
Strengths and Weaknesses of WS-BusinessActivity for
Cross-Organizational SOA Applications

Frédéric Wenzel1,2, Patrick Freudenstein1, Martin Nussbaumer1

1 Karlsruhe Institute of Technology, Steinbuch Centre for Computing,
76128 Karlsruhe, Germany

wenzel@ira.uni-karlsruhe.de,
{patrick.freudenstein,martin.nussbaumer}@kit.edu

2 Carnegie Mellon University, Software Engineering Institute,
4500 Fifth Avenue, Pittsburgh, PA 15213, USA

Abstract

In traditional database-driven applications, transac-
tional integrity is a well-established concept. In order to
apply these techniques to SOA-based applications, along
with the capability to perform long-running business activi-
ties, the WS-BusinessActivity standard was developed. This
standard does not specifically address cross-organizational
use, however, when an enterprise decides to integrate its
SOA-based system with their business partners’ services,
the ability to span long-running business activities across
organizational boundaries becomes crucial. This paper de-
scribes an experiment performed to assess the suitability of
WS-BusinessActivity for cross-organizational use and iden-
tifies several strengths and weaknesses that became appar-
ent during its execution.

1 Introduction

In the world of classical, database-driven, applications,
transactions are a common concept. For example, banks
want to make sure that an account is credited exactly once
for a deposit, and of course clients want to be certain that
withdrawals from their accounts make it safely into the re-
cipients’ hands as well. In this respect, service-oriented
architecture (SOA) applications do not differ. But due to the
peculiar nature of distributed, service-based systems, trans-
actions have gained new relevance with the rise of the SOA
paradigm.

The traditional technique to ensure data consistency
in the presence of failures is the use of atomic transac-
tions, characterized by the atomicity, consistency, isolation,

durability (ACID) properties [7]. However, due to the lack
of central data storage, this approach cannot be trivially ap-
plied to all actions performed in a distributed, service-based
environment. In order to achieve the same transactional
properties that are common in client-server applications, the
two-phase commit (2PC) approach known from distributed
databases [8, pp. 152ff.] has been adapted for SOA applica-
tions, in the form of the WS-AtomicTransaction (WS-AT)
standard [12].

For long-running business processes, however, atomic
transactions turned out to be too strong, in particular be-
cause the locking of resources in the first step of the 2PC
protocol is unacceptable for extended periods of time [11],
and a strict, data-centric rollback does not account for non-
data-related actions performed by services (for example,
sending an email). Thus, for long-running business activi-
ties, the WS-BusinessActivity (WS-BA) standard [1, 5] was
developed, relaxing the ACID properties by replacing the
strict commit/rollback concept with the optimistic notion of
compensation in the case of error (no matter if this means
performing a full rollback, executing a “plan B”, or any
other action).

Long-running transactions become particularly relevant
when an enterprise, having successfully deployed a service-
based system to run their internal business processes, con-
siders reaching out beyond their inner boundaries, either to
connect autonomous parts of the same enterprise, or to inte-
grate services with their business partners. This is a logical
second step for a company, as one of the major reasons for
adopting SOA in the first place is to enable interoperabil-
ity with business partners. With this paper, we aim to share
our experience in setting up and evaluating such a system in
small scale:

PESOS’09, May 18-19, 2009, Vancouver, Canada
978-1-4244-3716-0/09/$25.00 © 2009 IEEE ICSE’09 Workshop42

First published in:

EVA-STAR (Elektronisches Volltextarchiv – Scientific Articles Repository)
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000014896

• Section 2 puts the paper into the context of related
work.

• After a short overview of WS-BA (Section 3), we de-
scribe our experimental design and setup of a transac-
tional, cross-organizational, workflow-based SOA ap-
plication (Section 4).

• We present the major strengths (Section 5) and weak-
nesses (Section 6) with both the standard itself and the
chosen implementation that became apparent during
the execution of the experiment, and which we found
to be universally valid and generally applicable.

• For each of the issues, we point out possible solutions
to overcome them in the future.

Thus, our research can be useful in two ways: By making
possible users aware of current limitations as well as help-
ing to further evolve the WS-BusinessActivity standard for
the use in cross-organizational environments.

2 Related Work

Since the first publication of the WS-AT and WS-BA
standards, much related research has emerged, discussing
various aspects of service-based transactions using these
standards.

Some scholars focus explicitly on the implementation
of these standards in a service-based system, pointing out
problems of the standards in the process. For instance, [14]
first analyzes the WS-Coordination and WS-BA standards,
identifying a SOA paradigm violation through the tight cou-
pling of the participants in the transaction. They proceed
to describe a prototypical implementation of a transactional
middleware designed to divide the business logic from the
transaction coordination logic. However, their approach re-
quires the middleware to intercept business messages, ef-
fectively prohibiting the system from completely discon-
necting the transaction coordinator from the SOA system
running the business logic. This problem is related to the
limited coordinator flexibility as pointed out in this paper in
Section 6.3. [3] further investigated this problem and pro-
posed a “WS-BA-Initiator” extension to the standard in an
effort to uncouple initiator and coordinator.

[17] is a master’s thesis focusing on the same topic as this
paper: cross-organizational SOA transactions. They, how-
ever, propose an own transaction processing model for web
services, followed by a prototypical implementation of a
transactional web-service middleware. Similarly, [15] pro-
poses a new business transaction framework with a focus on
Quality of Service (QoS) aspects and e-contracting. In con-
trast, this paper discusses in its core cross-organizational
transactions and a concrete, publicly available and thus

widely usable implementation of the WS-BA standard is an-
alyzed.

Other research involving the standards discussed in
this thesis includes [13], who compare WS-BA with the
long-running transactions support of Business Process Ex-
ecution Language (WS-BPEL) and propose a modified
compensation concept in WS-BPEL, deprecating WS-BA
altogether—unlike this paper, which is focused on the ap-
plicability of already existing WS-BA implementations in
relevant scenarios, not necessarily their deprecation.

The problems of WS-BA identified in this paper there-
fore add to the list of criticisms researchers have published
about the standard, intending to aid in the further evolution
of the specification.

3 WS-BusinessActivity Overview

WS-BA employs a coordinator-based pattern following
the WS-Coordination standard [4]. The main actors are
the coordinator itself, which provides registration, activa-
tion and protocol-specific services according to the WS-
Coordination standard, the initiator and the participants.

Essentially, the initiator, for example a client application,
requests a new transaction context, then invites participant
services to join the newly created transaction. The partic-
ipants do so, and decide if they (“participant completion”)
or the coordinator (“coordinator completion”) will declare
when their work for the current business process is com-
pleted.

During the course of the transaction, coordinator and
participants exchange transaction-related messages to ad-
vance the participant through the different states of a trans-
action’s life cycle. For both the participant completion and
coordinator completion protocols, the standard document
contains state diagrams [5]. The main focus in this paper
lies on the case of failure after the completion of the partic-
ipant’s work. In this case, the coordinator calls the compen-
sation actions on all participants.

[5] and [2] provide a more in-depth description of the
WS-BA standard and its rationale.

4 Experiment Objective, Methodology, and
Setup

In order to investigate the practical applicability of WS-
BA, we designed a T-Check experiment. The “T-Check”
approach is a method for the context-based evaluation of
technologies [10]. The approach involves a two-step pro-
cess: 1) Formulating qualitative hypotheses based on the
context the technology is to be evaluated in, along with the
definition of specific criteria that can be used to sustain or
refute these hypotheses; 2) The design and implementation

43

of a simple prototypical solution in order to evaluate the hy-
potheses against the criteria.

These are the research questions the T-Check was de-
signed to answer:

1. Can an existing implementation of WS-
BusinessActivity be used to realize a transactional,
inter-organizational workflow?

2. In the case of failure, will the already performed ac-
tions in both domains be compensated as expected?

From these questions, the following hypotheses were de-
rived:

1. An instance of a SOA framework, along with its web
service stack and implementation of WS-BA, can be
leveraged, ideally “off the shelf”, in order to create and
run a transactional, inter-organizational workflow.

2. Failure of any involved service will lead to compensa-
tion actions being executed on all services.

Next we designed a simple, cross-organizational sce-
nario to evaluate these criteria on.

4.1 Scenario

Large parts of the research this paper is based on were
performed as master’s thesis research at both Karlsruhe In-
stitute of Technology (KIT), Germany, and Carnegie Mel-
lon University (CMU), PA, USA [16]. The scenario picked
for the experiment was therefore the example of a work-
flow for creating a joint master’s thesis between these uni-
versities, making the process both long-running and cross-
organizational.

One part of the process that already spans the two uni-
versities’ domains, but is still simple enough to serve as a
straightforward example, is the KIT Student’s work on a vi-
able thesis proposal. After creating an initial draft, the stu-
dent sends the proposal over to the CMU Advisor, asking
them to review the document. The advisor reads it, adding
the proposal to his stack of read proposals, then replies to
the student if he accepts it or requires further changes. In the
case of acceptance, the process ends successfully. If the ad-
visor rejects the proposal, the student modifies his existing
paper, and sends it back to the advisor for them to approve
or reject (cf. Figure 1).

At any time during this process, either party can also de-
cide to cancel the agreement, for example because they have
made other plans. In that case, the advisor removes the stu-
dent’s proposal revisions from their stack, and the student
reverts his proposal to its initial state—leaving both parties
in the situation they were in before entering the process.

Figure 1. Sequence diagram of the proposal
creation scenario.

The scenario chosen for the experiment is intentionally
quite simple: It was important to cover a basic, common
subset of all cases occurring in real-world applications. Al-
beit basic, the scenario turned out to be complex enough
already to identify the strengths and weaknesses discussed
in Sections 5 and 6. Yet, increasing complexity may sur-
face further problems that could not be seen with the simple
setup investigated here. It is therefore possible and desir-
able to iteratively increase the complexity from this starting
point on in order to observe the behavior of the system in
the process.

4.2 Logical Experiment Setup

This scenario can be described in a SOA-based system.
The logical architecture shows how the actors from the sce-
nario are represented in the system, and what actions these
entities perform.

There are four central entities involved in the architec-
tural representation of this scenario, as illustrated by Fig-
ure 2. First, there are both the advisor service and the stu-
dent service. They are part of distinct domains (CMU and
KIT, respectively), and execute the business logic outlined
in the scenario description above. Obviously, in a real-
world application, these services would provide the advi-
sor and student with an interface to make their decisions.
This was simulated in the experiment by having the services
themselves randomly generate the decisions at runtime.

In addition, a third entity is needed, which is called the
“workflow controller” in this experiment. Even though it
does not play a role in the initial scenario, it acts as the
owner of the workflow logic. It initiates the overall business
process and drives it forward as illustrated by the scenario’s
sequence diagram (Figure 1).

As a fourth entity, it is the WS-BA coordinator’s task to
provide independent transaction services to the other enti-
ties and to gracefully compensate the process in the case of

44

Figure 2. Logical architecture layout of the T-
Check experiment.

failure, or to make changes persistent in the case of success.
Figure 2 also shows how these four entities interact. The

workflow controller initiates the process by creating a new
transaction with the WS-BA coordinator. It then asks the
student service to create an initial proposal. The student
service does that and registers itself as a participant of the
transaction before returning the proposal to the controller.
The workflow controller takes the proposal and passes it
on to the advisor service for approval. The advisor service
decides on accepting the proposal after registering itself as
part of the transaction as well. If the advisor service refuses
the proposal, the controller has the student service modify
it, then passes the proposal back to the advisor service—
until it is approved, or either of them cancels the transac-
tion. In the case of success, the WS-BA coordinator asks all
participants to complete their work and make their changes
permanent; in the case of failure, the coordinator asks them
to compensate for their changes.

4.3 Physical Architecture, Technologies,
and Implementation

The physical architecture of the T-Check experiment de-
scribes what physical components the logical entities intro-
duced above were mapped to, and what protocols they ad-
here to and employ to communicate with each other.

Both the student service and the advisor service were
implemented as SOAP web services with persistent back-
ground storage as their disposal. The transaction coordina-
tor consisted of a bundle of web services implementing the
WS-BusinessActivity 1.1 specification [5]. The workflow

Figure 3. Physical architecture layout of the
experiment.

controller, finally, was written as a web service client, call-
ing the individual web services according to their WSDL-
based service contracts.

In Figure 3, the physical layout of the T-Check experi-
ment can be seen. There were two application servers in-
volved, one hosting the KIT Student service as well as the
WS-BA coordinator and the workflow controller; the sec-
ond one only running the CMU Advisor service. While this
seems like the three co-hosted entities are tightly bound,
it is worth mentioning that all communication between the
individual components happens through SOAP over Hyper-
text Transfer Protocol (HTTP) messages, therefore uphold-
ing the autonomy of the four components as demanded by
the logical architecture.

As the two application servers hosting the experiment’s
components, two instances of the same version of the Java
EE-based JBoss Application Server were used. The choice
fell on the JBoss project (http://jboss.org), because
it is both an Open Source solution and a commercial prod-
uct, offering a high degree of insight and community sup-
port, but at the same time providing comparability with the
technologies used in actual enterprise scenarios.

On top of the bare application server, the native
JBossWS web service stack was used, as well as the JBoss
XML Transaction Service (XTS), which contains both
client libraries as well as server-side services implementing
the WS-AT and WS-BA standards.

Employing these frameworks, the transactional, cross-
organizational workflow was realized as described in the
physical layout.

45

4.4 Key Results

The first hypothesis, “WS-BusinessActivity can be used
to establish a transactional, inter-organizational work-
flow”, is mostly sustained. It was possible to create a
workflow-based SOA application and make it transactional,
in spite of it crossing the boundaries of two SOA instances.
Nonetheless, when implementing the T-Check, it became
clear that there are limitations to the currently available
technology.

The second hypothesis, “such a workflow is compens-
able in the case of failure”, is sustained, but there were
some reservations here as well.
On the positive side, our key findings were:

• As an effect of WS-BA being a purely message-based
transaction model (Section 5.1), such transactions can
easily cross SOA system boundaries.

• The participating services are able to stay stateless in
spite of a transaction log being kept, as the WS-BA co-
ordinator handles this completely without the services’
involvement (Section 5.2).

In contrast, we identified a few drawbacks:

• The WS-BA coordinator itself represents a single point
of failure for the application. What happens if its “plug
is pulled” (Section 6.1)?

• A problem with the compensation of the Student ser-
vice’s actions made clear that compensation order is a
problem currently not covered by the WS-BA standard
(Section 6.2).

• While JBoss’ XML Transaction Service fulfilled the
requirements of the investigated scenario very well,
it became apparent that a more demanding, dynamic
setup would have reached the limits of the current
framework implementation (Section 6.3).

5 Strengths

Both key strengths of WS-BA that we encountered lie in
the standard itself and are thus applicable to all standards
compliant WS-BA implementations. However, these ad-
vantages do not come for free: Together, they influence two
of the three weaknesses talked about in Section 6.

5.1 Message-Based Transactions

All communication within the WS-BA transaction pro-
tocol relies on SOAP messages only. This property prepares
the WS-BA standard inherently for cross-organizational

use, as participants in the transactions do not have to phys-
ically reside in the same SOA-based system or share any-
thing other than a communication channel.

Just like the participants, the coordinator itself can be
outside the SOA instances performing the business logic,
and can therefore, for example, be provided by a third,
trusted party.

Therefore, WS-BA’s message-based transaction model
maintains loose coupling even for transactional applications
by not binding them tightly to their transaction provider—a
strongly desired property for SOA applications [9, p. 46 ff.].

5.2 “Enlist and Forget”

Another advantage of the WS-BA transaction model is
the fact that services can register a participant with the co-
ordinator, then forget about it. The coordinator will call the
functions on the participant later when appropriate.

This keeps the participants from maintaining their own
transaction log, which they would have to update accord-
ing to the progress of the transactions they participate in.
Instead, it is possible to store all data needed to compen-
sate the actions with the participant when enlisting it in the
transaction.

Conceptually, this facilitates statelessness of the service
participating in the transaction, as the service does not need
to maintain a state for each of the transactions it is a part of,
but instead leaves this task up to the coordinator.

6 Weaknesses

Along with its strengths, there are also a number of draw-
backs of both the WS-BA standard and the WS-BA imple-
mentation used in the experiment. The first two weaknesses
lie in the standard itself, and while the third issue is a lim-
itation of the WS-BA framework employed in the T-Check
experiment, it is a problem that is generally applicable to all
other WS-BA implementations as well.

6.1 “Pulling the Plug”

In this experiment, the completion, cancellation and
compensation actions were executed on the WS-BA partic-
ipants as expected, and it can be assumed that any type of
error condition leading to a synchronous error in the appli-
cation code (i.e., any exception being thrown and properly
caught) will lead to the correct behavior.

However, it stays unclear what happens when connec-
tivity problems occur, particularly when the coordinator is
not local anymore, but can dynamically reside anywhere, as
suggested above. The positive notion of “enlist and forget”
(Section 5.2) turns into a negative effect when the WS-BA

46

coordinator “vanishes”, as the actions specified by the WS-
BA standard are only called by the coordinator itself. With-
out the coordinator, the participants do not take any further
actions.

To mitigate this problem, there needs to be a mecha-
nism that defines what happens if the coordinator becomes
unresponsive. We propose the employment of a software
component acting as a local “helper agent”, which performs
graceful degradation in the case of coordinator failure. As a
local entity, at least one of them is needed per domain par-
ticipating in the transaction. The specific timeouts and pos-
sible other limits would need to be defined in service level
agreements, and should be consistent across the participat-
ing systems in the same respective transaction. Note that
these helper agents remain “quiet observers” during normal
operation. They stay up-to-date on the current state of the
transactions involving services that they are responsible for,
but do not interfere with the WS-BA transaction logic, ex-
cept if they determine the coordinator to be unresponsive,
in which case they gracefully end the affected transactions
locally.

6.2 Sequencing Matters

Another issue became apparent when discussing the
compensation options for the student service: the question
of compensation order. As it turns out, sequencing matters.

In the experiment, on each call to the advisor service, it
registered an additional participant with the business activ-
ity. When an error occurred, this resulted in each of these
participants’ compensation action being called: once for
each iteration of the thesis. Eventually, the advisor’s data
would reach the state it was in before the start of the work-
flow, as expected.

But the student service’s compensation action was not
that easy: As its changes to the thesis proposal document
were incremental rather than cumulative like the advisor
service’s “logging” of read proposals, compensation had
to happen in exactly the opposite order of the incremental
changes executed on the initial proposal. The WS-BA stan-
dard, however, does not guarantee a compensation order,
and leaves it completely up to the implementation: Thus,
compensation calls can be made in ascending/descending,
or arbitrary order, or even all in parallel. As a naive solution
it would be possible to write code on the participant side to
force the participants’ compensation actions to be executed
in the desired order, for example by passing around some
sort of “token” and blocking all compensation actions until
they receive the token. But worse than relying on a specific
compensation order provided by the coordinator, this would
not only violate the autonomy principle by interfering with
the coordinator’s logic, it would also open the door for unin-
tended side effects, such as deadlocks, when other services

behave similarly and suddenly start waiting on each other
to “go first”, indefinitely.

In this case, it was possible to circumvent this prob-
lem. Instead of using one participant per service call, a
single participant with coordinator completion was used,
as it is not the student service’s decision if its work in this
workflow is done. Instead, the workflow controller decides,
based on the advisor service’s reply, if it is necessary for the
student service to modify the proposal again or not. Finally,
the advisor service’s WS-BA participant was therefore im-
plemented as described above, but the student service’s par-
ticipant registered for coordinator completion, only once for
the entire duration of the workflow. Moreover, its changes
to the proposal were not made permanent until the end of
the workflow, when the coordinator called the student ser-
vice’s completion action. At that point the student service
made all changes permanent at once. When the business ac-
tivity was canceled before the student service had been told
to complete its work (“cancellation”), the pending changes
could therefore simply be discarded. When the activity was
cancelled afterwards (“compensation”), the student service
was able to compensate the whole bunch of changes to their
original state at once, instead of incrementally.

While in this case, reducing the number of participants
accessing the same resource to a single one solved the prob-
lem, this is not a good, general solution to the sequencing
issue: For example, by making all changes temporary and
only writing them to persistent storage at the very end, the
service is effectively keeping a transaction log of its own,
thus negating the advantage of “enlist and forget” (Sec-
tion 5.2). Also, keeping this record inside the service, span-
ning multiple invocations of the service, establishes a ses-
sion on the service side and makes the service stateful. In
SOA-based systems, keeping sessions and states is often not
appropriate, as it can lead to problems by tightly coupling
services in an otherwise loosely coupled environment.

Additionally, in a real-life scenario, numerous services
may modify the same data and may only be able to be com-
pensated for in a specific order. On the one hand, as seen
above, forcing a specific compensation order in the partic-
ipants’ code may provoke race conditions because the ser-
vices know nothing about the other participants’ behavior.
There is, on the other hand, no way to tell the “omniscient”
coordinator that sequencing matters to the service in ques-
tion. As a result, none of the actors claim responsibility for
the sequence of actions, so in some situations compensa-
tion may fail for the simple reason that it did not occur in
the right order. This is a problem that is currently entirely
in the hands of the business developer and represents an-
other obstacle in the creation of wide-spread, transactional
workflows. Therefore, it should be handled on the WS-BA
standard’s level, rather than in the respective application’s
business logic.

47

6.3 Limitations of the XML Transaction
Service

The JBoss XML Transaction Service used as a WS-BA
framework here has, at the time of writing, not been able
to be configured per application but only server-wide. That
means, all application packages deployed to the same server
instance have to use the same coordinator. While using
a stand-alone coordinator is possible, dynamically picking
one at runtime is not. Statically bound transaction services
are a fair limitation if the objective is to connect only a
handful of statically known, local services, but it forms a
serious obstacle for the creation of dynamically bound, fed-
erated applications. It is positive that the inner logic of the
WS-BA standard is hidden from the developer by the frame-
work, and it would certainly be an improvement to have the
possibility to choose a different coordinator statically per
application. However, in order for applications to become
truly federated by dynamically binding at runtime to many
different services in entirely different SOA instances, the
transaction framework will need to become more flexible.

This is a problem that is not limited to the framework
used in this experiment. In general, to facilitate dynamic,
cross-organizational SOA applications, it needs to be pos-
sible to query a service registry, such as a Universal De-
scription Discovery and Integration (UDDI) registry, for
any WS-BA coordinator service (JBoss or not), then bind
to it dynamically and use its transaction services for the du-
ration of the workflow.

7 Conclusions and Future Work

When integrating their SOA-based infrastructure with
business partners, enterprises face the need for proper,
service-based transaction management that supports cross-
organizational use. In order to determine the suitability
of the WS-BusinessActivity standard for this task, we per-
formed an experiment using the T-Check process. During
this research, we made several key findings—both positive
and negative—which we presented above.

We were able to show that WS-BA is suitable for cross-
organizational SOA-based transactions with relaxed ACID
properties. Putting the transaction state into the hands
of the coordinator supports SOA’s statelessness principle,
and the message-based standard opens the door for cross-
organizational use. However, both the implementation used
in the experiment as well as the standard itself have limi-
tations: We pointed out the lack of graceful degradation in
the case of coordinator failure, undefined compensation or-
der, and, depending on the implementation, it is impossible
to dynamically bind to the WS-BA transaction services at
runtime.

For possible users of WS-BA in a cross-organizational
environment, the standard is therefore most appropriate un-
der the following circumstances:

• when service-based transactional integrity is desired
that can both be used inside a single SOA instance as
well as across multiple organizational domains

• when sequencing is not relevant for the correct-
ness/feasibility of their services’ compensation actions

• when the WS-BA coordinator is local to the user’s do-
main and not controlled by a third party, due to unde-
fined behavior in the case of coordinator failure.

From a research perspective, future work remains: For
example, the undefined behavior in the case of coordinator
failure is a serious drawback that needs further research. It
is necessary to investigate what precise semantics a solution
must have, and if there are other approaches besides the lo-
cal agents we proposed above. Also, the added complexity
to the standard should be kept to a minimum.

Our future research interest lies in compensation se-
quencing: In the database world, transaction compensation
has traditionally been performed in reverse order [6], just
as required in this experiment. However, in large, long-
running business activities, parallelization and other opti-
mizations are likely to lead to a significant performance
increase that should not be unused unless required other-
wise by the application. An approach to the problem should
therefore maximize the likelihood of successful compen-
sation in spite of the ACID property relaxations in long-
running business activities. Deadlocks should be effectively
prevented. At the same time, the additional overhead should
be minimal, for example by still allowing for parallelization
in cases where sequencing is irrelevant.

Finally, due to the simplicity of the scenario analyzed for
this paper, problems occurring in larger applications only
have not been investigated. There are questions such as the
performance overhead of WS-BA and therefore its scalabil-
ity that deserve further attention in the context of a more
complex experiment.

Acknowledgments

Frédéric Wenzel was supported by a scholarship from the
“Landesstiftung Baden-Württemberg” foundation and the
“interACT” exchange program between KIT and CMU.
The authors would like to thank Grace Lewis, Dennis Smith
and Sriram Balasubramaniam from the Software Engineer-
ing Institute for their help.

48

References

[1] L. F. Cabera, G. Copeland, M. Feingold, T. Freund, R. W.
Freund, S. Joyce, J. Klein, D. Langworthy, M. Little, F. Ley-
mann, E. Newcomer, D. Orchard, I. Robinson, T. Storey, and
S. Thatte. Web Services Business Activity Framework (WS-
BusinessActivity). Technical report, Arjuna Techn., BEA
Systems, Hitachi, IBM, IONA, Microsoft, November 2005.

[2] T. Erl. Service-Oriented Architecture : Concepts, Technol-
ogy, and Design. Prentice Hall PTR, August 2005.

[3] H. Erven, G. Hicker, C. Huemer, and M. Zaptletal. The Web
Services-BusinessActivity-Initiator (WS-BA-I) Protocol: an
Extension to the Web Services-BusinessActivity Specifica-
tion. icws, 0:216–224, 2007.

[4] M. Feingold and R. Jeyaraman. Web Services Coordi-
nation (WS-Coordination) Version 1.1. http://docs.
oasis-open.org/ws-tx/wscoor/2006/06, July
2007.

[5] T. Freund and M. Little. Web Services Business Activity
(WS-BusinessActivity) Version 1.1. http://docs.
oasis-open.org/ws-tx/wsba/2006/06, Apr
2007. [Online; accessed 16-Jan-2009].

[6] H. Garcia-Molina and K. Salem. Sagas. SIGMOD Rec.,
16(3):249–259, 1987.

[7] J. Gray. The transaction concept: Virtues and limitations
(invited paper). In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France, Pro-
ceedings, pages 144–154. IEEE Computer Society, 1981.

[8] D. Kaye. Loosely Coupled: The Missing Pieces of Web Ser-
vices. RDS Press, 2003.

[9] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA:
Service-Oriented Architecture Best Practices. Prentice Hall
Ptr, 2004.

[10] G. A. Lewis and L. Wrage. A Process for Context-Based
Technology Evaluation. Technical Report CMU/SEI-2005-
TN-025, Software Engineering Institute, June 2005.

[11] M. Little. Transactions and web services. Commun. ACM,
46(10):49–54, 2003.

[12] M. Little and A. Wilkinson. Web Services Atomic Trans-
action (WS-AtomicTransaction) Version 1.1. http://
docs.oasis-open.org/ws-tx/wstx-wsat-1.
1-spec/wstx-wsat-1.1-spec.html, Jul 2007.

[13] P. Sauter and I. Melzer. A Comparison of WS-
BusinessActivity and BPEL4WS Long-Running Transac-
tion. In P. Müller, R. Gotzhein, and J. B. Schmitt, editors,
KiVS, Informatik Aktuell, pages 115–125. Springer, 2005.

[14] F. H. Vogt, S. Zambrovski, B. Gruschko, P. Furniss, and
A. Green. Implementing Web Service Protocols in SOA:
WS-Coordination and WS-BusinessActivity. E-Commerce
Technology Workshops, Seventh IEEE International Confer-
ence on, 0:21–28, 2005.

[15] T. Wang. Towards A Transaction Framework for Contract–
Driven, Service–Oriented Business Processes. In Proceed-
ings of the IBM PhD Student Symposium at ICSOC05, pages
34–48, 2005.

[16] F. Wenzel. Transaction Management Challenges for
Cross-Organizational, Workflow-Based SOA Applications.
http://research.tm.uka.de, March 2009. Mas-
ter’s Thesis; to be published; Karlsruhe Institute of Tech-
nology.

[17] X. Yao and M. B. Dan-Rognlie. Distributed Transaction
Management in SOA-based System Integration. Master’s
thesis, IT University of Kopenhagen, Sep 2007.

49

