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Abstract 

This paper describes a recently introduced vec-
tor-valued representation of fundamental fre-
quency variation – the FFV spectrum – which 
has a number of desirable properties. In par-
ticular, it is instantaneous, continuous, distri-
buted, and well-suited to application of stan-
dard acoustic modeling techniques. We show 
what the representation looks like, and how it 
can be used to model prosodic sequences. 

Introduction 

While speech recognition systems have long 
ago transitioned from formant localization to 
spectral (vector-valued) formant representa-
tions, prosodic processing continues to rely 
squarely on a pitch tracker’s ability to identify a 
peak, corresponding to the fundamental fre-
quency (F0) of the speaker. Peak localization in 
acoustic signals is particularly prone to error, 
and pitch trackers (cf. de Cheveigné & Kawa-
hara, 2002) and downstream speech processing 
applications (Shriberg & Stolcke, 2004) employ 
dynamic programming, non-linear filtering, and 
linearization to improve robustness. These me-
thods introduce long-term dependencies which 
violate the temporal locality of the F0 estimate, 
whose measurement error may be better han-
dled by statistical modeling than by (linear) 
rule-based schemes. Even if a robust, local, ana-
lytic, statistical estimate of absolute pitch were 
available, applications require a representation 
of pitch variation and go to considerable addi-
tional effort to identify a speaker-dependent 
quantity for normalization (e.g. Edlund & 
Heldner, 2005). 

In the current work, we describe a recently 
derived representation of fundamental frequen-
cy variation (see also Laskowski, Edlund, & 
Heldner, 2008a, 2008b; Laskowski, Wölfel, 
Heldner, & Edlund, in press), which implicitly 
addresses most if not all of the above issues. 
This spectral representation, which we will re-
fer to here as the fundamental frequency varia-
tion (FFV) spectrum is (1) instantaneous, not 
relying on adjacent frames; (2) continuous, de-
fined for all frames; (3) distributed; and (4) po-
tentially sparse, making it suitable for the appli-

cation of standard acoustic modeling techniques 
including bottom-up, continuous statistical se-
quence learning. 

In previous work, we have shown that this 
representation is useful for modeling prosodic 
sequences for prediction of speaker change in 
the context of conversational spoken dialogue 
systems (Laskowski et al., 2008a, 2008b); how-
ever, the representation is potentially useful for 
any prosodic sequence modeling task. 

The fundamental frequency varia-
tion spectrum 

Instantaneous variation in pitch is normally 
computed by determining a single scalar, the 
fundamental frequency, at two temporally adja-
cent instants and forming their difference. F0 
represents the frequency of the first harmonic in 
a spectral representation of a frame of audio, 
and is undefined for signals without harmonic 
structure. In the context of speech processing 
applications, we view the localization of the 
first harmonic and the subsequent differencing 
of two adjacent estimates as a case of subop-
timal feature compression and premature infe-
rence, since the goal of such applications is not 
the accurate estimate of pitch. Instead, we want 
to leverage the fact that all harmonics are 
equally spaced in adjacent frames, and use 
every element of a spectral representation to 
yield a representation of the F0 delta.  

To this end, we propose a vector-valued re-
presentation of pitch variation, inspired by va-
nishing-point perspective, a technique used in 
architectural drawing and grounded in projec-
tive geometry. While the standard inner product 
between two vectors can be viewed as the 
summation of pair-wise products with pairs se-
lected by orthonormal projection onto a point at 
infinity, the proposed vanishing-point product 
induces a 1-point perspective projection onto a 
point at � (Figure 1). When applied to two vec-
tors representing a signal’s spectral content, FL 
and FR, at two temporally adjacent instants, the 
vanishing-point product yields the standard dot 
product between FL and a dilated version of FR, 
or between FR and a dilated version of FL, for 
positive and negative values of �, respectively.  
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Figure 1. The standard dot-product shown as an orthonormal projection onto a point at infinity (left panel), 
and the proposed vanishing-point product, which generalizes to the former when � � ±� (right panel). 

 
The degree of dilation is controlled by the mag-
nitude of �. The proposed vector-valued repre-
sentation of pitch variation is the vanishing-
point product, evaluated over a continuum of �. 
For each analysis window, centered at time t, 
we compute the short-time frequency represen-
tation of the left-half and the right-half portion 
of the window, leading to FL and FR, respec-
tively, using two asymmetrical windows which 
are mirror images of each other, as shown in 
Figure 2. 
 

 
Figure 2. Left and right windows used for the com-
putation of FL and FR, respectively, consisting of 
asymmetrical Hamming and Hann window halves. 
T0 is 4 ms, and T1 is 12 ms, for a full analysis win-
dow width of 32 ms. A 32 ms Hamming window is 
shown for comparison. 

FL and FR are N�512-point Fourier trans-
forms, computed every 8. The peaks of the two 
windows are 8 ms apart. The FFV spectrum is 
then given by 

 

[ ]

�
�

�

�
�

�

�

<
Σ⋅Σ

⋅Σ

≥
Σ⋅Σ

⋅Σ

=

+

+

−

−

0,
|)2(

~
||][|

|)2(
~

||][|

0,
|][||)2(

~
|

|][||)2(
~

|

2/4*2

/4*

2*2/4

*/4

r
kFkF

kFkF

r
kFkF

kFkF

rg

Nr

RL

Nr

RL

R

Nr

L

R

Nr

L

 

 
where, in each case, summation is from 
k = -N / 2 +1 to k = N / 2; for convenience, r 
varies over the same range as k. Normalization 
ensures that g[r] is an energy-independent re-
presentation. The frequency-scaled, interpolated 
values 

LF
~  and 

RF
~  are given by 
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A sample FFV spectrum, for a voiced 

frame, is shown in Figure 3; for unvoiced 
frames, the peak tends to be much lower and 
the tails much higher. The position of the peak, 
with respect to r = 0, indicates the current rate 
of fundamental frequency variation. The sam-
ple FFV spectrum shown in Figure 3 thus indi-
cates a single frame with a slightly negative 
slope, that is a slightly falling pitch.  
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Figure 3. A sample fundamental frequency variation 
spectrum. The x-axis is in octaves per 8ms. 

 

Figure 4: Filters in two versions of the filterbank. 
The x-axis is in octaves per second; note that the 
filterbank is applied to frames in which FL and FR 
are computed at instants separated by 0.008s. Two 
extremity filters at (−2, −1) and (+1, +2) octaves per 
frame are not shown. 

Filterbank 

Rather than locating the peak in the FFV spec-
trum, we utilize the representation as is, and 
apply a filterbank. The filterbank (FBNEW 
shown in Figure 4) attempts to capture mea-
ningful prosodic variation, and contains a con-
servative trapezoidal filter for perceptually 
“flat” pitch ('t Hart, Collier, & Cohen, 1990); 
two trapezoidal filters for “slowly changing” 
pitch; and two trapezoidal filters for “rapidly 
changing” pitch. In addition, it contains two 
rectangular extremity filters with spans of (−2, 
−1) and (+1, +2) octaves per frame, as we have 
observed that unvoiced frames have flat rather 
than decaying tails. This filterbank reduces the 
input space to 7 scalars per frame.  

We show what a “spectrogram” representa-
tion looks like when FFV spectra from consec-
utive frames are stacked alongside one another, 
in Figure 5, as well as what the representation 
looks like after being passed through filterbank 
FBNEW of Figure 4. 

Modeling FFV spectra sequences 

In order to transition from vectors of frame-by-
frame FFV spectra passed through a filterbank 
to something more like what we normally as-
sociate with prosody, such as flat, falling, and 

rising pitch movements, sequences of FFV 
spectra need to be modeled. A standard option 
for modeling sequences involves training hid-
den Markov models (HMM). In previous work, 
we have used fully-connected hidden Markov 
models (HMM) consisting of four states with 
one Gaussian per state (see Figure 6). Howev-
er, other HMM topologies are also possible. 
 
 

 

 

 
Figure 5. Spectrogram for a 500ms fragment of au-
dio (top panel, upper frequency of 2kHz); the FFV 
spectrogram for the same fragment (middle panel); 
and the same FFV spectrum (bottom panel) after 
being passed through the FBNEW filterbank as 
shown in Figure 4. 

 
 

 
Figure 6. A fully-connected hidden Markov model 
(HMM) consisting of four states with one Gaussian 
per state. 
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Discussion 

We have derived a continuous and instantane-
ous vector representation of variation in fun-
damental frequency and given a detailed de-
scription of the steps involved, including a 
graphical demonstration of both the form of the 
representation, and its evolution in time. We 
have also suggested a method for modeling se-
quences with HMMs and utilizing the represen-
tation in a classification task.  

Initial experiments along these lines show 
that such HMMs, when trained on dialogue da-
ta, corroborate research on human turn-taking 
behavior in conversations. These experiments 
also suggest that the representation is suitable 
for direct, principled, continuous modeling (as 
in automatic speech recognition) of prosodic 
sequences, which does not require peak-
identification, dynamic time warping, median 
filtering, landmark detection, linearization, or 
mean pitch estimation and subtraction 
(Laskowski et al., 2008a, 2008b).  

We expect the method to be especially use-
ful in situations where online processing is re-
quired, such as in conversational spoken dialo-
gue systems. Further experiments will test the 
method in real systems, for example to support 
turn-taking decisions. We will also explore the 
use of the FFV spectrum in combination with 
other sources of information, such as durational 
patterns in interaction control. 

Immediate next steps include fine-tuning 
the filter banks and the HMM topologies, and 
testing the results on other tasks where pitch 
movements are expected to play a role, such as 
the attitudinal coloring of short feedback utter-
ances (e.g. Edlund, House, & Skantze, 2005; 
Wallers, Edlund, & Skantze, 2006), speaker 
verification, and automatic speech recognition 
for tonal languages. 
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