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ABSTRACT: In the present paper a two-scale approach for the description of anisotropies in sheet metals
is introduced, which combines the advantages of a macroscopic and a microscopic modeling. While the elastic
law, the flow rule, and the hardening rule are formulated on the macroscale, the anisotropy is taken into account
in terms of a micro-mechanically defined 4th-order texture coefficient. The texture coefficient specifies the
anisotropic part of the elasticity tensor and the quadraticyield condition. The evolution of the texture coeffi-
cient is described by a rigid-viscoplastic Taylor type model. The advantage of the suggested model compared
to the classical v. Mises-Hill model is first that macroscopic anisotropy parameters can be identified based on
a texture measurement, and second that the anisotropy of theelastic and the plastic behavior is generally path-
dependent, and that this path-dependence is related to a micro-mechanical deformation mechanism. An explicit
modeling of the plastic spin is circumvented by the aforementioned micro-mechanical approach. The model is
implemented into the FE code ABAQUS and applied to the simulation of the deep drawing process of aluminum.

KEYWORDS: crystallographic texture, deformation-induced anisotropy, macroscopic yield condition, metal
forming, polycrystalline material

1 INTRODUCTION

The deep drawing process of metals is often simu-
lated by the application of the finite element method
in combination with a phenomenological anisotropic
elastic-plastic material model (see, e.g. Barlatet al.,
1997, 2005). The main advantage of phenomenolog-
ical approaches are the relatively low computational
costs. The main disadvantage, however, is that the
evolution of the anisotropy during the deformation
process is neglected.

In contrast to phenomenological approaches,
polycrystal plasticity models allow for a description
of an evolving microstructure. Since such models
are based on constitutive equations on the crystalline
level, they take into account micro-mechanical de-
formation mechanisms (see, e.g. Bronkhorstet al.,
1992). Although the models are relatively accurate,
they have the disadvantage that large scale simula-
tions are very time consuming.

Several authors have discussed how the numeri-
cal effort could be reduced when the stress is com-
puted based on crystal plasticity models at the integra-
tion points. These approaches use an artificial scatter-
ing of the crystal orientations from integration point
to integration point (Raabe and Roters, 2004), or the
modeling of an isotropic background of the texture
(Böhlkeet al., 2006), or the determination of optimal
sets of discrete crystal orientations (Schulze, 2006).

In the present paper, a model approach is sug-
gested which combines the advantages of both a
macroscopic and a microscopic approach (Böhlke,
2005; Risy, 2007). While the elastic law, the flow
rule, and the hardening rule are formulated with re-
spect to the macroscale, a 4th-order texture coeffi-
cient is used to capture the macroscopic anisotropies.
This texture coefficient is incorporated in the macro-
scopic elastic law and in the macroscopic flow rule.
Its evolution is determined by the use of a rigid-
viscoplastic Taylor model. As a consequence, there
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is no need for an explicit modeling of the plastic spin.
The rotation of the crystal lattice vectors in relation
to the material is taken into account by the micro-
mechanical model. The macroscopic anisotropy re-
sults from a specific orientation distribution on the
microscale which changes with large inelastic defor-
mations.

2 Elastic law

For the formulation of the geometrically nonlinear
elastic-viscoplastic material model we start with the
concept of materials with isomorphic elastic ranges
(Bertram, 2005). This approach is closely related
to the multiplicative decomposition of the deforma-
tion gradientF . The internal variable is the plas-
tic transformationP , a path-dependent, unimodular,
non-symmetric tensor. Based on the plastic transfor-
mation, we define

F e = FP (1)

which enters the elastic law.
The elastic strains are assumed to be small. There-

fore, each linear relation between a conjugate pair
of generalized stress and strain measures is applica-
ble for the description of the elastic behavior. Here,
we assume a linear relation between the 2nd-Piola-
Kirchhoff stress tensor and Green’s strain tensor with
respect to the undistorted state. In an Eulerian setting,
this ansatz implies that the Kirchhoff stress tensorτ

is given as a linear function of the Almansi strain ten-
sorEA

e (see, e.g., Böhlke and Bertram, 2001; Böhlke
et al., 2003)

τ = Ce[E
A
e ], EA

e =
1

2
(I−B−1

e ), Be = F eF
T

e (2)

with I being the unit tensor. The Kirchhoff stress ten-
sor τ = Jσ is defined by the Cauchy stress tensor
σ and the determinantJ of F . The Eulerian stiff-
ness operatorCe is given by the Rayleigh product
of F e and the reference stiffness tensorC̃ (see, e.g.,
Bertram, 2005)

Ce = F e ⋆ C̃ =

C̃ijkl(F eei) ⊗ (F eej) ⊗ (F eek) ⊗ (F eel). (3)

ei denotes the fixed sample system.
For aggregates of cubic crystals, the Voigt bound

and the Reuss bound can be represented as an additive

split of the elasticity tensor into an isotropic and an
anisotropic part (Böhlke and Bertram, 2001; Böhlke
et al., 2003). Here, we apply such a split to the effec-
tive elasticity tensor

C̃ = C̃
I + C̃

A. (4)

Using the polar decompositionF e = ReU e and con-
sidering small elastic strains, e.g.U e ≈ I, the follow-
ing approximation for the Eulerian stiffness tensor is
obtained

Ce ≈ C̃
I + C

A
e . (5)

The isotropic part̃CI has the following representation

C̃
I = 3KP

I
1 + 2GP

I
2. (6)

K is the bulk modulus andG is the shear modulus.
The tensorsPI

1 andPI
2 are the isotropic projectors

P
I
1 =

1

3
I ⊗ I, P

I
2 = I

S − P
I
1. (7)

IS is the identity tensor on symmetric 2nd-order ten-
sors. C̃I is assumed to be constant during the defor-
mation process.

If we neglect the lattice distortions, which is an
assumption reasonable for small elastic strains, then
the anisotropic part of the stiffness tensorCA

e can be
described in terms of the 4th-order texture coefficient
V′ (Böhlke, 2005, 2006)

C
A
e = ζV

′. (8)

ζ depends on the eigenvalues of the single crystal
stiffness tensor. In Böhlkeet al. (2003) the evolu-
tion of the tensorV′ during the deformation process
is modeled by a macroscopic constitutive equation.
Here, this tensor is calculated based on a discrete ori-
entation distribution. For a set ofN crystal orienta-
tions and corresponding volume fractions{Qα, να},
the tensorV′ is given by

V
′ =

3
√

30

10

(

5
N
∑

α=1

ναQα ⋆

3
∑

i=1

D0 − I ⊗ I − 2I

)

(9)
with

D0 = ei ⊗ ei ⊗ ei ⊗ ei (10)

(Böhlke, 2005, 2006). In the last equation, the or-
thogonal tensorQα represents the orientationQ of
theα-th crystal.
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2.1 Flow rule

For elastically anisotropic materials a nine-
dimensional flow rule is generally required. The key
contribution of this paper is the separation of the plas-
tic spin and the evolution of the elastic strain. This
separation is obtained as follows. SinceV′ is calcu-
lated based on a micro-mechanical model, the amount
and type of anisotropy and the anisotropy directions
can be determined based on the orientation distribu-
tion. Hence for given orientation distribution, the
Eulerian stiffness tensorCe is known. For the deter-
mination the stressτ besideCe only Be has to be
determined. Therefore, only a symmetric, i.e., six-
dimensional flow rule has to be specified here. The
material time derivative ofBe is

Ḃe = Ḟ eF
T

e + F eḞ e
T. (11)

The rate of change of the plastic transformation is as-
sumed to depend on the stress state, the hardening
state, and the crystallographic texture by means of the
4th-order texture coefficient

P−1Ṗ = −Ḟ pF
−1

p = −k̃(T ′

e, Ṽ
′, σF ). (12)

σF is the macroscopic flow stress,̃V′ = F−1

e ⋆ V′

is the texture coefficient pulled back to the undis-
torted configuration,T ′

e is the Mandel stress tensor
given by T e = CeSe with the 2nd Piola-Kirchhoff
stress tensorSe and the right Cauchy-Green tensor
Ce = F T

e F e. Combining (11) and (12) we find

L(Be) =Ḃe − LBe − BeL
T (13)

= − 2 sym(ke(τ
′, V′, σF )Be) (14)

with

ke(τ
′, V′, σF ) = F ek̃(T ′

e, V
′, σF )F−1

e . (15)

L is the velocity gradient. We assume the existence
of an Eulerian flow potentialφ(τ ′, V′, σF ) such that

ke(τ
′, V′, σF ) =

∂φ(τ ′, V′, σF )

∂τ ′
(16)

holds. A common form of the flow potential in the
context of viscoplasticity is given by

φ =
ε̇0 σF

m + 1

(

σeq

σF

)m+1

. (17)

m and ε̇0 are material parameters. In order to incor-
porate the texture coefficient, we formulate the equiv-
alent stress in terms of an anisotropic norm (Böhlke,
2005)

σeq(τ
′, V′) =

√

3

2
‖τ ′‖H =

√

3

2

√

τ ′ · H[τ ′] (18)

with
H = P

I
2 + ηV

′. (19)

The parameterη has to be chosen such that the ten-
sor H is positive definite on the set of traceless and
symmetric tensors. It should be noted that in the
rate-independent limit, i.e.m → ∞, the classical
quadratic yield condition by v. Mises (1928) and Hill
(1948) is obtained

√

τ ′ · H[τ ′] −
√

2

3
σF = 0. (20)

Finally, we derive the following form forke

ke(τ
′, V′, σF ) =

3

2

ε̇0

σeq

(

σeq

σF

)m
(

P
I
2 + ηV

′
)

[τ ′].

(21)
It can be seen that the texture coefficient governs the
flow direction. In the isotropic case, i.e.V′ = 0, the
last equation reduces to the isotropic v. Mises flow
rule.

3 CONCLUSIONS

In the present paper a two-scale approach has been
suggested in order to simulate the mechanical behav-
ior of polycrystals under large plastic deformations.
This approach is based on constitutive equations
which are formulated with respect to the macroscale
containing, micro-mechanically defined internal vari-
ables. The evolution of the micromechanical variable
has been taken into account based on a Taylor type
model. Generally, both the evolving elastic and plas-
tic anisotropies can be modeled by the suggested ap-
proach.

The simulated earing profiles reproduce the fea-
tures of the experimental findings. Compared to
classical Taylor type models, the computation of the
macroscopic stress is much simpler and faster. Since
the texture evolves slowly compared to the yield
stress, an update of the texture coefficient is not re-
quired in each time step. Furthermore, even if only
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a small number of crystal orientations is used, the
anisotropy is not necessarily overestimated since the
discrete orientations enter the model through the 4th-
order texture coefficient specifying the quadratic flow
rule.

REFERENCES

ABAQUS/Standard (2007). Hibbitt, Karlsson &
Sorensen, Inc.

Barlat, F., Becker, R., Hayashida, Y., Maeda, Y.,
Yanagawa, M., Chung, K., Brem, J., Lege, D., Mat-
sui, K., Murtha, S., and Hattori, S. (1997). Yielding
description for solution strengthened aluminum al-
loys. Int. J. Plast., 13(4), 385–401.

Barlat, F., Aretz, H., Yoon, J., Karabin, M., Brem, J.,
and Dick, R. (2005). Linear transformation-based
anisotropic yield functions. Int. J. Plast., 21(4),
1009–1039.

Bertram, A. (2005).Elasticity and Plasticity of Large
Deformations. Springer-Verlag, Berlin.
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