
Two classes of passive time-varying
well-posed linear systems

Roland Schnaubelt
Institute of Analysis, Department of Mathematics

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany

e-mail: schnaubelt@math.uni-karlsruhe.de

George Weiss
Department of Electrical Eng.-Systems

Tel Aviv University
69978 Ramat Aviv, Israel

e-mail: gweiss@eng.tau.ac.il

Abstract. We investigate two classes of time-varying well-posed linear sys-
tems. Starting from a time-invariant scattering-passive system, each of the
time-varying systems is constructed by introducing a time-dependent inner
product on the state space and modifying some of the generating operators.
These classes of linear systems are motivated by physical examples such as the
electromagnetic field around a moving object. To prove the well-posedness of
these systems, we use the Lax-Phillips semigroup induced by a well-posed
linear system, as in scattering theory.

Key words. Well-posed linear system, operator semigroup, linear time-
varying system, Lax-Phillips semigroup, scattering passive system.

2000 Math. Subject Class. Primary 93C25; Secondary 47D06.

1. Introduction

The concept of a time-varying well-posed linear systems has emerged over the years
as researchers studied partial differential equations with time-dependent coefficients
and then abstracted certain properties. In the absence of inputs and outputs, we
have the theory of evolution families which is the natural generalization of the the-
ory of strongly continuous semigroups. The relevant generation results have been
developed by Kato [9, 10], but until today this theory is much less complete than the
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theory of strongly continuous semigroups (see, for example, Fattorini [6], Okazawa
[13], Tanabe [21] and the survey by Schnaubelt [17]).

Various classes of time-varying linear systems with inputs and outputs have been
introduced by Acquistapace and Terreni [1], Curtain and Pritchard [3], Hinrichsen
and Pritchard [7], Jacob [8], and Schnaubelt [16]. The most general definition is the
one in [16] which mimicks the concept of a (time-invariant) well-posed linear system
from Weiss [24] (which is equivalent to the differently looking earlier definition in
Salamon [15]). Unfortunately, for such systems, there is no complete representation
theory available (unlike for time-invariant well-posed systems). It is difficult to verify
that a given system of linear equations defines a time-varying well-posed system, and
for this reason it is also difficult to construct non-trivial examples of such systems.
The difficulties arise when we have unbounded control or observation operators and
the evolution family of the system is not of parabolic type.

In this paper we want to introduce two classes of time-varying well-posed linear
systems. Each such system is constructed using a scattering passive time-invariant
system and a family of time-dependent inner products on the state space.

To state our main results, we need to recall some terminology and results concern-
ing (time-invariant) well-posed linear systems from Staffans and Weiss [20] and from
[24] (see also Staffans [19]). We assume that the reader is familiar with well-posed
linear systems. In particular, we do not repeat their definition. The purpose of the
following paragraphs is only to clarify the notation, and to remind which results on
well-posed systems will be needed. In this paper we encounter both (time-invariant)
well-posed linear systems and their time-varying counterparts. For the reader’s
convenience, we use the superscript i (for “invariant”) for notation refering to a
time-invariant system.

Let Σi be a well-posed linear system. It is known (see [20, Section 3]) that such
a system Σi can be described locally in time by the equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(1.1)

Here u(·) is the input function, x(t) is the state at time t and y(·) is the output
function. We have u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y , where the Hilbert spaces U,X
and Y are called the input space, the state space and the output space, respectively.
The operator A : D(A)→X is the generator of a strongly continuous semigroup on
X, and it determines two new Hilbert spaces as follows: X1 is D(A) with the norm
‖z‖1 = ‖(βI−A)z‖ where β ∈ ρ(A). The extrapolation space X−1 is the completion
of X with respect to the norm ‖(βI −A)−1z‖. These spaces are independent of the
choice of β ∈ ρ(A) (different choices lead to equivalent norms). The generator A
has a unique extension to an operator in L(X,X−1) denoted by the same symbol.
We have B ∈ L(U,X−1) and there exists C ∈ L(X1, Y ) such that if u = 0 and
x(0) ∈ D(A), then y(t) = Cx(t) for all t ≥ 0.

The operators A, B and C are uniquely determined by Σi. We introduce the
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Hilbert space Z = D(A) + (βI − A)−1BU with the norm

‖z‖Z = inf
{(
‖w‖2

1 + ‖v‖2
) 1

2 | w ∈ D(A), v ∈ U, z = w + (βI − A)−1Bv
}
.

This space is also independent of the choice of β ∈ ρ(A). Then the operator C
appearing in (1.1) is a bounded extension of C to Z, which in general is not uniquely
determined by the system. Finally, D ∈ L(U, Y ). The operator D is uniquely
determined if an extension C has been selected.

A function x : [0,∞)→X is called a classical solution of (1.1) if

x ∈ C1([0,∞), X)

and the first equation in (1.1) holds for all t ≥ 0. For inputs u ∈ C([0,∞), U), the
first equation in (1.1) implies that any classical solution x belongs to C([0,∞), Z).
Then the second equation in (1.1) makes sense and defines the output y ∈
C([0,∞), Y ). For given x(0) and u, the differential equation in (1.1) has a unique
classical solution for t ≥ 0 if

u ∈ H1((0,∞), U) and Ax(0) +Bu(0) ∈ X. (1.2)

(Note that the second condition above implies x(0) ∈ Z.) If we take all the pairs
(x(0), u) satisfying (1.2), then the corresponding classical solutions of (1.1) determine
four families of operators Ti, Φi, Ψi and Fi, parametrized by τ ≥ 0, such that[

x(τ)
Pτy

]
=

[
Ti
τ Φi

τ

Ψi
τ Fiτ

] [
x(0)
Pτu

]
. (1.3)

Here, Pτy denotes the restriction y to [0, τ ]. The 2 × 2 matrix appearing above is
a bounded operator from X × L2([0, τ ], U) to X × L2([0, τ ], Y ). (Here L2([0, τ ], U)
is regarded as a subspace of L2([0,∞), U), by extending any function in L2[0, τ ], U)
to be zero for t > τ .) In fact, in [20, 24] the system Σi is defined via the operator
families Ti, Φi, Ψi and Fi. Ti is the strongly continuous semigroup generated by A.

Note that the bounded operators Ti
τ , Φi

τ , Ψi
τ and Fiτ are completely determined

by their action on data pairs (x(0), u) satisfying (1.2), because such pairs are dense
in X × L2([0,∞), U). Moreover, for such (x(0), u), we have

Pτy ∈ H1((0, τ), Y ) and Ax(τ) +Bu(τ) ∈ X.

However, the formula (1.3) defines the state trajectory and the output function of
Σi for every x(0) ∈ X and for every u ∈ L2([0,∞), U).

The well-posed system Σi is called scattering passive if for every classical solution
of (1.1) corresponding to initial data satisfying (1.2) we have

d

dt
‖x(t)‖2 ≤ ‖u(t)‖2 − ‖y(t)‖2 ∀ t ≥ 0 .
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In particular, Σi is called scattering energy preserving if we always have equality
in the above formula. Such systems occur often in mathematical physics, where
1
2
‖x(t)‖2 is interpreted as the energy stored in the system at time t, 1

2
‖u(t)‖2 is

the incoming power and 1
2
‖y(t)‖2 is the outgoing power. If we integrate the above

inequality, we see that Σi is scattering passive if and only if∥∥∥∥[Ti
τ Φi

τ

Ψi
τ Fiτ

]∥∥∥∥ ≤ 1

for some (hence, for every) τ > 0. Similarly, Σi is scattering energy preserving if
and only if the 2×2 matrix in (1.3) is isometric. Scattering passivity and scattering
energy preservation can also be expressed in terms of A,B,C,D, see Arov and
Nudelman [2], Malinen et al [12], Staffans [18] and [20] for details (in [20], scattering
passive systems were called dissipative).

Let Σi be a time-invariant scattering passive system described by (1.1). Let J
be a closed interval of non-zero length (usually J = [0,∞)). Let P : J→L(X) be
such that P (t) = P (t)∗ > 0 and P (t)−1 is bounded for every t ∈ J . Moreover, we
assume that for every z ∈ X, both P (·)z and P−1(·)z are continuously differentiable
functions on J . We introduce two time-varying systems on the time interval J ,
informally defined by the equations

ẋ(t) = P (t)−1(Ax(t) +Bu(t)),

y(t) = Cx(t) +Du(t) ,
(1.4)

and
ẋ(t) = AP (t)x(t) +Bu(t),

y(t) = CP (t)x(t) +Du(t) .
(1.5)

For the second system (described by (1.5)), in our main results we assume addition-
ally that P (·)z is of class C2 (instead of just C1) for every z ∈ X.

At the first glance, it is not clear whether these equations make sense, even for
smooth initial states and smooth u, because P (t)−1 has not been defined on X−1 and
it is not clear if C can be applied to x(t) or to P (t)x(t), respectively. It is even less
clear if these equations have solutions for some subspace of initial conditions and
inputs, and even if they have solutions, it is not clear if these depend continuously
on the data (the initial state and the input function).

In this paper, we show that in fact both of the above systems of equations deter-
mine well-posed time-varying systems, a concept that we define in Section 3. Our
definition is a slight generalization of the concept of a well-posed nonautonomous
system introduced in [16]. We denote by Σl the system generated by (1.4) and by Σr

the system generated by (1.5) (here, l and r stand for left and right). In particular,
if τ ∈ J and the pair (x(τ), u) satisfies

u ∈ H1(J0, U) and Ax(τ) +Bu(τ) ∈ X,
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then (1.4) has a classical solution for t ≥ τ , t ∈ J , which satisfies

d

dt
〈P (t)x(t), x(t)〉 ≤ ‖u(t)‖2 − ‖y(t)‖2 + 〈Ṗ (t)x(t), x(t)〉 (1.6)

for every such t. (J0 denotes the interior of J .) If the pair (x(τ), u) satisfies

u ∈ H1(J0, U) and AP (τ)x(τ) +Bu(τ) ∈ X,

then (1.5) has a classical solution for t ≥ τ , t ∈ J , which satisfies the same balance
inequality (1.6). In fact, the well-posedness of the systems Σl and Σr is derived as a
consequence of (1.6). If the original well-posed system Σi is energy preserving, then
we have equality in (1.6) (for both time-varying systems). A time-varying well-posed
system that satisfies (1.6) could be called scattering P -passive.

In the next section we prove generation results for a class of time-varying systems
without inputs and outputs. In Section 3 we define linear time-varying well-posed
systems and discuss their relationship with the Lax-Phillips evolution family which
governs a certain time-varying system without inputs and outputs. The Lax-Phillips
evolution family is the time-varying counterpart of the Lax-Phillips semigroup in-
duced by a (time-invariant) well-posed linear system.

The results from Section 3 are used in Section 4 to establish our main well-
posedness theorems for (1.4) and (1.5). In the last section (Section 5) we study
a wave equation with time-dependent coefficients and with boundary control and
observation. We transform the given system of equations into a system of the form
(1.5) and then show the well-posedness of the latter system.

2. Time-varying multiplicative perturbations of
m-dissipative operators

The standing assumptions of this section are the following: A : D(A) → X is
a maximally dissipative operator on the Hilbert space X. As in Section 1, J is a
closed interval of non-zero length and the function P : J → L(X) satisfies

• P (t) = P (t)∗ > 0 (hence P (t)−1 is bounded) for each t ∈ J ,
• P (·)z ∈ C1(J,X) for each z ∈ X,

• P (·)−1z ∈ C1(J,X) for each z ∈ X.

(2.1)

We equip X with the following scalar products and the corresponding norms:

〈w, z〉t = 〈P (t)w, z〉 and ‖z‖t = ‖P (t)
1
2 z‖, t ∈ J.

It is clear from (2.1) and the uniform boundedness principle that the functions
‖P (·)‖ and ‖P (·)−1‖ are bounded on compact subintervals of J , which implies that
the norms ‖ · ‖t are locally uniformly equivalent to the original norm on X.
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Let τ ∈ J and set Jτ = J ∩ [τ,∞). In this section we study the initial value
problems

ẋ(t) = P (t)−1Ax(t) , t ∈ Jτ , x(τ) = x0 , (2.2)

and
ẋ(t) = AP (t)x(t) , t ∈ Jτ , x(τ) = x0 . (2.3)

Here the operators P (t)−1A and AP (t) are defined on their natural domains, namely,

D(P (t)−1A) = D(A) and D(AP (t)) = {z ∈ X | P (t)z ∈ D(A)}.

From Engel and Nagel [5, Section VI.9], Kato [9], Schnaubelt [17] and Tanabe
[21], we recall the following definition.

Definition 2.1. An evolution family T on X with time interval J is a family of
operators T(t, τ) ∈ L(X) defined for t, τ ∈ J with t ≥ τ which satisfies

(a) T(t, s)T(s, τ) = T(t, τ) for every t, s, τ ∈ J with t ≥ s ≥ τ ,

(b) T(t, t) = I for every t ∈ J ,

(c) (t, τ) 7→ T(t, τ) is strongly continuous for t, τ ∈ J with t ≥ τ .

The concept of an evolution family is the natural generalization of the concept of
a strongly continuous semigroup to time-varying systems. When trying to generalize
the concept of an infinitesimal generator, one runs into several difficulties, and as a
result there is no standard notion of a time-varying infinitesimal generator. In this
paper, we shall use the following definition:

Definition 2.2. Let {A(t) : D(A(t)) → X | t ∈ J} be a family of densely de-
fined linear operators on X. We say that A(·) generates the evolution family T if
T(t, τ)D(A(τ)) ⊂ D(A(t)) for all t, τ ∈ J with t ≥ τ and, for every τ ∈ J with
τ 6= max J and every x0 ∈ D(A(τ)), the function x(·) = T(·, τ)x0 is continuously
differentiable on Jτ and it is the unique solution of the Cauchy problem

ẋ(t) = A(t)x(t) , t ∈ Jτ , x(τ) = x0 . (2.4)

It is known that the operators A(t) generate at most one evolution family and
that not every evolution family is generated in this way.

Proposition 2.3. Under the standing assumptions stated at the beginning of this
section, P (·)−1A generates an evolution family Tl on X with time interval J . Let
x0 ∈ D(A). Then the map

(t, τ) 7→ P (t)−1ATl(t, τ)x0 ( for t, τ ∈ J with τ ≤ t)

is continuous in X. Further, for each t ∈ J with t 6= min J , the map τ 7→ Tl(t, τ)x0

(for τ ∈ J with τ ≤ t) is continuously differentiable and

∂

∂τ
Tl(t, τ)x0 = − Tl(t, τ)P (τ)−1Ax0 . (2.5)
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Proof. Let t ∈ J . We have

〈P (t)−1Az, z〉t = 〈Az, z〉 ∀ z ∈ D(A) ,

so that P (t)−1A is dissipative on X with respect to the scalar product 〈·, ·〉t. Since
this scalar product induces on X a norm that is equivalent to the original one, this
implies that I − P (t)−1A has closed range.

It is clear that P (t)−1A is closed and that its adjoint is A∗P (t)−1, with the domain
D(A∗P (t)−1) = {x ∈ X | P (t)−1x ∈ D(A∗)}. It is also clear that A∗P (t)−1 is
dissipative with respect to the scalar product 〈P (t)−1w, z〉. Therefore I −A∗P (t)−1

is injective, so that I − P (t)−1A has dense range. Together with what we proved
earlier, this implies that Ran(I−P (t)−1A) = X. As a result, P (t)−1A is maximally
dissipative with respect to 〈·, ·〉t.

Take a compact interval [a, b] ⊂ J , z ∈ X, and set

L = max
t∈[a,b]

‖Ṗ (t)‖ , M = max
t∈[a,b]

‖P (t)−1‖ . (2.6)

M and L are finite by the uniform boundedness principle. We estimate

‖z‖2
t = 〈(P (t)− P (τ) + P (τ))z, z〉 ≤ L |t− τ | ‖z‖2 + ‖z‖2

τ

≤ LM |t− τ | ‖z‖2
τ + ‖z‖2

τ ≤ eLM |t−τ | ‖z‖2
τ

(we have used the fact that ‖P (τ)−
1
2‖2 = ‖P (τ)−1‖). Due to this inequality and

a result of Kato [9, Proposition 3.4] (see also [21, Proposition 4.3.2]), P (·)−1A is
a stable family in the sense of [9]. In addition, P (·)−1A is strongly continuously
differentiable on the (time-invariant) domain D(A). As a consequence, P (·)−1A
generates a unique evolution family Tl on the time interval [a, b] by the corollary
to Theorem 4.4.2 in [21]. Moreover, by the same corollary from [21], the mapping
(t, τ) 7→ P (t)−1ATl(t, τ)x0 is continuous in X and (2.5) holds for all τ, t such that
a ≤ τ ≤ t ≤ b and a < t. The assertions then follow since [a, b] was arbitrary.

Proposition 2.4. The functions P (·), (I − P (·)A)−1 and (I −AP (·))−1 are locally
Lipschitz continuous in operator norm. These statements remain true if we replace
P (·) with P (·)−1 and/or A with A∗.

Proof. It follows easily from the first part of (2.6) that on any compact subiterval
[a, b] ⊂ J , P (·) is Lipschitz continuous in operator norm, with Lipschitz constant L
(we have already used this in the last proof).

We have seen in the proof of Proposition 2.3 that P (t)−1A is maximally dissipative
with respect to the inner product 〈·, ·〉t, which implies that I − P (t)−1A has a
bounded inverse that is a contraction with respect to the norm ‖ · ‖t. Denoting
N = maxt∈[a,b] ‖P (t)‖, we have that for t ∈ [a, b],

‖(I − P (t)A)−1z‖ ≤ ‖P (t)−
1
2‖ · ‖(I − P (t)A)−1z‖t ≤ ‖P (t)−

1
2‖ · ‖z‖t
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≤ ‖P (t)−
1
2‖ · ‖P (t)

1
2‖ · ‖z‖ ≤ (MN)

1
2‖z‖ . (2.7)

We have A(I − P (t)A)−1 = P (t)−1 [−I + (I − P (t)A)−1]. From this combined with
(2.7), it follows that for t ∈ [a, b],

‖A(I − P (t)A)−1z‖ ≤ M
[
1 + (MN)

1
2

]
. (2.8)

For t, τ ∈ [a, b] we have, by a trivial computation,

(I − P (τ)A)−1 − (I − P (t)A)−1 = (I − P (τ)A)−1[P (τ)− P (t)]A(I − P (t)A)−1 .

From this, (2.7) and (2.8) we see that for t, τ ∈ [a, b],

‖(I − P (τ)A)−1 − (I − P (t)A)−1‖ ≤ (MN)
1
2L|t− τ |M

[
1 + (MN)

1
2

]
,

i.e., (I−P (·)A)−1 is locally Lipschitz continuous in operator norm. Taking adjoints,
we see that also (I − A∗P (·))−1 is locally Lipschitz. Replacing A with A∗, we see
that also (I − AP (·))−1 is locally Lipschitz. It is clear that we can also make the
remaining replacements mentioned in the proposition.

We shall prove below that under an additional smoothness assumption, AP (·) also
generates an evolution family on X. This will be more difficult, since the domains
D(AP (t)) vary in time and the fundamental generation Theorem 6.1 from [9] does
not apply. Under our standing assumptions (2.1), we construct an evolution family
Tr on X such that for every x0 ∈ X the function x(t) = Tr(t, τ)x0 is continuously
differentiable in X−1 for t ∈ Jτ and it satisfies (2.4). Afterwards we show that AP (·)
in fact generates Tr if, in addition, P (·)z ∈ C2(J,X) for all z ∈ X.

We need several preparations. Remember that extrapolation spaces were defined
after (1.1). For a detailed discussion of such spaces we refer to Tucsnak and Weiss
[23, Chapter 2]. We take β = 1 in the definition of the norms on the domains and
the extrapolation spaces of the operators A, A∗, P (t)−1A, A∗P (t)−1, AP (t) and
P (t)A∗ (this is possible according to the last proposition). The extrapolation space
X−1 of A is isomorphic to [D(A∗)]′ (duality with respect to the pivot space X) and
hence they are identified. Similarly, for each t ∈ J , the spaces

X t
−1,l = [D(A∗P (t)−1)]′ , X t

−1,r = [D(P (t)A∗)]′

are identified with the extrapolation spaces of P (t)−1A and AP (t), respectively.
The norms of D(P (t)A∗) and D(A∗) are locally uniformly equivalent, so that the
restrictions I(t) : D(P (t)A∗) → D(A∗) and I(t)−1 : D(A∗) → D(P (t)A∗) of the
identity are locally uniformly bounded, for t ∈ J . Thus I(t)∗ is an isomorphism
from X−1 to X t

−1,r and both I(t)∗ and its inverse (I(t)−1)∗ are locally uniformly
bounded for t ∈ J . In the sequel we shall identify X−1 and X t

−1,r for all t ∈ J . It
is then clear that the extension of AP (t) to an operator in L(X,X−1) is simply the
corresponding extension of A times P (t).
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Definition 2.5. A backward evolution family S on X with time interval J is a family
of operators S(t, τ) ∈ L(X) defined for t, τ ∈ J with t ≥ τ which satisfy properties
(b) and (c) in Definition 2.1 and

S(σ, τ)S(t, σ) = S(t, τ) for every t, σ, τ ∈ J with t ≥ σ ≥ τ.

With A(·) as in Definition 2.2, we say that A(·) generates the backward evolution
family S if S(t, τ)D(A(t)) ⊂ D(A(τ)) for all t, τ ∈ J with t ≥ τ and, for each t ∈ J
with t 6= min J and every x0 ∈ D(A(t)), the function v(·) = S(t, ·)x0 is continuously
differentiable on J ∩ (−∞, t] and it is the unique solution of the final value problem

v̇(τ) = − A(τ)v(τ) , τ ≤ t, τ ∈ J, v(t) = x0 .

One can easily adapt the proofs of Kato’s generation results for evolution familes
to show the natural analogues of Theorem 4.4.2 and its corollary and of Proposi-
tion 4.3.2 in [21] for backward evolution families.

Remark 2.6. The function t 7→ P (t)−1 also satisfies the assumptions listed in (2.1).
Proposition 2.3 thus shows that P (·)A generates an evolution family T̃l on X with
time interval J . We define a new evolution family V on X by

V(t, τ) = P (t)−1T̃l(t, τ)P (τ) for t, τ ∈ J with τ ≤ t.

From d
dt
P (t)−1z = −P (t)−1Ṗ (t)P (t)−1z we see that V is generated by

A1(t) = AP (t)− P−1(t)Ṗ (t)

with domains D(A1(t)) = D(AP (t)), t ∈ J , and that

∂

∂τ
V(t, τ)x0 = −V(t, τ)A1(τ)x0 (2.9)

for every x0 ∈ D(AP (τ)) and t, τ ∈ J with τ ≤ t and t 6= min J .

The main idea of the following proposition is to introduce the evolution family Tr

as a bounded perturbation of V, in the sense of Curtain and Pritchard [3, Ch. 9].

Proposition 2.7. Under the standing assumptions stated at the beginning of this
section, and using the notation V from Remark 2.6, there exists an evolution family
Tr on X with time interval J having the following properties:

(a) For all x0 ∈ X and t, τ ∈ J with τ ≤ t, Tr satisfies the integral equations

Tr(t, τ)x0 = V(t, τ)x0 +

∫ t

τ

V(t, s)P (s)−1Ṗ (s)Tr(s, τ)x0 ds, (2.10)

Tr(t, τ)x0 = V(t, τ)x0 +

∫ t

τ

Tr(t, s)P (s)−1Ṗ (s)V(s, τ)x0 ds. (2.11)
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Moreover, Tr is the unique solution of each of these integral equations.

(b) For all t, τ ∈ J with t ≥ τ , t 6= min J , τ 6= max J , the derivatives

∂

∂τ
Tr(t, τ)x0 = − Tr(t, τ)AP (τ)x0 and

∂+

∂t
Tr(t, τ)x0

∣∣∣
t=τ

= AP (τ)x0

exist in X for every x0 ∈ D(AP (τ)).

(c) For each x0 ∈ X and τ ∈ J with τ 6= max J , the function t 7→ x(t) = Tr(t, τ)x0

is continuously differentiable in X−1 and satisfies (2.3) in X−1 for all t ∈ Jτ .
The operators Tr(t, τ) have locally uniformly bounded extensions to operators in
L(X−1) denoted by the same symbols, for all t, τ ∈ J with τ ≤ t. Moreover,
for each x0 ∈ X and t ∈ J with t 6= min J , the function τ 7→ Tr(t, τ)x0 is
continuously differentiable in X−1 and ∂

∂τ
Tr(t, τ)x0 = −Tr(t, τ)AP (τ)x0, for all

t, τ ∈ J with τ ≤ t.

(d) The adjoint family {Tr(t, τ)∗ | t, τ ∈ J, t ≥ τ} is a backward evolution family
generated by P (t)A∗. Let x0 ∈ D(A∗). Then the map

(t, τ) 7→ P (τ)A∗Tr(t, τ)∗x0 (for (t, τ) ∈ J2 with τ ≤ t)

is continuous in X and, for τ ∈ J with τ 6= max J , the map Jτ 3 t 7→ Tr(t, τ)∗x0

is continuously differentiable in X with derivative Tr(t, τ)∗P (t)A∗x0.

In point (a) above, by the uniqueness of Tr we mean the following statement: Let
S be a family of operators in L(X) indexed by pairs (t, τ) ∈ J2 with τ ≤ t such that
the map (t, τ) 7→ S(t, τ)z is weakly continuous for every z ∈ X and such that either
(2.10) or (2.11) hold, with S in place of Tr and with weak integrals, for all x0 ∈ X
and t, τ ∈ J with τ ≤ t. Then S = Tr.

Proof. (a) It is known that there is an evolution family Tr on X satisfying (2.10)
and (2.11), see Theorem 9.2 and Corollary 9.4 of [3] (where the strong continuity
of Tr follows from the proof of [3, Theorem 9.2]). The uniqueness assertion in (a)
in the case of (2.10) is a direct consequence of Gronwall’s inequality applied to the
function φ(t) = ‖S(t, τ)x0 − Tr(t, τ)x0‖. In the case of the integral equation (2.11)
we need the following observation: Let T (t), t ∈ [τ, t], be bounded operators on X
such t 7→ T (t)z is weakly continuous for every z ∈ X. Then the map t 7→ ‖T (t)‖ is
lower semicontinuous and thus Lebesgue measurable. Using this for T (t) = S(t, τ)−
Tr(t, τ), we can derive from (2.11) that

‖T (t)x0‖ ≤
∫ t

τ

‖T (s)‖ · ‖P (s)−1Ṗ (s)V(s, τ)‖ · ‖x0‖ ds.

After taking here the supremum with respect to x0 in the unit ball of X, we can
again apply Gronwall’s lemma to deduce that T (t) = 0.

(b) The first differential equation in (b) follows from (2.11) and (2.9), and the
second one from (2.10) and the fact that A1(·) (defined in Remark 2.6) generates V.
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(d) By the backward analogue of Proposition 2.3, the operators P (t)A∗ (with
t ∈ J) generate a backward evolution family S on X with time interval J satisfying
the continuity and differentiablity assertions in (d), with Tr(t, τ)∗ replaced by S(t, τ).
Fix t, τ ∈ J with t > τ , and take w ∈ D(AP (τ)) and z ∈ D(A∗). We can differentiate

∂

∂s
〈S(t, s)∗V(s, τ)w, z〉 =

∂

∂s
〈V(s, τ)w,S(t, s)z〉

= 〈[AP (s)− P−1(s)Ṗ (s)]V(s, τ)w,S(t, s)z〉 − 〈V(s, τ)w,P (s)A∗S(t, s)z〉
= − 〈S(t, s)∗P−1(s)Ṗ (s)V(s, τ)w, z〉 ,

for all s ∈ [τ, t]. Integrating this equation from τ to t, we deduce that the operators
S(t, τ)∗ satisfy (2.11) with a weak integral for all x0 ∈ X and t, τ ∈ J with τ ≤ t.
Hence, Tr = S∗ due to the uniqueness part of statement (a).

(c) Let x0 ∈ X, z ∈ D(A∗), τ ∈ J and t ∈ Jτ . Then assertion (d) implies that

∂

∂t
〈Tr(t, τ)x0, z〉 =

∂

∂t
〈x0,Tr(t, τ)∗z〉 = 〈x0,Tr(t, τ)∗P (t)A∗z〉

= 〈AP (t)Tr(t, τ)x0, z〉 .

This means that x(t) = Tr(t, τ)x0 solves (2.3) in the space X−1, as claimed. Let
us denote by Xd

1 the space D(A∗) with the norm ‖z‖d1 = ‖(I − A∗)z‖. We know
from (d) that Tr(t, τ)∗D(A∗) ⊂ D(A∗). With the closed graph theorem we obtain
that Tr(t, τ)∗ ∈ L(Xd

1 ). According to (d), for every x0 ∈ Xd
1 , the function (t, τ) 7→

Tr(t, τ)∗x0 is continuous in Xd
1 and hence bounded on any compact set of pairs

(t, τ) with t ≥ τ . Using the uniform boundedness principle, we conclude that the
operators Tr(t, τ)∗ are locally uniformly bounded in L(Xd

1 ), and this implies that the
operators Tr(t, τ) are locally uniformly bounded in L(X−1). As above one further
deduces from assertion (d) that

∂

∂τ
〈Tr(t, τ)x0, z〉 =

∂

∂τ
〈x0,Tr(t, τ)∗z〉 = − 〈x0, P (τ)A∗Tr(t, τ)∗z〉

= −〈Tr(t, τ)AP (τ)x0, z〉 .

We next show that the map τ 7→ Tr(t, τ)AP (τ)x0 is continuous in X−1, for τ ∈ J
with τ ≤ t. Then the above weak derivative is in fact a strong derivative and
assertion (c) will be established. To verify the asserted continuity, we fix τ ∈ J with
τ ≤ t. Take xn ∈ D(AP (τ)) with xn → x0 in X and σ ∈ J with σ ≤ t and σ → τ .
Observe that the operators Tr(t, τ)AP (τ) and Tr(t, σ)AP (τ) are uniformly bounded
in L(X,X−1) by some constant c > 0. For each n, we have AP (τ)xn ∈ X and thus

lim sup
σ→τ

‖(Tr(t, τ)− Tr(t, σ))AP (τ)x0‖−1

≤ ‖Tr(t, τ)AP (τ)(x0 − xn)‖−1

+ lim sup
σ→τ

(
‖(Tr(t, τ)− Tr(t, σ))AP (s)xn‖−1 + ‖Tr(t, σ)AP (τ)(xn − x0)‖−1

)
≤ 2c‖x0 − xn‖+ lim sup

σ→τ
‖(Tr(t, τ)− Tr(t, σ))AP (τ)xn‖−1 = 2c‖x0 − xn‖ .
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Hence, ‖(Tr(t, τ)− Tr(t, σ))AP (τ)x0‖−1 → 0 as σ → τ . We finally estimate

‖Tr(t, τ)AP (τ)x0 − Tr(t, σ)AP (σ)x0‖−1

≤ ‖(Tr(t, τ)− Tr(t, σ))AP (τ)x0‖−1 + ‖Tr(t, σ)A(P (τ)x0 − P (σ)x0)‖−1 .

Since the operators Tr(t, σ)A : X → X−1 are uniformly bounded, both terms on the
right hand side tend to 0 as σ → τ .

Proposition 2.8. In addition to the standing assumptions of this section, we sup-
pose that P (·)z ∈ C2(J,X) for every z ∈ X. Let Tl and Tr be the evolution families
from Propositions 2.3 and 2.7, respectively. Then the following statements hold:

(a) The operators AP (t), with t ∈ J , generate the evolution family Tr. The map

(t, τ) 7→ AP (t)Tr(t, τ)[I − AP (τ)]−1z ( for t, τ ∈ J with τ ≤ t)

is continuous in X, for every z ∈ X.

(b) The operators A∗P (t)−1, with t ∈ J , generate the backward evolution family
{Tl(t, τ)∗ | t, τ ∈ J, t ≥ τ}. For every z ∈ X, the map

(t, τ) 7→ A∗P (τ)−1Tl(t, τ)∗[I − A∗P (t)−1]−1z ( for t, τ ∈ J with τ ≤ t)

is continuous in X. The operators Tl(t, τ) have locally uniformly bounded exten-
sions to operators in L(Xτ

−1,l, X
t
−1,l) denoted by the same symbols, for all t, τ ∈ J

with τ ≤ t.

Proof. (a) It suffices to prove assertion (a) for every compact interval [a, b] ⊂ J . Fix
such an interval [a, b]. As in the proof of Proposition 2.3, we see that the operators
P (t)A, t ∈ [a, b], are stable in the sense of Kato [9] and they generate an evolution
family T̃l satisfying the assertions of Proposition 2.3 with P (t)−1 replaced by P (t).
We have already encountered T̃l in Remark 2.6. Since ‖Ṗ (t)P (t)−1‖ is bounded on
[a, b] (see (2.6)), the family of perturbed operators

A2(t) = P (t)A+ Ṗ (t)P (t)−1 , t ∈ [a, b] ,

with domains D(A), is also stable in the sense of Kato, according to Proposition 4.3.3
of [21]. Since A2(·)z is continuously differentiable for each z ∈ D(A), the corollary
to Theorem 4.4.2 in [21] implies that A2(·) generates an evolution family S such
that the map (t, τ) 7→ AS(t, τ)z is continuous for a ≤ τ ≤ t ≤ b and for each
z ∈ D(A). Therefore the function s 7→ T̃l(t, s)S(s, τ)z is continuously differen-
tiable with derivative T̃l(t, s)Ṗ (s)P (s)−1S(s, τ)z for s ∈ [τ, t]. By integration and
approximation (using that D(A) is dense in X), we derive that for every x0 ∈ X,

S(t, τ)x0 = T̃l(t, τ)x0 +

∫ t

τ

T̃l(t, s)Ṗ (s)P (s)−1S(s, τ)x0 ds

if a ≤ τ ≤ t ≤ b. Consequently, the operators P (t)−1S(t, τ)P (τ) satisfy (2.10), so
that

Tr(t, τ) = P (t)−1S(t, τ)P (τ), a ≤ τ ≤ t ≤ b,

12



due to the uniqueness statement in Proposition 2.7(a). On the other hand, it is easy
to see that the evolution family P (t)−1S(t, τ)P (τ), with a ≤ τ ≤ t ≤ b, is generated
by AP (t), so that the first part of (a) is proved.

To prove the continuity of AP (t)Tr(t, τ)[I − AP (τ)]−1, we compute

AP (t)Tr(t, τ)[I − AP (τ)]−1 = AS(t, τ)(I − A)−1(I − A)P (τ)[I − AP (τ)]−1

= AS(t, τ)(I − A)−1
[
I + (P (τ)− I)[I − AP (τ)]−1

]
. (2.12)

From what we have shown earlier in this proof, we know that the map (t, τ) 7→
AS(t, τ)(I − A)−1x is continuous in X for a ≤ τ ≤ t ≤ b and for each x ∈ X.
Moreover, by the uniform boundedness theorem, the operators AS(t, τ)(I − A)−1,
where a ≤ τ ≤ t ≤ b, are uniformly bounded. The second factor in (2.12),
[I + (P (τ)− I)[I − AP (τ)]−1], is Lipschitz continuous in norm, according to Propo-
sition 2.4. Combining these facts, the desired continuity result follows.

(b) It is easy to see that P (·)−1z ∈ C2(J,X) for every z ∈ X. As in the proof of
assertion (a) one can show that the operators A∗P (t)−1, t ∈ J , generate a backward
evolution family T̂ with time interval J satisfying the continuity assertion in (b)
with Tl(t, τ)∗ replaced by T̂(t, τ). Fix t, τ ∈ J with t > τ , and take w ∈ D(A) and
z ∈ D(A∗P (t)−1). Then we obtain

∂

∂s
〈w,Tl(s, τ)∗T̂(t, s)z〉 =

∂

∂s
〈Tl(s, τ)w, T̂(t, s)z〉

= 〈P (s)−1ATl(s, τ)w, T̂(t, s)z〉 − 〈Tl(s, τ)w,A∗P (s)−1T̂(t, s)z〉 = 0 ,

for all s ∈ [τ, t]. This identity implies that Tl(t, τ)∗ = T̂(t, τ). The last assertion is
a consequence of the other results in (b).

3. The Lax-Phillips semigroup induced by a well-posed
system and its time-varying generalization

Starting from an arbitrary (time-invariant) well-posed linear system Σi, it is pos-
sible to define a strongly continuous semigroup which resembles those encountered
in the scattering theory of Lax and Phillips [11], and which contains all the infor-
mation about Σi. We recall this construction from Staffans and Weiss [20, Section
6]. Afterwards, we give the precise definition of a time-varying well-posed system
and we construct a Lax-Phillips type evolution family induced by such a system.

Let H be a Hilbert space. For any interval J we regard L2(J,H) as a subspace
of L2(R, H), by extending functions to be zero outside J . We denote by P+ the
projection from L2(R, H) to L2(R+, H) (by truncation) and similarly, P− is the
projection from L2(R, H) to L2(R−, H). For every t ∈ R, we designate by St the
operator of left shift by t on L2(R, H), i.e., Stf = f(· + t). We further set S±t =
P±St. For any open set Ω ⊂ Rn, we denote by H1(Ω, H) the space of all functions
f ∈ L2(Ω, H) whose distributional derivatives ∂

∂xk
f belong to L2(Ω, H) (1 ≤ k ≤ n).
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Like in Section 1, we assume that Σi is a well-posed linear system with input
space U , state space X and output space Y . The operators A,B,C and D are as
in (1.1) and the families of operators Ti, Φi, Ψi and Fi are as in (1.3).

Proposition 3.1. Let Y = L2((−∞, 0], Y ) and U = L2([0,∞), U). For all t ≥ 0
we define on Y ×X × U the operator Ti

t by

Ti
t =

S−t 0 0
0 I 0
0 0 S+

t

I Ψi
t Fit

0 Ti
t Φi

t

0 0 I

 .
Then Ti = (Ti

t)t≥0 is a strongly continuous semigroup. We denote the generator of
Ti by A. The domain of A is given by

D(A) =


y0

x0

u0

 ∈ H1((−∞, 0), Y )×X ×H1((0,∞), U)

∣∣∣∣∣ Ax0 +Bu0(0) ∈ X,

y0(0) = Cx0 +Du0(0)


and on D(A) the operator A is given by

A

y0

x0

u0

 =

 y′0
Ax0 +Bu0(0)

u′0

 . (3.1)

For the proof we refer to [20]. Ti is called the Lax-Phillips semigroup induced by
Σi. The intuitive interpretation of the space Y × X × U and of Ti

t acting on it is
that the first component is the past output, the second component is the current
state, while the third component is the future input. Indeed, let y0 ∈ Y , x0 ∈ X,
u0 ∈ U , and define ytxt

ut

 = Tt

y0

x0

u0

 for t ≥ 0 .

Let x and y be the state trajectory and the output function of Σi, i.e., the solutions
of (1.1) corresponding to the initial state x(0) = x0 and the input function u = u0.
We extend y to R by putting y(t) = y0(t) for t ≤ 0. Then

y(t− θ) = yt(−θ) , x(t) = xt , u(t+ θ) = ut(θ)

for all t ≥ 0 and for almost every θ ≥ 0.

Assume that x0 and u0 satisfy

u0 ∈ H1((0,∞), U) and Ax0 +Bu0(0) ∈ X.

Then for every t ≥ 0 we have

d

dt

∥∥∥∥∥∥
ytxt
ut

∥∥∥∥∥∥
2

= ‖y(t)‖2 +
d

dt
‖x(t)‖2 − ‖u(t)‖2 .
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Thus, Σi is scattering passive if and only if Ti is a contraction semigroup. Similarly,
Σi is scattering energy preserving if and only if Ti is an isometric semigroup.

In the sequel, we extend the concept of Lax-Phillips semigroup to the time-varying
case. For this, first we give the definition of a time-varying well-posed system. Let
J be a closed interval of non-zero length. For every t, τ ∈ R with τ ≤ t, we denote
by P(t, τ) the truncation operator to the interval [τ, t], which can be applied to
any function u defined on an interval containing [τ, t]. (The function P(t, τ)u is
considered to be zero outside the interval [τ, t].)

Definition 3.2. A time-varying well-posed system Σ with input space U , state space
X, output space Y and time interval J consists of four families of operators T, Φ, Ψ
and F, parametrized by pairs (t, τ) ∈ J2 with τ ≤ t, with the following properties:

• T is an evolution family on X with time interval J (as defined in Section 2).

• The operators Φ(t, τ) : L2(J, U)→ X, Ψ(t, τ) : X → L2(J, Y ),
F(t, τ) : L2(J, U)→ L2(J, Y ) are locally uniformly bounded.

• For all t, τ ∈ J with τ ≤ t, we have

Φ(t, τ) = Φ(t, τ)P(t, τ) , (3.2)

Ψ(t, τ) = P(t, τ)Ψ(t, τ), (3.3)

F(t, τ) = P(t, τ)F(t, τ) = F(t, τ)P(t, τ) . (3.4)

• For all t, s, τ ∈ J with τ ≤ s ≤ t, all u ∈ L2(J, U) and all x0 ∈ X, we have

Φ(t, τ)u = Φ(t, s)u+ T(t, s)Φ(s, τ)u, (3.5)

Ψ(t, τ)x0 = Ψ(t, s)T(s, τ)x0 + Ψ(s, τ)x0, (3.6)

F(t, τ)u = F(t, s)u+ F(s, τ)u+ Ψ(t, s)Φ(s, τ)u. (3.7)

This definition is slightly more general than the one in [16] since we have weakened
the uniform boundedness assumptions. Note that the operators T(t, τ) are also
locally uniformly bounded due to their strong continuity.

Remark 3.3. Suppose that the operator families T, Φ, Ψ and F in the above
definition are such that the operators

Ti
τ = T(θ + τ, θ), Φi

τ = Φ(θ + τ, θ)S−θ ,
Ψi
τ = SθΨ(θ + τ, θ), Fiτ = SθF(θ + τ, θ)S−θ ,

are independent of θ, for all pairs (θ + τ, θ) ∈ J2 with τ ≥ 0. Then the families Ti,
Φi, Ψi and Fi can be extended to all τ ≥ 0 in a natural way (which we do not detail),
and these extended families form a (time-invariant) well-posed linear system.

If T, Φ, Ψ and F form a well-posed time-varying system, then T is strongly
continuous by definition. We next want to show that also the families Φ, Ψ and F
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are strongly continuous as functions of (t, τ). To this aim, we first observe that the
identities (3.2), (3.3) and (3.4) imply that

Ψ(t, t) = 0, Φ(t, t) = 0 and F(t, t) = 0 for t ∈ J . (3.8)

Second, let t, s, τ ∈ J with τ ≤ s ≤ t. Then the formulas (3.3) and (3.6), respectively,
(3.4) and (3.7) yield

Ψ(s, τ) = P(s, τ)Ψ(t, τ) and F(s, τ) = P(s, τ)F(t, τ) . (3.9)

In the next lemma we prove the continuity of Ψ(t, τ) at points of the form (r, r).

Lemma 3.4. Let Σ be a time-varying well-posed system with time interval J . Let
x0 ∈ X and r ∈ J . Then

lim
(t,τ)→(r,r)

(t,τ)∈J2, t≥τ

Ψ(t, τ)x0 = 0 .

Proof. Fix r ∈ J . For any t, τ, θ ∈ J with θ ≤ τ ≤ t, we rewrite (3.6) in the form

Ψ(t, τ) = Ψ(t, θ)−Ψ(τ, θ)−Ψ(t, τ)[T(τ, θ)− I] . (3.10)

Due to the local uniform boundedness of Ψ, there is a constant k > 0 such that

‖Ψ(t, τ)‖ ≤ k ∀ t, τ ∈ [r − 1, r + 1] ∩ J .

Take ε > 0. Since the map (t, τ) 7→ T(t, τ)x0 is continuous and T(r, r)x0 = x0, there
exists a δ ∈ (0, 1) such that

‖T(τ, r − δ)x0 − x0‖ ≤
ε

2k
∀ τ ∈ [r − δ, r + δ] ∩ J .

Since f = Ψ(r + δ, r − δ)x0 ∈ L2([r − δ, r + δ], Y ), there exists a γ > 0 such that

t, τ ∈ [r − δ, r + δ] , t ≥ τ , t− τ ≤ γ =⇒
∫ t

τ

|f(s)|2 ds ≤ ε2

4
. (3.11)

For all (t, τ) as in (3.11), we can thus deduce from (3.9) that

‖Ψ(t, r − δ)x0 −Ψ(τ, r − δ)x0‖ ≤
ε

2
.

Equation (3.10) with θ = r − δ then implies that ‖Ψ(t, τ)x0‖ ≤ ε
2

+ ε
2

= ε for all
pairs (t, τ) as in (3.11). This fact shows the asserted convergence.

Proposition 3.5. Suppose that the operator families T, Φ, Ψ and F form a time-
varying well-posed system Σ with time interval J . Then the operators Ψ(t, τ), Φ(t, τ)
and F(t, τ) are strongly continuous with respect to (t, τ) ∈ J2 with τ ≤ t.
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Proof. The strong continuity of the map (t, τ) 7→ Φ(t, τ) was proved in [16, Propo-
sition 3.5]. (The proof given there also works in the present, slightly more general
situation.) In Lemma 3.4 we have shown that Ψ(t, τ) is strongly continuous as
(t, τ) → (r, r), where r ∈ J . Due to (3.9), the map t 7→ Ψ(t, τ) is strongly continu-
ous. Take t, τ, θ ∈ J with θ ≤ τ ≤ t. Equation (3.10) implies that

‖[Ψ(t, θ)−Ψ(t, τ)]x0‖ ≤ ‖Ψ(t, τ)‖ · ‖[T(τ, θ)− I]x0‖+ ‖Ψ(τ, θ)x0‖

for all x0 ∈ X. We can think of the situations when τ is fixed and θ→ τ , or when θ is
fixed and τ→ θ. In both cases, the above estimate shows that the strong continuity
of the map τ 7→ Ψ(t, τ) because of the local uniform boundednes of Ψ, the strong
continuity of T and Lemma 3.4.

Now take (t0, τ0) ∈ J2 with τ0 < t0 and let (tn, τn) be a sequence in J2 such that
(tn, τn) → (t0, τ0). Denote s = 1

2
(t0 + τ0). For large n we have τn < s < tn. From

(3.6) and the strong continuity of t 7→ Ψ(t, τ) and τ 7→ Ψ(t, τ), we then deduce that
Ψ(tn, τn)x0 → Ψ(t0, τ0)x0. Thus, the family Ψ is strongly continuous.

Let u ∈ L2(J, U) and let a, b ∈ J with a < b. For any t, τ ∈ [a, b] with τ ≤ t, the
local uniform boundedness of F yields that

‖F(t, τ)u‖ ≤ c ‖P(t, τ)u‖ , (3.12)

where c ≥ 0 is independent of t, τ and u. Arguing as in (3.11), we deduce from
(3.12) that the map (t, τ) 7→ F(t, τ), defined for (t, τ) ∈ [a, b]2 with t ≥ τ , is strongly
continuous at points (r, r) with r ∈ [a, b]. Since a and b were arbitrary, it follows
that F(t, τ) is strongly continuous at (r, r) for every r ∈ J .

The map t 7→ F(t, τ) is strongly continuous by (3.9). We want to show the strong
continuity of the map τ 7→ F(t, τ). To this end, we take τ, s, t ∈ J with τ ≤ s ≤ t.
Then formula (3.7) implies that

‖F(t, s)u− F(t, τ)u‖ ≤ ‖F(s, τ)u‖+ ‖Ψ(t, s)Φ(s, τ)u‖ .

This estimate combined with the strong continuity of Φ and F at (r, r) shows the
strong continuity of τ 7→ F(t, τ). Now the strong continuity of (t, τ) 7→ F(t, τ) at
points (t0, τ0) with t0 > τ0 follows from (3.7) and the results established so far.

Remark 3.6. Recall the notation Jτ = J∩ [τ,∞). If τ ∈ J with τ 6= max J , x0 ∈ X
and u ∈ L2(J, U), then the funcion x ∈ C(Jτ , X) defined by x(t) = T(t, τ)x0 +
Φ(t, τ)u is called the state trajectory of Σ corresponding to the initial time τ , the
initial state x0 and the input u. According to (3.9) there exists a unique y ∈
L2

loc(Jτ , Y ) such that
P(t, τ)y = Ψ(t, τ)x0 + F(t, τ)u

for every t ∈ Jτ . This y is called the output function of Σ corresponding to the
initial time τ , the initial state x0 and the input u.
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Proposition 3.7. Let T, Φ, Ψ and F be families of operators, indexed by pairs
(t, τ) ∈ J2 with τ ≤ t, such that

T(t, τ) : X → X, Φ(t, τ) : L2(J, U)→ X,

Ψ(t, τ) : X → L2(J, Y ) , F(t, τ) : L2(J, U)→ L2(J, Y ) ,

and (3.2)–(3.4) hold. Then these families form a time-varying well-posed system
with time interval J if and only if the family T of the operators

T(t, τ) =

S−t−τ S−t Ψ(t, τ) S−t F(t, τ)S−τ
0 T(t, τ) Φ(t, τ)S−τ
0 0 S+

t−τ

 , (t, τ) ∈ J2, τ ≤ t, (3.13)

is an evolution family on Y ×X × U with time interval J .

We call T the Lax-Phillips evolution family induced by Σ. Note that if (3.3) and
(3.4) hold, then in (3.13) the operators S−t−τ and S−t could be replaced with St−τ
and St without changing the operator T(t, τ). (Recall that we identified a function
defined on R− with its extension by 0 to R.)

Proof. Suppose that the four families form a time-varying well-posed system. Let
(t, τ) ∈ J2 with t ≥ τ . Then the operator T(t, τ) defined in (3.13) is a bounded
linear map on Y ×X ×U satisfying T(t, t) = I. Proposition 3.5 further implies the
strong continuity of (t, τ) 7→ T(t, τ). We show that property (a) from Definition 2.1
holds for the family T. Take t, s, τ ∈ J with t ≥ s ≥ τ . Employing property (a)
from Definition 2.1 for the evolution family T, we obtain

T(t, s)T(s, τ) =

S−t−τ T12 T13

0 T(t, τ) T23

0 0 S+
t−τ

 , (3.14)

where, using (3.3) and (3.6) for T12 , (3.4) and (3.7) for T13 , (3.2) and (3.5) for T23 ,

T12 = S−t−sS−s Ψ(s, τ) + S−t Ψ(t, s)T(s, τ) (3.15)

= S−t [Ψ(s, τ) + Ψ(t, s)T(s, τ)]

= S−t Ψ(t, τ) ,

T13 = S−t−sS−s F(s, τ)S−τ + S−t Ψ(t, s)Φ(s, τ)S−τ + S−t F(t, s)S−sS+
s−τ (3.16)

= S−t [F(s, τ) + Ψ(t, s)Φ(s, τ) + F(t, s)]S−τ
= S−t F(t, τ)S−τ ,

T23 = T(t, s)Φ(s, τ)S−τ + Φ(t, s)S−sS+
s−τ (3.17)

= [T(t, s)Φ(s, τ) + Φ(t, s)]S−τ
= Φ(t, τ)S−τ .

Substituting these expressions for T12, T13 and T23 into (3.14), we conclude that
T(t, s)T(s, τ) = T(t, τ), as expected.
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Conversely, suppose that T is an evolution family on Y ×X ×U . This fact easily
implies that T(t, t) = I and (t, τ) 7→ T(t, τ) is strongly continuous for (t, τ) ∈ J2

with t ≥ τ . Since T(t, τ) is locally uniformly bounded, we can deduce the locally
uniform boundedness of the operators Φ(t, τ), Ψ(t, τ) and F(t, τ) using (3.3) and
(3.4). Take t, s, τ ∈ J with t ≥ s ≥ τ . By property (a) of Definition 2.1 for T, the
expression in (3.13) is equal to

T(t, s)T(s, τ) =

S−t−τ T12 T13

0 T(t, s)T(s, τ) T23

0 0 S+
t−τ

 ,
where T12 , T13 , and T23 are given by (3.15), (3.16) and (3.17), respectively. Employ-
ing (3.2)–(3.4) and arguing as in the first part of the proof, we can then show that
T is an evolution family and that (3.5)–(3.7) hold.

4. Time-varying multiplicative perturbations of
well-posed systems

Notation and standing assumptions. In this section, Σi is a time-invariant
scattering passive system with input space U , state space X and output space Y .
This system can be described in terms of the operators A, B, C and D as in (1.1).
Recall from Section 1 that Z = D(A) + (βI − A)−1BU , which is a Hilbert space
with a certain norm. (Thus, if x0 ∈ X and v ∈ U are such that Ax0 + Bv ∈ X,
then x0 ∈ Z.) We know from the theory of well-posed linear systems (see [20]) that
C ∈ L(Z, Y ). J is a closed interval of non-zero length and J0 is the interior of J .
The function P : J → L(X) satisfies the assumptions in (2.1). For τ ∈ J , we set
Jτ = J ∩ [τ,∞). As in the previous section, P(t, τ) is the truncation operator to the
interval [τ, t]. We denote by Πk the projection onto the k-th factor of the product
of n Hilbert spaces.

We shall construct the time-varying well-posed systems Σl and Σr corresponding
to the equations (1.4) and (1.5), respectively. The families Tj, Φj, Ψj and Fj forming
the systems Σj (j = l, r) provide the state trajectory and the output function of the
system starting from any initial time τ ∈ J (if the initial state x(τ) and the input
function u are given). Therefore, we expect to find solutions of (1.4) and (1.5) on
intervals of the type Jτ . These solutions do not need to have an extension to J .
Similarly to the time-invariant case, recalled in Section 1, we only expect to have
classical solutions on Jτ for pairs (x(τ), u) in a dense subspace of X × L2(J, U).
These classical solutions will then determine the operator families of the systems Σl

or Σr by continuous extension.

We start by looking at the first equation in (1.4), which is

P (t)ẋ(t) = Ax(t) +Bu(t) . (4.1)

A classical solution of (4.1) on an interval Jτ is a function

x ∈ C1(Jτ , X)
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such that (4.1) holds for all t ∈ Jτ . We claim that for such an x that corresponds to
an input function u ∈ C(J, U), we have x ∈ C(Jτ , Z). To see this, choose β ∈ ρ(A),
rewrite (4.1) as (βI − A)x(t) = βx(t)− P (t)ẋ(t) + Bu(t) and apply (βI − A)−1 to
both sides, using that (βI − A)−1B ∈ L(X,Z). Thus the right-hand side of the
second equation in (1.4) is well defined and determines the output y ∈ C(Jτ , Y ).

Next we introduce the similar concept for the system of equations (1.5). We repeat
the first equation of (1.5) below:

ẋ(t) = AP (t)x(t) +Bu(t) . (4.2)

A classical solution of (4.2) on Jτ is a function

x ∈ C1(Jτ , X)

such that (4.2) holds for all t ∈ Jτ . By a similar argument as above, if x is such a
solution corresponding to an input u ∈ C(J, U), then P (·)x(·) ∈ C(Jτ , Z) and hence
the second equation in (1.5) determines y ∈ C(Jτ , Y ).

In order to construct the systems Σl and Σr, we use the generator A of the Lax-
Phillips semigroup on Y×X×U , introduced in Proposition 3.1, and the Lax-Phillips
evolution family, introduced in Proposition 3.7. We further define

P(t) =

I 0 0
0 P (t) 0
0 0 I

 for every t ∈ J. (4.3)

On Y ×X × U we consider for each t ∈ J the operators

P(t)−1A

y0

x0

u0

 =

 y′0
P (t)−1(Ax0 +Bu0(0))

u′0

 ,
AP(t)

y0

x0

u0

 =

 y′0
AP (t)x0 +Bu0(0)

u′0

 ,
defined on the domains D(P(t)−1A(t)) = D(A) and

D(AP(t)) = {
[
y0
x0
u0

]
∈ H1((−∞, 0), Y )×X ×H1((0,∞), U) |

AP (t)x0 +Bu0(0) ∈ X, y0(0) = CP (t)x0 +Du0(0)} .

For each τ ∈ J we set V (τ) = {(x0, u) ∈ X ×H1(J0, U) | Ax0 +Bu(τ) ∈ X}.

Theorem 4.1. (a) There exists a time-varying well-posed system Σl with time in-
terval J consisting of operator families Tl, Φl, Ψl and Fl such that the Lax-Phillips
evolution family Tl induced by Σl is generated by P(·)−1A. Let τ ∈ J with τ 6= max J
and (x(τ), u) ∈ V (τ). Then (4.1) has a unique classical solution given by

x(t) = Tl(t, τ)x(τ) + Φl(t, τ)u for all t ∈ Jτ ,
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and we have x ∈ C(Jτ , Z). Moreover, the function y from (1.4) satisfies

P(t, τ)y = Ψl(t, τ)x(τ) + Fl(t, τ)u for all t ∈ Jτ ,

so that it is the output function of Σl corresponding to τ , x(τ) and u (see Remark
3.6). We have P(t, τ)y ∈ H1((τ, t), Y ) for each t ∈ Jτ . The balance inequality

d

dt
〈P (t)x(t), x(t)〉 ≤ ‖u(t)‖2 − ‖y(t)‖2 + 〈Ṗ (t)x(t), x(t)〉 (4.4)

holds for every t ∈ Jτ . If the original time-invariant system Σi is energy preserving,
then we have equality in (4.4).

(b) Assume in addition that P (·)z ∈ C2(J,X) for every z ∈ X. Then there
exists a time-varying well-posed system Σr with time interval J consisting of opera-
tor families Tr, Φr, Ψr and Fr such that the Lax-Phillips evolution family Tr induced
by Σr is generated by AP(·). Let τ ∈ J with τ 6= max J and (P (τ)x(τ), u) ∈ V (τ).
Then (4.2) has a unique classical solution given by

x(t) = Tr(t, τ)x(τ) + Φr(t, τ)u for all t ∈ Jτ ,

and we have P (·)x(·) ∈ C(Jτ , Z). Moreover, the function y from (1.5) satisfies

P(t, τ)y = Ψr(t, τ)x(τ) + Fr(t, τ)u for all t ∈ Jτ ,

so that it is the output function of Σr corresponding to τ , x(τ) and u. We have
P(t, τ)y ∈ H1((τ, t), Y ) for each t ∈ Jτ . The balance inequality (4.4) holds for every
t ∈ Jτ . If Σi is energy preserving, then we have equality in (4.4).

Proof. We have seen in Section 3 that the operator A is m-dissipative. Clearly, P

satisfies (2.1), and P(·)w0 ∈ C2(J,Y × X × U) for every w0 ∈ Y × X × U in the
case of assertion (b). Propositions 2.3 and 2.8 thus show that P(·)−1A and AP(·)
generate evolution families Tl and Tr on Y ×X × U , respectively.

The second step is to show that for suitable x(τ) and u, the equations (4.1) and
(4.2) have classical solutions, and the corresponding output functions y from (1.4)
and (1.5) are indeed well defined and locally in H1. For this, we take τ ∈ J such
that τ 6= max J and we take x(τ) ∈ X and u ∈ H1(J0, U) such that they satisfy
the conditions in the theorem: if j = l then (x(τ), u) ∈ V (τ), while if j = r then
(P (τ)x(τ), u) ∈ V (τ). Take uτ ∈ H1((0,∞), U) such that uτ (t − τ) = u(t) for
all t ∈ Jτ . Finally, take yτ ∈ H1((−∞, 0), Y ) such that yτ (0) = Cx(τ) + Du(τ)
if j = l, while yτ (0) = CP (τ)x(τ) + Du(τ) if j = r. Then it is easy to see that

w(τ) =
[ yτ
x(τ)
uτ

]
∈ D(A) if j = l and w(τ) ∈ D(AP(τ)) if j = r. Define

w(t) =
[ yt
x(t)
ut

]
= Tj(t, τ)w(τ) (4.5)

for t ∈ Jτ and j = l, r. Temporarily, we set A(t) = P(t)−1A if j = l and A(t) =
AP(t) if j = r. According to what we have shown in the first step, A(·) generates
Tj. Observe that w(τ) ∈ D(A(τ)) and this implies

w ∈ C1(Jτ ,Y ×X × U), w(t) ∈ D(A(t)), ẇ(t) = A(t)w(t) (4.6)
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for t ∈ Jτ . In particular, x(·) ∈ C1(Jτ , X) and the map t 7→ yt is in C1(Jτ ,Y). We
set y(t) = yt(0) and ŷ(t, θ) = yt(θ) for t ∈ Jτ and θ ≤ 0. The relations (4.6) imply
that ŷ ∈ H1(J0

τ × (−∞, 0), Y ) (J0
τ is the interior of Jτ ) and ∂

∂t
ŷ = ∂

∂θ
ŷ, so that ŷ is

constant along the lines {(t+ r, θ − r) | r ∈ R} ∩ (Jτ × R−). Therefore

yt(θ) = ŷ(t, θ) =

{
ŷ(τ, θ + t− τ) = yτ (θ + t− τ), θ ≤ τ − t,
ŷ(t+ θ, 0) = y(t+ θ), τ − t ≤ θ ≤ 0 ,

(4.7)

where t ∈ Jτ . Similarly, we see that

ut(θ) = uτ (θ + t− τ) for t ∈ Jτ and θ ≥ 0 . (4.8)

which implies that ut(0) = u(t). So (4.6) implies that x, y and u satisfy (1.4) if j = l
and (1.5) if j = r. From the differential equations in (1.4) and (1.5) we conclude
that x(·) ∈ C(Jτ , Z) and P (·)x(·) ∈ C(Jτ , Z), respectively. The middle part of (4.6)
with (4.7) imply that P(t, τ)y ∈ H1((τ, t), Y ) for each t ∈ Jτ .

The third step is to prove the inequality (4.4). First we consider j = l. Let
τ, x(τ), u and y be as in the second step for j = l and let t ∈ Jτ . From (4.1) we
have

d

dt
〈P (t)x(t), x(t)〉 = 2 Re 〈P (t)x(t), ẋ(t)〉+ 〈Ṗ (t)x(t), x(t)〉

= 2 Re 〈x(t), Ax(t) +Bu(t)〉+ 〈Ṗ (t)x(t), x(t)〉 .

Due to Proposition 5.2 of [12] and the second line in (1.4), we have

2 Re 〈x(t), Ax(t) +Bu(t)〉 ≤ ‖u(t)‖2 − ‖Cx(t) +Du(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 ,

so that (4.4) follows for Σl. In the case that Σi is energy preserving, we obtain the
equality in (4.4) in the same way using Theorem 3.2 of [12] (instead of Proposition
5.2 in [12]). Now consider j = r, let τ, x(τ), u and y be as in the second step for
j = r and let t ∈ Jτ . From (4.2) we have

d

dt
〈P (t)x(t), x(t)〉 = 2 Re 〈P (t)x(t), AP (t)x(t) +Bu(t)〉+ 〈Ṗ (t)x(t), x(t)〉 .

Considering x̃(t) = P (t)x(t) instead of x(t), we can argue as above and deduce (4.4)
as well as the corresponding equality also in this case.

The fourth step is to prove the uniqueness of the classical solutions of (4.1) and
(4.2). Integrating (4.4), we derive

‖x(t)‖2 +

∫ t

τ

‖y(s)‖2 ds ≤ ‖x(τ)‖2 +

∫ t

τ

‖u(s)‖2 ds+

∫ t

τ

〈Ṗ (s)x(s), x(s)〉 ds (4.9)

for (x(τ), u) ∈ V (τ) in the case of Σl and for (P (τ)x(τ), u) ∈ V (τ) in the case of
Σr. Denoting φ(t) = ‖x(t)‖2 +

∫ t
τ
‖y(s)‖2 ds, the estimate (4.9) implies

φ(t) ≤ ‖x(τ)‖2 +

∫ t

τ

‖u(s)‖2 ds+ L(t)

∫ t

τ

φ(s) ds,
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where L(t) = maxs∈[τ,t] ‖Ṗ (s)‖. Applying here Gronwall’s inequality thus yields

‖x(t)‖2 +

∫ t

τ

‖y(s)‖2 ds ≤ ω(t− τ)
(
‖x(τ)‖2 +

∫ t

τ

‖u(s)‖2 ds
)

(4.10)

for a nondecreasing function ω : [0,∞) → [1,∞). This estimate shows the unique-
ness of classical solutions to (1.4) and (1.5).

The fifth step is to introduce the time-varying well-posed systems Σl and Σr and
to show that indeed the solutions of (1.4) and (1.5) are state trajectories and output
functions of these systems. Let τ ∈ J with τ 6= max J and let the functions u, x
and y (defined on Jτ ) be as in the second step. It is clear from the arguments in the
second step that the functions x and y depend linearly on (x(τ), u). Thus, we can
define the operators

Σj(t, τ)

[
x(τ)
u

]
=

[
x(t)

P(t, τ)y

]
,

defined for t, τ ∈ J with t ≥ τ , (x(τ), u) ∈ V (τ) if j = l and (P (τ)x(τ), u) ∈ V (τ)
if j = r. The inequality (4.10) allows us to extend the family Σj(t, τ) to locally
uniformly bounded operators from X ×L2(J, U) to X ×L2(J, Y ). We introduce the
constituent blocks of Σj, which are the families of operators

Tj(t, τ) : X → X; Tj(t, τ)z = Π1Σj(t, τ) [ z0 ] ,

Φj(t, τ) : L2(J, U)→ X; Φj(t, τ)u = Π1Σj(t, τ) [ 0
u ] ,

Ψj(t, τ) : X → L2(J, Y ); Ψj(t, τ)z = Π2Σj(t, τ) [ z0 ] ,

Fj(t, τ) : L2(J, U)→ L2(J, Y ); Fj(t, τ)u = Π2Σj(t, τ) [ 0
u ] ,

for j = l, r and t, τ ∈ J with t ≥ τ . Consequently, the solutions x and y of (1.4)
and (1.5) are given by

x(t) = Tj(t, τ)x(τ) + Φj(t, τ)u, P(t, τ)y = Ψj(t, τ)x(τ) + Fj(t, τ)u

for (x(τ), u) ∈ V (τ) and j = l, respectively, for (P (τ)x(τ), u) ∈ V (τ) and j = r.
Combining these equalities with (4.5), (4.7), (4.8) and recalling that u = S−τuτ , we
infer that

Tj(t, τ) =

S−t−τ S−t Ψj(t, τ) S−t Fj(t, τ)S−τ
0 Tj(t, τ) Φj(t, τ)S−τ
0 0 S+

t−τ


for j = l, r and t, τ ∈ J with t ≥ τ . The definition of Σj(t, τ) implies that the
families Φj, Ψj, and Fj satisfy the relations (3.2), (3.3) and (3.4), respectively. So
Proposition 3.7 shows that the families Tj, Φj, Ψj, and Fj (j = l, r) form time-
varying well-posed systems Σj inducing the Lax-Phillips evolution families Tj.

Now we derive representation formulas for the sytems Σl and Σr similar to those
known for time invariant systems. Recall from Section 2 that the extrapolation
spaces of P (t)−1A and AP (t) are denoted by X t

−1,l and X t
−1,r respectively, and that

X t
−1,r is isomorphic to (and identified with) X−1 , the extrapolation space of A.
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Proposition 4.2. In addition to the standing assumptions of this section, we assume
that P (·)z ∈ C2(J,X) for every z ∈ X. Then the systems Σl and Σr from Theorem
4.1 have the following properties, where t, τ ∈ J with t ≥ τ .

(a) The evolution family Tl is generated by P (·)−1A and the evolution family Tr is
generated by AP (·). These evolution families satisfy the assertions of Proposi-
tions 2.3, 2.7 and 2.8. Also, the operators P (t)−1 extend to isomorphisms from
X−1 to X t

−1,l which are locally uniformly bounded together with their inverses.

(b) For every u ∈ L2(J, U) we have

Φl(t, τ)u =

∫ t

τ

Tl(t, s)P (s)−1Bu(s) ds, Φr(t, τ)u =

∫ t

τ

Tr(t, s)Bu(s) ds,

where the integrals are defined in X t
−1,l and X t

−1,r , respectively.

(c) If z ∈ D(A), then [Ψl(t, τ)z](s) = CTl(s, τ)z, for all s ∈ [τ, t]. If z ∈ D(AP (τ)),
then [Ψr(t, τ)z](s) = CP (s)Tr(s, τ)z, for all s ∈ [τ, t].

(d) For every u ∈ H1(J0, U) with u(τ) = 0 and s ∈ [τ, t], we have

[Fl(t, τ)u](s) = C

∫ s

τ

Tl(s, σ)P (σ)−1Bu(σ) dσ +Du(s),

[Fr(t, τ)u](s) = CP (s)

∫ s

τ

Tr(s, σ)Bu(σ) dσ +Du(s),

where the integrals take values in Z and P (s)−1Z, respectively.

Proof. (a) The first part of assertion (a) follows from Propositions 2.3, 2.7 and 2.8
combined with Theorem 4.1 for the case u = 0. According to Proposition 2.4 the
operator P (t)−A has the locally uniformly bounded inverse [I −P (t)−1A]−1P (t)−1

for t ∈ J . Using this fact, for all z ∈ X we estimate

‖(I − P (t)−1A)−1P (t)−1z‖ = ‖(P (t)− A)−1z‖
= ‖(P (t)− A)−1[I − P (t) + P (t)− A](I − A)−1z‖
= ‖[I + (P (t)− A)−1(I − P (t))](I − A)−1z‖
≤ c(t)‖z‖X−1 ,

where c(·) is bounded on compact subsets of J . This means that P (t)−1 has a locally
uniformly bounded extension P (t)−1 : X−1 → X t

−1,l. A similar argument works to
show that P (t) : X t

−1,l → X−1 with a locally uniformly bounded norm.

(b) Fix t, τ ∈ J with t > τ . We first consider the case j = l. Take xn ∈ D(A)
converging to x0 in X as n→∞. Then for every s ∈ [τ, t] we have

∂

∂s
Tl(t, s)xn = − Tl(t, s)P (s)−1Axn =: zn ,

due to Proposition 2.3. By the last part of (a), combined with the last sentence in
Proposition 2.8, the vectors zn converge to −Tl(t, s)P (s)−1Ax0 in X t

−1,l as n→∞,
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uniformly with respect to s ∈ [τ, t]. As a result, the map [τ, t] 3 s 7→ Tl(t, s)x0

is continuously differentiable in X t
−1,l with derivative −Tl(t, s)P (s)−1Ax0. For

u ∈ H1(J0, U) with u(τ) = 0, Theorem 4.1 gives the solution Φl(·, τ)u = x(·) ∈
C1(Jτ , X) of (4.1) with x(τ) = 0. Then we can differentiate

∂

∂s
Tl(t, s)x(s) = −Tl(t, s)P (s)−1Ax(s) + Tl(t, s)[P (s)−1Ax(s) + P (s)−1Bu(s)]

= Tl(t, s)P (s)−1Bu(s)

in X t
−1,l. By integration, we derive

Φl(t, τ)u = x(t) =

∫ t

τ

Tl(t, s)P (s)−1Bu(s) ds.

The case u ∈ L2(J, U) can now be treated by approximation using again part (a).

For the case j = r, take u ∈ H1(J0, U) with u(τ) = 0. According to Theorem
4.1 the solution of (4.2) with x(τ) = 0 is Φr(·, τ)u = x(·) ∈ C1(Jτ , X). Using
Proposition 2.7, we can differentiate

∂

∂s
Tr(t, s)x(s) = − Tr(t, s)AP (s)x(s) + Tr(t, s)[AP (s)x(s) +Bu(s)]

= Tr(t, s)Bu(s)

in X−1. The asserted formula for Φr(t, τ)u follows by integration. We then obtain
the result for u ∈ L2(J, U) by approximation.

Assertions (c) and (d) follow from Theorem 4.1 and parts (a) and (b) above.

If P (·)z ∈ C1(J,X) for every z ∈ X, we can still construct a time-varying well-
posed system Σr related to (1.5).

Proposition 4.3. Under the standing assumptions of this section, there exists a
time-varying well-posed system Σr with time interval J consisting of operator fami-
lies Tr, Φr, Ψr and Fr such that the following assertions hold. In these assertions,
τ ∈ J with τ 6= max J .

(a) The evolution family Tr satisfies the assertions of Proposition 2.7. Let x(τ) ∈
X and u ∈ L2(Jτ , U). Then the function

t 7→ x(t) = Tr(t, τ)x(τ) + Φr(t, τ)u (for t ∈ J)

belongs to H1((τ, b), X−1) for every b ∈ J with b > τ , and it satisfies (4.2) in X−1

for almost all t ∈ Jτ .

(b) For every u ∈ L2(J, U) we have (using integration in X−1)

Φr(t, τ)u =

∫ t

τ

Tr(t, s)Bu(s) ds.
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(c) For x(τ) ∈ X and u ∈ L2(Jτ , U), we define the output y : Jτ → Y of (1.5)
by setting P(t, τ)y = Ψr(t, τ)x(τ) + Fr(t, τ)u on [τ, t] for t ∈ Jτ . Then we have the
balance inequality

〈P (t)x(t), x(t)〉+

∫ t

τ

‖y(s)‖2 ds ≤ 〈P (τ)x(τ), x(τ)〉+

∫ t

τ

‖u(s)‖2 ds (4.11)

+

∫ t

τ

〈Ṗ (s)x(s), x(s)〉 ds

for every t ∈ Jτ . If the system Σi is energy preserving, then the map t 7→
〈P (t)x(t), x(t)〉 is differentiable a.e. and (4.4) holds with equality for a.e. t ∈ Jτ .

Proof. (a) We proceed similarly as in Remark 2.6 and Proposition 2.7. There exists
a time-varying well-posed system Σ̃l consisting of operator families T̃l, Φ̃l, Ψ̃l and F̃l
which satisfy the assertions of Theorem 4.1(a) for the system Σi and the operators
P (t)−1. In particular, the corresponding Lax-Phillips evolution family T̃l is gener-
ated by P(·)A, where we use the same notation as in the proof of Theorem 4.1. Let
w0 ∈ Y×X×U and t, s, τ ∈ Jτ with t ≥ s ≥ τ . We set V(t, τ) = P(t)−1T̃l(t, τ)P(τ).
By Proposition 2.7 there is an evolution family Tr on Y ×X × U such that

Tr(t, τ)w0 = V(t, τ)w0 +

∫ t

τ

V(t, s)P(s)−1Ṗ(s)Tr(s, τ)w0 ds, (4.12)

Tr(t, τ)w0 = V(t, τ)w0 +

∫ t

τ

Tr(t, s)P(s)−1Ṗ(s)V(s, τ)w0 ds. (4.13)

Taking into account (3.13) and (4.3), we obtain

V(t, s) =

S−t−s S−t Ψ̃l(t, s)P (s) S−t F̃l(t, s)S−s
0 P (t)−1T̃l(t, s)P (s) P (t)−1Φ̃l(t, s)S−s
0 0 S+

t−s

 , (4.14)

V(t, s)P(s)−1Ṗ(s) =

0 S−t Ψ̃l(t, s)Ṗ (s) 0

0 P (t)−1T̃l(t, s)Ṗ (s) 0
0 0 0

 . (4.15)

Here we can replace S−t with St since (3.3) and (3.4) hold for Σ̃l. Equation (4.12)
now implies that the third line of Tr(t, τ) is given by

[
0 0 S+

t−τ
]

and that

[Tr(t, τ)]21 =

∫ t

τ

P (t)−1T̃l(t, s)Ṗ (s)[Tr(s, τ)]21 ds.

(Here and below the integrals are understood in a strong sense, and [Tr(t, τ)]jk
denotes the component of Tr(t, τ) in the jth line and kth row.) From Gronwall’s
inequality we deduce that [Tr(t, τ)]21 = 0. Hence, [Tr(t, τ)]11 = S−t−τ by (4.12). On
the other hand, there is a unique evolution family Tr on X satisfying the assertions
of Proposition 2.7. Due to (4.12), (4.14) and (4.15), the components [Tr(t, τ)]22
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satisfy (2.10) for all x0 ∈ X and t, τ ∈ J with t ≥ τ . The uniqueness part of Propo-
sition 2.7(a) thus implies that [Tr(t, τ)]22 = Tr(t, τ). To determine the remaining
components of Tr(t, τ), we set

Ψr(t, τ) = S−t[Tr(t, τ)]12 , Fr(t, τ) = S−t[Tr(t, τ)]13Sτ , Φr(t, τ) = [Tr(t, τ)]23Sτ .

We want to check that the operator families Tr, Φr, Ψr and Fr form a time-varying
well-posed system Σr. By Proposition 3.7 we have to verify the identities (3.2), (3.3)
and (3.4) for these operators. At first, equations (4.12), (4.14) and (4.15) yield

Ψr(t, τ) = Ψ̃l(t, τ)P (τ) +

∫ t

τ

Ψ̃l(t, s)Ṗ (s)Tr(s, τ) ds. (4.16)

Since Ψ̃l satisfies (3.3), we have

P(t, τ)Ψ̃l(t, s) = P(t, τ)P(t, s)Ψ̃l(t, s) = P(t, s)Ψ̃l(t, s) = Ψ̃l(t, s) .

Equation (4.16) now implies the identity P(t, τ)Ψr(t, τ) = Ψr(t, τ), i.e., (3.3) for Ψr

holds. Second, we note that

Tr(t, s)P(s)−1Ṗ(s) =

0 S−t Ψr(t, s)P (s)−1Ṗ (s) 0

0 Tr(t, s)P (s)−1Ṗ (s) 0
0 0 0

 ,
so that (4.13) and (4.14) yield

Φr(t, τ) = P (t)−1Φ̃l(t, τ) +

∫ t

τ

Tr(t, s)P (s)−1Ṗ (s)P (s)−1Φ̃l(s, τ) ds. (4.17)

As above, we first deduce the equality Φ̃l(s, τ)P(t, τ) = Φ̃l(s, τ) from (3.2) for Φ̃l

and then (3.2) for Φr from (4.17). Finally, (4.12), (4.14) and (4.15) yield that

Fr(t, τ) = F̃l(t, τ) +

∫ t

τ

Ψ̃l(t, s)Ṗ (s)Φr(s, τ) ds.

Arguing as above and using Φr(s, τ)P(t, τ) = Φr(s, τ), we obtain (3.4) for Fr. Con-
sequently, Tr, Φr, Ψr and Fr form a time-varying well-posed system Σr.

Let τ ∈ J with τ 6= max J , x(τ) ∈ X and t ∈ Jτ . Due to Proposition 2.7,
the function t 7→ Tr(t, τ)x(τ) is continuously differentiable in X−1 with derivative
AP (t)Tr(t, τ)x0. For (0, u) ∈ V (τ), Theorem 4.1(a) shows that the function t 7→
P (t)−1Φ̃l(t, τ)u is continuously differentiable in X with the derivative

∂

∂t
P (t)−1Φ̃l(t, τ)u = − P (t)−1Ṗ (t)P (t)−1Φ̃l(t, τ)u+ AΦ̃l(t, τ)u+Bu(t) .

Equation (4.17) then implies that the map t 7→ Φr(t, τ)u is continuously differen-
tiable in X−1 with the derivative AP (·)Φr(·, τ)u + Bu. Now, let u ∈ L2(J, U). By
approximation, we see that the map t 7→ Φr(t, τ)u belongs to H1((τ, b), X−1) for
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every b ∈ J with b > τ and that its derivative is equal to AP (·)Φr(·, τ)u + Bu in
L2((τ, b), X−1). Summing up, we have established all assertions in (a).

(b) Assertion (b) can be proved as the corresponding identity in Proposition 4.2(b)
using Proposition 2.7 and part (a) of the present proof.

(c) We show the balance inequality by an approximation argument. Fix an interval
[a, b] ⊂ J0. Let τ ∈ [a, b) and (P (τ)x(τ), u) ∈ V (τ). By a standard mollification
procedure one constructs operators Pn(t) for all t ∈ [a, b] and n ∈ N such that
(2.1) holds on [a, b], Pn(·)x0 ∈ C2([a, b], X), and Pn(·)x0 → P (·)x0 in C1([a, b], X)
as n → ∞ for every x0 ∈ X. Moreover, the operators Pn(t), Pn(t)−1 and Ṗn(t) are
uniformly bounded for n ∈ N and t ∈ [a, b]. We set xn(τ) = Pn(τ)−1P (τ)x(τ). Then
xn(τ) → x(τ) in X as n → ∞ and (Pn(τ)xn(τ), u) ∈ V (τ). By Theorem 4.1(b)
there are classical solutions xn and yn of (1.5) with P replaced by Pn and

〈Pn(t)xn(t), xn(t)〉+

∫ t

τ

‖yn(s)‖2 ds ≤ 〈Pn(τ)xn(τ), xn(τ)〉+

∫ t

τ

‖u(s)‖2 ds (4.18)

+

∫ t

τ

〈Ṗn(s)xn(s), xn(s)〉 ds

for every t ∈ [τ, b]. We construct evolution families T̃n
l , Vn and Tn

r as in part (a)
of the proof, where we replace P with Pn and define Pn corresponding to Pn as
in (4.3). In view of the proof of Proposition 2.3 and the results cited there, the
operators T̃n

l (t, τ) are uniformly bounded for n ∈ N and t, τ ∈ [a, b] with t ≥ τ . Let
w0 ∈ D(A). For t, s ∈ [a, b] with t ≥ s we have

d

ds
T̃n
l (t, s)T̃l(s, τ)w0 = T̃n

l (t, s)(P(s)−Pn(s))AT̃l(s, τ)w0 .

Integrating this identity, we derive

T̃l(t, τ)w0 − T̃n
l (t, τ)w0 =

∫ t

τ

T̃n
l (t, s)(P(s)−Pn(s))AT̃l(s, τ)w0 ds

for every t ∈ [τ, b]. It is now straightforward to see that T̃n
l (t, τ) converges strongly

to T̃l(t, τ) as n→∞ for all τ, t ∈ [a, b] with t ≥ τ , and so Vn(t, τ) converges strongly
to V(t, τ). We observe that equation (4.12) holds with P, V and Tr replaced by
Pn, Vn and Tn

r , respectively. Combining this quation with Gronwall’s inequality, we
then deduce that the operators Tn

r (t, τ) converge strongly to Tr(t, τ) as n→∞ for
all τ, t ∈ [a, b] with t ≥ τ . Hence, xn(t)→ x(t) = Tr(t, τ)x(τ) + Φr(t, τ)u in X and
P(t, τ)yn → P(t, τ)y = Ψr(t, τ)x(τ)+Fr(t, τ)u in L2([τ, t], Y ) for all t ∈ [τ, b]. So the
balance inquality (4.11) for (P (τ)x(τ), u) ∈ V (τ) and t ∈ [τ, b] follows from (4.18).
By approximation, one can extend (4.11) to the case of x(τ) ∈ X and u ∈ L2(J, U),
still for τ, t ∈ [a, b] with t ≥ τ . Here a, b ∈ J0 with b > a are arbitrary, so that by
continuity (4.11) holds for all τ, t ∈ J with t ≥ τ . If Σi is energy preserving, we have
equality in (4.18) and we can then deduce also (4.11) with an equality sign for all
t ∈ Jτ , x(τ) ∈ X and u ∈ L2(J, U). This fact implies the final assertion in (b).
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5. An example with the wave equation

In this section we investigate a wave equation with control and observation at the
boundary and with time-dependent coefficients in the differential equation. The cor-
responding time-invariant system was studied in Tucsnak and Weiss [22, Section 7]
(see also [23, Section 7.5]). We refer to this work for further details and references.
Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary Γ. Moreover, let Γ0 and
Γ1 be nonempty, disjoint, relatively open subsets of Γ such that Γ0 ∪ Γ1 = Γ and the
boundaries of Γ0 and Γ1 with respect to Γ have surface measure 0. We note that,
for almost all ξ ∈ Γ, there exists the outer unit normal ν(ξ) at ξ. We investigate
the system described by the equations

ẅ(t) = div(a(t)∇w(t)), on [0,∞)× Ω,

w(t) = 0, on [0,∞)× Γ0√
2 bu(t) = ν · a(t)∇w(t) + |b|2ẇ(t), on [0,∞)× Γ1, (5.1)
√

2 by(t) = ν · a(t)∇w(t)− |b|2ẇ(t), on [0,∞)× Γ1,

w(0) = w0, ẇ(0) = w1, on Ω,

where w and the output y are unknown and the input u and the initial data w0, w1

are given. In the above equations we have omitted the space variable ξ which belongs
to Ω, Γ0 or Γ1, respectively, and we have denoted the scalar product in Rn by a · b.

We assume that b ∈ L∞(Γ1) is real-valued and there exists δ > 0 such that
b(ξ) ≥ δ for almost every ξ ∈ Γ1. Moreover, a(t, ξ) is a symmetric real n×n–matrix
with a(t, ξ) ≥ δI for all t ∈ [0,∞) and ξ ∈ Ω, and the components aij of a satisfy
aij ∈ C2([0,∞),Ω) for all i, j ∈ {1, . . . , n}.

To put the equations (5.1) in the framework of the present paper, we set H =
L2(Ω) and U = Y = L2(Γ1). We denote by γ the Dirichlet trace operator on Γ,

so that γ : H1(Ω) → H 1
2 (Γ). Let R be the usual restriction map from L2(Γ) to

L2(Γ1). Then the Dirichlet trace operator γ0 : H1(Ω)→ H 1
2 (Γ1) on Γ1 is defined by

γ0 = Rγ. We further introduce the Hilbert space

H1
Γ0

(Ω) = {f ∈ H1(Ω) : (I −R)γf = 0}

which is a closed subspace of H1(Ω) endowed with the norm ‖f‖H1 = ‖∇f‖Hn . The
Neumann trace operator on Γ1 is initially defined by γ1f = R ∂

∂ν
f for f ∈ C1(Ω).

One can extend γ1 to all those f ∈ H1
Γ0

(Ω) such that ∆f ∈ H, see e.g. [23, p. 107].
Here and later the derivatives are understood in the sense of distributions.

For vector-valued functions v ∈ C1(Ω)n we define a Dirichlet-type trace operator
on Γ by γνv = ν ·γv. Due to Theorem 1 and formula (1.10) in Section IX.1 of [4], we
can extend γν to an operator from the space H(div) := {v ∈ L2(Ω)n | div v ∈ L2(Ω)}
to H− 1

2 (Γ) (still denoted by γν) such that the equation

〈∇ϕ, v〉+ 〈ϕ, div v〉 = 〈γϕ, γνv〉H 1
2 (Γ),H−

1
2 (Γ)
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holds for all v ∈ H(div) and all ϕ ∈ H1(Ω), see equation (1.10) in Section IX.1 of

[4]. Here, H(div) is endowed with the norm (‖v‖2
Hn + ‖ div v‖2

H)
1
2 , the brackets 〈·, ·〉

denote the usual scalar product in L2(Ω)n or in L2(Ω), and 〈·, ·〉
H

1
2 (Γ),H−

1
2 (Γ)

denotes

the duality pairing between H 1
2 (Γ) and its dual space H− 1

2 (Γ).

We also need a variant of γν on Γ1. For this we introduce a subspace of H 1
2 (Γ1):

H̃
1
2 (Γ1) =

{
γ0f | f ∈ H1

Γ0
(Ω)
}

=
{
γf | f ∈ H1(Ω) , suppγf ⊂ (Γ \ Γ0)

}
,

see [22, Section 5] and [23, p. 428]. The norm of ψ ∈ H̃ 1
2 (Γ1) is given by the infimum

of all norms ‖f‖H1 where ψ = γ0f and f ∈ H1
Γ0

(Ω). We denote by H̃− 1
2 (Γ1) the

dual space of H̃ 1
2 (Γ1) with respect to the pivot space L2(Γ1). The space L2(Γ1) is

densely embedded into H̃− 1
2 (Γ1) due to Remark 13.6.14 of [23]. For v ∈ H(div) we

can then define γνv ∈ H̃−
1
2 (Γ1) by

〈γ0ϕ, γνv〉H̃ 1
2 (Γ1),H̃−

1
2 (Γ1)

= 〈∇ϕ, v〉+ 〈ϕ, div v〉 , (5.2)

for all ϕ ∈ H1
Γ0

(Ω). Clearly, γν : H(div) → H̃− 1
2 (Γ1) is linear and continuous. In

the sequel, the boundary conditions in (5.1) are understood in the sense of the trace
operators (I −R)γ, γ0 and γν , respectively.

We now define the operator A0 in H by setting

A0f = −∆f, D(A0) = {f ∈ H1
Γ0

(Ω) | ∆f ∈ H, γ1f = 0} .

It is known that A0 is strictly positive, see [14, §1]. Moreover,

H 1
2

= D(A
1
2
0 ) = H1

Γ0
(Ω) ,

which is a Hilbert space with the norm ‖ϕ‖ 1
2

= ‖ |∇ϕ| ‖H .

Theorem 5.1. The equations (5.1) determine a time-varying well-posed system Σr

with state (∇w, ẇ), state space

X = Hn ×H = L2(Ω)n × L2(Ω)

and input and output space U = L2(Γ1). If w0, w1 ∈ H 1
2

= H1
Γ0

(Ω) and u ∈
H1((0,∞), U) satisfy div(a(0)∇w0) ∈ L2(Ω) and the compatibility condition

γνa(0)∇w0 + |b|2 γ0w1 =
√

2 bu(0) , (5.3)

then there is unique solution w, y of (5.1) satisfying

w ∈ C2([0,∞), H) ∩ C1([0,∞), H 1
2
), y ∈ H1((0, b), U)

for each b > 0. Moreover, in this case the functions t 7→ div(a(t)∇w(t)) and
t 7→ γνa(t)∇w(t) belong to C([0,∞), H) and C([0,∞), U), respectively, and the
following balance equality holds for all t ≥ 0:

d

dt

(
〈a(t)∇w(t),∇w(t)〉+ ‖ẇ(t)‖2

)
= ‖u(t)‖2 − ‖y(t)‖2 + 〈ȧ(t)∇w(t),∇w(t)〉 .
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Proof. 1) As in [22, p. 270] we define the Neumann map N ∈ L(U,H 1
2
) by setting

Nψ = v, where v ∈ H 1
2

is the unique solution in H 1
2

of the Neumann problem ∆v = 0

and γ1v = ψ for a given ψ ∈ U . We further set K =
√

2 bN∗A0 ∈ L(H 1
2
, U). It is

known that K =
√

2 bγ0, see, e.g., [22, p. 271]. Moreover, we have K∗ ∈
√

2A0Nb ∈
L(U,H− 1

2
), where H− 1

2
is the dual space of H 1

2
with pivot space H. We define

Ã =

[
0 I
−A0 −1

2
K∗K

]
with D(Ã) =

{[
f
g

]
∈ H 1

2
×H 1

2

∣∣∣ A0f +
1

2
K∗Kg ∈ H

}
B =

[
0
K∗

]
, C =

[
0 −K

]
, D = I .

In Proposition 7.1 of [22] it has been shown that Ã, B, C, and D define via (1.1)
a scattering energy-preserving time-invariant system Σ̃i with the state space X̃ =
H 1

2
×H and the input and output space U .

2) In this step we transform the system Σ̃ to the new state space X = Hn ×H.
To this aim, we observe that the subspace E = ∇H 1

2
is closed in Hn and that E

has the orthogonal complement

E1 = {v ∈ Hn | div v = 0, γνv = 0} .

These facts can be established like Proposition 1 in Section IX.1 of [4] using (5.2)
above. We denote by L0 the isometric map ∇ : H 1

2
→ E. In particular, L0 has the

bounded inverse L−1
0 : E → H 1

2
. We then introduce the isometric isomorphism

J =

[
L0 0
0 I

]
: H 1

2
×H → E ×H.

In E ×H we thus obtain the transformed operator

Â = JÃJ−1 =

[
0 L0

−A0L
−1
0 −1

2
K∗K

]
with D(Â) = JD(Ã) .

The operator A0 can be extended to an operator in L(H 1
2
, H− 1

2
) again denoted by

A0, and we have 〈ϕ,A0ψ〉H 1
2

= 〈∇ϕ,∇ψ〉 for every ϕ, ψ ∈ H 1
2
. This fact yields

〈ϕ,A0L
−1
0 v〉H 1

2

= 〈∇ϕ,∇L−1
0 v〉 = 〈L0ϕ, v〉 = 〈ϕ,L∗0v〉H 1

2

for every v ∈ E and ϕ ∈ H 1
2
. (The brackets 〈·, ·〉 denote the standard scalar product

on Hn, H, or U .) As a consequence, we have A0 = L∗0L0 on H 1
2
, and thus

Â =

[
0 L0

−L∗0 −1
2
K∗K

]
with D(Â) =

{[
v
g

]
∈ E ×H 1

2

∣∣∣ L∗0v +
1

2
K∗Kg ∈ H

}
.

We identify B and JB, thus considering B as a map from U to E ×H− 1
2
, and we

identify C and CJ−1, considering C as map from E×H 1
2

to U . It then easily follows
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that Â, B, C, and D define a scattering energy-preserving time-invariant system Σ̂i

with the state space X̂ = E ×H and the input and output space U .

3) To construct the time-varying system corresponding to (5.1), we want to con-
sider the operators

P (t) =

[
a(t) 0

0 I

]
for each t ≥ 0. However, these operators do not leave invariant E ×H, in general,
though it is clear that they satisfy (2.1) on the space X = Hn×H = (E⊕E1)×H.
In order to obtain a system on X, we have to extend Â from E ×H to X. To that
purpose, we denote by L the bounded operator ∇ : H 1

2
→ Hn. Equation (5.2) then

implies

〈ϕ,L∗v〉H 1
2

= 〈∇ϕ, v〉 = − 〈ϕ, div v〉+ 〈γ0ϕ, γνv〉H̃ 1
2 (Γ1)

= 0

for every v ∈ E1 and ϕ ∈ H 1
2
. As a result, L∗ = L∗0 ⊕ 0. We now extend Â to the

operator

A =

[
0 L
−L∗ −1

2
K∗K

]
with D(A) =

{[
v
g

]
∈ Hn ×H 1

2

∣∣∣ L∗v +
1

2
K∗Kg ∈ H

}
.

on X. Observe that D(A) = D(Â) ⊕ (E1 × {0}) and that A(E1 × {0}) = 0.
Therefore the operators A, B, C, and D define a scattering energy-preserving time-
invariant system Σi with the state space X = Hn × H and the input and output
space U . Applying Theorem 4.1(b) to Σi and P (·), we thus obtain a time-varying
well-posed system Σr with state space X and input and output space U which is
determined by (1.5). In particular, for each initial state x0 ∈ X and each input
function u ∈ H1((0,∞), U) satisfying AP (0)x0 + Bu(0) ∈ X there is a unique
solution x ∈ C1([0,∞), X) of

ẋ(t) = AP (t)x(t) +Bu(t) . (5.4)

Moreover, P (·)x(·) ∈ C([0,∞), Z), the output of the system is given by

y(t) = Cx(t) + u(t) (5.5)

for all t ≥ 0, and y belongs to H1((0, b), U) for each b > 0. We recall that the space
Z = D(A)+(I−A)−1BU was defined in the Introduction. For the system Σ̃i defined
by Ã, B, C and D, we have a corresponding space Z̃ which is equal to Z0×H 1

2
where

Z0 = {f ∈ H 1
2
| ∆f ∈ H, γ1f ∈ L2(Γ1)}, see p. 263 and p. 271 in [22]. Further, let

Ẑ = D(Â) + (I − Â)−1BU . Observe that Z = Ẑ ⊕ (E1 × {0}). Moreover, equation
(5.2) and the definition of γ1 on p. 270 of [22] imply that γνv = γ1f if v = ∇f and
f ∈ H 1

2
. It then follows that

Ẑ = J(Z0 ×H 1
2
) =

{[
v
g

]
∈ E ×H 1

2

∣∣∣ γνv ∈ L2(Γ1), div v ∈ H
}
. (5.6)
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Finally, the balance inequality

d

dt
〈P (t)x(t), x(t)〉 = ‖u(t)‖2 − ‖y(t)‖2 + 〈Ṗ (t)x(t), x(t)〉 (5.7)

holds for every t ≥ 0.

4) We now have to relate the system (5.4) with the equations (5.1). First, the
initial state x0 of (5.4) is given by x0 = [∇w0

w1
] for the functions w0, w1 from the

statement of this proposition. Observe that ∇w0 ∈ E ⊂ Hn, w1 ∈ H 1
2
, and

AP (0)x0 +Bu(0) =

[
∇w1

−L∗a(0)∇w0 +K∗(u(0)− 1
2
Kw1)

]
=:

[
∇w1

ψ

]
.

In view of step 3, we have to show that AP (0)x0 + Bu(0) ∈ Hn × H. This is
clear for the first component. To treat the second component ψ, we first note that
a(0)∇w0 ∈ H(div) by our assumptions. So we can apply γν to a(0)∇w0 and we can
use formula (5.2). Let ϕ ∈ H 1

2
. Recall that K =

√
2 bγ0. Using the compatibility

condition (5.3) and equation (5.2), we deduce

〈ϕ, ψ〉H 1
2

= 〈ϕ,−L∗a(0)∇w0 +K∗(u(0)− 1

2
Kw1)〉H 1

2

= 〈Lϕ,−a(0)∇w0〉+ 〈Kϕ, u(0)− 1

2
Kw1〉

= −〈∇ϕ, a(0)∇w0〉+ 〈γ0ϕ,
√

2 bu(0)− |b|2γ0w1〉
= −〈∇ϕ, a(0)∇w0〉+ 〈γ0ϕ, γνa(0)∇w0〉
= 〈ϕ, div(a(0)∇w0)〉 .

It follows that ψ ∈ H, since div(a(0)∇w0) ∈ H by assumption and H 1
2

is dense

in H. Due to step 3), there is a solution x = [ x1
x2 ] ∈ C1([0,∞), X) of (5.4) with

P (·)x(·) ∈ C([0,∞), Z). In particular, it holds that x2 ∈ C([0,∞), H 1
2
) by (5.6).

The first component of (5.4) is ẋ1(t) = Lx2(t), so that

x1(t) = ∇w0 +∇
∫ t

0

x2(s) ds

for every t ≥ 0. We now define

w(t) = w0 +

∫ t

0

x2(s) ds

for every t ≥ 0, whence ẇ = x2 and x1 = Lw = ∇w. The asserted balance equation
thus follows from (5.7). We also obtain w ∈ C2([0,∞), H)∩C1([0,∞), H 1

2
). Hence,

the second equation in (5.1) holds. Moreover, (5.4) and (5.5) yield the equations

ẅ(t) = ẋ2(t) = −L∗a(t)Lw(t) +K∗(u(t)− 1

2
Kẇ(t)) (5.8)

y(t) = −Kẇ(t) + u(t) (5.9)
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for every t ≥ 0. Applying a function ϕ ∈ H 1
2

to the equation (5.8), we derive

〈ϕ, ẅ(t)〉 = − 〈∇ϕ, a(t)∇w(t)〉+ 〈γ0ϕ,
√

2 bu− |b|2γ0ẇ(t)〉 (5.10)

for every t ≥ 0. If ϕ is even a test function, we arrive at

〈ϕ, ẅ(t)〉 = − 〈∇ϕ, a(t)∇w(t)〉 .

Since ẅ(t) ∈ H, the function a(t)∇w(t) belongs to H(div) and w satisfies the first
line of (5.1). As a consequence, the map t 7→ div(a(t)∇w(t)) from [0,∞) to H is
continuous. Going back to functions ϕ ∈ H 1

2
, we deduce from equation (5.10) that

〈ϕ, ẅ(t)〉 = 〈ϕ, div(a(t)∇w(t))〉 (5.11)

+ 〈γ0ϕ,
√

2 bu(t)− |b|2γ0ẇ(t)− γνa(t)∇w(t)〉
H̃

1
2 (Γ)

,

using (5.2). We fix a function φ ∈ H̃ 1
2 (Γ). Then there is a g ∈ H 1

2
with φ = γ0g.

There are Lipschitz functions χk with 0 ≤ χk ≤ 1 which are equal to one on Γ1 and
vanish for those ξ ∈ Rn whose distance from Γ1 is larger than 1

k
, for each k ∈ N. We

set ϕk(ξ) = χk(ξ)g(ξ) for all ξ ∈ Ω and k ∈ N and note that ϕk ∈ H 1
2
, γ0ϕk = φ and

ϕk → 0 in H as k →∞. If we replace in (5.11) the function ϕ with ϕk, we conclude

√
2 bu(t) = |b|2γ0ẇ(t) + γνa(t)∇w(t)

for every t ≥ 0. Thus the third equation in (5.1) has been shown and the func-
tion t 7→ γνa(t)∇w(t) belongs to C([0,∞), U). The fourth line in (5.1) is then a
consequence of (5.9).

5) It remains to show the uniqueness assertion. Let w be a solution of (5.1)
with the properties stated in the assertion. Then the function x := [∇wẇ ] belongs
to C1([0,∞), X), its second component x2 belongs to C([0,∞), H 1

2
), and it holds

ẋ1 = Lx2. We have to verify that also the second component of (5.4) holds. Applying
ϕ ∈ H 1

2
to the first line of (5.1), we obtain

〈ϕ, ẋ2(t)〉 = 〈ϕ, ẅ(t)〉 = 〈ϕ, div(a(t)∇w(t))〉
= −〈∇ϕ, a(t)∇w(t)〉+ 〈γ0ϕ, γνa(t)∇w(t)〉

H̃
1
2 (Γ)

= −〈Lϕ, a(t)x1(t)〉+ 〈γ0ϕ,
√

2 bu(t)− |b|2γ0ẇ(t)〉

= −〈ϕ,L∗a(t)x1(t)〉
H

1
2

+ 〈Kϕ, u(t)− 1

2
Kx2(t)〉

= 〈ϕ,−L∗a(t)x1(t) +K∗(u(t)− 1

2
Kx2(t))〉

H
1
2
,

where we also used the equation (5.2), the third line in (5.1), and K =
√

2 bγ0. As
a result, x solves (5.4) which implies the uniqueness of the solutions to (5.1).
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