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In this paper, we report on our initial setup and ongoing research on the development of cog-
nitive dialog systems for dynamic environments. We describe the main components that we  
consider necessary to build dialog systems that estimate the user's mental processes (hence  
cognitive) and adapt their behavior accordingly: We require a realistic testing and recording 
environment to produce real-life data, e.g. a realistic driving simulator. We further need to  
observe the user during these interactions in a multimodal way to estimate the current user  
state based on this data. This information is integrated with cognitive modeling components  
that enrich the observational data. We finally need to find dialog strategies that adapt the be-
havior of the interactive system to optimally suit the current needs of the user. We report our  
progress in building these components, give an overview over the challenges we identified  
during this work and the solutions we aim for.

1 Introduction

Spoken dialog systems have matured to a point where they find their way to many real-world 
applications  like  tutoring  systems  (Litman,  2004)  or  automated  call-center  agents  (Gorin, 
1997). However, their application in more dynamic scenarios remains an open and very inter-
esting task. Spoken dialog systems as an interface for in-car services are very desirable and at 
the same time very challenging: On the one hand, they offer an eyes-free and hands-free con-
trol without visual or manual distraction from the primary driving task. On the other hand, 
this task uses the user’s cognitive capacity and we can no longer assume to deal with a fully 
attentive and perfect interaction partner as we can in more static environments. Another im-
portant aspect is the adaptation to individual preferences: As dialog sessions in driving scen-
arios may last for several hours, we have to take into account both changing user states, i.e. 
cognitive workload or emotions, as well as lasting user traits, e.g. his gender or personality. 
Both types of individual  differences influence the optimal  interaction behavior the system 
should use for maximizing user satisfaction, as several user studies show (Nass, 2000), (Nass, 
2005). We see potential for a large range of adaptation measures: One example is reacting to 
increased cognitive workload by taking the initiative from the user, delaying non-critical in-
formation or reducing its complexity. Another one is adjusting the system to the user’s emo-
tional state and personality by selecting appropriate wording, voice and turn-taking behavior, 
as suggested by (Nass, 2005). In this paper, we concentrate on the aspect of adaptation to dif-
ferent levels of cognitive workload. Most approaches and techniques described here are relev-
ant for other adaptation tasks as well.
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2 Driving Simulator & Experimental Setup

Development, testing and evaluation of different interaction strategies requires a realistic ex-
perimental environment which reproduces all important effects and distractions seen in real-
life applications. While recording in a real car in real traffic situations creates the most au-
thentic sessions, the downsides of this approach are safety concerns with early prototypes, the 
lack of reproducibility and the missing ability of reliably provoking scenarios which are rel-
evant for the current investigation.

Therefore, we decided to build a driving simulator which is designed to create a realistic driv-
ing experience. The main focus was not to build a physically correct car test bed but to simu-
late the most important influences and distractions that occur during real driving tasks, espe-
cially in situations where the application of a dialog system plays an important role. We based 
our driving simulator on a real car and kept the interior fully intact and functional to provide a 
realistic in-car feeling. The car is surrounded by a projection wall, covering the view of the 
frontal and lateral windows. The simulator features acoustic feedback via engine sound and 
environmental surround sound and haptic feedback in the seat (via tactile transducers) and 
steering wheel (via Force-Feedback). We installed a display in the driver's cockpit to provide 
means for visual distraction as produced by graphical user interfaces and to display a 3D 
avatar as a visual representation for the interaction system.

For studies with different main focus, we use different simulation software and scenarios. For 
investigation of interaction patterns and dialog strategies, the employed simulator software is 
based on a  modified  gaming engine1.  It  was  extended with  multi-screen display,  steering 
wheel support and simple ambient traffic control. Its support for scripting scenarios  allows us 
to configure individual driving stages: We can position the driver in a wide artificial environ-
ment with realistic urban and rural areas, where we define a route represented by navigation 
directions for the system.

As simulation software for experiments on cognitive workload classification, we employ the 
established Lane Chance Task (LCT) as primary driving task (Mattes, 2003). The LCT asks 

1  MTA:SA: http://www.mtasa.com
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the driver to follow a highway with a fixed speed, respecting signs that mark only one of three 
lanes as valid, which forces the driver to change lanes every few seconds. During one experi-
ment,  the  driver  goes  through  multiple  differently  configured  driving  sessions,  including 
some training sessions to familiarize himself with the simulator and the typical tasks during 
the experiment. Each session lasts for three minutes. The whole set of all sessions is designed 
to cover a variety of different types and levels of cognitive workload. The driving task itself is 
of low complexity compared to many real-life situations (especially in urban environments) 
as it does not feature other cars, intersections or other complex traffic elements. Instead, the 
driver's cognitive load is controlled by additional secondary tasks. We use a visual task (in-
cluded in the LCT) that asks the driver to identify certain symbols on a display installed in the 
cockpit and an arithmetic task that asks the driver to classify numbers given by a prerecorded 
voice according to their divisibility by certain fixed values. Both secondary tasks are designed 
to support multiple difficulty levels and we record both answer quantity (number of given an-
swers) and answer quality (percentage of correct answers). In addition, the LCT software con-
tains a simple model to assess the driving quality. It calculates an ideal route determined by 
the position and type of the lane change requests. This model is compared to the actual route 
of the driver to calculate an error measure that describes the driving quality.

The difficulty of the secondary task yields a natural label for the recorded sessions for evalu-
ation purposes on cognitive workload. However, experiments show that not all users follow 
the expected error pattern of performing worse on more difficult tasks. This is due to training 
effects beyond the initial training phase, fatigue or individual influences like emotions. As we 
want to assign session labels  that  reflect  not the expected but the actual performance,  we 
prefer error scores over task difficulty levels  as objective label.  To define an error based 
workload measure, we combine the scores for answer quantity, answer quality and driving 
quality into a vector, z-normalize its components to ensure equal distributions along all three 
dimensions and use an euclidean distance or city block distance to compare two sessions. 
The vectors are then sorted according to this metric and clustered to form a small number of 
classes (e.g. low, medium, high). Scaling of the individual dimensions allows to weigh the 
three performance aspects differently, e.g. by giving the driving quality a larger impact on the 
overall score. 

As we are also interested in the subjective workload impression as an indication for user satis-
faction, we also collect questionnaire data on different scales of workload. These question-
naires are handed to the driver immediately after each driving session so we can extract a la-
bel for it. Differences between subjective and objective workload scores are for example vis-
ible for extremely difficult tasks, where the driver gives up on (parts of) his assignment, redu-
cing subjective workload by basically removing a task. In contrast, the objective workload de-
duced from error measures or task difficulty does not fall (or even rises), leading to a large 
gap between both values.  To test subjective workload, one has to select form different sub-
jective  workload models,  ranging  from simple  single-dimensional models  to  sophisticated 
multi-dimensional scales. Two of the most established ones are the Workload Profile (WP) 
(Tsang, 1996) and the NASA Task Load Index (NASA-TLX) (Hart, 1988). While a compar-
ative work (Rubio, 2004) recommends WP as slightly better, it is not applicable without ex-
tensive training and explanation. In small preliminary user tests, many  test persons were un-
clear about several aspects of the WP questionnaire. In contrast, the NASA-TLX is intuitive, 
quick to answer and also offers reasonable discriminative power. It is therefore suited for re-
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peated application.  One drawback in  comparison to  the WP is  the lack  of discrimination 
between different modalities (e.g. vocal vs. manual output) and cognitive processing schemes 
(e.g. spatial vs. symbolic).

3 Recording Setup & User State Classification

During the experiment, we employ a variety of signals to observe the user in the car. This is 
done for multiple reasons: First, an adaptive dialog system needs data streams from which it 
can extract meaningful features describing the user's state. Second, to train automatic recog-
nizers that perform this user state classification, we need to provide large amounts of labeled 
training data. To that end, we installed multiple biosignal sensors in the car to get a reliable, 
continuous data stream without obstructing or distracting the user too much. We employ the 
following equipment to observe the user:

• Small cameras to record videos of the face and the upper body of the driver to catch facial 
expressions and body pose

• A close-talking microphone to record the user’s utterances

• A comfortable  headband to  record electroencephalography (EEG) data of the prefrontal 
cortex (positions Fp1, Fp2, F7 and F8 in the international 10-20 positioning system)

• A light sensor glove which measures skin conductance and pulse (via plethysmography)

• A respiration belt on top of the clothes to measure respiration frequency

The last three items all use the same recording interface and are either attached to a universal 
signal recorder2 or directly connected via Bluetooth, which reduces obstruction to a minimum. 
In addition, we employ indirect motion monitoring by continuously recording the angle of the 
steering wheel and the acceleration and brake pedals in the car.

2 VarioPort, Becker MediTec
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To record all biosignal streams in a synchronized fashion with support for arbitrary input and 
output formats, time-stamping, distributed recording and convenient logging and storing of 
session packages, we employ our modular Biosignal-Studio software (Putze, 2009).

The collected biosignal streams are passed on to a set of statistical classifiers that estimate the 
current states and traits of the user which are relevant for system adaptation. Currently, we 
implement a classifier for cognitive workload and a recognizer of personality traits like extro-
version or emotional stability. Both classifiers use the same framework of preprocessing (arti-
fact detection and removal, windowing), feature extraction, feature selection and reduction via 
Forward Feature Selection and classification with Support Vector Machines. We perform fea-
ture fusion with a subsequent Linear Discriminant Analysis on the joint feature space. For 
feature extraction, we mostly rely on well established  routines: We use the software Praat3 to 
extract prosodic features like pitch, jitter or shimmer from the user’s voice. The single-chan-
nel  biosignals  respiration,  skin conductance  and pulse are  all  treated  using a similar  pro-
cessing chain to smooth the signal, extract peaks, calculate sliding means and variances as 
well as derivations as dynamic features.

4 Cognitive Model

For user models in interactive systems, there are two different applications:  We need user 
state models to represent relevant information on the user during the interaction. This does not 
only comprise the ability to store the recently observed user states, but the model may also be 
capable to predict future values or estimate states that are not directly observable, like the 
state of the user's memory. As this model must be applicable to all users that interact with the 
system, we start with a general stochastic model, representing the “average” user. Observa-
tions made by the system during the interaction introduce bias for a certain state or type of 
user in this model and modify the prediction probabilities of future observations, behavior, in-
ternal state etc.  The other major application for user (behavior)  models  is user simulation 
where one predicts user behavior given the context of an ongoing interaction. User simulation 
is employed for evaluation and training of dialog systems and interaction strategies where the 
user simulation replaces expensive trials with real users. For user simulation, the user model 
is not an averaged representation of all users but a personalized model of a single individual. 
This is necessary so that the system is confronted not only with one standard behavior but in-
stead with very different types of users.

In traditional systems, user state models and user behavior models are separated and based on 
quite different approaches: While user state models typically are little more than a collection 
of user state variables (e.g. as in (Gnjatović, 2008)), user behavior models are mostly behavi-
oristic models represented as statistics of user actions dependent on (a short-time window of) 
the discourse (Eckert, 1997). We propose to bring both types of user models together as the 
simulation model profits from a model of user states to coherently adjust the simulated user's 
behavior to the simulated user state. This is a typical problem of purely statistical user behavi-
or models that do not maintain a representation of the mental state of the simulated user, often 
leading to arbitrary and unpredictable behavior. How this fusion can be done is explained 
with an example in the following section.

3 http://www.praat.org
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For representing the user in a realistic way, we need cognitive user models, i.e. user models 
that  take  into  account  the  cognitive  processes  in  the  human  mind  during  the  interaction. 
Ideally, a cognitive model would reflect the whole  complexity of human cognition in a gener-
al, comprehensive way. This is the goal of cognitive architectures like ACT-R (Anderson, 
2004) or many others which already can predict many well-known phenomena of the mind. 
Most current applications for ACT-R models however only work in controlled environments, 
using  strong assumptions  and mostly  ignoring  individual  differences  like  emotions.  Until 
these models progress to a more mature stage, we take a different stance, using individual 
cognitive components to represent certain aspects of our user model. The following section 
will present two examples for this approach.

4.1 Urges as Cognitive Motivators

While interacting with a dialog system in a dynamic scenario, the user pursues different, often 
adversarial goals. For example, he is trying to extend his domain knowledge but this will of-
ten conflict with the desire to maintain a low cognitive workload, especially if most resources 
are already occupied by the driving task. He also has the desire to understand and be able to 
predict the system he is interacting with, which limits the options of the system to react to the 
cognitive overload problem by constantly adjusting its behavior. We model these different 
goals using the concept of urges as proposed by the PSI cognitive architecture (Bach, 2003). 
These urges describe different desires on a scale from zero (completely satisfied) to one (ex-
tremely high demand). Once a desire exceeds a certain threshold, it creates motivations which 
trigger behavior that aims at changing the situation which causes the increased urge. This 
way, urges regulate the decision making as they function as weights for several possible ac-
tions. They also help the dialog system to capture the most relevant problems and an overall 
representation of the user’s “well-being”. The user tries to maintain a homeostasis of all urges 
being low or within certain tolerable limits. This mechanism drives and influences the user’s 
behavior and at the same time gives an indication of which urges are most critical or urgent to 
cope with.

The currently implemented urges for a dynamic interaction scenario are (in analogy to the ori-
ginal urges from the PSI architecture):  Information competence, i.e. the desire to gather do-
main information, is calculated by inspecting the memory model of the user (see below) to de-
rive his interest in additional information.  Inertia, i.e. the desire to maintain a status of low 
cognitive workload, is directly derived from the cognitive workload variable of the user mod-
el. And finally, there is interface competence, i.e. the desire to interact with a predictable in-
terface that follows the general implicit rules of spoken interaction, depends on two factors: 
First, we count the number of violations agains a predefined set of interaction rules (avoid 
barge-in, complete utterances). In addition, an adaptive expectation model stores statistics on 
the expected system reactions to user actions.

The main influence of the urges on the behavior of the user and the system is on action selec-
tion: They offer reward functions that are used to evaluate past actions which allows the sys-
tem and the user simulation to learn from observed interactions. Both have access to the same 
set of urges, although the two systems might see different values as its observation of the sim-
ulated user is noisy. The learned feedback is stored and reviewed later in similar situations. 
This process is formalized as reinforcement learning, which is already established for cognit-
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ive behavior modeling (Wai-Tat, 2006), however not in the context of man-machine-interac-
tion.

4.2 Memory and Cognitive Workload

In the current cognitive model, cognitive workload is represented as a single value on a con-
tinuous scale. Two sources influence this value: During interaction, it basically represents the 
output of the multimodal workload classifier. During simulation (where no actual sensor is 
present),  the  value  is  determined  by  triggering  scripted  or  randomly  generated  workload 
events that stand for difficult traffic situations or ongoing speech understanding. When no 
event is triggered, the workload gradually decreases. Future effort will go into the combina-
tion of both sources, e.g. using Bayesian networks or tracking schemes which can combine 
model prediction and observations via workload sensors. To include the workload variable in 
the state space of the system (see chapter 5), we discretize and normalize the cognitive work-
load variable based on previous observations of the raw values so that occurring workload 
values are equally distributed among all classes.

The cognitive workload estimate from the biosignal sensors and the cognitive model influ-
ences the user model and the dialog strategy in different ways. The user model (which ac-
cording to chapter 4 also contains a user behavior model) selects different actions and speech 
act representations based on its own cognitive workload level. The higher the workload level, 
the simpler the employed actions. The average cognitive workload level during a system ut-
terance also determines the quality of the user's speech understanding: A high average work-
load (in combination with a high complexity of the system utterance) leads to a high probabil-
ity of non-understanding. Future work will also introduce partial understanding (in the case of 
short-time changes of workload) and the possibility of misunderstandings. The workload is 
(indirectly, see below) also propagated to the system and is used by the interaction strategy to 
determine the currently appropriate complexity of system moves.

For simulation purposes, we also model the output of virtual biosignal sensors. This value is 
based on the “true” value of the workload attribute as represented by the cognitive simulation 
model but skewed by an error model that reflects noise and systematic errors typically made 
by statistical user state classifiers.  The output of the virtual sensor is visible to the system in-
stead of the true value which is only available to the user model during simulation, e.g. to de-
termine its influence on action selection. Currently, the recognition error is modeled as addit-
ive white Gaussian noise.

5 Dialog Strategy Adaptation

Adaptation of dialog behavior cannot be seen as a short-term task but must instead be con-
sidered from a strategic, long-term perspective. This is the case even if all decisions for them-
selves are local in nature (e.g. changing the system voice for a single utterance),  because 
every adaptation comes with costs: decisions based on noisy signals may be wrong, too fre-
quent adaptation (even if locally appropriate) can confuse the user, obfuscate the interface or 
produce the impression of an inconsistent system persona. In addition,  there are decisions 
which are inherently strategic in nature since they cannot be undone, for example the decision 
to cancel a complete subdialog. We believe that the manual design of adaptation strategies 
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based on a complex cognitive user model is unfeasible. Therefore, we employ reinforcement 
learning (Sutton, 1998), an automatic learning technique, to discover optimal strategies for a 
given dialog and behavior model. This has been successfully done for strategies of dialog sys-
tems on a speech act level (Singh, 2002) (Scheffler, 2002) and can be extended to adaptive 
systems. We built a learning framework which uses modularization and user simulation based 
on cognitive models and the concept of urges. This process requires several steps: First, one 
has to define a suitable state space that represents the relevant components of the cognitive 
user model in a compressed and discretized form. One has to define a suitable action space 
that contains enough parameters to allow the system to modify the surface form of its speech 
acts. As not all adaptation measures take place on the level of a single dialog move, also the 
general conditions of move execution (e.g. when and how often new moves can be executed) 
have to be flexible enough.

As described in Chapter 4, cognitive models can be used to simulate coherent user behavior. 
This is used for evaluating dialog sessions, but can also be employed to simulate dialog ses-
sions for training purposes. As reinforcement learning requires a large number of training 
epochs which cannot all be recorded with real users, user simulation is employed to generate 
interaction  sessions from which rewards are  deduced and attributed  to  the system actions 
leading to them.

To enable adaptation to user states, one has to provide different means of influencing the out-
puts of the system. While classical systems usually only allow the selection of several pre-
defined utterances, dialog strategies for dynamic environments need to be more flexible. Our 
current system supports the following adaptation techniques, enabling it to adjust its behavior 
to the user's current state.

• Selection of type and timing (to the second) of the next system speech act. Using small time 
slices as a dialog timing model allows to precisely select when the next utterance is is-
sued. With this freedom, the system can delay non-critical  information in situations of 
high cognitive workload.

• The system is able to abort own speech acts and interrupt utterances of the user. This is 
again supported by the temporal slicing that enables the system to review the state of user 
and interaction at a very fine level. If a change in the user state indicates the necessity of 
immediate reaction, the ongoing speech act can be interrupted. This feature comes with 
support for partial understanding of interrupted utterances.

• The system can change the system voice by sending parameters to the speech synthesis 
component that determine the basic voice and other parameters like pitch or speed. Instead 
of directly modifying those technical parameters, the system uses a mapping (provided by 
the synthesis component) to map a desired emotional voice scheme, expressed on a dis-
cretized version of the dimensional model of affect (Russel, 1980) to those technical para-
meters. This model allows to select from calm and excited voices by changing the activa-
tion parameter.

• The  system can  select  utterances  based  on  a  (currently  manually  assigned)  complexity 
score. This score represents an estimate on how difficult it is to understand the given ut-
terance and may reflect utterance length, number of items mentioned in this utterance or 
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linguistic cues of complexity. From the cognitive model and the observed workload, we 
derive an optimal complexity score (as high as possible without risking cognitive over-
load) which is compared to the complexity of the utterance. This distance is used as a 
criterion to weigh all available speech acts.

6 Conclusion

Although we only recently started our studies, we already made several steps towards our 
goal of flexible, generic and natural adaptation mechanisms: We implemented and tested a 
realistic driving simulator which will allow a large number of experiments under controlled 
but nevertheless authentic conditions. We are working towards a framework of statistical clas-
sifiers that are able to determine the user’s current state. We investigate cognitive modeling 
architectures to structure the user’s adversarial desires and to model the user’s cognitive load. 

For future developments, we need to extend our work on these components such that larger 
quantitative user evaluation in our scenario becomes possible. These user studies are neces-
sary to study the influences of different adaptation schemes on the users' satisfaction and to 
train and evaluate the user state classifiers.

In addition, cognitive models need to be further investigated to achieve a tighter integration of 
all components and a coherent model of all relevant cognitive processes during the interac-
tion. This will improve the predictive power of the models and improve their contribution to 
cognitive dialog systems.
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