discarded.

Many companies still apply old techniques for quality management like manual col-

lection of data, based on analogous thermometers and paper plots. This procedure

has several disadvantages, e.g. it is time consuming and prone to errors due to human

interaction. Wireless sensor networks in this scenario can improve the automation of

the process, while reducing errors and making the process more reliable and efficient.

The use of business logic on the item can also help reduce the information overload

by only propagating storage violation events to the back-end.

2.1.2 Environment, Health, and Safety

Every year, the U.S. Department of Labor [90] accounts for numerous occupational

accidents in the field of oil and gas industry (e.g. in 2004, 52,830 nonfatal injuries

2.1. Enterprise Scenarios 13

and 29 fatalities due to the exposure to harmful substances or environments have

been recorded) [107].

WSNs represent a viable solution to these problems. Sensor nodes placed in chemical

storage areas can collaboratively determine potential hazardous situations, and alert

or take an action at the point of interest [156]. In addition, WSN technology can

prevent errors in the manipulation and storage of chemical containers, thus leading

to increased safety and reduced logistic costs.

These ideas are extended in the EU-funded project Collaborative Business Items

(CoBIs) [26], by designing and implementing a distributed, service-oriented enter-

prise system, which incorporates the latest advances in WSN technology.

Figure 2.3: Application trial at a chemical plant where storage regulations of haz-

ardous materials were monitored.

In the scenario investigated by this project, chemical handling regulations are stored

and maintained in an ERP system and evaluated by wireless sensor nodes. Field

tests have been carried out at the BP premises in Hull UK (see Fig.2.3), where the

following use cases have been identified:

1. Storage and manipulation of hazardous substances. Chemical containers stor-

ing reactive substances must be handled according to a strict list of safety

regulations. The following situations are to be avoided:

(a) Incompatible substances in close proximity of each other

(b) Total mass of a reactive substance stored in an area exceeding a maximum

threshold

(c) Hazardous substances stored in a protected area longer than a specified

time period

14 2. Problem Statement

2. Continuous monitoring of environmental conditions. In the case of hazardous

substances, environmental parameters, such as temperature, humidity and

light, should be continuously monitored and abnormal conditions should trig-

ger immediate alarms and local actions.

In this scenario, storage regulations were modified on the ERP system and propa-

gated in the form of rules to wireless sensor nodes. These nodes were attached to

drums containing hazardous materials and programmed with information on their

specific content, both chemical composition and volume, which enabled them to

locally evaluate if storage regulations were being violated.

This scenario represents an application where WSNs not only improve safety of

business processes by reducing the information gap between real world and digital

information, but also make them more efficient by executing the business logic at

the point of action.

2.2 Effects of Wireless Sensor Network Failures

in Business Processes

The harsh environment in which WSNs are deployed make them susceptible to fail-

ures occurring in several layers of the system (analyzed in section 3.2.1). When

applying this technology in industrial settings, special attention has to be taken on

the reliability of these devices.

Figure 2.4: Effects of failures in WSNs applied in business processes.

Figure 2.4 presents the main set of effects that failures in WSNs can cause [84].

The effects of failures occurring within WSNs are closely related to the scenario in

which it is applied and can range from financial losses to the contamination of the

environment and the risk of human life.

2.2. Effects of Wireless Sensor Network Failures in Business Processes 15

2.2.1 Environment Contamination and Risk of Human Life

Safety in chemical industries aim at preventing notable accidents involving the con-

tamination of the environment, as the ones listed below [8]:

• the 1975 Breek propylene release and refinery fire in which 14 people were

killed.

• the 1976 Seveso accident in which highly toxic substances were released in the

environment, causing the contamination of wide areas with consequent health

implications for the surrounding population

• the chemical spill at Basel in 1986, where the Rhein River was severely con-

taminated.

Such accidents and others of lesser magnitude tend to repeat themselves due to the

lack of information dissemination [121, 25]. These incidents have severe impacts

on the industry. According to reports [38, 123], the most frequent accidents in the

chemical industry are related to fire (41% frequency and 20% of financial loss) and

explosions (23% frequency and 63% of financial loss).

In the CoBIs scenario presented in section 2.1.2, wireless sensor nodes should help

reduce the risk of explosions and fire by preventing incompatible chemicals from

being stored in the same location. Therefore, the use of WSNs in this scenario can

reduce financial losses, human life risk and the contamination of the environment

caused by accidents. Although this is a great improvement on the business process,

this technology must be highly reliable when applied in safety-critical scenarios, since

unidentified failures can lead to harsh accidents.

When a node becomes inactive due to a crash failure, it fails to advertise its content

and to locally execute business logic. In such situations the node will not identify

the presence of incompatible chemicals at the same location. A value failure on the

chemical type message can also lead to an incorrect execution of the business logic.

In this situation, the WSN will fail to recognize potentially hazardous situations or

will trigger unnecessary alerts. Hence, failures in WSNs applied in safety-critical

environments, as proposed by the CoBIs project, can lead to accidents where there

is a potential for contamination of the environment and a risk to human life.

2.2.2 Economic Losses

In scenarios where safety-critical accidents are unlikely to occur, failures in the sen-

sor nodes will usually lead to economic losses. While the cost of wireless sensor

16 2. Problem Statement

nodes may be small, the economic losses caused by failures in these devices can be

financially ruinous.

Losses related to maintenance can become very high, representing a major part of

the total operational cost of all manufacturing or production plants. According to

the industry sector, maintenance cost can represent between 15% and 60% of the

cost of goods produced [117]. These costs are also related to the practices applied

for maintenance. In [118], the authors present a comparative study performed with

250 small and medium manufacturers in Australia. There, different maintenance

practices where adopted resulting in a difference of 53% in maintenance costs.

Failures usually require maintenance to bring the system back to normal operational

status. Nevertheless, maintenance is not the only cost associated to malfunctions,

which also consist of numerous factors including [117]:

• Halts in production

• Equipment repairs

• Product recalls

• Production time

• Reputation loss

• Material loss

In the transportation scenario described in section 2.1.1, a sensor node crash failure

will prevent customers from verifying the quality of goods. This can lead to product

quality reduction, material disposal, and even production halt until new material is

provided by the supplier. Additionally, if a sensor node fails to record correct sensor

reading, generating value failures, high quality material can be disposed, or worse,

low quality material can be integrated in the manufacturing process of a customer,

which can cause loss of business due to lost reputation.

2.3 Scope of the Thesis

Wireless sensor networks have a remarkable potential to improve business processes,

as described in this chapter. Nevertheless, the integration of WSNs with real enter-

prise scenarios requires careful analysis of the impacts it can cause in the business

process. Since it cannot be assumed that all sources of error can be eliminated,

2.3. Scope of the Thesis 17

even through careful engineering, the availability of the functionalities provided by

a WSN depends to a large extent on fault diagnosis and recovery.

This PhD thesis is focused on providing mechanisms for reliably integrating WSNs

with enterprise applications. These mechanisms include support of failure diagnosis

to prevent failures occurring in the WSN from propagating to the back-end system.

As core contribution this thesis proposes a mechanism for isolating crash failures in

heterogeneous WSNs.

18 2. Problem Statement

3. Research Foundations

The sensing capabilities of wireless sensor nodes together with software configura-

bility, wireless communication and flexibility enable a new paradigm of solutions in

many application domains, e.g. supply chain management [165], and environment

health and safety management [107, 153], as described in section 2.1.

The characteristics that make WSNs interesting also make them vulnerable. As

discussed in chapter 2, WSNs are subject to several failures, e.g. the wireless com-

munication channel can suffer interference, software may contain errors and the

failure of single components can masquerade malfunctions of other system parts.

Enterprise applications require a high degree of availability of subsystems in order

to maintain a reliable and efficient operation of back-end services. In such environ-

ments, fault tolerance techniques must be applied to ensure a successful deployment

of WSNs in business processes.

While fault diagnosis in industrial applications is a well established field of research,

the existing work in the area of fault diagnosis and recovery in WSNs is scattered

in different research domains, ranging from self-healing routing protocols to sensor

fusion algorithms.

In this chapter we provide models and definitions used throughout this thesis. A

systematic overview and assessment of known fault diagnosis and recovery techniques

for WSNs and industrial applications is also presented. The purpose is to improve

the understanding of the effectiveness of these techniques in the WSN domain, and

to provide guidance for selecting appropriate measures when designing systems.

20 3. Research Foundations

3.1 Models and Definitions

The contents of this section aims at facilitating the comprehension of the research

contributions of this thesis and the current state of the art in fault tolerant systems.

Therefore, it provides models and definitions for wireless sensor networks and fault

tolerance in industrial systems.

3.1.1 Wireless Sensor Networks

A WSN is a system of sinks and small devices called sensor nodes. Sensor nodes

have limited memory, processing power, energy resources, and also have the ability

to communicate via wireless channels [1].

Each sensor node is equipped with multiple components [57]: a microprocessor,

communication and storage subsystem, a battery supply, and sensors. Due to the

low cost associated to these devices, it is possible to deploy large-scale WSNs with

potentially thousands of nodes [41].

A sink is a device that has the capability to bridge the communication between

wireless sensor nodes and the back-end systems.

Each node is in principle able to receive data from the sink and route data back to

it. The routing is done based on multi-hop communication, i.e, using other sensor

nodes to forward messages to the sink. In continuous WSNs, nodes periodically

report their readings to the back-end on a regular time interval called heart beat.

In contrast, event-driven WSNs only report their reading to the back-end when a

monitored value has changed above a given threshold.

A WSN can be modeled in order to represent the main parts of the system that are

subject to failures. Figure 3.1 depicts a generic model we propose for the analysis

of such systems.

In this model the WSN is composed of a set {N} of η nodes and of a set {B} of w

sinks.

Nodes directly connected (e.g. n3 and n4) are called neighbour nodes and are often

used as a source of information in fault diagnosis methods for WSNs. The neigh-

bourhood function NB indicates the nodes that are directly connected to a node,

e.g. NB (n9) = {n7, n10, n11}.

The coverage area of a sink βi is defined as δβi and indicates the set of nodes n that

are under the reachable area of the sink, δβi = {N}βi .

3.1. Models and Definitions 21

Figure 3.1: Wireless sensor network model.

Although the coverage of a sink (δβi) can include several nodes, the set of nodes

that actually report only to this sink (Φβi) can differ from δβi due to overlaps be-

tween coverage areas and routing paths, as demonstrated by nodes {n1, n5, n6, n11}
in Figure 3.1.

The set of nodes reporting only to sink βi is defined as Φ (βi), while the size of this set

is defined as ϕ (βi). In the example presented in Figure 3.1, Φ (β1) = {n1, n2, n3, n4}.
The set of nodes reporting to sink βi and βj is defined as Φ (βi, βj). For sinks β1 and

β2, Φ (β1, β2) = {n5}.

As different network topologies exist we use a multipath routing topology for our

model. This choice is based on the idea that all other topologies can be considered

as subsets of a fully connected network. Defining the topology of the network is

especially important since, according to the available number of paths, the failure of

a single component can cause several other nodes to also appear as failed. Hence, we

define the set of paths that connects two points a and b as: P a
b = {ρ1ab , ρ2ab , ..., ρξ

a
b }.

Where ξab indicates the number of paths from point a to point b. The quality of

path ρ1ab is defined as ζ1ab and indicates the probability of a message reaching the

destination. The path quality varies from a scale of 0 - 100 where 0 indicates a

broken path while 100 indicates an end to end connection where no messages are

lost.

It is also important to identify the number of nodes that rely on specific sensors as

part of a unique route path (λni), such as sensors n2 and n6 from Figure 3.1. In

22 3. Research Foundations

this case the number of nodes relying on n2 (λn2) is four (since n5 has an alternative

route), λn6 is one and λ (n2, n6) is six. The set of nodes that rely on specific sensors

as part of a unique route path is defined as Λ (n2, n6), in our example Λ(n2,n6) =

{n1, n2, n3, n4, n5, n6}. Following the same approach, the set of nodes that rely on

specific routing paths is defined as Λ
(
PB
n2E,P

B
n6E

)
= {n1, n2, n3, n4, n5, n6}.

3.1.2 Fault Tolerant Industrial Systems

To be considered fault tolerant, a system must provide resilience to faults, which

prevents the system from reaching a state where failures are in place. Fault tolerant

systems usually have a degree of faults that can be tolerated before the system

reaches a failure state.

A fault tolerant system must perform two main tasks: fault diagnosis and fault

recovery.

The process of enhancing the reliability of any system starts with the ability of iden-

tifying incorrect behaviours of the system’s parts. This process is called ’Fault Diag-

nosis’. The diagnosis of processes can be defined as: ”... the method for determining

the nature of a system disorder distinguishing it from other possible conditions” [84].

The classification of models applied to the diagnostic processes, distinguishes models

of systems applied to fault detection and those applied to fault isolation. Models

used for fault detection allow detecting changes (symptoms) caused by faults. Mod-

els used for fault isolation map the symptoms to the failures that occurred in the

system.

For example, a fault detection algorithm based on timeout can provide the infor-

mation that numerous nodes have suddenly become silent, while a fault isolation

method can analyze the data and indicate that a bridge is malfunctioning.

After the system has detected a fault, the next step is to recover from it. The main

technique to achieve this goal is to replicate the components of the system that are

vital for its correct operation. Through replication, a duplicate copy of a component

is available in the system and is capable of performing the required tasks in case of

a failure.

An overview of the standard fault diagnosis process in industrial control system is

depicted in Figure 3.2 [84]. Here, the system model is the correct expected behaviour

of the system to a given input signal u(k), where k is a given time in either continuous

or discrete space. The input signal to the system undergoes the process. The

generated output y1(k) is compared with the desired output produced by the system

model, resulting in the residual signal r(k).

3.1. Models and Definitions 23

Figure 3.2: Fault diagnosis process for industrial control systems.

Based on the analysis of r(k) and on the direct analysis of additional output signals

(e.g. y2(k)), diagnostic signals (s0(k), s1(k), ..., sn(k)) are generated. These signals

depend on the variable that is monitored. For example, the signal may contain

information on timeout of sensor nodes, or indicate that a sensor reading is deviating

from the expected value. These signals serve as input for a final analysis where the

mapping of diagnostic signal
−→
S to the isolated failures

−→
F occurs.

This conceptual model can also be applied in the WSN domain. In this case the

process is the WSN and u(k) are changes in the environment that could cause mod-

ifications on y(k). The WSN’s output signal that is monitored depends on the type

of failures that is being diagnosed. For example, it can be the values acquired by

the sensor nodes, in case that the system is evaluating value failures, or the number

of messages generated by each node, if the system is monitoring crash failures.

The process model will generate an expected output value, which can be compared

with y(k) to generate r(k). An example of a process model is the expected number

of messages from each node based on a known message heart beat, or an expected

value for variables measured by sensors.

Fault detection (or residual evaluation) has the purpose of generating diagnostic

signals for further analysis by the isolation process. For example, the fault detection

process can analyze r(k) to determine which nodes have reached a timeout, and

which nodes are generating outlier value readings.

24 3. Research Foundations

Finally, the fault isolation will evaluate s0(k) and s1(k) to define the failures that

have occurred in the system, e.g. the isolation process can identify a loose connection

between a sensor and the node exists, or indicate whether a node in the routing path

of several other nodes is malfunctioning.

3.2 Wireless Sensor Network Faults in Industrial

Applications

The benefits of applying WSNs in a vast range of enterprise scenarios is evident,

as described in section 2.1. Nevertheless, losses for the industrial application can

occur when the availability of the functionality offered by this technology cannot be

ensured.

By availability, we understand the probability with which a request to a WSN will

lead to a valid and useful response. Availability (or point availability) is defined as:

P (A) = MTTF
MTTF+MTTR

Where MTTF stands for Mean Time To Failure and MTTR stands for Mean Time

To Repair [12].

Systems that constantly fail and require long repair time will have very low avail-

ability. However, systems that have a high MTTF and can be quickly repaired are

considered highly available systems.

Availability and reliability are closely related concepts. In [13], Birolini defines reli-

ability as “... a characteristic of an item, expressed by the probability that the item

will perform its required function under given conditions for a stated time inter-

val. From a qualitative point of view, reliability can be defined as the ability of the

item to remain functional. Quantitatively, reliability specifies the probability that no

operational interruptions will occur during a stated time interval”.

Hence, to analyze the effects of unreliable WSNs applied in business processes it is

necessary to investigate the sources of malfunctions of these devices. In this context

it is important to point out the difference between faults, errors, and failures. Various

definitions of these terms have been used [12, 29, 162]. This thesis refers to the

definition given in [162]:

• A fault is any kind of defect that leads to an error.

• An error corresponds to an incorrect (undefined) system state. Such a state

may lead to a failure.

3.2. Wireless Sensor Network Faults in Industrial Applications 25

• A failure is the (observable) manifestation of an error, which occurs when the

system deviates from its specification and cannot deliver its intended function-

ality.

Figure 3.3 illustrates the difference between fault, error, and failure. A data acquisi-

tion program, running on node A, is expected to periodically send the measurements

of its sensors to a data aggregation program, running on node B. However, node A

suffers an impact causing a loose connection with one of its sensors. Since the code

implementing node A’s program is not designed to detect and overcome such situa-

tions, an erroneous state is reached when the the program tries to acquire data from

the sensor. Due to this state, the data acquisition program does not send sensor data

to the data aggregation program within the specified time interval. This results in

a crash or omission failure of node A observed by node B.

In the scenario explained above, the fault is the loose connection of the sensor. The

error is the state of the data acquisition program after trying to read the sensor data.

The failure occurs when the data acquisition program does not send the sensor data

within the specified time interval.

Figure 3.3: Failure caused by a loosely connected sensor.

3.2.1 Sources of Faults in WSN Applications

Wireless sensor networks are commonly deployed in harsh environments and are

subject to faults in several layers of the system. To analyze the faults that can occur

in real application scenarios, we performed a research on several application trial

reports. The experience from these expeditions can be used as guidance for future

application trials to avoid the same errors from happening.

Figure 3.4 presents a layered classification of components in a WSN that can suffer

faults. A fault in each layer of the system has the possibility of being propagated to

higher levels. For example, a power failure of a node n1 will cause the entire node

to fail. If n1 is on a routing path, the messages of nodes Λ(n1) will not be delivered,

making an entire region of the network silent until the routing path is restored.

26 3. Research Foundations

Ultimately, if the application in the back-end, which presents the WSN data to the

users, suffers a fault due to some software error or hardware failure, the entire system

is considered faulty. In this thesis, however, we will concentrate on faults that can

happen in the sensor nodes and the sink.

Figure 3.4: Fault classification and propagation.

3.2.1.1 Node Faults

Nodes have several hardware and software components that can produce malfunc-

tions. For example, the enclosure can suffer impacts and expose the hardware of

the sensor node to extreme conditions of the environment. In [110, 163, 159] due

to stress from the environment and inadequate enclosures, the sensor nodes were

exposed to direct contact with water,which caused short circuits. The report of a

large-scale deployment in a potato field [93] indicated that the antennas from the

nodes were quite fragile and would become loose when inserting the node into the

packaging.

When the battery of a node reaches a certain stage, sensor readings may become

incorrect. This has been observed in [168] where many outlier readings were gener-

ated in the network caused by imminent battery failure. As demonstrated in Figure

3.4, hardware failures will generally lead to software failures. A Data Acquisition

program will not perform properly if the underlying sensors are providing incorrect

3.2. Wireless Sensor Network Faults in Industrial Applications 27

readings. Nevertheless, some hardware failures do not affect all the functionalities

in a sensor node. In the example discussed, although the node cannot be used to

provide correct sensor readings, it can still be used to route packets in the sensor

network.

Software errors are a common source of failures in WSNs. In [174], the researchers

reported that a software error caused the longest continuous network outage, taking

the system offline for three days until the nodes could be manually reprogrammed.

Organizing a network in clusters is an approach used in many applications, for

example to extend the lifetime of the network [58]. A small number of nodes are

selected to become cluster-heads, e.g. {nc1, nc2, ..., ncn}. They are responsible for

coordinating the nodes in their clusters which consists of Λ (nci). The coordination

can consist for instance of collecting data from them and forwarding it to the base

station.

In case that a cluster-head fails, no messages of its cluster will be forwarded to the

base station any longer. The cluster-head can also intentionally, or due to software

errors, forward incorrect information. Depending on the application case, the impact

of such a failure can vary from the quality degradation of measurements to alarm

messages not being delivered to a back-end system.

While forwarding messages, nodes can aggregate data from multiple other nodes in

order to reduce the amount of data sent to the base station. One common simple ap-

proach is to calculate the average of correlated measured values such as temperature,

humidity and pressure, and send only one message to the back-end.

If a node generates incorrect data, the data aggregation results can suffer deviations

from the real value. Also, if a node responsible for generating the aggregated data

is subject to a value failure, the base station will receive incorrect information of an

entire region of the network.

3.2.1.2 Network Faults

Routing is one of the fundamental building blocks in a WSN. It is essential for col-

lecting sensor data, distributing software, configuring updates, and for coordinating

nodes. Additionally, application-specific routing protocols may be required, for ex-

ample for tracking and “following” moving objects. Faults on the routing layer can

lead to dropped or misguided messages, or unacceptable delays.

In WSNs, communication paths P a
b between nodes are highly volatile. WSNs do not

always yield the same delivery rate of messages in field trials as in lab trials. For

28 3. Research Foundations

instance, in [158] a delivery rate of only 58% of the messages was observed, and in

[150] the instability of the link quality ζab between nodes lead to constant changes in

the routing paths.

In several scenarios of sensor networks, nodes have a certain degree of mobility. In a

glacial expedition [110] the experiment assumed a one hop network. The connection

of nodes to the sink was calibrated during deployment with a reliable link connection

ζab . Nevertheless, due to ice movement, after some time, nodes dislocated and one

became unreachable, resulting in complete loss of data from this node, i.e. ζab = 0.

Radio interference can also cause a reduction in ζab . For instance, in agricultural

fields the placement of nodes must be carefully planned to in order to consider the

link range reduction once plants start growing, as discussed in [166]. Another source

of link failure is the collision of messages. In [159] researchers observed a potential for

collision of messages of nodes in close proximity due to a phase change and overlap.

In other situations, however, nodes may have perfect link connections but the mes-

sages are not delivered to their destination due to path errors. A software error

in the routing layer can generate circular paths or simply deliver messages to the

incorrect destination.

3.2.1.3 Sink Faults

On a higher level of the network, sinks {B} are also subject to faults of their compo-

nents. When a sink βi fails, unless fault tolerant measurements are present, a failure

of several nodes occur given that the data from the sensor nodes cannot be accessed,

i.e. the set of nodes Λ (βi) will not be able to communicate with the back-end.

Sinks can be deployed in areas where no permanent power supply is present, in such

applications, batteries together with solar cells are commonly applied [110, 93, 168]

to provide the necessary amount of energy. This traditional technique has proved

to be inefficient in the glacial expedition reported in [110]. Although this worked

perfectly for other expeditions, in this glacial environment the sink suffered a power

failure due to snow covering the solar panels for several days.

Network infrastructure is usually also not available in the area where sinks are de-

ployed, and therefore alternative solutions such as a satellite connection are used,

which can cause fluctuations in the back-end network interface. In [104] researchers

indicated that during periods of severe thunderstorm activity, the satellite connec-

tion would become unavailable.

Finally, the software that stores the data collected from the network, processes it and

sends it to the back-end system, is subject to errors. The presence of these errors

3.2. Wireless Sensor Network Faults in Industrial Applications 29

can lead to data loss during the period when the fault occurred. For example, in

the first application trial realized by the CoBIs project, the software of the gateway

presented malfunctions that prevented the back-end application from receiving the

data generated in the network.

3.2.2 Failure Types

As discussed in Section 3.2.1, several faults could lead to failures in wireless sensor

networks: a node could be moved to a different region causing a link failure; nodes

can suffer power failure and stop responding to requests, or they can start sending

arbitrary values either intentionally (after a security breach) or due to a malfunction.

Here, we use the classification proposed in [29] to define the failures that a WSN is

susceptible to: crash, omission, timing, value and arbitrary. These failures are the

observable manifestation of underlying faults presented in Section 3.2.1.

Crash or omission : A failure by omission is determined by a node ni sporadically

not responding to requests, or sporadically not sending events at the scheduled time.

A crash failure of ni occurs when the node at some point stops responding to any

request and stops sending events at the scheduled time. An omission degree f can

be defined, which imposes a limit to the amount of omission failures ni might have

before being classified as crashed.

Timing: Nodes might fail due to a timeout in processing a request or event, or by

providing data too early. Such timing failures occur when a node ni responds to a

request or sends an event with the correct value, but the message is received out of

the time interval specified by the application. Timing failures will only occur when

the application specifies timing constraints.

Value: A node ni is considered to have failed due to an incorrect value when the

node sends a timely response or event. However, the response contains inaccurate

information. For instance, the aggregation of data generated by other nodes could

forward a result value to a sink βi that does not correctly reflect the input data.

Such situations could be caused by malfunctioning software or hardware, corrupt

messages, or even malicious nodes generating incorrect data.

Arbitrary: Arbitrary failures include all the types of failures that cannot be clas-

sified in previously described categories. In [92], Lamport introduced the Byzantine

Generals Problem in the context of distributed systems. Recent work shows how to

deal with this problem in the domain of wireless sensor networks [83]. Byzantine

failures describe a type of arbitrary failures that are in general caused by a malicious

node that not only behaves erroneously, but also fails to behave consistently when

30 3. Research Foundations

interacting with other nodes and applications. Typical failures in WSNs can include

for example, an aggregation program sending both incorrect and correct values to the

sink, or the inability of a node to route a message, despite sending the acknowledge

to the sender.

3.3 State of the Art in Fault Tolerance for Wire-

less Sensor Networks

Processing constraints, battery powered devices, harsh environments, and unreliable

communication channels, are some of the characteristics that make WSNs a unique

research field. In this domain, it is common to have a node providing functionality to

its neighbours. Multi-hop routing is a simple example where nodes forward messages

on behalf of each other [148, 54]. Nodes with stronger hardware capabilities can

perform operations for other nodes that would either have to spend a significant

amount of energy, or that are not capable of performing out their own operations

[59, 151].

These functionalities, however, may fail due to various reasons. In general, the

consequence of such an event is that a node becomes unreachable or violates certain

conditions that are essential for providing functionality.

In some cases, a failure caused by a simple software error can be propagated to

become a failure of the entire sensor network [174]. This results in application trials

failing completely [93] and is not acceptable in safety critical applications. Hence, in

this research domain, solutions are required in order to provide fault management

of WSNs applied in enterprise applications. Our aim in this section is to investigate

the state of the art in fault tolerance for WSNs.

Many tools and mechanisms to enhance the reliability of WSNs have been proposed,

in spite of the fact that they have not been designed focusing on fault diagnosis and

recovery [119, 46, 95]. We investigate these approaches and classify them according

to the fault management functionalities they offer. First a study on fault diagnosis

is presented, followed by a classification of existing fault recovery approaches.

3.3.1 Fault Diagnosis Techniques

The goal of fault diagnosis is to precisely identify failures and their causes, and in

some cases to predict if certain functionalities will continue to work properly in the

near future.

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 31

The simplest way to perform such a task is observing and isolating the malfunction-

ing parts by an expert. This technique has obvious drawbacks: high effort and low

scalability.

Research in fault diagnosis for WSNs has not been deeply investigated yet. Never-

theless, a considerable amount of work already exists in the area of fault detection.

The techniques of automatic fault detection for WSNs achieve their goal through

collaboration between nodes [88, 37, 108, 141], through self diagnosis performed by

sensor nodes [57], or through the use of a more powerful device such as a computer

in the back-end [139, 135].

We classified the investigated techniques according to the parties involved in the

process. Through self diagnosis, the node itself can identify faults in its components.

With group diagnosis, several nodes monitor the behaviour of another node. Finally,

in hierarchical diagnosis, the fault detection is performed using a detection tree where

a hierarchy is defined for the identification of failed nodes.

3.3.1.1 Self Diagnosis

Figure 3.5 presents the behaviour of nodes when self diagnosis is applied. In this

approach the node itself performs routines to identify if its subparts are performing

their tasks as expected.

Figure 3.5: Self diagnosis in WSNs.

In [57], the authors propose an approach where nodes perform self diagnosis based

on the measurements of accelerometers. This allows the nodes to determine if they

suffered an impact that could lead to hardware malfunctions. Once the impact is

detected by a node ni, it advertises its current failure to NB (ni).

It has been observed that nodes with their battery close to exhaustion can generate

incorrect sensor readings [168]. If the hardware allows the measurement of the

current battery voltage, these failures can be predicted and an estimation of the

time to death of the battery can be calculated [11, 133]. With this information

32 3. Research Foundations

nodes have the possibility of announcing their status to prevent the propagation of

erroneous data to the system.

Finally, a common routine to detect incorrect sensor readings is to identify values

that cannot be generated under normal conditions, i.e. humidity above 100% or

extremely high or low temperatures in a controlled environment. In [134], the au-

thors apply this approach to detect sensor nodes that have value failures. In their

deployment, they observed a sensor node that only generated data that was below

its total detection range. The proposed approach also applies a small set of rules.

For example, if the standard deviation calculated for some data points is beyond a

certain threshold, then these points are identified as incorrect.

The authors in [96] have employed a similar approach of self diagnosis to identify

incorrect sensor readings. They established a set of rules based on heuristics, phe-

nomenological, and statistical methods. For example, using sanity levels, minimum

and maximum environmental parameters, and statistic methods such as standard

deviation. The correlation coefficient is introduced as a metric to calculate the level

of correlation between different sensor readings. They calculate the correlation coef-

ficient between the solar and temperature sensor readings for 24 hours time interval.

If the correlation coefficient goes down below a certain threshold, the readings are

identified as failed.

Performing in-network detection has the advantage of scaling well with the number

of nodes due to the distributed nature of these techniques. Although self diagnosis

has a great scalability potential, it relies on the fact that the sensor node is capable of

correctly executing the diagnostic algorithm. In case of strong impacts and software

errors this may not be achievable. Therefore, additional techniques must be in place

to ensure a correct diagnosis of failures.

3.3.1.2 Group Diagnosis

Group diagnosis techniques seek to identify malfunctioning nodes through collab-

oration between nodes, as depicted in Figure 3.6. In this category of solutions,

neighbour nodes monitor each other to detect value and crash failures.

The detection of nodes failing due to incorrectly generated values is only possible

if a reference value is available. The authors in [88, 37, 24] propose fault detection

algorithms for the task of determining event regions in the environment with a

distinguishable characteristic. These algorithms are based on the idea that sensors

from the same region should have similar values unless a node is at the boundary of

the event-region.

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 33

Figure 3.6: Group diagnosis in WSNs.

In [88], Krishnamachari and Iyengar propose a solution in the form of a Bayesian

fault recognition algorithm. It exploits the notion that measurement errors due

to faulty sensors are likely to be uncorrelated, while environment conditions are

spatially correlated. The algorithm runs on each node ni, making a binary decision

about the correctness of its own sensor reading. The probability of NB (ni) reporting

the same binary reading as ni is then calculated. The Bayesian calculations estimate

the probability of the node being faulty given the information about the correctness

of its own sensor reading and the evidence regarding the readings of NB (ni).

The main drawback of the algorithm is that the sensors in the boundaries of an event

region are likely to consider their reading as incorrect and therefore, mark themselves

as faulty. Another drawback appears when nodes are at the edge of the deployed

network. Such nodes have a reduced number of neighbours when compared to the

nodes in the interior of the region. This can cause a higher number of erroneous

fault detection. Nevertheless, the proposed algorithm has the advantage of being

completely distributed and localized: each node only needs information from its

neighbouring sensors.

In [24], the calculations and decisions regarding the correctness of the sensor read-

ings are based on the readings of the sensor itself and its neighbours. The algorithm

analyzes the history of the sensor data. During this process, it identifies sensors that

generated outlier readings when compared to NB (ni). If the measurements (differ-

ence between sensor reading and readings of its neighbours) change significantly over

the time, the authors assume that it is more likely that the sensor is faulty.

Similar to the approach explained in [88], the authors in [37] target the detection

of faulty sensor nodes in a region where a certain event is observed (e.g. presence

of a chemical). The main advantage of this algorithm compared to [88] is that it

can accept any kind of scalar values as inputs and it does not only work with 0/1

predicates.

34 3. Research Foundations

The algorithm gathers the sensor measurements of the neighbouring sensors and

performs a comparison between the sensor measurement of the node and the mean

of the measurements of the neighbouring nodes. If the difference between the sensor

measurement and the mean of the measurements of the neighbouring nodes is greater

than a certain threshold, it is assumed that the sensor reading is faulty. The outlier

reading is identified by calculating the sample mean and standard deviation of the

differences, then standardizing1 the values and applying a predefined threshold.

This approach suffers from similar drawbacks as the method described in [88]. Its

efficiency in the identification of failed nodes in event boundaries is reduced.

Another approach proposed in the literature is to let nodes observe whether the node

providing functionality is in fact performing the operations that it is supposed to. In

[108], a misbehaviour detection algorithm is used to aid the routing layer. Two main

mechanisms are defined: a misbehaviour detection (watchdog) and a pathrater. The

misbehaviour detection mechanism is based on the idea of eavesdropping the commu-

nication channel to verify whether messages are forwarded correctly and represents

an extension of the Dynamic Source Routing (DSR) protocol [70]. The pathrater

algorithm aids the routing protocol in the task of avoiding misbehaving nodes by

calculating a rate to the routing paths based on their reliability.

A disadvantage of this approach is its need for bilateral communication and the

limitation of encryption mechanisms adopted in the communication channel to one

that enables eavesdropping the contents of packets content by neighbouring nodes.

Finally, focusing on providing a fault-tolerant approach for clusters in WSNs, the

authors in [53] propose to support the dynamic recovery of failed sinks. The proposed

protocol assumes that a sink has failed only if no sinks can communicate with it.

The fault detection mechanism is based on constant status updates being exchanged

between sinks and the further use of an algorithm to reach a consensus.

3.3.1.3 Hierarchical Diagnosis

When using hierarchical diagnosis techniques, nodes organize themselves in a way

that a monitoring tree is formed, as depicted in Figure 3.7. Often in such systems,

the monitoring duties are shifted to a more powerful device such as the sink to reduce

the expenses of in-network resources.

The definition of a detection tree allows scalable fault detection in WSNs. Memento

[141] proposes the usage of the network topology to forward fault detection results

of child nodes to the parent nodes until it reaches the sinks. Each node forwards

1transfer the value to a standard normal distribution

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 35

Figure 3.7: Hierarchical diagnosis in WSNs.

the status of the child nodes that it is monitoring to its parent node. Parent nodes

perform an aggregation operation on their own result and on the results of the child

nodes. The calculated value in then forwarded to the next level.

The approach proposed by Memento scales well with the network size; however, it

consumes network resources. Shifting the fault detection task to a more powerful

device is an alternative that can help increase the lifetime of the WSN.

In [155], the authors propose an algorithm that delegates the task of detecting and

tracing failed nodes to the sink. At first, nodes learn the network topology and

send their portion of the topology information to the sink. With this information

the sink learns the complete network topology, which is used to send route updates

as soon as the sink detects that nodes have become silent. These route updates

transform the topology in a way that silent nodes are connected to healthy nodes.

Using the updated route structure, the sink is able to determine which nodes have in

fact failed, and which nodes were not responding due to a failed node in the routing

path.

This approach is not applicable to event-driven WSNs. In [143], the authors propose

a mechanism that uses a hierarchical network topology. In this network cluster-heads

{nc1, nc2, ..., ncn} monitor ordinary nodes, and the sinks {B} monitor the cluster

heads. To monitor nodes, each sink βi and each cluster-head nci constantly ping

nodes that still have battery power left and that are under their direct supervision

Λ (βi) ,Λ (nci). If a node does not respond, it is marked as failed. One undesirable

result of this approach is the incorrect indication that several nodes have failed when

a cluster-head crashes.

Sympathy [135] is a debugging tool that also uses the hierarchical diagnosis approach.

This tool instruments the WSN with monitoring software deployed on the sensor

36 3. Research Foundations

nodes. This software generates metrics data that is forwarded to a centralized sink

location for analysis. With this information, Sympathy applies a binary diagnostic

tree to detect crash, timeout and omission failures and identifies the fault that

generated the failure.

The major drawback of Sympathy is the need for specialized software running on

the sensor nodes and the additional data that has to be sent to the sink. This

requirement from Sympathy prevents its adoption in heterogeneous WSNs, making

this approach unsuitable for enterprise business systems.

SNIF [139] is an example of a debugging tool, which aims at improving the Sympathy

concepts. Contrary to Sympathy, this tool does not require additional traffic to be

transported through the WSN. To automatically identify network failures, this tool

proposes a binary decision tree. Although the authors claim that no additional

traffic or software modification is required, the diagnostic tree makes use of routing

topology information for deciding whether there is a failure and what kind of failure

is occurring.

3.3.2 Fault Recovery Techniques

Fault recovery techniques seek to bring systems back to a stable operational state

once failures have occurred. Several techniques have been proposed to increase the

reliability of WSNs [49, 111, 35, 58, 46]. Here, we give an overview of this distributed

efforts.

Recovery techniques are usually based on the method of replicating of components.

This method ensures the continuity of an operation even if one of the replicated

components is not working as expected. We classify recovery techniques for WSN

into two major replication approaches: Active and Passive. Active replication means

that all requests are processed by all replicas. Passive replication, a request is

processed by a single instance (called primary replica) and only when this instance

fails, another one takes over the tasks.

3.3.2.1 Active Replication in WSNs

Active replication in wireless sensor networks is naturally applied in scenarios where

all, or several, nodes provide the same functionality. One example is nodes that

periodically provide sensor data. Nodes that run this program activate their sensors

and forward their readings to an aggregation node or to a sink. When some nodes

fail to provide their sensor readings, the recipient still gets the results from other

nodes, which is often sufficient.

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 37

Multipath routing

It is desirable to avoid that a single node crash partitions a entire network. Thus, a

network should be k-connected, which allows k − 1 nodes to fail while the network

would still be operational [97]. Multipath routing [49] can be used to actively repli-

cate routing paths. In [17], Bredin et al. propose an algorithm that calculates the

minimum amount of additional nodes and their positions to guarantee k-connectivity

between nodes.

Value aggregation

Value aggregation is a research area that provides mechanisms to merge the data

generated by several nodes. This data can be the result of a specific request or

simply the report of sensor value readings. Different approaches can be adopted for

handling the differences in the received values.

Sensor value fusion [111, 35], an example of such an approach, is a research area that

provides high-level information derived from a number of low-level sensor inputs. In

this research domain, the inherent redundancy of sensor nodes can be used to provide

fault-tolerant data aggregation. This is achieved through a trade off between the

precision (the length) of the resulting sensor reading interval and the number of

faulty sensors. This ensures that, despite node failures, the resulting reading interval

contains the correct sensor reading of a region.

Another simple but efficient solution to prevent the propagation of a failure of one

specific node to the entire network is to ignore the data that it is generating, as

applied in [57]. The major challenge in this case is the identification of the malfunc-

tioning nodes.

3.3.2.2 Passive Replication in WSNs

When passive replication is applied, one replica (called primary) receives and pro-

cesses all requests. In the event of a failure of the primary replica, one of the backup

replicas assumes the primary role and starts providing the requested functionality.

In order to maintain consistency between replicas, the state of the primary replica

and the request information are transferred to the backup replicas. Given the con-

straints of WSNs, applications should be designed to be stateless, which minimizes

the overhead for transferring state information between nodes.

The process of recovering from a fault when using passive replication is illustrated

in Figure 3.8 and consists of three main steps: fault detection, primary selection and

code distribution (or re-configuration).

38 3. Research Foundations

Figure 3.8: Steps to recover from a failure in a passive replication mode.

Phase 1: Fault Detection

The first step in a fault tolerant system, based on passive replication, is to detect

malfunctioning parts. Fault detection approaches have been discussed in section

3.3.1. These techniques are classified as: self diagnosis, group diagnosis, and hierar-

chical diagnosis.

Once the failure is detected the next step is to select the new primary replica.

Phase 2: Node Selection

After determining that certain functionality in the primary replica is no longer avail-

able, a new provider must be selected. After this selection phase, a backup node

becomes the new provider, assuming the primary replica role.

Several approaches on how the selection is performed have been proposed [58, 46,

53, 155]. Here we classify the different approaches according to the parties involved

in the decision process.

Self selection - With self-selection, the node itself determines if it should become a

primary replica. In LEACH [58], nodes periodically execute a probabilistic algorithm

to determine whether they should take over the role of a cluster-head. In this

probabilistic rotation system, nodes keep changing their role in the network. This

approach enables the recovery of the system in case of a cluster-head failure. The

time required to recover from such failure is the period of one role rotation.

Role assignment algorithms determine which role, such as coverage, clustering, and

in-network aggregation, a node should be assigned to. In [46], a deterministic algo-

rithm for autonomous role assignment is proposed. The assignment process considers

the properties of the node itself, such as battery status and location, as well as the

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 39

neighbourhood and the roles chosen by neighbouring nodes. Role assignment mecha-

nisms facilitate the localized self-configuration of a sensor network. This mechanism

can re-establish provisioning of network functionalities if executed after node failures.

Group selection - In this selection method, a group of nodes selects the primary

replica. An example of this technique is described in [53]. In this paper the authors

propose the reallocation of nodes that were part of a cluster which suffered a cluster-

head failure. The cluster-head, called sink, is considered to be a resourceful node.

The solution assumes that all sinks in the network maintain a list of nodes that

are currently in their cluster. Each sink also stores another backup list of nodes

that could become part of their cluster. In the event of a sink failure, nodes that

were allocated to the failed sink are transfered to new sinks. During the reallocation

process, healthy sinks aggregate nodes if these nodes are in the backup list from the

sink. If more than one sink has a specific node, a group selection process is triggered.

The cluster-head selection is then based on the lowest communication cost of the

nodes.

Hierarchical selection - In a hierarchical selection, a coordinator selects the new

primary node. This applies to the rebuilding of routing paths [155], as well as the

selection of a new cluster-head [55]. The former describes an algorithm to select

the closest node to the sink. The latter approach applies fuzzy logic to the sink

to select which node should become a cluster-head. This algorithm makes use of a

fuzzy descriptor, the node concentration, energy level in each node and its centrality

with respect to the entire cluster.

Phase 3: Code Distribution

During this phase, the nodes selected to become providers of specific functionalities

must activate the program. In some cases the code is already available on the nodes

and a simple change in the node’s configuration is required. However, in some cases,

e.g. when nodes do not have enough memory to store the code of all potential

functionalities, it is necessary to inject code into the node. There are different

techniques that can be used for code distribution: completely reprogramming the

node, sending entire blocks of executable code, or sending small pieces of code such

as scripts.

Pre-copy - As described in [46], this technique consists of making the code of all

functionalities available on all nodes before deployment. This allows nodes to change

their behaviour according to the role they are assigned to.

Code distribution - Several approaches have been proposed for disseminating

code throughout the network. Maté [95] is an example for a byte code interpreter

40 3. Research Foundations

for TinyOS where code is broken into capsules of 24 instructions. These capsules

can be distributed through the network and installed on nodes. After installation

the nodes start executing the new code. Agilla [44] is a Maté-based mobile agent

middleware for programming wireless sensor networks. These mobile agents can be

programmed to move through the network or replicate themselves to other nodes

according to changes in the environment.

Impala [99] is a middleware for sensor networks that supports software updates

and on-the-fly application adaptation. Unlike Maté, Impala focuses on networks

that have a high degree of mobility, which can lead to long delays until an update

is finished. While Maté stops the execution of an application until the update is

finished, Impala processes ongoing software updates in parallel.

Remote execution - On the one hand code distribution is an approach that

reduces the amount of memory required in the entire network, since not all nodes

need to have the application pre-installed. On the other hand, code distribution

consumes energy on the nodes exchanging the code and is susceptible to link failures.

This can cause long delays until the code update is completed. Remote Execution

[142, 140] is an alternative approach where low-power devices transfer tasks to more

powerful devices without transferring the entire application code. Instead, only the

required state information is transmitted. Such an approach is especially suited for

heterogeneous sensor networks with at least some resourceful nodes.

A hybrid approach between code migration and remote execution is proposed in

[106], where the application code is copied to another node when the battery level

reaches a first threshold. As soon as the battery reaches a critical level, the execution

state is transferred and control is handed to the remote node. This allows for the

full usage of the available energy resources, since control is handed over before a

node fails.

3.3.3 Classification and Evaluation of Techniques

As presented in sections 3.3.1 and 3.3.2, the existing work in the area of fault man-

agement in WSNs is distributed among several research domains. For the successful

application of such techniques in enterprise systems, it is necessary to understand the

cases in which they can be used considering their shortcomings. Table 3.1 provides

an overview of the existing techniques for fault diagnosis in WSNs. We classify

the investigated approaches according to: (i) the types of faults they are able to

diagnose, (ii) the diagnosis mechanism applied, and (iii) the requirements of the

approach.

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 41

D
ia

gn
os

ed
F

au
lt

T
y
p

e
F

au
lt

D
ia

gn
os

is
M

ec
h
an

is
m

R
eq

u
ir

em
en

ts

C
ra

sh
V

al
u
e

A
rb

it
ra

ry
S
el

f
G

ro
u
p

H
ie

ra
rc

h
ic

al
N

o
d
e

S
of

tw
ar

e
In

fo
rm

at
io

n
S
et

[1
08

]
X

X
X

X
X

P
ac

ke
t

E
av

es
d
ro

p
p
in

g
co

n
te

n
t

[5
3]

X
X

S
in

k

S
in

k
C

on
se

n
su

s
S
ta

tu
s

T
im

eo
u
t

[1
06

]
X

X
X

B
at

te
ry

B
at

te
ry

L
if

et
im

e
V

ol
ta

ge

[5
7]

X
X

X
A

cc
el

er
at

io
n

Im
p
ac

ts
Im

p
ac

ts

[4
4]

X
X

X
T

em
p

er
at

u
re

T
em

p
er

at
u
re

F
ir

e
re

ac
ti

on

[1
55

]
X

X
X

T
op

ol
og

y

T
im

eo
u
t

S
in

k

[8
8]

X
X

X
N

ei
gh

b
or

h
o
o
d

B
ay

es
ia

n

[1
43

]
X

X
X

T
im

es
ta

m
p

T
im

eo
u
t

P
in

g

[1
41

]
X

X
X

T
op

ol
og

y,

T
im

eo
u
t

In
-n

et
w

or
k

T
im

es
ta

m
p

[1
35

]
X

X
X

T
op

ol
og

y,

T
im

eo
u
t

S
in

k
T

im
es

ta
m

p

[1
39

]
X

X
T

op
ol

og
y,

T
im

eo
u
t

S
in

k
T

im
es

ta
m

p

T
ab

le
3.

1:
C

la
ss

ifi
ca

ti
on

of
fa

u
lt

d
ia

gn
os

is
te

ch
n
iq

u
es

.

42 3. Research Foundations

F
au

lt
R

ecovery

A
ctive

R
ep

lication
P

assive
R

ep
lication

N
o
d
e

S
election

C
o
d
e

D
istrib

u
tion

M
ech

an
ism

S
elf

G
rou

p
H

ierarch
ical

P
re-

C
o
d
e

R
em

ote

C
op

y
D

istrib
u
tion

E
x
ecu

tion

[108]
X

X

[106]
X

X

X
X

[57]
D

iscard
in

form
ation

from
failed

n
o
d
e

[155]
X

X

[44]
X

X

N
o
d
e

w
ith

m
ob

ile

co
d
e

d
ecid

es

[53]
X

S
in

k
w

ith
X

X

m
in

im
u
m

com
m

u
n
ication

cost

[46]
X

S
et

of
ru

les
X

[49]
X

M
u
ltip

ath
rou

tin
g

[111,
35]

X

S
en

sor
F

u
sion

[58]
X

X

[95,
99]

X

T
ab

le
3.2:

C
lassifi

cation
of

fau
lt

recovery
tech

n
iq

u
es.

3.3. State of the Art in Fault Tolerance for Wireless Sensor Networks 43

Each of the diagnosis methods has its advantages and drawbacks: on the one hand

self detection mechanisms, as proposed in [106], involve no communication costs ex-

cept for announcing that a fault has been detected. On the other hand, sudden crash

failures cannot be detected in this way. Group detection mechanisms, where nodes

monitor each other, allow the detection of sudden crash failures. Such mechanisms

impose higher energy costs due to the exchange of messages and the coordination

of nodes. Additionally, the use of end-to-end encryption is often impracticable for

value failure detection, since this would hamper other nodes observing the contents

of messages [108]. Finally, in a hierarchical detection approach, such as [155], most

of the communication and coordination costs can be shifted to a more powerful de-

vice. Nevertheless, hierarchical approaches require efficient techniques to handle the

scale of the system.

Table 3.1 shows that most of the solutions discussed in the literature focus on in-

dividual types of faults. To our knowledge, the approach proposed in [108] is the

only one that currently detects the three types of faults used in our classification,

with the restriction that the detection of value faults is limited to forwarded mes-

sages. Content analysis, as described in [88], could extend its applicability, e.g. to

aggregation.

This table also indicates that the modification of the node software is a common

practice to diagnose node failures [108, 106, 57, 44, 155, 88, 143, 141, 135]. As

described in chapter 1, in enterprise scenarios we cannot assume specific function-

ality available in the sensor nodes. Neither can we rely on information that may

not be available in heterogeneous WSN platforms, such as network topology and

neighbourhood analysis, as proposed in [135, 139, 141, 88].

Table 3.2 presents the classification of the solutions with respect to the fault recovery

mechanism applied. The fault recovery mechanisms analyzed can be divided into

two main branches: passive and active replication.

In the case of active replication the common approach is to remove the node from the

route path or ignore its data as in [57, 49, 111, 35]. Nevertheless, this implies that

nodes must run the same applications, which imposes higher energy and memory

consumption on the network.

Passive replication on the other hand only initiates a backup copy when nodes suffer

failures, thereby reducing the energy costs during normal operation. Nevertheless,

this approach can result in high energy and communication costs if a code is updated,

or if many messages have to be exchanged to select a new primary replica.

44 3. Research Foundations

The presented classification and evaluation of WSN diagnosis and recovery tech-

niques indicate that most solutions are platform centric. i.e. requires a different

implementation for each platform. Additionally, the techniques proposed in this

field do not focus on integration of WSNs with enterprise business systems, making

them unsuitable for industrial applications. Therefore, business applications require

additional research in fault management techniques to ensure the successful utiliza-

tion of WSNs in real world deployments.

3.4 State of the Art in Fault Diagnosis for Indus-

trial Applications

The constant increase in the complexity of technological installations such as power,

chemical, metallurgical, nuclear and food industries determines the need for efficient

automatic fault diagnosis techniques. These industrial systems make use of a large

number of sensors to monitor and control different process variables [129].

The incorrect generation of sensor readings or even the lack of them can often lead

to total system shutdown, hazards, and can even put human lives at risk. The

outcome of such event can be significant economic losses, as described in chapter 2.

Hence, fault diagnosis for industrial systems has been the focus of research in the

past few decades, resulting in many efficient techniques and fundamental theories

[84]. Yet, the ongoing research on fault diagnosis for WSNs usually does not rely on

this pre-existing knowledge.

Seeking to overcome this gap, we provide a concise survey on existing techniques

and theories in this section. Different techniques are applied in the fault isolation

process to evaluate the diagnostic signals generated by fault detection and residual

evaluation algorithms. Here we investigate the most important existing approaches

for fault isolation: (i) binary diagnostic matrix, (ii) diagnostic trees and graphs,

(iii) rules and logic functions, (iv) artificial neural networks, (v) fuzzy and (vi)

neural-fuzzy fault diagnosis systems. In the following subsections, the fundamentals

of these techniques are explained. Finally, this section is concluded with a discussion

on the advantages and drawbacks of applying these methods in WSNs.

3.4.1 Binary Diagnostic Matrix

Several approaches exist to isolate failures based on binary diagnostic [84]. Binary

diagnostic matrix is one of such methods. It creates a mapping between the diag-

nostic signals
−→
S and

−→
F based on the Cartesian product of these two sets.

3.4. State of the Art in Fault Diagnosis for Industrial Applications 45

Figure 3.9: Graphical representation of a binary diagnostic matrix.

Figure 3.9 depicts a binary diagnostic matrix. Each failure fk from the set of failures

F has a “signature” in the diagnostic signal. For instance the signature of failure f1

is:

s1 = 1, s2 = 0, s3 = 1, s4 = 0, and s5 = 1.

The diagnosability of a system is determined by the possibility of diagnosing the

different failure types present in a system without ambiguity. When the signatures

produced by the failures are not distinguishable (i.e. f5 and f6) the system is said

to be not diagnosable.

The binary matrix depicted in Figure 3.9 can be created not only based on the

grounds of system equations, but also based on expert knowledge of the system by

analyzing the influence of particular failures on diagnostic signal values.

3.4.2 Diagnostic Trees and Graphs

Diagnostic trees and graphs is another approach for the isolation of failures based

on binary diagnostic signals. This method is widely used in the industrial domain

[116, 18, 19].

The diagnostic inference is performed through the execution of the logic represented

in a tree, as presented in Figure 3.10. In this diagnostic tree, the failures and their

symptoms are arranged in a graph, where the diagnostic signals correspond to the

vertices. The leaves of the tree indicate the failure that is occurring. The branches

that connect the vertices correspond to the value of the diagnostic signal of the

parent vertex.

A similar approach called Ordered Binary Decision Diagram (OBDD) provides a

symbolic representation for boolean functions in the form of directed acyclic graphs,

and is a restricted, canonical form version of Binary Decision Diagrams (BDD) [116].

Algorithms that implement operations on boolean functions as graph algorithms on

OBDDs are discussed in [18].

46 3. Research Foundations

Figure 3.10: Diagnostic graph.

This approach has been developed as an attempt to optimize the search of the

failure based on the symptoms detected by the system. As a result of efficient

symbolic manipulations that OBDDs brings, a wide range of problems in hardware

verification, testing, real-time systems, and mathematical logic have been solved.

Most of these problems would have been otherwise impossible to solve due to the

combinatorial explosion of system states [116].

3.4.3 Rules and Logic Functions

The use of rules and logic functions for the isolation of failures has been applied

in several industrial application scenarios, such as petrochemical [136], mining [124]

and power systems [78, 56].

These systems evaluate the current system state, diagnosing it based on sets of rules.

These rules are the distillation of information and “rules of thumb” that one or more

experts use when they assess the condition of a given system [100]. Figure 3.11

presents a set of rules extracted from [124], where the goal of the evaluation of the

rules (inference) is the diagnosis of failures in an electric mining car.

The challenge of such systems, also called Expert Systems, lies in the generation of

the rule base that is used to infer the diagnosis. In general, the rule base is generated

based on the knowledge of experts in the system [100]. To facilitate the process of

generating the rule base, studies investigate the possibility of automatically generat-

ing rules [101] and the use of tools that guide the experts through the rules creation

process [68, 27, 91].

Some of these tools also called Rule Engines, provide frameworks for the evaluation

of rules. Drools [27] is one example, where rules can be generated in a friendly way

for both developers and business users. Another example, called Jess [91], is also

3.4. State of the Art in Fault Diagnosis for Industrial Applications 47

Figure 3.11: Failure diagnosis rules for an electric mining car.

based on the efficient reasoning Rete algorithm [45] and provides a fast light weight

rule engine fully developed in Java.

3.4.4 Neural Networks

Artificial neural networks are information processing systems, which were developed

as a generalization of mathematical models of human cognition or neural biology

[42]. They have been applied in a broad spectrum of industrial applications for

sensor fault detection [51, 112, 129, 179, 152]. Due to its performance properties,

and ability to “learn” system patterns, artificial neural networks have their major

impact when applied in complex and dynamic systems.

One prime example of the use of this technique was applied in a NASA (National

Aeronautics and Space Administration) space shuttle main engine to validate sensor

data [51, 112]. Another example, also investigated by NASA, describes an online

health monitoring system based on neural networks [152]. This approach in used

to detect malfunctions of an antenna pointing system of the NASA’s Deep Space

Network.

Neural networks have also been applied in other domains. In [179], the authors

discussed the design of a neural network based sensor validation and fault detection

system for a power generation system. In [129] a sensor fault detection and isolation

technique using neural networks for dynamic systems with time delays was also

proposed.

As described in [129] the motivation for using neural networks for these systems is

the capability of neural networks to learn non-linear and complex dynamics of these

systems using training examples.

48 3. Research Foundations

In [42], artificial neural networks are described as systems that are based on the

following assumptions:

1. Information processing that occurs at many simple elements called neurons.

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural net

multiplies the signal transmitted.

4. Each neuron applies an activation function (usually nonlinear) to its net input

(sum of weighted input signals) to determine its output signals.

Figure 3.12 presents a generic model of a multi-layered artificial neural network [128].

The topology of neural networks may considerably change from this model according

to the number of existing layers and the connection between nodes. Nevertheless,

this model represents a classical multi-layered network and serves as a basis for the

explanation of more complex models. The depicted neural network is composed of

the following layers:

• Input layer: The nodes in this layer are called input units. They represent the

input to the network.

• Hidden layer: The nodes in this layer are called hidden units. They are called

hidden since they are neither input nor output units.

• Output layer: The nodes in this layer are called output units. They represent

possible concepts or values to be assigned to the input under consideration.

This network has three main underlying properties that describe the network topol-

ogy (or connectivity) [48]: the types of connections, the order of connections, and

weight range. The node properties describe the activation range and the activation

function.

Each neuron has an activation function which determines its output depending on

the weighted sum of its inputs. This can be a discrete or continuous function. Some

of the well known activation functions as stated in [42] are: identity function, binary

step function, binary sigmoid, and bipolar sigmoid. Sigmoid functions are the most

commonly used activation functions for multi-layer neural networks.

When applied in fault diagnosis for the isolation of failures, neural networks are

trained to match each pattern of the symptom vector to one of the known fault

types or to the healthy state [84].

3.4. State of the Art in Fault Diagnosis for Industrial Applications 49

Figure 3.12: Neural network model, from [128].

To achieve this goal, the neural network undergoes a training phase, where a training

algorithm based on a learning rule adjusts the connection weights in order to optimize

the network performance [48].

Back-propagation is such an algorithm, which is usually adopted for training multi-

layer feed-forward neural networks. The basic nature of this algorithm is simply

a gradient descent method that minimizes the total squared error of the output

computed by the neural network [42].

This algorithm performs a set of steps through the entire set of training data and

re-adjusts the weights of the connections between the neurons. Such a cycle through

the entire training set is called an epoch [42].

Normally, to train a neural network using back-propagation many numbers of epochs

are required. The algorithm stops when a stopping condition is reached, for example

if a certain number of epochs has been reached or if a local minimum of squared

error was found.

At the end of the training phase, the neural network will provide as output the fault

types according to the system state pattern provided.

50 3. Research Foundations

Figure 3.13: Division of variable x into fuzzy regions and the corresponding mem-

bership functions, from [128].

3.4.5 Fuzzy Systems

Artificial Intelligence (AI) has proved to be an efficient mechanism for solving prob-

lems in numerous domains, and has found a broad range of applications in diag-

nosis engineering [172]. In this research field, fuzzy logic emerges as a technique

which is capable of dealing with sources of uncertainty, imprecision or incomplete-

ness [181, 186, 182].

Fuzzy logic is particularly well suited for modelling non-linear systems [101], and

has been successful in several applications where gradual adjustments are necessary

[79, 137].

When compared to fuzzy logic, pure threshold techniques present several disadvan-

tages. The isolation of failures based on threshold evaluation of residuals may be

deceptive, lead to inference discrepancy and false diagnosis [84]. By introducing

fuzzy logic, the uncertainties of diagnostic signals can be taken into account through

linguistic variables that describe the state of the system.

Figure 3.13 depicts the fuzzy evaluation of a variable x. In fault isolation based on

fuzzy classification, fault patterns are represented as fuzzy sets (or regions). The

domain interval defines the most probable range of the variable, being divided into

fuzzy sets according to the fault patterns known to the system (they can be equal

or unequal in length) [172]. Each fuzzy set is assigned a fuzzy membership function

(i.e. triangular, trapezoidal, and Gaussian).

In the example presented in Figure 3.13, the domain interval of x is divided into

three regions A,B, and C, with trapezoidal and triangular membership functions.

Fuzzy systems have been successfully applied in numerous industrial domains. In

the automotive industry, the authors in [101] used fuzzy logic to detect vacuum

leak in the electronic engine controller as part of the end-of-line test at assembly

plants. In [62], the uncertainty of diagnosing chemicals in a power transformer is

discussed. There an approach based on fuzzy logic to model the uncertain boundaries

3.4. State of the Art in Fault Diagnosis for Industrial Applications 51

of chemical ratios is presented. In [50], fuzzy logic is applied together with other

techniques to realize the diagnosis of a waste water treatment in France.

Finally, in [172] fuzzy logic is applied with the main focus on developing a fuzzy rule

base considering two types of information: numerical information obtained from

sensor measurements and linguistic information obtained from human experts. The

numerical information are input and the corresponding output data pairs obtained

by the system. The linguistic information are ”IF-THEN” rules that are usually

expressed from the experience of a human controller [172]. The key idea of their

approach is to generate fuzzy rules from numerical data pairs, collect them into a

common fuzzy rule base, and design a fault diagnosis system based on the combined

fuzzy rules.

3.4.6 Classification and Evaluation of Techniques

Fault diagnosis for industrial applications has been widely investigated in the last

decade. Nevertheless, most of these techniques have not been adopted so far for the

diagnosis of failures in WSNs.

The gap that exists between fault diagnosis for industrial applications and fault

diagnosis for WSNs is due to the difficulties to adapt the concepts developed for the

industrial domain to the large scale of WSNs.

In order to analyze these difficulties, we classify and evaluate these techniques focus-

ing on the characteristics that are mostly important for the WSN domain. Table 3.3

presents the investigated techniques and classifies them according to different Key

Performance Indicators (KPI).

Although the Binary Diagnostic Matrix is extremely efficient on its deployment in

small scale systems, its performance can become limited in WSNs scenarios. Due

to the combinatory explosion of composite failures in WSNs, the set of failures (
−→
F)

will raise considerably with the number of failed components (sensor nodes, sinks

and links).

Hence, solutions based purely on the analysis of the failed set such as Binary Diag-

nostic Matrix, Diagnostic Graphs, and Expert Systems are not adequate for WSNs

due to the large scale of the system. Nevertheless, when Expert Systems are used

not to identify each individual failure, but rather classes or simple special conditions,

this approach has the potential to perform well.

Additionally, the effort required to adopt WSNs is a key factor in the decision process

in business environments. Techniques such as Binary Diagnostic Matrix, Expert

52 3. Research Foundations

Systems and Diagnostic Trees and Graphs, commonly require the analysis of the

deployed system by an expert to determine the conditions of the diagnostic signals

for each failure, therefore considerably increasing the adoption efforts.

Neural Networks present the great advantage of being able to learn system pat-

terns based on a training set. The support of a system to gather the required data

eliminates the need for an expert to analyze the system for each WSN deployment.

Therefore, Neural Networks represent an interesting approach for business applica-

tions deployment due to adoption efforts reduction.

Experiments performed in [31] indicated drawbacks of this technique. With numer-

ous failures and a high number of diagnostic signals, neural networks require long

training periods. Additionally, similar to the human brain, neural networks can

“forget” patterns when the training set is too large, which results in an incorrect

diagnosis of failures.

Additionally, fuzzy systems do not present the same problem as neural networks

where system patterns may be “forgotten”. Nevertheless, the use of automatic fuzzy

rule generation techniques may result in a large number of rules that must be eval-

uated during run-time. This leads to low performance as the system scales in the

number of components.

As discussed, a solution for diagnosing failures in WSNs presents a major challenge

regarding the scalability of the system. The adoption of each of these techniques

in an isolated manner can lead to low performance of the system and incorrect

diagnosis.

Nevertheless, through a careful selection and combination of techniques, it is possible

to extract the best qualities of each technique and avoid their drawbacks. In Chapter

5, we present a hybrid approach that combines neural networks, statistical analysis

and a rule based algorithm.

3.5 Summary

We studied the problem of fault diagnosis and recovery, surveying the different tech-

niques currently applied in WSN research. A classification of the available fault

tolerance techniques for wireless sensor networks has been proposed considering the

various mechanisms adopted by the existing solutions. Seeking to bridge the gap

between fault diagnosis for WSNs and industrial applications, we also investigated

the existing solutions applied in control systems, focusing on their applicability in

WSNs.

3.5. Summary 53

B
in

ar
y

D
ia

gn
os

ti
c

D
ia

gn
os

ti
c

T
re

es
R

u
le

s
an

d
L

og
ic

N
eu

ra
l

N
et

w
or

k
s

F
u
zz

y
S
y
st

em

M
at

ri
x

an
d

G
ra

p
h
s

F
u
n
ct

io
n
s

In
p
u
t

d
at

a
E

x
p

er
t

k
n
ow

le
d
ge

E
x
p

er
t

k
n
ow

le
d
ge

E
x
p

er
t

k
n
ow

le
d
ge

T
ra

in
in

g
D

at
a

T
ra

in
in

g
D

at
a/

E
x
p

er
t

k
n
ow

le
d
ge

A
b
il
it

y
to

M
o
d
el

co
m

p
le

x
an

d
X

X

n
on

-l
in

ea
r

sy
st

em
s

A
b
il
it

y
to

M
o
d
el

X

u
n
ce

rt
ai

n
ty

S
ca

la
b
il
it

y

-S
et

u
p

lo
w

lo
w

lo
w

lo
w

lo
w

(h
u
m

an
in

te
ra

ct
io

n
/

(h
u
m

an
in

te
ra

ct
io

n
)

(h
u
m

an
in

te
ra

ct
io

n
)

(h
u
m

an
in

te
ra

ct
io

n
)

(l
ar

ge
tr

ai
n
in

g
se

ts
)

la
rg

e
tr

ai
n
in

g
se

ts
)

-D
ia

gn
os

is
lo

w
h
ig

h
m

ed
iu

m
/h

ig
h

m
ed

iu
m

m
ed

iu
m

D
ep

lo
y
m

en
t

eff
or

ts

-H
u
m

an
re

so
u
rc

e
H

ig
h

H
ig

h
H

ig
h

L
ow

L
ow

/H
ig

h

-T
im

e
H

ig
h

H
ig

h
H

ig
h

M
ed

iu
m

M
ed

iu
m

/H
ig

h

T
ab

le
3.

3:
C

la
ss

ifi
ca

ti
on

of
fa

u
lt

re
co

ve
ry

te
ch

n
iq

u
es

.

54 3. Research Foundations

Through the classification proposed, it is possible to compare the different solutions

and identify the strong and weak points of each approach. This allows for a correct

selection of the techniques that are more suitable to specific applications. By ap-

plying our classification we were able to verify that current approaches proposed for

WSNs provide mechanisms for overcoming faults in sensor networks only in specific

scenarios and applications. However, no approach provides fault diagnosis support

to heterogeneous WSNs.

Finally, this research shows that the use of techniques and theories developed for in-

dustrial control systems can be beneficial for WSN domain. Nevertheless, due to the

large scale of such systems, the isolated use of each of the surveyed techniques leads

to low performance of the system, as discussed in section 3.4.6. Hence, to achieve

good results in terms of fault diagnosis and recovery for this domain, new techniques

which take the needs of business applications into consideration are required.

4. Fault Tolerant Framework for

Wireless Sensors Networks

As the technology of WSNs evolves, the interest for integrating such devices with en-

terprise applications increases. These devices have the potential to improve business

processes by reducing the gap between the real world and its virtual digital represen-

tation, as described in Chapter 2. Nevertheless, the diversity of hardware platforms

imposes challenges in terms of integration with back-end enterprise systems.

The development of enterprise applications has recently embraced the concepts of

service oriented architecture (SOA) based on web services [89, 127, 82]. This new

concept delivers functionalities through well defined interfaces and protocols based

on standards such as XML [16] and HTTP [43]. With SOA, the details of service

implementation is hidden from enterprise applications. This new concept makes the

process of switching service providers transparent.

Following the same vision, the functionality provided by WSNs must be accessible

by enterprise applications through well defined interfaces and protocols, based on

standards adopted by the industry [183]. Therefore the diversity of proprietary pro-

tocols that exists in WSNs must be hidden from enterprise applications to facilitate

the integration and exchange of hardware platforms.

Although many routing protocols, especially in the sensor network area, propose

different solutions to deliver collected data to the back-end [71, 77, 23, 66, 180],

little work has been done to transparently couple sensor networks with business-

oriented back-end systems.

Another major challenge faced for the integration of WSNs with business processes

is the availability of services offered by the network of nodes. As described in Chap-

56 4. Fault Tolerant Framework for Wireless Sensors Networks

ter 2, WSNs are subject to frequent failures due to their tight integration with the

environment. As a result of failures, false information (or none at all) can be gen-

erated and propagated to the back-end systems. The outcome may range from the

lack of data of an item to incorrect business processes being triggered and even con-

tamination of the environment, according to the scenario in which the WSNs are

applied [84].

Regardless of the outcome caused by the failure, business processes will have to be

corrected and maintenance will usually be required. This leads to additional costs

associated with the adoption of WSNs by the industry. As one of the main goals of

enterprise applications is to reduce the costs of business processes, we propose a fault

tolerant framework for wireless sensor networks FT-WiseNets, which mitigates the

propagation of failures to back-end systems. Our approach envisions a separation

of the system in layers, allowing the implementation of different techniques for fault

tolerance despite the diversity of hardware platforms currently available.

The requirements of the proposed framework are derived from previous experiences

in a real world application trial in an enterprise environment [26]. These require-

ments have not yet been fully addressed by the current solutions proposed in the

literature, as these solutions do not handle the integration of WSNs with back-end

systems (discussed in Chapter 3).

The solution we propose in this Chapter, presents a novel approach for a structured

management of failures, with extensibility and transparency, which are key require-

ments for enterprise applications. The adoption of this framework can reduce the

threat of failures being propagated to upper layers and facilitates the integration of

new techniques developed in the research community.

4.1 Requirements

The definition of requirements is the basis of every project. The analysis of the

needs of stakeholders such as users, customers and the industry represents the first

phase of any enterprise application’s life-cycle and dictates the activities that will

be required in the project [20, 64].

Since a thorough analysis of software requirements imposes costs in terms of time,

man power, and resources, several software systems fail due to shortcomings in

this phase [69, 105]. Nevertheless, research shows that the proper identification of

information requirements early in the development process increases the possibilities

of a successful project [60, 171].

4.1. Requirements 57

To ensure a correct definition of the requirements for the proposed framework, we

analyzed the application trial performed by the CoBIs project (described in Section

2.1.2). This trial was selected for the requirements analysis due to its focus on the

use of WSNs integrated with business processes. Additionally, the lack of use of fault

tolerant techniques represented a challenge during this trial as failures occurred in

several layers of the system.

Figure 4.1 presents the setup of this application trial. In this scenario, sensor nodes

were integrated with the Environment Health and Safety (EH & S) backend system

[145]. The storage regulations were managed by the industry specialist directly on

EH & S. Once modified, these storage regulations were propagated to the sensor

nodes. The nodes would then react according to the new rules received and would

generate alert messages if the rules were violated.

Figure 4.1: Application trial at a chemical plant.

During this deployment, the system stopped alerting the users several times about

hazardous situations. This occurred due to failures in the sensor nodes and in the

sinks, and bugs in the software responsible for storing the events generated by the

WSN into the database. Although the trial did not use real chemicals (water was

used instead), in such a scenario failures in the sensor network must be efficiently

diagnosed and recovered in order to prevent accidents from happening.

Through the analysis of this scenario, we have derived the six major requirements

of the FT-WiseNets framework, which reflects the need to provide highly available

WSNs to business processes. These requirements represent the needs of the industry

58 4. Fault Tolerant Framework for Wireless Sensors Networks

and workers that are responsible for the maintenance of WSNs applied in business

processes.

Automatic fault diagnosis:

WSNs generate a high amount of events per second, which makes the task of manual

identification of malfunctioning components inefficient. Automatic isolation of fail-

ures overcomes this challenge through the use of algorithms that constantly monitor

the WSN. This provides online information of the system behaviour and identifies

the failed parts of a system.

The requirement of automatic isolation of failures originates from industry and main-

tenance workers. As WSNs are a new technology that is starting to be introduced

in the industry, there is few professionals with know-how in this field. With efficient

automatic fault isolation, workers can better perform their job and thereby reduce

maintenance costs, which represents a key factor for the industry.

The automatic isolation of failures that considers the scalability of WSNs is also

necessary for providing inputs for automatic recovery mechanisms.

Automatic recovery techniques:

Breakdown states, caused by failures occurring in WSNs applied to business pro-

cesses, can result in high maintenance costs, delayed deliveries, unsatisfied customers

and propagation of delays to additional business processes.

Some failures in WSNs do not require a physical interaction to be eliminated, for

instance, outlier sensor readings can be eliminated through sensor fusion [111, 9],

and coverage of a certain functionality can be guaranteed to a certain degree through

the use of code-redeployment [22] even in the presence of node crash failures.

Automatic recovery techniques are a key requirement for the industry, given that

they have direct impacts on the costs associated with the adoption of WSNs tech-

nology.

Extensibility:

Given the rapid development of new techniques for fault tolerance in WSNs, the

framework must be extensible to allow new techniques and approaches to be easily

integrated. The integration of new techniques should be enabled through the use of

standards adopted by the industry. This improves the re-usability of any software

component developed.

4.2. Architecture 59

This requirement is also derived from the industry due to the dynamic growth of

businesses and the need of rapidly improving processes with new techniques proposed

in the research community.

Transparency:

SOA is a new trend in software engineering, which seeks to facilitate the develop-

ment of enterprise applications [89, 127, 82]. One of the main focuses of this new

paradigm is the transparency provided to applications in the sense of accessibility

and development.

As business applications are programmed with a higher view of the business pro-

cesses, the use of different fault tolerant techniques and the diversification of hard-

ware platforms must be transparent to these back-end applications. Transparency

is a key requirement demanded by the industry for successful development of new

enterprise applications.

Support to heterogeneous WSNs:

The scenarios in which WSNs can be applied in industry can vary from inventory

management to the supervision of storage regulations. Different scenarios require

different support from hardware platforms. This leads to a great variety of protocols

that have to be handled in order to allow applications to communicate with the

WSN.

Following the transparency requirement, the framework must support the integration

of heterogeneous hardware platforms in a transparent way to enterprise applications.

In this context, this framework investigates the research question of how feasible is

to provide fault tolerance to WSNs with a restricted information set that can be

provided by most hardware platforms. This framework should only rely on three

basic information quanta: sensor node unique identification number, timestamp in-

formation and the time interval between messages (heart beat).

Delivery of online data:

In many application cases, back-end processes need a large amount of information

about the current, or even past, status of business relevant items, and of their

environment. In these cases, sensor nodes must collect and deliver online data to

the backend systems.

4.2 Architecture

Today, a major drawback of ’smart technologies’, such as sensor networks, is the

lack of standards for both the lower network layers (i.e., physical, MAC, etc.) and

60 4. Fault Tolerant Framework for Wireless Sensors Networks

Figure 4.2: FT-WiseNets: Fault Tolerant Framework for Wireless Sensors Networks.

the higher application layers. The currently given heterogeneity of the technologies

prevents their seamless integration into business applications which could profit from

their functionality [122]. Therefore, we propose a generic mediating framework,

called FT-WiseNets that provides the handling of different technologies on both the

network and application side, and thus helps to overcome the current integration

and reliability problems.

The overall architecture proposed is depicted in Figure 4.2. One of the major inten-

tions of FT-WiseNets, and thus of the overall architecture, is to support business

applications with reliable WSN services. To achieve this goal, the architecture was

designed with specialized components that are responsible for enabling three main

functionalities: Fault Diagnosis, Fault Recovery and Message Exchange.

The mechanisms of each of these main functionalities and the components involved

in each process will be discussed in the following sections. This framework does

not define specific algorithms, but rather defines the means for adopting different

approaches in one integrated framework. To make the adoption of these different

techniques transparent to the back-end, the framework makes use of web services

since they are a standard well accepted by the industry and provide the means for

the easy exchange of implementations.

4.2. Architecture 61

4.2.1 Framework Layers

The architecture of this framework and all its components is depicted in Figure 4.2.

This architecture is divided into three layers: Device Layer, Framework Layer and

Application Layer.

In the Device Layer, different sensor network platforms operate and provide constant

information, such as sensor readings and business processes related events.

The Framework Layer contains all components of the framework that run in the

back-end and is sub-divided in two layers: Platform Abstraction Layer and Fault

Management Layer. The former provides mechanisms for coupling heterogeneous

WSNs with the back-end. The latter handles the failures generated in the WSN.

Finally, the Application Layer contains all business applications that make use of

the functionality provided by the WSNs.

4.2.1.1 Device Layer

The device layer consists of all devices involved in the process of acquiring envi-

ronmental data, and devices responsible for converting wireless sensor packages into

packages that can be propagated into the LAN of the industry. In classical industrial

WSNs, such as particle computers [169], these devices include wireless sensor nodes

and bridges.

The logical separation of this layer from the other layers of the system is one tech-

nique applied in this framework to achieve a transparent integration of heterogeneous

WSN platforms.

As some hardware platforms may provide in-network algorithms for fault manage-

ment, these techniques are included in this layer. It must be pointed out that not all

hardware platforms can support fault management in the Device Layer and therefore

the framework cannot rely on specific techniques applied at this level. Nevertheless,

when present, such techniques can improve the overall performance of the system.

Furthermore, they also provide additional information to the Framework Layer, and

thus, are considered as an optional part of the framework.

4.2.1.2 Platform Abstraction Layer

Due to the constraints imposed on WSNs (i.e., low processing power, restricted

power supply, etc.) proprietary communication protocols that try to maximize the

use of the available resources in the network are commonly applied. As a result,

a great variety of protocols can be expected to be applied when adopting different

hardware platforms in business scenarios.

62 4. Fault Tolerant Framework for Wireless Sensors Networks

Ziggbee [2] and Bluetooth [14] represent efforts to overcome the heterogeneity of

protocols used in WSN. Although the need for these standards is evident from the

industry’s point of view, not many platforms have adopted them so far. Therefore,

when applying WSNs in industrial environments, it can be expected that several

protocols will have to be supported by the framework.

As a solution to this challenge we propose the use of a Platform Abstraction Layer,

which together with the Device Layer provides the means for integrating heteroge-

neous WSNs with enterprise applications. In the Platform Abstraction Layer the

components interact in order to perform the conversion between the protocol used

in the back-end and the one used in the WSN.

In addition, the Platform Abstraction Layer provides transparent access to all func-

tionality of the WSN. For instance, it provides the mechanisms for enabling message

exchange between the WSN and the backend. The mechanisms applied include the

distribution of events, and synchronous and asynchronous invocations. Synchronous

invocations provides instant connection to sensor nodes, while asynchronous invo-

cations enable the possibility of buffering requests for future invocations. This is

especially interesting for scenarios where nodes can stay out of reach and be online

again for some period of time.

The message exchange functionalities adopted in this thesis were developed during

the CoBIs project [26] and further integrated with the FT-WiseNets framework. In

Appendix A, we provide a concise description of this integration.

4.2.1.3 Fault Management Layer

WSNs applied in enterprise scenarios require a high level of availability to ensure the

correct flow of business processes. Hence, to prevent failure occurring in the Device

Layer from propagating to the Application Layer, the framework proposes the use

of the Fault Management Layer.

The Fault Management Layer handles the failures that occur at the Device Layer

level. The two main functionalities of the components in this layer are the diagnosis

of failures and automatic failure recovery.

To support these functionalities the components provide the information about the

network, maintain a database with all the events generated in the network and

contain detailed information about the hardware of sensor nodes present in the

network.

The information about the sensor node hardware is especially important for auto-

matic fault recovery. This information is used when guaranteeing the coverage of

4.2. Architecture 63

certain functionalities through the use of role assignment of nodes. Automatic recov-

ery mechanisms also include the restructuring of the routing tree [155], and sensor

fusion [35][111].

Not all failures can be automatically recovered. Nevertheless, the Fault Management

Layer can trigger maintenance workflows for manual maintenance providing more

detailed information for the maintenance workers. This can help reduce maintenance

time and costs.

4.2.2 Fault Diagnosis

In this framework fault diagnosis is performed in two different layers: Device and

Fault Management.

To diagnose failures in a platform independent manner, the architecture proposes the

use of two components in the Framework layer : Fault Detector and Fault Isolator.

Since different algorithms can be implemented for fault detection and isolation, the

framework only defines the interfaces and intended interaction between components.

4.2.2.1 In-Network Fault Diagnosis

In-network fault diagnosis algorithms seek to analyze the behaviour of sensor nodes

within the network. These approaches diagnose the malfunctioning parts through

interaction between nodes and through self diagnosis, as described in 3.3.1.

An advantage of diagnosing failures at the Device Layer level is that failures are

processed at the lowest layer of the system. This implies that there is a greater

chance of mitigating misbehaviour before it reaches the back-end system, a potential

for better scalability, and a better reaction time.

Nevertheless, the diagnosis of in-network failures relies on the fact that specific soft-

ware will be available on the nodes. As this requirement cannot be imposed on

the platforms adopted in industrial environments, the FT-WiseNets framework does

not rely on this feature to diagnose failures. However, when available, the frame-

work uses the information generated by the WSN to reduce the load of diagnosing

malfunctioning parts in the back-end.

4.2.2.2 Fault Detector

Although diagnosing faults at the Device Layer has its advantages, it imposes a

strong requirement on the hardware platforms that can be adopted, which is to

support the fault detection algorithms. As this goes against the ”Support to hetero-

geneous WSNs” requirement defined in section 4.1, in this framework we consider

64 4. Fault Tolerant Framework for Wireless Sensors Networks

that in-network fault diagnosis algorithms can be coupled with the framework to im-

prove its performance. Its presence, however, is not a requirement for the diagnosis

process.

When in-network fault diagnosis algorithms are not present, the Fault Detector com-

ponent situated in the back-end is responsible for the constant evaluation of the data

generated by the WSNs. This component generates symptom signals that serve as

input for a second evaluation performed by the Fault Isolator, where the exact failure

is identified.

4.2.2.3 Fault Isolator

The Fault Isolator component is responsible for evaluating symptom signals gener-

ated by the Fault Detector component. The result of this evaluation indicates the

failures that probably occurred in the system. Different approaches can be applied

for the isolation of failures, for example: rule inference, fuzzy evaluation of symptom

signals, fuzzy diagnostic inference and pattern recognition based on neural networks.

Each approach has its advantages and ideal application scenarios where its per-

formance overcomes the performance of other methods. Therefore this framework

allows for a transparent integration of various implementations of this component.

This is achieved by defining a web service interface and defining the interaction with

the different components.

The isolation process relies on the symptom signals received. Therefore, the recep-

tion of specific signals is performed via event distribution. This ensures that one

implementation of the Fault Detector will be able to provide signals to different

implementations of the Fault Isolator component.

4.2.2.4 System State

WSNs applied in business processes have the potential to generate a high amount

of events. These events contain information about the environment, the business

process and also about the node itself.

In order to store all these events for further analysis, the System State component

is registered at system start-up with the Notification Broker component in order

to receive all events generated by the WSN. This information is then stored into a

database.

The stored information comprises of:

• Node unique identification number

4.2. Architecture 65

• Hardware platform

• Node status

• Events history

– Timestamp

– Event type

– Value

Focusing on the support of different hardware platforms, the format of the sensor

node ID depend on the hardware platform supported. We assume that the node id

provided by the hardware platform is unique within that platform. Therefore, the

unique identification of sensor nodes is based on its id and its hardware platform.

The status of a sensor node is a piece of information that is frequently requested by

many applications. The System State component stores the status of all nodes, con-

siders them as active at start-up, and updates their status based on events received.

These events consist of failure reports generated by the Fault Diagnosis Manager,

and recovery events generated by the Fault Recovery manager.

4.2.2.5 Component Interaction

The automatic diagnosis of malfunctions is a key requirement for successful deploy-

ment of WSNs in business processes. The FT-WiseNets framework proposes to

enable this automatic diagnosis of failures through the use and interaction of com-

ponents located in two layers of the system. The interaction of these components

can be observed in Figure 4.3.

During start-up, the System State and Fault Isolator components register themselves

at the Notification Manager (1). The System State registers for receiving all events

that are generated by the WSN, while the Fault Isolator registers itself for receiving

events generated by the Fault Detectors. This step makes use of the Notification

message exchange pattern as described in section A. The events are generated by

the WSN and stored in the System State component (2-4).

The diagnosis process starts with the detection of failures followed by a fault isolation

process where the failure is precisely identified. The Fault Detection component

analyzes the information available in the System State (5) and, when it identifies a

symptom, it announces it as an event to the Notification Manager (6).

The Fault Isolation component based on the received information (7) determines the

type of failure that has occurred and triggers a fault event (8).

66 4. Fault Tolerant Framework for Wireless Sensors Networks

Figure 4.3: Components interaction: fault diagnosis.

When in-network fault diagnosis algorithms are available, once a failure is identified,

this failure is propagated as an event directly to the Fault Isolator component (1a-

3a). With this information, the Fault Isolator can define which failure has occurred

and announce it to interested parties (4a).

4.2.3 Fault Recovery Management

WSNs are becoming an increasingly attractive solution for enterprise scenarios. The

deployment of such devices in a running business process has to consider the risks

involved in the adoption of this new technology. This includes the costs associated

with breakdown states. Hence, the framework proposed provides efficient methods

not only for failure diagnosis, but also for system recovery.

To reduce maintenance time, automatic recovery techniques are applied whenever

possible. For a more efficient recovery time and a better integration with back-end

systems, as soon as a failure is identified and automatic recovery techniques are

not applicable, maintenance workflows are triggered to warn workers of occurring

failures.

In this framework, the recovery process is distributed through three layers of the

system: Device, Platform Abstraction and Fault Management.

4.2.3.1 In-network Recovery

In-network fault recovery methods running at the Device Layer, provide the means

for WSNs to self-heal in the presence of failures. Fault recovery techniques in this

4.2. Architecture 67

layer of the system include fault tolerant sensor fusion techniques [35][111], role

assignment [46] and leader election as applied in LEECH [58]. These in-network

can extend the life-time of the network and provide a precise sensor reading even if

failures are present.

Most of these approaches are designed for specific routing structures. In some cases

these approaches are dependent on the routing protocol applied. Nevertheless these

techniques present high performance in terms of response time, since they operate

directly at the point where the failure occurs.

4.2.3.2 Decision Maker

Self-healing WSNs are an attractive solution for handling fault management due

to their performance and transparent approach. Nevertheless, when not present,

alternative approaches have to be supported by the framework in order to ensure

the availability of the services provided by the WSN. Therefore, the FT-WiseNets

framework provides support to recovery mechanisms in the back-end.

The Decision Maker component is part of the group of components located at the

back-end, which supports fault recovery. It receives information on the malfunction-

ing parts of the system and decides which action has to be taken in order to recover

the failure.

Depending on the situation, the Decision Maker can opt for an automatic recovery,

or can trigger a maintenance workflow. Maintenance workflows are triggered if no

other node can take over the task of service provisioning. An example for such a

case is a failed node responsible for reporting the room temperature, where no other

node equipped with a temperature sensor is present in the same room.

4.2.3.3 Recovery

The main functionality of the Recovery component is to provide automatic mecha-

nisms for bringing the system back to a stable state. This kind of automatic recovery

is only possible in some specific cases:

• Another node is able to take over the service provisioning for the failed node.

This is a typical recovery mechanism for ensuring the coverage of a given service

within the WSN.

• Sensor fusion can be applied to generate a reliable sensor reading, even if some

nodes provide outlier readings.

68 4. Fault Tolerant Framework for Wireless Sensors Networks

• Routing structure can be updated in cases where nodes become isolated but

are still within the range of nodes that have a path to the sink.

Focusing on the above mentioned cases, in this framework we define the interface of

this component in order to allow the implementation of mechanisms for automatic

recovery. Since the coverage of services may require reprogramming of sensor nodes,

the FT-WiseNets framework defines an additional set of components that together

provide the required infrastructure for granting the coverage of services: Mapper,

Device Manager, Code Distribution Manager, Code Repository, Code Injector.

4.2.3.4 Mapper

The main task of the service deployment process is to prepare the network to be used

by different applications [161]. In this preparation special requirements need to be

taken into account. These specific requirements are mainly related to the (spatial)

dynamics of the scenarios [6] and to resource constraints.

Nodes can leave and join the network at a given location, such as storage areas, in an

ad-hoc manner. When leaving the network, for instance due to the transportation

of goods, the missing services have to be replaced, i.e. deployed to other still avail-

able nodes. In addition, due to the usage of (heavily) resource constrained devices,

hardware capabilities must also be considered.

One necessary input is data that reflect the requirements (e.g., minimum available

memory, requested bandwidth) that nodes have to fulfill to host services. Apart

from the capabilities of single nodes, network related constraints, such as coverage,

are also of interest.

The process step called Mapping is the most important building block within the au-

tomated service deployment. Based on the above service requirements and available

network and node resources, the mapping process has to provide a set of decisions

regarding which nodes have to run which service(s).

The selection of nodes is the main task of the Mapper. In the optimal case, during

service mapping, a feasible configuration can be found that fulfills all the service and

network level requirements by using available resources. However, in most cases,

service mapping might be unsuccessful due to the lack of available resources. In

some cases, even with the removal of services, it might be impossible to deploy the

services on the required coverage specified. In that case the, Mapper may either

deploy the service on the available coverage or not. This depends on the policy

defined for the decision process.

4.2. Architecture 69

4.2.3.5 Device Manager

As described in section 4.2.3.4, the mapping process requires information about

the hardware platforms in order to make the appropriate selection of nodes for the

deployment process.

The information necessary for this process is stored in a database, which is admin-

istered by the Device Manager component. This database contains the information

about the sensor nodes and hardware platforms used by the system. This includes

the ID of registered nodes, CPU type, available sensors, amount of memory, battery

type, radio frequency and protocols used for communication. In this component,

only static information is stored. Dynamic information has to be retrieved from the

System State.

The Device Manager provides a foundation for applications, such as inventory track-

ing (which is located in the application layer). These applications are able to use

the Device Manager to retrieve information about the nodes in use.

4.2.3.6 Code Distribution Manager

The Code Distribution Manager provides a uniform interface for the Mapper com-

ponent to forward deployment descriptions. This component is the central contact

point for service invocations regarding service lifecycle management. It provides an

interface for platform independent service deployment and service lifecycle manage-

ment.

The main functionality of this component is to select the appropriate Code Injector

to perform the deployment requested by the Mapper. An invocation to this compo-

nent includes the node address, from which the appropriate platform specific Code

Injector is selected. Additionally, a deployment description generated by the Map-

per component may request reprogramming several nodes from different platforms.

It is the task of the Code Distribution Manager to ensure a proper execution of the

deployment description among the hardware platforms.

4.2.3.7 Code Repository

The Service Repository contains a database holding descriptions of available services,

including their description, deployment requirements, and implementations. It is

intended to be used as the ”reference point” for the available services in an enterprise

environment. This means, that every service being executed within the network of

nodes is represented by an entry in the service repository.

70 4. Fault Tolerant Framework for Wireless Sensors Networks

4.2.3.8 Code Injector

After successful mapping of services to nodes and the allocation of nodes’ resources,

the service implementations have to be transferred to the corresponding nodes. This

step can be implemented in different ways.

One option is to establish and use a centralised network-wide code injection com-

ponent that acts as a master, by giving nodes the corresponding instructions (e.g.,

’Remove Service A and deploy Service B.’), and sending the code (e.g. the imple-

mentation code of the new Service B) that has to be deployed and started.

In the case of peer-to-peer sensor networks, an optimization is to provide specific

(code) dissemination services that autonomously run on nodes. Thereby, nodes could

’infect’ all their relevant neighbours with the new service code.

Different approaches and algorithms can be used for this step of the deployment

process. The selection of one method by the framework would impose a strong

restriction on the hardware platforms supported. Therefore, different mechanisms

are supported through the implementation of different Code Injectors.

4.2.3.9 Component Interaction

The constant monitoring and maintenance of WSNs applied in business processes is

a key factor to ensure the availability of services offered by WSNs. As presented in

Figure 4.4. failure recovery in this framework is achieved through the interaction of

components distributed in three layers of the system: Device, Platform Abstraction

and Fault Management.

The recovery process starts when failures are isolated by the framework. The De-

cision Maker receives the failure event (1), and evaluates whether automatically

recovering the failure is possible (2), or if a workflow requesting maintenance has to

be triggered (2a).

For automatic recovery, sensor fusion can be applied to recover the system from

value failures (3b). Coverage can be guaranteed through the reassignment of sensor

nodes roles. In such cases the Mapper evaluates the requirements of the services

that need a guaranteed coverage in order to generate a deployment description.

The Code Repository provides the meta-data that indicates the service requirements

(3). The Device Manager supplies the information regarding node characteristics

(4), while the System State component indicates the status of the sensor nodes (5).

With this information the Mapper component produces a deployment description

that indicates which nodes should have their role reassigned or re-programmed.

4.3. Summary 71

Figure 4.4: Component interaction: fault recovery.

The Code Distribution Manager receives the deployment description (6) and coor-

dinates its execution by forwarding parts of it to designated platform specific Code

Injectors (7).

Finally, when necessary, the Code Injector downloads the code implementation from

the Code Repository (8) before executing the deployment (9).

4.3 Summary

As a result of the analysis of existing fault tolerant techniques investigated in Chapter

3, we have identified that none of the current solutions are suitable for enterprise

environments. Hence, this work proposes an approach to overcome the challenge

of WSNs heterogeneity and integration with backend systems. This framework was

designed in order to satisfy the requirements defined in Section 4.1:

-Transparency: As discussed in Chapter 3, transparency has not been the focus of

fault tolerance research for wireless sensor networks so far. Most approaches propose

platform dependent solutions and fail to provide transparent access for applications

72 4. Fault Tolerant Framework for Wireless Sensors Networks

to heterogeneous hardware platforms. FT-WiseNets proposes a Platform Abstraction

Layer where a set of components interact to offer transparent message exchange to

heterogeneous WSNs, based on web services .

-Extensibility: Current solutions for fault management in WSNs only support

specific algorithms for fault diagnosis and recovery. The use of web services as a

standard communication among components allows for extensions on the framework.

This extension is achieved through the implementation of new techniques for the

already defined service interfaces (e.g. Fault Detector and Fault Isolator).

-Support to heterogeneous hardware platforms: The framework proposed has

a separation of the system in layers, which enables the Application Layer to abstract

the services offered by WSNs from the hardware platforms adopted. Enabling the

adoption of heterogeneous platforms in a business scenario goes beyond supporting a

variety of communication protocols. It is also necessary to ensure that the framework

does not impose additional requirements on the wireless sensor nodes. Thus, special

attention was given to the fault diagnosis and recovery mechanisms.

-Automatic fault diagnosis: The diagnosis of failures can be executed in two lay-

ers of the system: Device and Fault Management. In-network diagnosis of failures is

one of the approaches supported by the framework. This solution, however, imposes

additional requirements on hardware platforms, which go against the requirements

defined. Therefore, the framework supports centralized fault diagnosis. Automatic

fault diagnosis algorithms located at the back-end are still a challenge not yet com-

pletely solved for WSNs. Nevertheless, such an approach is valuable to correctly

identify failed nodes without reducing the lifetime of the sensor network nor impose

the requirement of in-network fault diagnosis and recovery algorithms to hardware

platforms. In Chapter 5 we present an approach that overcomes this difficulty.

-Automatic fault recovery: Maintenance in business processes can become very

costly especially when break-down situations occur. Through automatic recovery

mechanisms executed in the Device and Framework layers, the architecture offers the

means to reduce maintenance costs. Additionally, the coupling of fault management

mechanisms with the back-end through the use of workflows can lead to reduced

maintenance times.

-Delivery of online data: Business processes require online information about

assets and business items that belong to the system. The proposed framework

provides the mechanisms for accessing data from WSNs in three different manners:

via request-response, notification and through the System State component. This

4.3. Summary 73

component contains all the events generated by the network of nodes and enables

applications to access the latest data generated by wireless sensor nodes.

74 4. Fault Tolerant Framework for Wireless Sensors Networks

5. Pattern Fault Isolator for WSNs

As discussed in chapter 2, WSNs have many attractive benefits to industrial applica-

tions. Nevertheless, its malfunctions and breakdown states can result in many losses.

Therefore the identification of malfunctioning parts of a WSN must be efficient to

mitigate undesirable effects.

The variety of scenarios in which WSNs can be applied leads to a natural selection of

different platforms that are more suitable for each application. This results in a broad

range of WSN platforms adopted in an industrial environment. Hence, the process

of isolating malfunctioning parts of a WSN should not only be efficient, but also

independent from any hardware platform. For the same reason, enterprise systems

cannot support specific on-node fault detection software functionality as proposed in

approaches similar to [88][37][135]. Structural information, such as routing topology

is also specifically linked to the functionality of a WSN and is therefore hard to

generically exploit for fault diagnosis by enterprise systems.

In this context, this thesis investigates the research question on how feasible is fault

isolation with a minimum, but for most platforms, generic set of information. We

approach this question by proposing a fault isolator mechanism, which only relies

on three basic information quanta: sensor node identification number, timestamp

information, and heart beat interval. We believe that this information set could

be provided by any WSN regardless of its specific implementation and therefore

inherently forms an appropriate WSN platform abstraction for enterprise business

systems.

The proposed solution is part of the FT-WiseNets framework [30], and fulfils the

task of the fault isolator component. To evaluate our system, we performed an

76 5. Pattern Fault Isolator for WSNs

application trial for a period of three months where 36 nodes and 5 sinks were

constantly monitored. The results of this trial are discussed in chapter 7.

5.1 Failure Model

In an enterprise environment, it is important to support heterogeneous hardware

platforms [30]. Figure 3.1 in Section 3.1.1 presents a generic model where the main

components of the WSN are illustrated. We assume that any of the components of

this model (nodes, sinks and back-end) can suffer crash failures and wireless links

can suffer wireless interference.

In such scenarios where heterogeneous WSNs are in place, we cannot assume that

all platforms will support pre-defined set of functionalities. Such functionalities

include: complete route structure information available to the back-end system,

sink addressed pings and diagnostic software running on sensor nodes. Therefore we

assume the worst case scenario where the only information available is: sensor node

identification number, timestamp information, and heart beat interval.

Although this is a very restricted set of data, several aspects of the WSN can be

evaluated using this information as input. For instance, it is possible to detect

outlier sensor readings by comparing the readings from different nodes and defining

rules for the expected values. Strong reductions in the number of messages (message

throughput) generated by sensor nodes can also be identified giving indications of

problems in the routing path (i.e. crashed nodes and wireless interference).

The challenge appears when we try to identify failures of sinks and back-end only

based on this information.

For our approach we have focused on the isolation of failures based on the symptoms

detected by the message throughput of each wireless sensor node. We assume a

static network where nodes are not mobile and the routing structure does not suffer

modifications. Since timeouts can be recognized, we assume that the network will

provide periodic information about sensor readings.

5.2 Crash Fault Analysis

By analyzing the model described in section 3.1, we can make a classification of

the observed node failures Fo that occur in a WSN. It is important to differentiate

between the set of node failures that are observed (Fo) and the set of real failures

(Fr), because in many cases Fo 6= Fr. The set of real failures that occur in the

system Fr indicates the components that are malfunctioning in the system.

5.2. Crash Fault Analysis 77

As we can only identify crash and omission failures of nodes based on timeout, a

sink failure (Fr) will appear as several node failures (Fo). In a single path system,

if a node ni suffers a crash failure (Fr) and λni > 1, several parts of the network are

observed as failed (Fo).

In this classification, the observed failures Fo are separated into three different

groups:

Global: All nodes appear as failed. In this situation Fo = {N}Fo = {N}.

Partial: Only parts of the system appear as failed while other parts continue their

normal operation. In such case Fo = {N}Fo = {no1, no2...nofo}, where fo is the

number of observed failed nodes and fo < η.

Single: Only one node indicates malfunction. For this scenario Fo = {N}Fo =

{no1}.

In addition, we separate the real failures into Isolated Failures and Composed Fail-

ures. Isolated failures occur when only one component of the system fails, while

composed failures occur when more than one component fails in conjunction. The

latter case represents a set of cases which are harder to identify and that have not

been deeply investigated by existing solutions so far.

The components of the system that are subject to failures can be divided in four

categories [30]: Node, Network, Sink and Back-end.

The set of failed nodes in this context is defined as FrN = {nf1, nf2, ..., nfηf},
where ηf is the number of failed nodes. The set of failed sinks is defined as

FrB = {βf1, βf2, ..., βfwf} where wf is the number of failed sinks. The set of failed

paths is defined as Frρ =
{
PB
ρf1, P

B
ρf2, ..., P

B
ρfp

}
where p is the number of failed routes

and ρfx is the starting point of the failed path. The failure caused by a back-end

crash is defined as B.

Based on the model described in section 3.1.1 and the concepts provided in this

section, it is possible to perform a static analysis of WSNs to define a possible

source of failures (Fr) and their conditions, given the observed failures (Fo).

Figure 5.1 depicts this crash failure analysis. In this classification, observed failures

are separated into: global, partial and single. Each box inside this table represents a

possible real failure (Fr). The real failures are divided into two main groups: isolated

and composite failures. Each real failure has two columns: one that expresses the

source (the real failure Fr), and one that indicates the conditions that must be

fulfilled.

78 5. Pattern Fault Isolator for WSNs

Figure 5.1: Fault classification.

5.3. Architecture 79

These conditions need to be satisfied in order to co-relate (Fr) to (Fo). For example,

when a node stops reporting its measurements to the back-end, one of the possi-

bilities is that the node itself has crashed. In this case λnf1 must be equal to one,

otherwise the other nodes would also be observed as failed. This case represents the

“Single Node Crash” box in the “Single Failures” column (box 1).

In some situations all the conditions of one or more real failures can be met. In

the example of the single observed node crash, it is also possible that a sink failed.

This case is represented by the “Single Sink Crash” box and with the condition

Φ (βf1) = {no1} fulfilled (box 2).

In this case a pure rule based approach, as the one presented here, is not enough to

isolate failures in WSNs and resolve ambiguity.

Additionally, this table demonstrates that the process of isolating failures, based

on the static analysis of the system and its components, frequently requires the

knowledge of the routing topology. As discussed in section 5.1, this information is

not part of the restricted information set that is available to the back-end system.

Therefore, an alternative solution is required to isolate failures in WSNs deployed in

industrial environments.

5.3 Architecture

In some cases, it is sufficient to detect the crash of individual nodes based on timeout

information. However, the information of how individual nodes fail may be impor-

tant not only to help determine which part of the system is in fact malfunctioning

but also to decide optimum actions to be taken for maintenance. For instance, the

sudden failure of numerous nodes can indicate that an essential part of the system

has failed (back-end, sink, node in the routing path), or a substantial reduction in

the message throughput of sensor nodes from a region can give indications of wireless

interference.

To distinguish between the different possible sources of failures, having only a re-

stricted set of information available for the back-end system, we propose a solution

based on failure pattern recognition. We selected the message throughput of each

sensor node as the diagnostic signal (
−→
S) for the isolation analysis. This information

provides relevant information not only about the health state of components between

the node and the back-end, but also provides indications of wireless interferences that

occur in the routing path.

The goal of the proposed approach is to be able to identify single and partial failures

originated from composite failures involving sinks, nodes, and links failures. Boxes

80 5. Pattern Fault Isolator for WSNs

Figure 5.2: Pattern Fault Isolator.

1 to 13 in Figure 5.1 present the failures targeted by the fault isolation approach

proposed in this thesis.

Figure 5.2 depicts the approach proposed in this thesis. During operation time,

the WSN will generate events, which will be stored in the System State com-

ponent of the FT-WiseNets framework. The first stage of the diagnosis process

starts with the generation of the diagnostic signal (
−→
S). This signal is the message

throughput of each sensor node and is calculated by the Message Throughput Fault

Detector. This value is calculated taking into consideration a specific time frame

(numberofevents/timeframe) and serves as input for the Pattern Fault Isolator.

Based on the diagnostic signal provided, the Pattern Fault Isolator will determine the

source of the current failure occurring in the system. To achieve this, the Pattern

Fault Isolator relies on six main components: Rules Verifier, Transient Analyzer,

Probability Evaluator, Failures Match Maker and Neural Classifier.

5.3.1 Choice of Techniques

Different techniques exists for the process of recognizing patterns, as described in

Chapter 3. Each technique has its advantages and drawbacks. Hence, the solution

proposed here explores these approaches, applying them according to their strengths.

Rule based approaches, designed for a generic WSN model, are not able to differ-

entiate between several failures that occur in the system based only on the message

throughput of sensor nodes. This drawback occurs because the information about

the network topology is vital to evaluate the conditions presented in section 5.2.

Nevertheless, this approach is very efficient when simple rules must be verified. For

instance, it is better to identify if the message throughput of a sensor node is greater

than zero, in order to eliminate the possibility of a node crash, than to apply a

neural network to identify the pattern.

5.3. Architecture 81

Probabilistic approaches are very helpful to estimate the possibility of a diagnostic

signal belonging to a known pattern. The drawback of this approach appears in

the creation of a Pattern Base containing all possible states of the system. WSNs

deployments in business scenarios can include thousands of nodes. Each node may

fail generating a specific system state. Composite failures also consist in a different

system state. This results in a combinatorial explosion of system states that should

be avoided.

A similar problem occurs when we apply only neural networks for the recognition of

all failure patterns. Although neural networks are extremely efficient for recognizing

patterns, its efficiency considerably decreases according to the training set size and

according to the number of patterns that must be identified [31].

The combination of these techniques, however, results in a high performing fault

isolation solution (this is analyzed in Chapter 7).

5.3.2 Pattern Fault Isolation Process

The Pattern Fault Isolation Process executes the logic in order to correctly identify

malfunctions in the system. Figure 5.3 presents the algorithm executed by this

component.

The first step is to verify if the diagnostic signal
−→
S contains failures. Failures are

identified if nodes present a message throughput equal to zero, or if the probability

evaluator indicates that the readings do not belong to the pattern acquired for normal

operation.

Since our system recognizes the back-end as one unique component, once the first

step of the fault isolation indicates a massive failure of all sensor nodes in the system

occurring within a short time frame, a failure of the back-end is identified and no

further action is required. The other failure types, however, may have multiple com-

ponents and it is necessary to further analyze the data to identify the malfunctioning

part.

In the following step, the Pattern Fault Isolation Process forwards the diagnostic

signal
−→
S to the Failures Match Maker component. This component analyzes the

current diagnostic signal and returns a set of possible failure types. These failure

types consist of patterns stored in the Pattern Base, combined with node crash

and link failures. Known system patterns that represent a direct match with the

diagnostic signal, without additional node crash and link failures, are also returned

in the set of possible failure types.

82 5. Pattern Fault Isolator for WSNs

In addition to the returned set, a vector is generated containing the observed failures.

This information is important, since it serves as an indication to maintenance workers

of possible malfunctioning system parts, in case of incorrect isolation of failures by

the fault isolator.

The vector containing the observed failures is calculated through a simple compar-

ison of the diagnostic signal
−→
S and the minimum expected message throughput of

each node during normal operation. A final analysis is performed by the Transient

Analyzer to indicate which failure occurred due to node crash or link failure.

According to the number of results returned by the Failures Match Maker, the

Pattern Fault Isolation Process decides the next steps to be taken.

If only one result is returned by the Failures Match Maker, this will be the result

of the isolation process. Otherwise, if multiple results are returned, the Neural

Classifier performs a final classification giving a score to each of the possible failure

matches.

Since the data available for training the neural networks only contains specific failure

types acquired during the pattern acquisition phase, it is not possible to use the

trained neural networks with the diagnostic signal, which contains combined failure

types. Therefore, the Failures Match Maker generates a modified diagnostic signal.

In this signal, the message throughput value from nodes that are considered as failed

for the given pattern are replaced. The value used for replacement is the average

message throughput of the sensor node for the given pattern. This procedure is used

to “simulate” a recovery of the failed node, and is described in detail in Section 5.3.6.

Once the modified diagnostic signals are generated, they are forwarded to the Neural

Classifier. Since the number of modified diagnostic signals is equal to the number

of possible failure types, the Neural Classifier evaluates each modified diagnostic

signal. The final result of the fault isolation process is the set of possible failures

with a score that indicates the number of times the Neural Classifier has opted for

each fault type. The failure match with the highest score is the final failure result

selected by the system.

5.3.3 Pattern Base

The process of recognizing patterns relies on the fact that several patterns are known

to the system beforehand. Acquiring failure patterns, however, can become a com-

plex process, since each state (∆) of the system potentially generates a different

pattern. Additionally, each deployment has its own patterns, making it impossible

to acquire a Pattern Base once, and redistribute this base to different applications.

5.3. Architecture 83

Figure 5.3: Fault isolation process.

To overcome this challenge, making this process more efficient, the Pattern Base

only contains the system states during: normal operation, inducted sink failures, and

failures that naturally occur when a business process uses the WSN. The acquisition

of sink failure patterns is assisted by an application that guides the maintenance

workers through the process.

Since pattern correctness directly impacts the performance of the Pattern Fault

Isolator, it is important to ensure that only controlled failures occur in the system

during data acquisition. The application offered by the FT-WiseNets framework

supports maintenance workers during this process by verifying if all nodes provide

a minimum level of message throughput before the sink failure is manually inserted

in the system. The application also verifies if all nodes return to normal operation

once the failure is recovered.

It is possible, however, that a failure occurs only during the failure pattern acquisi-

tion. Since it is not possible to distinguish this type of failure and the sink failure

inserted in the system, we assume that the data acquired corresponds to the failure

inserted in the system.

The patterns stored in the Pattern Base have the format:

• System State (∆)

• Time frame (tf)

84 5. Pattern Fault Isolator for WSNs

Figure 5.4: Message throughput histogram of a sensor node.

• Message throughput of each node (m∆,ni)

• Standard deviation of the message throughput of each node

5.3.3.1 Message Throughput Distribution

To comprehend the probability distribution of the message throughput of each node

it is important to investigate the rules that control the behaviour of the underlying

system.

By analyzing the WSN model described in section 3.1.1, we can assume that based

on the path quality that connects a node to the back-end, there is a probability p of

the generated message reaching each sink in a given system state ∆.

Figure 5.4 depicts the distribution of the number of messages generated by a single

node that reached the back-end. For this simulation we selected a network without

overlap to observe the message throughput distribution for a single sink.

This discrete distribution can be approximated by a Binomial distribution [113].

This is justified by the nature of the system. In a given time interval the node will

attempt to send a message to the backend TimeInterval/Heartbeat times. The

result of each attempt (the message reaching the sink or not) is independent of

previous events, yielding success with a probability p.

The number of messages from a sensor node that reach the back-end, is the sum of

messages from the same node that reach each individual sink. Considering that the

distribution of the message throughput that reaches each sink can be approximated

5.3. Architecture 85

by a normal distribution, the number of messages that reach the back-end will also

follow a normal distribution.

This assumption is correct since the sum of two normal distributions is also a normal

distribution, as presented in equation 5.1.

N(µ, σ) +N(ν, τ) = N(µ+ ν, σ2 + τ 2) (5.1)

5.3.3.2 Combination of Known Patterns

The combination of existing patterns is based on the idea that failures will impact

the amount of messages the WSN can generate.

By computing the influence of each failure and combining them, it is possible to

generate a set of pattern readings that correspond to the combined failure. This

computed set can then be used to isolate failures in the same manner as the acquired

patterns.

Consider a jth pattern of messages throughputs stored in the Pattern Base as a

vector
−−→
M∆j = (m∆,n1,j,m∆,n2,j, ...,m∆,nη,j), where m∆,ni,j is the number of messages

generated by sensor node ni, during a time period t, for system state ∆. The matrix

M∆ contains all the f pattern readings available in the system for the system state

∆ and is represented as follows:

M∆ =

m∆,n1,1 m∆,n2,1 ... m∆,nη,1

m∆,n1,2 m∆,n2,2 ... m∆,nη,2

...
...

. . .
...

m∆,n1,f m∆,n2,f ... m∆,nη,f

The mean of the available patterns provides an indication of the expected message

throughput of sensor nodes for a given system state ∆ (which can be a faulty state

or normal operation) and can be calculated as:

M∆ =
1

f

f∑
j=1

M∆j

Consider the mean of the pattern acquired during normal operation as:

MNO = (mNO,n1,mNO,n2, ...,mNO,nη)

86 5. Pattern Fault Isolator for WSNs

The mean of the pattern acquired during a failure:

MFi = (mFi,n1,mFi,n2, ...,mFi,nη)

The mean influence IFi,j of a failure Fi acquired by the system is calculated as:

IF = MNO −MFi (5.2)

The variance of the influence of a failure Fi σ2
I,F i is calculated as:

σ2
I,F i = σ2

NO − σ2
Fi (5.3)

By summing the influences of the combined failure patterns (CF = {F1, F2, ..., Fn}),
it is possible to generate a combined influence (CICF), where:

CICF = IF1 + IF2 + ...+ IFn

σ2
CI = σ2

I,F1 + σ2
I,F2 + ...+ σ2

I,Fn

Finally, the message throughput distribution of the combined pattern (CP) is calcu-

lated by subtracting the combined influence distribution from the normal operation

distribution.

CP = MNO − CICF

σ2
CP = σ2

NO + σ2
CI

Rounding Effect Analysis

The Patter Combination Method provides the mathematical tools necessary to gen-

erate the pattern of several failures occurring at the same time, based on the patterns

of these failures occurring separately. The final combined pattern can result in neg-

ative values for the message throughput. As negative message throughput values do

not reflect the real system, these values are rounded to zero.

5.3. Architecture 87

Figure 5.5: Sensor node message throughput distribution during normal operation

and faulty state.

The influence of a failure in the WSN is calculated as presented in equation 5.2 and

5.3. The influence of a failure on one node will also follow a normal distribution as

presented in equation 5.4.

IFx,i = N(MNO,i −MFx,i, σ
2
NO,i − σ2

Fx,i) (5.4)

To evaluate the effect of rounding to zero negative values, we analyze the single case

where only one failure is “combined”. The result of such combination should be the

original distribution of the message throughput during the faulty state. For this case

the combined message throughput of a single node can be represented as indicated

in equation 5.5.

CPFx,i = MNO,i − CI = MNO,i −MNO,i +MFx,i = MFx,i (5.5)

In cases, where MFx,i is close to MNO,i, overlaps may occur as demonstrated in figure

5.5. In such cases, the distribution of the influence will also include negative values

as presented in figure 5.6.

Although this may seem contradicting, it is only a reflex of the nodes message

throughput during a faulty system state. Removing the negative values from the

influence results in an incorrect distribution as presented in figure 5.7.

Therefore, when applying the Pattern Combination Method on multiple combined

failures, the same principle discussed applies. Hence, the message throughput of the

88 5. Pattern Fault Isolator for WSNs

Figure 5.6: Influence including negative values.

Figure 5.7: Sensor node message throughput distribution when rounding the influ-

ence to zero.

5.3. Architecture 89

sensor node is rounded to zero if it contains negative values, only at the last step of

the pattern combination technique.

5.3.4 Membership Evaluator

The Membership Evaluator component is responsible for evaluating if the current

diagnostic signal
−→
S belongs to the patterns stored in the Pattern Base.

This component is the basis for the fault isolation process. It requires a metric that

can be evaluated in a computationally efficient manner and that provides reliable

results.

At first, the Membership Evaluator calculates the distribution of the patterns and

the probable maximum distance a pattern can have from its mean pattern vector.

Then, it evaluates the likelihood of
−→
S belonging to one of the patterns known to the

system.

5.3.4.1 Membership Functions

A reliable way to determine if
−→
S belongs to a known pattern is to calculate the

probability of it occurring.

Assuming a normal distribution for each node, the probability P of a given vector

occurring given the normal distribution of each node’s message throughput in a given

pattern can be defined as presented in equation 5.6:

P = P1(x1)× P2(x2)× . . .× Pη(xη) (5.6)

Where Pi is the normal distribution of each variable xi and has the formula presented

in equation 5.7

Pi =
1

σi
√

2π
e
− (xi−xi)

2

2σ2
i (5.7)

The membership function based on probabilistic evaluation, defines a minimum prob-

ability PT as the threshold to determine if a diagnostic signal belongs to a given

pattern, as represented in equation 5.8.

MembershipFunction : P ≥ PT (5.8)

Figure 5.8 presents the distribution of P for x1 = 10, x2 = 15, σ1 = 0.6, σ2 = 1.

90 5. Pattern Fault Isolator for WSNs

Figure 5.8: Distribution of P.

Figure 5.9: Curve level view of P.

5.3. Architecture 91

Defining a threshold for P in Figure 5.8 results in an ellipse that defines an area

on the X1 × X2 plan where value pairs of X1 and X2 are accepted as part of the

pattern. Figure 5.9 presents the curve levels that represent the membership areas

delimited by such ellipses.

Although this metric provides reliable results, it is computationally intensive due to

the exponential calculation. Therefore we approach the problem applying a different

technique that does not require the exponential calculation but yields the same

results.

This other technique is called Normalized Euclidean Distance, and is based on the

Euclidean distance method [85] normalizing the values from
−→
S . It defines if a vector

of n variables belongs to a given pattern or not. This method defines a maximum

normalized distance from the expected average to accept a diagnostic signal as part

of the pattern.

Equation 5.9 presents the mathematical formula that defines this function, where

xni is the normalized values of the observed variables and xn is the expected average

value of the normalized value of xi.

DEN =
√

(xn1 − xn)2 + (xn2 − xn)2 + . . .+ (xnη − xn)2 (5.9)

The normalization of the variables is performed based on the equality:

CDF (xi) = CDF (xn)

Where CDF (x) is the cumulative density function. From this equality we can derive

Equation 5.10

xni − xn
xi − xi

=
σn
σi

(5.10)

Assuming the normalized form of the random variables as being the standard normal

distribution:

xn = 0, σn = 1

xni − 0

xi − xi
=

1

σi

92 5. Pattern Fault Isolator for WSNs

xni =
xi − xi
σi

(5.11)

By applying 5.11 to 5.9, the normalized euclidean distance equation results in the

formulation presented in equation 5.11.

DEN =
√

(xn1 − 0)2 + (xn2 − 0)2 + . . .+ (xnη − 0)2

DEN =

√
(
x1 − x1

σ1

)2 + (
x2 − x2

σ2

)2 + . . .+ (
xη − xη
ση

)2

DEN2 =
(x1 − x1)2

σ2
1

+
(x2 − x2)2

σ2
2

+ . . .+
(xη − xη)2

σ2
η

(5.12)

It is important to note that DEN is only defined for values greater or equal to 0.

The Normalized Euclidean Distance membership function defines a thresholdDENT ,

which determines if a diagnostic signal belongs to a given pattern or not. This

membership function is presented in equation 5.3.4.1. As DEN is only composed of

values greater or equal to zero, the equation can also be written as presented in 5.13.

DEN ≤ DENT

MembershipFunction : DEN2 ≤ DEN2
T (5.13)

Figure 5.10 presents the Normalized Euclidean Distance curves using the same values

as the probabilistic approach for the normal distribution of X1 and X2 (x1 = 10, x2 =

15, σ1 = 0.6, σ2 = 1.).

Comparison Analysis:

To perform a mathematical comparison between the Probabilistic approach and the

Normalized Euclidean Distance method, we apply equation 5.7 to equation 5.6:

P =
1

σ1

√
2π
e
− (x1−x1)2

2σ2
1 × 1

σ2

√
2π
e
− (x2−x2)2

2σ2
2 × . . .× 1

ση
√

2π
e
− (xη−xη)2

2σ2
η

P =
1

(
√

2π)η × σ1 × σ2 × . . .× ση
e
− (x1−x1)2

2σ2
1

− (x2−x2)2

2σ2
2

−...− (xη−xη)2

2σ2
η (5.14)

5.3. Architecture 93

Figure 5.10: Normalized euclidean distance curves.

We define C as a constant for the given pattern with the following value:

C = (
√

2π)η × σ1 × σ2 × . . .× ση (5.15)

We can introduce DEN in equation 5.14 using the equality presented in equation

5.16.

−(x1 − x1)2

2σ2
1

− (x2 − x2)2

2σ2
2

− . . .− (xη − xη)2

2σ2
η

=
−DEN2

2
(5.16)

Replacing C and the equality defined in 5.16 to equation 5.14 we have:

P =
1

C
e
−DEN2

2 (5.17)

Applying this formula on the membership function defined in equation 5.8 we have:

1

C
e
−DEN2

2 ≥ PT

e
−DEN2

2 ≥ PT × C

94 5. Pattern Fault Isolator for WSNs

−DEN2

2
≥ ln(PT × C)

DEN2 ≤ −2× ln(PT × C) (5.18)

For −2× ln(PT ×C) to be greater or equal to 0, PT ×C must be less or equal to 1.

PT × C ≤ 1

PT × (
√

2π)η × σ1 × σ2 × . . .× ση ≤ 1

PT ≤
1

(
√

2π)η × σ1 × σ2 × . . .× ση

PT ≤ P1(x1)× P2(x2)× . . .× Pη(xη) (5.19)

Equation 5.18 imposes a condition on the maximum value of PT , which is defined

as P in the exact position of the average values (maximum value of P).

From equation 5.18 and 5.13 we can derive a relation between PT and DENT as

follows:

DEN2
T = −2× ln(PT × C)

DENT =
√
−2× ln(PT × C) (5.20)

Equation 5.17 proves that the Probabilistic approach can also be represented as the

Normalized Euclidean Distance, yielding the same result. The relation between the

thresholds defined in each method is presented in equation 5.20. This means that

for each threshold defined in the probabilistic method an equivalent threshold for

the Normalized Euclidean Distance method that yields the same result exists.

Nevertheless, the Normalized Euclidean Distance method presents a better computa-

tional performance since the exponential calculation is eliminated from the equation.

In Figure 5.11, the curves level view of P and the Normalized Euclidean Distance

Curves are plotted on the same graph to demonstrate that a value of DENT that

defines the same subspace on X1 and X2 as PT exists.

5.3. Architecture 95

Figure 5.11: Curves level view of P and normalized euclidean distance curves.

Figure 5.12: Normalized euclidean distance histogram of a fault pattern.

5.3.4.2 Threshold Definition: Gaussian Distribution Approximation

To estimate the threshold DENT of the Normalized Euclidean Distance method, we

evaluate the histogram of the normalized euclidean distances between the patterns

M∆j and the estimated mean M∆.

Figure 5.12 presents a histogram of the normalized distances between M∆j and

M∆ applying the formula from equation 5.12. The values presented in this graph

were obtained from a simulation with a randomly generated topology containing 100

nodes, 5 sinks and link quality ranging from 0.5 to 1.

In such conditions, it is possible to approximate the probability density function of

the normalized distance between patterns and the mean to a Gaussian distribution,

as also depicted in figure 5.12.

96 5. Pattern Fault Isolator for WSNs

Figure 5.13: Cumulative density function of DE.

Applying this approximation, we calculate the variance σ2
D and the mean µD for the

distances vector
−−−→
DEN = d1, d2, ..., df based on the Maximum Likelihood Estimation

[3, 130] method:

µD =
1

f

f∑
i=1

di

σ2
D =

1

f

f∑
i=1

(di − µD)2

When the distances distribution can be approximated to a normal distribution, the

probability density function P presented in Figure 5.12 is calculated as demonstrated

in equation 5.7.

By integrating Pi we find the cumulative density function depicted in Figure 5.13.

This function presents the percentage of the patterns M∆j that have a maximum

distance d. This allows us to determine a threshold distance DENT where a given

percentage of the patterns will have a distance to M∆ equal or smaller than DENT .

In the presented diagrams this distance is 11.49 for a percentage of approximately

99.8%.

A diagnostic signal
−→
S is evaluated as belonging to a given system state ∆ if its

distance to M∆ is equal or smaller than dT∆.

5.3.4.3 Considerations

The membership function alone is only applicable when the distances between the

patterns of different system states do not overlap. Figure 5.14 presents the dis-

5.3. Architecture 97

Figure 5.14: Euclidean distances between the mean of sink failure patterns.

tances of the mean of each sink failure pattern acquired in the first application trial

performed for this research. This is described in chapter 6.

These patterns present a considerable distance between their mean values and serve

as good example for a scenario where this approach is valid. Nevertheless, it is

important to point out that, only isolated failures with minimum overlap between

coverage areas are considered in this graph. Once composed failures occur, and

major overlaps exist, a mechanism to distinguish them is required.

5.3.5 Transient Analyzer

When analyzing a current faulty state, the information of the transition from a

healthy to a crashed state can help identify the cause of the failure. The Transient

Analyzer component is responsible for performing this analysis and providing an

estimation of the cause. This component attempts to differentiate two causes of

failures:

1. Node crash

2. Link failure

98 5. Pattern Fault Isolator for WSNs

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

time (s)

M
es

sa
ge

 T
hr

ou
gh

pu
t

Figure 5.15: Transient state for a sudden crash failure.

It is important to point out that according to the link failure model, it is impossible

for the back-end to distinguish between node crash and link failurea. For instance a

strong wireless interference may suddenly occur causing the same effect as a crash

failure. Nevertheless, since the back-end works with a very restricted set of infor-

mation, any additional knowledge that can be extracted through analyzing the data

has the potential to improve the isolation process.

In this component, a node crash is identified when the node suddenly stops sending

events after a period of normal operation. A period of normal operation is defined as

a period during which the node has a minimum message throughput. This minimum

amount of messages is learned by the system and stored in the Pattern Base.

Figure 5.15 depicts the evolution of the calculated message throughput for a node

that suffered a crash failure. This graph shows a linear decrease of the observed value

over time, which is expected since the node stops sending messages the moment it

crashes.

When links suffer interference, it is often the case that some messages still reach

their destination. This causes the transient evolution of the message throughput to

not follow a linear regression, as showed in Figure 5.16.

5.3. Architecture 99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

time(s)

M
es

sa
ge

 T
hr

ou
gh

pu
t

Figure 5.16: Transient state for a link failure.

A link failure is recognized by the system once the message throughput of a sensor

node goes below its minimum, but the node still sends sporadic messages.

To define the minimum expected value of the message throughput of a given node

during normal operation, it is necessary to evaluate its behaviour individually.

Due to the different link qualities of the paths connecting wireless sensor nodes with

the back-end, a global minimum expected value of the nodes message throughput

would lead to imprecise numbers that can either result in higher false positives or

lower fault isolation effectiveness.

Therefore, the approach adopted evaluates the performance of individual nodes dur-

ing normal operation, analyzing their message throughput. The minimum expected

value of the nodes message throughput is selected based on a confidence interval.

This interval defines the distance from the average in number of stand deviations

(e.g 1σ, 2σ).

5.3.6 Failures Match Maker

The Failures Match Maker is a component which executes an algorithm to combine

node crash failures and link failures with the patterns stored in the Pattern Base.

This procedure is used to match the known patterns with the diagnostic signal
−→
S

100 5. Pattern Fault Isolator for WSNs

Figure 5.17: Diagnostic signal.

Figure 5.18: Minimum vectors of three different sink failures.

and determine the possible real failures in the system. This component enables the

identification of failures represented by box 13 in Figure 5.1.

Consider a diagnostic signal
−→
S with a message throughput from ten nodes as pre-

sented in Figure 5.17. Given the heart beat of the nodes in this example and the

timeframe analyzed, the maximum message throughput is eight.

As the fault isolator has no information about the network topology, a graph analysis

to identify the failure is not possible. Therefore the match maker uses the patterns

already known to the system to identify possible composed failures.

Figure 5.18 depicts the minimum (
−−−→
Min∆) vectors of three different sink failures.

These vectors contain the minimum message throughput of each node. These values

are calculated using as basis the message throughput distribution of each node for

the known patters, and a confidence interval.

The minimum vectors allow the Failures Match Maker to generate an unexpected

observed failure vector (
−−→
UF∆) for each system state available in the pattern base.

The
−−→
UF∆ indicates which components present a faulty state which was not expected

for the given stored pattern (i.e. have a lower message throughput than expected

for the pattern). This vector is calculated as follows:

UF∆,i =

 0, if
−→
Si >=

−−−−→
Min∆,i

1, if
−→
Si <

−−−−→
Min∆,i

Figure 5.19 presents

−−→
UF∆ applying the (

−−−→
Min∆) presented in Figure 5.18.

To ensure that the diagnostic signal
−→
S belong to a combination of a pattern known to

the system state and additional node crash and link failures, the algorithm replaces

5.3. Architecture 101

Figure 5.19: Unexpected observed failure vectors for sink failures S1, S2 and S3.

the values of the message throughput in
−→
S for the identified failures in

−−→
UF∆. The

replaced value consist of the average message throughput of the node for the pattern.

The resulting vector is then passed to the Membership Evaluator to verify if it

belongs to the given pattern or not.

If the Membership Evaluator returns a negative response, the pattern is not consid-

ered as possible combined failures. Otherwise, the Failures Match Maker requests

the Transient Analyzer to evaluate each node identified as unexpected failure.

The result of the Failures Match Maker is a set of possible failures, which consist

of the identified system patterns and the result of the analysis of the Transient

Analyzer.

5.3.7 Neural Classifier

The Neural Classifier is applied when a diagnostic signal
−→
S has a high probability of

belonging to different patterns known to the system. This component is composed by

several neural networks specially trained to distinguish “overlapping” system states.

The overlaps between different system states occur when the Normalized Euclidean

Distance of the diagnostic signal
−→
S to more than one pattern in the Pattern Base

is small enough to be considered as a high probability match by the Probability

Evaluator. Another overlapping case can occur. When combined failures happen in

a way that the “recovered” diagnostic signal is accepted as a member of more than

one pattern, multiple results are returned by the Failures Match Maker.

Neural Networks are suitable for the task of differentiating between the possible pat-

terns, since they can achieve good results when classifying patterns of noisy signals.

An example of noisy signals are the diagnostic signals applied in this approach [31].

Additionally, neural networks have a very high performance when compared with

other pattern recognition techniques such as neural-fuzzy systems [36]. This makes

them an attractive option for enterprise scenarios.

The behavior of the Neural Classifier follows two stages: the first stage selects and

trains the pool of neural networks, in the second stage the classifier is executed

during operation time, depicted in figure 5.20.

102 5. Pattern Fault Isolator for WSNs

Figure 5.20: Neural Classifier.

The process of selecting specialized neural networks is based on an evaluation of

possible overlaps between failures. By gathering the mean of each pattern stored

in the Pattern Base (1) and requesting the Membership Evaluator to determine the

system state that the pattern belongs to (2), a set of overlapping system states can

be found. If overlaps are encountered, a neural network is trained to differentiate

between the failures (e.g. NN1, NN2, NN3 and NN4).

Neural networks are trained using the data stored in the Pattern Base as training

sets. To train the neural network we apply the Perceptron training algorithm with

back propagation. This learning algorithm is chosen since it is proved to converge

when there is a solution [84].

The specialized neural networks are composed of η input nodes and m outputs ac-

cording to the specialization. The number of inputs is equal to the number of sensor

nodes in the network. The number of outputs of the neural network is dependent

on the number of system states that must be differentiated.

The output of the neural network is made up of values between zero and one. A

value 1 indicates that the diagnostic signal belongs to the system state represented

by the output. A value of 0 indicates that the diagnostic signal does not belong to

the pattern. The value range of the neural network output requires an activation

function of each node of the neural network to operate between [0,1]. The function

selected is the logistic function:

f(v) =
1

1− e−v

During operation time, the Neural Classifier receives a set of “recovered” diagnostic

signals and a list of possible failures P (3) from the “Failures Match Maker” com-

ponent. Based on the list of failures, this component selects the appropriate neural

network to produce the final result of the Pattern Fault Isolator (4a). This final

5.4. Prediction Model 103

result consists of a set of failures and a score. This score reflects the number of

times that the Neural Classifier selected each failure as the probable current system

failure.

When a request is received and an appropriate neural network is not available, the

classifier automatically trains a neural network based on the data available in the

Pattern Base (4b), and adds it to the neural networks pool (5b). Finally, the result

is calculated using the new neural network (6b).

To improve the scalability of the system, the wireless sensor network can be divided

in sectors. For each sector, a set of neural networks is trained which restricts the

maximum number of inputs for the neural network and facilitates the maintenance

of the system when the neural networks have to be retrained (e.g. a new sink is

inserted in a location).

5.4 Prediction Model

In this section, we perform an analysis of the fault isolation method proposed and

of the WSN model defined in Section 3.1.1. This analysis allows to predict the

behaviour of the fault isolation method under specific conditions. These predictions

serve as a basis for system evaluations. The evaluations of the system is described

in Chapter 7 and proves the predictions made in this Section.

5.4.1 Membership Evaluator

Threshold Definition

By applying the Gaussian distribution approximation, the threshold is determined

based on on the cumulative density function of the distance distribution, as discussed

in Section 5.3.4.

With this approach, the threshold defines the percentage of the fault diagnosis signals

that are in fact part of the pattern and that will be considered as such. This

ideal percentage is calculated based on confidence intervals. These intervals define

how much of the population will be within a certain number of standard deviation

threshold. This values consider a cut on the normal distribution on both sides

(±nσ). The threshold of the membership function applies a cut on only one side of

the curve. Therefore, the threshold can be calculated as presented in the equation

bellow. Table 5.1 presents these values.

IdealV alue = 0.5 +
confidence(n)

2

104 5. Pattern Fault Isolator for WSNs

n confidence Ideal Value

1 0.682689492137 0.841344746

2 0.954499736104 0.977249868

3 0.997300203937 0.998650102

4 0.999936657516 0.999968329

5 0.999999426697 0.999999713

Table 5.1: Confidence Interval and ideal effectiveness values

As the average and standard deviation values are determined based on sampling,

the higher the number of samples (pattern readings), the higher the chance of these

calculated values being closer to the ideal distribution. Therefore it is possible to

assume that:

Prediction 1: “In networks where a Gaussian distribution approximation is suitable

and no near overlaps with other patterns exist, the threshold from the membership

function will determine its fault isolation effectiveness as the number of acquired

pattern readings and analyzed diagnostic signals tend to infinity.”

As this is a distribution approximation, differences from the ideal value and the

observed values may still occur and are further analyzed in Chapter 7.

Timeframe

The message throughput is the sum of the number of messages that successfully

reach the back-end. Considering the heart beat constant, the timeframe directly

influences the number of message sending attempts a node executes in each pattern

reading.

In networks that contain nodes with a message throughput variance very close to

zero, the approximation of node message throughput distribution to a Gaussian

distribution becomes inaccurate, if the number of attempts to send messages is not

large enough. As the message throughput operates in the discrete domain, the

approximation will present a very high “peak” close to the mean.

As the calculations of DEN is based on the assumption that the distribution of

the nodes throughput can be approximated to a normal distribution, an interesting

phenomenon occurs when the system reaches the borders of this assumption.

The number of messages generated by a sensor node that reach each individual sink

is a binomial distribution, as described in 5.3.3. In this distribution, the mean and

5.4. Prediction Model 105

variance are calculated as demonstrated in equations 5.21 and 5.22, where p is the

probability of success for each attempt and n is the number of attempts.

Mean = n ∗ p (5.21)

V ar = n ∗ p(1− p) (5.22)

In a WSN, p is equivalent to the path quality between the node and the backend

(ςniBackend). The number of attempts is calculated based on the timeframe and heart

beat as presented in equation 5.23. For the sake of simplicity, timeframes should be

chosen as a multiple of the heartbeat.

n =
timeframe

heartbeat
(5.23)

With small values of n in a network with p close to one, the variance tends to

zero. The consequence of such small variances is that a reading with one message

difference from its expected average can generate a very high normalized euclidean

distance for the pattern reading, while the majority of its readings will generate zero

distance. This occurs since the distance contribution of each node is calculated as

((xi−xi)2
σ2
i

).

The consequence of this poor approximation is that when a part of the network has

such quality on the links, outlier readings will occur in the DEN distribution when

n is not high enough for the network setup. Therefore, we can predict that:

Prediction 2: “In networks where the path quality between nodes and sinks is close

to one, outlier readings are more likely to occur as the number of message sending

attempts for each pattern reading is reduced.”

5.4.2 Transient Analyzer

The Transient Analyzer relies on the expectation that nodes suffering link failures

manage to send messages sporadically. This is heavily dependent on the link failure

model, and according to the strength of the interference, it may result in incorrect

diagnosis. Therefore we can make the following predictions:

Prediction 3: “The Transient Analyzer has a higher rate of misdiagnosis between

link failures and crash failure as the interference increases.”

Prediction 4: “The Transient Analyzer has a lower fault isolation effectiveness as

the interference becomes increasingly small.”

106 5. Pattern Fault Isolator for WSNs

5.4.3 Failures Match Maker

The Failures Match Maker is built on top of the Membership Evaluator and Tran-

sient Analyzer. This component analyzes each node individually, “recovering” the

message throughput value of nodes that did not generate enough messages. This

approach enables the Failures Match Maker to have a higher fault isolation effec-

tiveness than the membership function. However, this performance increase comes

at the cost of node crash and link failure false positive identification.

Additionally, this component relies on a maximum and minimum message through-

put vector to determine the unexpected failures and unexpected healthy states.

These vectors define a threshold on the normal distribution of the message through-

put of each node. This results in some of the readings being considered as faulty or

healthier than expected, even though they are originated from the same state.

Having these considerations in mind, it is possible to perform the following predic-

tions:

Prediction 5: “For the same confidence interval, the Failures Match Maker compo-

nent presents a fault isolation effectiveness higher than the Membership Evaluator,

if the threshold of the Transient Analyzer is kept constant.”

5.4.4 Neural Classifier

Due to the nature of neural networks and the difficulties involved in analyzing their

behaviour, neural networks are usually treated as a “black box” rather than a math-

ematical model. This makes it difficult to predict the efficiency of the Neural Clas-

sifier. Nevertheless, it is possible to assume that:

Prediction 6: “The Neural Classifier should have a high fault isolation effectiveness

performance if the diagnostic signals are close to the ones used in the training set.”

5.5 Summary

This work presented an approach for fault isolation in WSNs based on pattern recog-

nition. This proposed solution focuses on WSNs applied to business processes and

therefore assumes a very restricted set of information available to the back-end. The

challenge of isolating failures under this restriction is addressed by using several pat-

tern recognition methods, such as neural networks, statistic analysis and rule based

approaches.

The proposed fault isolation method for WSNs achieves the goal of identifying fail-

ures occurring in heterogeneous WSNs applied in business processes by providing

5.5. Summary 107

the necessary concepts and algorithms to perform this task in an efficient manner.

As the fault isolation proposed is platform independent, together with the proposed

framework from Chapter 4, the goal of enabling the integration of heterogeneous

WSNs with enterprise applications is also achieved.

In Chapter 7, we analyze the efficiency of the fault isolation approach by evaluating

it in a real world application trial and through simulations. The evaluation serves

as tool to confirm the hypotheses made in the prediction model defined in Section

5.4.

108 5. Pattern Fault Isolator for WSNs

6. Applications

In order evaluate the efficiency of the fault isolation method proposed in Chapter

5, and confirm the predictions made on Section 5.4, we investigated the limits and

efficiency of the proposed fault isolation approach.

The investigation consisted of isolating faulty components originated from two dif-

ferent sources: application trial and simulation. The first source was an application

trial conducted for a period of three months. It involved a WSN containing 36

nodes, 5 sinks, and one computer to collect the generated network events. The

second source consisted of a simulator specifically developed for generating WSN

traffic considering node, sink and link failures. During both experimentations, the

FT-WiseNets Monitoring Application evaluated the WSN and provided the isolated

failures as output.

The simulation procedures enabled us to investigate the limitations of the fault

isolation method, since it was possible to use large scale networks, and a simulation

time that would be equivalent to months in a real world application trial. Simulation

also allowed the observation of the effects that changes in the fault isolation method

parameters cause on the effectiveness of the proposed solution.

To confirm that the method not only works in theory but also in practice, we an-

alyzed the data acquired during a real world application trial with the same fault

isolation method.

In this Chapter we explain the procedures applied to gather the data sets in the

application trial and the implementation details of the FT-WiseNets simulator and

monitoring application.

110 6. Applications

Figure 6.1: Nodes deployed in the research facility.

Figure 6.2: Placement of nodes during the application trial.

6.1 Application Trial: Research Lab Monitoring

To analyze the performance of our approach in a real world setting, we performed

an application trial in our research facility. There, µParts [169] were deployed in the

offices to monitor light, temperature and motion of the deployed sensor nodes. The

choice for this hardware platform was made based since it can be easily modeled as

described in Section 3.1.1.

In this trial 36 nodes and 5 sinks were distributed as depicted in the floor plan of

SAP Research facility in Figure 6.1. A computer representing the back-end was

responsible for storing the events generated by the sensor nodes in a database. The

positions of the sinks were chosen in order to provide full coverage of the nodes

during deployment time.

6.1. Application Trial: Research Lab Monitoring 111

The enclosure of the sensor nodes used in this trial had an opening to allow the

measurement of light. Figure 6.2 presents a sensor node used during the trial and

the placement of six sensor nodes. A double-sided tape was used in order to attach

nodes to cupboards, white boards, walls and doors.

Under normal operational conditions, the heart beat of the sensors was configured

to 45s. A brief overview of the type of data that is transmitted from each of the

three sensors is presented below:

• Light sensor: The light sensor is the cost-optimized, highly integrated light-

to-voltage optical sensor TSL13T from Taos Inc 1.

• Temperature sensor: The temperature sensor is the TC1047A temperature to

voltage converter from Microchip 2

• Movement sensor: The motion sensor is a (digital) micro-machined ball-switch

sensor.

Initially, sinks were intended to create a mash-up to forward the packages gener-

ated by the sensor nodes to a sink directly connected to the computer. During a

first evaluation of the deployment setup, up to thirty wireless networks were found

operating on the the same frequency range as the sinks (IEEE 802.11 2.4GHz band).

After this initial setup and evaluation of the wireless media usage, it became clear

that the mash-up approach would not be feasible. Hence, each sink was connected to

the Local Area Network (LAN) and forwarded packages received from sensor nodes

from the LAN.

The dense wireless utilization of the same frequency band used by the sinks did not

affect the communication of the wireless sensor nodes. This is due to the frequency

used by these device (868 MHz band).

6.1.1 Data Collection

The FT-WiseNets Monitoring Application was installed on the computer depicted

in Figure 6.1. This application is responsible for storing the data generated during

the entire period of the trial in the database managed by the System State.

The data collected during the trial is intended for evaluating the efficiency of the

fault isolation method when sink and node failures occur. The evaluation performed

with the data collected during this trial is discussed in Chapter 7.

1http://www.taosinc.com
2http://www.microchip.com

112 6. Applications

To collect the data required for this evaluation, patterns of the system during nor-

mal operation and during individual sink failures were acquired. First a pattern

of the system during normal operation was acquired, which enabled calculating the

minimum expected message throughput of the sensor nodes. Before the acquisition

of this pattern, a node timeout verification was performed to ensure that all nodes

were sending messages during this period. Additionally, all nodes were verified and

had at least 30% of their maximum throughput.

Individual sink failure patterns were generated by physically introducing power fail-

ures to the sinks for a period of 20 minutes. To ensure that the system only contained

one sink failure on each pattern acquired, the message throughput of each sensor

node was verified before introducing the failure. If the message throughput of a

sensor node was lower than its expected minimum, the node would be maintained

to correct the problem.

After the acquisition of each system pattern, the nodes’ throughputs were once again

verified to define if failures occurred after the pattern acquisition started.

A second set of data was collected applying the same methodology as the one used

for the sink failure pattern acquisition. This data set was collected to enable the

evaluation of the fault isolation method through cross-validation (Chapter 7). Both

data sets were acquired during the same time period, during 2 days.

6.1.2 Preliminary Data Analysis

In the performed trial, nodes were deployed for a period of three months and gen-

erated a total of 3 million events. Figure 6.3 presents the distribution of events

generated by each individual node. As depicted in this graph, the number of events

per node is not even, which indicates that parts of the system did not work properly

during the trial period.

During the trial period, the WSN suffered from failures caused by different sources.

This was a valuable input for this thesis, since it showed the practical problems that

occur in a WSN. In one of the cases, after one week of normal operation, five nodes

suddenly became unreachable. After investigating the cause, we found that a door

(with built in metal) was separating a sink from all nodes. This door was installed

in our research facility after the deployment of the sensor nodes.

To have a better understanding of partial and global failures that occurred in the

system, we analyzed the number of nodes appearing as failed (Fo) by applying a

timeout fault detector with a crash timeout equals to 20 minutes. The result is

presented in Figure 6.4.

6.1. Application Trial: Research Lab Monitoring 113

Figure 6.3: Number of events per node.

Figure 6.4: Fault balance for the period of 2 months.

This graph demonstrates that during the period of the trial the system suffered sev-

eral global failures and was constantly indicating partial failures. This information

however does not precisely indicate the malfunctioning parts, but rather presents an

overview of the system state history.

As demonstrated by this graph, during the initial setup of the trial, a massive failure

of the WSN was identified by the timeout fault detector. This occurred since the

backend system presented problems that prevented storing the events generated by

sensor nodes in the database.

It is also interesting to note that a partial failure occurred periodically and on a

daily basis at 12:00AM. Given the time of the occurrence, it was difficult problem

to investigate. Nevertheless, the fault isolation approach proposed in this thesis,

correctly identified this failure. With further investigation we discovered that one of

the sinks was rebooting periodically.

114 6. Applications

6.2 Application II: Simulation

Simulation enables scientifically exploring the efficiency and limitations of algorithms

through the use of network setups that would otherwise impose a significant efforts

to be realized in a real world application trial. Therefore, simulation was applied in

this thesis in conjunction with a real world trial.

To evaluate the proposed approach by simulating WSNs, we researched existing

simulation environments. Given the difficulties to adopt the investigated existing

simulation environments, we developed a simulator which is presented in Section

6.2.2.

6.2.1 Existing Simulation Environments

In order to decide the most suitable simulation environment, we analyzed existing

solutions [65][149][170]. The followinf list describes some of the existing simulation

environments.

NS-2

Broadly used in academic fields, NS-2 [65] provides a network visualization and

animation tool called Nam, where packages can be visualized and traced during the

simulation. Several extensions and tools exist for this solution. Nevertheless, the

adoption of this approach presents a set of drawbacks:

• Network topology, event scheduling and data output should be written in the

programing language Tcl and OTcl.

• New protocols, packets and agents (the entity that receives and sends packets)

is done in C++, and NS-2 must be recompiled at each change.

• The Tcl/C++ variable binding scheme is not evident and supports only a few

basic data types.

• Although the documentation is extensive, structures needed to implement new

packages and protocols in C++ are not well documented.

QualNet

QualNet [149] is designed for fixed topology and wireless networks, offering a simu-

lation environment with an intuitive interface. The program is capable of simulating

thousand of nodes.

6.2. Application II: Simulation 115

The major drawback of adopting this tool is that it is a commercial product freely

available to companies for thirty days, only upon request. The short time frame that

this tool is available for and the delay caused by approving the usage of the tool,

make its adoption unpractical for this thesis.

OMNeT++ with Mobility Framework

OMNeT++ [170] provides a component-based, modular and open-architecture sim-

ulation environment with GUI support and an embeddable simulation kernel. This

tool is freely available for educational purposes but requires special license for com-

mercial use. Additionally, it offers only one radio propagation model and uses its

own language for network description, NED. Therefore the development of more

complex simulations would impose the requirement to learn NED.

6.2.2 FT-WiseNets Network Traffic Simulator

The analysis performed and previous experience [164] with the evaluated frameworks,

showed that the adoption of the afore mentioned simulators causes initial overhead

due to cumbersome programming languages, licenses and difficulties of propagating

the messages being generated during simulation time to the local network.

In comparison to the existing simulation environments, the initial overhead of devel-

oping a WSN traffic generator with specific functions for automatic failure generation

is smaller. The reason for this is that evaluating the fault isolation method described

in Chapter 5 is simple due to restricted information set it uses as basis for the isola-

tion process. Therefore we developed and adopted a simulator called FT-WiseNets

Network Traffic Simulator to address the needs of this thesis.

The simulator was developed using the Java [114] programming language because of

several advantages: platform independence, object-oriented programming paradigm,

robustness, security and portability.

The FT-WiseNets Network Traffic Simulator is composed of three modules that

generate events, which are propagated to the Notification Manager component of

the FT-WiseNets framework. The three modules:

• Topology Generator: Creates random network topologies based on input pa-

rameters.

• Failures Generator: Automatically inserts failures in the network at specific

time intervals.

• Traffic Generator: Calculates the messages that reach the back-end and prop-

agates the events.

116 6. Applications

Figure 6.5: Topology scheme in the FT-WiseNets Network Traffic Simulator.

6.2.2.1 Topology Generator

In the FT-WiseNets Network Traffic Simulator, the topology of the randomly gen-

erated networks is based on a layered structure as presented in Figure 6.5. This

structure was selected to prevent infinite loops in the communication path during

simulation.

In this approach, each node is assigned to a layer according to the number of hops

required to reach the sinks. Nodes in direct connection with a sink (single hop) are

placed in “Layer 0”. “Layer 1 ” consists of nodes that have a two hop distance from

the sink. The remaining layers in the hierarchy follow the same logic.

The random generation of the network topology requires a set of input information:

• Number of sinks

• Number of node layers

• Number of nodes in each layer

• Link quality range

• Network overlap

The network overlap indicates the percentage of connections each node has with a

higher layer in the network. As an example, let us consider a network containing 20

sinks and 100 nodes in each of its two node layers. With 10% overlap, each node in

“Layer 1” connects to 10 randomly selected nodes in “Layer 0”. Each node in “Layer

0” connects to two randomly selected sinks.

6.2. Application II: Simulation 117

Figure 6.6: Topology generation view in the FT-WiseNets Network Traffic Simulator.

Figure 6.6 presents a screen shot of the the FT-WiseNets Network Traffic Simulator

topology generation view. The quality of the link indicates the probability of a

message reaching its destination on each attempt and is illustrated by the colors of

the links’ connections.

The algorithm for the random topology generation is presented in pseudo-code in

Algorithm 1. The basic idea of this algorithm is to randomly distribute nodes in

each layer among nodes in a higher layer.

To enable the same probability of child node assignment among parent nodes, each

parent node is assigned to a randomly generated number. These numbers are

summed and divided by the number of nodes that are to be distributed. This

procedure defines a cost for each node that needs to be assigned to the upper layer

and defines how many child nodes belong to each parent node.

118 6. Applications

Once the parent node is defined a link connection is created and additional connec-

tions (due to overlap) are added.

Input: Number of nodes per layer, Number of Sinks, Link Quality

Range, Overlap Percentage

Output: Network Topology

Create node layers;1

Create and add sinks to sink layer;2

currentLayer ← sink layer;3

for next layer← Layer 0 to Last Node Layer do4

sum← 0;5

z ← number of nodes to be added in next layer;6

y ← number of nodes from current layer;7

c← ceil(overlap ∗ y);8

foreach node n of the current Layer do9

Calculate r = Random(0,1) (value between 0 and 1);10

StoreKeyValuePair(n, r);11

sum = sum+ r;12

end13

nodeCost← sum/z ;14

rest← 0;15

foreach node n of the current Layer do16

r ← GetValue(n);17

v ← (r + rest)/cost;18

x← round(v);19

rest← (x− v) ∗ cost;20

for i← 1 to x do21

Create node ni and add it to next layer;22

Add Link(ni,n,Random(minQuality,maxQuality));23

while c > addedlinks do24

Select random node nj from current layer;25

if ni not connected to nj then26

AddLink(ni,nj,Random(minQuality,maxQuality));27

end28

end29

end30

end31

current Layer← next layer;32

end33

Algorithm 1: Random network topology creation

6.2. Application II: Simulation 119

For the graphical representation of the network topology, the Java Universal Net-

work/Graph Framework (JUNG) [75] was applied. This framework supports the

easy manipulation and presentation of graphs, including several display layouts,

graph search functions and graphical editing tools.

6.2.2.2 Failures Generator

Failures can be inserted in the simulated network manually or through the failures

generator module. This module offers the possibility to periodically insert failures

in the network according to different strategies defined by the user.

To facilitate evaluating the simulation results, the network status can be saved to a

log file together with the equivalent timestamp. If failures are periodically inserted,

the status of the network will be recorded in the log file on each new state.

This module allows the insertion of random failures based on the following strategies:

• Percentage of sinks and nodes

• Fixed number of sinks and nodes

• Interference area

• Random number of sinks, nodes, and interference

Percentage

In this approach, a percentage defined by the user determines the number of sinks

and nodes that should be marked as failed. The module uses the defined values

to calculate the specific numbers, randomly select nodes and sinks, and mark the

selected components as failed. Figure 6.7 presents a network where the module

randomly inserted failures in 30% of the nodes and 30% of the sinks.

Fixed number

The strategy based on a fixed number of nodes and sinks is similar to the percent-

age approach. However, this approach prevents the rounding of numbers of failed

sinks and nodes, therefore, the user must specify integer values. The output of this

strategy is equivalent to the one presented in Figure 6.7.

120 6. Applications

Figure 6.7: Failure percentage view in the FT-WiseNets Network Traffic Simulator.

Interference Area

The framework allows the insertion of areas of interference, as illustrated in Figure

6.8. The area of interference reduces the link quality of the connections that intercept

the area. The quality reduction value is randomly selected, and resides between the

values defined in the interference range.

The interference area is defined by a radius and can be dragged and dropped by

the user on the network graph. According to the area where the interference area is

placed, it is possible that no changes in the link connections occur (no connections

intercept the area). Also, as the link interference is randomly generated, it can

generate different reductions in the quality of the links, even if it is placed in the

same position.

Random number of sinks, nodes, and interference

The fourth “failure insertion strategy”, offered by the failures generator module, uses

as input a maximum number of failed sinks, nodes and links. It also uses as input

the maximum value of interference that can affect links. These values are used to

randomly select the number of components that are marked as failed.

6.2. Application II: Simulation 121

Figure 6.8: Area of interference failure view in the FT-WiseNets Network Traffic

Simulator.

6.2.2.3 Traffic Generator

Based on the network topology graph, the traffic generator module verifies at every

heart beat interval, which messages reached the back-end. The traffic generator then

propagates the messages to the Notification Manager.

Algorithm 2 presents the logic executed by this module in pseudo-code. The algo-

rithm browses the entire network starting at the last node layer until it reaches the

sink.

On each iteration, a node attempts to propagate the messages in its queue (including

its own message) to its parent node(s). The probability that each attempt will

succeed is defined by the quality of the link connecting the node and the parent

node destination. Every time a message is successfully propagated, it is added to

the node destination queue until the message reaches the sink.

122 6. Applications

Finally, once the entire network has been scanned, the events that reached the non

faulty sinks are propagated to the FT-WiseNets middleware.

Input: Network Topology

Output: Notification of messages that reach the backend

for layer ← Last Node Layer to Layer 0 do1

foreach node n of the layer do2

if n is NOT faulty then3

foreach message m in node n do4

foreach outgoing link l from node n do5

Calculate Random(0,1) (value between 0 and 1);6

if Quality from l ≥ Random(0,1) then7

Get node nDest from l destination;8

Add message to nDest;9

end10

end11

end12

end13

end14

end15

Notify events from non faulty sinks ;16

Algorithm 2: Message generation in the network

6.3 FT-WiseNets Monitoring Application

The FT-WiseNets Monitoring Application is a partial implementation of the frame-

work defined in Chapter 4. This implementation includes a user interface to facilitate

the display of the network status and the analysis of fault isolation results.

Following the same approach as the FT-WiseNets Traffic Simulator, the FT-WiseNets

Monitoring Application was fully developed in Java [114]. MySQL Server 5.1 [115]

was used as a database system to store all the events generated by the network, the

patterns acquired, and the information about the nodes and sinks available in the

system.

The FT-WiseNets Monitoring Application is responsible for processing events gen-

erated by either simulation or real devices. These events are processed by the FT-

WiseNets Monitoring Application in the same manner, as defined by the “Platform

Abstraction Layer” of the FT-WiseNets framework (Chapter 4).

6.3. FT-WiseNets Monitoring Application 123

The implementation effort of this system was separated into five fault isolator com-

ponents and five Graphical User Interface (GUI) views.

6.3.1 Fault Isolator Implementation

The implementation of the fault isolator approach proposed in this thesis consists

of five core classes. Each implemented class is equivalent to one component in the

fault isolator architecture:

• Pattern Base

• Membership Evaluator

• Failures Match Maker

• Transient Analyzer

• Neural Classifier

Additional auxiliary classes were also implemented. Nevertheless, for the sake of

simplicity, we will only discuss the implementation details of these five core classes

in this thesis.

Pattern Base

The PatternBase class is responsible for managing system patterns. Its main func-

tions include saving and deleting patterns, appending additional pattern readings to

already stored system patterns and retrieving information about the stored patterns.

This class manages the pattern data stored in the database. Figure 6.9 presents

the database structure used in this thesis to store system patterns and events. To

normalize the database tables, the variance and mean/minimum message throughput

of each sensor node is stored as a special pattern reading with different identification

types.

The combination of system patterns is performed by the PatternBase class. The

implementation of this process follows the description of the pattern combination

method in Section 5.3.3.

124 6. Applications

Figure 6.9: Database scheme.

6.3. FT-WiseNets Monitoring Application 125

Membership Evaluator

The MembershipEvaluator class defines a method called “isMember” where a diag-

nostic signal is analyzed with the goal to determine if it belongs to a given system

pattern. This analysis uses the “calculateNormalizedEuclideanDistance” method to

determine the distance of the current diagnostic signal from the mean of the current

pattern.

According to the current threshold and the calculated distance, the membership

method will return a boolean value indicating if the diagnostic signal belongs to the

given pattern or not. This class also implements a method to calculate the distance

threshold. This method is only called when the threshold is modified. The calculated

value is stored in the PatternBase together with additional statistical properties.

Failures Match Maker

The FailuresMatchMaker class follows the specification defined in Section 5.3.6. This

class offers one method to determine the possible system states of a given diagnostic

signal. During the system state analysis, the FailuresMatchMaker class uses the

method “isCrashFailure” from the Transient Analyzer class to return the type of

failure affecting the node, i.e interference failure or crash failure.

Neural Classifier

The implementation of the NeuralClassifier class integrates the facilities of the Java

programming language with the high performance of the Joone framework [72].

Joone offers a neural network framework with built in functionalities to train and

execute multi-layer neural networks. Joone is fully implemented in Java, which

facilitates its adoption for this thesis.

6.3.2 FT-WiseNets User Interface

The functionalities of the Pattern Base defined in Section 5.3.3 were implemented

together with a GUI to facilitate the acquisition and combination of system patterns.

The GUI designed for this component is composed of a Pattern Acquisition View

and a Pattern Combination View.

A GUI was also developed to depict the online results of the fault isolation process

from each of the remaining components of the fault isolation process: Membership

Evaluator, Failures Match Maker, and Neural Classifier. This Section presents the

implementation details of each of these components.

126 6. Applications

Figure 6.10: Pattern acquisition view.

6.3.3 Pattern Acquisition View

The main functionality of the Pattern Acquisition View is to provide a GUI that

assists maintenance worker in acquiring system patterns, guide the acquisition of

patterns during normal operation and sink failures, and store the patterns in the

pattern base.

This view uses the information from the Device Manager to display the platforms

registered in the framework. Once the platform is selected, additional parameters

must be provided by the user to start the pattern acquisition process. Such parame-

ters include: timeframe, time step, number of desired readings, and the current state

of the system.

Figure 6.10 depicts the Pattern Acquisition Wizard view. As visual feedback, a graph

is displayed containing the message throughput of each node during the specified

timeframe. At the end of the acquisition phase the values acquired are displayed in

a table.

The pattern acquisition task is executed in a separate Thread to detach the system

load (caused by the user interaction with the GUI) from the periodic time sensitive

operation of acquiring a pattern reading.

6.3. FT-WiseNets Monitoring Application 127

Figure 6.11: Pattern combination view.

6.3.4 Pattern Combination View

The fault isolation method proposed in this thesis is based on probabilistic informa-

tion of each pattern stored in the Pattern Base. The Pattern Combination View is

developed in order to provide a simple user interface to calculate the probabilistic

values, associated with each pattern, and combine already known patterns.

Figure 6.11 depicts the Pattern Combination View. This view allows the selection

of platforms based on information provided by the Device Manager. The patterns

stored in the Pattern Base are available for the pattern combination process.

This view is used to calculate the metrics of single or combined patterns. In both

cases the user must provide additional information: confidence interval, and heart

beat. After the calculation is performed, a histogram displays the distribution of

the Normalized Euclidean Distance for the calculated combined/single pattern and

the Gaussian approximation curve.

6.3.5 Online Isolation Views

During runtime it is possible to visualize the results from each step of the fault

isolation process through the Online Isolation Views. These views (depicted in

128 6. Applications

Figure 6.12: Online isolation view of the Membership Evaluator.

Figures 6.12, 6.13, and 6.14) provide a graphical representation of the results from

the following components:

• Membership Evaluator

• Failures Match Maker

• Neural Classifier

6.3. FT-WiseNets Monitoring Application 129

Figure 6.13: Online isolation view of the Failures Match Maker.

Figure 6.14: Online isolation view of the Neural Classifier.

130 6. Applications

7. Pattern Based Fault Isolator

Evaluation

In this Chapter, we evaluate the fault isolation approach proposed in this thesis. The

evaluation was performed in order to verify the prediction model defined in Section

5.4 and in order to investigate the overall efficiency of the proposed algorithm.

The data used for the evaluation tests were generated from an application trial

and from simulation, as described in Chapter 6. This enabled investigating the

limitations of the fault isolation method through simulation, and confirmed that the

approach works in theory and in practice.

We analyzed the performance of our approach in terms of False Positive (FP) and

Fault Isolation Effectiveness (FIE). FP indicates the number of failures identified

while no failures were present in the component. FIE indicates the percentage of

failures present and correctly identified by the system.

7.1 Simulation Procedures

The simulations were performed on a computer with an Intel Core 2 Duo 1.83 GHz,

4GB of RAM, running on Windows Vista. The Simulator and Monitoring Applica-

tion were started from the Eclipse IDE using Java version 1.6.11. The database was

on the same machine to prevent delays in the delivery of the generated events due

to network latency.

7.1.1 Membership Evaluator

The membership function is the core element of the fault isolation method defined

in this thesis, as its efficiency directly impacts the performance of the other compo-

132 7. Pattern Based Fault Isolator Evaluation

nents. Therefore, we have evaluated the Normalized Euclidean Distance membership

function to determine its limitations and the best choices for the threshold and time-

frame parameters.

7.1.1.1 Threshold Definition

The definition of the threshold in the Membership Function determines the bound-

aries within which a diagnostic signal will be considered as part of a pattern. Ideally

the definition of the threshold should allow 100% of FIE and not generate FP. As

the diagnostic signals from WSNs are generated based on a probabilistic model, this

efficiency cannot be achieved.

Although improbable, it is possible that at a given time, the WSN will generate a

diagnostic signal that is distant from the average value but still belongs to it. To

include these possible distant diagnostic signals, the threshold would need to be set

to a value that would generate a high number of FP. This high number is due to

overlaps with other patterns known to the system.

Therefore, defining the threshold should aim at maximizing the FIE and minimizing

the number of FP. To achieve this task, in this thesis we define a threshold function

based on a Gaussian distribution approximation. We made the following prediction

for this threshold function defined in Section 5.4:

Prediction 1: “In networks where a Gaussian distribution approximation is suitable

and no near overlaps with other patterns exist, the threshold from the membership

function will determine its fault isolation effectiveness as the number of acquired

pattern readings and analyzed diagnostic signals tend to infinity.”

Simulation Setup

To confirm the prediction made, we performed two tests. The first one evaluated

the FIE of a network without overlaps for different numbers of acquired pattern

readings. The second test evaluated the FIE of networks with 10, 25, and 50 percent

overlap with a fixed number of acquired pattern readings.

Test 1

The first test used a simulated WSN containing 100 nodes and 5 sinks in a three-hop

network. The topology of this network was randomly generated with a link quality

varying from 0.5 to 1. For generating this topology, we set the network overlap to

zero.

The heart beat of the simulated sensor nodes was set to 250ms. This value was

selected in order to execute a fast simulation, and considering the time required for

7.1. Simulation Procedures 133

the propagation of all events generated by the sensor nodes, and provided a margin

to accommodate system fluctuations. The timeframe of 5 seconds was selected,

which included 20 attempts from the sensor nodes to send a message.

The test evaluated the FIE of the membership function considering thresholds of

µD, µD + σD, µD + 2σD, µD + 3σD, and µD + 4σD.

To investigate the influence of the number of pattern readings on the efficiency of

the system, the test was performed for pattern configurations containing 50, 250 and

1000 pattern readings.

The system states evaluated were normal operation and each isolated sink failure.

A total of 18.000 diagnostic signals were evaluated. These diagnostic signals were

divided in 6.000 per pattern configuration, i.e 1.000 diagnostic signals per system

pattern.

Test 2

The second test also used a simulated WSN containing 100 nodes, 5 sinks, and a

link quality varying from 0.5 to 1. The three additional networks were randomly

generated using three layers, but configured to 10, 25, and 50 percent overlap. The

heart beat and timeframe used the same values from Test 1 (250ms and 5 seconds).

Each system pattern was acquired with 250 pattern readings. As in Test 1, 1.000

diagnostic signals were evaluated per system pattern. In total, 18.000 diagnostic

signals were evaluated for the second test.

Pre-processing procedure

As predicted in Section 5.4, when the variance of sensor nodes throughput approaches

zero, the distribution of DEN may present outlier readings.

Figure 7.1(a) presents an example of this phenomenon, where 5 readings out of 250

became far from the average due to three nodes reporting message throughputs with

a difference of one message from the expected average. This situation is crucial

during the pattern acquisition phase, since these outlier readings cause a strong

impact on calculating the statistical properties of a pattern, as depicted by the

normal approximation in this Figure.

Hence, we approached the problem of poor Gaussian distribution approximation due

to outlier readings, by eliminating readings that are further away than 5σD from the

averaged normalized euclidean distance (µD). The threshold of 5σD was chosen

in order to contain the majority of the readings but still be able to remove these

134 7. Pattern Based Fault Isolator Evaluation

Figure 7.1: Pre-processing procedure improves the normal distribution approxima-

tion.

outlier readings. This procedure is iteratively executed until no more readings are

eliminated from the pattern.

Figure 7.1(b) presents the distribution of the pattern depicted in Figure 7.1(a) after

applying the pre-processing procedures defined here. As depicted in this graph,

the procedure improves the normal distribution approximation of the majority of

acquired samples.

Simulation Results

Figure 7.2 depicts the histogram and calculated normal distribution of each system

pattern acquired in Test 1 for 1000 readings. As expected, the observed distributions

approximate a Gaussian curve. Similar curves were obtained for 50 and 250 readings.

These curves were then used as a basis for evaluating diagnostic signals in a cross-

validation procedure.

Figure 7.3 depicts a graph containing the results from Test 1, and presents the FIE

for a network without overlap, different settings of pattern readings, and thresholds.

This graph confirms the following prediction made: with an increase in the amount

of pattern readings the fault isolation effectiveness will tend to migrate to the cu-

mulative density function value, represented by the “Ideal” line. The values for the

“Ideal” line are taken from Table 5.1 in Section 5.4.

The reduced performance of the system when 50 pattern readings are used is a

direct consequence of errors in the calculated average and standard deviation. This

is due to the reduced number of samples. Although the fault isolation effectiveness

migrates to the “Ideal” line as the number of readings increases, it is possible to note

that there is error associated with the calculated average and standard deviation

even with 1.000 readings.

7.1. Simulation Procedures 135

Figure 7.2: Normalized euclidean distance distribution for each pattern analyzed.

Figure 7.3: Influence of threshold and number of pattern readings on fault isolation

effectiveness. With more pattern readings the FIE approaches the “Ideal” value.

136 7. Pattern Based Fault Isolator Evaluation

Figure 7.4: Influence of threshold and number of pattern readings on fault isolation

effectiveness. Membership function behaves in the same manner for networks with

and without overlap.

The second test performed, confirms the prediction made also for the case of networks

with overlaps. Figure 7.4 presents the results of the simulation performed on Test

2. Each point in the graph was calculated based on six thousand diagnostic signals,

being one thousand diagnostic signals per system pattern. The value plotted on the

graph is the average efficiency for the six system states analyzed.

All networks had a similar FIE and resulted in zero FP among the acquired patterns

with 4σ threshold. Nevertheless, we noticed an increase in the amount of outlier

readings as the network overlap raised.

To investigate the reason for not accepting diagnostic signals as part of the pattern,

for each network setup we analyzed the number of diagnostic signal occurrences

between: 4σ and 5σ, 5σ and 6σ, and beyond 6σ. The result of this evaluation is

presented in Figure 7.5.

In a normal distribution it is expected that the number of occurrences decreases as

we observe intervals further away from the average. Nevertheless, as depicted in the

graphs from Figure 7.5, there is a considerable increase in the number of readings

beyond a distance of 6σ as the overlap raises.

This effect is a direct consequence of the timeframe used in the tests and confirms

the assumption made, that heavily connected networks are more likely to gener-

ate outlier readings. Outlier readings are originated from the error introduced by

7.1. Simulation Procedures 137

Figure 7.5: Diagnostic signal distribution for different topologies setups. There is

an increase in the number of outlier readings as the overlap raises.

138 7. Pattern Based Fault Isolator Evaluation

the normal approximation of the sensor nodes message throughput when the vari-

ance approximates zero. A further investigation of outlier readings proceed in the

following Section.

7.1.1.2 Timeframe

The timeframe parameter determines the number of message sending attempts each

node performs during a pattern reading period. Modifying this parameter affects the

distribution approximation of the sensor nodes’ message throughput, as described

in Section 5.4.

The use of longer observation periods provides a better approximation of the sensor

nodes’ message throughput, and therefore, it is a technique that can improve the

efficiency of the membership function. Although this benefits the performance of

the membership function, the use of prolonged timeframes also impacts the time

required to diagnose a system. In order to diagnose the system, and provide precise

results, the system must remain in the same state for the timeframe period.

Therefore, short timeframes and high efficiency are desirable characteristics in a fault

diagnosis system. Additionally, the time required to train the system should also be

minimized to reduce the costs associated with the system setup.

Hence, we investigate the limitations of reducing the timeframe value and impact on

the efficiency of the membership function. Additionally we perform tests to confirm

the Prediction 2 made in Section 5.4.

Prediction 2: “In networks where the path quality between nodes and sinks is close

to one, outlier readings are more likely to occur as the number of message sending

attempts for each pattern reading is reduced.”

Simulation Setup

Test 3

For this evaluation test we used a simulated WSN network containing 105 nodes and

5 sinks in a one-hop topology. The link quality was defined in a range from 0.6 to

0.8 for 100 nodes, while 5 nodes had a link quality of 0.99. The values of the links

were selected in this manner in order to generate outlier readings.

The normal operation system pattern was acquired containing 1000 readings. This

pattern was acquired with three timeframe setups to analyze the influence from this

variable on the fault isolation effectiveness of the membership function.

7.1. Simulation Procedures 139

The timeframe values used for this evaluation were 5, 20 and 50 attempts. These

values were selected to provide a range from a low value (5), to a medium value

(20) that provides an efficiency close to the ideal with 1000 readings, as presented

in Section 7.1.1.1, and up to a high value (50). In a real setup, the time required

for 50 messages sending attempts is high and therefore not practical. In here we use

this value only to illustrate the impact of longer timeframes on the system results.

The goal of this test is to verify the number of readings beyond 3σD for each time-

frame configuration.

Simulation Results

The results obtained from Test 2, presented in Figure 7.5, indicate that Prediction 2

is correct. As networks with overlaps have more links connecting sensor nodes, the

probability of messages reaching the backend increases significantly for some nodes,

while other nodes may remain with a lower path quality. This has the same effect

as networks that contain some nodes with a path quality to the sinks close to one.

As a consequence, in Test 2 the variance of the message throughput of several sensor

nodes became close to zero as the overlap increased. This resulted in an inaccurate

distribution approximation and increased the amount of outlier readings for the

network with 50% overlap.

Figure 7.6 depicts the histograms of the message throughput of a sensor node with

link quality equal to 0.99 for the three timeframe configurations. These histograms

were generated from the data acquired for Test 3. As depicted, with 5 attempts,

the distribution is poorly approximated by a normal distribution. The discrete

distribution mainly consists of a “peak” close to five indicating that the majority

of readings receives all messages from the node. As the timeframe increases, the

distribution approximation becomes more accurate, although a cut on the right side

of the curve still exists.

The variance calculated for this sensor node is approximately equal to 0.04 with 5

message sending attempts per pattern reading. With this variance, the node seldom

generates readings with a difference f one message from the average, which represents

a distance contribution equal to (1
0.04

). This distance contribution adds a value close

to 25 to the calculation of DEN . When two or three nodes generate values with a

difference of one message from the average, the diagnostic signal additionally adds

50 or 75 to the calculated value of the normalized distance.

The outcome of such an event is outlier readings. These readings can be expected to

appear with a value close to
√
DC + 25,

√
DC + 50, and

√
DC + 75, where DC is

140 7. Pattern Based Fault Isolator Evaluation

Figure 7.6: Node message throughput distribution with different timeframe setups.

The distribution is better approximated by a Gaussian curve as the timeframe in-

creases.

Figure 7.7: Diagnostic signal distribution for different topology setups. The number

of outlier readings reduces as the timeframe increases.

the distance contribution from all nodes but the nodes with low variance (link quality

equal to 0.99). As the nodes with low variance generate a distance contribution to

DEN close to zero in most of the readings, the values expected from DC can be

approximated by DEN2.

Figure 7.7 depicts the histograms of DEN for the three timeframe configurations

of Test 3. This test confirms Prediction 2, demonstrating that lower timeframes

are more likely to generate outlier readings if the network contains nodes with low

message throughput variance.

In this graph DEN varies from zero to approximately 12,75 (not considering the

outlier readings) for the configuration with 5 message sending attempts. Therefore

readings are likely to occurr from
√

02 + 25 = 5 to
√

12.752 + 75 = 15.41. The

results from Test 3 show values occurring up to 14.7, this value is very close from

the expected maximum being only a bit lower than the calculated value. This can

be a result of the approximation of DC by DEN , or due to the probabilistic nature

of the simulated test.

7.1. Simulation Procedures 141

In total, 5 readings were identified lying beyond 3σ for the configuration with 5

message sending attempts, 3 readings for 20 message sending attempts and one

reading for 50 message sending attempts. The ideal value is one reading, since 3σ is

equivalent to 0,998 of the population when 1000 diagnostic signals were evaluated

(approximately 1,34 readings).

As the quality of the network links increases, it is more likely that outlier readings

occur. This impacts the FIE of the membership function, as these readings are

likely to lie beyond the defined threshold. Defining very long timeframes is also not

desirable, therefore a balance between efficiency and fault diagnosis time has to be

determined for each application setup.

7.1.2 Pattern Combination

In Chapter 5, we described a method to reduce the time necessary to acquire various

system patterns by combining already known sink failure patterns. The proposed

method calculates the influence of sink failures on the message throughput of sensor

nodes and uses this information to determine the statistical properties of combined

failures.

In this Section we verify this method by applying it to networks with different overlap

configurations.

Simulation Setup

Test 4

The network topologies applied in this evaluation are the same ones used in Test

1 and Test 2. These networks consist of 100 nodes, 5 sinks and are configured to

have 0%, 10%, and 50% overlap. These topologies were randomly generated with

the Topology Generator, discussed in Chapter 6, and the link quality varied from 0.5

to 1.

The test consisted of the following steps:

• Calculate the statistical properties of a combined failure using acquired isolated

failure patterns as the basis

• Acquire a pattern with the same set of failed components as the combined

failure

• Calculate the statistical properties using the acquired pattern

142 7. Pattern Based Fault Isolator Evaluation

• Compare the statistical properties extracted from the calculated combined

pattern and the acquired one

For each isolated sink and normal operation pattern, 1000 pattern readings were

acquired. This helps reduce the error caused by sampling. As analyzed in Section

7.1.1.1 this amount of readings already provides statistical properties that approxi-

mate the “real” value of the system.

Simulation Results

Figure 7.8 presents a comparison between the mean message throughput value cal-

culated for each node, and the values acquired through simulation. The combined

failure causes several nodes to completely interrupt their communication with the

back-end. The result is a message throughput equal to zero. This message through-

put is represented by the “empty” slots in this graph.

In Figure 7.9, a similar comparison is made. In this graph, however, the calculated

variance is compared to the acquired one. Figure 7.10 presents the errors associated

with the Normalized Euclidean Distance average (µD) and the standard deviation

(σD). This error is calculated by subtracting the respective computed values from

the acquired value. This graph proves that the approach is correct since only minor

errors exist and is a probable consequence of sampling.

The results for networks with overlaps showed similar behaviour. The graph results

for these networks can be found in Appendix B. It is interesting to note that the

pattern combination approach has the same limitations of the membership function.

As the normal distribution approximation of the message throughput of sensor nodes

becomes inaccurate, the results from the calculated combined failures also present

more errors.

7.1.3 Transient Analyzer

The Transient Analyzer component is responsible for determining if a specific node

is healthy, or if it suffered a crash or link failure. As described in Section 5.4, this

component executes its task by analyzing the degradation of the message throughput

signal over time. In this Section we perform tests to confirm the following predictions

made:

Prediction 3: “The Transient Analyzer has a higher rate of misdiagnosis between

link failures and crash failures as the interference increases.”

Prediction 4: “The Transient Analyzer has a lower fault isolation effectiveness as

the interference becomes increasingly small.”

7.1. Simulation Procedures 143

Figure 7.8: Comparison between calculated and acquired mean values.

Figure 7.9: Comparison between calculated and acquired variance values.

Figure 7.10: Error between calculated and acquired mean and variance values.

144 7. Pattern Based Fault Isolator Evaluation

Simulation Setup

Test 5

This test evaluates the ability of the Transient Analyzer to identify link failures in

the system. For this evaluation test we used the same simulated WSN from Test 1,

which contains 100 nodes and 5 sinks in a three-hop topology. The link quality of

this network varies from 0.5 to 1.

During this test, the simulator randomly inserted link failures in the system every

50 seconds. Between each randomly generated set of failures, the system was put to

a period of normal operation. Each failure set inserted interference in 10% of the

links in the network. The interference inserted in the links had values of: 0.1, 0.25,

0.5 and 0.75. The interference inserted for this test reduces the value of the link

quality ζ. If the interference is greater than the link quality, ζ is set to zero.

We also performed separate tests with the system in normal operation to evaluate

the number of FP indicated under this condition.

As the Transient Analyzer component used a message throughput threshold for each

sensor node, we evaluated its performance for threshold values varying from 1σ to

5σ.

Test 6

In this test, we evaluated the performance of the Transient Analyzer when it is

requested to evaluate nodes that are not sending messages. The same network from

Tests 1 and 5 was used. For this test, every 50 seconds a random set of node

crash failures were inserted into the network by the simulator, followed by a period

of normal operation. Each set of failures included 10 node crash failures. The

threshold for the Transient Analyzer was set to values varying from 1σ to 5σ.

For Tests 5 and 6, the evaluation was performed using 1000 pattern readings for the

system in normal operation. For each combination of threshold and interference,

100 diagnostic signals were evaluated. Sink failures were not inserted in the system

in order to ensure that observed results were not affected by additional failures.

Simulation Results

As the link interference and crash failures of one node may reduce the message

throughput of several other nodes, the evaluation tests verified if the diagnosed link

and node failures were within the generated failures set that can be observed by the

back-end (Fo).

7.1. Simulation Procedures 145

Figure 7.11: Fault isolation effectiveness for link failures. The FIE increases as the

interference raises, until the point where misdiagnosis start to occur.

Figure 7.11 depicts the fault isolation effectiveness for Test 5. With an interference

of 0.5 and 1σ as the threshold, the Transient Analyzer provides a fault isolation

effectiveness of failed links of 97,5%. With lower interferences, the fault isolation

effectiveness reduces as it was expected according to Prediction 4.

In this graph it is interesting to note that the fault isolation effectiveness reduces

for interferences of 0.75 when compared to interferences of 0.5. This occurs since

strong interferences have a similar effect as node crash failures and are therefore

misdiagnosed. Figure 7.12 presents the rate of link misdiagnosis for Test 5.

As expected from Prediction 3, the results show that as the interference increases,

there is also a raise in the number of misdiagnosis, indicating crash failures while

the real failure is due to link interference.

It is also interesting to note the number of FP generated for each test setup. The

number of FP originate from the message throughput distribution of the nodes.

Given a large enough number of attempts, nodes will generate values that deviate

from the average. Table 5.1 presents the percentage of generated values that can be

expected to stay within a given threshold.

146 7. Pattern Based Fault Isolator Evaluation

Figure 7.12: Misdiagnosis: link failure diagnosed as node failure. A higher number

of misdiagnosis occur as the interference increases.

Figure 7.13: Link failure false positives. There is a high number of false positives

for a threshold of 1std.

7.1. Simulation Procedures 147

The number of expected FP can be calculated based on the defined threshold and

the values from this table. In the case of 1σ the expected number of FP is 15,9%(1 -

0.841). For 2σ this value is 2,3%. Figure 7.13 depicts the values generated through

simulation.

With 1σ as the threshold, the number of FP generated is very high and varies from

17,47% to 13,6% of all link evaluations for the system, in normal operation and with

link interference. This high number of FP makes the use of this threshold value

disadvasible for the isolation of failures. With 2σ, the number of FP drops to 2,4%

of all link evaluations during normal operation. This shows that the simulated values

are very close from the calculated theorethical values.

Another interesting aspect of the system is that the number of FP decreases as we

insert link failures in the system. This occurs since the number of attempts that are

not a link failure become lower than the total number of attempts.

The results from Test 6 show the efficiency of the Transient Analyzer for the eval-

uation of crash failures, and can be visualized in Figures 7.14, 7.15, 7.16, and 7.17.

By analyzing these graphs we conclude that with 1σ, the system has a high fault iso-

lation effectiveness, and is able to identify 100% of the failures. This high efficiency,

however, comes at the cost of FP and node crash misdiagnosis.

As the threshold increases, the effectiveness of the Transient Analyzer reduces. This

is expected if the node does not generate any messages and is identified either as a

link or crash failure. Nevertheless, with a greater value of the threshold, the system

is less likely to misdiagnose a crash failure for a link failure, and performs better in

evaluating healthy nodes.

The number of FP for this evaluation was low and is a result of the probabilistic

nature of the system. With enough observations, a node will fail at some point on all

its attempts to send messages to the back-end in a given timeframe. This, however,

occurs with a low probability.

With the results from Test 5 and Test 6 we can analyze the best operation point for

the Transient Analyzer. First, it is important to determine the the sensibility of the

system for the identification of link failure. If minor alterations on the link quality

must be observed, the selected threshold should be very small, such as 1σ. This will

identify most link failures, but will also generate a high amount of FP.

If the goal is to detect link failures that cause a quality degradation of around 0.5,

a value of 2σ is more recommended. With this threshold, the expected number of

FP drastically reduces to 2,3%, the link isolation effectiveness of the system for this

148 7. Pattern Based Fault Isolator Evaluation

Figure 7.14: Fault isolation effectiveness for node failure.

Figure 7.15: Misdiagnosis: node failure diagnosed as link failure.

7.1. Simulation Procedures 149

Figure 7.16: Node failure false positives.

Figure 7.17: Correct isolation of healthy nodes.

150 7. Pattern Based Fault Isolator Evaluation

network was approximately 85%, and the effectiveness of node failures was also high,

reaching 98,4%. The use of 3σ also provides good results, although the efficiency on

the isolation of link and node failures is reduced.

7.1.4 Failures Match Maker

The Failures Match Maker component combines known system patterns with addi-

tional node and link failures, in order to find a match for the evaluated diagnostic

signal.

In this Section, we evaluated the performance of this component and verified the

predictions made in Section 5.4.

Prediction 5: “For the same confidence interval, the Failures Match Maker compo-

nent presents a fault isolation effectiveness higher than the Membership Evaluator,

if the threshold of the Transient Analyzer is kept constant.”

Simulation Setup

Test 7

The goal of this test is to evaluate the performance of the Failures Match Maker

and to confirm the predictions made for this component.

In this evaluation test, we check the FIE and FP for combined failures. The network

used for this simulation is the same network applied in Test 1. This network contains

100 nodes and 5 sinks, and has a link quality that varies from 0.5 to 1.

During this test, the simulator inserted a randomly generated combined failure every

50 seconds into the network. The combined failures were inserted after a period of

normal operation. These failures consisted of 1 sink failure, 5% link failures with 0.5

interference, and 5 node crashes.

The test was performed using a range from 1σ to 6σ for the thresholds of the Tran-

sient Analyzer and Membership Evaluator. For this test, 250 pattern readings were

used for each system state. For each threshold, 1000 readings were evaluated. In

total 6 thousand readings were evaluated by the Failures Match Maker component.

The same events and failure sets were applied on all standard deviation configura-

tions. These sets were also further used in the evaluation of the Neural Classifier.

Simulation Results

The analysis of the simulation results performed for the Failures Match Maker fol-

lows the same guidelines defined for the Transient Analyzer. As the link interference

7.1. Simulation Procedures 151

Figure 7.18: Percentage of total attempts where no matches were found by the

Failures Match Maker.

and crash failures of one node may reduce the message throughput of several other

nodes, the evaluation tests consisted of verifying if the diagnosed link and node fail-

ures were within the generated failures set that can be observed by the back-end

(Fo).

Figure 7.18 depicts the number of times that the Failures Match Maker did not find

any match for the diagnostic signal. A situation where no matches are found can

occur if the Membership Evaluator rejects all patterns.

It is interesting to note from this graph that the Membership Evaluator rejects

diagnostic signals as part of the known patterns, for thresholds higher than 4σ. This

phenomenon occurs since the state analyzed also contains node and link failures.

With large thresholds, the Failures Match Maker does not identify these failures

anymore. Without the identification of the node and link failures, the diagnostic

signal is not “recovered”. The consequence is that the Membership Evaluator rejects

the signals as part of the pattern.

Figure 7.19 depicts the sink isolation performance for both operating modes eval-

uated. The Failures Match Maker was capable of identifying the sink failures in

100% of the evaluated failures for the thresholds of 1σ to 4σ. This result confirms

Prediction 5, as the sink failure FIE of the Failures Match Maker is higher than the

one from the Membership Evaluator for the confidence interval between 1σ to 6σ.

Figure 7.20 presents the performance of the Failures Match Maker in the isolation

of node crashes. The Failures Match Maker showed a high performance, reaching

99,4% of correctly identified node states. The number of node crashes misdiagnosed

as a link failure is very low, and only occurred in 0.02% of the evaluated cases,

having a threshold of 2σ.

152 7. Pattern Based Fault Isolator Evaluation

Figure 7.19: Failures Match Maker results for sink failure isolation performance.

Results confirm Prediction 5.

Figure 7.20: Failures Match Maker results for node failure isolation performance.

7.1. Simulation Procedures 153

Figure 7.21: Failures Match Maker results for link failure isolation performance.

There is a high number of false positives with 1std as the threshold.

Figure 7.21 depicts the link isolation performance for the Failures Match Maker

component. As these results are related to the Transient Analyzer efficiency, similar

behaviour is expected. The isolation of link failures resulted in 10,8% FP for 1σ

threshold. This value drastically reduces to 1,6% and 0,16% for thresholds of 2σ

and 3σ respectively.

In total, the Failures Match Maker correctly identified the states of the links in 97,6%

of the cases with 2σ as the threshold, and 99,5% of the cases with a threshold of

3σ. Although 3σ has the highest overall performance, the FIE reduced considerably

from 2σ to 3σ.

The results of this evaluation enables us to define guidelines for the selection of

the parameter set for the Failures Match Maker component. Overall, thresholds

of 2σ and 3σ, for the Membership Evaluator and Transient Analyzer, provide high

efficiency on the isolation of failures. With 3σ, the effectiveness of isolating link

failures considerably reduces. However, the number of link failure FP also reduces.

Therefore, the selection between these thresholds depends on the requirements of

the application scenario.

154 7. Pattern Based Fault Isolator Evaluation

7.1.5 Neural classifier

The Neural Classifier is responsible for getting the multiple results generated by the

Failures Match Maker, and is responsible for scoring each result. The result that

receives the highest score is the one selected at the end of the fault isolation process.

There are two situations that can lead to multiple results generated by the Failures

Match Maker. The first one occurs when patterns have overlaps, causing the Mem-

bership Evaluator to consider the diagnostic signal as part of more than one known

system pattern. The second case occurs when failures happen in a way that the

“recovered” signals are accepted as part of more than one pattern.

One example of the second case is the overlap with the normal operation pattern

that results from sink failures. The “recovered” signal is accepted as part of the

normal operation pattern, while the original signal is accepted as part of the sink

failure pattern.

In this Section we use the second case for investigating behaviour of the Neural

Classifier. This case is applied in Test 8 performed to confirm Prediction 6 :

Prediction 6: “The Neural Classifier should have a high fault isolation effectiveness

performance if the diagnostic signals are close to the ones used in the training set.”

Simulation Setup

Test 8

In order to verify Prediction 6, we performed a test to force the use of the Neural

Classifier in the fault isolation process. In this test, we inserted sink failures and

additional node and link failures in the simulated network. This procedure created

an overlap between the patterns of sink failures and the system in normal operation.

This overlapping result required the use of the Neural Classifier to select one of the

results generated by the Failures Match Maker. Since the normal operation pattern

is further away from the diagnostic signal, the neural classification should provide a

higher score to the sink failure.

In this test we used the event and failure set generated in Test 7. This enables us

to compare the results with previous evaluations and provide a full set of tests for

one network that was randomly generated. For this test, 250 pattern readings were

used for each system state. For each threshold, 1000 readings were evaluated. In

total 6.000 readings were evaluated by the Failures Match Maker component and

forwarded to the Neural Classifier if more than one result was generated.

Simulation Results

7.1. Simulation Procedures 155

Figure 7.22: Total number of neural classifications.

Figure 7.22 depicts the number of neural classifications performed for each threshold

configuration. As demonstrated in this graph, the number of evaluations reduced

as the threshold increased, although the sink isolation effectiveness did not suffer

major modifications.

This effect occurred since link and node failures stopped being recognized as the

threshold increased. As a consequence, the diagnostic signal is not “recovered” and

is refused by the Membership Evaluator. As the pattern of the system in normal

operation requires the “recovery” of more nodes and links, this pattern stopped

being accepted by the Membership Evaluator as the threshold increased. Without

the pattern of the system in normal operation, the Failures Match Maker returned

only one result (the sink failure), therefore not requiring a neural classification.

Figure 7.23 presents the results of the neural classification. The percentages pre-

sented represent the number of occurrences of the evaluated variable (e.g correct

classification) divided by the number of neural classifications.

Overall, no major differences occurred to the classification when the threshold was

modified. The results show that a slightly better result was generated when the

threshold reached 5σ, when the system reached 100% of correct classification. The

worse result produced 97.3% of correct classification. This improvement is a con-

sequence of the elimination of the normal operation pattern from the results of the

Failure Match Maker.

156 7. Pattern Based Fault Isolator Evaluation

Figure 7.23: Neural Classification results.

These results confirm Prediction 6 since the majority of the readings are correctly

classified. This shows that the performance of the Neural Classifier is slightly af-

fected by the performance of the Failures Match Maker. If the Failures Match Maker

is operating with parameters that enable it to diagnose most failures and not gen-

erate too many FP, the results from the neural classification will also show good

performance.

7.2 Application trial results

In this Section, we present the results of applying the proposed approach on data

generated during the application trial described in Section 6.1. The expected out-

come of this experiment is to prove that the proposed approach works in theory and

in practice.

As described in Section 6.1, we acquired two sets of data: one for learning the

patterns and one for cross validation. The states of the acquired patterns consisted

of normal operation and each isolated sink failure.

With these sets of data, we evaluated the following components: Membership Eval-

uator, Failures Match Maker, and Neural Classifier.

7.2. Application trial results 157

7.2.1 Membership Evaluator

The first test consisted of verifying the fault isolation effectiveness of the membership

function with different configurations of thresholds, timeframes (TF), and timesteps

(TS). The timestep is a mechanism used to raise the number of pattern readings

that can be acquired at a given time interval. It is a sliding window that determines

how long the system waits to acquire each pattern reading.

For the evaluations performed, we selected timeframes equivalent to 3, 4, and 5

heart beats (135, 180, and 225 seconds). The timestep configurations chosen were

the same as the timeframe (3, 4, and 5 heart beats), and also 1 heart beat.

The results of this test can be visualized in Figure 7.24. As depicted in this graph,

the effectiveness of the membership function is similar to the results observed in the

simulations. As the number of samples is lower than the ones used in the simulation,

errors originated from sampling appear (also observed in simulation for 50 pattern

readings). This results in an efficiency lower than the threshold defined.

Although the efficiency is lower than the ideal due to the low number of samples,

the fault isolation effectiveness of the membership function reached a value of 95,1%

with a threshold=5σ, TF=180s, and TS=180s. With 6σ, the same configuration

reached 100% of fault isolation effectiveness.

The drawback of using large thresholds is that the membership function starts to

accept the diagnostic signal as part of patterns that it does not belong to. In some

situations, the diagnostic signal is accepted as part of a pattern that it does not

belong to and it is not accepted as part of its own pattern. We consider this case as

a FP and the results for such case is presented in Figure 7.25.

This graph shows that in the majority of cases, the number of FP increases as the

threshold increases. In some situations, however, the number of FP decreases after

reaching a “peak”. This occurs since the diagnostic signal starts to be accepted by

its own pattern.

For this test, the highest percentage of FP observed was 0,5%. It is also interesting

to note that no FP occurred while the threshold was less than 2σ.

Stretching the threshold to accept most diagnostic signals as part of the pattern can

also result in overlaps in the membership evaluation. In such case, the membership

function accepts the diagnostic signal as part of a pattern that it does not belong

to, but accepts the signals as part of the pattern that it in fact belongs. Figure 7.26

presents the results for this case.

158 7. Pattern Based Fault Isolator Evaluation

Figure 7.24: Percentage of sink failures correctly identified by the Membership Eval-

uator.

Through the analysis of the overlapping results, we observed that the majority of

occurrences happen between sink failures and the system in normal operation.

Once again, overlaps did not occur for a threshold up to 2σ. The highest percent-

age of overlaps observed was 2,9%. This occurred for the configuration where the

threshold was set to 6σ, TF=135s, and TS=45s.

The cases where overlaps exist are addressed by the Neural Classifier component,

which is further evaluated in this Chapter.

7.2.2 Failures Match Maker

The test performed to evaluate the Failures Match Maker consisted of identify-

ing isolated sink failures for different configurations of thresholds, timeframes, and

timesteps.

The fault isolation effectiveness results, depicted in Figure 7.27, confirm Prediction

5. The minimum observed isolation effectiveness was 88%, which is higher than

the one observed with the membership function. We can also notice a reduction in

the isolation effectiveness for the configuration with 5 heart beats as the timeframe.

7.2. Application trial results 159

Figure 7.25: Percentage of sink failures false positives accused by the Membership

Evaluator. The number of FP decreases after reaching a “peak”, because the diag-

nostic signal starts to be accepted by its own pattern.

Figure 7.26: Membership Evaluator results for overlapping sink failures.

160 7. Pattern Based Fault Isolator Evaluation

Figure 7.27: Failures Match Maker results for sink isolation effectiveness. The results

of this test confirm Prediction 5.

This reduction is a probable consequence of the reduced number of pattern readings

that these configurations have when compared to 3 or 4 heart beats.

As no additional link or node failures were present, it is important to analyze the

number of FP indicated by the Failures Match Maker for these components.

Figure 7.28 depicts the number of link failure FP indicated by the Failures Match

Maker. The result from this evaluation confirms the results found through simu-

lation. With low thresholds, the number of link failure FP considerably increased.

With 2σ the number of FP resulting from this test ranges from 3-4%. These values

are close from the theorethical values calculated for these configurations (2.3%) and

shows that the proposed approach works in theory and practice.

Figure 7.29 presents the node crash FP results generated by the Failures Match

Maker. It is interesting to note that the number of FP decreases as the threshold

increases until it reaches 5σ, which follows the same behaviour as the simulation

results. After 5σ, this number increases again. This phenomenon occurred since at

this point, the Failures Match Maker also starts to accept the diagnostic signal as

part of incorrect sink failure patterns. The consequence is that the Failures Match

Maker identifies node crash FP with the incorrect sink failure.

7.2. Application trial results 161

Figure 7.28: Failures Match Maker results for link failure false positives. There is a

reduction on the number of false positives as the threshold value increases.

Figure 7.29: Failures Match Maker results for node failure false positives. After 5std

the number of FP increases because the Failures Match Maker also starts to accept

the diagnostic signal as part of incorrect sink failure patterns.

162 7. Pattern Based Fault Isolator Evaluation

Figure 7.30: Neural Classifier effectiveness. Lower performance of the configuration

TF=135s and TS=45s is due to stronger a overlap of a sink failure and the system

in normal operation.

7.2.3 Neural Classifier

The Neural Classifier evaluation consisted of differentiating overlapping results gen-

erated by the Failures Match Maker. The majority of the overlapping states were

caused by the normal operation state and the sink failure states, although sink failure

overlaps also occurred.

In Figure 7.30, the classification effectiveness of the Neural Classifier is presented.

Overall the performance of the Neural Classifier was very high, reaching 100% of

correct classification. Nevertheless, these results show a clear reduction in the per-

formance of the Neural Classifier as the threshold reaches 4σ. This occurs since

changes in the expected message throughput of each node are not recognized, lead-

ing to the evaluation of diagnostic signals that may deviate from the patterns used

to train the neural network. This graph also shows reduced performance for the con-

figuration TF=135s and TS=45s. This indicates that the sliding window approach

to increase the number of readings does not necessarily improves the performance

of the system.

Figure 7.31 depicts the number of incorrect classifications performed by the Neural

Classifier. This graph partially complements the graph in Figure 7.30, as it indi-

cates the source of lower performance of the TF=135s and TS=45s configuration.

7.2. Application trial results 163

Figure 7.31: Incorrect classification of sink failures by the Neural Classifier.

Figure 7.32: Even classification of sink failures by the Neural Classifier. The diag-

nostic signals are not “recovered” for large thresholds, and get further away from the

values used to train the network.

164 7. Pattern Based Fault Isolator Evaluation

By investigating, we discovered that for one specific sink failure, this configuration

resulted in statistical properties for one sink failure that was very close to the normal

operation pattern. Longer timeframe and timestep configurations help avoid such

situations and improve the efficiency of the system.

Figure 7.32 shows that as the threshold increases, the number of cases where the neu-

ral network cannot differentiate between the patterns also increases. This also con-

firms Prediction 6, as the diagnostic signals are not“recovered”with large thresholds,

and get further away from the values used to train the network. In this graph, the

number of even results reached 7,4% for the configuration threshold = 6σ, TF=135s,

and TS=45s.

7.3 Evaluation Results Discussion

The results presented in this Chapter confirmed all predictions made in Section

5.4. The results indicated a high efficiency of the proposed approach in terms of

fault isolation effectiveness for the data generated through simulation and the data

acquired during the application trial.

The evaluation also shows the limitations of the approach when the configurations

adopted reach the borders of the assumption made about the system. For example,

outlier readings appear when the timeframe selected is not long enough to allow for

an appropriate approximation of the message throughput of the sensor nodes by a

normal distribution (discussed in Section 7.1.1.2).

Through analyzing results, we can derive recommendations for the selection of pa-

rameters used in this framework. The timeframe selected should be the longest

period that the application can wait for the result. The longer the timeframe, the

better the distribution approximation of the sensor node message throughput. This

results in a better performance of the membership function and a lower number of

FP. Nevertheless, some applications require a system that is highly responsive and

cannot afford long timeframes. One approach is to reduce the heart beat interval of

the sensor nodes, which also improves the distribution approximation.

The threshold selection also depends on the requirements of the application. If

minor alterations in the link quality need to be identified, a threshold of 1σ for the

Transient Analyzer can be selected. This however, also results in a high number of

FP. If only alterations that cause a reduction in the link quality around 0.5 need

to be identified, then a threshold of 2σ or 3σ provide a better isolation effectiveness

versus FP trade off.

7.3. Evaluation Results Discussion 165

Finally, the threshold defined for the Membership Evaluator should be lower than 3σ.

Since the Failures Match Maker “recovers” the message throughput of sensor nodes

that considerably deviate from the average, small thresholds for this component

result in high overall performance.

166 7. Pattern Based Fault Isolator Evaluation

8. Conclusions

The deployment of WSNs in enterprise scenarios will enable in the near future a new

paradigm of business process management. Nevertheless, the transparent integration

of heterogeneous WSNs with business applications represents the first challenge faced

for the adoption of this technology.

Due to the multitude of low level protocols used by heterogeneous WSNs, their inte-

gration with back-end applications becomes cumbersome. Additionally, the effects

that failures occurring on these networks can cause, and the harsh environment in

which these networks are deployed, will become a major concern for the adoption of

WSNs.

In this scope, this work presented the efforts performed to propose a framework

for a transparent integration of WSNs with business applications focusing on fault

diagnosis and recovery for heterogeneous networks.

The proposed framework embraces standards, such as SOA based on Web Services,

which are the current trend for enterprise applications. Through its layered ar-

chitecture, this framework enables a seamless integration of heterogeneous WSN

platforms.

The diagnosis of failures in a heterogeneous environment presents additional chal-

lenges, since it cannot be assumed that networks provide support to specific func-

tionalities and may only offer limited information about the nodes. In this thesis

we approached this problem by using only a restricted information set to perform

diagnosis: sensor node identification number, timestamp information, and the heart

beat interval.

168 8. Conclusions

Since pattern recognition methods can learn the dynamics of the system based on

example, these methods are the first class choice for the diagnosis of failures in

WSN using only limited information from nodes. Some of the adopted techniques

are widely used in fault diagnosis for industrial applications, and have not been

applied in the WSN domain due to the scale of such networks and the combinatorial

explosion of system patterns.

As major contribution to science, this work brings together the research on fault

diagnosis for industrial applications and the research domain of WSNs. Through

careful selection and combination of techniques, this thesis proposes a fault diag-

nosis approach for WSNs that uses techniques developed for the industrial domain,

avoiding the drawbacks that their adoption may cause. This approach is based on

pattern recognition techniques, such as statistical analysis and neural networks, and

allows the isolation of failures represented in the crash failure analysis by the boxes

1 to 13 in Figure 5.1.

The work performed in this thesis also opens a new branch of fault diagnosis research

for WSNs by considering a hardware platform abstraction based on a restricted

information set. Although the restrictions imposed could lead to low performance

of the algorithm, our tests showed that the use of pattern recognition techniques

can yield good results. For instance, the identification of sink failures applying the

membership function of the proposed fault diagnosis approach resulted in 99,3% of

fault isolation effectiveness and zero false positives in a network with 50% overlap.

During the course of this thesis we also made interesting discoveries. For instance,

with careful investigation, we proved that the Normalized Euclidean Distance method

and the calculation of the probability of a pattern occurring defines the exact same

node message throughput subspace. This discovery enabled us to avoid calculations

with exponential values, which is costly and can insert more errors in the system

due to floating point manipulations.

Another contribution made was the analysis of crash failures based on observed

timeout failures, indicating their source and conditions. This analysis can be applied

for rule based fault isolation in networks were the topology information is available.

The contributions made by this work focused on achieving the goals set in Chapter 1

and proving the thesis defined in the same Chapter. The first goal of this thesis was:

“To enable the integration of heterogeneous WSNs with enterprise applications”. The

proposed framework together with the fault isolation approach, enable the integra-

tion of a variety of hardware platforms with back-end applications. Together these

proposed solutions provide transparent access to heterogeneous hardware platforms

8.1. Future Work 169

and support the diagnosis of failures and the integration of fault recovery techniques.

This achieves the first goal of this thesis.

The second goal of this thesis was: “To identify failures occurring in heterogeneous

WSNs applied in business processes”. The method proposed for fault isolation was

designed in order to use a restricted information set that can be provided by most

hardware platforms. The developed approach proved to be efficient in the isolation

of failures and therefore fulfills the second goal of this thesis.

Finally, the high effectiveness of the proposed fault isolation algorithm proved the

thesis defined in this work: “The isolation of failed components in heterogeneous

WSNs platforms applied in business processes can be achieved based on a restricted

information set: sensor node identification number, timestamp information, and

heart beat interval”.

As SAP is a leading company on innovative solutions for business processes manage-

ment, one of their goals is to integrate WSNs with business applications. Hence, the

results from this thesis provide the grounds for this integration and for the diagnosis

of WSN failures in a platform independent manner.

Currently the approach we proposed in this thesis is being analyzed with the goal

of adopting its pattern recognition techniques in two projects. The first project is

financed by the European Union and focuses on the industrial automation domain.

It faces a challenge in the recognition of machine states due to the restricted infor-

mation available and complex system states. The second project is a proposal that

aims at using the results from a fault diagnosis system as input to a decision sup-

port system. This system then re-maps the business processes to cope with system

failures.

8.1 Future Work

This work has presented significant results in the isolation of failures in static wireless

sensor networks. Nevertheless, improvements can still be made in order to increase

the efficiency of the proposed method and tackle business process demands.

One approach is to insert an input filter in the system. This filter can average the

message throughput from sensor nodes acquired in a number of diagnostic signals.

This procedure would help reduce the number of readings that lie beyond the defined

threshold and that in fact belong to the system pattern. The use of input filtering

also has the potential of reducing the number of pattern readings that need to be

acquired in order to calculate the statistic properties of the system. As the filtered

170 8. Conclusions

values are shifted towards the average value, the membership function will have a

better resilience to imprecise calculated statistic properties.

As next step towards enabling the adoption of WSNs in business processes, a solu-

tion for fault diagnosis that tackles dynamic networks should be investigated. One

approach is to create maps of the link quality in the regions where sensor nodes are

deployed. This would be a solution similar to RADAR [7], where this concept is used

to track sensor nodes. In such approach, the fault isolation method would gather

maps of the system in different states with the expected link quality for different

locations. During operation time, image recognition methods can be applied to find

a match between a map containing the current link qualities of the locations and

the known states of the system.

The evaluation of the threshold definition through the Gaussian approximation

method showed that outlier readings may occur in networks where the message

throughput of sensor nodes can only be poorly approximated by a normal distri-

bution. One approach to overcome this phenomenon is to use a different threshold

definition method. For instance, the threshold can be defined based on the maximum

observed distance during pattern acquisition time. This method can also improve

the effectiveness of the membership function by allowing values that are further away

from the mean distance to be considered as part of the pattern. The major drawback

caused by this threshold definition method is the high risk of false positives.

Another approach to handle outlier readings is the use of output filters. These filters

can verify the results of a number of fault isolation executions and average them.

This method can also help reduce the number of false positives of link failure.

Although the processing of the fault diagnosis is performed on the back-end and

therefore the strong computational and power restrictions do not apply, an approach

for handling large scale networks should be investigated. As these networks are used

in business processes, one approach is to separate them into sectors. This breaks

the problem down and enables the localized diagnosis of the system, which can be

processed with little resources.

Finally, an insight of the business potential of the approach proposed in this thesis

would facilitate its adoption by the industry. This insight can be achieved through

a business oriented analysis on the cost reduction associated with the adoption of

WSNs and the proposed solution in a real enterprise application.

A. Message Exchange

One of the major tasks of the message exchange functionality is to help overcome the

technical heterogeneity of different sensor networks. Sensor nodes have severely re-

stricted computational resources, such as CPU, RAM, and ROM. Hence, networking

technologies most appropriate for these types of devices are optimized for device-

to-device communication. These technologies do not offer the bandwidth required

for common networking (such as via TCP/IP), and application level communica-

tion (such as standard Remote Procedure Calls (RPC)). Due to these limitations,

the seamless connection of sensor nodes functionality to business applications be-

comes a hard task for application developers who usually are not familiar with the

proprietary protocols used by the platforms.

The message exchange functionality adopted for this thesis were developed during

the CoBIs project [26] and were further integrated with the FT-WiseNets framework.

The message exchange functionality provided by the CoBIs components, bypasses

both resource and connectivity issues by building the ’technology bridge’ [147].

This bridge provides technologies for business applications access to sensor node data

in a commonly known and thus acceptable manner. Accordingly, it provides service

endpoints and corresponding interfaces, based for instance on RPC. This bridge can

be used by application developers for either direct or indirect connection.

The message exchange mechanisms also ensure that a proper platform-specific wrap-

ping is taken place behind the service endpoints. This enables the translation be-

tween messages directed to the back-end application and the message generated by

the physical nodes.

172 A. Message Exchange

This wrapping approach allows sensor nodes to expose their functionality via stan-

dardized RPC-based mechanisms, such as web services. In addition to the provision

of proper interfaces and the corresponding service endpoints, the message exchange

functionality has to ensure that these endpoints are properly linked to the WSN.

The first step towards defining the elements required to support the message ex-

change mechanism provided by the framework, is the analysis of the message ex-

change patterns that are used in an industrial environment. We have identified

three main communication patterns which reflect the requirements of the industry

for applying WSNs in business processes [146]:

• One-way: The WSN/Node receives a message. This communication paradigm

is applied when no response is expected from the endpoint side. One example

of such communication is presented in section 4.1. During re-configuration of

storage regulations, the back-end propagates the new information and expects

the nodes to start behaving accordingly.

• Notification: The WSN/Node sends a message. WSNs are commonly applied

in scenarios where their main functionality is to report sensor readings either

continuously or due to some change in the environment [1, 109]. In the scenario

presented in section 4.1, this communication paradigm is applied when alert

events are propagated to the back-end system.

• Request-response: The WSN/Node receives a message, and sends a corre-

lated response message. The input and output elements of a message spec-

ify the abstract format for the request and response, respectively. This is a

paradigm frequently used in enterprise applications where data from specific

sensor nodes are required. For example, in the scenario presented in section

4.1, once an alert has been triggered it is important to get information on the

specific drums involved in the situation.

To enable the exchange of messages between the backend and the WSN the FT-

WiseNets framework proposes the use of three components: Message Handler, No-

tification Broker and Request Processor.

A.1 Message Handler

Message handlers are platform-specific components that mediate between protocols

used by different hardware platforms and the ones used in the back-end (where the

A.2. Notification Manager 173

platform-independent part of the framework is being executed). As the protocols

used by various hardware platforms are usually different, a distinct implementation

of this component is required for each platform. Therefore multiple message handlers

can be installed in parallel to support different hardware platforms at once.

Message handlers can be realized in two different ways. A message handler can run

integrated into a Platform Gateway (which is usually a separate piece of hardware,

often including a fully-fledged computing platform able to run arbitrary programs),

or it can be implemented as part of the framework. In both cases, the nodes only

exchange messages with their platform gateway in a proprietary format.

If the message handler is running on the gateway, it can immediately pick the mes-

sages and convert them into a format compatible with the back-end. In the second

case, the gateway transforms the messages in a format that can be understood by the

message handler (the gateway is then effectively acting as a bridge, being agnostic

to the content of the messages). In a second step, the message handler converts the

messages into the back-end format.

It is preferred to completely separate the implementation of the message handlers

from the gateway. The advantage is that the message handler software can be

easily changed, since it is located in the back-end and access to a separate hardware

component (the gateway) is not required.

A.2 Notification Manager

The Notification Manager is responsible for handling the distribution of all events

generated in WSNs. Interested consumer applications can subscribe with this com-

ponent to receive all relevant events.

As the number of events generated by WSNs is usually very high, this component

provides filtering mechanisms where message types and the source of the event can

be specified to reduce the amount of data that the applications have to process.

The Notification Manager provides a web service interface for the distribution of

event messages. Notifications are distributed based on the WS-Brokered Notification

[126]. This specification was chosen since it is based on web services, which is

widely accepted by the industry, and it provides additional mechanisms (such as

the Notification Broker) when compared with WS-BaseNotification [125] and WS-

Eventing [15].

In FT-WiseNets, the Notification Manager supports two event distribution paradigms:

push and pull. To enable event consumers to receive events through pull and push

174 A. Message Exchange

the Notification Manager implements the Notification Broker and Pull Point roles

from the WS-Brokered Notification.

A.3 Request Processor

The Request Processor component is responsible for the execution of invocations

targeted at node and network services. Service requests must be acknowledged,

either by a specific wireless sensor node, or by a set of nodes within the WSN, where

collaboration between nodes occur. For instance, a request for the information about

a chemical drum, as described in the scenario in 4.1, or the request for the average

temperature readings of several nodes to determine the temperature of a room.

Usually, an invocation of a web service is carried out by wrapping the service re-

quest and response in a Simple Object Access Protocol (SOAP) message, performing

a SOAP message exchange. This procedure is not entirely sufficient for handling ser-

vice invocations whose target is located on a node, since its connectivity cannot be

ensured. A node may become unavailable due to various reasons:

• A node may not be immediately available for dealing with a request, for exam-

ple due to temporary disconnectivity from the network during transportation,

or due to other pending requests.

• A node can be temporarily unable to respond to requests due to wireless in-

terference.

• A node has failed and is unable to recover (e.g., due to battery exhaustion or

physical destruction).

• A service is not available on, or has been removed from the addressed node.

This volatile nature of WSNs imposes the need for not only synchronous invocations

but also for asynchronous request support. With asynchronous invocations applica-

tions can post requests that will be buffered and further executed. This is achieved

either when a specific sensor node becomes available, or when a sensor node receives

the assignment for provisioning the requested service.

A.4 Component Interaction

Wireless sensor nodes continuously generate messages, either as responses to service

requests, as regular sensor data and status reports, or due to randomly occurring

A.4. Component Interaction 175

Figure A.1: Components interaction: notification.

events. The receivers of these messages are dynamically established depending on the

requirements of the application, feedback from the user, or contextual information.

This requires a loose coupling between message creators (i.e., the nodes) and their

consumers (services and applications).

In the framework proposed, this loose connection is achieved through the interac-

tions of the components responsible for enabling the supported message exchange

patterns. These interactions can be divided in three main groups: Notification,

Request-response and One-way.

Notification

Figure A.1 presents the components involved in the process of delivering the events

generated by the wireless sensor nodes to the interested parties.

At first, client applications subscribe to receive events (1). As a client may not be

interested in all messages from nodes within the WSN, a client is able to specify fil-

ters. An application might for example, only be interested in messages that originate

from a specific node.

When a new event is generated by the WSN (2), the corresponding Message Handler

captures the event, performs the required protocol conversions and posts it to the

Notification Manager (3). At this point, the Notification Manager applies the filters

and identifies which applications should be notified. According to the publishing

method selected by the application at the subscription type, the Notification Man-

176 A. Message Exchange

Figure A.2: Components interaction: invocation.

ager will either push the event to the applications (4a), or store it for further pulling

from the application side (4b).

Request-response and One-way

Request-response and one-way message exchange patterns are similarly handled

within the framework. Figure A.2 depicts the interaction between components for

handling these two communication patterns.

At first, the application posts a request to the Request Processor (1). This compo-

nent analyses the request, selects the corresponding Message Handler and forwards

the request (2). At this point, the Message Handler performs the necessary protocol

conversions and executes the invocation in the WSN (3).

For one-way communication the invocation is finalized at this point. For request-

response, however, additional steps are required to handle the response from the

WSN.

Steps (4a-6a) represent the message flow for synchronous and asynchronous requests

when the sensor node (or set of nodes) is (are) connected. The node (or set of

nodes) executes the request and send the response (4a), the Message Handler then

converts the protocol and sends the result to the Request Processor (5a). Finally

this component provides the result to the application (6a).

If no response is generated, after a timeout period, the service request is cancelled.

This is a precaution against an overloading of the Request Buffer. For synchronous

A.4. Component Interaction 177

requests, this represents the end of the invocation. In this case the requesting client

application is notified about the failure (4b). For asynchronous invocations, the

request will be buffered and executed once the node (or set of nodes) has recovered.

To achieve this, the Request Processor subscribes itself to receive recovery events for

the nodes involved in the request, or for the service reassignment events according

to the request that has to be executed (4c).

As soon as the system recovers, the Notification Manager informs the Request Pro-

cessor (5c). The request is once again forwarded to the Message Handler (6c) and

sent to the WSN (7c). Once executed the result is delivered back to the application

(8c-10c).

178 A. Message Exchange

B. Pattern Combination

In Section 7.1.2 we presented the evaluation results for the pattern combination

approach developed in this thesis for a network setup without overlap. Appendix B

presents additional results for a network containing 10, 25 and 50 percent overlap.

Figures B.1, B.2 and B.3 depict the results for a network containing 10% overlap.

Figures B.4, B.5 and B.6 depict the results for a network containing 50% overlap.

It is interesting to note that the pattern combination approach has the same limita-

tions of the membership function. With heavily connected networks, the variance of

the message throughput of sensor nodes becomes very close to zero. If the timeframe

is not large enough, the normal distribution approximation of the message through-

put of sensor nodes becomes inaccurate. The consequence is that the calculated

combined failures of such networks present more errors if the timeframe is not large

enough.

180 B. Pattern Combination

Figure B.1: Comparison between calculated and acquired mean values.

Figure B.2: Comparison between calculated and acquired variance values.

Figure B.3: Error between calculated and acquired mean and variance values.

181

Figure B.4: Comparison between calculated and acquired mean values.

Figure B.5: Comparison between calculated and acquired variance values.

Figure B.6: Error between calculated and acquired mean and variance values.

182 B. Pattern Combination

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey on

Sensor Networks. IEEE Communications Magazine, 40:102–114, August 2002.

[2] Z. Alliance. Zigbee specifications, version 1.0, April 2005.

[3] T. W. Anderson and J. D. Finn. The New Statistical Analysis of Data.

Springer, 1997.

[4] J. Anke, J. Müller, P. Spieß, and L. W. F. Chaves. A Service-Oriented Mid-

dleware for Integration and Management of Heterogeneous Smart Items Envi-

ronments. In Proceedings of the 4th MiNEMA workshop in Sintra, pages 7–11,

July 2006.

[5] J. Anke, J. Müller, P. Spieß, and L. Weiss Ferreira Chaves. A service-oriented

middleware for integration and management of heterogeneous smart items en-

vironments. In 4th MiNEMA workshop, Sintra, Portugal, July 2006.

[6] O. Ardaiz, F. Freitag, and L. Navarro. On service deployment in ubiquitous

computing. In 2nd International Workshop on Ubiquitous Computing and

Communications, 2001.

[7] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location

and tracking system. In I. C. S. Press, editor, 19th Annual Joint Conference of

the IEEE Computer and Communications Societies, volume 2, pages 775–784,

Tel-Aviv, Israel, March 2000.

[8] S. Banerjee. Industrial Hazards and Plant Safety. Taylor & Francis Inc, 2003.

[9] T. Bass. Intrusion detection systems and multisensor data fusion. Commun.

ACM, 43(4):99–105, 2000.

[10] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme, W. J.

Kaiser, M. Hansen, G. J. Pottie, M. Srivastava, and D. Estrin. Call and re-

sponse: experiments in sampling the environment. In SenSys ’04: Proceedings

184 Bibliography

of the 2nd international conference on Embedded networked sensor systems,

pages 25–38, New York, NY, USA, 2004. ACM.

[11] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi. A

Discrete-Time Battery Model for High-Level Power Estimation. In Proceeding

of the Design, Automation and Test in Europe Conference and Exhibition 2000,

pages 35–39, 2000.

[12] A. Birolini. Quality and Reliability of Technical Systems:theory, practice, man-

agement. Springer, 1997.

[13] A. Birolini. Reliability Engineering: Theory and Practice. Springer Berlin

Heidelberg, 2007. ISBN 978-3-540-49390-7.

[14] Bluetooth.org. Bluetooth specification, version 2.1.

http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/,

July 2007.

[15] D. Box, L. F. Cabrera, C. Critchley, and F. Curbera. Web Services Eventing

(WS-Eventing). W3C, March 2006.

[16] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and

J. Cowan. Extensible markup language (XML) 1.1 (second edition). W3C,

August 2006.

[17] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus. Deploying Sen-

sor Networks with Guaranteed Capacity and Fault Tolerance. In Proceedings

of the 6th ACM international symposium on Mobile ad hoc networking and

computing, pages 309–319, 2005.

[18] R. E. Bryant. Binary decision diagrams and beyond: Enabling technologies

for formal verification. iccad, 00:0236, 1995.

[19] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill. Symbolic model

checking for sequential circuit verification. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 13(4):401–424, Apr 1994.

[20] T. A. Byrd, K. L. Cossick, and R. W. Zmud. A synthesis of research on require-

ments analysis and knowledge acquisition techniques. MIS Q., 16(1):117–138,

1992.

[21] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer. Field testing a

wireless sensor network for reactive environmental monitoring [soil moisture

Bibliography 185

measurement]. In Intelligent Sensors, Sensor Networks and Information Pro-

cessing Conference, 2004. Proceedings of the 2004, pages 7–12, Dec. 2004.

[22] L. W. F. Chaves, L. M. S. de Souza, J. Müller, and J. Anke. Service lifecycle

management infrastructure for smart items. In MidSens ’06: Proceedings of

the international workshop on Middleware for sensor networks, pages 25–30,

New York, NY, USA, 2006. ACM.

[23] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-

efficient coordination algorithm for topology maintenance in ad hoc wireless

networks. In Mobile Computing and Networking, pages 85–96, 2001.

[24] J. Chen, S. Kher, and A. Somani. Distributed fault detection of wireless sensor

networks. In DIWANS ’06: Proceedings of the 2006 workshop on Dependability

issues in wireless ad hoc networks and sensor networks, pages 65–72, New

York, NY, USA, 2006. ACM Press.

[25] P. W. H. Chung and M. Jefferson. The integration of accident databases with

computer tools in the chemical industry. Computers & Chemical Engineering,

22(11):S729–S732, March 1998.

[26] CoBIs – Collaborative Business Objects. http://www.cobis-online.de/.

[27] Drools. http://www.jboss.org/drools/.

[28] D. S. Consortium. Scilab. http://www.scilab.org/.

[29] F. Cristian. Understanding fault-tolerant distributed systems. Commun.

ACM, 34(2):56–78, 1991.

[30] L. M. S. de Souza. FT-CoWiseNets: A Fault Tolerance Framework forWireless

Sensor Networks. In International Conference on Sensor Technologies and

Applications (SENSORCOMM), 2007.

[31] L. M. S. de Souza, R. Padilha, and C. Decker. Neural fault isolator. In

International Conference on Networked Sensing Systems, 2008.

[32] C. Decker, T. Riedel, M. Beigl, L. M. S. de Souza, P. Spiess, S. Haller, and

J. Müller. Collaborative business items. In 3rd IET International Conference

on Intelligent Environments, 2007.

[33] C. Decker, P. Spiess, L. Moreira Sá de Souza, M. Beigl, and Z. Nochta. Cou-

pling enterprise systems with wireless sensor nodes: Analysis, implementation,

186 Bibliography

experiences and guidelines. In Pervasive Technology Applied @ PERVASIVE,

pages 393–400, May 2006.

[34] F. C. Delicato, P. F. Pires, L. Rust, L. Pirmez, and J. F. de Rezende. Reflective

Middleware for Wireless Sensor Networks. In Proceedings of the 2005 ACM

symposium on Applied computing, pages 1155–1159, 2005.

[35] D. Desovski, Y. Liu, and B. Cukic. Linear randomized voting algorithm for

fault tolerant sensor fusion and the corresponding reliability model. In IEEE

International Symposium on Systems Engineering, pages 153–162, October

2005.

[36] W. E. Dietz, E. L. Kiech, and M. Ali. Pattern-based fault diagnosis using neu-

ral networks. In IEA/AIE ’88: Proceedings of the 1st international conference

on Industrial and engineering applications of artificial intelligence and expert

systems, pages 13–23, New York, NY, USA, 1988. ACM Press.

[37] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized fault-tolerant event

boundary detection in sensor networks. In INFOCOM, 2005.

[38] V. Ebrahimipour, K. Suzuki, and A. Azadeh. An integrated off-on line ap-

proach for increasing stability and effectiveness of automated controlled sys-

tems based on pump dependability–case study: Offshore industry. Journal of

Loss Prevention in the Process Industries, 19(6):542–552, November 2006.

[39] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical

world with pervasive networks. IEEE Pervasive Computing, 1(1):59–69, 2002.

[40] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world

with wireless sensor networks. In Acoustics, Speech, and Signal Processing,

2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference on,

volume 4, pages 2033–2036, Salt Lake City, UT, USA, 2001.

[41] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century chal-

lenges: scalable coordination in sensor networks. In MobiCom ’99: Proceedings

of the 5th annual ACM/IEEE international conference on Mobile computing

and networking, pages 263–270, New York, NY, USA, 1999. ACM Press.

[42] L. Fausett, editor. Fundamentals of neural networks: architectures, algorithms,

and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

Bibliography 187

[43] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol – http/1.1. RFC 2616, June

1999.

[44] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile Agent Middleware for Sensor

Networks: an Application Case Study. In Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks (IPSN), 2005.

[45] C. L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern

match problem. Expert systems: a software methodology for modern applica-

tions, pages 324–341, 1990.

[46] C. Frank and K. Römer. Algorithms for Generic Role Assignment in Wire-

less Sensor Networks. In Proceedings of the 3rd international conference on

Embedded networked sensor systems, pages 230–242, 2005.

[47] P. Frank. Application of fuzzy logic to process supervision and fault diagnosis.

In Proceedings of the international workshop fuzzy technologies in automation

and intelligent systems, 1994.

[48] L. Fu. Neural Networks in Computer Intelligence. McGraw-Hill, Inc., New

York, NY, USA, 1994.

[49] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-Resilient, Energy-

Efficient Multipath Routing in Wireless Sensor Networks. Mobile Computing

and Communications Review, 1(2), 1997.

[50] D. Giraud, C. Aubrun, D. Theilliol, and L. Vela Valdes. A fuzzy fault diagnosis

method applied to a steam circuit. Fuzzy Systems, 1996., Proceedings of the

Fifth IEEE International Conference on, 3:1944–1950 vol.3, Sep 1996.

[51] T. Gou and J. Nurre. Sensor failure detection and recovery by neural net-

works. In IJCNN-91-Seattle International Joint Conference on Neural Net-

works, 1991.

[52] R. Guerraoui and A. Schiper. Fault-Tolerance by Replication in Distributed

Systems. In Proceedings of the 1996 Ada-Europe International Conference on

Reliable Software Technologies, pages 38–57, 1996.

[53] G. Gupta and M. Younis. Fault-Tolerant Clustering of Wireless Sensor Net-

works. Wireless Communications and Networking, 3:1579–1584, 2003.

188 Bibliography

[54] H. Gupta, V. Navda, S. R. Das, and V. Chowdhary. Efficient gathering of

correlated data in sensor networks. In MobiHoc ’05: Proceedings of the 6th

ACM international symposium on Mobile ad hoc networking and computing,

pages 402–413, New York, NY, USA, 2005. ACM.

[55] I. Gupta, D. Riordan, and S. Sampalli. Cluster-Head Election Using Fuzzy

Logic for Wireless Sensor Networks. In Proceedings of the 3rd Annual Com-

munication Networks and Services Research Conference, pages 255–260, 2005.

[56] A. Hamzeh and K. Zaidan. Development of an expert system for off- and

on-line faults diagnosis in electric power systems. Information and Commu-

nication Technologies: From Theory to Applications, 2004. Proceedings. 2004

International Conference on, pages 135–136, 19-23 April 2004.

[57] S. Harte and A. Rahman. Fault Tolerance in Sensor Networks Using Self-

Diagnosing Sensor Nodes. In The IEE International Workshop on Intelligent

Enviroment, pages 7–12, June 2005.

[58] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient

Communication Protocol for Wireless Microsensor Networks. In Proceedings

of the 33rd Hawaii International Conference on System Sciences, volume 8,

page 8020, 2000.

[59] A. T. Hoang and M. Motani. Collaborative broadcasting and compression in

cluster-based wireless sensor networks. ACM Trans. Sen. Netw., 3(3):17, 2007.

[60] K. Holtzblatt and H. R. Beyer. Requirements gathering: the human factor.

Commun. ACM, 38(5):31–32, 1995.

[61] J. C. Hoskins and D. M. Himmelblau. Artificial neural network models of

knowledge representation in chemical engineering. Computers & Chemical

Engineering, 12(9-10):881–890, September-October 1988.

[62] Y.-C. Huang, H.-T. Yang, and C.-L. Huang. An evolutionary computation

based fuzzy fault diagnosis system for a power transformer. Fuzzy Systems

Symposium, 1996. ’Soft Computing in Intelligent Systems and Information

Processing’., Proceedings of the 1996 Asian, pages 218–223, Dec 1996.

[63] M. N. Huhns and M. P. Singh. Service-Oriented Computing: Key Concepts

and Principles. IEEE Internet Computing, 9(1), 2005.

[64] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. Springer, 2005.

Bibliography 189

[65] I. S. Institute. Network Simulator 2 (NS2). http://www.isi.edu/nsnam/ns/.

[66] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Di-

rected diffusion for wireless sensor networking. IEEE/ACM Trans. Netw.,

11(1):2–16, 2003.

[67] R. Isermann. On fuzzy logic applications for automatic control, supervision,

and fault diagnosis. Systems, Man and Cybernetics, Part A, IEEE Transac-

tions on, 28(2):221–235, Mar 1998.

[68] Y. Ishida. An application of qualitative reasoning to process diagnosis: auto-

matic rule generation by qualitative simulation. Artificial Intelligence Appli-

cations, 1988., Proceedings of the Fourth Conference on, pages 124–129, 14-18

Mar 1988.

[69] H. Jain, P. Vitharana, and F. M. Zahedi. An assessment model for re-

quirements identification in component-based software development. SIGMIS

Database, 34(4):48–63, 2003.

[70] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Imielinski and Korth, editors, Mobile Computing, volume 353.

Kluwer Academic Publishers, 1996.

[71] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Imielinski and Korth, editors, Mobile Computing, volume 353.

Kluwer Academic Publishers, 1996.

[72] Joone - Java Object Oriented Neural Engine. http://www.jooneworld.com/.

[73] C.-C. Jou. Comparing learning performance of neural networks and fuzzy

systems. Neural Networks, 1993., IEEE International Conference on, pages

1028–1033 vol.2, 1993.

[74] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein.

Energy-efficient computing for wildlife tracking: design tradeoffs and early

experiences with zebranet. SIGARCH Comput. Archit. News, 30(5):96–107,

2002.

[75] JUNG. Java universal network/graph framework.

http://jung.sourceforge.net/.

[76] C. Karlof and D. Wagner. Secure Routing in Wireless Sensor Networks: At-

tacks and Coutermeasures. In Proceedings of the First IEEE Sensor Network

Protocols and Applications, pages 113–127, May 2003.

190 Bibliography

[77] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless

networks. In Mobile Computing and Networking, pages 243–254, 2000.

[78] T. Kimura, S. Nishimatsu, Y. Ueki, and Y. Fukuyama. Development of an

expert system for estimating fault section in control center based on protective

system simulation. Power Delivery, IEEE Transactions on, 7(1):167–172, Jan

1992.

[79] K. Kishida, M. Maeda, H. Miyajima, and S. Murashima. A self-tuning method

of fuzzy modeling with learning vector quantization. Fuzzy Systems, 1997.,

Proceedings of the Sixth IEEE International Conference on, 1:397–402 vol.1,

Jul 1997.

[80] M. Kochhal, L. Schwiebert, and S. Gupta. Role-based hierarchical self orga-

nization for wireless ad hoc sensor networks. In Proceedings of the 2nd ACM

international conference on Wireless sensor networks and applications, pages

98–107, 2003.

[81] M. Kochhal, L. Schwiebert, and S. Gupta. Role-based Middleware for Sensor

Networks. Technical report, Wayne State University, May 2004.

[82] N. Komoda. Service oriented architecture (SOA) in industrial systems. In

Industrial Informatics, 2006 IEEE International Conference on, pages 1–5,

Singapore, Aug. 2006.

[83] C.-Y. Koo. Broadcast in Radio Networks Tolerating Byzantine Adversarial

Behavior. In Proceedings of the twenty-third annual ACM symposium on Prin-

ciples of distributed computing, pages 275–282, 2004.

[84] J. Korbicz, J. M. Koscielny, Z. Kowalczuk, and W. Cholewa. Fault Diagnosis:

Models, Artificial Intelligence, Applications. Springer, 2004.

[85] A. I. Kostrikin and Y. I. Manin. Linear Algebra and Geometry (Algebra, Logic

and Applications). Gordon and Breach Science Publishers, 1989.

[86] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentell. Fault Tolerance

Techniques for Wireless Ad hoc Sensor Networks. In Proceedings of IEEE

Sensors, volume 2, pages 1491–1496, 2002.

[87] M. A. Kramer and J. A. Leonard. Diagnosis using backpropagation neu-

ral networks–analysis and criticism. Computers & Chemical Engineering,

14(12):1323–1338, December 1990.

Bibliography 191

[88] B. Krishnamachari and S. Iyengar. Distributed Bayesian Algorithms for Fault-

Tolerant Event Region Detection in Wireless Sensor Networks. IEEE Trans-

actions on Computers, 53:241–250, March 2004.

[89] K. Kumar, V. Dakshinamoorthy, and M. S. Krishnan. Does SOA improve

the supply chain? an empirical analysis of the impact of SOA adoption on

electronic supply chain performance. In System Sciences, 2007. HICSS 2007.

40th Annual Hawaii International Conference on, Waikoloa, HI, Jan. 2007.

[90] U.S. Department of Labor. http://www.dol.gov.

[91] S. N. Laboratories. Jess. http://herzberg.ca.sandia.gov/.

[92] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.

ACM Transactions on Programming Languages and Systems, 4:382–401, 1982.

[93] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: experiences

from a pilot sensor network deployment in precision agriculture. In IPDPS 20th

International Parallel and Distributed Processing Symposium, 2006.

[94] C. Legner and F. Thiesse. RFID-based maintenance at Frankfurt airport.

IEEE Pervasive Computing, 5:34–39, March 2006.

[95] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor Networks. In

ASPLOS-X: Proceedings of the 10th international conference on Architectural

support for programming languages and operating systems, pages 85–95, New

York, NY, USA, 2002. ACM Press.

[96] H. Li, M. C. Price, J. Stott, and I. W. Marshall. The development of a wireless

sensor network sensing node utilising adaptive self-diagnostics. In International

Workshop on Self-Organizing Systems, 2007.

[97] N. Li and J. C. Hou. FLSS: A Fault-Tolerant Topology Control Algorithm for

Wireless Networks. In Proceedings of the 10th Annual International Conference

on Mobile Computing and Networking, pages 275–286, 2004.

[98] Q. Liang. Clusterhead Election for Mobile Ad hoc Wireless Network. In

Proceedings on Personal, Indoor and Mobile Radio Communications, volume 2,

pages 1623–1628, 2003.

[99] T. Liu and M. Martonosi. Impala: A Middleware System for Managing Au-

tonomic, Parallel Sensor Systems. In PPoPP ’03: Proceedings of the ninth

ACM SIGPLAN symposium on Principles and practice of parallel program-

ming, pages 107–118, New York, NY, USA, 2003. ACM Press.

192 Bibliography

[100] B. Lloyd, G. Stone, and J. Stein. Development of an expert system to assess

machine insulation condition. Electrical Electronics Insulation Conference,

1991. Boston ’91 EEIC/ICWA Exposition., Proceedings of the 20th, pages 33–

37, 7-10 Oct 1991.

[101] Y. Lu, T. Q. Chen, and B. Hamilton. A fuzzy system for automotive fault

diagnosis: fast rule generation and self-tuning. Vehicular Technology, IEEE

Transactions on, 49(2):651–660, Mar 2000.

[102] C. Ma and Y. Yang. A Prioritized Battery-aware Routing Protocol for Wireless

Ad hoc Networks. In Proceedings of the 8th ACM international symposium on

Modeling, analysis and simulation of wireless and mobile systems, pages 45–52,

2005.

[103] P. C. Mahalanobis. On the generalized distance in statistics. In National

Institute of Science of India, volume II, 1936.

[104] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless

sensor networks for habitat monitoring. In WSNA ’02: Proceedings of the 1st

ACM international workshop on Wireless sensor networks and applications,

pages 88–97, New York, NY, USA, 2002. ACM Press.

[105] G. M. Marakas and J. J. Elam. Semantic structuring in analyst acquisition and

representation of facts in requirements analysis. Info. Sys. Research, 9(1):37–

63, 1998.

[106] D. Marculescu, N. H. Zamora, P. Stanley-Marbell, and R. Marculescu. Fault-

Tolerant Techniques for Ambient Intelligent Distributed Systems. In Pro-

ceedings of the 2003 IEEE/ACM international conference on Computer-aided

design, page 348, 2003.

[107] M. Marin-Perianu, N. Meratnia, P. Havinga, L. Sa De Souza, J. Muller,

P. Spiess, S. Haller, R. T., C. Decker, and G. Stromberg. Decentralized en-

terprise systems: a multiplatform wireless sensor network approach. Wireless

Communications, IEEE [see also IEEE Personal Communications], 14(6):57–

66, December 2007.

[108] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbehavior

in Mobile Ad hoc Networks. In Proceedings of the 6th annual international

conference on Mobile computing and networking, pages 255–265, 2000.

[109] K. Martinez, J. K. Hart, and R. Ong. Environmental sensor networks. Com-

puter, 37(8):50–56, Aug. 2004.

Bibliography 193

[110] K. Martinez, P. Padhy, A. Riddoch, H. Ong, and J. Hart. Glacial environment

monitoring using sensor networks. In REALWSN’ 05, 2005.

[111] K. Marzullo. Tolerating failures of continuous-valued sensors. ACM Transac-

tions on Computer Systems, 8(4):284–304, 1990.

[112] D. L. Mattern, L. C. Jaw, T.-H. Guo, R. Graham, and W. McCoy. Using

neural networks for sensor validation. Technical report, National Aeronautics

and Space Administration, 1998.

[113] A. Meier, T. Rein, J. Beutel, and L. Thiele. Coping with unreliable channels:

Efficient link estimation for low-power wireless sensor networks. In 5th Inter-

national Conference on Networked Sensing Systems (INSS2008), June 2008.

[114] S. Microsystems. Java. http://java.sun.com/.

[115] S. Microsystems. Mysql server. http://www.mysql.com/.

[116] A. Misra, G. Provan, G. Karsai, G. Bloor, and E. Scarl. A generic and sym-

bolic model-based diagnostic reasoner with highly scalable properties. Sys-

tems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on,

4:3154–3160 vol.4, 11-14 Oct 1998.

[117] R. K. Mobley. An Introduction to Predictive Maintenance. Butterworth-

Heinemann, second edition, 2002.

[118] R. Moore. Making Common Sense Common Practice: Models for Manufac-

turing Excellence. Butterworth-Heinemann, 2004.

[119] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery. Information fusion for

wireless sensor networks: Methods, models, and classifications. ACM Comput.

Surv., 39(3):9, 2007.

[120] F. Niederman, R. G. Mathieu, R. Morley, and I.-W. Kwon. Examining rfid ap-

plications in supply chain management. Commun. ACM, 50(7):92–101, 2007.

[121] Z. Nivolianitou, M. Konstandinidou, C. Kiranoudis, and N. Markatos. Devel-

opment of a database for accidents and incidents in the greek petrochemical

industry. Journal of Loss Prevention in the Process Industries, 19(5):630–638,

November 2006.

[122] Z. Nochta and L. M. S. de Souza. Deliverable d102: Architecture and service

description. Technical report, EU Project CoBIs IST-004270, 2005.

194 Bibliography

[123] G. P. Norstrom. Fire/explosion losses in the cpi. Chemical Engineering

Progress, 8:80, 1982.

[124] T. Novak, J. Meigs, and R. Sanford. Development of an expert system for

diagnosing component-level failures in a shuttle car. Industry Applications,

IEEE Transactions on, 25(4):691–698, Jul/Aug 1989.

[125] OASIS. Web Services Base Notification 1.2. http://docs.oasis-

open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf, June 2004.

[126] OASIS. Web Services Notification. http://docs.oasis-open.org/wsn/wsn-

ws brokered notification-1.3-spec-os.pdf, October 2006.

[127] P. Patrick. Impact of soa on enterprise information architectures. In SIG-

MOD ’05: Proceedings of the 2005 ACM SIGMOD international conference

on Management of data, pages 844–848, New York, NY, USA, 2005. ACM.

[128] P. Perera. Fault diagnosis system for wireless sensor networks. Master’s thesis,

Universität Karlsruhe (TH), 2007.

[129] R. Perla, S. Mukhopadhyay, and A. Samanta. Sensor fault detection and

isolation using artificial neural networks. In TENCON 2004. 2004 IEEE Region

10 Conference, 2004.

[130] W. R. Pestman. Mathematical Statistics. Walter de Gruyter Gmbh & Co.,

1998.

[131] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, editors.

Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge

University Press, 2007.

[132] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Battery Lifetime Predic-

tion for Energy-aware Computing. In Proceedings of the 2002 international

symposium on Low power electronics and design, pages 154–159, 2002.

[133] D. Rakhmatov and S. B. Vrudhula. Time-to-Failure Estimation for Batter-

ies in Portable Electronic Systems. In Proceedings of the 2001 international

symposium on Low power electronics and design, pages 88–91, 2001.

[134] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, E. Kohler, T. Harmon,

C. Harvey, J. Jay, S. Rothenberg, and M. Srivastava. Rapid deployment with

confidence: Calibration and fault detection in environmental sensor networks.

Technical Report 62, Center for Embedded Networked Sensing, UCLA and

Department of Civil and Environmental Engineering, MIT, April 2006.

Bibliography 195

[135] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin.

Sympathy: a debugging system for sensor networks. In IEEE International

Conference on Local Computer Networks, 2004.

[136] A. Renfrew and J. Tian. The use of a knowledge-based system in power

electronic circuit fault diagnosis. Power Electronics and Applications, 1993.,

Fifth European Conference on, pages 57–62 vol.7, 13-16 Sep 1993.

[137] F. C.-H. Rhee and R. Krishnapuram. Fuzzy rule generation methods for high-

level computer vision. Fuzzy Sets Syst., 60(3):245–258, 1993.

[138] M. Rieback, B. Crispo, and A. Tanenbaum. The evolution of RFID security.

IEEE Pervasive Computing, 5:62–69, March 2006.

[139] M. Ringwald, K. Römer, and A. Vitaletti. Snif: Sensor network inspection

framework. Technical Report 535, ETH Zürich, Institute for Pervasive Com-

puting, October 2006.

[140] P. Rong and M. Pedram. Extending the lifetime of a network of battery-

powered mobile devices by remote processing: A markovian decision-based

approach. In DAC ’03: Proceedings of the 40th conference on Design automa-

tion, pages 906–911, New York, NY, USA, 2003. ACM Press.

[141] S. Rost and H. Balakrishnan. Memento: A health monitoring system for

wireless sensor networks. In SECON, 2006.

[142] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. The Remote Pro-

cessing Framework for Portable Computer Power Saving. In SAC ’99: Pro-

ceedings of the 1999 ACM symposium on Applied computing, pages 365–372,

New York, NY, USA, 1999. ACM Press.

[143] L. B. Ruiz, I. G. Siqueira, L. B. e Oliveira, H. C. Wong, J. M. S. Nogueira,

and A. A. F. Loureiro. Fault Management in Event-driven Wireless Sensor

Networks. In Proceedings of the 7th ACM international symposium on Mod-

eling, analysis and simulation of wireless and mobile systems, pages 149–156,

June 2004.

[144] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pear-

son Education, 2003.

[145] SAP. Environment, health, and safety compliance management applications.

http://www.sap.com/solutions/grc/ehscompliance/index.epx.

196 Bibliography

[146] SAP. CoBIs, Deliverable D102, Architecture and Service Description.

http://www.cobis-online.de/, March 2007.

[147] SAP. CoBIs, Deliverable D104, Final Project Report. http://www.cobis-

online.de/, March 2007.

[148] A. Scaglione and S. D. Servetto. On the interdependence of routing and data

compression in multi-hop sensor networks. In MobiCom ’02: Proceedings of

the 8th annual international conference on Mobile computing and networking,

pages 140–147, New York, NY, USA, 2002. ACM.

[149] Scalable Network Technologies. QualNet Simulator.

http://www.scalablenetworks.com.

[150] T. Schmid, H. Dubois-Ferrière, and M. Vetterli. Sensorscope: Experiences

with a wireless building monitoring sensor network. In REALWSN’ 05, 2005.

[151] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan.

Physical layer driven protocol and algorithm design for energy-efficient wireless

sensor networks. In MobiCom ’01: Proceedings of the 7th annual international

conference on Mobile computing and networking, pages 272–287, New York,

NY, USA, 2001. ACM.

[152] P. Smyth. Hidden markov models and neural networks for fault detection in

dynamic systems. In Proceedings of Neural Networks for Signal Processing,

1993.

[153] P. Spieß, H. Vogt, and H. Jütting. Integrating sensor networks with busi-

ness processes. In Real-World Sensor Networks Workshop at ACM MobiSys,

Uppsala, Sweeden, June 2006.

[154] M. R. Spiegel, J. J. Schiller, and R. A. Srinivasan, editors. Schaum’s Outline

of Probability and Statistics. McGraw-Hill, Inc., 2000.

[155] J. Staddon, D. Balfanz, and G. Durfee. Efficient Tracing of Failed nodes in

Sensor Networks. In Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, pages 122–130, 2002.

[156] M. Strohbach, H.-W. Gellersen, G. Kortuem, and C. Kray. Cooperative arte-

facts: Assessing real world situations with embedded technology. In Ubicomp,

pages 250–267, 2004.

Bibliography 197

[157] H. S. Su and Q. Z. Li. Transformer insulation fault diagnosis method based

on fuzzy expert systems. Properties and applications of Dielectric Materials,

2006. 8th International Conference on, pages 343–346, June 2006.

[158] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An

analysis of a large scale habitat monitoring application. In SenSys ’04: Pro-

ceedings of the 2nd international conference on Embedded networked sensor

systems, pages 214–226, New York, NY, USA, 2004. ACM Press.

[159] R. Szewczyk, J. Polastre, A. M. Mainwaring, and D. E. Culler. Lessons from

a sensor network expedition. In EWSN, pages 307–322, 2004.

[160] S. T. and K. H. N. Application of artificial neural networks in process fault

diagnosis : Fault detection, supervision and safety for technical processes.

Automatica, 29(4):843–849, 1993.

[161] V. Talwar, D. Milojicic, Q. Wu, C. Pu, W. Yan, and G. Jung. Approaches for

service deployment. IEEE Internet Computing, 9(2):70–80, March-April 2005.

[162] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and

Paradigms. Prentice Hall, 2002.

[163] J. Tateson, C. Roadknight, A. Gonzalez, T. Khan, S. Fitz, I. Henning, N. Boyd,

and C. Vincent. Real world issues in deploying a wireless sensor network for

oceanography. In RealWSN’ 05, 2005.

[164] R. C. Teske. Fault detection using consensus in wireless sensor networks.

Master’s thesis, Federal University of Santa Catarina, August 2007.

[165] A. Thede, A. Schmidt, and C. Merz. Integration of goods delivery supervision

into e-commerce supply chain. In WELCOM ’01: Proceedings of the Second

International Workshop on Electronic Commerce, pages 206–218, London, UK,

2001. Springer-Verlag.

[166] J. Thelen, D. Goense, and K. Langendoen. Radio wave propagation in potato

fields. In First Workshop on Wireless Network Measurement, 2005.

[167] G. Tolle and D. Culler. Design of an application-cooperative management

system for wireless sensor networks. In EWSN, 2005.

[168] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,

T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the

redwoods. In SenSys ’05: Proceedings of the 3rd international conference on

198 Bibliography

Embedded networked sensor systems, pages 51–63, New York, NY, USA, 2005.

ACM Press.

[169] Particle Computers. http://www.teco.edu.

[170] A. Varga. The omnet++ discrete event simulation system. In European Sim-

ulation Multiconference (ESM’2001), Prague, Czech Republic, June 2001.

[171] I. Vessey and S. Conger. Learning to specify information requirements: the

relationship between application and methodology. J. Manage. Inf. Syst.,

10(2):177–201, 1993.

[172] L. Wang and M. Mendel. Generating fuzzy rules by learning from examples.

In IEEE Transactions on Systems, Man and Cybernetics, 1992.

[173] X. Wang and W. Liu. A fuzzy fault diagnosis scheme with application. IFSA

World Congress and 20th NAFIPS International Conference, 2001. Joint 9th,

3:1489–1493 vol.3, July 2001.

[174] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and

M. Welsh. Deploying a wireless sensor network on an active volcano. IEEE

Internet Computing, 10:18–25, 2006.

[175] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable

Multihop Routing in Sensor Networks. In SenSys. ACM, 2003.

[176] A. D. Wood and J. A. Stankovic. Denial of Service in Sensor Networks. IEEE

Computer, 35:54–62, 2002.

[177] D.-M. Xie, X. Song, H.-L. Zhou, and M.-W. Guo. Fuzzy vibration fault diagno-

sis system of steam turbo-generator rotor. Machine Learning and Cybernetics,

2002. Proceedings. 2002 International Conference on, 1:411–415 vol.1, 2002.

[178] W. Xu, W. Trappe, and Y. Zhang. Channel surfing: defending wireless sensor

networks from interference. In IPSN ’07: Proceedings of the 6th international

conference on Information processing in sensor networks, pages 499–508, New

York, NY, USA, 2007. ACM.

[179] X. Xu, J. Hines, and R. Uhrig. Sensor validation and fault detection using

neural networks. In Proceedings of the Maintenance and Reliability Conference

(MARCON), Gatlinburg, TN, May 10-12, 1999.

Bibliography 199

[180] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conser-

vation for ad hoc routing. In MobiCom ’01: Proceedings of the 7th annual

international conference on Mobile computing and networking, pages 70–84,

New York, NY, USA, 2001. ACM.

[181] R. R. Yager, S. Ovchinnikov, R. M. Tong, and H. T. Nguyen, editors. Fuzzy

sets and applications. Wiley-Interscience, New York, NY, USA, 1987.

[182] L. A. Zadeh. Towards a theory of fuzzy systems. Fuzzy sets, fuzzy logic, and

fuzzy systems: selected papers by Lotfi A. Zadeh, pages 83–104, 1996.

[183] E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski. Service-oriented architectures

for embedded systems using devices profile for web services. In Advanced

Information Networking and Applications Workshops, 2007, AINAW ’07. 21st

International Conference on, volume 1, pages 956–963, Niagara Falls, ON,

Canada, May 2007.

[184] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for

Fault-tolerant Wide-area Location and Routing. Technical Report UCB/CSD-

01-1141, Computer Science Division, University of California, Berkeley, 2001.

[185] J. Zhao and R. Govindan. Understanding packet delivery performance in dense

wireless sensor networks. In SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems, pages 1–13, New York,

NY, USA, 2003. ACM.

[186] H.-J. Zimmermann. Fuzzy set theory—and its applications (3rd ed.). Kluwer

Academic Publishers, Norwell, MA, USA, 1996.

200 Bibliography

	Contents
	1 Introduction: Thesis and Objective
	1.1 Problem Description
	1.2 Thesis and Goal
	1.3 Solution Approach
	1.3.1 Fault Tolerant Framework for Wireless Sensor Networks
	1.3.2 Pattern Based Fault Isolation for WSNs Applied in Industrial Environments

	1.4 Research Contribution
	1.5 Structure and Contents

	2 Problem Statement
	2.1 Enterprise Scenarios
	2.1.1 Supply Chain Management
	2.1.2 Environment, Health, and Safety

	2.2 Effects of Wireless Sensor Network Failures in Business Processes
	2.2.1 Environment Contamination and Risk of Human Life
	2.2.2 Economic Losses

	2.3 Scope of the Thesis

	3 Research Foundations
	3.1 Models and Definitions
	3.1.1 Wireless Sensor Networks
	3.1.2 Fault Tolerant Industrial Systems

	3.2 Wireless Sensor Network Faults in Industrial Applications
	3.2.1 Sources of Faults in WSN Applications
	3.2.1.1 Node Faults
	3.2.1.2 Network Faults
	3.2.1.3 Sink Faults

	3.2.2 Failure Types

	3.3 State of the Art in Fault Tolerance for Wireless Sensor Networks
	3.3.1 Fault Diagnosis Techniques
	3.3.1.1 Self Diagnosis
	3.3.1.2 Group Diagnosis
	3.3.1.3 Hierarchical Diagnosis

	3.3.2 Fault Recovery Techniques
	3.3.2.1 Active Replication in WSNs
	3.3.2.2 Passive Replication in WSNs

	3.3.3 Classification and Evaluation of Techniques

	3.4 State of the Art in Fault Diagnosis for Industrial Applications
	3.4.1 Binary Diagnostic Matrix
	3.4.2 Diagnostic Trees and Graphs
	3.4.3 Rules and Logic Functions
	3.4.4 Neural Networks
	3.4.5 Fuzzy Systems
	3.4.6 Classification and Evaluation of Techniques

	3.5 Summary

	4 Fault Tolerant Framework for Wireless Sensors Networks
	4.1 Requirements
	4.2 Architecture
	4.2.1 Framework Layers
	4.2.1.1 Device Layer
	4.2.1.2 Platform Abstraction Layer
	4.2.1.3 Fault Management Layer

	4.2.2 Fault Diagnosis
	4.2.2.1 In-Network Fault Diagnosis
	4.2.2.2 Fault Detector
	4.2.2.3 Fault Isolator
	4.2.2.4 System State
	4.2.2.5 Component Interaction

	4.2.3 Fault Recovery Management
	4.2.3.1 In-network Recovery
	4.2.3.2 Decision Maker
	4.2.3.3 Recovery
	4.2.3.4 Mapper
	4.2.3.5 Device Manager
	4.2.3.6 Code Distribution Manager
	4.2.3.7 Code Repository
	4.2.3.8 Code Injector
	4.2.3.9 Component Interaction

	4.3 Summary

	5 Pattern Fault Isolator for WSNs
	5.1 Failure Model
	5.2 Crash Fault Analysis
	5.3 Architecture
	5.3.1 Choice of Techniques
	5.3.2 Pattern Fault Isolation Process
	5.3.3 Pattern Base
	5.3.3.1 Message Throughput Distribution
	5.3.3.2 Combination of Known Patterns

	5.3.4 Membership Evaluator
	5.3.4.1 Membership Functions
	5.3.4.2 Threshold Definition: Gaussian Distribution Approximation
	5.3.4.3 Considerations

	5.3.5 Transient Analyzer
	5.3.6 Failures Match Maker
	5.3.7 Neural Classifier

	5.4 Prediction Model
	5.4.1 Membership Evaluator
	5.4.2 Transient Analyzer
	5.4.3 Failures Match Maker
	5.4.4 Neural Classifier

	5.5 Summary

	6 Applications
	6.1 Application Trial: Research Lab Monitoring
	6.1.1 Data Collection
	6.1.2 Preliminary Data Analysis

	6.2 Application II: Simulation
	6.2.1 Existing Simulation Environments
	6.2.2 FT-WiseNets Network Traffic Simulator
	6.2.2.1 Topology Generator
	6.2.2.2 Failures Generator
	6.2.2.3 Traffic Generator

	6.3 FT-WiseNets Monitoring Application
	6.3.1 Fault Isolator Implementation
	6.3.2 FT-WiseNets User Interface
	6.3.3 Pattern Acquisition View
	6.3.4 Pattern Combination View
	6.3.5 Online Isolation Views

	7 Pattern Based Fault Isolator Evaluation
	7.1 Simulation Procedures
	7.1.1 Membership Evaluator
	7.1.1.1 Threshold Definition
	7.1.1.2 Timeframe

	7.1.2 Pattern Combination
	7.1.3 Transient Analyzer
	7.1.4 Failures Match Maker
	7.1.5 Neural classifier

	7.2 Application trial results
	7.2.1 Membership Evaluator
	7.2.2 Failures Match Maker
	7.2.3 Neural Classifier

	7.3 Evaluation Results Discussion

	8 Conclusions
	8.1 Future Work

	A Message Exchange
	A.1 Message Handler
	A.2 Notification Manager
	A.3 Request Processor
	A.4 Component Interaction

	B Pattern Combination
	Bibliography

